Sample records for relevant model system

  1. Incorporating Non-Relevance Information in the Estimation of Query Models

    DTIC Science & Technology

    2008-11-01

    experiments in relevance feedback. In Salton , G., editor, The SMART Retrieval System – Exper- iments in Automatic Document Processing, pages 337– 354...W. (2001). Relevance based lan- guage models. In SIGIR ’01. Rocchio, J. (1971). Relevance feedback in information re- trieval. In Salton , G., editor

  2. Overview of Threats and Failure Models for Safety-Relevant Computer-Based Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2015-01-01

    This document presents a high-level overview of the threats to safety-relevant computer-based systems, including (1) a description of the introduction and activation of physical and logical faults; (2) the propagation of their effects; and (3) function-level and component-level error and failure mode models. These models can be used in the definition of fault hypotheses (i.e., assumptions) for threat-risk mitigation strategies. This document is a contribution to a guide currently under development that is intended to provide a general technical foundation for designers and evaluators of safety-relevant systems.

  3. A Peep into the Uncertainty-Complexity-Relevance Modeling Trilemma through Global Sensitivity and Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Muller, S. J.; Chu, M.; Kiker, G. A.; Perz, S. G.

    2014-12-01

    Model Model complexity resulting from the need to integrate environmental system components cannot be understated. In particular, additional emphasis is urgently needed on rational approaches to guide decision making through uncertainties surrounding the integrated system across decision-relevant scales. However, in spite of the difficulties that the consideration of modeling uncertainty represent for the decision process, it should not be avoided or the value and science behind the models will be undermined. These two issues; i.e., the need for coupled models that can answer the pertinent questions and the need for models that do so with sufficient certainty, are the key indicators of a model's relevance. Model relevance is inextricably linked with model complexity. Although model complexity has advanced greatly in recent years there has been little work to rigorously characterize the threshold of relevance in integrated and complex models. Formally assessing the relevance of the model in the face of increasing complexity would be valuable because there is growing unease among developers and users of complex models about the cumulative effects of various sources of uncertainty on model outputs. In particular, this issue has prompted doubt over whether the considerable effort going into further elaborating complex models will in fact yield the expected payback. New approaches have been proposed recently to evaluate the uncertainty-complexity-relevance modeling trilemma (Muller, Muñoz-Carpena and Kiker, 2011) by incorporating state-of-the-art global sensitivity and uncertainty analysis (GSA/UA) in every step of the model development so as to quantify not only the uncertainty introduced by the addition of new environmental components, but the effect that these new components have over existing components (interactions, non-linear responses). Outputs from the analysis can also be used to quantify system resilience (stability, alternative states, thresholds or tipping points) in the face of environmental and anthropogenic change (Perz, Muñoz-Carpena, Kiker and Holt, 2013), and through MonteCarlo mapping potential management activities over the most important factors or processes to influence the system towards behavioral (desirable) outcomes (Chu-Agor, Muñoz-Carpena et al., 2012).

  4. A User-Centered Approach to Adaptive Hypertext Based on an Information Relevance Model

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Chen, James

    1994-01-01

    Rapid and effective to information in large electronic documentation systems can be facilitated if information relevant in an individual user's content can be automatically supplied to this user. However most of this knowledge on contextual relevance is not found within the contents of documents, it is rather established incrementally by users during information access. We propose a new model for interactively learning contextual relevance during information retrieval, and incrementally adapting retrieved information to individual user profiles. The model, called a relevance network, records the relevance of references based on user feedback for specific queries and user profiles. It also generalizes such knowledge to later derive relevant references for similar queries and profiles. The relevance network lets users filter information by context of relevance. Compared to other approaches, it does not require any prior knowledge nor training. More importantly, our approach to adaptivity is user-centered. It facilitates acceptance and understanding by users by giving them shared control over the adaptation without disturbing their primary task. Users easily control when to adapt and when to use the adapted system. Lastly, the model is independent of the particular application used to access information, and supports sharing of adaptations among users.

  5. Systems Engineering Model for ART Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  6. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.

  7. Brachypodium as a model for the grasses: today and the future

    USDA-ARS?s Scientific Manuscript database

    Over the past several years, Brachypodium distachyon (Brachypodium) has emerged as a tractable model system to study biological questions relevant to the grasses. To place its relevance in the larger context of plant biology, we outline here the expanding adoption of Brachypodium as a model grass an...

  8. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems.

    PubMed

    White, Andrew; Tolman, Malachi; Thames, Howard D; Withers, Hubert Rodney; Mason, Kathy A; Transtrum, Mark K

    2016-12-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model's discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system-a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model.

  9. A Compositional Relevance Model for Adaptive Information Retrieval

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Chen, James; Lu, Henry, Jr. (Technical Monitor)

    1994-01-01

    There is a growing need for rapid and effective access to information in large electronic documentation systems. Access can be facilitated if information relevant in the current problem solving context can be automatically supplied to the user. This includes information relevant to particular user profiles, tasks being performed, and problems being solved. However most of this knowledge on contextual relevance is not found within the contents of documents, and current hypermedia tools do not provide any easy mechanism to let users add this knowledge to their documents. We propose a compositional relevance network to automatically acquire the context in which previous information was found relevant. The model records information on the relevance of references based on user feedback for specific queries and contexts. It also generalizes such information to derive relevant references for similar queries and contexts. This model lets users filter information by context of relevance, build personalized views of documents over time, and share their views with other users. It also applies to any type of multimedia information. Compared to other approaches, it is less costly and doesn't require any a priori statistical computation, nor an extended training period. It is currently being implemented into the Computer Integrated Documentation system which enables integration of various technical documents in a hypertext framework.

  10. The relevance of human stem cell-derived organoid models for epithelial translational medicine

    PubMed Central

    Hynds, Robert E.; Giangreco, Adam

    2014-01-01

    Epithelial organ remodeling is a major contributing factor to worldwide death and disease, costing healthcare systems billions of dollars every year. Despite this, most fundamental epithelial organ research fails to produce new therapies and mortality rates for epithelial organ diseases remain unacceptably high. In large part, this failure in translating basic epithelial research into clinical therapy is due to a lack of relevance in existing preclinical models. To correct this, new models are required that improve preclinical target identification, pharmacological lead validation, and compound optimization. In this review, we discuss the relevance of human stem cell-derived, three-dimensional organoid models for addressing each of these challenges. We highlight the advantages of stem cell-derived organoid models over existing culture systems, discuss recent advances in epithelial tissue-specific organoids, and present a paradigm for using organoid models in human translational medicine. PMID:23203919

  11. PathText: a text mining integrator for biological pathway visualizations

    PubMed Central

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  12. Mathematical modeling relevant to closed artificial ecosystems

    USGS Publications Warehouse

    DeAngelis, D.L.

    2003-01-01

    The mathematical modeling of ecosystems has contributed much to the understanding of the dynamics of such systems. Ecosystems can include not only the natural variety, but also artificial systems designed and controlled by humans. These can range from agricultural systems and activated sludge plants, down to mesocosms, microcosms, and aquaria, which may have practical or research applications. Some purposes may require the design of systems that are completely closed, as far as material cycling is concerned. In all cases, mathematical modeling can help not only to understand the dynamics of the system, but also to design methods of control to keep the system operating in desired ranges. This paper reviews mathematical modeling relevant to the simulation and control of closed or semi-closed artificial ecosystems designed for biological production and recycling in applications in space. Published by Elsevier Science Ltd on behalf of COSPAR.

  13. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    PubMed Central

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  14. The Limitations of Model-Based Experimental Design and Parameter Estimation in Sloppy Systems

    PubMed Central

    Tolman, Malachi; Thames, Howard D.; Mason, Kathy A.

    2016-01-01

    We explore the relationship among experimental design, parameter estimation, and systematic error in sloppy models. We show that the approximate nature of mathematical models poses challenges for experimental design in sloppy models. In many models of complex biological processes it is unknown what are the relevant physical mechanisms that must be included to explain system behaviors. As a consequence, models are often overly complex, with many practically unidentifiable parameters. Furthermore, which mechanisms are relevant/irrelevant vary among experiments. By selecting complementary experiments, experimental design may inadvertently make details that were ommitted from the model become relevant. When this occurs, the model will have a large systematic error and fail to give a good fit to the data. We use a simple hyper-model of model error to quantify a model’s discrepancy and apply it to two models of complex biological processes (EGFR signaling and DNA repair) with optimally selected experiments. We find that although parameters may be accurately estimated, the discrepancy in the model renders it less predictive than it was in the sloppy regime where systematic error is small. We introduce the concept of a sloppy system–a sequence of models of increasing complexity that become sloppy in the limit of microscopic accuracy. We explore the limits of accurate parameter estimation in sloppy systems and argue that identifying underlying mechanisms controlling system behavior is better approached by considering a hierarchy of models of varying detail rather than focusing on parameter estimation in a single model. PMID:27923060

  15. Realtime Knowledge Management (RKM): From an International Space Station (ISS) Point of View

    NASA Technical Reports Server (NTRS)

    Robinson, Peter I.; McDermott, William; Alena, Richard L.

    2004-01-01

    We are developing automated methods to provide realtime access to spacecraft domain knowledge relevant a spacecraft's current operational state. The method is based upon analyzing state-transition signatures in the telemetry stream. A key insight is that documentation relevant to a specific failure mode or operational state is related to the structure and function of spacecraft systems. This means that diagnostic dependency and state models can provide a roadmap for effective documentation navigation and presentation. Diagnostic models consume the telemetry and derive a high-level state description of the spacecraft. Each potential spacecraft state description is matched against the predictions of models that were developed from information found in the pages and sections in the relevant International Space Station (ISS) documentation and reference materials. By annotating each model fragment with the domain knowledge sources from which it was derived we can develop a system that automatically selects those documents representing the domain knowledge encapsulated by the models that compute the current spacecraft state. In this manner, when the spacecraft state changes, the relevant documentation context and presentation will also change.

  16. Integrating the Curriculum: Quality and Relevance for Special Needs Children.

    ERIC Educational Resources Information Center

    Wessel, Janet A.

    A comprehensive, integrated physical education system that has quality and relevance for handicapped students and their nonhandicapped peers is proposed. The Achievement Based Curriculum (ABC) Model is a systematic decision-making process for an instructional system that incorporates curriculum, instruction, assessment, and evaluation in one…

  17. The System Dynamics Model for Development of Organic Agriculture

    NASA Astrophysics Data System (ADS)

    Rozman, Črtomir; Škraba, Andrej; Kljajić, Miroljub; Pažek, Karmen; Bavec, Martina; Bavec, Franci

    2008-10-01

    Organic agriculture is the highest environmentally valuable agricultural system, and has strategic importance at national level that goes beyond the interests of agricultural sector. In this paper we address development of organic farming simulation model based on a system dynamics methodology (SD). The system incorporates relevant variables, which affect the development of the organic farming. The group decision support system (GDSS) was used in order to identify most relevant variables for construction of causal loop diagram and further model development. The model seeks answers to strategic questions related to the level of organically utilized area, levels of production and crop selection in a long term dynamic context and will be used for simulation of different policy scenarios for organic farming and their impact on economic and environmental parameters of organic production at an aggregate level.

  18. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease

    PubMed Central

    Hasham, Muneer G.; Baxan, Nicoleta; Stuckey, Daniel J.; Branca, Jane; Perkins, Bryant; Dent, Oliver; Duffy, Ted; Hameed, Tolani S.; Stella, Sarah E.; Bellahcene, Mohammed; Schneider, Michael D.; Harding, Sian E.; Rosenthal, Nadia

    2017-01-01

    ABSTRACT Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. PMID:28250051

  19. A UML-based ontology for describing hospital information system architectures.

    PubMed

    Winter, A; Brigl, B; Wendt, T

    2001-01-01

    To control the heterogeneity inherent to hospital information systems the information management needs appropriate hospital information systems modeling methods or techniques. This paper shows that, for several reasons, available modeling approaches are not able to answer relevant questions of information management. To overcome this major deficiency we offer an UML-based ontology for describing hospital information systems architectures. This ontology views at three layers: the domain layer, the logical tool layer, and the physical tool layer, and defines the relevant components. The relations between these components, especially between components of different layers make the answering of our information management questions possible.

  20. ECVAM and new technologies for toxicity testing.

    PubMed

    Bouvier d'Yvoire, Michel; Bremer, Susanne; Casati, Silvia; Ceridono, Mara; Coecke, Sandra; Corvi, Raffaella; Eskes, Chantra; Gribaldo, Laura; Griesinger, Claudius; Knaut, Holger; Linge, Jens P; Roi, Annett; Zuang, Valérie

    2012-01-01

    The development of alternative empirical (testing) and non-empirical (non-testing) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity ('pathways' of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.

  1. The application of system dynamics modelling to environmental health decision-making and policy - a scoping review.

    PubMed

    Currie, Danielle J; Smith, Carl; Jagals, Paul

    2018-03-27

    Policy and decision-making processes are routinely challenged by the complex and dynamic nature of environmental health problems. System dynamics modelling has demonstrated considerable value across a number of different fields to help decision-makers understand and predict the dynamic behaviour of complex systems in support the development of effective policy actions. In this scoping review we investigate if, and in what contexts, system dynamics modelling is being used to inform policy or decision-making processes related to environmental health. Four electronic databases and the grey literature were systematically searched to identify studies that intersect the areas environmental health, system dynamics modelling, and decision-making. Studies identified in the initial screening were further screened for their contextual, methodological and application-related relevancy. Studies deemed 'relevant' or 'highly relevant' according to all three criteria were included in this review. Key themes related to the rationale, impact and limitation of using system dynamics in the context of environmental health decision-making and policy were analysed. We identified a limited number of relevant studies (n = 15), two-thirds of which were conducted between 2011 and 2016. The majority of applications occurred in non-health related sectors (n = 9) including transportation, public utilities, water, housing, food, agriculture, and urban and regional planning. Applications were primarily targeted at micro-level (local, community or grassroots) decision-making processes (n = 9), with macro-level (national or international) decision-making to a lesser degree. There was significant heterogeneity in the stated rationales for using system dynamics and the intended impact of the system dynamics model on decision-making processes. A series of user-related, technical and application-related limitations and challenges were identified. None of the reported limitations or challenges appeared unique to the application of system dynamics within the context of environmental health problems, but rather to the use of system dynamics in general. This review reveals that while system dynamics modelling is increasingly being used to inform decision-making related to environmental health, applications are currently limited. Greater application of system dynamics within this context is needed before its benefits and limitations can be fully understood.

  2. Behavior Analysis in Distance Education: A Systems Approach.

    ERIC Educational Resources Information Center

    Coldeway, Dan O.

    1987-01-01

    Describes a model of instructional theory relevant to individualized distance education that is based on Keller's Personalized System of Instruction (PSI), behavior analysis, and the instructional systems development model (ISD). Systems theory is emphasized, and ISD and behavior analysis are discussed as cybernetic processes. (LRW)

  3. Modeling and Simulation Resource Repository (MSRR)(System Engineering/Integrated M&S Management Approach

    NASA Technical Reports Server (NTRS)

    Milroy, Audrey; Hale, Joe

    2006-01-01

    NASA s Exploration Systems Mission Directorate (ESMD) is implementing a management approach for modeling and simulation (M&S) that will provide decision-makers information on the model s fidelity, credibility, and quality, including the verification, validation and accreditation information. The NASA MSRR will be implemented leveraging M&S industry best practices. This presentation will discuss the requirements that will enable NASA to capture and make available the "meta data" or "simulation biography" data associated with a model. The presentation will also describe the requirements that drive how NASA will collect and document relevant information for models or suites of models in order to facilitate use and reuse of relevant models and provide visibility across NASA organizations and the larger M&S community.

  4. Discovering relevance knowledge in data: a growing cell structures approach.

    PubMed

    Azuaje, F; Dubitzky, W; Black, N; Adamson, K

    2000-01-01

    Both information retrieval and case-based reasoning systems rely on effective and efficient selection of relevant data. Typically, relevance in such systems is approximated by similarity or indexing models. However, the definition of what makes data items similar or how they should be indexed is often nontrivial and time-consuming. Based on growing cell structure artificial neural networks, this paper presents a method that automatically constructs a case retrieval model from existing data. Within the case-based reasoning (CBR) framework, the method is evaluated for two medical prognosis tasks, namely, colorectal cancer survival and coronary heart disease risk prognosis. The results of the experiments suggest that the proposed method is effective and robust. To gain a deeper insight and understanding of the underlying mechanisms of the proposed model, a detailed empirical analysis of the models structural and behavioral properties is also provided.

  5. Translation from UML to Markov Model: A Performance Modeling Framework

    NASA Astrophysics Data System (ADS)

    Khan, Razib Hayat; Heegaard, Poul E.

    Performance engineering focuses on the quantitative investigation of the behavior of a system during the early phase of the system development life cycle. Bearing this on mind, we delineate a performance modeling framework of the application for communication system that proposes a translation process from high level UML notation to Continuous Time Markov Chain model (CTMC) and solves the model for relevant performance metrics. The framework utilizes UML collaborations, activity diagrams and deployment diagrams to be used for generating performance model for a communication system. The system dynamics will be captured by UML collaboration and activity diagram as reusable specification building blocks, while deployment diagram highlights the components of the system. The collaboration and activity show how reusable building blocks in the form of collaboration can compose together the service components through input and output pin by highlighting the behavior of the components and later a mapping between collaboration and system component identified by deployment diagram will be delineated. Moreover the UML models are annotated to associate performance related quality of service (QoS) information which is necessary for solving the performance model for relevant performance metrics through our proposed framework. The applicability of our proposed performance modeling framework in performance evaluation is delineated in the context of modeling a communication system.

  6. Using in vitro models for expression profiling studies on ethanol and drugs of abuse.

    PubMed

    Thibault, Christelle; Hassan, Sajida; Miles, Michael

    2005-03-01

    The use of expression profiling with microarrays offers great potential for studying the mechanisms of action of drugs of abuse. Studies with the intact nervous system seem likely to be most relevant to understanding the mechanisms of drug abuse-related behaviours. However, the use of expression profiling with in vitro culture models offers significant advantages for identifying details of cellular signalling actions and toxicity for drugs of abuse. This study discusses general issues of the use of microarrays and cell culture models for studies on drugs of abuse. Specific results from existing studies are also discussed, providing clear examples of relevance for in vitro studies on ethanol, nicotine, opiates, cannabinoids and hallucinogens such as LSD. In addition to providing details on signalling mechanisms relevant to the neurobiology of drugs of abuse, microarray studies on a variety of cell culture systems have also provided important information on mechanisms of cellular/organ toxicity with drugs of abuse. Efforts to integrate genomic studies on drugs of abuse with both in vivo and in vitro models offer the potential for novel mechanistic rigor and physiological relevance.

  7. Solving Water Crisis through Understanding of Hydrology and Human Systems: a Possible Target

    NASA Astrophysics Data System (ADS)

    Montanari, A.

    2014-12-01

    While the majority of the Earth surface is still in pristine conditions, the totality of the hydrological systems that are relevant to humans are human impacted, with the only exception of small headwater catchments. In fact, the limited transferability of water in space and time implies that water withdrawals from natural resources take place where and when water is needed. Therefore, hydrological systems are impacted where and when humans are, thereby causing a direct perturbation of all water bodies that are relevant to society. The current trend of population dynamics and the current status of water systems are such that the above impact will be not sustainable in the near future, therefore causing a water emergency that will be extended to all intensively populated regions of the world, with relevant implications on migration fluxes, political status and social security. Therefore mitigation actions are urgently needed, whose planning needs to be based on improved interpretations of the above impact. Up to recent times, hydrologists mainly concentrated their research on catchments where the human perturbation is limited, to improve our understanding of pristine hydrology. There were good motivations for this focus: given the relevant uncertainty affecting hydrological modeling, and the even greater uncertainty involved in societal modeling, hydrologists made an effort to separate hydrological and human dynamics. Nowadays, the urgency of the above need to mitigate the global water crisis through improved water resources management calls for a research attempt to bridge water and social sciences. The relevant research question is how to build operational models in order to fully account for the interactions and feedbacks between water resources systems and society. Given that uncertainty estimation is necessary for the operational application of model results, one of the crucial issues is how to quantify uncertainty by means of suitable assumptions. This talk will provide an introduction to the problem and a personal perspective to move forward to set up improved operational models to assist societal planning to mitigate the global water crisis.

  8. Some New Theoretical Issues in Systems Thinking Relevant for Modelling Corporate Learning

    ERIC Educational Resources Information Center

    Minati, Gianfranco

    2007-01-01

    Purpose: The purpose of this paper is to describe fundamental concepts and theoretical challenges with regard to systems, and to build on these in proposing new theoretical frameworks relevant to learning, for example in so-called learning organizations. Design/methodology/approach: The paper focuses on some crucial fundamental aspects introduced…

  9. Toxcast and the Use of Human Relevant In Vitro Exposures ...

    EPA Pesticide Factsheets

    The path for incorporating new approach methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. These challenges include sufficient coverage of toxicological mechanisms to meaningfully interpret negative test results, development of increasingly relevant test systems, computational modeling to integrate experimental data, putting results in a dose and exposure context, characterizing uncertainty, and efficient validation of the test systems and computational models. The presentation will cover progress at the U.S. EPA in systematically addressing each of these challenges and delivering more human-relevant risk-based assessments. This abstract does not necessarily reflect U.S. EPA policy. Presentation at the British Toxicological Society Annual Congress on ToxCast and the Use of Human Relevant In Vitro Exposures: Incorporating high-throughput exposure and toxicity testing data for 21st century risk assessments .

  10. Strategic relevance and accountability expectations: new perspectives for health care information technology design.

    PubMed

    Tan, J K; Modrow, R E

    1999-05-01

    In this article, we discuss the traditional systems analysis perspective on end-user information requirements analysis and extend it to merge with the new accountability expectations perspective to guide the future planning and design of health organization information systems. Underlying the strategic relevance of health care information technology (HCIT) are three critical questions: (1) What is the ideal HCIT model for the health organization in terms of achieving strategic expertise and competitive advantage? Specifically, how does this model link industry performance standards with organizational performance and accountability expectations? (2) How should the limitations of past HCIT models be reconciled to the benefits presented by the superior arrangement of the ideal model in the context of changing accountability expectations? (3) How should alternative HCIT solutions be evaluated in light of evidence-based accountability and organizational performance benchmarking? Insights into these questions will ensure that health care managers, HCIT practitioners and researchers can continue to focus on the most critical issues in harnessing today's fast-paced changing technologies for evolving strategically relevant, performance-based health organization systems.

  11. Developing predictive systems models to address complexity and relevance for ecological risk assessment.

    PubMed

    Forbes, Valery E; Calow, Peter

    2013-07-01

    Ecological risk assessments (ERAs) are not used as well as they could be in risk management. Part of the problem is that they often lack ecological relevance; that is, they fail to grasp necessary ecological complexities. Adding realism and complexity can be difficult and costly. We argue that predictive systems models (PSMs) can provide a way of capturing complexity and ecological relevance cost-effectively. However, addressing complexity and ecological relevance is only part of the problem. Ecological risk assessments often fail to meet the needs of risk managers by not providing assessments that relate to protection goals and by expressing risk in ratios that cannot be weighed against the costs of interventions. Once more, PSMs can be designed to provide outputs in terms of value-relevant effects that are modulated against exposure and that can provide a better basis for decision making than arbitrary ratios or threshold values. Recent developments in the modeling and its potential for implementation by risk assessors and risk managers are beginning to demonstrate how PSMs can be practically applied in risk assessment and the advantages that doing so could have. Copyright © 2013 SETAC.

  12. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    NASA Astrophysics Data System (ADS)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  13. Systemic Modelling for Relating Labour Market to Vocational Education

    ERIC Educational Resources Information Center

    Papakitsos, Evangelos C.

    2016-01-01

    The present study introduces a systemic model that demonstrates a description of the relationship between the labour-market and vocational education from the perspective of systemic theory. Based on the application of the relevant methodology, the two open social systems are identified and analyzed. Their key-features are presented and the points…

  14. Hierarchical Architectural Considerations in Econometric Modeling of Manufacturing Systems

    DTIC Science & Technology

    1981-06-01

    behavioral factors must also be considered. A proposed economic model, to be aligned with ICAM program intentions, should be generic and have the... relevant to the effort and to identify contractors, if any, involved in economic model development. Due to the nature of involvement of other con...tractors with the ICAM program office, information which was thought relevant to the initiation of the current effort was in a lag-time and was

  15. Predicting Document Retrieval System Performance: An Expected Precision Measure.

    ERIC Educational Resources Information Center

    Losee, Robert M., Jr.

    1987-01-01

    Describes an expected precision (EP) measure designed to predict document retrieval performance. Highlights include decision theoretic models; precision and recall as measures of system performance; EP graphs; relevance feedback; and computing the retrieval status value of a document for two models, the Binary Independent Model and the Two Poisson…

  16. Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-Wen

    2018-07-01

    Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.

  17. Implementation of a Sage-Based Stirling Model Into a System-Level Numerical Model of the Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.

    2011-01-01

    The Fission Power System (FPS) project is developing a Technology Demonstration Unit (TDU) to verify the performance and functionality of a subscale version of the FPS reference concept in a relevant environment, and to verify component and system models. As hardware is developed for the TDU, component and system models must be refined to include the details of specific component designs. This paper describes the development of a Sage-based pseudo-steady-state Stirling convertor model and its implementation into a system-level model of the TDU.

  18. Are Models Easier to Understand than Code? An Empirical Study on Comprehension of Entity-Relationship (ER) Models vs. Structured Query Language (SQL) Code

    ERIC Educational Resources Information Center

    Sanchez, Pablo; Zorrilla, Marta; Duque, Rafael; Nieto-Reyes, Alicia

    2011-01-01

    Models in Software Engineering are considered as abstract representations of software systems. Models highlight relevant details for a certain purpose, whereas irrelevant ones are hidden. Models are supposed to make system comprehension easier by reducing complexity. Therefore, models should play a key role in education, since they would ease the…

  19. A state-of-the-art review of transportation systems evaluation techniques relevant to air transportation, volume 1. [urban planning and urban transportation using decision theory

    NASA Technical Reports Server (NTRS)

    Haefner, L. E.

    1975-01-01

    Mathematical and philosophical approaches are presented for evaluation and implementation of ground and air transportation systems. Basic decision processes are examined that are used for cost analyses and planning (i.e, statistical decision theory, linear and dynamic programming, optimization, game theory). The effects on the environment and the community that a transportation system may have are discussed and modelled. Algorithmic structures are examined and selected bibliographic annotations are included. Transportation dynamic models were developed. Citizen participation in transportation projects (i.e, in Maryland and Massachusetts) is discussed. The relevance of the modelling and evaluation approaches to air transportation (i.e, airport planning) is examined in a case study in St. Louis, Missouri.

  20. Unmanned Aircraft Systems for Studying Spatial Abundance of Ungulates: Relevance to Spatial Epidemiology

    PubMed Central

    Barasona, José A.; Mulero-Pázmány, Margarita; Acevedo, Pelayo; Negro, Juan J.; Torres, María J.; Gortázar, Christian; Vicente, Joaquín

    2014-01-01

    Complex ecological and epidemiological systems require multidisciplinary and innovative research. Low cost unmanned aircraft systems (UAS) can provide information on the spatial pattern of hosts’ distribution and abundance, which is crucial as regards modelling the determinants of disease transmission and persistence on a fine spatial scale. In this context we have studied the spatial epidemiology of tuberculosis (TB) in the ungulate community of Doñana National Park (South-western Spain) by modelling species host (red deer, fallow deer and cattle) abundance at fine spatial scale. The use of UAS high-resolution images has allowed us to collect data to model the environmental determinants of host abundance, and in a further step to evaluate their relationships with the spatial risk of TB throughout the ungulate community. We discuss the ecological, epidemiological and logistic conditions under which UAS may contribute to study the wildlife/livestock sanitary interface, where the spatial aggregation of hosts becomes crucial. These findings are relevant for planning and implementing research, fundamentally when managing disease in multi-host systems, and focusing on risky areas. Therefore, managers should prioritize the implementation of control strategies to reduce disease of conservation, economic and social relevance. PMID:25551673

  1. Toward a Common Structure in Demographic Educational Modeling and Simulation: A Complex Systems Approach

    ERIC Educational Resources Information Center

    Guevara, Porfirio

    2014-01-01

    This article identifies elements and connections that seem to be relevant to explain persistent aggregate behavioral patterns in educational systems when using complex dynamical systems modeling and simulation approaches. Several studies have shown what factors are at play in educational fields, but confusion still remains about the underlying…

  2. Systems modelling methodology for the analysis of apoptosis signal transduction and cell death decisions.

    PubMed

    Rehm, Markus; Prehn, Jochen H M

    2013-06-01

    Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  4. Agent-Based Modeling in Systems Pharmacology.

    PubMed

    Cosgrove, J; Butler, J; Alden, K; Read, M; Kumar, V; Cucurull-Sanchez, L; Timmis, J; Coles, M

    2015-11-01

    Modeling and simulation (M&S) techniques provide a platform for knowledge integration and hypothesis testing to gain insights into biological systems that would not be possible a priori. Agent-based modeling (ABM) is an M&S technique that focuses on describing individual components rather than homogenous populations. This tutorial introduces ABM to systems pharmacologists, using relevant case studies to highlight how ABM-specific strengths have yielded success in the area of preclinical mechanistic modeling.

  5. System, method and apparatus for conducting a keyterm search

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A keyterm search is a method of searching a database for subsets of the database that are relevant to an input query. First, a number of relational models of subsets of a database are provided. A query is then input. The query can include one or more keyterms. Next, a gleaning model of the query is created. The gleaning model of the query is then compared to each one of the relational models of subsets of the database. The identifiers of the relevant subsets are then output.

  6. System, method and apparatus for conducting a phrase search

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W. (Inventor)

    2004-01-01

    A phrase search is a method of searching a database for subsets of the database that are relevant to an input query. First, a number of relational models of subsets of a database are provided. A query is then input. The query can include one or more sequences of terms. Next, a relational model of the query is created. The relational model of the query is then compared to each one of the relational models of subsets of the database. The identifiers of the relevant subsets are then output.

  7. [Design of a conceptual model on the transference of public health research results in Honduras].

    PubMed

    Macías-Chapula, César A

    2012-01-01

    To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.

  8. Relevance of Web Documents:Ghosts Consensus Method.

    ERIC Educational Resources Information Center

    Gorbunov, Andrey L.

    2002-01-01

    Discusses how to improve the quality of Internet search systems and introduces the Ghosts Consensus Method which is free from the drawbacks of digital democracy algorithms and is based on linear programming tasks. Highlights include vector space models; determining relevant documents; and enriching query terms. (LRW)

  9. Do recommender systems benefit users? a modeling approach

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho

    2016-04-01

    Recommender systems are present in many web applications to guide purchase choices. They increase sales and benefit sellers, but whether they benefit customers by providing relevant products remains less explored. While in many cases the recommended products are relevant to users, in other cases customers may be tempted to purchase the products only because they are recommended. Here we introduce a model to examine the benefit of recommender systems for users, and find that recommendations from the system can be equivalent to random draws if one always follows the recommendations and seldom purchases according to his or her own preference. Nevertheless, with sufficient information about user preferences, recommendations become accurate and an abrupt transition to this accurate regime is observed for some of the studied algorithms. On the other hand, we find that high estimated accuracy indicated by common accuracy metrics is not necessarily equivalent to high real accuracy in matching users with products. This disagreement between estimated and real accuracy serves as an alarm for operators and researchers who evaluate recommender systems merely with accuracy metrics. We tested our model with a real dataset and observed similar behaviors. Finally, a recommendation approach with improved accuracy is suggested. These results imply that recommender systems can benefit users, but the more frequently a user purchases the recommended products, the less relevant the recommended products are in matching user taste.

  10. Coal conversion systems design and process modeling. Volume 2: Installation of MPPM on the Signal 9 computer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Relevant differences between the MPPM resident IBM 370computer and the NASA Sigma 9 computer are described as well as the MPPM system itself and its development. Problems encountered and solutions used to overcome these difficulties during installation of the MPPM system at MSFC are discussed. Remaining work on the installation effort is summarized. The relevant hardware features incorporated in the program are described and their implications on the transportability of the MPPM source code are examined.

  11. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.

    PubMed

    Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T

    2016-09-01

    Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Development of a Multi-Level Model for Crisis Preparedness and Intervention in the Greek Educational System

    ERIC Educational Resources Information Center

    Hatzichristiou, Chryse; Issari, Philia; Lykitsakou, Konstantina; Lampropoulou, Aikaterini; Dimitropoulou, Panayiota

    2011-01-01

    This article proposes a multi-level model for crisis preparedness and intervention in the Greek educational system. It presents: a) a brief overview of leading models of school crisis preparedness and intervention as well as cultural considerations for contextually relevant crisis response; b) a description of existing crisis intervention…

  13. Assessment of efficiency of functioning the infocommunication systems a special purpose in the conditions of violation quality of relevance information

    NASA Astrophysics Data System (ADS)

    Parinov, A. V.; Korotkikh, L. P.; Desyatov, D. B.; Stepanov, L. V.

    2018-03-01

    The uniqueness of information processing mechanisms in special-purpose infocommunication systems and the increased interest of intruders lead to an increase in the relevance of the problems associated with their protection. The paper considers the issues of building risk-models for the violation of the relevance and value of information in infocommunication systems for special purposes. Also, special attention is paid to the connection between the qualities of relevance and the value of information obtained as a result of the operation of infocommunication systems for special purposes. Analytical expressions for the risk and damage function in the time range in special-purpose infocommunication systems are obtained, which can serve as a mathematical basis for risk assessment. Further, an analytical expression is obtained to assess the chance of obtaining up-to-date information in the operation of infocommunication systems up to the time the information quality is violated. An analytical expression for estimating the chance can be used to calculate the effectiveness of a special-purpose infocommunication system.

  14. Public Health Analysis Transport Optimization Model v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beyeler, Walt; Finley, Patrick; Walser, Alex

    PHANTOM models logistic functions of national public health systems. The system enables public health officials to visualize and coordinate options for public health surveillance, diagnosis, response and administration in an integrated analytical environment. Users may simulate and analyze system performance applying scenarios that represent current conditions or future contingencies what-if analyses of potential systemic improvements. Public health networks are visualized as interactive maps, with graphical displays of relevant system performance metrics as calculated by the simulation modeling components.

  15. 3D groundwater modeling of the Upper Mega Aquifer System (Arabian Peninsula) using OpenGeoSys

    NASA Astrophysics Data System (ADS)

    Schulz, Stephan; Rausch, Randolf; Siebert, Christian; Michelsen, Nils; Kolditz, Olaf; Al-Saud, Mohammed I.; Schüth, Christoph

    2013-04-01

    Groundwater is the only relevant freshwater resource for most countries on the Arabian Peninsula. Due to almost no recharge in most of the areas a sustainable management of this resource is not possible. Nevertheless, a smart and intelligent mining of groundwater can extend its lifetime. For this purpose groundwater models can be applied as powerful management tools. In this work a 3D groundwater model for the most relevant aquifer complex on the Arabian Peninsula, the Upper Mega Aquifer System, will be setup by using OpenGeoSys. The aquifer system has an extent of approximately 1.7 Mio. km2 and comprises 12 hydrogeological units from the Lower Cretaceous to the Neogene. The model serves the purpose to understand the system better and makes it possible to calculate scenarios of different abstraction rates and places. It could also help to quantify complex water balance components like the discharge into the Arabian Gulf. In order to setup the model further research as the estimation of important sink and source terms like groundwater recharge and Sabkha evaporation will be implemented.

  16. Investigating the Nexus of Climate, Energy, Water, and Land at Decision-Relevant Scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraucunas, Ian P.; Clarke, Leon E.; Dirks, James A.

    2015-04-01

    The Platform for Regional Integrated Modeling and Analysis (PRIMA) is an innovative modeling system developed at Pacific Northwest National Laboratory (PNNL) to simulate interactions among natural and human systems at scales relevant to regional decision making. PRIMA brings together state-of-the-art models of regional climate, hydrology, agriculture, socioeconomics, and energy systems using a flexible coupling approach. The platform can be customized to inform a variety of complex questions and decisions, such as the integrated evaluation of mitigation and adaptation options across a range of sectors. Research into stakeholder decision support needs underpins the platform's application to regional issues, including uncertainty characterization.more » Ongoing numerical experiments are yielding new insights into the interactions among human and natural systems on regional scales with an initial focus on the energy-land-water nexus in the upper U.S. Midwest. This paper focuses on PRIMA’s functional capabilities and describes some lessons learned to date about integrated regional modeling.« less

  17. International System and Foreign Policy Approaches: Implications for Conflict Modelling and Management

    DTIC Science & Technology

    tool for conflict management , preliminary version of which is the Computer Aided Conflict Information System. Using expert judgments to describe...1961. The combined model is more relevant during the crisis phase. The results have implications for conflict modelling. With respect to conflict ... management , there is an important implication. Since the organizational processes model may be more valid than an event interaction model, then conflict

  18. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    NASA Astrophysics Data System (ADS)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  19. Seasonal-scale Observational Data Analysis and Atmospheric Phenomenology for the Cold Land Processes Experiment

    NASA Technical Reports Server (NTRS)

    Poulos, Gregory S.; Stamus, Peter A.; Snook, John S.

    2005-01-01

    The Cold Land Processes Experiment (CLPX) experiment emphasized the development of a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. Our work sought to investigate which topographically- generated atmospheric phenomena are most relevant to the CLPX MSA's for the purpose of evaluating their climatic importance to net local moisture fluxes and snow transport through the use of high-resolution data assimilation/atmospheric numerical modeling techniques. Our task was to create three long-term, scientific quality atmospheric datasets for quantitative analysis (for all CLPX researchers) and provide a summary of the meteorologically-relevant phenomena of the three MSAs (see Figure) over northern Colorado. Our efforts required the ingest of a variety of CLPX datasets and the execution an atmospheric and land surface data assimilation system based on the Navier-Stokes equations (the Local Analysis and Prediction System, LAPS, and an atmospheric numerical weather prediction model, as required) at topographically- relevant grid spacing (approx. 500 m). The resulting dataset will be analyzed by the CLPX community as a part of their larger research goals to determine the relative influence of various atmospheric phenomena on processes relevant to CLPX scientific goals.

  20. Agent-based model for rural-urban migration: A dynamic consideration

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid

    2015-10-01

    This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.

  1. Embedding Analogical Reasoning into 5E Learning Model: A Study of the Solar System

    ERIC Educational Resources Information Center

    Devecioglu-Kaymakci, Yasemin

    2016-01-01

    The purpose of this study was to investigate how the 5E learning model affects learning about the Solar System when an analogical model is utilized in teaching. The data were gathered in an urban middle school 7th grade science course while teaching relevant astronomy topics. The analogical model developed by the researchers was administered to 20…

  2. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models

    NASA Astrophysics Data System (ADS)

    Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.

    2018-03-01

    The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.

  3. SIMULATIONS OF AEROSOLS AND PHOTOCHEMICAL SPECIES WITH THE CMAQ PLUME-IN-GRID MODELING SYSTEM

    EPA Science Inventory

    A plume-in-grid (PinG) method has been an integral component of the CMAQ modeling system and has been designed in order to realistically simulate the relevant processes impacting pollutant concentrations in plumes released from major point sources. In particular, considerable di...

  4. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  5. Interactive Model-Centric Systems Engineering (IMCSE) Phase 5

    DTIC Science & Technology

    2018-02-28

    Conducting Program Team Launches ................................................................................................. 12 Informing Policy...research advances knowledge relevant to human interaction with models and model-generated information . Figure 1 highlights several questions the...stakeholders interact using models and model generated information ; facets of human interaction with visualizations and large data sets; and underlying

  6. IEEE 1982. Proceedings of the international conference on cybernetics and society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    The following topics were dealt with: knowledge-based systems; risk analysis; man-machine interactions; human information processing; metaphor, analogy and problem-solving; manual control modelling; transportation systems; simulation; adaptive and learning systems; biocybernetics; cybernetics; mathematical programming; robotics; decision support systems; analysis, design and validation of models; computer vision; systems science; energy systems; environmental modelling and policy; pattern recognition; nuclear warfare; technological forecasting; artificial intelligence; the Turin shroud; optimisation; workloads. Abstracts of individual papers can be found under the relevant classification codes in this or future issues.

  7. Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Yamada, Masatoshi

    2017-08-01

    We study asymptotic safety of models of the higher derivative quantum gravity with and without matter. The beta functions are derived by utilizing the functional renormalization group, and non-trivial fixed points are found. It turns out that all couplings in gravity sector, namely the cosmological constant, the Newton constant, and the R 2 and R μν 2 coupling constants, are relevant in case of higher derivative pure gravity. For the Higgs-Yukawa model non-minimal coupled with higher derivative gravity, we find a stable fixed point at which the scalar-quartic and the Yukawa coupling constants become relevant. The relevant Yukawa coupling is crucial to realize the finite value of the Yukawa coupling constants in the standard model.

  8. Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3

    NASA Astrophysics Data System (ADS)

    Chaloupka, Jiří; Khaliullin, Giniyat

    2016-08-01

    We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the interactions. The results show that the moment direction is a sensitive probe of the model parameters in real materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available neutron-diffraction and resonant x-ray-diffraction data on Na2IrO3 and RuCl3 and discuss the parameter regimes plausible in these Kitaev-Heisenberg model systems.

  9. Communication: Role of explicit water models in the helix folding/unfolding processes

    NASA Astrophysics Data System (ADS)

    Palazzesi, Ferruccio; Salvalaglio, Matteo; Barducci, Alessandro; Parrinello, Michele

    2016-09-01

    In the last years, it has become evident that computer simulations can assume a relevant role in modelling protein dynamical motions for their ability to provide a full atomistic image of the processes under investigation. The ability of the current protein force-fields in reproducing the correct thermodynamics and kinetics systems behaviour is thus an essential ingredient to improve our understanding of many relevant biological functionalities. In this work, employing the last developments of the metadynamics framework, we compare the ability of state-of-the-art all-atom empirical functions and water models to consistently reproduce the folding and unfolding of a helix turn motif in a model peptide. This theoretical study puts in evidence that the choice of the water models can influence the thermodynamic and the kinetics of the system under investigation, and for this reason cannot be considered trivial.

  10. Context Relevant Prediction Model for COPD Domain Using Bayesian Belief Network

    PubMed Central

    Saleh, Lokman; Ajami, Hicham; Mili, Hafedh

    2017-01-01

    In the last three decades, researchers have examined extensively how context-aware systems can assist people, specifically those suffering from incurable diseases, to help them cope with their medical illness. Over the years, a huge number of studies on Chronic Obstructive Pulmonary Disease (COPD) have been published. However, how to derive relevant attributes and early detection of COPD exacerbations remains a challenge. In this research work, we will use an efficient algorithm to select relevant attributes where there is no proper approach in this domain. Such algorithm predicts exacerbations with high accuracy by adding discretization process, and organizes the pertinent attributes in priority order based on their impact to facilitate the emergency medical treatment. In this paper, we propose an extension of our existing Helper Context-Aware Engine System (HCES) for COPD. This project uses Bayesian network algorithm to depict the dependency between the COPD symptoms (attributes) in order to overcome the insufficiency and the independency hypothesis of naïve Bayesian. In addition, the dependency in Bayesian network is realized using TAN algorithm rather than consulting pneumologists. All these combined algorithms (discretization, selection, dependency, and the ordering of the relevant attributes) constitute an effective prediction model, comparing to effective ones. Moreover, an investigation and comparison of different scenarios of these algorithms are also done to verify which sequence of steps of prediction model gives more accurate results. Finally, we designed and validated a computer-aided support application to integrate different steps of this model. The findings of our system HCES has shown promising results using Area Under Receiver Operating Characteristic (AUC = 81.5%). PMID:28644419

  11. Dragon pulse information management system (DPIMS): A unique model-based approach to implementing domain agnostic system of systems and behaviors

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2016-05-01

    The Global Information Network Architecture is an information technology based on Vector Relational Data Modeling, a unique computational paradigm, DoD network certified by USARMY as the Dragon Pulse Informa- tion Management System. This network available modeling environment for modeling models, where models are configured using domain relevant semantics and use network available systems, sensors, databases and services as loosely coupled component objects and are executable applications. Solutions are based on mission tactics, techniques, and procedures and subject matter input. Three recent ARMY use cases are discussed a) ISR SoS. b) Modeling and simulation behavior validation. c) Networked digital library with behaviors.

  12. Isolated heart models: cardiovascular system studies and technological advances.

    PubMed

    Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo

    2015-07-01

    Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.

  13. Can Research in the Human Sciences Become More Relevant to Practice?

    ERIC Educational Resources Information Center

    Howard, George S.

    1985-01-01

    Reviews the scientist practitioner model in counseling and examines problems associated with it. Discusses insights of general systems theory and Rychlak's insights into deficiencies in the current model of psychological research, and presents a revised model. (JAC)

  14. The heuristic-analytic theory of reasoning: extension and evaluation.

    PubMed

    Evans, Jonathan St B T

    2006-06-01

    An extensively revised heuristic-analytic theory of reasoning is presented incorporating three principles of hypothetical thinking. The theory assumes that reasoning and judgment are facilitated by the formation of epistemic mental models that are generated one at a time (singularity principle) by preconscious heuristic processes that contextualize problems in such a way as to maximize relevance to current goals (relevance principle). Analytic processes evaluate these models but tend to accept them unless there is good reason to reject them (satisficing principle). At a minimum, analytic processing of models is required so as to generate inferences or judgments relevant to the task instructions, but more active intervention may result in modification or replacement of default models generated by the heuristic system. Evidence for this theory is provided by a review of a wide range of literature on thinking and reasoning.

  15. A novel visualization model for web search results.

    PubMed

    Nguyen, Tien N; Zhang, Jin

    2006-01-01

    This paper presents an interactive visualization system, named WebSearchViz, for visualizing the Web search results and acilitating users' navigation and exploration. The metaphor in our model is the solar system with its planets and asteroids revolving around the sun. Location, color, movement, and spatial distance of objects in the visual space are used to represent the semantic relationships between a query and relevant Web pages. Especially, the movement of objects and their speeds add a new dimension to the visual space, illustrating the degree of relevance among a query and Web search results in the context of users' subjects of interest. By interacting with the visual space, users are able to observe the semantic relevance between a query and a resulting Web page with respect to their subjects of interest, context information, or concern. Users' subjects of interest can be dynamically changed, redefined, added, or deleted from the visual space.

  16. Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System

    PubMed Central

    Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja

    2012-01-01

    Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649

  17. Virtual design and optimization studies for industrial silicon microphones applying tailored system-level modeling

    NASA Astrophysics Data System (ADS)

    Kuenzig, Thomas; Dehé, Alfons; Krumbein, Ulrich; Schrag, Gabriele

    2018-05-01

    Maxing out the technological limits in order to satisfy the customers’ demands and obtain the best performance of micro-devices and-systems is a challenge of today’s manufacturers. Dedicated system simulation is key to investigate the potential of device and system concepts in order to identify the best design w.r.t. the given requirements. We present a tailored, physics-based system-level modeling approach combining lumped with distributed models that provides detailed insight into the device and system operation at low computational expense. The resulting transparent, scalable (i.e. reusable) and modularly composed models explicitly contain the physical dependency on all relevant parameters, thus being well suited for dedicated investigation and optimization of MEMS devices and systems. This is demonstrated for an industrial capacitive silicon microphone. The performance of such microphones is determined by distributed effects like viscous damping and inhomogeneous capacitance variation across the membrane as well as by system-level phenomena like package-induced acoustic effects and the impact of the electronic circuitry for biasing and read-out. The here presented model covers all relevant figures of merit and, thus, enables to evaluate the optimization potential of silicon microphones towards high fidelity applications. This work was carried out at the Technical University of Munich, Chair for Physics of Electrotechnology. Thomas Kuenzig is now with Infineon Technologies AG, Neubiberg.

  18. Serotonergic hallucinogens as translational models relevant to schizophrenia.

    PubMed

    Halberstadt, Adam L; Geyer, Mark A

    2013-11-01

    One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT(2A) receptor. These compounds produce a 'model psychosis' in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioural effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects and their translational relevance. Despite the difficulty of modelling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents.

  19. Serotonergic Hallucinogens as Translational Models Relevant to Schizophrenia

    PubMed Central

    Halberstadt, Adam L.; Geyer, Mark A.

    2014-01-01

    One of the oldest models of schizophrenia is based on the effects of serotonergic hallucinogens such as mescaline, psilocybin, and (+)-lysergic acid diethylamide (LSD), which act through the serotonin 5-HT2A receptor. These compounds produce a “model psychosis” in normal individuals that resembles at least some of the positive symptoms of schizophrenia. Based on these similarities, and because evidence has emerged that the serotonergic system plays a role in the pathogenesis of schizophrenia in some patients, animal models relevant to schizophrenia have been developed based on hallucinogen effects. Here we review the behavioral effects of hallucinogens in four of those models, the receptor and neurochemical mechanisms for the effects, and their translational relevance. Despite the difficulty of modeling hallucinogen effects in nonverbal species, animal models of schizophrenia based on hallucinogens have yielded important insights into the linkage between 5-HT and schizophrenia and have helped to identify receptor targets and interactions that could be exploited in the development of new therapeutic agents. PMID:23942028

  20. HOMOGENEOUS CLASSROOM GROUPING BASED ON CONCEPTUAL SYSTEMS THEORY IN AN EDUCATION ENRICHMENT PROJECT -- AN EXPLORATORY STUDY.

    ERIC Educational Resources Information Center

    HUNT, DAVID E.

    EDUCATIONAL ENVIRONMENTS, HIGHLY STRUCTURED OR UNSTRUCTURED, WERE DIFFERENTIALLY EFFECTIVE WITH STUDENTS OF VARYING PERSONALITIES. THE REPORT CONSIDERED THE UTILITY AND RELEVANCE OF THE CONCEPTUAL SYSTEMS MODEL BY DESCRIBING A SPECIFIC PROJECT IN WHICH THE MODEL SERVED AS THE BASIS FOR FORMING HOMOGENEOUS CLASSROOM GROUPS. THE PROJECT WAS…

  1. On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.

    PubMed

    Rao, Rohit T; Scherholz, Megerle L; Hartmanshenn, Clara; Bae, Seul-A; Androulakis, Ioannis P

    2017-12-05

    The use of models in biology has become particularly relevant as it enables investigators to develop a mechanistic framework for understanding the operating principles of living systems as well as in quantitatively predicting their response to both pathological perturbations and pharmacological interventions. This application has resulted in a synergistic convergence of systems biology and pharmacokinetic-pharmacodynamic modeling techniques that has led to the emergence of quantitative systems pharmacology (QSP). In this review, we discuss how the foundational principles of chemical process systems engineering inform the progressive development of more physiologically-based systems biology models.

  2. Regional Background Fine Particulate Matter

    EPA Science Inventory

    A modeling system composed of the global model GEOS-Chem providing hourly lateral boundary conditions to the regional model CMAQ was used to calculate the policy relevant background level of fine particulate: matter. Simulations were performed for the full year of 2004 over the d...

  3. Characteristics and Innovations in American Education of Relevance for Indian Education.

    ERIC Educational Resources Information Center

    Stambler, Moses

    American responses to educational problems faced around the globe can serve as models for developing nations. The following characteristics of American education with particular relevance for education in developing nations have been organized as inputs, structures and strategies, and outputs. Inputs to the system of American education, defined in…

  4. Control-Relevant Modeling, Analysis, and Design for Scramjet-Powered Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Rodriguez, Armando A.; Dickeson, Jeffrey J.; Sridharan, Srikanth; Benavides, Jose; Soloway, Don; Kelkar, Atul; Vogel, Jerald M.

    2009-01-01

    Within this paper, control-relevant vehicle design concepts are examined using a widely used 3 DOF (plus flexibility) nonlinear model for the longitudinal dynamics of a generic carrot-shaped scramjet powered hypersonic vehicle. Trade studies associated with vehicle/engine parameters are examined. The impact of parameters on control-relevant static properties (e.g. level-flight trimmable region, trim controls, AOA, thrust margin) and dynamic properties (e.g. instability and right half plane zero associated with flight path angle) are examined. Specific parameters considered include: inlet height, diffuser area ratio, lower forebody compression ramp inclination angle, engine location, center of gravity, and mass. Vehicle optimizations is also examined. Both static and dynamic considerations are addressed. The gap-metric optimized vehicle is obtained to illustrate how this control-centric concept can be used to "reduce" scheduling requirements for the final control system. A classic inner-outer loop control architecture and methodology is used to shed light on how specific vehicle/engine design parameter selections impact control system design. In short, the work represents an important first step toward revealing fundamental tradeoffs and systematically treating control-relevant vehicle design.

  5. KNOW ESSENTIALS: a tool for informed decisions in the absence of formal HTA systems.

    PubMed

    Mathew, Joseph L

    2011-04-01

    Most developing countries and resource-limited settings lack robust health technology assessment (HTA) systems. Because the development of locally relevant HTA is not immediately viable, and the extrapolation of external HTA is inappropriate, a new model for evaluating health technologies is required. The aim of this study was to describe the development and application of KNOW ESSENTIALS, a tool facilitating evidence-based decisions on health technologies by stakeholders in settings lacking formal HTA systems. Current HTA methodology was examined through literature search. Additional issues relevant to resource-limited settings, but not adequately addressed in current methodology, were identified through further literature search, appraisal of contextually relevant issues, discussion with healthcare professionals familiar with the local context, and personal experience. A set of thirteen elements important for evidence-based decisions was identified, selected and combined into a tool with the mnemonic KNOW ESSENTIALS. Detailed definitions for each element, coding for the elements, and a system to evaluate a given health technology using the tool were developed. Developing countries and resource-limited settings face several challenges to informed decision making. Models that are relevant and applicable in high-income countries are unlikely in such settings. KNOW ESSENTIALS is an alternative that facilitates evidence-based decision making by stakeholders without formal expertise in HTA. The tool could be particularly useful, as an interim measure, in healthcare systems that are developing HTA capacity. It could also be useful anywhere when rapid evidence-based decisions on health technologies are required.

  6. Logic Modeling in Quantitative Systems Pharmacology

    PubMed Central

    Traynard, Pauline; Tobalina, Luis; Eduati, Federica; Calzone, Laurence

    2017-01-01

    Here we present logic modeling as an approach to understand deregulation of signal transduction in disease and to characterize a drug's mode of action. We discuss how to build a logic model from the literature and experimental data and how to analyze the resulting model to obtain insights of relevance for systems pharmacology. Our workflow uses the free tools OmniPath (network reconstruction from the literature), CellNOpt (model fit to experimental data), MaBoSS (model analysis), and Cytoscape (visualization). PMID:28681552

  7. Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.

    PubMed

    Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M

    2010-01-01

    Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.

  8. Retrieving relevant time-course experiments: a study on Arabidopsis microarrays.

    PubMed

    Şener, Duygu Dede; Oğul, Hasan

    2016-06-01

    Understanding time-course regulation of genes in response to a stimulus is a major concern in current systems biology. The problem is usually approached by computational methods to model the gene behaviour or its networked interactions with the others by a set of latent parameters. The model parameters can be estimated through a meta-analysis of available data obtained from other relevant experiments. The key question here is how to find the relevant experiments which are potentially useful in analysing current data. In this study, the authors address this problem in the context of time-course gene expression experiments from an information retrieval perspective. To this end, they introduce a computational framework that takes a time-course experiment as a query and reports a list of relevant experiments retrieved from a given repository. These retrieved experiments can then be used to associate the environmental factors of query experiment with the findings previously reported. The model is tested using a set of time-course Arabidopsis microarrays. The experimental results show that relevant experiments can be successfully retrieved based on content similarity.

  9. OAST system technology planning

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.

    1978-01-01

    The NASA Office of Aeronautics and Space Technology developed a planning model for space technology consisting of a space systems technology model, technology forecasts and technology surveys. The technology model describes candidate space missions through the year 2000 and identifies their technology requirements. The technology surveys and technology forecasts provide, respectively, data on the current status and estimates of the projected status of relevant technologies. These tools are used to further the understanding of the activities and resources required to ensure the timely development of technological capabilities. Technology forecasting in the areas of information systems, spacecraft systems, transportation systems, and power systems are discussed.

  10. ASM Conference on Prokaryotic Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, H. B.

    2005-07-13

    Support was provided by DOE for the 2nd ASM Conference on Prokaryotic Development. The final conference program and abstracts book is attached. The conference presentations are organized around topics that are central to the current research areas in prokaryotic development. The program starts with topics that involve relatively simple models systems and ends with systems that are more complex. The topics are: i) the cell cycle, ii) the cytoskeleton, iii) morphogenesis, iv) developmental transcription, v) signaling, vi) multicellularity, and vii) developmental diversity and symbiosis. The best-studied prokaryotic development model systems will be highlighted at the conference through research presentations bymore » leaders in the field. Many of these systems are also model systems of relevance to the DOE mission including carbon sequestration (Bradyrizobium, Synechococcus), energy production (Anabaena, Rhodobacter) and bioremediation (Caulobacter, Mesorhizobium). In addition, many of the highlighted organisms have important practical applications; the actinomycetes and myxobacteria produce antimicrobials that are of commercial interest. It is certain that the cutting-edge science presented at the conference will be applicable to the large group of bacteria relevant to the DOE mission.« less

  11. Computational Design of Short Pulse Laser Driven Iron Opacity Measurements at Stellar-Relevant Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madison E.

    Opacity is a critical parameter in the simulation of radiation transport in systems such as inertial con nement fusion capsules and stars. The resolution of current disagreements between solar models and helioseismological observations would bene t from experimental validation of theoretical opacity models. Overall, short pulse laser heated iron experiments reaching stellar-relevant conditions have been designed with consideration of minimizing tamper emission and optical depth effects while meeting plasma condition and x-ray emission goals.

  12. Isostable reduction with applications to time-dependent partial differential equations.

    PubMed

    Wilson, Dan; Moehlis, Jeff

    2016-07-01

    Isostables and isostable reduction, analogous to isochrons and phase reduction for oscillatory systems, are useful in the study of nonlinear equations which asymptotically approach a stationary solution. In this work, we present a general method for isostable reduction of partial differential equations, with the potential power to reduce the dimensionality of a nonlinear system from infinity to 1. We illustrate the utility of this reduction by applying it to two different models with biological relevance. In the first example, isostable reduction of the Fokker-Planck equation provides the necessary framework to design a simple control strategy to desynchronize a population of pathologically synchronized oscillatory neurons, as might be relevant to Parkinson's disease. Another example analyzes a nonlinear reaction-diffusion equation with relevance to action potential propagation in a cardiac system.

  13. Technology Investments in the NASA Entry Systems Modeling Project

    NASA Technical Reports Server (NTRS)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  14. Information security system quality assessment through the intelligent tools

    NASA Astrophysics Data System (ADS)

    Trapeznikov, E. V.

    2018-04-01

    The technology development has shown the automated system information security comprehensive analysis necessity. The subject area analysis indicates the study relevance. The research objective is to develop the information security system quality assessment methodology based on the intelligent tools. The basis of the methodology is the information security assessment model in the information system through the neural network. The paper presents the security assessment model, its algorithm. The methodology practical implementation results in the form of the software flow diagram are represented. The practical significance of the model being developed is noted in conclusions.

  15. Modeling fault diagnosis as the activation and use of a frame system. [for pilot problem-solving rating

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Giffin, Walter C.; Rockwell, Thomas H.; Thomas, Mark

    1986-01-01

    Twenty pilots with instrument flight ratings were asked to perform a fault-diagnosis task for which they had relevant domain knowledge. The pilots were asked to think out loud as they requested and interpreted information. Performances were then modeled as the activation and use of a frame system. Cognitive biases, memory distortions and losses, and failures to correctly diagnose the problem were studied in the context of this frame system model.

  16. Cerebral-Body Perfusion Model

    DTIC Science & Technology

    1990-07-01

    to simulate flow and pressure interaction between the cerebral and the body systems. its objective is to study the dynamic interaction between the...single model. The objective is to enable the study of the dynamic interaction between these two systems. In this model, relevant parts of the brain and of...34blackout, can also be investigated. For example, the effect can be studied of different inhale/exhale and/or different relative positioning betwoen head-body

  17. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  18. How Art Works: The National Endowment for the Arts' Five-Year Research Agenda, with a System Map and Measurement Model. Appendix A & B

    ERIC Educational Resources Information Center

    National Endowment for the Arts, 2012

    2012-01-01

    This paper presents two appendices supporting the "How Art Works: The National Endowment for the Arts' Five-Year Research Agenda, with a System Map and Measurement Model" report. In Appendix A, brief descriptions of relevant studies and datasets for each node in the "How Art Works" system map are presented. This appendix is meant to supply…

  19. High spin systems with orbital degeneracy.

    PubMed

    Shen, Shun-Qing; Xie, X C; Zhang, F C

    2002-01-14

    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.

  20. Evaluation of odometry algorithm performances using a railway vehicle dynamic model

    NASA Astrophysics Data System (ADS)

    Allotta, B.; Pugi, L.; Ridolfi, A.; Malvezzi, M.; Vettori, G.; Rindi, A.

    2012-05-01

    In modern railway Automatic Train Protection and Automatic Train Control systems, odometry is a safety relevant on-board subsystem which estimates the instantaneous speed and the travelled distance of the train; a high reliability of the odometry estimate is fundamental, since an error on the train position may lead to a potentially dangerous overestimation of the distance available for braking. To improve the odometry estimate accuracy, data fusion of different inputs coming from a redundant sensor layout may be used. Simplified two-dimensional models of railway vehicles have been usually used for Hardware in the Loop test rig testing of conventional odometry algorithms and of on-board safety relevant subsystems (like the Wheel Slide Protection braking system) in which the train speed is estimated from the measures of the wheel angular speed. Two-dimensional models are not suitable to develop solutions like the inertial type localisation algorithms (using 3D accelerometers and 3D gyroscopes) and the introduction of Global Positioning System (or similar) or the magnetometer. In order to test these algorithms correctly and increase odometry performances, a three-dimensional multibody model of a railway vehicle has been developed, using Matlab-Simulink™, including an efficient contact model which can simulate degraded adhesion conditions (the development and prototyping of odometry algorithms involve the simulation of realistic environmental conditions). In this paper, the authors show how a 3D railway vehicle model, able to simulate the complex interactions arising between different on-board subsystems, can be useful to evaluate the odometry algorithm and safety relevant to on-board subsystem performances.

  1. 75 FR 7405 - Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... Airworthiness Directives; British Aerospace Regional Aircraft Model Jetstream Series 3101 and Jetstream Model... available in the AD docket shortly after receipt. FOR FURTHER INFORMATION CONTACT: Taylor Martin, Aerospace... AD docket. Relevant Service Information BAE Systems has issued British Aerospace Jetstream Series...

  2. a Study on the Improvement of Cadastral System in Mongolia - Focused on National Land Information System

    NASA Astrophysics Data System (ADS)

    Munkhbaatar, B.; Lee, J.

    2015-10-01

    National land information system (NLIS) is an essential part of the Mongolian land reform. NLIS is a web based and centralized system which covers administration of cadastral database all over the country among land departments. Current ongoing NLIS implementation is vital to improve the cadastral system in Mongolia. This study is intended to define existing problems in current Mongolian cadastral system and propose administrative institutional and systematic implementation through NLIS. Once NLIS launches with proposed model of comprehensive cadastral system it will lead to not only economic and sustainable development but also contribute to citizens' satisfaction and lessen the burdensomeness of bureaucracy. Moreover, prevention of land conflicts, especially in metropolitan area as well as gathering land tax and fees. Furthermore after establishment of NLIS, it is advisable that connecting NLIS to other relevant state administrational organizations or institutions that have relevant database system. Connections with other relevant organizations will facilitate not only smooth and productive workflow but also offer reliable and more valuable information by its systemic integration with NLIS.

  3. Dynamical systems in economics

    NASA Astrophysics Data System (ADS)

    Stanojević, Jelena; Kukić, Katarina

    2018-01-01

    In last few decades much attention is given to explain complex behaviour of very large systems, such as weather, economy, biology and demography. In this paper we give short overview of basic notions in the field of dynamical systems which are relevant for understanding complex nature of some economic models.

  4. Emerging In Vitro Liver Technologies for Drug Metabolism and Inter-Organ Interactions

    PubMed Central

    Bale, Shyam Sundhar; Moore, Laura

    2016-01-01

    In vitro liver models provide essential information for evaluating drug metabolism, metabolite formation, and hepatotoxicity. Interfacing liver models with other organ models could provide insights into the desirable as well as unintended systemic side effects of therapeutic agents and their metabolites. Such information is invaluable for drug screening processes particularly in the context of secondary organ toxicity. While interfacing of liver models with other organ models has been achieved, platforms that effectively provide human-relevant precise information are needed. In this concise review, we discuss the current state-of-the-art of liver-based multiorgan cell culture platforms primarily from a drug and metabolite perspective, and highlight the importance of media-to-cell ratio in interfacing liver models with other organ models. In addition, we briefly discuss issues related to development of optimal liver models that include recent advances in hepatic cell lines, stem cells, and challenges associated with primary hepatocyte-based liver models. Liver-based multiorgan models that achieve physiologically relevant coupling of different organ models can have a broad impact in evaluating drug efficacy and toxicity, as well as mechanistic investigation of human-relevant disease conditions. PMID:27049038

  5. 77 FR 41132 - Air Quality Implementation Plans; Alabama; Attainment Plan for the Alabama Portion of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... modeling demonstration should include supporting technical analyses and descriptions of all relevant....5 and NO X . The attainment demonstration includes: Technical analyses that locate, identify, and... modeling analysis is a complex technical evaluation that began with selection of the modeling system. The...

  6. First-principles modeling of biological systems and structure-based drug-design.

    PubMed

    Sgrignani, Jacopo; Magistrato, Alessandra

    2013-03-01

    Molecular modeling techniques play a relevant role in drug design providing detailed information at atomistic level on the structural, dynamical, mechanistic and electronic properties of biological systems involved in diseases' onset, integrating and supporting commonly used experimental approaches. These information are often not accessible to the experimental techniques taken singularly, but are of crucial importance for drug design. Due to the enormous increase of the computer power in the last decades, quantum mechanical (QM) or first-principles-based methods have become often used to address biological issues of pharmaceutical relevance, providing relevant information for drug design. Due to their complexity and their size, biological systems are often investigated by means of a mixed quantum-classical (QM/MM) approach, which treats at an accurate QM level a limited chemically relevant portion of the system and at the molecular mechanics (MM) level the remaining of the biomolecule and its environment. This method provides a good compromise between computational cost and accuracy, allowing to characterize the properties of the biological system and the (free) energy landscape of the process in study with the accuracy of a QM description. In this review, after a brief introduction of QM and QM/MM methods, we will discuss few representative examples, taken from our work, of the application of these methods in the study of metallo-enzymes of pharmaceutical interest, of metal-containing anticancer drugs targeting the DNA as well as of neurodegenerative diseases. The information obtained from these studies may provide the basis for a rationale structure-based drug design of new and more efficient inhibitors or drugs.

  7. Analysis of model output and science data in the Virtual Model Repository (VMR).

    NASA Astrophysics Data System (ADS)

    De Zeeuw, D.; Ridley, A. J.

    2014-12-01

    Big scientific data not only includes large repositories of data from scientific platforms like satelites and ground observation, but also the vast output of numerical models. The Virtual Model Repository (VMR) provides scientific analysis and visualization tools for a many numerical models of the Earth-Sun system. Individual runs can be analyzed in the VMR and compared to relevant data through relevant metadata, but larger collections of runs can also now be studied and statistics generated on the accuracy and tendancies of model output. The vast model repository at the CCMC with over 1000 simulations of the Earth's magnetosphere was used to look at overall trends in accuracy when compared to satelites such as GOES, Geotail, and Cluster. Methodology for this analysis as well as case studies will be presented.

  8. Research Review, 1984

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A variety of topics relevant to global modeling and simulation are presented. Areas of interest include: (1) analysis and forecast studies; (2) satellite observing systems; (3) analysis and forecast model development; (4) atmospheric dynamics and diagnostic studies; (5) climate/ocean-air interactions; and notes from lectures.

  9. A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia

    2018-04-01

    We investigate a nonlinear three-dimensional model for equatorial flows, finding exact solutions that capture the most relevant geophysical features: depth-dependent currents, poleward or equatorial surface drift and a vertical mixture of upward and downward motions.

  10. A new extranodal scoring system based on the prognostically relevant extranodal sites in diffuse large B-cell lymphoma, not otherwise specified treated with chemoimmunotherapy.

    PubMed

    Hwang, Hee Sang; Yoon, Dok Hyun; Suh, Cheolwon; Huh, Jooryung

    2016-08-01

    Extranodal involvement is a well-known prognostic factor in patients with diffuse large B-cell lymphomas (DLBCL). Nevertheless, the prognostic impact of the extranodal scoring system included in the conventional international prognostic index (IPI) has been questioned in an era where rituximab treatment has become widespread. We investigated the prognostic impacts of individual sites of extranodal involvement in 761 patients with DLBCL who received rituximab-based chemoimmunotherapy. Subsequently, we established a new extranodal scoring system based on extranodal sites, showing significant prognostic correlation, and compared this system with conventional scoring systems, such as the IPI and the National Comprehensive Cancer Network-IPI (NCCN-IPI). An internal validation procedure, using bootstrapped samples, was also performed for both univariate and multivariate models. Using multivariate analysis with a backward variable selection, we found nine extranodal sites (the liver, lung, spleen, central nervous system, bone marrow, kidney, skin, adrenal glands, and peritoneum) that remained significant for use in the final model. Our newly established extranodal scoring system, based on these sites, was better correlated with patient survival than standard scoring systems, such as the IPI and the NCCN-IPI. Internal validation by bootstrapping demonstrated an improvement in model performance of our modified extranodal scoring system. Our new extranodal scoring system, based on the prognostically relevant sites, may improve the performance of conventional prognostic models of DLBCL in the rituximab era and warrants further external validation using large study populations.

  11. Nonconformities in real-world fatal crashes--electronic stability control and seat belt reminders.

    PubMed

    Lie, Anders

    2012-01-01

    Many new safety systems are entering the market. Vision Zero is a safety strategy aiming at the elimination of fatalities and impairing injuries by the use of a holistic model for safe traffic to develop a safe system. The aim of this article is to analyze fatalities in modern cars with respect to the Vision Zero model with special respect to electronic stability control (ESC) systems and modern seat belt reminders (SBRs). The model is used to identify and understand cases where cars with ESC systems lost control and where occupants were unbelted in a seat with seat belt reminders under normal driving conditions. The model for safe traffic was used to analyze in-depth studies of fatal crashes with respect to seat belt use and loss of control. Vehicles from 2003 and later in crashes from January 2004 to mid-2010 were analyzed. The data were analyzed case by case. Cars that were equipped with ESC systems and lost control and occupants not using the seat belt in a seat with a seat belt reminder were considered as nonconformities. A total of 138 fatal crashes involving 152 fatally injured occupants were analyzed. Cars with ESC systems had fewer loss-of-control-relevant cases than cars without ESC systems. Thirteen percent of the ESC-equipped vehicles had loss-of-control-relevant crashes and 36 percent of the cars without ESC systems had loss-of-control-relevant crashes. The analysis indicates that only one car of the 9 equipped with ESC that lost control did it on a road surface with relevant friction when driving within the speed restriction of the road. In seats with seat belt reminders that are in accordance with the European New Car Assessment Programme's (Euro NCAP) protocol, 93 percent of the occupants were using a seat belt. In seats without reminders this number was 74 percent. This study shows that ESC systems result in a very significant reduction in fatal crashes, especially under normal driving conditions. Under extreme driving conditions such as speeding or extremely low friction (snow or on the side of the road), ESC systems can fail in keeping the car under control. Seat belt reminders result in higher seat belt use rates but the level of unbelted occupants is higher than roadside studies have indicated. The holistic Vision Zero approach helped in the analysis by identifying nonconformities and putting these into the safe systems perspective.

  12. Diagnostic Studies With GLA Fields

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1997-01-01

    Assessments of the NASA Goddard Earth Observing System-1 Data Assimilation System (GEOS-1 DAS) regarding heating rates, energetics and angular momentum quantities were made. These diagnostics can be viewed as measures of climate variability. Comparisons with the NOAA/NCEP reanalysis system of momentum and energetics diagnostics are included. Water vapor and angular momentum are diagnosed in many models, including those of NASA, as part of the Atmospheric Model Intercomparison Project. Relevant preprints are included herein.

  13. Diagnostic indicators for integrated assessment models of climate policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegler, Elmar; Petermann, Nils; Krey, Volker

    2015-01-01

    Integrated assessments of how climate policy interacts with energy-economic systems can be performed by a variety of models with different functional structures. This article proposes a diagnostic scheme that can be applied to a wide range of integrated assessment models to classify differences among models based on their carbon price responses. Model diagnostics can uncover patterns and provide insights into why, under a given scenario, certain types of models behave in observed ways. Such insights are informative since model behavior can have a significant impact on projections of climate change mitigation costs and other policy-relevant information. The authors propose diagnosticmore » indicators to characterize model responses to carbon price signals and test these in a diagnostic study with 11 global models. Indicators describe the magnitude of emission abatement and the associated costs relative to a harmonized baseline, the relative changes in carbon intensity and energy intensity and the extent of transformation in the energy system. This study shows a correlation among indicators suggesting that models can be classified into groups based on common patterns of behavior in response to carbon pricing. Such a classification can help to more easily explain variations among policy-relevant model results.« less

  14. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies.

    PubMed

    Bezard, Erwan; Yue, Zhenyu; Kirik, Deniz; Spillantini, Maria Grazia

    2013-01-01

    Over the last two decades, significant strides has been made toward acquiring a better knowledge of both the etiology and pathogenesis of Parkinson's disease (PD). Experimental models are of paramount importance to obtain greater insights into the pathogenesis of the disease. Thus far, neurotoxin-based animal models have been the most popular tools employed to produce selective neuronal death in both in vitro and in vivo systems. These models have been commonly referred to as the pathogenic models. The current trend in modeling PD revolves around what can be called the disease gene-based models or etiologic models. The value of utilizing multiple models with a different mechanism of insult rests on the premise that dopamine-producing neurons die by stereotyped cascades that can be activated by a range of insults, from neurotoxins to downregulation and overexpression of disease-related genes. In this position article, we present the relevance of both pathogenic and etiologic models as well as the concept of clinically relevant designs that, we argue, should be utilized in the preclinical development phase of new neuroprotective therapies before embarking into clinical trials. Copyright © 2013 Movement Disorders Society.

  15. PubMedReco: A Real-Time Recommender System for PubMed Citations.

    PubMed

    Samuel, Hamman W; Zaïane, Osmar R

    2017-01-01

    We present a recommender system, PubMedReco, for real-time suggestions of medical articles from PubMed, a database of over 23 million medical citations. PubMedReco can recommend medical article citations while users are conversing in a synchronous communication environment such as a chat room. Normally, users would have to leave their chat interface to open a new web browser window, and formulate an appropriate search query to retrieve relevant results. PubMedReco automatically generates the search query and shows relevant citations within the same integrated user interface. PubMedReco analyzes relevant keywords associated with the conversation and uses them to search for relevant citations using the PubMed E-utilities programming interface. Our contributions include improvements to the user experience for searching PubMed from within health forums and chat rooms, and a machine learning model for identifying relevant keywords. We demonstrate the feasibility of PubMedReco using BMJ's Doc2Doc forum discussions.

  16. Hierarchical relaxation dynamics in a tilted two-band Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Cosme, Jayson G.

    2018-04-01

    We numerically examine slow and hierarchical relaxation dynamics of interacting bosons described by a tilted two-band Bose-Hubbard model. The system is found to exhibit signatures of quantum chaos within the spectrum and the validity of the eigenstate thermalization hypothesis for relevant physical observables is demonstrated for certain parameter regimes. Using the truncated Wigner representation in the semiclassical limit of the system, dynamics of relevant observables reveal hierarchical relaxation and the appearance of prethermalized states is studied from the perspective of statistics of the underlying mean-field trajectories. The observed prethermalization scenario can be attributed to different stages of glassy dynamics in the mode-time configuration space due to dynamical phase transition between ergodic and nonergodic trajectories.

  17. Vibrational and vibronic coherences in the dynamics of the FMO complex

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomeng; Kühn, Oliver

    2016-12-01

    The coupled exciton-vibrational dynamics of a seven site Frenkel exciton model of the Fenna-Matthews-Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton-vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  18. Modeling Quantum Dynamics in Multidimensional Systems

    NASA Astrophysics Data System (ADS)

    Liss, Kyle; Weinacht, Thomas; Pearson, Brett

    2017-04-01

    Coupling between different degrees-of-freedom is an inherent aspect of dynamics in multidimensional quantum systems. As experiments and theory begin to tackle larger molecular structures and environments, models that account for vibrational and/or electronic couplings are essential for interpretation. Relevant processes include intramolecular vibrational relaxation, conical intersections, and system-bath coupling. We describe a set of simulations designed to model coupling processes in multidimensional molecular systems, focusing on models that provide insight and allow visualization of the dynamics. Undergraduates carried out much of the work as part of a senior research project. In addition to the pedagogical value, the simulations allow for comparison between both explicit and implicit treatments of a system's many degrees-of-freedom.

  19. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory

    NASA Astrophysics Data System (ADS)

    Bona, J. L.; Chen, M.; Saut, J.-C.

    2004-05-01

    In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.

  20. Animal models of Central Diabetes Insipidus: Human relevance of acquired beyond hereditary syndromes and the role of oxytocin.

    PubMed

    Bernal, Antonio; Mahía, Javier; Puerto, Amadeo

    2016-07-01

    The aim of this study was to review different animal models of Central Diabetes Insipidus, a neurobiological syndrome characterized by the excretion of copious amounts of diluted urine (polyuria), a consequent water intake (polydipsia), and a rise in the serum sodium concentration (hypernatremia). In rodents, Central Diabetes Insipidus can be caused by genetic disorders (Brattleboro rats) but also by various traumatic/surgical interventions, including neurohypophysectomy, pituitary stalk compression, hypophysectomy, and median eminence lesions. Regardless of its etiology, Central Diabetes Insipidus affects the neuroendocrine system that secretes arginine vasopressin, a neurohormone responsible for antidiuretic functions that acts trough the renal system. However, most Central Diabetes Insipidus models also show disorders in other neurobiological systems, specifically in the secretion of oxytocin, a neurohormone involved in body sodium excretion. Although the hydromineral behaviors shown by the different Central Diabetes Insipidus models have usually been considered as very similar, the present review highlights relevant differences with respect to these behaviors as a function of the individual neurobiological systems affected. Increased understanding of the relationship between the neuroendocrine systems involved and the associated hydromineral behaviors may allow appropriate action to be taken to correct these behavioral neuroendocrine deficits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. iHelp: an intelligent online helpdesk system.

    PubMed

    Wang, Dingding; Li, Tao; Zhu, Shenghuo; Gong, Yihong

    2011-02-01

    Due to the importance of high-quality customer service, many companies use intelligent helpdesk systems (e.g., case-based systems) to improve customer service quality. However, these systems face two challenges: 1) Case retrieval measures: most case-based systems use traditional keyword-matching-based ranking schemes for case retrieval and have difficulty to capture the semantic meanings of cases and 2) result representation: most case-based systems return a list of past cases ranked by their relevance to a new request, and customers have to go through the list and examine the cases one by one to identify their desired cases. To address these challenges, we develop iHelp, an intelligent online helpdesk system, to automatically find problem-solution patterns from the past customer-representative interactions. When a new customer request arrives, iHelp searches and ranks the past cases based on their semantic relevance to the request, groups the relevant cases into different clusters using a mixture language model and symmetric matrix factorization, and summarizes each case cluster to generate recommended solutions. Case and user studies have been conducted to show the full functionality and the effectiveness of iHelp.

  2. 25 Years of DECOVALEX - Research Advances and Lessons Learned from an International Model Comparison Initiative

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.

    2017-12-01

    This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.

  3. Moving From Static to Dynamic Models of the Onset of Mental Disorder: A Review.

    PubMed

    Nelson, Barnaby; McGorry, Patrick D; Wichers, Marieke; Wigman, Johanna T W; Hartmann, Jessica A

    2017-05-01

    In recent years, there has been increased focus on subthreshold stages of mental disorders, with attempts to model and predict which individuals will progress to full-threshold disorder. Given this research attention and the clinical significance of the issue, this article analyzes the assumptions of the theoretical models in the field. Psychiatric research into predicting the onset of mental disorder has shown an overreliance on one-off sampling of cross-sectional data (ie, a snapshot of clinical state and other risk markers) and may benefit from taking dynamic changes into account in predictive modeling. Cross-disciplinary approaches to complex system structures and changes, such as dynamical systems theory, network theory, instability mechanisms, chaos theory, and catastrophe theory, offer potent models that can be applied to the emergence (or decline) of psychopathology, including psychosis prediction, as well as to transdiagnostic emergence of symptoms. Psychiatric research may benefit from approaching psychopathology as a system rather than as a category, identifying dynamics of system change (eg, abrupt vs gradual psychosis onset), and determining the factors to which these systems are most sensitive (eg, interpersonal dynamics and neurochemical change) and the individual variability in system architecture and change. These goals can be advanced by testing hypotheses that emerge from cross-disciplinary models of complex systems. Future studies require repeated longitudinal assessment of relevant variables through either (or a combination of) micro-level (momentary and day-to-day) and macro-level (month and year) assessments. Ecological momentary assessment is a data collection technique appropriate for micro-level assessment. Relevant statistical approaches are joint modeling and time series analysis, including metric-based and model-based methods that draw on the mathematical principles of dynamical systems. This next generation of prediction studies may more accurately model the dynamic nature of psychopathology and system change as well as have treatment implications, such as introducing a means of identifying critical periods of risk for mental state deterioration.

  4. Use of the HepaRG Cell Line to Assess Potential Human Hepatotoxicity of ToxCast™ Chemicals

    EPA Science Inventory

    The HepaRG cell line is a promising model system for predicting human hepatotoxicity in part because of the greater capacity to metabolize chemicals than other cell models. We hypothesized that this cell line would be a relevant model for toxicity testing of industrial chemicals....

  5. Choice of Contract Type and Other Policy Initiatives for Reducing Contract Prices

    DTIC Science & Technology

    2013-09-01

    2 1. The Weapon System Franchise Model ..........................................................2 2. The Agency Problem and...contract types. The analyses looking at serial production for MDAPs (the first area above) were performed in the context of the “weapon system franchise ...cost reductions (the second area above) are also relevant to the franchise model and series production, but also have broader application to most

  6. The U.S. STEM Undergraduate Model: Applying System Dynamics to Help Meet President Obama's Goals for One Million STEM Graduates and the U.S. Navy's Civilian STEM Workforce Needs

    ERIC Educational Resources Information Center

    Business-Higher Education Forum, 2013

    2013-01-01

    This report shows how insights gained from system dynamics modeling and the U.S. STEM Undergraduate Model® can help inform the Navy's strategy to grow a robust civilian workforce that is strongly invested with Navy-relevant STEM skills and ready to contribute to the next generation of Naval innovation. This work positions the Navy to serve a…

  7. A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches

    NASA Astrophysics Data System (ADS)

    Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.

    2013-10-01

    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.

  8. Quantitative interpretations of Visible-NIR reflectance spectra of blood.

    PubMed

    Serebrennikova, Yulia M; Smith, Jennifer M; Huffman, Debra E; Leparc, German F; García-Rubio, Luis H

    2008-10-27

    This paper illustrates the implementation of a new theoretical model for rapid quantitative analysis of the Vis-NIR diffuse reflectance spectra of blood cultures. This new model is based on the photon diffusion theory and Mie scattering theory that have been formulated to account for multiple scattering populations and absorptive components. This study stresses the significance of the thorough solution of the scattering and absorption problem in order to accurately resolve for optically relevant parameters of blood culture components. With advantages of being calibration-free and computationally fast, the new model has two basic requirements. First, wavelength-dependent refractive indices of the basic chemical constituents of blood culture components are needed. Second, multi-wavelength measurements or at least the measurements of characteristic wavelengths equal to the degrees of freedom, i.e. number of optically relevant parameters, of blood culture system are required. The blood culture analysis model was tested with a large number of diffuse reflectance spectra of blood culture samples characterized by an extensive range of the relevant parameters.

  9. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  10. EOID System Model Validation, Metrics, and Synthetic Clutter Generation

    DTIC Science & Technology

    2003-09-30

    Our long-term goal is to accurately predict the capability of the current generation of laser-based underwater imaging sensors to perform Electro ... Optic Identification (EOID) against relevant targets in a variety of realistic environmental conditions. The models will predict the impact of

  11. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Chialvo, Ariel A.

    2018-05-01

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  12. The brain as a system of nested but partially overlapping networks. Heuristic relevance of the model for brain physiology and pathology.

    PubMed

    Agnati, L F; Guidolin, D; Fuxe, K

    2007-01-01

    A new model of the brain organization is proposed. The model is based on the assumption that a global molecular network enmeshes the entire central nervous system. Thus, brain extra-cellular and intra-cellular molecular networks are proposed to communicate at the level of special plasma membrane regions (e.g., the lipid rafts) where horizontal molecular networks can represent input/output regions allowing the cell to have informational exchanges with the extracellular environment. Furthermore, some "pervasive signals" such as field potentials, pressure waves and thermal gradients that affect large parts of the brain cellular and molecular networks are discussed. Finally, at least two learning paradigms are analyzed taking into account the possible role of Volume Transmission: the so-called model of "temporal difference learning" and the "Turing B-unorganised machine". The relevance of this new view of brain organization for a deeper understanding of some neurophysiological and neuropathological aspects of its function is briefly discussed.

  13. Preserving Charge and Oxidation State of Au(III) Ions in an Agent-Functionalized Nanocrystal Model System

    PubMed Central

    2011-01-01

    Supporting functional molecules on crystal facets is an established technique in nanotechnology. To preserve the original activity of ionic metallorganic agents on a supporting template, conservation of the charge and oxidation state of the active center is indispensable. We present a model system of a metallorganic agent that, indeed, fulfills this design criterion on a technologically relevant metal support with potential impact on Au(III)-porphyrin-functionalized nanoparticles for an improved anticancer-drug delivery. Employing scanning tunneling microscopy and -spectroscopy in combination with photoemission spectroscopy, we clarify at the single-molecule level the underlying mechanisms of this exceptional adsorption mode. It is based on the balance between a high-energy oxidation state and an electrostatic screening-response of the surface (image charge). Modeling with first principles methods reveals submolecular details of the metal–ligand bonding interaction and completes the study by providing an illustrative electrostatic model relevant for ionic metalorganic agent molecules, in general. PMID:21736315

  14. Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.

    PubMed

    Chialvo, Ariel A

    2018-05-07

    We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.

  15. On Information Retrieval (IR) Systems: Revisiting Their Development, Evaluation Methodologies, and Assumptions (SIGs LAN, ED).

    ERIC Educational Resources Information Center

    Stirling, Keith

    2000-01-01

    Describes a session on information retrieval systems that planned to discuss relevance measures with Web-based information retrieval; retrieval system performance and evaluation; probabilistic independence of index terms; vector-based models; metalanguages and digital objects; how users assess the reliability, timeliness and bias of information;…

  16. Control Relevant Modeling and Design of Scramjet-Powered Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dickeson, Jeffrey James

    This report provides an overview of scramjet-powered hypersonic vehicle modeling and control challenges. Such vehicles are characterized by unstable non-minimum phase dynamics with significant coupling and low thrust margins. Recent trends in hypersonic vehicle research are summarized. To illustrate control relevant design issues and tradeoffs, a generic nonlinear 3DOF longitudinal dynamics model capturing aero-elastic-propulsive interactions for wedge-shaped vehicle is used. Limitations of the model are discussed and numerous modifications have been made to address control relevant needs. Two different baseline configurations are examined over a two-stage to orbit ascent trajectory. The report highlights how vehicle level-flight static (trim) and dynamic properties change over the trajectory. Thermal choking constraints are imposed on control system design as a direct consequence of having a finite FER margin. The implication of this state-dependent nonlinear FER margin constraint, the right half plane (RHP) zero, and lightly damped flexible modes, on control system bandwidth (BW) and FPA tracking has been discussed. A control methodology has been proposed that addresses the above dynamics while providing some robustness to modeling uncertainty. Vehicle closure (the ability to fly a trajectory segment subject to constraints) is provided through a proposed vehicle design methodology. The design method attempts to use open loop metrics whenever possible to design the vehicle. The design method is applied to a vehicle/control law closed loop nonlinear simulation for validation. The 3DOF longitudinal modeling results are validated against a newly released NASA 6DOF code.

  17. A cloud-based framework for large-scale traditional Chinese medical record retrieval.

    PubMed

    Liu, Lijun; Liu, Li; Fu, Xiaodong; Huang, Qingsong; Zhang, Xianwen; Zhang, Yin

    2018-01-01

    Electronic medical records are increasingly common in medical practice. The secondary use of medical records has become increasingly important. It relies on the ability to retrieve the complete information about desired patient populations. How to effectively and accurately retrieve relevant medical records from large- scale medical big data is becoming a big challenge. Therefore, we propose an efficient and robust framework based on cloud for large-scale Traditional Chinese Medical Records (TCMRs) retrieval. We propose a parallel index building method and build a distributed search cluster, the former is used to improve the performance of index building, and the latter is used to provide high concurrent online TCMRs retrieval. Then, a real-time multi-indexing model is proposed to ensure the latest relevant TCMRs are indexed and retrieved in real-time, and a semantics-based query expansion method and a multi- factor ranking model are proposed to improve retrieval quality. Third, we implement a template-based visualization method for displaying medical reports. The proposed parallel indexing method and distributed search cluster can improve the performance of index building and provide high concurrent online TCMRs retrieval. The multi-indexing model can ensure the latest relevant TCMRs are indexed and retrieved in real-time. The semantics expansion method and the multi-factor ranking model can enhance retrieval quality. The template-based visualization method can enhance the availability and universality, where the medical reports are displayed via friendly web interface. In conclusion, compared with the current medical record retrieval systems, our system provides some advantages that are useful in improving the secondary use of large-scale traditional Chinese medical records in cloud environment. The proposed system is more easily integrated with existing clinical systems and be used in various scenarios. Copyright © 2017. Published by Elsevier Inc.

  18. Maturity of hospital information systems: Most important influencing factors.

    PubMed

    Vidal Carvalho, João; Rocha, Álvaro; Abreu, António

    2017-07-01

    Maturity models facilitate organizational management, including information systems management, with hospital organizations no exception. This article puts forth a study carried out with a group of experts in the field of hospital information systems management with a view to identifying the main influencing factors to be included in an encompassing maturity model for hospital information systems management. This study is based on the results of a literature review, which identified maturity models in the health field and relevant influencing factors. The development of this model is justified to the extent that the available maturity models for the hospital information systems management field reveal multiple limitations, including lack of detail, absence of tools to determine their maturity and lack of characterization for stages of maturity structured by different influencing factors.

  19. Optimized model tuning in medical systems.

    PubMed

    Kléma, Jirí; Kubalík, Jirí; Lhotská, Lenka

    2005-12-01

    In medical systems it is often advantageous to utilize specific problem situations (cases) in addition to or instead of a general model. Decisions are then based on relevant past cases retrieved from a case memory. The reliability of such decisions depends directly on the ability to identify cases of practical relevance to the current situation. This paper discusses issues of automated tuning in order to obtain a proper definition of mutual case similarity in a specific medical domain. The main focus is on a reasonably time-consuming optimization of the parameters that determine case retrieval and further utilization in decision making/ prediction. The two case studies - mortality prediction after cardiological intervention, and resource allocation at a spa - document that the optimization process is influenced by various characteristics of the problem domain.

  20. Environmental Risk Assessment Strategy for Nanomaterials.

    PubMed

    Scott-Fordsmand, Janeck J; Peijnenburg, Willie J G M; Semenzin, Elena; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G; Bos, Peter M J; Hund-Rinke, Kerstin

    2017-10-19

    An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.

  1. Environmental Risk Assessment Strategy for Nanomaterials

    PubMed Central

    Scott-Fordsmand, Janeck J.; Nowack, Bernd; Hunt, Neil; Hristozov, Danail; Marcomini, Antonio; Irfan, Muhammad-Adeel; Jiménez, Araceli Sánchez; Landsiedel, Robert; Tran, Lang; Oomen, Agnes G.; Bos, Peter M. J.

    2017-01-01

    An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models. PMID:29048395

  2. Control Oriented Modeling and Validation of Aeroservoelastic Systems

    NASA Technical Reports Server (NTRS)

    Crowder, Marianne; deCallafon, Raymond (Principal Investigator)

    2002-01-01

    Lightweight aircraft design emphasizes the reduction of structural weight to maximize aircraft efficiency and agility at the cost of increasing the likelihood of structural dynamic instabilities. To ensure flight safety, extensive flight testing and active structural servo control strategies are required to explore and expand the boundary of the flight envelope. Aeroservoelastic (ASE) models can provide online flight monitoring of dynamic instabilities to reduce flight time testing and increase flight safety. The success of ASE models is determined by the ability to take into account varying flight conditions and the possibility to perform flight monitoring under the presence of active structural servo control strategies. In this continued study, these aspects are addressed by developing specific methodologies and algorithms for control relevant robust identification and model validation of aeroservoelastic structures. The closed-loop model robust identification and model validation are based on a fractional model approach where the model uncertainties are characterized in a closed-loop relevant way.

  3. Panel C report: Standards needed for the use of ISO Open Systems Interconnection - basic reference model

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The use of an International Standards Organization (ISO) Open Systems Interconnection (OSI) Reference Model and its relevance to interconnecting an Applications Data Service (ADS) pilot program for data sharing is discussed. A top level mapping between the conjectured ADS requirements and identified layers within the OSI Reference Model was performed. It was concluded that the OSI model represents an orderly architecture for the ADS networking planning and that the protocols being developed by the National Bureau of Standards offer the best available implementation approach.

  4. Evolved Design, Integration, and Test of a Modular, Multi-Link, Spacecraft-Based Robotic Manipulator

    DTIC Science & Technology

    2016-06-01

    of the MATLAB code, the SPART model [24]. The portions of the SPART model relevant to this thesis are contained in (Appendices E –P). While the SPART...the kinematics and the dynamics of the system must be modeled and simulated numerically to understand how the system will behave for a given number... simulators with multiple-link robotic arms has been ongoing. B . STATE OF THE ART 1. An Overarching Context Space-based manipulators and the experimental

  5. Digital Immersive Virtual Environments and Instructional Computing

    ERIC Educational Resources Information Center

    Blascovich, Jim; Beall, Andrew C.

    2010-01-01

    This article reviews theory and research relevant to the development of digital immersive virtual environment-based instructional computing systems. The review is organized within the context of a multidimensional model of social influence and interaction within virtual environments that models the interaction of four theoretical factors: theory…

  6. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to understand the distinct key features of volcanic plumbing systems: dykes, cone sheets, sills, laccoliths, caldera-related structures, ground deformation, magma/fault interactions, and explosive vents. Barenblatt, G.I., 2003. Scaling. Cambridge University Press, Cambridge. Galland, O., Holohan, E.P., van Wyk de Vries, B., Burchardt, S., Accepted. Laboratory modelling of volcanic plumbing systems: A review, in: Breitkreuz, C., Rocchi, S. (Eds.), Laccoliths, sills and dykes: Physical geology of shallow level magmatic systems. Springer.

  7. Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.

    2017-12-01

    Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.

  8. OTLA: A New Model for Online Teaching, Learning and Assessment in Higher Education

    ERIC Educational Resources Information Center

    Ghilay, Yaron; Ghilay, Ruth

    2013-01-01

    The study examined a new asynchronous model for online teaching, learning and assessment, called OTLA. It is designed for higher-education institutions and is based on LMS (Learning Management System) as well as other relevant IT tools. The new model includes six digital basic components: text, hypertext, text reading, lectures (voice/video),…

  9. Process-based models are required to manage ecological systems in a changing world

    Treesearch

    K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray

    2013-01-01

    Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...

  10. Hierarchical Linear Modeling (HLM): An Introduction to Key Concepts within Cross-Sectional and Growth Modeling Frameworks. Technical Report #1308

    ERIC Educational Resources Information Center

    Anderson, Daniel

    2012-01-01

    This manuscript provides an overview of hierarchical linear modeling (HLM), as part of a series of papers covering topics relevant to consumers of educational research. HLM is tremendously flexible, allowing researchers to specify relations across multiple "levels" of the educational system (e.g., students, classrooms, schools, etc.).…

  11. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    NASA Astrophysics Data System (ADS)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.

    2016-09-01

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.

  12. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J.N., E-mail: jnshadi@sandia.gov; Department of Mathematics and Statistics, University of New Mexico; Smith, T.M.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts tomore » apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  13. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  14. Stabilized FE simulation of prototype thermal-hydraulics problems with integrated adjoint-based capabilities

    DOE PAGES

    Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...

    2016-05-20

    A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less

  15. Cognitive neuroimaging: cognitive science out of the armchair.

    PubMed

    de Zubicaray, Greig I

    2006-04-01

    Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuroimaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory.

  16. Modeling reliability measurement of interface on information system: Towards the forensic of rules

    NASA Astrophysics Data System (ADS)

    Nasution, M. K. M.; Sitompul, Darwin; Harahap, Marwan

    2018-02-01

    Today almost all machines depend on the software. As a software and hardware system depends also on the rules that are the procedures for its use. If the procedure or program can be reliably characterized by involving the concept of graph, logic, and probability, then regulatory strength can also be measured accordingly. Therefore, this paper initiates an enumeration model to measure the reliability of interfaces based on the case of information systems supported by the rules of use by the relevant agencies. An enumeration model is obtained based on software reliability calculation.

  17. Using models to manage systems subject to sustainability indicators

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    Mathematical and numerical models can provide insight into sustainability indicators using relevant simulated quantities, which are referred to here as predictions. To be useful, many concerns need to be considered. Four are discussed here: (a) mathematical and numerical accuracy of the model; (b) the accuracy of the data used in model development, (c) the information observations provide to aspects of the model important to predictions of interest as measured using sensitivity analysis; and (d) the existence of plausible alternative models for a given system. The four issues are illustrated using examples from conservative and transport modelling, and using conceptual arguments. Results suggest that ignoring these issues can produce misleading conclusions.

  18. Extracting business vocabularies from business process models: SBVR and BPMN standards-based approach

    NASA Astrophysics Data System (ADS)

    Skersys, Tomas; Butleris, Rimantas; Kapocius, Kestutis

    2013-10-01

    Approaches for the analysis and specification of business vocabularies and rules are very relevant topics in both Business Process Management and Information Systems Development disciplines. However, in common practice of Information Systems Development, the Business modeling activities still are of mostly empiric nature. In this paper, basic aspects of the approach for business vocabularies' semi-automated extraction from business process models are presented. The approach is based on novel business modeling-level OMG standards "Business Process Model and Notation" (BPMN) and "Semantics for Business Vocabularies and Business Rules" (SBVR), thus contributing to OMG's vision about Model-Driven Architecture (MDA) and to model-driven development in general.

  19. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.

  20. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  1. Information Systems Curricula: A Fifty Year Journey

    ERIC Educational Resources Information Center

    Longenecker, Herbert E., Jr.; Feinstein, David; Clark, Jon D.

    2013-01-01

    This article presents the results of research to explore the nature of changes in skills over a fifty year period spanning the life of Information Systems model curricula. Work begun in 1999 was expanded both backwards in time, as well as forwards to 2012 to define skills relevant to Information Systems curricula. The work in 1999 was based on job…

  2. Vocational Pedagogical Competencies of a Professor in the Secondary Vocational Education System: Approbation of Monitoring Model

    ERIC Educational Resources Information Center

    Andryukhina, Lyudmila M.; Dneprov, Sergey ?.; Sumina, Tatyana G.; Zimina, Elena Yu.; Utkina, Svetlana N.; Mantulenko, Valentina V.

    2016-01-01

    The relevance of the researched issue is preconditioned by the strategic changes in the secondary vocational education system taking place not only in Russia, but also in the majority of industrially developed countries. Provision of the system with qualified pedagogical staff is the leading strategic objective of development of the secondary…

  3. New Methods in Tissue Engineering: Improved Models for Viral Infection.

    PubMed

    Ramanan, Vyas; Scull, Margaret A; Sheahan, Timothy P; Rice, Charles M; Bhatia, Sangeeta N

    2014-11-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.

  4. The Model of Career Anchors as a Tool in the Analysis of Instructional Developers.

    ERIC Educational Resources Information Center

    Miller, Carol

    1981-01-01

    Examines the importance of human systems as a relevant aspect of development processes and looks at the career anchor model proposed by Schein as a possible area in the analysis of the instructional developer/client relationships. Fourteen references are listed. (Author/LLS)

  5. Using aerial images for establishing a workflow for the quantification of water management measures

    NASA Astrophysics Data System (ADS)

    Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg

    2017-04-01

    Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for the adaption of water resource management decisions.

  6. Diverting the tourists: a spatial decision-support system for tourism planning on a developing island

    NASA Astrophysics Data System (ADS)

    Beedasy, Jaishree; Whyatt, Duncan

    Mauritius is a small island (1865 km 2) in the Indian Ocean. Tourism is the third largest economic sector of the country, after manufacturing and agriculture. A limitation of space and the island's vulnerable ecosystem warrants a rational approach to tourism development. The main problems so far have been to manipulate and integrate all the factors affecting tourism planning and to match spatial data with their relevant attributes. A Spatial Decision Support System (SDSS) for sustainable tourism planning is therefore proposed. The proposed SDSS design would include a GIS as its core component. A first GIS model has already been constructed with available data. Supporting decision-making in a spatial context is implicit in the use of GIS. However the analytical capability of the GIS has to be enhanced to solve semi-structured problems, where subjective judgements come into play. The second part of the paper deals with the choice, implementation and customisation of a relevant model to develop a specialised SDSS. Different types of models and techniques are discussed, in particular a comparison of compensatory and non-compensatory approaches to multicriteria evaluation (MCE). It is concluded that compensatory multicriteria evaluation techniques increase the scope of the present GIS model as a decision-support tool. This approach gives the user or decision-maker the flexibility to change the importance of each criterion depending on relevant objectives.

  7. Streamlining the Discovery, Evaluation, and Integration of Data, Models, and Decision Support Systems: a Big Picture View

    EPA Science Inventory

    21st century environmental problems are wicked and require holistic systems thinking and solutions that integrate social and economic knowledge with knowledge of the environment. Computer-based technologies are fundamental to our ability to research and understand the relevant sy...

  8. Policy-Relevant Systematic Reviews to Strengthen Health Systems: Models and Mechanisms to Support Their Production

    ERIC Educational Resources Information Center

    Oliver, Sandra; Dickson, Kelly

    2016-01-01

    Support for producing systematic reviews about health systems is less well developed than for those about clinical practice. From interviewing policy makers and systematic reviewers we identified institutional mechanisms which bring systematic reviews and policy priorities closer by harnessing organisational and individual motivations, emphasising…

  9. A 10-Year Mechatronics Curriculum Development Initiative: Relevance, Content, and Results--Part II

    ERIC Educational Resources Information Center

    Krishnan, M.; Das, S.; Yost, S. A.

    2010-01-01

    This paper describes the second and third phases of a comprehensive mechatronics curriculum development effort. They encompass the development of two advanced mechatronics courses ("Simulation and Modeling of Mechatronic Systems" and "Sensors and Actuators for Mechatronic Systems"), the formulation of a Mechatronics concentration, and offshoot…

  10. On Inference Rules of Logic-Based Information Retrieval Systems.

    ERIC Educational Resources Information Center

    Chen, Patrick Shicheng

    1994-01-01

    Discussion of relevance and the needs of the users in information retrieval focuses on a deductive object-oriented approach and suggests eight inference rules for the deduction. Highlights include characteristics of a deductive object-oriented system, database and data modeling language, implementation, and user interface. (Contains 24…

  11. A computational kinetic model of diffusion for molecular systems.

    PubMed

    Teo, Ivan; Schulten, Klaus

    2013-09-28

    Regulation of biomolecular transport in cells involves intra-protein steps like gating and passage through channels, but these steps are preceded by extra-protein steps, namely, diffusive approach and admittance of solutes. The extra-protein steps develop over a 10-100 nm length scale typically in a highly particular environment, characterized through the protein's geometry, surrounding electrostatic field, and location. In order to account for solute energetics and mobility of solutes in this environment at a relevant resolution, we propose a particle-based kinetic model of diffusion based on a Markov State Model framework. Prerequisite input data consist of diffusion coefficient and potential of mean force maps generated from extensive molecular dynamics simulations of proteins and their environment that sample multi-nanosecond durations. The suggested diffusion model can describe transport processes beyond microsecond duration, relevant for biological function and beyond the realm of molecular dynamics simulation. For this purpose the systems are represented by a discrete set of states specified by the positions, volumes, and surface elements of Voronoi grid cells distributed according to a density function resolving the often intricate relevant diffusion space. Validation tests carried out for generic diffusion spaces show that the model and the associated Brownian motion algorithm are viable over a large range of parameter values such as time step, diffusion coefficient, and grid density. A concrete application of the method is demonstrated for ion diffusion around and through the Eschericia coli mechanosensitive channel of small conductance ecMscS.

  12. Elements of a collaborative systems model within the aerospace industry

    NASA Astrophysics Data System (ADS)

    Westphalen, Bailee R.

    2000-10-01

    Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been accomplished individually. Comparing the relationship of the elements of the aerospace collaborative model with those of the various authors in the literature, it is found that the aerospace model is a more comprehensive configuration of elements and has added to the definition of collaboration found in the literature. Further, findings of relevant elements were indicated by the high response incidence of those individuals within the collaborative system. They were elements that were nearly unanimously identified as relevant by those within aerospace collaborative systems included having a stated purpose or mission for the project; working within completion deadlines; and coordinating with other departments within the organization. Furthermore, relevant terms correlating to the model as indicated by the high incidence of appearance in the respondents' comments were training, communication, commitment, and teamwork. There were also found to be variable distinctions specific to each collaborative context. The survey results suggested the multilevel overlapping of the multiple elements within the aerospace collaborative system model along with distinct context variables. Further research is necessary to refine the model and to provide additional information upon this established foundation.

  13. Developing a performance measurement framework and indicators for community health service facilities in urban China.

    PubMed

    Wong, Sabrina T; Yin, Delu; Bhattacharyya, Onil; Wang, Bin; Liu, Liqun; Chen, Bowen

    2010-11-18

    China has had no effective and systematic information system to provide guidance for strengthening PHC (Primary Health Care) or account to citizens on progress. We report on the development of the China results-based Logic Model for Community Health Facilities and Stations (CHS) and a set of relevant PHC indicators intended to measure CHS priorities. We adapted the PHC Results Based Logic Model developed in Canada and current work conducted in the community health system in China to create the China CHS Logic Model framework. We used a staged approach by first constructing the framework and indicators and then validating their content through an interactive process involving policy analysis, critical review of relevant literature and multiple stakeholder consultation. The China CHS Logic Model includes inputs, activities, outputs and outcomes with a total of 287 detailed performance indicators. In these indicators, 31 indicators measure inputs, 64 measure activities, 105 measure outputs, and 87 measure immediate (n = 65), intermediate (n = 15), or final (n = 7) outcomes. A Logic Model framework can be useful in planning, implementation, analysis and evaluation of PHC at a system and service level. The development and content validation of the China CHS Logic Model and subsequent indicators provides a means for stronger accountability and a clearer sense of overall direction and purpose needed to renew and strengthen the PHC system in China. Moreover, this work will be useful in moving towards developing a PHC information system and performance measurement across districts in urban China, and guiding the pursuit of quality in PHC.

  14. Developing a Performance Measurement Framework and Indicators for Community Health Service Facilities in Urban China

    PubMed Central

    2010-01-01

    Background China has had no effective and systematic information system to provide guidance for strengthening PHC (Primary Health Care) or account to citizens on progress. We report on the development of the China results-based Logic Model for Community Health Facilities and Stations (CHS) and a set of relevant PHC indicators intended to measure CHS priorities. Methods We adapted the PHC Results Based Logic Model developed in Canada and current work conducted in the community health system in China to create the China CHS Logic Model framework. We used a staged approach by first constructing the framework and indicators and then validating their content through an interactive process involving policy analysis, critical review of relevant literature and multiple stakeholder consultation. Results The China CHS Logic Model includes inputs, activities, outputs and outcomes with a total of 287 detailed performance indicators. In these indicators, 31 indicators measure inputs, 64 measure activities, 105 measure outputs, and 87 measure immediate (n = 65), intermediate (n = 15), or final (n = 7) outcomes. Conclusion A Logic Model framework can be useful in planning, implementation, analysis and evaluation of PHC at a system and service level. The development and content validation of the China CHS Logic Model and subsequent indicators provides a means for stronger accountability and a clearer sense of overall direction and purpose needed to renew and strengthen the PHC system in China. Moreover, this work will be useful in moving towards developing a PHC information system and performance measurement across districts in urban China, and guiding the pursuit of quality in PHC. PMID:21087516

  15. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  16. A systems-based partnership learning model for strengthening primary healthcare

    PubMed Central

    2013-01-01

    Background Strengthening primary healthcare systems is vital to improving health outcomes and reducing inequity. However, there are few tools and models available in published literature showing how primary care system strengthening can be achieved on a large scale. Challenges to strengthening primary healthcare (PHC) systems include the dispersion, diversity and relative independence of primary care providers; the scope and complexity of PHC; limited infrastructure available to support population health approaches; and the generally poor and fragmented state of PHC information systems. Drawing on concepts of comprehensive PHC, integrated quality improvement (IQI) methods, system-based research networks, and system-based participatory action research, we describe a learning model for strengthening PHC that addresses these challenges. We describe the evolution of this model within the Australian Aboriginal and Torres Strait Islander primary healthcare context, successes and challenges in its application, and key issues for further research. Discussion IQI approaches combined with system-based participatory action research and system-based research networks offer potential to support program implementation and ongoing learning across a wide scope of primary healthcare practice and on a large scale. The Partnership Learning Model (PLM) can be seen as an integrated model for large-scale knowledge translation across the scope of priority aspects of PHC. With appropriate engagement of relevant stakeholders, the model may be applicable to a wide range of settings. In IQI, and in the PLM specifically, there is a clear role for research in contributing to refining and evaluating existing tools and processes, and in developing and trialling innovations. Achieving an appropriate balance between funding IQI activity as part of routine service delivery and funding IQI related research will be vital to developing and sustaining this type of PLM. Summary This paper draws together several different previously described concepts and extends the understanding of how PHC systems can be strengthened through systematic and partnership-based approaches. We describe a model developed from these concepts and its application in the Australian Indigenous primary healthcare context, and raise questions about sustainability and wider relevance of the model. PMID:24344640

  17. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  18. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    NASA Astrophysics Data System (ADS)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.

  19. Linking normative models of natural tasks to descriptive models of neural response.

    PubMed

    Jaini, Priyank; Burge, Johannes

    2017-10-01

    Understanding how nervous systems exploit task-relevant properties of sensory stimuli to perform natural tasks is fundamental to the study of perceptual systems. However, there are few formal methods for determining which stimulus properties are most useful for a given natural task. As a consequence, it is difficult to develop principled models for how to compute task-relevant latent variables from natural signals, and it is difficult to evaluate descriptive models fit to neural response. Accuracy maximization analysis (AMA) is a recently developed Bayesian method for finding the optimal task-specific filters (receptive fields). Here, we introduce AMA-Gauss, a new faster form of AMA that incorporates the assumption that the class-conditional filter responses are Gaussian distributed. Then, we use AMA-Gauss to show that its assumptions are justified for two fundamental visual tasks: retinal speed estimation and binocular disparity estimation. Next, we show that AMA-Gauss has striking formal similarities to popular quadratic models of neural response: the energy model and the generalized quadratic model (GQM). Together, these developments deepen our understanding of why the energy model of neural response have proven useful, improve our ability to evaluate results from subunit model fits to neural data, and should help accelerate psychophysics and neuroscience research with natural stimuli.

  20. Evaluation of molecular brain changes associated with environmental stress in rodent models compared to human major depressive disorder: A proteomic systems approach.

    PubMed

    Cox, David Alan; Gottschalk, Michael Gerd; Stelzhammer, Viktoria; Wesseling, Hendrik; Cooper, Jason David; Bahn, Sabine

    2016-11-25

    Rodent models of major depressive disorder (MDD) are indispensable when screening for novel treatments, but assessing their translational relevance with human brain pathology has proved difficult. Using a novel systems approach, proteomics data obtained from post-mortem MDD anterior prefrontal cortex tissue (n = 12) and matched controls (n = 23) were compared with equivalent data from three commonly used preclinical models exposed to environmental stressors (chronic mild stress, prenatal stress and social defeat). Functional pathophysiological features associated with depression-like behaviour were identified in these models through enrichment of protein-protein interaction networks. A cross-species comparison evaluated which model(s) represent human MDD pathology most closely. Seven functional domains associated with MDD and represented across at least two models such as "carbohydrate metabolism and cellular respiration" were identified. Through statistical evaluation using kernel-based machine learning techniques, the social defeat model was found to represent MDD brain changes most closely for four of the seven domains. This is the first study to apply a method for directly evaluating the relevance of the molecular pathology of multiple animal models to human MDD on the functional level. The methodology and findings outlined here could help to overcome translational obstacles of preclinical psychiatric research.

  1. An open simulation approach to identify chances and limitations for vulnerable road user (VRU) active safety.

    PubMed

    Seiniger, Patrick; Bartels, Oliver; Pastor, Claus; Wisch, Marcus

    2013-01-01

    It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.

  2. Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bratton, Robert L.

    2011-01-01

    The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.

  3. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    PubMed

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. New Methods in Tissue Engineering

    PubMed Central

    Sheahan, Timothy P.; Rice, Charles M.; Bhatia, Sangeeta N.

    2015-01-01

    New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo–like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions. PMID:25893203

  5. A demonstration of the application of the new paradigm for the evaluation of forensic evidence under conditions reflecting those of a real forensic-voice-comparison case.

    PubMed

    Enzinger, Ewald; Morrison, Geoffrey Stewart; Ochoa, Felipe

    2016-01-01

    The new paradigm for the evaluation of the strength of forensic evidence includes: The use of the likelihood-ratio framework. The use of relevant data, quantitative measurements, and statistical models. Empirical testing of validity and reliability under conditions reflecting those of the case under investigation. Transparency as to decisions made and procedures employed. The present paper illustrates the use of the new paradigm to evaluate strength of evidence under conditions reflecting those of a real forensic-voice-comparison case. The offender recording was from a landline telephone system, had background office noise, and was saved in a compressed format. The suspect recording included substantial reverberation and ventilation system noise, and was saved in a different compressed format. The present paper includes descriptions of the selection of the relevant hypotheses, sampling of data from the relevant population, simulation of suspect and offender recording conditions, and acoustic measurement and statistical modelling procedures. The present paper also explores the use of different techniques to compensate for the mismatch in recording conditions. It also examines how system performance would have differed had the suspect recording been of better quality. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Analysis and design of hospital management information system based on UML

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Zhao, Huifang; You, Shi Jun; Ge, Wenyong

    2018-05-01

    With the rapid development of computer technology, computer information management system has been utilized in many industries. Hospital Information System (HIS) is in favor of providing data for directors, lightening the workload for the medical workers, and improving the workers efficiency. According to the HIS demand analysis and system design, this paper focus on utilizing unified modeling language (UML) models to establish the use case diagram, class diagram, sequence chart and collaboration diagram, and satisfying the demands of the daily patient visit, inpatient, drug management and other relevant operations. At last, the paper summarizes the problems of the system and puts forward an outlook of the HIS system.

  7. Global stability results for a generalized Lotka-Volterra system with distributed delays. Applications to predator-prey and to epidemic systems.

    PubMed

    Beretta, E; Capasso, V; Rinaldi, F

    1988-01-01

    The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.

  8. The Decibel Report: Acoustic Sound Measurement Modeling and the Effects of Sonar on Marine Mammals

    DTIC Science & Technology

    2010-06-21

    flow noise and shipborne internal noise are other relevant factors. For active systems, transmit and receive apparatus, target echo reflectivity...ambient noise, hydrodynamic flow noise, shipborne internal noise, and reverberation interference are the other relevant factors. The "L" terms expressed...speed, that is, hydrodynamic flow , dependent. 27 5. ND1 : dB - These symbols are read as receiving directivity index in units of decibels. The

  9. A forecasting model for power consumption of high energy-consuming industries based on system dynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Zongchuan; Dang, Dongsheng; Qi, Caijuan; Tian, Hongliang

    2018-02-01

    It is of great significance to make accurate forecasting for the power consumption of high energy-consuming industries. A forecasting model for power consumption of high energy-consuming industries based on system dynamics is proposed in this paper. First, several factors that have influence on the development of high energy-consuming industries in recent years are carefully dissected. Next, by analysing the relationship between each factor and power consumption, the system dynamics flow diagram and equations are set up to reflect the relevant relationships among variables. In the end, the validity of the model is verified by forecasting the power consumption of electrolytic aluminium industry in Ningxia according to the proposed model.

  10. Documentation Driven Development for Complex Real-Time Systems

    DTIC Science & Technology

    2004-12-01

    This paper presents a novel approach for development of complex real - time systems , called the documentation-driven development (DDD) approach. This... time systems . DDD will also support automated software generation based on a computational model and some relevant techniques. DDD includes two main...stakeholders to be easily involved in development processes and, therefore, significantly improve the agility of software development for complex real

  11. MARMOT Phase-Field Model for the U-Si System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aagesen, Larry Kenneth; Schwen, Daniel

    2016-09-01

    A phase-field model for the U-Si system has been implemented in MARMOT. The free energies for the phases relevant to accident-tolerant fuel applications (U 3Si 2, USi, U 3Si, and liquid) were implemented as free energy materials within MARMOT. A new three-phase phase-field model based on the concepts of the Kim-Kim-Suzuki two-phase model was developed and implemented in the MOOSE phase-field module. Key features of this model are that two-phase interfaces are stable with respect to formation of the third phase, and that arbitrary phase free energies can be used. The model was validated using a simplified three-phase system andmore » the U-Si system. In the U-Si system, the model correctly reproduced three-phase coexistence in a U 3Si 2-liquid-USi system at the eutectic temperature, solidification of a three-phase mixture below the eutectic temperature, and complete melting of a three-phase mixture above the eutectic temperature.« less

  12. Kennedy Space Center (KSC) Launch Complex 39 (LC-39) Gaseous Hydrogen (GH2) Vent Arm Behavior Prediction Model Review Technical Assessment Report

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Beech, Geoffrey; Johnston, Ian

    2009-01-01

    The NESC Assessment Team reviewed a computer simulation of the LC-39 External Tank (ET) GH2 Vent Umbilical system developed by United Space Alliance (USA) for the Space Shuttle Program (SSP) and designated KSC Analytical Tool ID 451 (KSC AT-451). The team verified that the vent arm kinematics were correctly modeled, but noted that there were relevant system sensitivities. Also, the structural stiffness used in the math model varied somewhat from the analytic calculations. Results of the NESC assessment were communicated to the model developers.

  13. Controlled drug-release system based on pH-sensitive chloride-triggerable liposomes.

    PubMed

    Wehunt, Mark P; Winschel, Christine A; Khan, Ali K; Guo, Tai L; Abdrakhmanova, Galya R; Sidorov, Vladimir

    2013-03-01

    New pH-sensitive lipids were synthesized and utilized in formulations of liposomes suitable for controlled drug release. These liposomes contain various amounts of NaCl in the internal aqueous compartments. The release of the drug model is triggered by an application of HCl cotransporter and exogenous physiologically relevant NaCl solution. HCl cotransporter allows an uptake of HCl by liposomes to the extent of their being proportional to the transmembrane Cl(-) gradient. Therefore, each set of liposomes undergoes internal acidification, which, ultimately, leads to the hydrolysis of the pH-sensitive lipids and content release at the desired time. The developed system releases the drug model in a stepwise fashion, with the release stages separated by periods of low activity. These liposomes were found to be insensitive to physiological concentrations of human serum albumin and to be nontoxic to cells at concentrations exceeding pharmacological relevance. These results render this new drug-release model potentially suitable for in vivo applications.

  14. Nuclear electric propulsion reactor control systems status

    NASA Technical Reports Server (NTRS)

    Ferg, D. A.

    1973-01-01

    The thermionic reactor control system design studies conducted over the past several years for a nuclear electric propulsion system are described and summarized. The relevant reactor control system studies are discussed in qualitative terms, pointing out the significant advantages and disadvantages including the impact that the various control systems would have on the nuclear electric propulsion system design. A recommendation for the reference control system is made, and a program for future work leading to an engineering model is described.

  15. Finding One's Voice: The Pacesetter Model for More Equitable Assessment.

    ERIC Educational Resources Information Center

    Badger, Elizabeth

    1996-01-01

    Describes the College Board's Pacesetter Program, high school courses developed using principles of ongoing performance testing and portfolios, standards, and curriculum. The model is illustrated in a description of the Voices of Modern Culture language arts course. Argues that this assessment process has systemic validity and is more relevant to…

  16. Dietary antioxidant synergy in chemical and biological systems.

    PubMed

    Wang, Sunan; Zhu, Fan

    2017-07-24

    Antioxidant (AOX) synergies have been much reported in chemical ("test-tube" based assays focusing on pure chemicals), biological (tissue culture, animal and clinical models), and food systems during the past decade. Tentative synergies differ from each other due to the composition of AOX and the quantification methods. Regeneration mechanism responsible for synergy in chemical systems has been discussed. Solvent effects could contribute to the artifacts of synergy observed in the chemical models. Synergy in chemical models may hardly be relevant to biological systems that have been much less studied. Apparent discrepancies exist in understanding the molecular mechanisms in both chemical and biological systems. This review discusses diverse variables associated with AOX synergy and molecular scenarios for explanation. Future research to better utilize the synergy is suggested.

  17. Active imaging systems to see through adverse conditions: Light-scattering based models and experimental validation

    NASA Astrophysics Data System (ADS)

    Riviere, Nicolas; Ceolato, Romain; Hespel, Laurent

    2014-10-01

    Onera, the French aerospace lab, develops and models active imaging systems to understand the relevant physical phenomena affecting these systems performance. As a consequence, efforts have been done on the propagation of a pulse through the atmosphere and on target geometries and surface properties. These imaging systems must operate at night in all ambient illumination and weather conditions in order to perform strategic surveillance for various worldwide operations. We have implemented codes for 2D and 3D laser imaging systems. As we aim to image a scene in the presence of rain, snow, fog or haze, we introduce such light-scattering effects in our numerical models and compare simulated images with measurements provided by commercial laser scanners.

  18. [work motivation -- assessment instruments and their relevance for medical care].

    PubMed

    Fiedler, Rolf G; Ranft, Andreas; Greitemann, Bernhard; Heuft, Gereon

    2005-11-01

    The relevance of work motivation for medical research and healthcare, in particular rehabilitation, is described. Four diagnostic instruments in the German language are introduced which can assess work motivation using a scale system: AVEM, JDS, LMI and FBTM. Their possible application and potential usage for the clinical area are discussed. Apart from the FBTM, none of these instruments can be directly used as a general instrument in a normal medical clinical setting. Finally, a current model for work motivation (compensatory model of work motivation and volition) is presented that contains basis concepts, which are judged as important for future research questions concerning the development of motivation diagnostic instruments.

  19. Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration

    NASA Technical Reports Server (NTRS)

    Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack

    2009-01-01

    A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.

  20. Emulation of rocket trajectory based on a six degree of freedom model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenpeng; Li, Fan; Wu, Zhong; Li, Rong

    2008-10-01

    In this paper, a 6-DOF motion mathematical model is discussed. It is consisted of body dynamics and kinematics block, aero dynamics block and atmosphere block. Based on Simulink, the whole rocket trajectory mathematical model is developed. In this model, dynamic system simulation becomes easy and visual. The method of modularization design gives more convenience to transplant. At last, relevant data is given to be validated by Monte Carlo means. Simulation results show that the flight trajectory of the rocket can be simulated preferably by means of this model, and it also supplies a necessary simulating tool for the development of control system.

  1. Spacing distribution functions for the one-dimensional point-island model with irreversible attachment

    NASA Astrophysics Data System (ADS)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2011-07-01

    We study the configurational structure of the point-island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density pnXY(x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for pnXY(x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system.

  2. Merchandising's Evolving Role in Family and Consumer Sciences

    ERIC Educational Resources Information Center

    Sullivan, Pauline; Collier, Billie J.; Goldsmith, Elizabeth B.

    2011-01-01

    Merchandising and consumer economics traditionally have been part of family and consumer sciences (FCS) within the ecosystems framework. The purpose of this article is to examine progress of this sub-system within FCS. Specifically, the authors explore the relevance of the systems approach for merchandising programs and conclude that this model is…

  3. Collisional and dynamical processes in moon and planet formation

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.

    1987-01-01

    Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.

  4. Towards Improved Student Experiences in Service Learning in Information Systems Courses

    ERIC Educational Resources Information Center

    Petkova, Olga

    2017-01-01

    The paper explores relevant past research on service-learning in Information Systems courses since 2000. One of the conclusions from this is that most of the publications are not founded on specific theoretical models and are mainly about sharing instructor or student experiences. Then several theoretical frameworks from Education and other…

  5. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  6. Systems Biology of the Vervet Monkey

    PubMed Central

    Jasinska, Anna J.; Schmitt, Christopher A.; Service, Susan K.; Cantor, Rita M.; Dewar, Ken; Jentsch, James D.; Kaplan, Jay R.; Turner, Trudy R.; Warren, Wesley C.; Weinstock, George M.; Woods, Roger P.; Freimer, Nelson B.

    2013-01-01

    Nonhuman primates (NHP) provide crucial biomedical model systems intermediate between rodents and humans. The vervet monkey (also called the African green monkey) is a widely used NHP model that has unique value for genetic and genomic investigations of traits relevant to human diseases. This article describes the phylogeny and population history of the vervet monkey and summarizes the use of both captive and wild vervet monkeys in biomedical research. It also discusses the effort of an international collaboration to develop the vervet monkey as the most comprehensively phenotypically and genomically characterized NHP, a process that will enable the scientific community to employ this model for systems biology investigations. PMID:24174437

  7. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study †

    PubMed Central

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.

    2017-01-01

    A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762

  8. Context-Aware Recommender Systems

    NASA Astrophysics Data System (ADS)

    Adomavicius, Gediminas; Tuzhilin, Alexander

    The importance of contextual information has been recognized by researchers and practitioners in many disciplines, including e-commerce personalization, information retrieval, ubiquitous and mobile computing, data mining, marketing, and management. While a substantial amount of research has already been performed in the area of recommender systems, most existing approaches focus on recommending the most relevant items to users without taking into account any additional contextual information, such as time, location, or the company of other people (e.g., for watching movies or dining out). In this chapter we argue that relevant contextual information does matter in recommender systems and that it is important to take this information into account when providing recommendations. We discuss the general notion of context and how it can be modeled in recommender systems. Furthermore, we introduce three different algorithmic paradigms - contextual prefiltering, post-filtering, and modeling - for incorporating contextual information into the recommendation process, discuss the possibilities of combining several contextaware recommendation techniques into a single unifying approach, and provide a case study of one such combined approach. Finally, we present additional capabilities for context-aware recommenders and discuss important and promising directions for future research.

  9. Diffusion in Single Supported Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Armstrong, C. L.; Trapp, M.; Rheinstädter, M. C.

    2011-03-01

    Despite their potential relevance for the development of functionalized surfaces and biosensors, the study of single supported membranes using neutron scattering has been limited by the challenge of obtaining relevant dynamic information from a sample with minimal material. Using state of the art neutron instrumentation we have, for the first time, modeled lipid diffusion in single supported lipid bilayers. While we find that the diffusion coefficient for the single bilayer system is comparable to a multi-lamellar lipid system, the molecular mechanism for lipid motion in the single bilayer is a continuous diffusion process with no sign of the flow-like ballistic motion reported in the stacked membrane system. In the future, these membranes will be used to hold and align proteins, mimicking physiological conditions enabling the study of protein structure, function and interactions in relevant and highly topical membrane/protein systems with minimal sample material. C.L. Armstrong, M.D. Kaye, M. Zamponi, E. Mamontov, M. Tyagi, T. Jenkins and M.C. Rheinstädter, Soft Matter Communication, 2010, Advance Article, DOI: 10.1039/C0SM00637H

  10. Interactive computer graphics and its role in control system design of large space structures

    NASA Technical Reports Server (NTRS)

    Reddy, A. S. S. R.

    1985-01-01

    This paper attempts to show the relevance of interactive computer graphics in the design of control systems to maintain attitude and shape of large space structures to accomplish the required mission objectives. The typical phases of control system design, starting from the physical model such as modeling the dynamics, modal analysis, and control system design methodology are reviewed and the need of the interactive computer graphics is demonstrated. Typical constituent parts of large space structures such as free-free beams and free-free plates are used to demonstrate the complexity of the control system design and the effectiveness of the interactive computer graphics.

  11. The dynamics of learning about a climate threshold

    NASA Astrophysics Data System (ADS)

    Keller, Klaus; McInerney, David

    2008-02-01

    Anthropogenic greenhouse gas emissions may trigger threshold responses of the climate system. One relevant example of such a potential threshold response is a shutdown of the North Atlantic meridional overturning circulation (MOC). Numerous studies have analyzed the problem of early MOC change detection (i.e., detection before the forcing has committed the system to a threshold response). Here we analyze the early MOC prediction problem. To this end, we virtually deploy an MOC observation system into a simple model that mimics potential future MOC responses and analyze the timing of confident detection and prediction. Our analysis suggests that a confident prediction of a potential threshold response can require century time scales, considerably longer that the time required for confident detection. The signal enabling early prediction of an approaching MOC threshold in our model study is associated with the rate at which the MOC intensity decreases for a given forcing. A faster MOC weakening implies a higher MOC sensitivity to forcing. An MOC sensitivity exceeding a critical level results in a threshold response. Determining whether an observed MOC trend in our model differs in a statistically significant way from an unforced scenario (the detection problem) imposes lower requirements on an observation system than the determination whether the MOC will shut down in the future (the prediction problem). As a result, the virtual observation systems designed in our model for early detection of MOC changes might well fail at the task of early and confident prediction. Transferring this conclusion to the real world requires a considerably refined MOC model, as well as a more complete consideration of relevant observational constraints.

  12. Affective picture processing and motivational relevance: arousal and valence effects on ERPs in an oddball task.

    PubMed

    Briggs, Kate E; Martin, Frances H

    2009-06-01

    There are two dominant theories of affective picture processing; one that attention is more deeply engaged by motivationally relevant stimuli (i.e., stimuli that activate both the appetitive and aversive systems), and two that attention is more deeply engaged by aversive stimuli described as the negativity bias. In order to identify the theory that can best account for affective picture processing, event-related potentials (ERPs) were recorded from 34 participants during a modified oddball paradigm in which levels of stimulus valence, arousal, and motivational relevance were systematically varied. Results were partially consistent with motivated attention models of emotional perception, as P3b amplitude was enhanced in response to highly arousing and motivationally relevant sexual and unpleasant stimuli compared to respective low arousing and less motivationally relevant stimuli. However P3b amplitudes were significantly larger in response to the highly arousing sexual stimuli compared to all other affective stimuli, which is not consistent with either dominant theory. The current study therefore highlights the need for a revised model of affective picture processing and provides a platform for further research investigating the independent effects of sexual arousal on cognitive processing.

  13. [Development of the lung cancer diagnostic system].

    PubMed

    Lv, You-Jiang; Yu, Shou-Yi

    2009-07-01

    To develop a lung cancer diagnosis system. A retrospective analysis was conducted in 1883 patients with primary lung cancer or benign pulmonary diseases (pneumonia, tuberculosis, or pneumonia pseudotumor). SPSS11.5 software was used for data processing. For the relevant factors, a non-factor Logistic regression analysis was used followed by establishment of the regression model. Microsoft Visual Studio 2005 system development platform and VB.Net corresponding language were used to develop the lung cancer diagnosis system. The non-factor multi-factor regression model showed a goodness-of-fit (R2) of the model of 0.806, with a diagnostic accuracy for benign lung diseases of 92.8%, a diagnostic accuracy for lung cancer of 89.0%, and an overall accuracy of 90.8%. The model system for early clinical diagnosis of lung cancer has been established.

  14. Life cycle cost analysis of a stand-alone PV system in rural Kenya

    NASA Astrophysics Data System (ADS)

    Daly, Emma

    The purpose of this quantitative research study was to determine the economic feasibility of a stand-alone PV system to electrify a rural area in Kenya. The research conducted involved a comprehensive review of all the relevant literature associated with the study. Methodologies were extrapolated from this extensive literature to develop a model for the complete design and economic analysis of a stand-alone PV system. A women's center in rural Kenya was used as a worked example to demonstrate the workings of the model. The results suggest that electrifying the center using a stand-alone PV system is an economically viable option which is encouraging for the surrounding area. This model can be used as a business model to determine the economic feasibility of a stand-alone PV system in alternative sites in Kenya.

  15. Approximate symmetries in atomic nuclei from a large-scale shell-model perspective

    NASA Astrophysics Data System (ADS)

    Launey, K. D.; Draayer, J. P.; Dytrych, T.; Sun, G.-H.; Dong, S.-H.

    2015-05-01

    In this paper, we review recent developments that aim to achieve further understanding of the structure of atomic nuclei, by capitalizing on exact symmetries as well as approximate symmetries found to dominate low-lying nuclear states. The findings confirm the essential role played by the Sp(3, ℝ) symplectic symmetry to inform the interaction and the relevant model spaces in nuclear modeling. The significance of the Sp(3, ℝ) symmetry for a description of a quantum system of strongly interacting particles naturally emerges from the physical relevance of its generators, which directly relate to particle momentum and position coordinates, and represent important observables, such as, the many-particle kinetic energy, the monopole operator, the quadrupole moment and the angular momentum. We show that it is imperative that shell-model spaces be expanded well beyond the current limits to accommodate particle excitations that appear critical to enhanced collectivity in heavier systems and to highly-deformed spatial structures, exemplified by the second 0+ state in 12C (the challenging Hoyle state) and 8Be. While such states are presently inaccessible by large-scale no-core shell models, symmetry-based considerations are found to be essential.

  16. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models

    PubMed Central

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-01-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality. However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management. We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee – varroa mite – virus interactions. We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications. We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions. PMID:24223431

  17. Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models.

    PubMed

    Becher, Matthias A; Osborne, Juliet L; Thorbek, Pernille; Kennedy, Peter J; Grimm, Volker

    2013-08-01

    The health of managed and wild honeybee colonies appears to have declined substantially in Europe and the United States over the last decade. Sustainability of honeybee colonies is important not only for honey production, but also for pollination of crops and wild plants alongside other insect pollinators. A combination of causal factors, including parasites, pathogens, land use changes and pesticide usage, are cited as responsible for the increased colony mortality.However, despite detailed knowledge of the behaviour of honeybees and their colonies, there are no suitable tools to explore the resilience mechanisms of this complex system under stress. Empirically testing all combinations of stressors in a systematic fashion is not feasible. We therefore suggest a cross-level systems approach, based on mechanistic modelling, to investigate the impacts of (and interactions between) colony and land management.We review existing honeybee models that are relevant to examining the effects of different stressors on colony growth and survival. Most of these models describe honeybee colony dynamics, foraging behaviour or honeybee - varroa mite - virus interactions.We found that many, but not all, processes within honeybee colonies, epidemiology and foraging are well understood and described in the models, but there is no model that couples in-hive dynamics and pathology with foraging dynamics in realistic landscapes. Synthesis and applications . We describe how a new integrated model could be built to simulate multifactorial impacts on the honeybee colony system, using building blocks from the reviewed models. The development of such a tool would not only highlight empirical research priorities but also provide an important forecasting tool for policy makers and beekeepers, and we list examples of relevant applications to bee disease and landscape management decisions.

  18. Evaluation of image quality

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    This presentation outlines in viewgraph format a general approach to the evaluation of display system quality for aviation applications. This approach is based on the assumption that it is possible to develop a model of the display which captures most of the significant properties of the display. The display characteristics should include spatial and temporal resolution, intensity quantizing effects, spatial sampling, delays, etc. The model must be sufficiently well specified to permit generation of stimuli that simulate the output of the display system. The first step in the evaluation of display quality is an analysis of the tasks to be performed using the display. Thus, for example, if a display is used by a pilot during a final approach, the aesthetic aspects of the display may be less relevant than its dynamic characteristics. The opposite task requirements may apply to imaging systems used for displaying navigation charts. Thus, display quality is defined with regard to one or more tasks. Given a set of relevant tasks, there are many ways to approach display evaluation. The range of evaluation approaches includes visual inspection, rapid evaluation, part-task simulation, and full mission simulation. The work described is focused on two complementary approaches to rapid evaluation. The first approach is based on a model of the human visual system. A model of the human visual system is used to predict the performance of the selected tasks. The model-based evaluation approach permits very rapid and inexpensive evaluation of various design decisions. The second rapid evaluation approach employs specifically designed critical tests that embody many important characteristics of actual tasks. These are used in situations where a validated model is not available. These rapid evaluation tests are being implemented in a workstation environment.

  19. Understanding Lymphatic Valve Function via Computational Modeling

    NASA Astrophysics Data System (ADS)

    Wolf, Ki; Nepiyushchikh, Zhanna; Razavi, Mohammad; Dixon, Brandon; Alexeev, Alexander

    2017-11-01

    The lymphatic system is a crucial part to the circulatory system with many important functions, such as transport of interstitial fluid, fatty acid, and immune cells. Lymphatic vessels' contractile walls and valves allow lymph flow against adverse pressure gradients and prevent back flow. Yet, the effect of lymphatic valves' geometric and mechanical properties to pumping performance and lymphatic dysfunctions like lymphedema is not well understood. Our coupled fluid-solid computational model based on lattice Boltzmann model and lattice spring model investigates the dynamics and effectiveness of lymphatic valves in resistance minimization, backflow prevention, and viscoelastic response under different geometric and mechanical properties, suggesting the range of lymphatic valve parameters with effective pumping performance. Our model also provides more physiologically relevant relations of the valve response under varied conditions to a lumped parameter model of the lymphatic system giving an integrative insight into lymphatic system performance, including its failure due to diseases. NSF CMMI-1635133.

  20. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

  1. Set membership experimental design for biological systems.

    PubMed

    Marvel, Skylar W; Williams, Cranos M

    2012-03-21

    Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models.

  2. Set membership experimental design for biological systems

    PubMed Central

    2012-01-01

    Background Experimental design approaches for biological systems are needed to help conserve the limited resources that are allocated for performing experiments. The assumptions used when assigning probability density functions to characterize uncertainty in biological systems are unwarranted when only a small number of measurements can be obtained. In these situations, the uncertainty in biological systems is more appropriately characterized in a bounded-error context. Additionally, effort must be made to improve the connection between modelers and experimentalists by relating design metrics to biologically relevant information. Bounded-error experimental design approaches that can assess the impact of additional measurements on model uncertainty are needed to identify the most appropriate balance between the collection of data and the availability of resources. Results In this work we develop a bounded-error experimental design framework for nonlinear continuous-time systems when few data measurements are available. This approach leverages many of the recent advances in bounded-error parameter and state estimation methods that use interval analysis to generate parameter sets and state bounds consistent with uncertain data measurements. We devise a novel approach using set-based uncertainty propagation to estimate measurement ranges at candidate time points. We then use these estimated measurements at the candidate time points to evaluate which candidate measurements furthest reduce model uncertainty. A method for quickly combining multiple candidate time points is presented and allows for determining the effect of adding multiple measurements. Biologically relevant metrics are developed and used to predict when new data measurements should be acquired, which system components should be measured and how many additional measurements should be obtained. Conclusions The practicability of our approach is illustrated with a case study. This study shows that our approach is able to 1) identify candidate measurement time points that maximize information corresponding to biologically relevant metrics and 2) determine the number at which additional measurements begin to provide insignificant information. This framework can be used to balance the availability of resources with the addition of one or more measurement time points to improve the predictability of resulting models. PMID:22436240

  3. Bulk Charging of Dielectrics in Cryogenic Space Environments

    NASA Technical Reports Server (NTRS)

    Minow, J. I.; Coffey, V. N.; Blackwell, W. C., Jr.; Parker, L. N.; Jun, I.; Garrett, H. B.

    2007-01-01

    We use a 1-D bulk charging model to evaluate dielectric charging at cryogenic temperatures relevant to space systems using passive cooling to <100K or extended operations in permanently dark lunar craters and the lunar night.

  4. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  5. Characterisation of vibration input to flywheel used on urban bus

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kanarachos, S.; Christensen, J.

    2016-09-01

    Vibration induced from road surface has an impact on the durability and reliability of electrical and mechanical components attached on the vehicle. There is little research published relevant to the durability assessment of a flywheel energy recovery system installed on city and district buses. Relevant international standards and legislations were reviewed and large discrepancy was found among them, in addition, there are no standards exclusively developed for kinetic energy recovery systems on vehicles. This paper describes the experimentation of assessment of road surface vibration input to the flywheel on a bus as obtained at the MIRA Proving Ground. Power density spectra have been developed based on the raw data obtained during the experimentation. Validation of this model will be carried out using accelerated life time tests that will be carried out on a shaker rig using an accumulated profile based on the theory of fatigue damage equivalence in time and frequency domain aligned with the model predictions.

  6. Intellectual property rights and detached human body parts.

    PubMed

    Pila, Justine

    2014-01-01

    This paper responds to an invitation by the editors to consider whether the intellectual property (IP) regime suggests an appropriate model for protecting interests in detached human body parts. It begins by outlining the extent of existing IP protection for body parts in Europe, and the relevant strengths and weaknesses of the patent system in that regard. It then considers two further species of IP right of less obvious relevance. The first are the statutory rights of ownership conferred by domestic UK law in respect of employee inventions, and the second are the economic and moral rights recognised by European and international law in respect of authorial works. In the argument made, both of these species of IP right may suggest more appropriate models of sui generis protection for detached human body parts than patent rights because of their capacity better to accommodate the relevant public and private interests in respect of the same.

  7. Geostatistical characterisation of geothermal parameters for a thermal aquifer storage site in Germany

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, J.; Li, T.; Grathwohl, P.; Blum, P.; Bayer, P.

    2009-04-01

    The design of geothermal systems such as aquifer thermal energy storage systems (ATES) must account for a comprehensive characterisation of all relevant parameters considered for the numerical design model. Hydraulic and thermal conductivities are the most relevant parameters and its distribution determines not only the technical design but also the economic viability of such systems. Hence, the knowledge of the spatial distribution of these parameters is essential for a successful design and operation of such systems. This work shows the first results obtained when applying geostatistical techniques to the characterisation of the Esseling Site in Germany. In this site a long-term thermal tracer test (> 1 year) was performed. On this open system the spatial temperature distribution inside the aquifer was observed over time in order to obtain as much information as possible that yield to a detailed characterisation both of the hydraulic and thermal relevant parameters. This poster shows the preliminary results obtained for the Esseling Site. It has been observed that the common homogeneous approach is not sufficient to explain the observations obtained from the TRT and that parameter heterogeneity must be taken into account.

  8. An integrative model for in-silico clinical-genomics discovery science.

    PubMed

    Lussier, Yves A; Sarkar, Indra Nell; Cantor, Michael

    2002-01-01

    Human Genome discovery research has set the pace for Post-Genomic Discovery Research. While post-genomic fields focused at the molecular level are intensively pursued, little effort is being deployed in the later stages of molecular medicine discovery research, such as clinical-genomics. The objective of this study is to demonstrate the relevance and significance of integrating mainstream clinical informatics decision support systems to current bioinformatics genomic discovery science. This paper is a feasibility study of an original model enabling novel "in-silico" clinical-genomic discovery science and that demonstrates its feasibility. This model is designed to mediate queries among clinical and genomic knowledge bases with relevant bioinformatic analytic tools (e.g. gene clustering). Briefly, trait-disease-gene relationships were successfully illustrated using QMR, OMIM, SNOMED-RT, GeneCluster and TreeView. The analyses were visualized as two-dimensional dendrograms of clinical observations clustered around genes. To our knowledge, this is the first study using knowledge bases of clinical decision support systems for genomic discovery. Although this study is a proof of principle, it provides a framework for the development of clinical decision-support-system driven, high-throughput clinical-genomic technologies which could potentially unveil significant high-level functions of genes.

  9. Investigating accident causation through information network modelling.

    PubMed

    Griffin, T G C; Young, M S; Stanton, N A

    2010-02-01

    Management of risk in complex domains such as aviation relies heavily on post-event investigations, requiring complex approaches to fully understand the integration of multi-causal, multi-agent and multi-linear accident sequences. The Event Analysis of Systemic Teamwork methodology (EAST; Stanton et al. 2008) offers such an approach based on network models. In this paper, we apply EAST to a well-known aviation accident case study, highlighting communication between agents as a central theme and investigating the potential for finding agents who were key to the accident. Ultimately, this work aims to develop a new model based on distributed situation awareness (DSA) to demonstrate that the risk inherent in a complex system is dependent on the information flowing within it. By identifying key agents and information elements, we can propose proactive design strategies to optimize the flow of information and help work towards avoiding aviation accidents. Statement of Relevance: This paper introduces a novel application of an holistic methodology for understanding aviation accidents. Furthermore, it introduces an ongoing project developing a nonlinear and prospective method that centralises distributed situation awareness and communication as themes. The relevance of findings are discussed in the context of current ergonomic and aviation issues of design, training and human-system interaction.

  10. Modeling Exoplanetary Haze and Cloud Effects for Transmission Spectroscopy in the TRAPPIST-1 System

    NASA Astrophysics Data System (ADS)

    Moran, Sarah E.; Horst, Sarah M.; Lewis, Nikole K.; Batalha, Natasha E.; de Wit, Julien

    2018-01-01

    We present theoretical transmission spectra of the planets TRAPPIST-1d, e, f, and g using a version of the CaltecH Inverse ModEling and Retrieval Algorithms (CHIMERA) atmospheric modeling code. We use particle size, aerosol production rates, and aerosol composition inputs from recent laboratory experiments relevant for the TRAPPIST-1 system to constrain cloud and haze behavior and their effects on transmission spectra. We explore these cloud and haze cases for a variety of theoretical atmospheric compositions including hydrogen-, nitrogen-, and carbon dioxide-dominated atmospheres. Then, we demonstrate the feasibility of physically-motivated, laboratory-supported clouds and hazes to obscure spectral features at wavelengths and resolutions relevant to instruments on the Hubble Space Telescope and the upcoming James Webb Space Telescope. Lastly, with laboratory based constraints of haze production rates for terrestrial exoplanets, we constrain possible bulk atmospheric compositions of the TRAPPIST-1 planets based on current observations. We show that continued collection of optical data, beyond the supported wavelength range of the James Webb Telescope, is necessary to explore the full effect of hazes for transmission spectra of exoplanetary atmospheres like the TRAPPIST-1 system.

  11. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samantha; Bracken, Jennifer Medlin; McGuire; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a focused design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  12. Model-Based Systems Engineering in Concurrent Engineering Centers

    NASA Technical Reports Server (NTRS)

    Iwata, Curtis; Infeld, Samatha; Bracken, Jennifer Medlin; McGuire, Melissa; McQuirk, Christina; Kisdi, Aron; Murphy, Jonathan; Cole, Bjorn; Zarifian, Pezhman

    2015-01-01

    Concurrent Engineering Centers (CECs) are specialized facilities with a goal of generating and maturing engineering designs by enabling rapid design iterations. This is accomplished by co-locating a team of experts (either physically or virtually) in a room with a narrow design goal and a limited timeline of a week or less. The systems engineer uses a model of the system to capture the relevant interfaces and manage the overall architecture. A single model that integrates other design information and modeling allows the entire team to visualize the concurrent activity and identify conflicts more efficiently, potentially resulting in a systems model that will continue to be used throughout the project lifecycle. Performing systems engineering using such a system model is the definition of model-based systems engineering (MBSE); therefore, CECs evolving their approach to incorporate advances in MBSE are more successful in reducing time and cost needed to meet study goals. This paper surveys space mission CECs that are in the middle of this evolution, and the authors share their experiences in order to promote discussion within the community.

  13. Attrition in the kimberlite system

    NASA Astrophysics Data System (ADS)

    Jones, Thomas J.; Russell, James K.

    2018-05-01

    The sustained transportation of particles in a suspension commonly results in particle attrition leading to grain size reduction and shape modification. Particle attrition is a well-studied phenomenon that has mainly focussed on sediments produced in aeolian or fluvial environments. Here, we present analogue experiments designed to explore processes of attrition in the kimberlite system; we focus on olivine as it is the most abundant constituent of kimberlite. The attrition experiments on olivine use separate experimental set-ups to approximate two natural environments relevant to kimberlites. Tumbling mill experiments feature a low energy system supporting near continual particle-particle contact and are relevant to re-sedimentation and dispersal processes. Experiments performed in a fluidized particle bed constitute a substantially higher energy environment pertinent to kimberlite ascent and eruption. The run-products of each experiment are analysed for grain size reduction and shape modification and these data are used to elucidate the rates and extents of olivine attrition as a function of time and energy. Lastly, we model the two experimental datasets with an empirical rate equation that describes the production of daughter products (fines) with time. Both datasets approach a fines production limit, or plateau, at long particle residence times; the fluidized system is much more efficient producing a substantially higher fines content and reaches the plateau faster. Our experimental results and models provide a way to forensically examine a wide range of processes relevant to kimberlite on the basis of olivine size and shape properties.

  14. Microbicide safety/efficacy studies in animals: macaques and small animal models.

    PubMed

    Veazey, Ronald S

    2008-09-01

    A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. The unique host and cell specificity of HIV, however, provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a prerequisite for advancing additional microbicide candidates to human clinical trials.

  15. Microbicide Safety/Efficacy studies in animals -macaques and small animal models

    PubMed Central

    Veazey, Ronald S.

    2009-01-01

    Purpose of review A number of microbicide candidates have failed to prevent HIV transmission in human clinical trials, and there is uncertainty as to how many additional trials can be supported by the field. Regardless, there are far too many microbicide candidates in development, and a logical and consistent method for screening and selecting candidates for human clinical trials is desperately needed. However, the unique host and cell specificity of HIV provides challenges for microbicide safety and efficacy screening, that can only be addressed by rigorous testing in relevant laboratory animal models. Recent findings A number of laboratory animal model systems ranging from rodents to nonhuman primates, and single versus multiple dose challenges have recently been developed to test microbicide candidates. These models have shed light on both the safety and efficacy of candidate microbicides as well as the early mechanisms involved in transmission. This article summarizes the major advantages and disadvantages of the relevant animal models for microbicide safety and efficacy testing. Summary Currently, nonhuman primates are the only relevant and effective laboratory model for screening microbicide candidates. Given the consistent failures of prior strategies, it is now clear that rigorous safety and efficacy testing in nonhuman primates should be a pre-requisite for advancing additional microbicide candidates to human clinical trials. PMID:19373023

  16. How Predictive Is Grip Force Control in the Complete Absence of Somatosensory Feedback?

    ERIC Educational Resources Information Center

    Nowak, Dennis A.; Glasauer, Stefan; Hermsdorfer, Joachim

    2004-01-01

    Grip force control relies on accurate internal models of the dynamics of our motor system and the external objects we manipulate. Internal models are not fixed entities, but rather are trained and updated by sensory experience. Sensory feedback signals relevant object properties and mechanical events, e.g. at the skin-object interface, to modify…

  17. Acceptance of health information technology in health professionals: an application of the revised technology acceptance model.

    PubMed

    Ketikidis, Panayiotis; Dimitrovski, Tomislav; Lazuras, Lambros; Bath, Peter A

    2012-06-01

    The response of health professionals to the use of health information technology (HIT) is an important research topic that can partly explain the success or failure of any HIT application. The present study applied a modified version of the revised technology acceptance model (TAM) to assess the relevant beliefs and acceptance of HIT systems in a sample of health professionals (n = 133). Structured anonymous questionnaires were used and a cross-sectional design was employed. The main outcome measure was the intention to use HIT systems. ANOVA was employed to examine differences in TAM-related variables between nurses and medical doctors, and no significant differences were found. Multiple linear regression analysis was used to assess the predictors of HIT usage intentions. The findings showed that perceived ease of use, but not usefulness, relevance and subjective norms directly predicted HIT usage intentions. The present findings suggest that a modification of the original TAM approach is needed to better understand health professionals' support and endorsement of HIT. Perceived ease of use, relevance of HIT to the medical and nursing professions, as well as social influences, should be tapped by information campaigns aiming to enhance support for HIT in healthcare settings.

  18. A transdisciplinary focus on drug abuse prevention: an introduction.

    PubMed

    Sussman, Steve; Stacy, Alan W; Johnson, C Anderson; Pentz, Mary Ann; Robertson, Elizabeth

    2004-01-01

    This article introduces the scope of the Special Issue. A variety of scientific disciplines are brought together to establish theoretical integration of the arenas of drug use, misuse, "abuse," and drug misuse prevention. Transdisciplinary scientific collaboration (TDSC) is utilized as a process of integration. Introductory comments regarding the strengths and limitations of TDSC are presented. Then, the relevance of genetics to substance misuse and substance misuse prevention is presented. Next, the relevance of cognition for prevention is discussed. Specifically, neurologically plausible distinctions in cognition and implicit cognition and their relevance for prevention are discussed. At a relatively molar social-level of analysis, social network theory, systems dynamic models, geographic information systems models, cultural psychology, and political science approaches to drug misuse and its prevention are introduced. The uses of both quantitative and qualitative statistical approaches to prevention are mentioned next. Finally, targeted prevention, bridging the efficacy-effectiveness gap, and a statement on overcoming disbalance round out the Special Issue. The bridges created will serve to propel drug misuse "prevention science" forward in the years to come. Advances in understanding etiological issues, translation to programs, and ecological fit of programming are desired results.

  19. Beyond ideal magnetohydrodynamics: from fibration to 3  +  1 foliation

    NASA Astrophysics Data System (ADS)

    Andersson, N.; Hawke, I.; Dionysopoulou, K.; Comer, G. L.

    2017-06-01

    We consider a resistive multi-fluid framework from the 3  +  1 space-time foliation point-of-view, paying particular attention to issues relating to the use of multi-parameter equations of state and the associated inversion from evolved to primitive variables. We highlight relevant numerical issues that arise for general systems with relative flows. As an application of the new formulation, we consider a three-component system relevant for hot neutron stars. In this case we let the baryons (neutrons and protons) move together, but allow heat and electrons to exhibit relative flow. This reduces the problem to three momentum equations; overall energy-momentum conservation, a generalised Ohm’s law and a heat equation. Our results provide a hierarchy of increasingly complex models and prepare the ground for new state-of-the-art simulations of relevant scenarios in relativistic astrophysics.

  20. Can one trust quantum simulators?

    PubMed

    Hauke, Philipp; Cucchietti, Fernando M; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-T(c) superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by 'simulation' with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a 'quantum simulator,' would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question 'Can we trust quantum simulators?' is … to some extent.

  1. Can one trust quantum simulators?

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Cucchietti, Fernando M.; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-Tc superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by ‘simulation’ with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a ‘quantum simulator,’ would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question ‘Can we trust quantum simulators?’ is … to some extent.

  2. Integrating the Master of Software Assurance Reference Curriculum into the Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems

    DTIC Science & Technology

    2011-02-01

    Model Curriculum and Guidelines for Graduate Degree Programs in Information Systems (MSIS) 2006 is the latest product of a project that has been...conducted for nearly 40 years [Gor- gone 2006]. Various organizations affiliated with the project have developed specifications for the teaching of...considerations helps ensure that an institution’s individual courses of study are relevant to the industry that its students are preparing to enter

  3. A Cost Model for Testing Unmanned and Autonomous Systems of Systems

    DTIC Science & Technology

    2011-02-01

    those risks. In addition, the fundamental methods presented by Aranha and Borba to include the complexity and sizing of tests for UASoS, can be expanded...used as an input for test execution effort estimation models (Aranha & Borba , 2007). Such methodology is very relevant to this work because as a UASoS...calculate the test effort based on the complexity of the SoS. However, Aranha and Borba define test size as the number of steps required to complete

  4. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Alexey

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability andmore » predictability, directly relevant to the questions of climate predictability, were at the center of the research work.« less

  5. Model systems: how chemical biologists study RNA

    PubMed Central

    Rios, Andro C.; Tor, Yitzhak

    2009-01-01

    Ribonucleic acids are structurally and functionally sophisticated biomolecules and the use of models, frequently truncated or modified sequences representing functional domains of the natural systems, is essential to their exploration. Functional non-coding RNAs such as miRNAs, riboswitches, and, in particular, ribozymes, have changed the view of RNA’s role in biology and its catalytic potential. The well-known truncated hammerhead model has recently been refined and new data provide a clearer molecular picture of the elements responsible for its catalytic power. A model for the spliceosome, a massive and highly intricate ribonucleoprotein, is also emerging, although its true utility is yet to be cemented. Such catalytic model systems could also serve as “chemo-paleontological” tools, further refining the RNA world hypothesis and its relevance to the origin and evolution of life. PMID:19879179

  6. Model-Based Safety Analysis

    NASA Technical Reports Server (NTRS)

    Joshi, Anjali; Heimdahl, Mats P. E.; Miller, Steven P.; Whalen, Mike W.

    2006-01-01

    System safety analysis techniques are well established and are used extensively during the design of safety-critical systems. Despite this, most of the techniques are highly subjective and dependent on the skill of the practitioner. Since these analyses are usually based on an informal system model, it is unlikely that they will be complete, consistent, and error free. In fact, the lack of precise models of the system architecture and its failure modes often forces the safety analysts to devote much of their effort to gathering architectural details about the system behavior from several sources and embedding this information in the safety artifacts such as the fault trees. This report describes Model-Based Safety Analysis, an approach in which the system and safety engineers share a common system model created using a model-based development process. By extending the system model with a fault model as well as relevant portions of the physical system to be controlled, automated support can be provided for much of the safety analysis. We believe that by using a common model for both system and safety engineering and automating parts of the safety analysis, we can both reduce the cost and improve the quality of the safety analysis. Here we present our vision of model-based safety analysis and discuss the advantages and challenges in making this approach practical.

  7. Proteomics and plant disease: advances in combating a major threat to the global food supply.

    PubMed

    Rampitsch, Christof; Bykova, Natalia V

    2012-02-01

    The study of plant disease and immunity is benefiting tremendously from proteomics. Parallel streams of research from model systems, from pathogens in vitro and from the relevant pathogen-crop interactions themselves have begun to reveal a model of how plants succumb to invading pathogens and how they defend themselves without the benefit of a circulating immune system. In this review, we discuss the contribution of proteomics to these advances, drawing mainly on examples from crop-fungus interactions, from Arabidopsis-bacteria interactions, from elicitor-based model systems and from pathogen studies, to highlight also the important contribution of non-crop systems to advancing crop protection. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Screening Electronic Health Record-Related Patient Safety Reports Using Machine Learning.

    PubMed

    Marella, William M; Sparnon, Erin; Finley, Edward

    2017-03-01

    The objective of this study was to develop a semiautomated approach to screening cases that describe hazards associated with the electronic health record (EHR) from a mandatory, population-based patient safety reporting system. Potentially relevant cases were identified through a query of the Pennsylvania Patient Safety Reporting System. A random sample of cases were manually screened for relevance and divided into training, testing, and validation data sets to develop a machine learning model. This model was used to automate screening of remaining potentially relevant cases. Of the 4 algorithms tested, a naive Bayes kernel performed best, with an area under the receiver operating characteristic curve of 0.927 ± 0.023, accuracy of 0.855 ± 0.033, and F score of 0.877 ± 0.027. The machine learning model and text mining approach described here are useful tools for identifying and analyzing adverse event and near-miss reports. Although reporting systems are beginning to incorporate structured fields on health information technology and the EHR, these methods can identify related events that reporters classify in other ways. These methods can facilitate analysis of legacy safety reports by retrieving health information technology-related and EHR-related events from databases without fields and controlled values focused on this subject and distinguishing them from reports in which the EHR is mentioned only in passing. Machine learning and text mining are useful additions to the patient safety toolkit and can be used to semiautomate screening and analysis of unstructured text in safety reports from frontline staff.

  9. The Model of Monitoring of Vocational Pedagogical Competences of Professors in Secondary Vocational Education

    ERIC Educational Resources Information Center

    Andryukhina, Lyudmila M.; Dneprov, Sergey ?.; Sumina, Tatyana G.; Zimina, Elena Yu.; Utkina, Svetlana N.; Mantulenko, Valentina V.

    2016-01-01

    The relevance of the researched issue is preconditioned by the strategic changes in the secondary vocational education system taking place not only in Russia, but also in majority of industrially developed countries. Provision of the system with qualified pedagogical staff is the leading strategic objective of development of the secondary…

  10. THE MAYAK WORKER DOSIMETRY SYSTEM (MWDS-2013) FOR INTERNALLY DEPOSITED PLUTONIUM: AN OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birchall, A.; Vostrotin, V.; Puncher, M.

    The Mayak Worker Dosimetry System (MWDS-2013) is a system for interpreting measurement data from Mayak workers from both internal and external sources. This paper is concerned with the calculation of annual organ doses for Mayak workers exposed to plutonium aerosols, where the measurement data consists mainly of activity of plutonium in urine samples. The system utilises the latest biokinetic and dosimetric models, and unlike its predecessors, takes explicit account of uncertainties in both the measurement data and model parameters. The aim of this paper is to describe the complete MWDS-2013 system (including model parameter values and their uncertainties) and themore » methodology used (including all the relevant equations) and the assumptions made. Where necessary, supplementary papers which justify specific assumptions are cited.« less

  11. CEOS SEO and GISS Meeting

    NASA Technical Reports Server (NTRS)

    Killough, Brian; Stover, Shelley

    2008-01-01

    The Committee on Earth Observation Satellites (CEOS) provides a brief to the Goddard Institute for Space Studies (GISS) regarding the CEOS Systems Engineering Office (SEO) and current work on climate requirements and analysis. A "system framework" is provided for the Global Earth Observation System of Systems (GEOSS). SEO climate-related tasks are outlined including the assessment of essential climate variable (ECV) parameters, use of the "systems framework" to determine relevant informational products and science models and the performance of assessments and gap analyses of measurements and missions for each ECV. Climate requirements, including instruments and missions, measurements, knowledge and models, and decision makers, are also outlined. These requirements would establish traceability from instruments to products and services allowing for benefit evaluation of instruments and measurements. Additionally, traceable climate requirements would provide a better understanding of global climate models.

  12. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    NASA Technical Reports Server (NTRS)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  13. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  14. Linking 1D coastal ocean modelling to environmental management: an ensemble approach

    NASA Astrophysics Data System (ADS)

    Mussap, Giulia; Zavatarelli, Marco; Pinardi, Nadia

    2017-12-01

    The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in "data-rich" areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM.

  15. Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.

    PubMed

    Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F

    2013-10-01

    A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).

  16. Generating action descriptions from statistically integrated representations of human motions and sentences.

    PubMed

    Takano, Wataru; Kusajima, Ikuo; Nakamura, Yoshihiko

    2016-08-01

    It is desirable for robots to be able to linguistically understand human actions during human-robot interactions. Previous research has developed frameworks for encoding human full body motion into model parameters and for classifying motion into specific categories. For full understanding, the motion categories need to be connected to the natural language such that the robots can interpret human motions as linguistic expressions. This paper proposes a novel framework for integrating observation of human motion with that of natural language. This framework consists of two models; the first model statistically learns the relations between motions and their relevant words, and the second statistically learns sentence structures as word n-grams. Integration of these two models allows robots to generate sentences from human motions by searching for words relevant to the motion using the first model and then arranging these words in appropriate order using the second model. This allows making sentences that are the most likely to be generated from the motion. The proposed framework was tested on human full body motion measured by an optical motion capture system. In this, descriptive sentences were manually attached to the motions, and the validity of the system was demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Neural Mechanisms Supporting Acquired Phasic Dopamine Responses in Learning: An Integrative Synthesis

    PubMed Central

    Hazy, Thomas E.; Frank, Michael J.; O’Reilly, Randall C.

    2010-01-01

    What biological mechanisms underlie the reward-predictive firing properties of midbrain dopaminergic neurons, and how do they relate to the complex constellation of empirical findings understood as Pavlovian and instrumental conditioning? We previously presented PVLV, a biologically-inspired Pavlovian learning algorithm accounting for DA activity in terms of two interrelated systems: a primary value (PV) system, which governs how DA cells respond to a US (reward) and; a learned value (LV) system, which governs how DA cells respond to a CS. Here, we provide a more extensive review of the biological mechanisms supporting phasic DA firing and their relation to the spate of Pavlovian conditioning phenomena and their sensitivity to focal brain lesions. We further extend the model by incorporating a new NV (novelty value) component reflecting the ability of novel stimuli to trigger phasic DA firing, providing “novelty bonuses” which encourages exploratory working memory updating and in turn speeds learning in trace conditioning and other working memory-dependent paradigms. The evolving PVLV model builds upon insights developed in many earlier computational models, especially reinforcement learning models based on the ideas of Sutton and Barto, biological models, and the psychological model developed by Savastano and Miller. The PVLV framework synthesizes these various approaches, overcoming important shortcomings of each by providing a coherent and specific mapping to much of the relevant empirical data at both the micro- and macro-levels, and examines their relevance for higher order cognitive functions. PMID:19944716

  18. Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    PubMed Central

    Lidster, Katie; Jackson, Samuel J.; Ahmed, Zubair; Munro, Peter; Coffey, Pete; Giovannoni, Gavin; Baker, Mark D.; Baker, David

    2013-01-01

    Multiple sclerosis is an immune-mediated, demyelinating and neurodegenerative disease that currently lacks any neuroprotective treatments. Innovative neuroprotective trial designs are required to hasten the translational process of drug development. An ideal target to monitor the efficacy of strategies aimed at treating multiple sclerosis is the visual system, which is the most accessible part of the human central nervous system. A novel C57BL/6 mouse line was generated that expressed transgenes for a myelin oligodendrocyte glycoprotein-specific T cell receptor and a retinal ganglion cell restricted-Thy1 promoter-controlled cyan fluorescent protein. This model develops spontaneous or induced optic neuritis, in the absence of paralytic disease normally associated with most rodent autoimmune models of multiple sclerosis. Demyelination and neurodegeneration could be monitored longitudinally in the living animal using electrophysiology, visual sensitivity, confocal scanning laser ophthalmoscopy and optical coherence tomography all of which are relevant to human trials. This model offers many advantages, from a 3Rs, economic and scientific perspective, over classical experimental autoimmune encephalomyelitis models that are associated with substantial suffering of animals. Optic neuritis in this model led to inflammatory damage of axons in the optic nerve and subsequent loss of retinal ganglion cells in the retina. This was inhibited by the systemic administration of a sodium channel blocker (oxcarbazepine) or intraocular treatment with siRNA targeting caspase-2. These novel approaches have relevance to the future treatment of neurodegeneration of MS, which has so far evaded treatment. PMID:24223903

  19. Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zhijie

    The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.

  20. OpenMI: the essential concepts and their implications for legacy software

    NASA Astrophysics Data System (ADS)

    Gregersen, J. B.; Gijsbers, P. J. A.; Westen, S. J. P.; Blind, M.

    2005-08-01

    Information & Communication Technology (ICT) tools such as computational models are very helpful in designing river basin management plans (rbmp-s). However, in the scientific world there is consensus that a single integrated modelling system to support e.g. the implementation of the Water Framework Directive cannot be developed and that integrated systems need to be very much tailored to the local situation. As a consequence there is an urgent need to increase the flexibility of modelling systems, such that dedicated model systems can be developed from available building blocks. The HarmonIT project aims at precisely that. Its objective is to develop and implement a standard interface for modelling components and other relevant tools: The Open Modelling Interface (OpenMI) standard. The OpenMI standard has been completed and documented. It relies entirely on the "pull" principle, where data are pulled by one model from the previous model in the chain. This paper gives an overview of the OpenMI standard, explains the foremost concepts and the rational behind it.

  1. Formal Validation of Fault Management Design Solutions

    NASA Technical Reports Server (NTRS)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  2. Making classical ground-state spin computing fault-tolerant.

    PubMed

    Crosson, I J; Bacon, D; Brown, K R

    2010-09-01

    We examine a model of classical deterministic computing in which the ground state of the classical system is a spatial history of the computation. This model is relevant to quantum dot cellular automata as well as to recent universal adiabatic quantum computing constructions. In its most primitive form, systems constructed in this model cannot compute in an error-free manner when working at nonzero temperature. However, by exploiting a mapping between the partition function for this model and probabilistic classical circuits we are able to show that it is possible to make this model effectively error-free. We achieve this by using techniques in fault-tolerant classical computing and the result is that the system can compute effectively error-free if the temperature is below a critical temperature. We further link this model to computational complexity and show that a certain problem concerning finite temperature classical spin systems is complete for the complexity class Merlin-Arthur. This provides an interesting connection between the physical behavior of certain many-body spin systems and computational complexity.

  3. A General Model for Performance Evaluation in DS-CDMA Systems with Variable Spreading Factors

    NASA Astrophysics Data System (ADS)

    Chiaraluce, Franco; Gambi, Ennio; Righi, Giorgia

    This paper extends previous analytical approaches for the study of CDMA systems to the relevant case of multipath environments where users can operate at different bit rates. This scenario is of interest for the Wideband CDMA strategy employed in UMTS, and the model permits the performance comparison of classic and more innovative spreading signals. The method is based on the characteristic function approach, that allows to model accurately the various kinds of interferences. Some numerical examples are given with reference to the ITU-R M. 1225 Recommendations, but the analysis could be extended to different channel descriptions.

  4. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  5. Primary system fission product release and transport: A state-of-the-art report to the committee on the safety of nuclear installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, A.L.

    This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena andmore » presents major conclusions on the state of the art.« less

  6. A personal perspective on modelling the climate system.

    PubMed

    Palmer, T N

    2016-04-01

    Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s.

  7. a System Dynamics Model to Study the Importance of Infrastructure Facilities on Quality of Primary Education System in Developing Countries

    NASA Astrophysics Data System (ADS)

    Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik

    2010-06-01

    The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.

  8. Radar Detection Performance in Medium Grazing Angle X-band Sea-clutter

    DTIC Science & Technology

    2015-12-01

    polarisation HV: Horizontal transmit and Vertical receive polarisation IRSG: Imagery Radar Systems Group MAST06: Maritime Surveillance Trial 2006 PDF...different combinations of the polarisation, collection geometry and environmental conditions. Relevant models include the imaging radar systems group (IRSG...atmospheric and system losses respectively and pulse compression adds a gain given by the pulse length - bandwidth product, TpB. The thermal noise power in the

  9. Predicting Drug Concentration‐Time Profiles in Multiple CNS Compartments Using a Comprehensive Physiologically‐Based Pharmacokinetic Model

    PubMed Central

    Yamamoto, Yumi; Välitalo, Pyry A.; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; van den Berg, Dirk‐Jan; Hartman, Robin; Wong, Yin Cheong; Danhof, Meindert; van Hasselt, John G. C.

    2017-01-01

    Drug development targeting the central nervous system (CNS) is challenging due to poor predictability of drug concentrations in various CNS compartments. We developed a generic physiologically based pharmacokinetic (PBPK) model for prediction of drug concentrations in physiologically relevant CNS compartments. System‐specific and drug‐specific model parameters were derived from literature and in silico predictions. The model was validated using detailed concentration‐time profiles from 10 drugs in rat plasma, brain extracellular fluid, 2 cerebrospinal fluid sites, and total brain tissue. These drugs, all small molecules, were selected to cover a wide range of physicochemical properties. The concentration‐time profiles for these drugs were adequately predicted across the CNS compartments (symmetric mean absolute percentage error for the model prediction was <91%). In conclusion, the developed PBPK model can be used to predict temporal concentration profiles of drugs in multiple relevant CNS compartments, which we consider valuable information for efficient CNS drug development. PMID:28891201

  10. DOT2: Macromolecular Docking With Improved Biophysical Models

    PubMed Central

    Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten

    2015-01-01

    Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987

  11. The organization of an autonomous learning system

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1988-01-01

    The organization of systems that learn from experience is examined, human beings and animals being prime examples of such systems. How is their information processing organized. They build an internal model of the world and base their actions on the model. The model is dynamic and predictive, and it includes the systems' own actions and their effects. In modeling such systems, a large pattern of features represents a moment of the system's experience. Some of the features are provided by the system's senses, some control the system's motors, and the rest have no immediate external significance. A sequence of such patterns then represents the system's experience over time. By storing such sequences appropriately in memory, the system builds a world model based on experience. In addition to the essential function of memory, fundamental roles are played by a sensory system that makes raw information about the world suitable for memory storage and by a motor system that affects the world. The relation of sensory and motor systems to the memory is discussed, together with how favorable actions can be learned and unfavorable actions can be avoided. Results in classical learning theory are explained in terms of the model, more advanced forms of learning are discussed, and the relevance of the model to the frame problem of robotics is examined.

  12. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    PubMed

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  13. EPSAT - A workbench for designing high-power systems for the space environment

    NASA Technical Reports Server (NTRS)

    Kuharski, R. A.; Jongeward, G. A.; Wilcox, K. G.; Kennedy, E. M.; Stevens, N. J.; Putnam, R. M.; Roche, J. C.

    1990-01-01

    The Environment Power System Analysis Tool (EPSAT) is being developed to provide space power system design engineers with an analysis tool for determining the performance of power systems in both naturally occurring and self-induced environments. This paper presents the results of the project after two years of a three-year development program. The relevance of the project result for SDI are pointed out, and models of the interaction of the environment and power systems are discussed.

  14. Technique for Early Reliability Prediction of Software Components Using Behaviour Models

    PubMed Central

    Ali, Awad; N. A. Jawawi, Dayang; Adham Isa, Mohd; Imran Babar, Muhammad

    2016-01-01

    Behaviour models are the most commonly used input for predicting the reliability of a software system at the early design stage. A component behaviour model reveals the structure and behaviour of the component during the execution of system-level functionalities. There are various challenges related to component reliability prediction at the early design stage based on behaviour models. For example, most of the current reliability techniques do not provide fine-grained sequential behaviour models of individual components and fail to consider the loop entry and exit points in the reliability computation. Moreover, some of the current techniques do not tackle the problem of operational data unavailability and the lack of analysis results that can be valuable for software architects at the early design stage. This paper proposes a reliability prediction technique that, pragmatically, synthesizes system behaviour in the form of a state machine, given a set of scenarios and corresponding constraints as input. The state machine is utilized as a base for generating the component-relevant operational data. The state machine is also used as a source for identifying the nodes and edges of a component probabilistic dependency graph (CPDG). Based on the CPDG, a stack-based algorithm is used to compute the reliability. The proposed technique is evaluated by a comparison with existing techniques and the application of sensitivity analysis to a robotic wheelchair system as a case study. The results indicate that the proposed technique is more relevant at the early design stage compared to existing works, and can provide a more realistic and meaningful prediction. PMID:27668748

  15. A Markov chain model for image ranking system in social networks

    NASA Astrophysics Data System (ADS)

    Zin, Thi Thi; Tin, Pyke; Toriu, Takashi; Hama, Hiromitsu

    2014-03-01

    In today world, different kinds of networks such as social, technological, business and etc. exist. All of the networks are similar in terms of distributions, continuously growing and expanding in large scale. Among them, many social networks such as Facebook, Twitter, Flickr and many others provides a powerful abstraction of the structure and dynamics of diverse kinds of inter personal connection and interaction. Generally, the social network contents are created and consumed by the influences of all different social navigation paths that lead to the contents. Therefore, identifying important and user relevant refined structures such as visual information or communities become major factors in modern decision making world. Moreover, the traditional method of information ranking systems cannot be successful due to their lack of taking into account the properties of navigation paths driven by social connections. In this paper, we propose a novel image ranking system in social networks by using the social data relational graphs from social media platform jointly with visual data to improve the relevance between returned images and user intentions (i.e., social relevance). Specifically, we propose a Markov chain based Social-Visual Ranking algorithm by taking social relevance into account. By using some extensive experiments, we demonstrated the significant and effectiveness of the proposed social-visual ranking method.

  16. The Huaihe Basin Water Resource and Water Quality Management Platform Implemented with a Spatio-Temporal Data Model

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, W.; Yan, C.

    2012-07-01

    Presently, planning and assessment in maintenance, renewal and decision-making for watershed hydrology, water resource management and water quality assessment are evolving toward complex, spatially explicit regional environmental assessments. These problems have to be addressed with object-oriented spatio-temporal data models that can restore, manage, query and visualize various historic and updated basic information concerning with watershed hydrology, water resource management and water quality as well as compute and evaluate the watershed environmental conditions so as to provide online forecasting to police-makers and relevant authorities for supporting decision-making. The extensive data requirements and the difficult task of building input parameter files, however, has long been an obstacle to use of such complex models timely and effectively by resource managers. Success depends on an integrated approach that brings together scientific, education and training advances made across many individual disciplines and modified to fit the needs of the individuals and groups who must write, implement, evaluate, and adjust their watershed management plans. The centre for Hydro-science Research, Nanjing University, in cooperation with the relevant watershed management authorities, has developed a WebGIS management platform to facilitate this complex process. Improve the management of watersheds over the Huaihe basin through the development, promotion and use of a web-based, user-friendly, geospatial watershed management data and decision support system (WMDDSS) involved many difficulties for the development of this complicated System. In terms of the spatial and temporal characteristics of historic and currently available information on meteorological, hydrological, geographical, environmental and other relevant disciplines, we designed an object-oriented spatiotemporal data model that combines spatial, attribute and temporal information to implement the management system. Using this system, we can update, query and analyze environmental information as well as manage historical data, and a visualization tool was provided to help the user interpret results so as to provide scientific support for decision-making. The utility of the system has been demonstrated its values by being used in watershed management and environmental assessments.

  17. Model for Postgraduate Medical Education: Study of Crohn's Disease in New Mexico

    ERIC Educational Resources Information Center

    Gregory, Daniel H.; And Others

    1974-01-01

    The purpose of this study is to introduce a model system for the continuous retrieval, storage, and dissemination of relevant clinical information that has proven to be an effective resource of real-life data. Patients with Crohn's disease from a geographic area served as the population base for 2 groups of physicians, one group practicing in the…

  18. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model.

    PubMed

    Aschenbrenner, Mathias; Kulozik, Ulrich; Foerst, Petra

    2012-12-01

    The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams-Landel-Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy E(a) for storage conditions close to T(g). This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above T(g) is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems. Copyright © 2012. Published by Elsevier Inc.

  19. A system for rapid prototyping of hearts with congenital malformations based on the medical imaging interaction toolkit (MITK)

    NASA Astrophysics Data System (ADS)

    Wolf, Ivo; Böttger, Thomas; Rietdorf, Urte; Maleike, Daniel; Greil, Gerald; Sieverding, Ludger; Miller, Stephan; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2006-03-01

    Precise knowledge of the individual cardiac anatomy is essential for diagnosis and treatment of congenital heart disease. Complex malformations of the heart can best be comprehended not from images but from anatomic specimens. Physical models can be created from data using rapid prototyping techniques, e.g., lasersintering or 3D-printing. We have developed a system for obtaining data that show the relevant cardiac anatomy from high-resolution CT/MR images and are suitable for rapid prototyping. The challenge is to preserve all relevant details unaltered in the produced models. The main anatomical structures of interest are the four heart cavities (atria, ventricles), the valves and the septum separating the cavities, and the great vessels. These can be shown either by reproducing the morphology itself or by producing a model of the blood-pool, thus creating a negative of the morphology. Algorithmically the key issue is segmentation. Practically, possibilities allowing the cardiologist or cardiac surgeon to interactively check and correct the segmentation are even more important due to the complex, irregular anatomy and imaging artefacts. The paper presents the algorithmic and interactive processing steps implemented in the system, which is based on the open-source Medical Imaging Interaction Toolkit (MITK, www.mitk.org). It is shown how the principles used in MITK enable to assemble the system from modules (functionalities) developed independently from each other. The system allows to produce models of the heart (and other anatomic structures) of individual patients as well as to reproduce unique specimens from pathology collections for teaching purposes.

  20. Antecedent Characteristics of Online Cancer Information Seeking Among Rural Breast Cancer Patients: An Application of the Cognitive-Social Health Information Processing (C-SHIP) Model

    PubMed Central

    Shaw, Bret R.; DuBenske, Lori L.; Han, Jeong Yeob; Cofta-Woerpel, Ludmila; Bush, Nigel; Gustafson, David H.; McTavish, Fiona

    2013-01-01

    Little research has examined the antecedent characteristics of patients most likely to seek online cancer information. This study employs the Cognitive-Social Health Information Processing (C-SHIP) model as a framework to understand what psychosocial characteristics precede online cancer-related information seeking among rural breast cancer patients who often have fewer healthcare providers and limited local support services. Examining 144 patients who were provided free computer hardware, Internet access and training for how to use an Interactive Cancer Communication System, pre-test survey scores indicating patients’ psychosocial status were correlated with specific online cancer information seeking behaviors. Each of the factors specified by the C-SHIP model had significant relationships with online cancer information seeking behaviors with the strongest findings emerging for cancer-relevant encodings and self-construals, cancer-relevant beliefs and expectancies and cancer-relevant self-regulatory competencies and skills. Specifically, patients with more negative appraisals in these domains were more likely to seek out online cancer information. Additionally, antecedent variables associated with the C-SHIP model had more frequent relationships with experiential information as compared to didactic information. This study supports the applicability of the model to discern why people afflicted with cancer may seek online information to cope with their disease. PMID:18569368

  1. Antecedent characteristics of online cancer information seeking among rural breast cancer patients: an application of the Cognitive-Social Health Information Processing (C-SHIP) model.

    PubMed

    Shaw, Bret R; Dubenske, Lori L; Han, Jeong Yeob; Cofta-Woerpel, Ludmila; Bush, Nigel; Gustafson, David H; McTavish, Fiona

    2008-06-01

    Little research has examined the antecedent characteristics of patients most likely to seek online cancer information. This study employs the Cognitive-Social Health Information Processing (C-SHIP) model as a framework to understand what psychosocial characteristics precede online cancer-related information seeking among rural breast cancer patients who often have fewer health care providers and limited local support services. Examining 144 patients who were provided free computer hardware, Internet access, and training for how to use an interactive cancer communication system, pretest survey scores indicating patients' psychosocial status were correlated with specific online cancer information seeking behaviors. Each of the factors specified by the C-SHIP model had significant relationships with online cancer information seeking behaviors, with the strongest findings emerging for cancer-relevant encodings and self-construals, cancer-relevant beliefs and expectancies, and cancer-relevant self-regulatory competencies and skills. Specifically, patients with more negative appraisals in these domains were more likely to seek out online cancer information. Additionally, antecedent variables associated with the C-SHIP model had more frequent relationships with experiential information as compared with to didactic information. This study supports the applicability of the model to discern why people afflicted with cancer may seek online information to cope with their disease.

  2. Analysis of inter-country input-output table based on bibliographic coupling network: How industrial sectors on the GVC compete for production resources

    NASA Astrophysics Data System (ADS)

    Guan, Jun; Xu, Xiaoyu; Xing, Lizhi

    2018-03-01

    The input-output table is comprehensive and detailed in describing national economic systems with abundance of economic relationships depicting information of supply and demand among industrial sectors. This paper focuses on how to quantify the degree of competition on the global value chain (GVC) from the perspective of econophysics. Global Industrial Strongest Relevant Network models are established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output (ICIO) tables and then have them transformed into Global Industrial Resource Competition Network models to analyze the competitive relationships based on bibliographic coupling approach. Three indicators well suited for the weighted and undirected networks with self-loops are introduced here, including unit weight for competitive power, disparity in the weight for competitive amplitude and weighted clustering coefficient for competitive intensity. Finally, these models and indicators were further applied empirically to analyze the function of industrial sectors on the basis of the latest World Input-Output Database (WIOD) in order to reveal inter-sector competitive status during the economic globalization.

  3. The ASTER Volcano Archive (AVA): High Spatial Resolution Global Monitoring of Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Davies, A. G.; Reath, K.; Mars, J. C.; Hubbard, B. E.; Sanchez, R. M.; Tan, H. L.

    2017-12-01

    The ASTER Volcano Archive (AVA) is a data system focused on collecting and cataloguing higher level remote sensing data products for all Holocene volcanoes over the last several decades, producing volcanogenic science products for global detection, mapping, and modeling of effusive eruptions at high spatial resolution, and providing rapid bulk dissemination of relevant data products to the science community at large. Space-based optical platforms such as ASTER, EO-1, and Landsat, are a critical component for global monitoring systems to provide the capability for volcanic hazard assessment and modeling, and are a vital addition to in-situ measurements. The AVA leverages these instruments for the automated generation of lava flow emplacement maps, sulfur dioxide monitoring, thermal anomaly detection, and modeling of integrated thermal emission across the world's volcanoes. Additionally, we provide slope classified alteration and lahar inundation maps with potential inundation zones for certain relevant volcanoes. We explore the AVA's data product retrieval API, and describe how scientists can rapidly retrieve bulk products using the AVA platform with a focus on practical applications for both general analysis and hazard response.

  4. Actuation crosstalk in free-falling systems: Torsion pendulum results for the engineering model of the LISA pathfinder gravitational reference sensor

    NASA Astrophysics Data System (ADS)

    Bassan, M.; Cavalleri, A.; De Laurentis, M.; De Marchi, F.; De Rosa, R.; Di Fiore, L.; Dolesi, R.; Finetti, N.; Garufi, F.; Grado, A.; Hueller, M.; Marconi, L.; Milano, L.; Minenkov, Y.; Pucacco, G.; Stanga, R.; Vetrugno, D.; Visco, M.; Vitale, S.; Weber, W. J.

    2018-01-01

    In this paper we report on measurements on actuation crosstalk, relevant to the gravitational reference sensors for LISA Pathfinder and LISA. In these sensors, a Test Mass (TM) falls freely within a system of electrodes used for readout and control. These measurements were carried out on ground with a double torsion pendulum that allowed us to estimate both the torque injected into the sensor when a control force is applied and, conversely, the force leaking into the translational degree of freedom due to the applied torque.The values measured on our apparatus (the engineering model of the LISA Pathfinder sensor) agree to within 0.2% (over a maximum measured crosstalk of 1%) with predictions of a mathematical model when measuring force to torque crosstalk, while it is somewhat larger than expected (up to 3.5%) when measuring torque to force crosstalk. However, the values in the relevant range, i.e. when the TM is well centered ( ± 10 μm) in the sensor, remain smaller than 0.2%, satisfying the LISA Pathfinder requirements.

  5. Systems modelling approaches to the design of safe healthcare delivery: ease of use and usefulness perceived by healthcare workers.

    PubMed

    Jun, Gyuchan Thomas; Ward, James; Clarkson, P John

    2010-07-01

    The UK health service, which had been diagnosed to be seriously out of step with good design practice, has been recommended to obtain knowledge of design and risk management practice from other safety-critical industries. While these other industries have benefited from a broad range of systems modelling approaches, healthcare remains a long way behind. In order to investigate the healthcare-specific applicability of systems modelling approaches, this study identified 10 distinct methods through meta-model analysis. Healthcare workers' perception on 'ease of use' and 'usefulness' was then evaluated. The characterisation of the systems modelling methods showed that each method had particular capabilities to describe specific aspects of a complex system. However, the healthcare workers found that some of the methods, although potentially very useful, would be difficult to understand, particularly without prior experience. This study provides valuable insights into a better use of the systems modelling methods in healthcare. STATEMENT OF RELEVANCE: The findings in this study provide insights into how to make a better use of various systems modelling approaches to the design and risk management of healthcare delivery systems, which have been a growing research interest among ergonomists and human factor professionals.

  6. A novel open-source drug-delivery system that allows for first-of-kind simulation of nonadherence to pharmacological interventions in animal disease models.

    PubMed

    Thomson, Kyle E; White, H Steve

    2014-12-30

    Nonadherence to a physician-prescribed therapeutic intervention is a costly, dangerous, and sometimes fatal concern in healthcare. To date, the study of nonadherence has been constrained to clinical studies. The novel approach described herein allows for the preclinical study of nonadherence in etiologically relevant disease animal model systems. The method herein describes a novel computer-automated pellet delivery system which allows for the study of nonadherence in animals. This system described herein allows for tight experimenter control of treatment using a drug-in-food protocol. Food-restricted animals receive either medicated or unmedicated pellets, designed to mimic either "taking" or "missing" a drug. The system described permits the distribution of medicated or unmedicated food pellets on an experimenter-defined feeding schedule. The flexibility of this system permits the delivery of drug according to the known pharmacokinetics of investigational drugs. Current clinical adherence research relies on medication-event monitoring system (MEMS) tracking caps, which allows clinicians to directly monitor patient adherence. However, correlating the effects of nonadherence to efficacy still relies on the accuracy of patient journals. This system allows for the design of studies to address the impact of nonadherence in an etiologically relevant animal model. Given methodological and ethical concerns of designing clinical studies of nonadherence, animal studies are critical to better understand medication adherence. While the system described was designed to measure the impact of nonadherence on seizure control, it is clear that the utility of this system extends beyond epilepsy to include other disease states. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies.

    PubMed

    Taylor, J S H; Rastle, Kathleen; Davis, Matthew H

    2013-07-01

    Reading in many alphabetic writing systems depends on both item-specific knowledge used to read irregular words (sew, yacht) and generative spelling-sound knowledge used to read pseudowords (tew, yash). Research into the neural basis of these abilities has been directed largely by cognitive accounts proposed by the dual-route cascaded and triangle models of reading. We develop a framework that enables predictions for neural activity to be derived from cognitive models of reading using 2 principles: (a) the extent to which a model component or brain region is engaged by a stimulus and (b) how much effort is exerted in processing that stimulus. To evaluate the derived predictions, we conducted a meta-analysis of 36 neuroimaging studies of reading using the quantitative activation likelihood estimation technique. Reliable clusters of activity are localized during word versus pseudoword and irregular versus regular word reading and demonstrate a great deal of convergence between the functional organization of the reading system put forward by cognitive models and the neural systems activated during reading tasks. Specifically, left-hemisphere activation clusters are revealed reflecting orthographic analysis (occipitotemporal cortex), lexical and/or semantic processing (anterior fusiform, middle temporal gyrus), spelling-sound conversion (inferior parietal cortex), and phonological output resolution (inferior frontal gyrus). Our framework and results establish that cognitive models of reading are relevant for interpreting neuroimaging studies and that neuroscientific studies can provide data relevant for advancing cognitive models. This article thus provides a firm empirical foundation from which to improve integration between cognitive and neural accounts of the reading process. 2013 APA, all rights reserved

  8. Transdisciplinary application of the cross-scale resilience model

    USGS Publications Warehouse

    Sundstrom, Shana M.; Angeler, David G.; Garmestani, Ahjond S.; Garcia, Jorge H.; Allen, Craig R.

    2014-01-01

    The cross-scale resilience model was developed in ecology to explain the emergence of resilience from the distribution of ecological functions within and across scales, and as a tool to assess resilience. We propose that the model and the underlying discontinuity hypothesis are relevant to other complex adaptive systems, and can be used to identify and track changes in system parameters related to resilience. We explain the theory behind the cross-scale resilience model, review the cases where it has been applied to non-ecological systems, and discuss some examples of social-ecological, archaeological/ anthropological, and economic systems where a cross-scale resilience analysis could add a quantitative dimension to our current understanding of system dynamics and resilience. We argue that the scaling and diversity parameters suitable for a resilience analysis of ecological systems are appropriate for a broad suite of systems where non-normative quantitative assessments of resilience are desired. Our planet is currently characterized by fast environmental and social change, and the cross-scale resilience model has the potential to quantify resilience across many types of complex adaptive systems.

  9. Combined analytical and numerical approaches in Dynamic Stability analyses of engineering systems

    NASA Astrophysics Data System (ADS)

    Náprstek, Jiří

    2015-03-01

    Dynamic Stability is a widely studied area that has attracted many researchers from various disciplines. Although Dynamic Stability is usually associated with mechanics, theoretical physics or other natural and technical disciplines, it is also relevant to social, economic, and philosophical areas of our lives. Therefore, it is useful to occasionally highlight the general aspects of this amazing area, to present some relevant examples and to evaluate its position among the various branches of Rational Mechanics. From this perspective, the aim of this study is to present a brief review concerning the Dynamic Stability problem, its basic definitions and principles, important phenomena, research motivations and applications in engineering. The relationships with relevant systems that are prone to stability loss (encountered in other areas such as physics, other natural sciences and engineering) are also noted. The theoretical background, which is applicable to many disciplines, is presented. In this paper, the most frequently used Dynamic Stability analysis methods are presented in relation to individual dynamic systems that are widely discussed in various engineering branches. In particular, the Lyapunov function and exponent procedures, Routh-Hurwitz, Liénard, and other theorems are outlined together with demonstrations. The possibilities for analytical and numerical procedures are mentioned together with possible feedback from experimental research and testing. The strengths and shortcomings of these approaches are evaluated together with examples of their effective complementing of each other. The systems that are widely encountered in engineering are presented in the form of mathematical models. The analyses of their Dynamic Stability and post-critical behaviour are also presented. The stability limits, bifurcation points, quasi-periodic response processes and chaotic regimes are discussed. The limit cycle existence and stability are examined together with their separating roles as attractors and repulsers. Two levels of stability loss (recovery of the system is possible or final collapse is inevitable) as can be observed in softening systems are noted. Time-limited excitation and relevant transition effects (e.g., seismic excitation) are also discussed, together with the evaluation of possible system reliability improvement. The Dynamic Stability investigation of two degrees-of-freedom aero-elastic systems in a linear formulation using several approaches is briefly highlighted. Further systems modelling problems that arise in transport engineering are also outlined. A few hints for applications are given. Some open problems and possible future research strategies are outlined.

  10. Systems engineering interfaces: A model based approach

    NASA Astrophysics Data System (ADS)

    Fosse, E.; Delp, C. L.

    The engineering of interfaces is a critical function of the discipline of Systems Engineering. Included in interface engineering are instances of interaction. Interfaces provide the specifications of the relevant properties of a system or component that can be connected to other systems or components while instances of interaction are identified in order to specify the actual integration to other systems or components. Current Systems Engineering practices rely on a variety of documents and diagrams to describe interface specifications and instances of interaction. The SysML[1] specification provides a precise model based representation for interfaces and interface instance integration. This paper will describe interface engineering as implemented by the Operations Revitalization Task using SysML, starting with a generic case and culminating with a focus on a Flight System to Ground Interaction. The reusability of the interface engineering approach presented as well as its extensibility to more complex interfaces and interactions will be shown. Model-derived tables will support the case studies shown and are examples of model-based documentation products.

  11. Online drug databases: a new method to assess and compare inclusion of clinically relevant information.

    PubMed

    Silva, Cristina; Fresco, Paula; Monteiro, Joaquim; Rama, Ana Cristina Ribeiro

    2013-08-01

    Evidence-Based Practice requires health care decisions to be based on the best available evidence. The model "Information Mastery" proposes that clinicians should use sources of information that have previously evaluated relevance and validity, provided at the point of care. Drug databases (DB) allow easy and fast access to information and have the benefit of more frequent content updates. Relevant information, in the context of drug therapy, is that which supports safe and effective use of medicines. Accordingly, the European Guideline on the Summary of Product Characteristics (EG-SmPC) was used as a standard to evaluate the inclusion of relevant information contents in DB. To develop and test a method to evaluate relevancy of DB contents, by assessing the inclusion of information items deemed relevant for effective and safe drug use. Hierarchical organisation and selection of the principles defined in the EGSmPC; definition of criteria to assess inclusion of selected information items; creation of a categorisation and quantification system that allows score calculation; calculation of relative differences (RD) of scores for comparison with an "ideal" database, defined as the one that achieves the best quantification possible for each of the information items; pilot test on a sample of 9 drug databases, using 10 drugs frequently associated in literature with morbidity-mortality and also being widely consumed in Portugal. Main outcome measure Calculate individual and global scores for clinically relevant information items of drug monographs in databases, using the categorisation and quantification system created. A--Method development: selection of sections, subsections, relevant information items and corresponding requisites; system to categorise and quantify their inclusion; score and RD calculation procedure. B--Pilot test: calculated scores for the 9 databases; globally, all databases evaluated significantly differed from the "ideal" database; some DB performed better but performance was inconsistent at subsections level, within the same DB. The method developed allows quantification of the inclusion of relevant information items in DB and comparison with an "ideal database". It is necessary to consult diverse DB in order to find all the relevant information needed to support clinical drug use.

  12. Numerical Model Metrics Tools in Support of Navy Operations

    NASA Astrophysics Data System (ADS)

    Dykes, J. D.; Fanguy, P.

    2017-12-01

    Increasing demands of accurate ocean forecasts that are relevant to the Navy mission decision makers demand tools that quickly provide relevant numerical model metrics to the forecasters. Increasing modelling capabilities with ever-higher resolution domains including coupled and ensemble systems as well as the increasing volume of observations and other data sources to which to compare the model output requires more tools for the forecaster to enable doing more with less. These data can be appropriately handled in a geographic information system (GIS) fused together to provide useful information and analyses, and ultimately a better understanding how the pertinent model performs based on ground truth.. Oceanographic measurements like surface elevation, profiles of temperature and salinity, and wave height can all be incorporated into a set of layers correlated to geographic information such as bathymetry and topography. In addition, an automated system that runs concurrently with the models on high performance machines matches routinely available observations to modelled values to form a database of matchups with which statistics can be calculated and displayed, to facilitate validation of forecast state and derived variables. ArcMAP, developed by Environmental Systems Research Institute, is a GIS application used by the Naval Research Laboratory (NRL) and naval operational meteorological and oceanographic centers to analyse the environment in support of a range of Navy missions. For example, acoustic propagation in the ocean is described with a three-dimensional analysis of sound speed that depends on profiles of temperature, pressure and salinity predicted by the Navy Coastal Ocean Model. The data and model output must include geo-referencing information suitable for accurately placing the data within the ArcMAP framework. NRL has developed tools that facilitate merging these geophysical data and their analyses, including intercomparisons between model predictions as well as comparison to validation data. This methodology produces new insights and facilitates identification of potential problems in ocean prediction.

  13. Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects

    NASA Astrophysics Data System (ADS)

    Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt

    2018-02-01

    A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.

  14. Status of MAPA (Modular Accelerator Physics Analysis) and the Tech-X Object-Oriented Accelerator Library

    NASA Astrophysics Data System (ADS)

    Cary, J. R.; Shasharina, S.; Bruhwiler, D. L.

    1998-04-01

    The MAPA code is a fully interactive accelerator modeling and design tool consisting of a GUI and two object-oriented C++ libraries: a general library suitable for treatment of any dynamical system, and an accelerator library including many element types plus an accelerator class. The accelerator library inherits directly from the system library, which uses hash tables to store any relevant parameters or strings. The GUI can access these hash tables in a general way, allowing the user to invoke a window displaying all relevant parameters for a particular element type or for the accelerator class, with the option to change those parameters. The system library can advance an arbitrary number of dynamical variables through an arbitrary mapping. The accelerator class inherits this capability and overloads the relevant functions to advance the phase space variables of a charged particle through a string of elements. Among other things, the GUI makes phase space plots and finds fixed points of the map. We discuss the object hierarchy of the two libraries and use of the code.

  15. Statistical Evaluation of CRM-Simulated Cloud and Precipitation Structures Using Multi- sensor TRMM Measurements and Retrievals

    NASA Astrophysics Data System (ADS)

    Posselt, D.; L'Ecuyer, T.; Matsui, T.

    2009-05-01

    Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.

  16. Multi-criteria Resource Mapping and its Relevance in the Assessment of Habitat Changes

    NASA Astrophysics Data System (ADS)

    Van Lancker, V. R.; Kint, L.; van Heteren, S.

    2016-02-01

    Mineral and geological resources can be considered to be non-renewable on time scales relevant for decision makers. Once exhausted by humans, they are not replenished rapidly enough by nature, meaning that truly sustainable resource exploitation is not possible. Comprehensive knowledge on the distribution, composition and dynamics of geological resources and on the environmental impact of aggregate extraction is therefore critical. For the Belgian and southern Netherlands part of the North Sea, being representative of a typical sandbank system, a 4D resource decision-support system is being developed that links 3D geological models with environmental impact models. Aim is to quantify natural and man-made changes and to define from these sustainable exploitation thresholds. These are needed to ensure that recovery from perturbations is rapid and secure, and that the range of natural variation is maintained, a prerequisite stated in Europe's Marine Strategy Framework Directive, the environmental pillar of Europe's Maritime Policy. The geological subsurface is parameterised using a voxel modelling approach. Primarily, the voxels, or volume blocks of information, are constrained by the geology, based on coring and seismic data, but they are open to any resource-relevant information. The primary geological data entering the voxels are subdued to uncertainty modelling, a necessary step to produce data products with confidence limits. The presentation will focus on the novelty this approach brings for seabed and habitat mapping. In our model this is the upper voxel, providing the advantage of having a dynamical coupling to the geology and a suite of environmental parameters. In the context of assessing habitat changes, this coupling enables to account for spatial and temporal variability, seabed heterogeneity, as well as data uncertainty. The project is funded by Belgian Science Policy and is further valorised through EMODnet-Geology (DG MARE).

  17. Evaluating the Functionality of Conceptual Models

    NASA Astrophysics Data System (ADS)

    Mehmood, Kashif; Cherfi, Samira Si-Said

    Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.

  18. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  19. Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping.

    PubMed

    Sallam, Mohamed F; Fizer, Chelsea; Pilant, Andrew N; Whung, Pai-Yei

    2017-10-16

    Asian tiger and yellow fever mosquitoes ( Aedes albopictus and Ae. aegypti ) are global nuisances and are competent vectors for viruses such as Chikungunya (CHIKV), Dengue (DV), and Zika (ZIKV). This review aims to analyze available spatiotemporal distribution models of Aedes mosquitoes and their influential factors. A combination of five sets of 3-5 keywords were used to retrieve all relevant published models. Five electronic search databases were used: PubMed, MEDLINE, EMBASE, Scopus, and Google Scholar through 17 May 2017. We generated a hierarchical decision tree for article selection. We identified 21 relevant published studies that highlight different combinations of methodologies, models and influential factors. Only a few studies adopted a comprehensive approach highlighting the interaction between environmental, socioeconomic, meteorological and topographic systems. The selected articles showed inconsistent findings in terms of number and type of influential factors affecting the distribution of Aedes vectors, which is most likely attributed to: (i) limited availability of high-resolution data for physical variables, (ii) variation in sampling methods; Aedes feeding and oviposition behavior; (iii) data collinearity and statistical distribution of observed data. This review highlights the need and sets the stage for a rigorous multi-system modeling approach to improve our knowledge about Aedes presence/abundance within their flight range in response to the interaction between environmental, socioeconomic, and meteorological systems.

  20. A Diffusive Strategic Dynamics for Social Systems

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Burioni, Raffaella; Contucci, Pierluigi

    2010-05-01

    We propose a model for the dynamics of a social system, which includes diffusive effects and a biased rule for spin-flips, reproducing the effect of strategic choices. This model is able to mimic some phenomena taking place during marketing or political campaigns. Using a cost function based on the Ising model defined on the typical quenched interaction environments for social systems (Erdös-Renyi graph, small-world and scale-free networks), we find, by numerical simulations, that a stable stationary state is reached, and we compare the final state to the one obtained with standard dynamics, by means of total magnetization and magnetic susceptibility. Our results show that the diffusive strategic dynamics features a critical interaction parameter strictly lower than the standard one. We discuss the relevance of our findings in social systems.

  1. Modeling and Simulation for Mission Operations Work System Design

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Seah, Chin; Trimble, Jay P.; Sims, Michael H.

    2003-01-01

    Work System analysis and design is complex and non-deterministic. In this paper we describe Brahms, a multiagent modeling and simulation environment for designing complex interactions in human-machine systems. Brahms was originally conceived as a business process design tool that simulates work practices, including social systems of work. We describe our modeling and simulation method for mission operations work systems design, based on a research case study in which we used Brahms to design mission operations for a proposed discovery mission to the Moon. We then describe the results of an actual method application project-the Brahms Mars Exploration Rover. Space mission operations are similar to operations of traditional organizations; we show that the application of Brahms for space mission operations design is relevant and transferable to other types of business processes in organizations.

  2. Knowledge modeling in image-guided neurosurgery: application in understanding intraoperative brain shift

    NASA Astrophysics Data System (ADS)

    Cohen-Adad, Julien; Paul, Perrine; Morandi, Xavier; Jannin, Pierre

    2006-03-01

    During an image-guided neurosurgery procedure, the neuronavigation system is subject to inaccuracy because of anatomical deformations which induce a gap between the preoperative images and their anatomical reality. Thus, the objective of many research teams is to succeed in quantifying these deformations in order to update preoperative images. Anatomical intraoperative deformations correspond to a complex spatio-temporal phenomenon. Our objective is to identify the parameters implicated in these deformations and to use these parameters as constrains for systems dedicated to updating preoperative images. In order to identify these parameters of deformation we followed the iterative methodology used for cognitive system conception: identification, conceptualization, formalization, implementation and validation. A state of the art about cortical deformations has been established in order to identify relevant parameters probably involved in the deformations. As a first step, 30 parameters have been identified and described following an ontological approach. They were formalized into a Unified Modeling Language (UML) class diagram. We implemented that model into a web-based application in order to fill a database. Two surgical cases have been studied at this moment. After having entered enough surgical cases for data mining purposes, we expect to identify the most relevant and influential parameters and to gain a better ability to understand the deformation phenomenon. This original approach is part of a global system aiming at quantifying and correcting anatomical deformations.

  3. Untangling cell tracks: Quantifying cell migration by time lapse image data analysis.

    PubMed

    Svensson, Carl-Magnus; Medyukhina, Anna; Belyaev, Ivan; Al-Zaben, Naim; Figge, Marc Thilo

    2018-03-01

    Automated microscopy has given researchers access to great amounts of live cell imaging data from in vitro and in vivo experiments. Much focus has been put on extracting cell tracks from such data using a plethora of segmentation and tracking algorithms, but further analysis is normally required to draw biologically relevant conclusions. Such relevant conclusions may be whether the migration is directed or not, whether the population has homogeneous or heterogeneous migration patterns. This review focuses on the analysis of cell migration data that are extracted from time lapse images. We discuss a range of measures and models used to analyze cell tracks independent of the biological system or the way the tracks were obtained. For single-cell migration, we focus on measures and models giving examples of biological systems where they have been applied, for example, migration of bacteria, fibroblasts, and immune cells. For collective migration, we describe the model systems wound healing, neural crest migration, and Drosophila gastrulation and discuss methods for cell migration within these systems. We also discuss the role of the extracellular matrix and subsequent differences between track analysis in vitro and in vivo. Besides methods and measures, we are putting special focus on the need for openly available data and code, as well as a lack of common vocabulary in cell track analysis. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  4. Halogen Bonding: A Powerful Tool for Modulation of Peptide Conformation

    PubMed Central

    2017-01-01

    Halogen bonding is a weak chemical force that has so far mostly found applications in crystal engineering. Despite its potential for use in drug discovery, as a new molecular tool in the direction of molecular recognition events, it has rarely been assessed in biopolymers. Motivated by this fact, we have developed a peptide model system that permits the quantitative evaluation of weak forces in a biologically relevant proteinlike environment and have applied it for the assessment of a halogen bond formed between two amino acid side chains. The influence of a single weak force is measured by detection of the extent to which it modulates the conformation of a cooperatively folding system. We have optimized the amino acid sequence of the model peptide on analogues with a hydrogen bond-forming site as a model for the intramolecular halogen bond to be studied, demonstrating the ability of the technique to provide information about any type of weak secondary interaction. A combined solution nuclear magnetic resonance spectroscopic and computational investigation demonstrates that an interstrand halogen bond is capable of conformational stabilization of a β-hairpin foldamer comparable to an analogous hydrogen bond. This is the first report of incorporation of a conformation-stabilizing halogen bond into a peptide/protein system, and the first quantification of a chlorine-centered halogen bond in a biologically relevant system in solution. PMID:28581720

  5. Solvable Family of Driven-Dissipative Many-Body Systems.

    PubMed

    Foss-Feig, Michael; Young, Jeremy T; Albert, Victor V; Gorshkov, Alexey V; Maghrebi, Mohammad F

    2017-11-10

    Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

  6. Solvable Family of Driven-Dissipative Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Foss-Feig, Michael; Young, Jeremy T.; Albert, Victor V.; Gorshkov, Alexey V.; Maghrebi, Mohammad F.

    2017-11-01

    Exactly solvable models have played an important role in establishing the sophisticated modern understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a broad and experimentally relevant subset of these models can be solved efficiently. We leverage these solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can be realized naturally with Rydberg atoms or trapped ions.

  7. Phase Behaviour of Methane Hydrate Under Conditions Relevant to Titan's Interior

    NASA Astrophysics Data System (ADS)

    Sclater, G.; Fortes, A. D.; Crawford, I. A.

    2018-06-01

    The high-pressure behaviour Clathrate hydrates, thought to be abundant in the outer solar system, underpins planetary modelling efforts of the interior of Titan, where clathrates are hypothesised to be the source of the dense N2, CH4 atmosphere.

  8. Spacecraft software training needs assessment research, appendices

    NASA Technical Reports Server (NTRS)

    Ratcliff, Shirley; Golas, Katharine

    1990-01-01

    The appendices to the previously reported study are presented: statistical data from task rating worksheets; SSD references; survey forms; fourth generation language, a powerful, long-term solution to maintenance cost; task list; methodology; SwRI's instructional systems development model; relevant research; and references.

  9. Systems Toxicology: Real World Applications and Opportunities.

    PubMed

    Hartung, Thomas; FitzGerald, Rex E; Jennings, Paul; Mirams, Gary R; Peitsch, Manuel C; Rostami-Hodjegan, Amin; Shah, Imran; Wilks, Martin F; Sturla, Shana J

    2017-04-17

    Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity.

  10. Systems Toxicology: Real World Applications and Opportunities

    PubMed Central

    2017-01-01

    Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams (“big data”), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity. PMID:28362102

  11. Analysis of Implicit Uncertain Systems. Part 1: Theoretical Framework

    DTIC Science & Technology

    1994-12-07

    Analysis of Implicit Uncertain Systems Part I: Theoretical Framework Fernando Paganini * John Doyle 1 December 7, 1994 Abst rac t This paper...Analysis of Implicit Uncertain Systems Part I: Theoretical Framework 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...model and a number of constraints relevant to the analysis problem under consideration. In Part I of this paper we propose a theoretical framework which

  12. The dynamic opponent relativity model: an integration and extension of capacity theory and existing theoretical perspectives on the neuropsychology of arousal and emotion.

    PubMed

    Comer, Clinton S; Harrison, Patti Kelly; Harrison, David W

    2015-01-01

    Arousal theory as discussed within the present paper refers to those mechanisms and neural systems involved in central nervous system activation and more specifically the systems involved in cortical activation. Historical progress in the evolution of arousal theory has led to a better understanding of the functional neural systems involved in arousal or activation processes and ultimately contributed much to our current theories of emotion. Despite evidence for the dynamic interplay between the left and right cerebral hemispheres, the concepts of cerebral balance and dynamic activation have been emphasized in the neuropsychological literature. A conceptual model is proposed herein that incorporates the unique contributions from multiple neuropsychological theories of arousal and emotion. It is argued that the cerebral hemispheres may play oppositional roles in emotion partially due to the differences in their functional specializations and in their persistence upon activation. In the presence of a threat or provocation, the right hemisphere may activate survival relevant responses partially derived from hemispheric specializations in arousal and emotional processing, including the mobilization of sympathetic drive to promote heightened blood pressure, heart rate, glucose mobilization and respiratory support necessary for the challenge. Oppositional processes and mechanisms are discussed, which may be relevant to the regulatory control over the survival response; however, the capacity of these systems is necessarily limited. A limited capacity mechanism is proposed, which is familiar within other physiological systems, including that providing for the prevention of muscular damage under exceptional demand. This capacity theory is proposed, wherein a link may be expected between exceptional stress within a neural system and damage to the neural system. These mechanisms are proposed to be relevant to emotion and emotional disorders. Discussion is provided on the possible role of currently applied therapeutic interventions for emotional disorders.

  13. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.

    1995-10-01

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  14. A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.

    1995-09-15

    A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less

  15. Questioning the Relevance of Model-Based Probability Statements on Extreme Weather and Future Climate

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2007-12-01

    We question the relevance of climate-model based Bayesian (or other) probability statements for decision support and impact assessment on spatial scales less than continental and temporal averages less than seasonal. Scientific assessment of higher resolution space and time scale information is urgently needed, given the commercial availability of "products" at high spatiotemporal resolution, their provision by nationally funded agencies for use both in industry decision making and governmental policy support, and their presentation to the public as matters of fact. Specifically we seek to establish necessary conditions for probability forecasts (projections conditioned on a model structure and a forcing scenario) to be taken seriously as reflecting the probability of future real-world events. We illustrate how risk management can profitably employ imperfect models of complicated chaotic systems, following NASA's study of near-Earth PHOs (Potentially Hazardous Objects). Our climate models will never be perfect, nevertheless the space and time scales on which they provide decision- support relevant information is expected to improve with the models themselves. Our aim is to establish a set of baselines of internal consistency; these are merely necessary conditions (not sufficient conditions) that physics based state-of-the-art models are expected to pass if their output is to be judged decision support relevant. Probabilistic Similarity is proposed as one goal which can be obtained even when our models are not empirically adequate. In short, probabilistic similarity requires that, given inputs similar to today's empirical observations and observational uncertainties, we expect future models to produce similar forecast distributions. Expert opinion on the space and time scales on which we might reasonably expect probabilistic similarity may prove of much greater utility than expert elicitation of uncertainty in parameter values in a model that is not empirically adequate; this may help to explain the reluctance of experts to provide information on "parameter uncertainty." Probability statements about the real world are always conditioned on some information set; they may well be conditioned on "False" making them of little value to a rational decision maker. In other instances, they may be conditioned on physical assumptions not held by any of the modellers whose model output is being cast as a probability distribution. Our models will improve a great deal in the next decades, and our insight into the likely climate fifty years hence will improve: maintaining the credibility of the science and the coherence of science based decision support, as our models improve, require a clear statement of our current limitations. What evidence do we have that today's state-of-the-art models provide decision-relevant probability forecasts? What space and time scales do we currently have quantitative, decision-relevant information on for 2050? 2080?

  16. A fuzzy case based reasoning tool for model based approach to rocket engine health monitoring

    NASA Technical Reports Server (NTRS)

    Krovvidy, Srinivas; Nolan, Adam; Hu, Yong-Lin; Wee, William G.

    1992-01-01

    In this system we develop a fuzzy case based reasoner that can build a case representation for several past anomalies detected, and we develop case retrieval methods that can be used to index a relevant case when a new problem (case) is presented using fuzzy sets. The choice of fuzzy sets is justified by the uncertain data. The new problem can be solved using knowledge of the model along with the old cases. This system can then be used to generalize the knowledge from previous cases and use this generalization to refine the existing model definition. This in turn can help to detect failures using the model based algorithms.

  17. Utility of Social Modeling for Proliferation Assessment - Preliminary Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Garill A.; Gastelum, Zoe N.; Brothers, Alan J.

    2009-06-01

    This Preliminary Assessment draft report will present the results of a literature search and preliminary assessment of the body of research, analysis methods, models and data deemed to be relevant to the Utility of Social Modeling for Proliferation Assessment research. This report will provide: 1) a description of the problem space and the kinds of information pertinent to the problem space, 2) a discussion of key relevant or representative literature, 3) a discussion of models and modeling approaches judged to be potentially useful to the research, and 4) the next steps of this research that will be pursued based onmore » this preliminary assessment. This draft report represents a technical deliverable for the NA-22 Simulations, Algorithms, and Modeling (SAM) program. Specifically this draft report is the Task 1 deliverable for project PL09-UtilSocial-PD06, Utility of Social Modeling for Proliferation Assessment. This project investigates non-traditional use of social and cultural information to improve nuclear proliferation assessment, including nonproliferation assessment, proliferation resistance assessments, safeguards assessments and other related studies. These assessments often use and create technical information about the State’s posture towards proliferation, the vulnerability of a nuclear energy system to an undesired event, and the effectiveness of safeguards. This project will find and fuse social and technical information by explicitly considering the role of cultural, social and behavioral factors relevant to proliferation. The aim of this research is to describe and demonstrate if and how social science modeling has utility in proliferation assessment.« less

  18. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  19. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE PAGES

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    2015-03-24

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  20. Optimization problems in natural gas transportation systems. A state-of-the-art review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ríos-Mercado, Roger Z.; Borraz-Sánchez, Conrado

    Our paper provides a review on the most relevant research works conducted to solve natural gas transportation problems via pipeline systems. The literature reveals three major groups of gas pipeline systems, namely gathering, transmission, and distribution systems. In this work, we aim at presenting a detailed discussion of the efforts made in optimizing natural gas transmission lines.There is certainly a vast amount of research done over the past few years on many decision-making problems in the natural gas industry and, specifically, in pipeline network optimization. In this work, we present a state-of-the-art survey focusing on specific categories that include short-termmore » basis storage (line-packing problems), gas quality satisfaction (pooling problems), and compressor station modeling (fuel cost minimization problems). We also discuss both steady-state and transient optimization models highlighting the modeling aspects and the most relevant solution approaches known to date. Although the literature on natural gas transmission system problems is quite extensive, this is, to the best of our knowledge, the first comprehensive review or survey covering this specific research area on natural gas transmission from an operations research perspective. Furthermore, this paper includes a discussion of the most important and promising research areas in this field. Hence, our paper can serve as a useful tool to gain insight into the evolution of the many real-life applications and most recent advances in solution methodologies arising from this exciting and challenging research area of decision-making problems.« less

  1. Correlation effects in superconducting quantum dot systems

    NASA Astrophysics Data System (ADS)

    Pokorný, Vladislav; Žonda, Martin

    2018-05-01

    We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.

  2. Aneesur Rahman Prize Talk

    NASA Astrophysics Data System (ADS)

    Frenkel, Daan

    2007-03-01

    During the past decade there has been a unique synergy between theory, experiment and simulation in Soft Matter Physics. In colloid science, computer simulations that started out as studies of highly simplified model systems, have acquired direct experimental relevance because experimental realizations of these simple models can now be synthesized. Whilst many numerical predictions concerning the phase behavior of colloidal systems have been vindicated by experiments, the jury is still out on others. In my talk I will discuss some of the recent technical developments, new findings and open questions in computational soft-matter science.

  3. Crisis Management Systems: A Case Study for Aspect-Oriented Modeling

    NASA Astrophysics Data System (ADS)

    Kienzle, Jörg; Guelfi, Nicolas; Mustafiz, Sadaf

    The intent of this document is to define a common case study for the aspect-oriented modeling research community. The domain of the case study is crisis management systems, i.e., systems that help in identifying, assessing, and handling a crisis situation by orchestrating the communication between all parties involved in handling the crisis, by allocating and managing resources, and by providing access to relevant crisis-related information to authorized users. This document contains informal requirements of crisis management systems (CMSs) in general, a feature model for a CMS product line, use case models for a car crash CMS (CCCMS), a domain model for the CCCMS, an informal physical architecture description of the CCCMS, as well as some design models of a possible object-oriented implementation of parts of the CCCMS backend. AOM researchers who want to demonstrate the power of their AOM approach or technique can hence apply the approach at the most appropriate level of abstraction.

  4. Interactive classification and content-based retrieval of tissue images

    NASA Astrophysics Data System (ADS)

    Aksoy, Selim; Marchisio, Giovanni B.; Tusk, Carsten; Koperski, Krzysztof

    2002-11-01

    We describe a system for interactive classification and retrieval of microscopic tissue images. Our system models tissues in pixel, region and image levels. Pixel level features are generated using unsupervised clustering of color and texture values. Region level features include shape information and statistics of pixel level feature values. Image level features include statistics and spatial relationships of regions. To reduce the gap between low-level features and high-level expert knowledge, we define the concept of prototype regions. The system learns the prototype regions in an image collection using model-based clustering and density estimation. Different tissue types are modeled using spatial relationships of these regions. Spatial relationships are represented by fuzzy membership functions. The system automatically selects significant relationships from training data and builds models which can also be updated using user relevance feedback. A Bayesian framework is used to classify tissues based on these models. Preliminary experiments show that the spatial relationship models we developed provide a flexible and powerful framework for classification and retrieval of tissue images.

  5. Sparse Bayesian learning machine for real-time management of reservoir releases

    NASA Astrophysics Data System (ADS)

    Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew

    2005-11-01

    Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.

  6. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Carlson, Jan-Renee; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the de- scribed dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  7. Nonlinear Dynamic Modeling of a Supersonic Commercial Transport Turbo-Machinery Propulsion System for Aero-Propulso-Servo-Elasticity Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joe; Carlson, Jan-Renee; Kopasakis, George; Woolwine, Kyle

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic model for a variable cycle turbofan engine, supersonic inlet, and convergent-divergent nozzle that can be integrated with an aeroelastic vehicle model to create an overall Aero-Propulso-Servo-Elastic (APSE) modeling tool. The primary focus of this study is to provide a means to capture relevant thrust dynamics of a full supersonic propulsion system by using relatively simple quasi-one dimensional computational fluid dynamics (CFD) methods that will allow for accurate control algorithm development and capture the key aspects of the thrust to feed into an APSE model. Previously, propulsion system component models have been developed and are used for this study of the fully integrated propulsion system. An overview of the methodology is presented for the modeling of each propulsion component, with a focus on its associated coupling for the overall model. To conduct APSE studies the described dynamic propulsion system model is integrated into a high fidelity CFD model of the full vehicle capable of conducting aero-elastic studies. Dynamic thrust analysis for the quasi-one dimensional dynamic propulsion system model is presented along with an initial three dimensional flow field model of the engine integrated into a supersonic commercial transport.

  8. The feminist/emotionally focused therapy practice model: an integrated approach for couple therapy.

    PubMed

    Vatcher, C A; Bogo, M

    2001-01-01

    Emotionally focused therapy (EFT) is a well-developed, empirically tested practice model for couple therapy that integrates systems, experiential, and attachment theories. Feminist family therapy theory has provided a critique of biased assumptions about gender at play in traditional family therapy practice and the historical absence of discussions of power in family therapy theory. This article presents an integrated feminist/EFT practice model for use in couple therapy, using a case from practice to illustrate key concepts. Broadly, the integrated model addresses gender roles and individual emotional experience using a systemic framework for understanding couple interaction. The model provides practitioners with a sophisticated, comprehensive, and relevant practice approach for working with the issues and challenges emerging for contemporary heterosexual couples.

  9. Documentation of a daily mean stream temperature module—An enhancement to the Precipitation-Runoff Modeling System

    USGS Publications Warehouse

    Sanders, Michael J.; Markstrom, Steven L.; Regan, R. Steven; Atkinson, R. Dwight

    2017-09-15

    A module for simulation of daily mean water temperature in a network of stream segments has been developed as an enhancement to the U.S. Geological Survey Precipitation Runoff Modeling System (PRMS). This new module is based on the U.S. Fish and Wildlife Service Stream Network Temperature model, a mechanistic, one-dimensional heat transport model. The new module is integrated in PRMS. Stream-water temperature simulation is activated by selection of the appropriate input flags in the PRMS Control File and by providing the necessary additional inputs in standard PRMS input files.This report includes a comprehensive discussion of the methods relevant to the stream temperature calculations and detailed instructions for model input preparation.

  10. Isothermal vapor-liquid equilibria for the systems 1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Y.W.; Lee, Y.Y.

    1997-03-01

    Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.

  11. Effects of gravity perturbation on developing animal systems

    NASA Technical Reports Server (NTRS)

    Malacinski, G. M.; Neff, A. W.

    1986-01-01

    The use of developing animal systems to analyze the effects of microgravity on animals is discussed. Some of the key features of developing systems, especially embryos, are reviewed and relevant space data are summarized. Issues to be addressed in the design of future space experiments are discussed. It is noted that an embryo which exhibits ground based gravity effects should be selected for use as a model system and individual variation in gravity response among batches of embryos should be taken into account.

  12. Acting to gain information: Real-time reasoning meets real-time perception

    NASA Technical Reports Server (NTRS)

    Rosenschein, Stan

    1994-01-01

    Recent advances in intelligent reactive systems suggest new approaches to the problem of deriving task-relevant information from perceptual systems in real time. The author will describe work in progress aimed at coupling intelligent control mechanisms to real-time perception systems, with special emphasis on frame rate visual measurement systems. A model for integrated reasoning and perception will be discussed, and recent progress in applying these ideas to problems of sensor utilization for efficient recognition and tracking will be described.

  13. [Information system for supporting the Nursing Care Systematization].

    PubMed

    Malucelli, Andreia; Otemaier, Kelly Rafaela; Bonnet, Marcel; Cubas, Marcia Regina; Garcia, Telma Ribeiro

    2010-01-01

    It is an unquestionable fact, the importance, relevance and necessity of implementing the Nursing Care Systematization in the different environments of professional practice. Considering it as a principle, emerged the motivation for the development of an information system to support the Nursing Care Systematization, based on Nursing Process steps and Human Needs, using the diagnoses language, nursing interventions and outcomes for professional practice documentation. This paper describes the methodological steps and results of the information system development - requirements elicitation, modeling, object-relational mapping, implementation and system validation.

  14. Assessing the Moral Coherence and Moral Robustness of Social Systems: Proof of Concept for a Graphical Models Approach.

    PubMed

    Hoss, Frauke; London, Alex John

    2016-12-01

    This paper presents a proof of concept for a graphical models approach to assessing the moral coherence and moral robustness of systems of social interactions. "Moral coherence" refers to the degree to which the rights and duties of agents within a system are effectively respected when agents in the system comply with the rights and duties that are recognized as in force for the relevant context of interaction. "Moral robustness" refers to the degree to which a system of social interaction is configured to ensure that the interests of agents are effectively respected even in the face of noncompliance. Using the case of conscientious objection of pharmacists to filling prescriptions for emergency contraception as an example, we illustrate how a graphical models approach can help stakeholders identify structural weaknesses in systems of social interaction and evaluate the relative merits of alternate organizational structures. By illustrating the merits of a graphical models approach we hope to spur further developments in this area.

  15. Radial-orbit instability in modified Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo; Ciotti, Luca; Londrillo, Pasquale

    2011-07-01

    The stability of radially anisotropic spherical stellar systems in modified Newtonian dynamics (MOND) is explored by means of numerical simulations performed with the N-body code N-MODY. We find that Osipkov-Merritt MOND models require for stability larger minimum anisotropy radii than equivalent Newtonian systems (ENSs) with the dark matter, and also than purely baryonic Newtonian models with the same density profile. The maximum value for stability of the Fridman-Polyachenko-Shukhman parameter in MOND models is lower than in ENSs, but higher than in Newtonian models with no dark matter. We conclude that MOND systems are substantially more prone to radial-orbit instability than ENSs with dark matter, while they are able to support a larger amount of kinetic energy stored in radial orbits than purely baryonic Newtonian systems. An explanation of these results is attempted and their relevance to the MOND interpretation of the observed kinematics of globular clusters, dwarf spheroidal and elliptical galaxies is briefly discussed.

  16. An undergraduate course, and new textbook, on ``Physical Models of Living Systems''

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in several science and engineering departments. Students acquire several research skills that are often not addressed in traditional courses, including: basic modeling skills, probabilistic modeling skills, data analysis methods, computer programming using a general-purpose platform like MATLAB or Python, dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: virus dynamics; bacterial genetics and evolution of drug resistance; statistical inference; superresolution microscopy; synthetic biology; naturally evolved cellular circuits. Publication of a new textbook by WH Freeman and Co. is scheduled for December 2014. Supported in part by EF-0928048 and DMR-0832802.

  17. Physical Uncertainty Bounds (PUB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less

  18. Water scarcity and economic damage in Europe: regionally relevant simulations from 2000 to 2050

    NASA Astrophysics Data System (ADS)

    Bernhard, Jeroen; de Roo, Ad; Bisselink, Bernard; Gelati, Emiliano; Karssenberg, Derek; de Jong, Steven

    2017-04-01

    Water availability is unequally distributed across Europe. Where certain regions experience a surplus of water, other areas have limited water availability which causes economic damage to the water using sectors such as households, industries or agriculture. Future changes in climatic and socio-economic conditions are expected to further increase the competition for available water that is already present in Europe. This means there is an increasing need for models that are able to simulate this multi-sectorial system of water availability and demand and incorporate the socio-economic component required for robust decisions and policy support. We present our modelling study which is focused at providing regionally relevant pan-European water scarcity and economic damage simulations. First we developed regionally relevant pan-European water demand simulations for the household and industry sector from 2000 up to 2050. For the household sector we developed a model to simulate water use based on water price, income and several other relevant variables at NUTS-3 level (over 1200 regions in Europe). Alternatively, we modelled industrial water use based on regionally downscaled water productivity values at the national level for ten sub-sections of the NACE (Nomenclature of Economic Activities) classification for economic activities. Subsequently we used scenario projections of our explanatory variables to make scenario simulations of water demand from 2000 up to 2050 at pan-European scale with unprecedented spatial and sub-sectorial detail. In order to analyze the European water use system we integrated these water demand scenarios into the hydrological rainfall-runoff model called LISFLOOD (Distributed Water Balance and Flood Simulation Model), which incorporates a vegetation module for the simulation of crop yield and irrigation water demand of the agriculture sector. We simulated river discharge and groundwater availability for abstractions of water using sectors across Europe from 2000 up to 2050 at 5km grid level for multiple climate and socio-economic scenarios. This allowed us to identify regions with water scarcity problems from the recent past up to 2050 and quantify the economic damage that can be attributed to the limited water availability. Results showed several regions where substantially more water is extracted from the system than what would be sustainable into the future. Furthermore, we analyzed how changing water prices or relocation of economic activities could reduce future water scarcity problems and decrease the related economical damage. We found that for some regions, relatively small measurers already could have a positive impact on water scarcity problems.

  19. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods

    NASA Astrophysics Data System (ADS)

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-01

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  20. Low-lying excited states of model proteins: Performances of the CC2 method versus multireference methods.

    PubMed

    Ben Amor, Nadia; Hoyau, Sophie; Maynau, Daniel; Brenner, Valérie

    2018-05-14

    A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

  1. A brief introduction to the model microswimmer Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Jeanneret, Raphaël; Contino, Matteo; Polin, Marco

    2016-11-01

    The unicellular biflagellate green alga Chlamydomonas reinhardtii has been an important model system in biology for decades, and in recent years it has started to attract growing attention also within the biophysics community. Here we provide a concise review of some of the aspects of Chlamydomonas biology and biophysics most immediately relevant to physicists that might be interested in starting to work with this versatile microorganism.

  2. Josephson-junction array in an irrational magnetic field: A superconducting glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, T.C.

    1985-08-26

    A model is used to show that a Josephson junction array in an irrational magnetic field undergoes a glass transition for finite cooling rate. At zero temperature the resultant glassy state possesses a nonzero critical current. The low-temperature behavior of the system can be modeled by a spin-wave theory. The relevance of these results for real experiments on arrays is discussed.

  3. The development of multi-model rehabilitation training system for lower limb sitting function

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Sun, Yue; Wu, Qun

    2017-04-01

    The multi-model rehabilitation training system was manufactured according to the demands of patients' practical training. Through the use of the patient's exercise physiology information, the ability of muscle force and movement efficiency of the patient were identified. Following with medical rehabilitation therapy, the training model, a combination of active and passive training, was proposed to enhance the training efficiency and rehabilitation effect. Furthermore, taking the sitting movement training as an example, the research theory was applied in knee rehabilitation training. The results of the research provid technical support and practical reference to the relevant training equipment designs and clinical applications.

  4. Proposal for Holistic Assessment of Urban System Resilience to Natural Disasters

    NASA Astrophysics Data System (ADS)

    Koren, David; Kilar, Vojko; Rus, Katarina

    2017-10-01

    Urban system is a complex mix of interdependent components and dynamic interactions between them that enable it to function effectively. Resilience of urban system indicates the ability of a system to resist, absorb, accommodate to and recover from the effects of a hazard in a timely and efficient manner. In the relevant literature, most studies consider individual components separately. On the other hand, the purpose of this paper is to assess the urban system as a whole, considering all relevant components and their interactions. The goal is a study of possibilities for holistic evaluation of urban system resilience to natural disasters. Findings from the preliminary study are presented: (i) the definition of urban system and categorization of its components, (ii) a set of attributes of individual components with impact on disaster resilience of the entire system and (iii) review of different methods and approaches for resilience assessment. Based on literature review and extensive preliminary studies a new conceptual framework for urban resilience assessment is proposed. In the presented paper, a conceptual model of urban system by abstraction of its components as nodes (buildings), patches - specific nodes with spatial properties (open space), links (infrastructures) and base layer (community) is created. In the suggested model, each component is defined by its own quantitative attributes, which have been identified to have an important impact on the urban system resilience to natural disasters. System is presented as a mathematical graph model. Natural disaster is considered an external factor that affects the existing system and leads to some system distortion. In further analyses, mathematical simulation of various natural disasters scenarios is going to be carried out, followed by comparison of the system functionality before and after the accident. Various properties of the system (accessibility, transition, complexity etc.) are going to be analysed with graph theory. The final result is going to be an identification of critical points and system bottlenecks as basis for further actions of risk mitigation.

  5. Web information retrieval based on ontology

    NASA Astrophysics Data System (ADS)

    Zhang, Jian

    2013-03-01

    The purpose of the Information Retrieval (IR) is to find a set of documents that are relevant for a specific information need of a user. Traditional Information Retrieval model commonly used in commercial search engine is based on keyword indexing system and Boolean logic queries. One big drawback of traditional information retrieval is that they typically retrieve information without an explicitly defined domain of interest to the users so that a lot of no relevance information returns to users, which burden the user to pick up useful answer from these no relevance results. In order to tackle this issue, many semantic web information retrieval models have been proposed recently. The main advantage of Semantic Web is to enhance search mechanisms with the use of Ontology's mechanisms. In this paper, we present our approach to personalize web search engine based on ontology. In addition, key techniques are also discussed in our paper. Compared to previous research, our works concentrate on the semantic similarity and the whole process including query submission and information annotation.

  6. Relevance of quantum mechanics on some aspects of ion channel function

    PubMed Central

    Roy, Sisir

    2010-01-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger–Langevin equation for this kind of system within the framework of stochastic quantization. The Planck’s constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter. PMID:19520314

  7. Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium.

    PubMed

    Davies, Neil; Field, Dawn; Gavaghan, David; Holbrook, Sally J; Planes, Serge; Troyer, Matthias; Bonsall, Michael; Claudet, Joachim; Roderick, George; Schmitt, Russell J; Zettler, Linda Amaral; Berteaux, Véronique; Bossin, Hervé C; Cabasse, Charlotte; Collin, Antoine; Deck, John; Dell, Tony; Dunne, Jennifer; Gates, Ruth; Harfoot, Mike; Hench, James L; Hopuare, Marania; Kirch, Patrick; Kotoulas, Georgios; Kosenkov, Alex; Kusenko, Alex; Leichter, James J; Lenihan, Hunter; Magoulas, Antonios; Martinez, Neo; Meyer, Chris; Stoll, Benoit; Swalla, Billie; Tartakovsky, Daniel M; Murphy, Hinano Teavai; Turyshev, Slava; Valdvinos, Fernanda; Williams, Rich; Wood, Spencer

    2016-01-01

    Systems biology promises to revolutionize medicine, yet human wellbeing is also inherently linked to healthy societies and environments (sustainability). The IDEA Consortium is a systems ecology open science initiative to conduct the basic scientific research needed to build use-oriented simulations (avatars) of entire social-ecological systems. Islands are the most scientifically tractable places for these studies and we begin with one of the best known: Moorea, French Polynesia. The Moorea IDEA will be a sustainability simulator modeling links and feedbacks between climate, environment, biodiversity, and human activities across a coupled marine-terrestrial landscape. As a model system, the resulting knowledge and tools will improve our ability to predict human and natural change on Moorea and elsewhere at scales relevant to management/conservation actions.

  8. Applying systems biology methods to the study of human physiology in extreme environments

    PubMed Central

    2013-01-01

    Systems biology is defined in this review as ‘an iterative process of computational model building and experimental model revision with the aim of understanding or simulating complex biological systems’. We propose that, in practice, systems biology rests on three pillars: computation, the omics disciplines and repeated experimental perturbation of the system of interest. The number of ethical and physiologically relevant perturbations that can be used in experiments on healthy humans is extremely limited and principally comprises exercise, nutrition, infusions (e.g. Intralipid), some drugs and altered environment. Thus, we argue that systems biology and environmental physiology are natural symbionts for those interested in a system-level understanding of human biology. However, despite excellent progress in high-altitude genetics and several proteomics studies, systems biology research into human adaptation to extreme environments is in its infancy. A brief description and overview of systems biology in its current guise is given, followed by a mini review of computational methods used for modelling biological systems. Special attention is given to high-altitude research, metabolic network reconstruction and constraint-based modelling. PMID:23849719

  9. Structure of the Stern layer in Phospholipid Systems

    NASA Astrophysics Data System (ADS)

    Vangaveti, Sweta; Travesset, Alex

    2011-03-01

    The structure of the Stern layer in Phospholipid Systems results from a subtle competition of salt concentration, ionic valence, specific ionic-phospolipid interactions and pH. It becomes very challenging to develop a rigorous theory that encompasses all these effects, yet its understanding is extremely relevant for both model and biological systems, as the structure of the Stern layer determines the interactions of phospholipids with proteins or electrostatic phase separation (rafts). In this talk we will present our theoretical model for the Stern Layer and discuss how all these effects are included. Particularly emphasis is made to Phosphoinositides and Phosphatidic acid. This work is supported by grant NSF DMR-0748475.

  10. Nonlinear evolution of coarse-grained quantum systems with generalized purity constraints

    NASA Astrophysics Data System (ADS)

    Burić, Nikola

    2010-12-01

    Constrained quantum dynamics is used to propose a nonlinear dynamical equation for pure states of a generalized coarse-grained system. The relevant constraint is given either by the generalized purity or by the generalized invariant fluctuation, and the coarse-grained pure states correspond to the generalized coherent, i.e. generalized nonentangled states. Open system model of the coarse-graining is discussed. It is shown that in this model and in the weak coupling limit the constrained dynamical equations coincide with an equation for pointer states, based on Hilbert-Schmidt distance, that was previously suggested in the context of the decoherence theory.

  11. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    EPA Science Inventory

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  12. Aspects of wave turbulence in preheating

    NASA Astrophysics Data System (ADS)

    Crespo, José A.; de Oliveira, H. P.

    2014-06-01

    In this work we have studied the nonlinear preheating dynamics of several inflationary models. It is well established that after a linear stage of preheating characterized by the parametric resonance, the nonlinear dynamics becomes relevant driving the system towards turbulence. Wave turbulence is the appropriated description of this phase since the matter contents are fields instead of usual fluids. Turbulence develops due to the nonlinear interations of waves, here represented by the small inhomogeneities of the scalar fields. We present relevant aspects of wave turbulence such as the Kolmogorov-Zakharov spectrum in frequency and wave number that indicates the energy transfer through scales. From the power spectrum of the matter energy density we were able to estimate the temperature of the thermalized system.

  13. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, Daniel C; Ferreyro-Fernandez, Sebastian; Paul, Chandan

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gasmore » radiation and spectral radiation properties are important for engine-relevant conditions.« less

  14. 75 FR 61989 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-8-31, DC-8-32, DC-8-33, DC-8-41...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Airworthiness Limitations inspections (ALIs). This AD results from a design review of the fuel tank systems. We... inspections (ALIs). Relevant Service Information We reviewed Boeing DC-8 Special Compliance Item Report, MDC..., Revision C, dated January 5, 2010; or Revision D, dated June 9, 2010. (2) ALI 30-1 ``DC-8 Pneumatic System...

  15. Chemical and biological relationships relevant to the effect of acid rainfall on the soil-plant system

    Treesearch

    Marvin Nyborg

    1976-01-01

    This paper deals with problems of measuring acidity in rainfall and the interpretation of these measurements in terms of effects on the soil-plant system. Theoretical relationships of the carbon-dioxide-bicarbonate equalibria and its effect on rainfall acidity measurements are given. The relationship of a cation-anion balance model of acidity in rainfall to plant...

  16. Query Expansion for Noisy Legal Documents

    DTIC Science & Technology

    2008-11-01

    9] G. Salton (ed). The SMART retrieval system experiments in automatic document processing. 1971. [10] H. Schutze and J . Pedersen. A cooccurrence...Language Modeling and Information Retrieval. http://www.lemurproject.org. [2] J . Baron, D. Lewis, and D. Oard. TREC 2006 legal track overview. In...Retrieval, 1993. [8] J . Rocchio. Relevance feedback in information retrieval. In The SMART retrieval system experiments in automatic document processing, 1971

  17. Some photometric techniques for atmosphereless solar system bodies.

    PubMed

    Lumme, K; Peltoniemi, J; Irvine, W M

    1990-01-01

    We discuss various photometric techniques and their absolute scales in relation to the information that can be derived from the relevant data. We also outline a new scattering model for atmosphereless bodies in the solar system and show how it fits Mariner 10 surface photometry of the planet Mercury. It is shown how important the correct scattering law is while deriving the topography by photoclinometry.

  18. A Recommendation for a Professional Focus Area in Data Management for the IS2002 Information Systems Model Curriculum

    ERIC Educational Resources Information Center

    Longenecker, Herbert E., Jr.; Yarbrough, David M.; Feinstein, David L.

    2010-01-01

    IS2002 has become a well defined standard for information systems curricula. The Data Management Association (DAMA 2006) curriculum framework defines a body of knowledge that points to a skill set that can enhance IS2002. While data management professionals are highly skilled individuals requiring as much as a decade of relevant experience before…

  19. A Practical Guide to Interpretation of Large Collections of Incident Narratives Using the QUORUM Method

    NASA Technical Reports Server (NTRS)

    McGreevy, Michael W.

    1997-01-01

    Analysis of incident reports plays an important role in aviation safety. Typically, a narrative description, written by a participant, is a central part of an incident report. Because there are so many reports, and the narratives contain so much detail, it can be difficult to efficiently and effectively recognize patterns among them. Recognizing and addressing recurring problems, however, is vital to continuing safety in commercial aviation operations. A practical way to interpret large collections of incident narratives is to apply the QUORUM method of text analysis, modeling, and relevance ranking. In this paper, QUORUM text analysis and modeling are surveyed, and QUORUM relevance ranking is described in detail with many examples. The examples are based on several large collections of reports from the Aviation Safety Reporting System (ASRS) database, and a collection of news stories describing the disaster of TWA Flight 800, the Boeing 747 which exploded in mid- air and crashed near Long Island, New York, on July 17, 1996. Reader familiarity with this disaster should make the relevance-ranking examples more understandable. The ASRS examples illustrate the practical application of QUORUM relevance ranking.

  20. The Extended HANDS Characterization and Analysis of Metric Biases

    NASA Astrophysics Data System (ADS)

    Kelecy, T.; Knox, R.; Cognion, R.

    The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.

  1. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.

  2. Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva.

    PubMed

    Cárdenas, Marité; Valle-Delgado, Juan José; Hamit, Jildiz; Rutland, Mark W; Arnebrant, Thomas

    2008-07-15

    Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

  3. Eco-HAB as a fully automated and ecologically relevant assessment of social impairments in mouse models of autism.

    PubMed

    Puścian, Alicja; Łęski, Szymon; Kasprowicz, Grzegorz; Winiarski, Maciej; Borowska, Joanna; Nikolaev, Tomasz; Boguszewski, Paweł M; Lipp, Hans-Peter; Knapska, Ewelina

    2016-10-12

    Eco-HAB is an open source, RFID-based system for automated measurement and analysis of social preference and in-cohort sociability in mice. The system closely follows murine ethology. It requires no contact between a human experimenter and tested animals, overcoming the confounding factors that lead to irreproducible assessment of murine social behavior between laboratories. In Eco-HAB, group-housed animals live in a spacious, four-compartment apparatus with shadowed areas and narrow tunnels, resembling natural burrows. Eco-HAB allows for assessment of the tendency of mice to voluntarily spend time together in ethologically relevant mouse group sizes. Custom-made software for automated tracking, data extraction, and analysis enables quick evaluation of social impairments. The developed protocols and standardized behavioral measures demonstrate high replicability. Unlike classic three-chambered sociability tests, Eco-HAB provides measurements of spontaneous, ecologically relevant social behaviors in group-housed animals. Results are obtained faster, with less manpower, and without confounding factors.

  4. Advances and applications of occupancy models

    USGS Publications Warehouse

    Bailey, Larissa; MacKenzie, Darry I.; Nichols, James D.

    2013-01-01

    Summary: The past decade has seen an explosion in the development and application of models aimed at estimating species occurrence and occupancy dynamics while accounting for possible non-detection or species misidentification. We discuss some recent occupancy estimation methods and the biological systems that motivated their development. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the investigator. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent biological inference and interpretation of model parameters depend on these definitions and the ability to meet model assumptions. We demonstrate the relevance of these definitions by highlighting applications from a single biological system (an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized. Finally, we use these applications to suggest future research and model development.

  5. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  6. Use of IDEF modeling to develop an information management system for drug and alcohol outpatient treatment clinics

    NASA Astrophysics Data System (ADS)

    Hoffman, Kenneth J.

    1995-10-01

    Few information systems create a standardized clinical patient record in which there are discrete and concise observations of patient problems and their resolution. Clinical notes usually are narratives which don't support an aggregate and systematic outcome analysis. Many programs collect information on diagnosis and coded procedures but are not focused on patient problems. Integrated definition (IDEF) methodology has been accepted by the Department of Defense as part of the Corporate Information Management Initiative and serves as the foundation that establishes a need for automation. We used IDEF modeling to describe present and idealized patient care activities. A logical IDEF data model was created to support those activities. The modeling process allows for accurate cost estimates based upon performed activities, efficient collection of relevant information, and outputs which allow real- time assessments of process and outcomes. This model forms the foundation for a prototype automated clinical information system (ACIS).

  7. Operation of hydropower generation systems in the Alps under future climate and socio-economic drivers

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2015-04-01

    Alpine hydropower systems are an important source of renewable energy for many countries in Europe. In Switzerland, for instance, they represent the most important domestic source of renewable energy (around 55%). However, future hydropower production may be threatened by unprecedented challenges, such as a decreasing water availability, due to climate change (CC) and associated glacier retreat, and uncertain operating conditions, such as future power needs and highly fluctuating demand on the energy market. This second aspect has gained increasingly relevance since the massive introduction of solar and wind generating systems in the portfolios of many European countries. Because hydropower systems have the potential to provide backup storage of energy to compensate for fluctuations that are typical, for instance, of solar and wind generation systems, it is important to investigate how the increased demand for flexible operation, together with climate change challenge and fluctuating markets, can impact their operating policies. The Swiss Competence Center on Supply of Electricity (www.sccer-soe.ch) has been recently established to explore new potential paths for the development of future power generation systems. In this context, we develop modelling and optimization tools to design and assess new operation strategies for hydropower systems to increase their reliability, flexibility, and robustness to future operation conditions. In particular, we develop an advanced modelling framework for the integrated simulation of the operation of hydropower plants, which accounts for CC-altered streamflow regimes, new demand and market conditions, as well as new boundary conditions for operation (e.g., aquatic ecosystem conservation). The model construction consists of two primary components: a physically based and spatially distributed hydrological model, which describes the relevant hydrological processes at the basin scale, and an agent based decision model, which describes the behavior of hydropower operators. This integrated model allows to quantitatively explore possible trajectories of future evolution of the hydropower systems under the combined effect of climate and socio-economic drivers. In a multi-objective perspective, the model can test how different hydropower operation strategies perform in terms of power production, reliability and flexibility of supply, profitability of operation, and ecosystem conservation. This contribution presents the methodological framework designed to formulate the integrated model, its expected outcomes, and some preliminary results on a pilot study.

  8. Why System Safety Professionals Should Read Accident Reports

    NASA Technical Reports Server (NTRS)

    Holloway, C. M.; Johnson, C. W.

    2006-01-01

    System safety professionals, both researchers and practitioners, who regularly read accident reports reap important benefits. These benefits include an improved ability to separate myths from reality, including both myths about specific accidents and ones concerning accidents in general; an increased understanding of the consequences of unlikely events, which can help inform future designs; a greater recognition of the limits of mathematical models; and guidance on potentially relevant research directions that may contribute to safety improvements in future systems.

  9. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  10. Systems-Level Analysis of Innate Immunity

    PubMed Central

    Zak, Daniel E.; Tam, Vincent C.; Aderem, Alan

    2014-01-01

    Systems-level analysis of biological processes strives to comprehensively and quantitatively evaluate the interactions between the relevant molecular components over time, thereby enabling development of models that can be employed to ultimately predict behavior. Rapid development in measurement technologies (omics), when combined with the accessible nature of the cellular constituents themselves, is allowing the field of innate immunity to take significant strides toward this lofty goal. In this review, we survey exciting results derived from systems biology analyses of the immune system, ranging from gene regulatory networks to influenza pathogenesis and systems vaccinology. PMID:24655298

  11. Parametric Design within an Atomic Design Process (ADP) applied to Spacecraft Design

    NASA Astrophysics Data System (ADS)

    Ramos Alarcon, Rafael

    This thesis describes research investigating the development of a model for the initial design of complex systems, with application to spacecraft design. The design model is called an atomic design process (ADP) and contains four fundamental stages (specifications, configurations, trade studies and drivers) that constitute the minimum steps of an iterative process that helps designers find a feasible solution. Representative design models from the aerospace industry are reviewed and are compared with the proposed model. The design model's relevance, adaptability and scalability features are evaluated through a focused design task exercise with two undergraduate teams and a long-term design exercise performed by a spacecraft payload team. The implementation of the design model is explained in the context in which the model has been researched. This context includes the organization (a student-run research laboratory at the University of Michigan), its culture (academically oriented), members that have used the design model and the description of the information technology elements meant to provide support while using the model. This support includes a custom-built information management system that consolidates relevant information that is currently being used in the organization. The information is divided in three domains: personnel development history, technical knowledge base and laboratory operations. The focused study with teams making use of the design model to complete an engineering design exercise consists of the conceptual design of an autonomous system, including a carrier and a deployable lander that form the payload of a rocket with an altitude range of over 1000 meters. Detailed results from each of the stages of the design process while implementing the model are presented, and an increase in awareness of good design practices in the teams while using the model are explained. A long-term investigation using the design model consisting of the successful characterization of an imaging system for a spacecraft is presented. The spacecraft is designed to take digital color images from low Earth orbit. The dominant drivers from each stage of the design process are indicated as they were identified, with the accompanying hardware development leading to the final configuration that comprises the flight spacecraft.

  12. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    PubMed

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  13. A technology ecosystem perspective on hospital management information systems: lessons from the health literature.

    PubMed

    Bain, Christopher A; Standing, Craig

    2009-01-01

    Hospital managers have a large range of information needs including quality metrics, financial reports, access information needs, educational, resourcing and decision support needs. Currently these needs involve interactions by managers with numerous disparate systems, both electronic such as SAP, Oracle Financials, PAS' (patient administration systems) like HOMER, and relevant websites; and paper-based systems. Hospital management information systems (HMIS) can be thought of sitting within a Technology Ecosystem (TE). In addition, Hospital Management Information Systems (HMIS) could benefit from a broader and deeper TE model, and the HMIS environment may in fact represents its own TE (the HMTE). This research will examine lessons from the health literature in relation to some of these issues, and propose an extension to the base model of a TE.

  14. Thinking outside ISD: A management model for instructional design

    NASA Astrophysics Data System (ADS)

    Taylor, Tony Dewayne

    The purpose of this study was to examine the effectiveness of an instructional system management-level model proposed by the author designed to orchestrate the efficient development and implementation of customer requested curriculum. The three phases of systems-based model are designed to ensure delivery of high quality and timely instruction are: (1) the assessment and documentation of organizational training requirements; (2) project management control of curriculum development; and (3) the implementation of relevant instruction by competent instructors. This model also provides (4) measurable and quantifiable course evaluation results to justify return on investment and validate its importance with respect to the customer's organizational strategic objectives. The theoretical approach for this study was systems theory-based due to the nature of the instructional systems design model and the systematic design of the management model. The study was accomplished using single-case study application of qualitative style of inquiry as described by Patton (2002). Qualitative inquiry was selected to collect and analyze participant holistic perspective assessment of effectiveness, relevance, and timeliness of the instructional design management model. Participants for this study included five managers, five subject matter experts, and six students assigned to a military organization responsible for the collection of hydrographic data for the U.S. Navy. Triangulation of data sources within the qualitative framework of the study incorporated the three participant groups---managers, SMEs, and students---incorporated multiple views of the course development and implementation to validate the findings and the remove researcher bias. Qualitative coding was accomplished by importing transcribed interviews into Microsoft Excel and sorted using Auto-Filter. The coded interviews indicated effective functionality in the views of the model from each of the three participant groups. Results from a pre-test/post-test comparative analysis indicated a significant difference between the pre-test and post-test mean at the p < .001 for the six students. Although the subject of the case study was within a military training environment, the application of the proposed instructional systems managerial model can be applied to the design, development, delivery, and assessment of instructional material in any line of study where quantifiable effective learning is the goal.

  15. The Hubble diagram for a system within dark energy: influence of some relevant quantities

    NASA Astrophysics Data System (ADS)

    Saarinen, J.; Teerikorpi, P.

    2014-08-01

    Aims: We study the influence of relevant quantities, including the density of dark energy (DE), to the predicted Hubble outflow around a system of galaxies. In particular, we are interested in the difference between two models: 1) the standard ΛCDM model, with the everywhere constant DE density, and 2) the "Swiss cheese model", where the Universe is as old as the standard model and the DE density is zero on short scales, including the environment of the system. Methods: We calculated the current predicted outflow patterns of dwarf galaxies around the Local Group-like system, using different values for the mass of the group, the local DE density, and the time of ejection of the dwarf galaxies, which are treated as test particles. These results are compared with the observed Hubble flow around the Local Group. Results: The predicted distance-velocity relations around galaxy groups are not very sensitive indicators of the DE density, owing to the observational scatter and the uncertainties caused by the mass used for the group and a range in the ejection times. In general, the Local Group outflow data agree with the local DE density being equal to the global one, if the Local Group mass is about 4 × 1012 M⊙; a lower mass ≲ 2 × 1012 M⊙ could suggest a zero local DE density. The dependence of the inferred DE density on the mass is a handicap in this and other common dynamical methods. This emphasizes the need to use different approaches together, for constraining the local DE density.

  16. Performance appraisal of online MEDLINE access routes.

    PubMed Central

    Walker, C. J.; McKibbon, K. A.; Haynes, R. B.; Johnston, M. E.

    1992-01-01

    OBJECTIVE: To compare the performance and cost of 11 online MEDLINE systems with MEDLINE at Elhill. DESIGN: Comparative study. SYSTEMS: Eleven online daytime systems commercially available in North America offering the MEDLINE database. MEASURES: Number of relevant citations, number of irrelevant citations, proportion of searches producing no relevant citations and cost per relevant citation were analyzed for each system. Relevance and cost for each system were compared with direct searching of MEDLINE through NLM for librarian and clinician search strategies for 18 clinical questions. The citations retrieved by both strategies were pooled and rated for relevance on a 7-point scale. RESULTS: Numbers of relevant and irrelevant citations and cost per relevant citation were higher for clinician searches than librarian searches, reflecting the higher total number of citations retrieved by the clinician approaches. A lower proportion of clinician searches produced no relevant citations than librarian searches. CONCLUSIONS: Eleven daytime MEDLINE systems performed similarly in terms of retrieval and cost within similar searching groups. Clinicians, however, tended to capture larger overall retrievals resulting in higher numbers of relevant and irrelevant citations than librarians. PMID:1482922

  17. Sea Ice Biogeochemistry: A Guide for Modellers

    PubMed Central

    Tedesco, Letizia; Vichi, Marcello

    2014-01-01

    Sea ice is a fundamental component of the climate system and plays a key role in polar trophic food webs. Nonetheless sea ice biogeochemical dynamics at large temporal and spatial scales are still rarely described. Numerical models may potentially contribute integrating among sparse observations, but available models of sea ice biogeochemistry are still scarce, whether their relevance for properly describing the current and future state of the polar oceans has been recently addressed. A general methodology to develop a sea ice biogeochemical model is presented, deriving it from an existing validated model application by extension of generic pelagic biogeochemistry model parameterizations. The described methodology is flexible and considers different levels of ecosystem complexity and vertical representation, while adopting a strategy of coupling that ensures mass conservation. We show how to apply this methodology step by step by building an intermediate complexity model from a published realistic application and applying it to analyze theoretically a typical season of first-year sea ice in the Arctic, the one currently needing the most urgent understanding. The aim is to (1) introduce sea ice biogeochemistry and address its relevance to ocean modelers of polar regions, supporting them in adding a new sea ice component to their modelling framework for a more adequate representation of the sea ice-covered ocean ecosystem as a whole, and (2) extend our knowledge on the relevant controlling factors of sea ice algal production, showing that beyond the light and nutrient availability, the duration of the sea ice season may play a key-role shaping the algal production during the on going and upcoming projected changes. PMID:24586604

  18. Percolation of binary disk systems: Modeling and theory

    DOE PAGES

    Meeks, Kelsey; Tencer, John; Pantoya, Michelle L.

    2017-01-12

    The dispersion and connectivity of particles with a high degree of polydispersity is relevant to problems involving composite material properties and reaction decomposition prediction and has been the subject of much study in the literature. This paper utilizes Monte Carlo models to predict percolation thresholds for a two-dimensional systems containing disks of two different radii. Monte Carlo simulations and spanning probability are used to extend prior models into regions of higher polydispersity than those previously considered. A correlation to predict the percolation threshold for binary disk systems is proposed based on the extended dataset presented in this work and comparedmore » to previously published correlations. Finally, a set of boundary conditions necessary for a good fit is presented, and a condition for maximizing percolation threshold for binary disk systems is suggested.« less

  19. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science.

    PubMed

    Jones, James W; Antle, John M; Basso, Bruno; Boote, Kenneth J; Conant, Richard T; Foster, Ian; Godfray, H Charles J; Herrero, Mario; Howitt, Richard E; Janssen, Sander; Keating, Brian A; Munoz-Carpena, Rafael; Porter, Cheryl H; Rosenzweig, Cynthia; Wheeler, Tim R

    2017-07-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  20. Toward a New Generation of Agricultural System Data, Models, and Knowledge Products: State of Agricultural Systems Science

    NASA Technical Reports Server (NTRS)

    Jones, James W.; Antle, John M.; Basso, Bruno; Boote, Kenneth J.; Conant, Richard T.; Foster, Ian; Godfray, H. Charles J.; Herrero, Mario; Howitt, Richard E.; Janssen, Sander; hide

    2016-01-01

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and need to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.

  1. Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, James W.; Antle, John M.; Basso, Bruno

    We review the current state of agricultural systems science, focusing in particular on the capabilities and limitations of agricultural systems models. We discuss the state of models relative to five different Use Cases spanning field, farm, landscape, regional, and global spatial scales and engaging questions in past, current, and future time periods. Contributions from multiple disciplines have made major advances relevant to a wide range of agricultural system model applications at various spatial and temporal scales. Although current agricultural systems models have features that are needed for the Use Cases, we found that all of them have limitations and needmore » to be improved. We identified common limitations across all Use Cases, namely 1) a scarcity of data for developing, evaluating, and applying agricultural system models and 2) inadequate knowledge systems that effectively communicate model results to society. We argue that these limitations are greater obstacles to progress than gaps in conceptual theory or available methods for using system models. New initiatives on open data show promise for addressing the data problem, but there also needs to be a cultural change among agricultural researchers to ensure that data for addressing the range of Use Cases are available for future model improvements and applications. We conclude that multiple platforms and multiple models are needed for model applications for different purposes. The Use Cases provide a useful framework for considering capabilities and limitations of existing models and data.« less

  2. Effect and relevance of the artificial drainage system when assessing the hydrologic impact of the imperviousness distribution within the watershed

    NASA Astrophysics Data System (ADS)

    Thenoux, M.; Gironas, J. A.; Mejia, A.

    2013-12-01

    Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system affect the hydrologic response, and that these effects depend on the degree of imperviousness and the characteristics of the precipitation. Results of this research improve our understanding on how urban planning decisions can contribute to minimize the hydrologic and environmental impacts of urban development.

  3. Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans

    EPA Science Inventory

    ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...

  4. K-Nearest Neighbors Relevance Annotation Model for Distance Education

    ERIC Educational Resources Information Center

    Ke, Xiao; Li, Shaozi; Cao, Donglin

    2011-01-01

    With the rapid development of Internet technologies, distance education has become a popular educational mode. In this paper, the authors propose an online image automatic annotation distance education system, which could effectively help children learn interrelations between image content and corresponding keywords. Image automatic annotation is…

  5. Architecture and Development: Two Case Studies

    ERIC Educational Resources Information Center

    Bechhoefer, William B.

    1975-01-01

    An American Fulbright lecturer finds lessons learned about the growth of architectural education in Tunisia and Afghanistan relevant for other developing nations. He emphasizes the responsibility that accompanies the imposition of a foreign system: recognition of local variations from the model and evaluation of programs and curriculum responsive…

  6. A personal perspective on modelling the climate system

    PubMed Central

    Palmer, T. N.

    2016-01-01

    Given their increasing relevance for society, I suggest that the climate science community itself does not treat the development of error-free ab initio models of the climate system with sufficient urgency. With increasing levels of difficulty, I discuss a number of proposals for speeding up such development. Firstly, I believe that climate science should make better use of the pool of post-PhD talent in mathematics and physics, for developing next-generation climate models. Secondly, I believe there is more scope for the development of modelling systems which link weather and climate prediction more seamlessly. Finally, here in Europe, I call for a new European Programme on Extreme Computing and Climate to advance our ability to simulate climate extremes, and understand the drivers of such extremes. A key goal for such a programme is the development of a 1 km global climate system model to run on the first exascale supercomputers in the early 2020s. PMID:27274686

  7. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  8. Event-driven simulation in SELMON: An overview of EDSE

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.

    1992-01-01

    EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.

  9. Structural equation modeling and natural systems

    USGS Publications Warehouse

    Grace, James B.

    2006-01-01

    This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.

  10. Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems

    NASA Astrophysics Data System (ADS)

    de Almeida, André LF; Favier, Gérard

    2013-12-01

    This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.

  11. Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions

    NASA Astrophysics Data System (ADS)

    Oprisan, Sorinel Adrian; Oprisan, Ana

    2005-03-01

    Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.

  12. Predicting Formation Damage in Aquifer Thermal Energy Storage Systems Utilizing a Coupled Hydraulic-Thermal-Chemical Reservoir Model

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Regenspurg, Simona; Milsch, Harald; Blöcher, Guido; Kranz, Stefan; Saadat, Ali

    2014-05-01

    In aquifer thermal energy storage (ATES) systems, large amounts of energy can be stored by injecting hot water into deep or intermediate aquifers. In a seasonal production-injection cycle, water is circulated through a system comprising the porous aquifer, a production well, a heat exchanger and an injection well. This process involves large temperature and pressure differences, which shift chemical equilibria and introduce or amplify mechanical processes. Rock-fluid interaction such as dissolution and precipitation or migration and deposition of fine particles will affect the hydraulic properties of the porous medium and may lead to irreversible formation damage. In consequence, these processes determine the long-term performance of the ATES system and need to be predicted to ensure the reliability of the system. However, high temperature and pressure gradients and dynamic feedback cycles pose challenges on predicting the influence of the relevant processes. Within this study, a reservoir model comprising a coupled hydraulic-thermal-chemical simulation was developed based on an ATES demonstration project located in the city of Berlin, Germany. The structural model was created with Petrel, based on data available from seismic cross-sections and wellbores. The reservoir simulation was realized by combining the capabilities of multiple simulation tools. For the reactive transport model, COMSOL Multiphysics (hydraulic-thermal) and PHREEQC (chemical) were combined using the novel interface COMSOL_PHREEQC, developed by Wissmeier & Barry (2011). It provides a MATLAB-based coupling interface between both programs. Compared to using COMSOL's built-in reactive transport simulator, PHREEQC additionally calculates adsorption and reaction kinetics and allows the selection of different activity coefficient models in the database. The presented simulation tool will be able to predict the most important aspects of hydraulic, thermal and chemical transport processes relevant to formation damage in ATES systems. We would like to present preliminary results of the structural reservoir model and the hydraulic-thermal-chemical coupling for the demonstration site. Literature: Wissmeier, L. and Barry, D.A., 2011. Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains. Environmental Modelling & Software 26, 210-218.

  13. Aerosol-Radiation-Cloud Interactions in the South-East Atlantic: Model-Relevant Observations and the Beneficiary Modeling Efforts in the Realm of the EVS-2 Project ORACLES

    NASA Technical Reports Server (NTRS)

    Redemann, Jens

    2018-01-01

    Globally, aerosols remain a major contributor to uncertainties in assessments of anthropogenically-induced changes to the Earth climate system, despite concerted efforts using satellite and suborbital observations and increasingly sophisticated models. The quantification of direct and indirect aerosol radiative effects, as well as cloud adjustments thereto, even at regional scales, continues to elude our capabilities. Some of our limitations are due to insufficient sampling and accuracy of the relevant observables, under an appropriate range of conditions to provide useful constraints for modeling efforts at various climate scales. In this talk, I will describe (1) the efforts of our group at NASA Ames to develop new airborne instrumentation to address some of the data insufficiencies mentioned above; (2) the efforts by the EVS-2 ORACLES project to address aerosol-cloud-climate interactions in the SE Atlantic and (3) time permitting, recent results from a synergistic use of A-Train aerosol data to test climate model simulations of present-day direct radiative effects in some of the AEROCOM phase II global climate models.

  14. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  15. Models and mechanisms of anxiety: evidence from startle studies

    PubMed Central

    Grillon, Christian

    2009-01-01

    Rationale Preclinical data indicates that threat stimuli elicit two classes of defensive behaviors, those that are associated with imminent danger and are characterized by avoidance or fight (fear), and those that are associated with temporally uncertain danger and are characterized by sustained apprehension and hypervigilance (anxiety). Objective To 1) review evidence for a distinction between fear and anxiety in animal and human experimental models using the startle reflex as an operational measure of aversive states, 2) describe experimental models of anxiety, as opposed to fear, in humans, 3) examine the relevance of these models to clinical anxiety. Results The distinction between phasic fear to imminent threat and sustained anxiety to temporally uncertain danger is suggested by psychopharmacological and behavioral evidence from ethological studies and can be traced back to distinct neuroanatomical systems, the amygdala and the bed nucleus of the stria terminalis. Experimental models of anxiety, not fear, are relevant to non-phobic anxiety disorders. Conclusions Progress in our understanding of normal and abnormal anxiety is critically dependent on our ability to model sustained aversive states to temporally uncertain threat. PMID:18058089

  16. Choice reaching with a LEGO arm robot (CoRLEGO): The motor system guides visual attention to movement-relevant information

    PubMed Central

    Strauss, Soeren; Woodgate, Philip J.W.; Sami, Saber A.; Heinke, Dietmar

    2015-01-01

    We present an extension of a neurobiologically inspired robotics model, termed CoRLEGO (Choice reaching with a LEGO arm robot). CoRLEGO models experimental evidence from choice reaching tasks (CRT). In a CRT participants are asked to rapidly reach and touch an item presented on the screen. These experiments show that non-target items can divert the reaching movement away from the ideal trajectory to the target item. This is seen as evidence attentional selection of reaching targets can leak into the motor system. Using competitive target selection and topological representations of motor parameters (dynamic neural fields) CoRLEGO is able to mimic this leakage effect. Furthermore if the reaching target is determined by its colour oddity (i.e. a green square among red squares or vice versa), the reaching trajectories become straighter with repetitions of the target colour (colour streaks). This colour priming effect can also be modelled with CoRLEGO. The paper also presents an extension of CoRLEGO. This extension mimics findings that transcranial direct current stimulation (tDCS) over the motor cortex modulates the colour priming effect (Woodgate et al., 2015). The results with the new CoRLEGO suggest that feedback connections from the motor system to the brain’s attentional system (parietal cortex) guide visual attention to extract movement-relevant information (i.e. colour) from visual stimuli. This paper adds to growing evidence that there is a close interaction between the motor system and the attention system. This evidence contradicts the traditional conceptualization of the motor system as the endpoint of a serial chain of processing stages. At the end of the paper we discuss CoRLEGO’s predictions and also lessons for neurobiologically inspired robotics emerging from this work. PMID:26667353

  17. Evidence for the triadic model of adolescent brain development: Cognitive load and task-relevance of emotion differentially affect adolescents and adults.

    PubMed

    Mueller, Sven C; Cromheeke, Sofie; Siugzdaite, Roma; Nicolas Boehler, C

    2017-08-01

    In adults, cognitive control is supported by several brain regions including the limbic system and the dorsolateral prefrontal cortex (dlPFC) when processing emotional information. However, in adolescents, some theories hypothesize a neurobiological imbalance proposing heightened sensitivity to affective material in the amygdala and striatum within a cognitive control context. Yet, direct neurobiological evidence is scarce. Twenty-four adolescents (12-16) and 28 adults (25-35) completed an emotional n-back working memory task in response to happy, angry, and neutral faces during fMRI. Importantly, participants either paid attention to the emotion (task-relevant condition) or judged the gender (task-irrelevant condition). Behaviorally, for both groups, when happy faces were task-relevant, performance improved relative to when they were task-irrelevant, while performance decrements were seen for angry faces. In the dlPFC, angry faces elicited more activation in adults during low relative to high cognitive load (2-back vs. 0-back). By contrast, happy faces elicited more activation in the amygdala in adolescents when they were task-relevant. Happy faces also generally increased nucleus accumbens activity (regardless of relevance) in adolescents relative to adults. Together, the findings are consistent with neurobiological models of adolescent brain development and identify neurodevelopmental differences in cognitive control emotion interactions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evaluating Health Information Systems Using Ontologies.

    PubMed

    Eivazzadeh, Shahryar; Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-06-16

    There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems-whether similar or heterogeneous-by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems.

  19. A numerical study of atmospheric perturbations induced by heat from a wildland fire: sensitivity to vertical canopy structure and heat source strength

    Treesearch

    Michael T. Kiefer; Shiyuan Zhong; Warren E. Heilman; Joseph J. Charney; Xindi Bian

    2018-01-01

    An improved understanding of atmospheric perturbations within and above a forest during a wildland fire has relevance to many aspects of wildland fires including fire spread, smoke transport and dispersion, and tree mortality. In this study, the ARPS-CANOPY model, a version of the Advanced Regional Prediction System (ARPS) model with a canopy parameterization, is...

  20. Capillary Discharge Thruster Experiments and Modeling (Briefing Charts)

    DTIC Science & Technology

    2016-06-01

    Martin1 ERC INC.1, IN-SPACE PROPULSION BRANCH, AIR FORCE RESEARCH LABORATORY EDWARDS AIR FORCE BASE, CA USA Electric propulsion systems June 2016... PROPULSION MODELS & EXPERIMENTS Spacecraft Propulsion Relevant Plasma: From hall thrusters to plumes and fluxes on components Complex reaction physics i.e... Propulsion Plumes FRC Chamber Environment R.S. MARTIN (ERC INC.) DISTRIBUTION A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED; PA# 16279 3 / 30 ELECTRIC

  1. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects.

    PubMed

    Colle, Ines J P; Lemmens, Lien; Knockaert, Griet; Van Loey, Ann; Hendrickx, Marc

    2016-08-17

    Kinetic models are important tools for process design and optimization to balance desired and undesired reactions taking place in complex food systems during food processing and preservation. This review covers the state of the art on kinetic models available to describe heat-induced conversion of carotenoids, in particular lycopene and β-carotene. First, relevant properties of these carotenoids are discussed. Second, some general aspects of kinetic modeling are introduced, including both empirical single-response modeling and mechanism-based multi-response modeling. The merits of multi-response modeling to simultaneously describe carotene degradation and isomerization are demonstrated. The future challenge in this research field lies in the extension of the current multi-response models to better approach the real reaction pathway and in the integration of kinetic models with mass transfer models in case of reaction in multi-phase food systems.

  2. Modeling In Vivo Interactions of Engineered Nanoparticles in the Pulmonary Alveolar Lining Fluid

    PubMed Central

    Mukherjee, Dwaipayan; Porter, Alexandra; Ryan, Mary; Schwander, Stephan; Chung, Kian Fan; Tetley, Teresa; Zhang, Junfeng; Georgopoulos, Panos

    2015-01-01

    Increasing use of engineered nanomaterials (ENMs) in consumer products may result in widespread human inhalation exposures. Due to their high surface area per unit mass, inhaled ENMs interact with multiple components of the pulmonary system, and these interactions affect their ultimate fate in the body. Modeling of ENM transport and clearance in vivo has traditionally treated tissues as well-mixed compartments, without consideration of nanoscale interaction and transformation mechanisms. ENM agglomeration, dissolution and transport, along with adsorption of biomolecules, such as surfactant lipids and proteins, cause irreversible changes to ENM morphology and surface properties. The model presented in this article quantifies ENM transformation and transport in the alveolar air to liquid interface and estimates eventual alveolar cell dosimetry. This formulation brings together established concepts from colloidal and surface science, physics, and biochemistry to provide a stochastic framework capable of capturing essential in vivo processes in the pulmonary alveolar lining layer. The model has been implemented for in vitro solutions with parameters estimated from relevant published in vitro measurements and has been extended here to in vivo systems simulating human inhalation exposures. Applications are presented for four different ENMs, and relevant kinetic rates are estimated, demonstrating an approach for improving human in vivo pulmonary dosimetry. PMID:26240755

  3. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional (animal-based) methods. A compendium of in vitro data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology. ‘Predictive DART’ will require an integrative strategy that mobilizes HTS data into in silico models that capture the relevant embryology. This lecture addresses progress on EPA's 'virtual embryo'. The question of how tissues and organs are shaped during development is crucial for understanding (and predicting) human birth defects. While ToxCast HTS data may predict developmental toxicity with reasonable accuracy, mechanistic models are still necessary to capture the relevant biology. Subtle microscopic changes induced chemically may amplify to an adverse outcome but coarse changes may override lesion propagation in any complex adaptive system. Modeling system dynamics in a developing tissue is a multiscale problem that challenges our ability to predict toxicity from in vitro profiling data (ToxCast/Tox21). (DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA). This was an invited seminar presentation to the National Institute for Public H

  4. Adaptive model-based control systems and methods for controlling a gas turbine

    NASA Technical Reports Server (NTRS)

    Brunell, Brent Jerome (Inventor); Mathews, Jr., Harry Kirk (Inventor); Kumar, Aditya (Inventor)

    2004-01-01

    Adaptive model-based control systems and methods are described so that performance and/or operability of a gas turbine in an aircraft engine, power plant, marine propulsion, or industrial application can be optimized under normal, deteriorated, faulted, failed and/or damaged operation. First, a model of each relevant system or component is created, and the model is adapted to the engine. Then, if/when deterioration, a fault, a failure or some kind of damage to an engine component or system is detected, that information is input to the model-based control as changes to the model, constraints, objective function, or other control parameters. With all the information about the engine condition, and state and directives on the control goals in terms of an objective function and constraints, the control then solves an optimization so the optimal control action can be determined and taken. This model and control may be updated in real-time to account for engine-to-engine variation, deterioration, damage, faults and/or failures using optimal corrective control action command(s).

  5. Pharmacokinetic–pharmacodynamic modelling in anaesthesia

    PubMed Central

    Gambús, Pedro L; Trocóniz, Iñaki F

    2015-01-01

    Anaesthesiologists adjust drug dosing, administration system and kind of drug to the characteristics of the patient. They then observe the expected response and adjust dosing to the specific requirements according to the difference between observed response, expected response and the context of the surgery and the patient. The approach above can be achieved because on one hand quantification technology has made significant advances allowing the anaesthesiologist to measure almost any effect by using noninvasive, continuous measuring systems. On the other the knowledge on the relations between dosing, concentration, biophase dynamics and effect as well as detection of variability sources has been achieved as being the benchmark specialty for pharmacokinetic–pharmacodynamic (PKPD) modelling. The aim of the review is to revisit the most common PKPD models applied in the field of anaesthesia (i.e. effect compartmental, turnover, drug–receptor binding and drug interaction models) through representative examples. The effect compartmental model has been widely used in this field and there are multiple applications and examples. The use of turnover models has been limited mainly to describe respiratory effects. Similarly, cases in which the dissociation process of the drug–receptor complex is slow compared with other processes relevant to the time course of the anaesthetic effect are not frequent in anaesthesia, where in addition to a rapid onset, a fast offset of the response is required. With respect to the characterization of PD drug interactions different response surface models are discussed. Relevant applications that have changed the way modern anaesthesia is practiced are also provided. PMID:24251846

  6. DEMONSTRATION OF LEACHXS/ORCHESTRA CAPABILITIES BY SIMULATING CONSTITUENT RELEASE FROM A CEMENTITIOUS WASTE FORM IN A REINFORCED CONCRETE VAULT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Meeussen, J.; Sloot, H.

    2010-03-31

    The objective of the work described in this report is to demonstrate the capabilities of the current version of LeachXS{trademark}/ORCHESTRA for simulating chemical behavior and constituent release processes in a range of applications that are relevant to the CBP. This report illustrates the use of LeachXS{trademark}/ORCHESTRA for the following applications: (1) Comparing model and experimental results for leaching tests for a range of cementitious materials including cement mortars, grout, stabilized waste, and concrete. The leaching test data includes liquid-solid partitioning as a function of pH and release rates based on laboratory column, monolith, and field testing. (2) Modeling chemical speciationmore » of constituents in cementitious materials, including liquid-solid partitioning and release rates. (3) Evaluating uncertainty in model predictions based on uncertainty in underlying composition, thermodynamic, and transport characteristics. (4) Generating predominance diagrams to evaluate predicted chemical changes as a result of material aging using the example of exposure to atmospheric conditions. (5) Modeling coupled geochemical speciation and diffusion in a three layer system consisting of a layer of Saltstone, a concrete barrier, and a layer of soil in contact with air. The simulations show developing concentration fronts over a time period of 1000 years. (6) Modeling sulfate attack and cracking due to ettringite formation. A detailed example for this case is provided in a separate article by the authors (Sarkar et al. 2010). Finally, based on the computed results, the sensitive input parameters for this type of modeling are identified and discussed. The chemical speciation behavior of substances is calculated for a batch system and also in combination with transport and within a three layer system. This includes release from a barrier to the surrounding soil as a function of time. As input for the simulations, the physical and chemical properties of the materials are used. The test cases used in this demonstration are taken from Reference Cases for Use in the Cementitious Barriers Partnership (Langton et al. 2009). Before it is possible to model the release of substances from stabilized waste or radioactive grout through a cement barrier into the engineered soil barrier or natural soil, the relevant characteristics of such materials must be known. Additional chemical characteristics are needed for mechanistic modeling to be undertaken, not just the physical properties relevant for modeling of transport. The minimum required properties for modeling are given in Section 5.0, 'Modeling the chemical speciation of a material'.« less

  7. High Pressure Cosmochemistry of Major Planetary Interiors: Laboratory Studies of the Water-rich Region of the System Ammonia-water

    NASA Technical Reports Server (NTRS)

    Nicol, M.; Johnson, M.; Koumvakalis, A. S.

    1985-01-01

    The behavior of gas-ice mixtures in major planets at very high pressures was studied. Some relevant pressure-temperature-composition (P-T-X) regions of the hydrogen (H2)-helium (He)-water (H2O-ammonia (NH3)-methane (CH4) phase diagram were determined. The studies, and theoretical model, of the relevant phases, are needed to interpret the compositions of ice-gas systems at conditions of planetary interest. The compositions and structures of a multiphase, multicomponent system at very high pressures care characterized, and the goal is to characterize this system over a wide range of low and high temperatures. The NH3-H2O compositions that are relevant to planetary problems yet are easy to prepare were applied. The P-T surface of water was examined and the corresponding surface for NH3 was determined. The T-X diagram of ammonia-water at atmospheric pressure was studied and two water-rich phases were found, NH3-2H2O (ammonia dihydrate), which melts incongruently, and NH3.H2O (ammonia monohydrate), which is nonstoichiometric and melts at a higher temperature than the dihydrate. It is suggested that a P-T surface at approximately the monohydrate composition and the P-X surface at room temperature is determined.

  8. THERMODYNAMICS OF FE-CU ALLOYS AS DESCRIBED BY A CLASSIC POTENTIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caro, A; Caro, M; Lopasso, E M

    2005-04-14

    The Fe-Cu system is of relevance to the nuclear industry because of the deleterious consequences of Cu precipitates in the mechanical properties of Fe. Several sets of classical potentials are used in molecular dynamics simulations studies of this system, in particular that proposed by Ludwig et al. (Modelling Simul. Mater. Sci. Eng. 6, 19 (1998)). In this work we extract thermodynamic information from this interatomic potentials. We obtain equilibrium phase diagram and find a reasonable agreement with the experimental phases in the regions of relevance to radiation damage studies. We compare the results with the predicted phase diagram based onmore » other potential, as calculated in previous work. We discuss the disagreements found between the phase diagram calculated here and experimental results, focusing on the pure components and discuss the applicability of these potentials; finally we suggest an approach to improve existing potentials for this system.« less

  9. Compositional descriptor-based recommender system for the materials discovery

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao

    2018-06-01

    Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.

  10. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction.

    PubMed

    Kiehl, Kent A

    2006-06-15

    Psychopathy is a complex personality disorder that includes interpersonal and affective traits such as glibness, lack of empathy, guilt or remorse, shallow affect, and irresponsibility, and behavioral characteristics such as impulsivity, poor behavioral control, and promiscuity. Much is known about the assessment of psychopathy; however, relatively little is understood about the relevant brain disturbances. The present review integrates data from studies of behavioral and cognitive changes associated with focal brain lesions or insults and results from psychophysiology, cognitive psychology and cognitive and affective neuroscience in health and psychopathy. The review illustrates that the brain regions implicated in psychopathy include the orbital frontal cortex, insula, anterior and posterior cingulate, amygdala, parahippocampal gyrus, and anterior superior temporal gyrus. The relevant functional neuroanatomy of psychopathy thus includes limbic and paralimbic structures that may be collectively termed 'the paralimbic system'. The paralimbic system dysfunction model of psychopathy is discussed as it relates to the extant literature on psychopathy.

  11. GillesPy: A Python Package for Stochastic Model Building and Simulation.

    PubMed

    Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R

    2016-09-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.

  12. GillesPy: A Python Package for Stochastic Model Building and Simulation

    PubMed Central

    Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.

    2017-01-01

    GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888

  13. Recent Advances in Transferable Coarse-Grained Modeling of Proteins

    PubMed Central

    Kar, Parimal; Feig, Michael

    2017-01-01

    Computer simulations are indispensable tools for studying the structure and dynamics of biological macromolecules. Biochemical processes occur on different scales of length and time. Atomistic simulations cannot cover the relevant spatiotemporal scales at which the cellular processes occur. To address this challenge, coarse-grained (CG) modeling of the biological systems are employed. Over the last few years, many CG models for proteins continue to be developed. However, many of them are not transferable with respect to different systems and different environments. In this review, we discuss those CG protein models that are transferable and that retain chemical specificity. We restrict ourselves to CG models of soluble proteins only. We also briefly review recent progress made in the multi-scale hybrid all-atom/coarse-grained simulations of proteins. PMID:25443957

  14. The development of a 3D immunocompetent model of human skin.

    PubMed

    Chau, David Y S; Johnson, Claire; MacNeil, Sheila; Haycock, John W; Ghaemmaghami, Amir M

    2013-09-01

    As the first line of defence, skin is regularly exposed to a variety of biological, physical and chemical insults. Therefore, determining the skin sensitization potential of new chemicals is of paramount importance from the safety assessment and regulatory point of view. Given the questionable biological relevance of animal models to human as well as ethical and regulatory pressure to limit or stop the use of animal models for safety testing, there is a need for developing simple yet physiologically relevant models of human skin. Herein, we describe the construction of a novel immunocompetent 3D human skin model comprising of dendritic cells co-cultured with keratinocytes and fibroblasts. This model culture system is simple to assemble with readily-available components and importantly, can be separated into its constitutive individual layers to allow further insight into cell-cell interactions and detailed studies of the mechanisms of skin sensitization. In this study, using non-degradable microfibre scaffolds and a cell-laden gel, we have engineered a multilayer 3D immunocompetent model comprised of keratinocytes and fibroblasts that are interspersed with dendritic cells. We have characterized this model using a combination of confocal microscopy, immuno-histochemistry and scanning electron microscopy and have shown differentiation of the epidermal layer and formation of an epidermal barrier. Crucially the immune cells in the model are able to migrate and remain responsive to stimulation with skin sensitizers even at low concentrations. We therefore suggest this new biologically relevant skin model will prove valuable in investigating the mechanisms of allergic contact dermatitis and other skin pathologies in human. Once fully optimized, this model can also be used as a platform for testing the allergenic potential of new chemicals and drug leads.

  15. The Biopsychosocial-Digital Approach to Health and Disease: Call for a Paradigm Expansion.

    PubMed

    Ahmadvand, Alireza; Gatchel, Robert; Brownstein, John; Nissen, Lisa

    2018-05-18

    Digital health is an advancing phenomenon in modern health care systems. Currently, numerous stakeholders in various countries are evaluating the potential benefits of digital health solutions at the individual, population, and/or organizational levels. Additionally, driving factors are being created from the customer-side of the health care systems to push health care providers, policymakers, or researchers to embrace digital health solutions. However, health care providers may differ in their approach to adopt these solutions. Health care providers are not assumed to be appropriately trained to address the requirements of integrating digital health solutions into daily everyday practices and procedures. To adapt to the changing demands of health care systems, it is necessary to expand relevant paradigms and to train human resources as required. In this article, a more comprehensive paradigm will be proposed, based on the 'biopsychosocial model' of assessing health and disease, originally introduced by George L Engel. The "biopsychosocial model" must be leveraged to include a "digital" component, thus suggesting a 'biopsychosocial-digital' approach to health and disease. Modifications to the "biopsychosocial" model and transition to the "biopsychosocial-digital" model are explained. Furthermore, the emerging implications of understanding health and disease are clarified pertaining to their relevance in training human resources for health care provision and research. ©Alireza Ahmadvand, Robert Gatchel, John Brownstein, Lisa Nissen. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 18.05.2018.

  16. wayGoo recommender system: personalized recommendations for events scheduling, based on static and real-time information

    NASA Astrophysics Data System (ADS)

    Thanos, Konstantinos-Georgios; Thomopoulos, Stelios C. A.

    2016-05-01

    wayGoo is a fully functional application whose main functionalities include content geolocation, event scheduling, and indoor navigation. However, significant information about events do not reach users' attention, either because of the size of this information or because some information comes from real - time data sources. The purpose of this work is to facilitate event management operations by prioritizing the presented events, based on users' interests using both, static and real - time data. Through the wayGoo interface, users select conceptual topics that are interesting for them. These topics constitute a browsing behavior vector which is used for learning users' interests implicitly, without being intrusive. Then, the system estimates user preferences and return an events list sorted from the most preferred one to the least. User preferences are modeled via a Naïve Bayesian Network which consists of: a) the `decision' random variable corresponding to users' decision on attending an event, b) the `distance' random variable, modeled by a linear regression that estimates the probability that the distance between a user and each event destination is not discouraging, ` the seat availability' random variable, modeled by a linear regression, which estimates the probability that the seat availability is encouraging d) and the `relevance' random variable, modeled by a clustering - based collaborative filtering, which determines the relevance of each event users' interests. Finally, experimental results show that the proposed system contribute essentially to assisting users in browsing and selecting events to attend.

  17. Analysis of inter-country input-output table based on citation network: How to measure the competition and collaboration between industrial sectors on the global value chain

    PubMed Central

    2017-01-01

    The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization. PMID:28873432

  18. Analysis of inter-country input-output table based on citation network: How to measure the competition and collaboration between industrial sectors on the global value chain.

    PubMed

    Xing, Lizhi

    2017-01-01

    The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization.

  19. Knowledge management systems success in healthcare: Leadership matters.

    PubMed

    Ali, Nor'ashikin; Tretiakov, Alexei; Whiddett, Dick; Hunter, Inga

    2017-01-01

    To deliver high-quality healthcare doctors need to access, interpret, and share appropriate and localised medical knowledge. Information technology is widely used to facilitate the management of this knowledge in healthcare organisations. The purpose of this study is to develop a knowledge management systems success model for healthcare organisations. A model was formulated by extending an existing generic knowledge management systems success model by including organisational and system factors relevant to healthcare. It was tested by using data obtained from 263 doctors working within two district health boards in New Zealand. Of the system factors, knowledge content quality was found to be particularly important for knowledge management systems success. Of the organisational factors, leadership was the most important, and more important than incentives. Leadership promoted knowledge management systems success primarily by positively affecting knowledge content quality. Leadership also promoted knowledge management use for retrieval, which should lead to the use of that better quality knowledge by the doctors, ultimately resulting in better outcomes for patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Metabolic Mapping of Breast Cancer with Multiphoton Spectral and Lifetime Imaging

    DTIC Science & Technology

    2007-03-01

    spectral and lifetime characterization of NADH may be used to reveal metabolic changes in vivo and has potential to be used as an early diagnostic...combined spectral lifetime imaging modality will help for 5 characterization of breast cancer cells from cell culture based models to a relevant in... spectral and lifetime system and integrated into a multiphoton fluorescence excitation microscopy system 7 • Calibrated and characterized this

  1. Solar-terrestrial research for the 1980's

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solar-terrestrial system is described. Techniques for observations involving all relevant platforms: spacecraft, the Earth's surface, aircraft, balloons, and rockets are proposed. The need for interagency coordination of programs, efficient data management, theoretical studies and modeling, the continuity of long time series observations, and innovative instrument design is emphasized. Examples of the practical impact of interactions between solar terrestrial phenomena and the environment, including technological systems are presented.

  2. Improving patient safety incident reporting systems by focusing upon feedback - lessons from English and Welsh trusts.

    PubMed

    Wallace, Louise M; Spurgeon, Peter; Benn, Jonathan; Koutantji, Maria; Vincent, Charles

    2009-08-01

    This paper describes practical implications and learning from a multi-method study of feedback from patient safety incident reporting systems. The study was performed using the Safety Action and Information Feedback from Incident Reporting model, a model of the requirements of the feedback element of a patient safety incident reporting and learning system, derived from a scoping review of research and expert advice from world leaders in safety in high-risk industries. We present the key findings of the studies conducted in the National Health Services (NHS) trusts in England and Wales in 2006. These were a survey completed by risk managers for 351 trusts in England and Wales, three case studies including interviews with staff concerning an example of good practice feedback and an audit of 90 trusts clinical risk staff newsletters. We draw on an Expert Workshop that included 71 experts from the NHS, from regulatory bodies in health care, Royal Colleges, Health and Safety Executive and safety agencies in health care and high-risk industries (commercial aviation, rail and maritime industries). We draw recommendations of enduring relevance to the UK NHS that can be used by trust staff to improve their systems. The recommendations will be of relevance in general terms to health services worldwide.

  3. Modeling population exposures to silver nanoparticles present in consumer products

    NASA Astrophysics Data System (ADS)

    Royce, Steven G.; Mukherjee, Dwaipayan; Cai, Ting; Xu, Shu S.; Alexander, Jocelyn A.; Mi, Zhongyuan; Calderon, Leonardo; Mainelis, Gediminas; Lee, KiBum; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Georgopoulos, Panos G.

    2014-11-01

    Exposures of the general population to manufactured nanoparticles (MNPs) are expected to keep rising due to increasing use of MNPs in common consumer products (PEN 2014). The present study focuses on characterizing ambient and indoor population exposures to silver MNPs (nAg). For situations where detailed, case-specific exposure-related data are not available, as in the present study, a novel tiered modeling system, Prioritization/Ranking of Toxic Exposures with GIS (geographic information system) Extension (PRoTEGE), has been developed: it employs a product life cycle analysis (LCA) approach coupled with basic human life stage analysis (LSA) to characterize potential exposures to chemicals of current and emerging concern. The PRoTEGE system has been implemented for ambient and indoor environments, utilizing available MNP production, usage, and properties databases, along with laboratory measurements of potential personal exposures from consumer spray products containing nAg. Modeling of environmental and microenvironmental levels of MNPs employs probabilistic material flow analysis combined with product LCA to account for releases during manufacturing, transport, usage, disposal, etc. Human exposure and dose characterization further employ screening microenvironmental modeling and intake fraction methods combined with LSA for potentially exposed populations, to assess differences associated with gender, age, and demographics. Population distributions of intakes, estimated using the PRoTEGE framework, are consistent with published individual-based intake estimates, demonstrating that PRoTEGE is capable of capturing realistic exposure scenarios for the US population. Distributions of intakes are also used to calculate biologically relevant population distributions of uptakes and target tissue doses through human airway dosimetry modeling that takes into account product MNP size distributions and age-relevant physiological parameters.

  4. Knowledge Representation and Ontologies

    NASA Astrophysics Data System (ADS)

    Grimm, Stephan

    Knowledge representation and reasoning aims at designing computer systems that reason about a machine-interpretable representation of the world. Knowledge-based systems have a computational model of some domain of interest in which symbols serve as surrogates for real world domain artefacts, such as physical objects, events, relationships, etc. [1]. The domain of interest can cover any part of the real world or any hypothetical system about which one desires to represent knowledge for com-putational purposes. A knowledge-based system maintains a knowledge base, which stores the symbols of the computational model in the form of statements about the domain, and it performs reasoning by manipulating these symbols. Applications can base their decisions on answers to domain-relevant questions posed to a knowledge base.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kienhuis, Anne S., E-mail: anne.kienhuis@rivm.nl; RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen; Netherlands Toxicogenomics Centre

    Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is usedmore » to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.« less

  6. Game-powered machine learning

    PubMed Central

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-01-01

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the “wisdom of the crowds.” Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., “funky jazz with saxophone,” “spooky electronica,” etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data. PMID:22460786

  7. Game-powered machine learning.

    PubMed

    Barrington, Luke; Turnbull, Douglas; Lanckriet, Gert

    2012-04-24

    Searching for relevant content in a massive amount of multimedia information is facilitated by accurately annotating each image, video, or song with a large number of relevant semantic keywords, or tags. We introduce game-powered machine learning, an integrated approach to annotating multimedia content that combines the effectiveness of human computation, through online games, with the scalability of machine learning. We investigate this framework for labeling music. First, a socially-oriented music annotation game called Herd It collects reliable music annotations based on the "wisdom of the crowds." Second, these annotated examples are used to train a supervised machine learning system. Third, the machine learning system actively directs the annotation games to collect new data that will most benefit future model iterations. Once trained, the system can automatically annotate a corpus of music much larger than what could be labeled using human computation alone. Automatically annotated songs can be retrieved based on their semantic relevance to text-based queries (e.g., "funky jazz with saxophone," "spooky electronica," etc.). Based on the results presented in this paper, we find that actively coupling annotation games with machine learning provides a reliable and scalable approach to making searchable massive amounts of multimedia data.

  8. [Integrated Quality Management System (IQMS): a model for improving the quality of reproductive health care in rural Kenya].

    PubMed

    Herrler, Claudia; Bramesfeld, Anke; Brodowski, Marc; Prytherch, Helen; Marx, Irmgard; Nafula, Maureen; Richter-Aairijoki, Heide; Musyoka, Lucy; Marx, Michael; Szecsenyi, Joachim

    2015-01-01

    To develop a model aiming to improve the quality of services for reproductive health care in rural Kenya and designed to measure the quality of reproductive health services in such a way that allows these services to identify measures for improving their performance. The Integrated Quality Management System (IQMS) was developed on the basis of a pre-existing and validated model for quality promotion, namely the European Practice Assessment (EPA). The methodology for quality assessment and feedback of assessment results to the service teams was adopted from the EPA model. Quality assessment methodology included data assessment through staff, patient surveys and service visitation. Quality is assessed by indicators, and so indicators had to be developed that were appropriate for assessing reproductive health care in rural Kenya. A search of the Kenyan and international literature was conducted to identify potential indicators. These were then rated for their relevance and clarity by a panel of Kenyan experts. 260 indicators were rated as relevant and assigned to 29 quality dimensions and 5 domains. The implementation of IQMS in ten facilities showed that IQMS is a feasible model for assessing the quality of reproductive health services in rural Kenya. IQMS enables these services to identify quality improvement targets and necessary improvement measures. Both strengths and limitations of IQMS will be discussed. Copyright © 2015. Published by Elsevier GmbH.

  9. Efficient solvers for coupled models in respiratory mechanics.

    PubMed

    Verdugo, Francesc; Roth, Christian J; Yoshihara, Lena; Wall, Wolfgang A

    2017-02-01

    We present efficient preconditioners for one of the most physiologically relevant pulmonary models currently available. Our underlying motivation is to enable the efficient simulation of such a lung model on high-performance computing platforms in order to assess mechanical ventilation strategies and contributing to design more protective patient-specific ventilation treatments. The system of linear equations to be solved using the proposed preconditioners is essentially the monolithic system arising in fluid-structure interaction (FSI) extended by additional algebraic constraints. The introduction of these constraints leads to a saddle point problem that cannot be solved with usual FSI preconditioners available in the literature. The key ingredient in this work is to use the idea of the semi-implicit method for pressure-linked equations (SIMPLE) for getting rid of the saddle point structure, resulting in a standard FSI problem that can be treated with available techniques. The numerical examples show that the resulting preconditioners approach the optimal performance of multigrid methods, even though the lung model is a complex multiphysics problem. Moreover, the preconditioners are robust enough to deal with physiologically relevant simulations involving complex real-world patient-specific lung geometries. The same approach is applicable to other challenging biomedical applications where coupling between flow and tissue deformations is modeled with additional algebraic constraints. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  11. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  12. USE OF A CONVECTION-DIFFUSION MODEL TO UNDERSTAND GASTROINTESTINAL ABSORPTION OF ENVIRONMENTALLY-RELEVANT CHEMICALS

    EPA Science Inventory

    Understanding the factors that affect the gastrointestinal absorption of chemicals is important to predicting the delivered systemic dose of chemicals following exposure in food, water, and other media. Two factors of particular interest are the effects of a matrix to which th...

  13. Human Behavior Drift Detection in a Smart Home Environment.

    PubMed

    Masciadri, Andrea; Trofimova, Anna A; Matteucci, Matteo; Salice, Fabio

    2017-01-01

    The proposed system aims at elderly people independent living by providing an early indicator of habits changes which might be relevant for a diagnosis of diseases. It relies on Hidden Markov Model to describe the behavior observing sensors data, while Likelihood Ratio Test gives the variation within different time periods.

  14. Prospects: the tomato genome as a cornerstone for gene discovery

    USDA-ARS?s Scientific Manuscript database

    Those involved in the international tomato genome sequencing effort contributed to not only the development of an important genome sequence relevant to a major economic and nutritional crop, but also to the tomato experimental system as a model for plant biology. Without question, prior seminal work...

  15. Greening of Business Schools: A Systemic View

    ERIC Educational Resources Information Center

    Jabbour, Charbel Jose Chiappetta

    2010-01-01

    Purpose: The purpose of this paper is to present a model for the analysis of business schools as creators, disseminators, and adopters of knowledge on environmental management. Design/methodology/approach: A review of the importance of higher education institutions for sustainability, and more specifically, about their relevance for the creation,…

  16. Building Ecology & School Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    To better understand construction's impact, an overview of building ecology as a concept and as a decision-making model for school systems is provided. "Building ecology" is defined as the interrelationships among people, the built environment, and the natural environment. It has special relevance for school design because most of the…

  17. Uncovering the Dark Energy of Aging.

    PubMed

    Melov, Simon

    2016-10-26

    A medically relevant understanding of aging requires an appreciation for how time degrades specific, healthy features of individual organisms over the course of their lives. Zach Pincus and colleagues make a key step in this direction, using C. elegans as a model system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Extending the Educational Planning Discourse: Conceptual and Paradigmatic Explorations.

    ERIC Educational Resources Information Center

    Adams, Don

    1988-01-01

    Argues that rational, functionalist models of educational planning that conceptualize decision-making as an algorithmic process are relevant to a limited number of educational problems. Suggests that educational questions pertaining to goals, needs, equity, and quality must be solved with soft systems thinking and its interpretivist and relativist…

  19. Development of physiologically based toxicokinetic (PBTK) models for fish: Confessions of a former fish physiologist

    EPA Science Inventory

    Abstract: In toxicology, as in pharmacology, the fundamental paradigm used to describe chemical interactions with biological systems is the dose-response relationship. Depending on the chemical mode of action, however, the relevant expression of dose may any one of several metri...

  20. Data-Driven Decision Making in Community Colleges: An Integrative Model for Institutional Effectiveness

    ERIC Educational Resources Information Center

    Callery, Claude Adam

    2012-01-01

    This qualitative study identified the best practices utilized by community colleges to achieve systemic and cultural agreement in support of the integration of institutional effectiveness measures (key performance indicators) to inform decision making. In addition, the study identifies the relevant motives, organizational structure, and processes…

  1. 75 FR 26266 - National Cancer Institute (NCI); National Institute of Allergy and Infectious Diseases (NIAID...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-11

    ... collaboration with the Lupus Foundation of America, Washington, DC, will hold a scientific conference. Title: ``Systemic Lupus Erythematosus: From Mouse Models to Human Disease and Treatment.'' Dates: September 2-3... disease relevant to lupus together with clinicians treating lupus patients. There are numerous mouse...

  2. An Educational Rehabilitation of Apprenticeship Learning? Draft.

    ERIC Educational Resources Information Center

    Kvale, Steinar

    This paper explores the relevancy of apprenticeships for professional training. While often neglected in current educational theory, apprenticeship training is common in the arts and in the mentoring and supervision of professionals. The apprenticeship model may provide solutions for some of the problems of the current educational system such as…

  3. Metaphor, computing systems, and active learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, J.M.; Mack, R.L.

    1982-01-01

    The authors discuss the learning process that is directed towards particular goals and is initiated by the learner, through which metaphors become relevant and effective in learning. This allows an analysis of metaphors that explains why metaphors are incomplete and open-ended, and how this stimulates the construction of mental models. 9 references.

  4. Suicide Career: A Young Woman's Story in Phenomenological Perspective.

    ERIC Educational Resources Information Center

    Babow, Irving; Rowe, Robin

    1993-01-01

    Presents case study of suicidal woman diagnosed as catatonic schizophrenic in state mental hospital. Account reveals much about woman's life history, suicide career, problems of living, needs for help, and perceptions of relevant systems. Proposed model would use parts of patient's story for preventive intervention regarding suicidal behavior and…

  5. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics

    USDA-ARS?s Scientific Manuscript database

    Despite the enormous relevance of zoonotic infections to world-wide public health, and despite much effort in modeling individual zoonoses, a fundamental understanding of the disease dynamics and the nature of outbreaks emanating from such a complex system is still lacking. We introduce a simple sto...

  6. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling.

    PubMed

    Lorenz, Carmen; Prigione, Alessandro

    2017-12-01

    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders. Copyright © 2017. Published by Elsevier Ltd.

  7. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press. With a CD: data, software, guides. (2009). 2. Kanevski M. Spatial Predictions of Soil Contamination Using General Regression Neural Networks. Systems Research and Information Systems, Volume 8, number 4, 1999. 3. Robert S., Foresti L., Kanevski M. Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. International Journal of Climatology, 33 pp. 1793-1804, 2013.

  8. Quantum simulation of strongly correlated condensed matter systems

    NASA Astrophysics Data System (ADS)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  9. Disability Policy Evaluation: Combining Logic Models and Systems Thinking.

    PubMed

    Claes, Claudia; Ferket, Neelke; Vandevelde, Stijn; Verlet, Dries; De Maeyer, Jessica

    2017-07-01

    Policy evaluation focuses on the assessment of policy-related personal, family, and societal changes or benefits that follow as a result of the interventions, services, and supports provided to those persons to whom the policy is directed. This article describes a systematic approach to policy evaluation based on an evaluation framework and an evaluation process that combine the use of logic models and systems thinking. The article also includes an example of how the framework and process have recently been used in policy development and evaluation in Flanders (Belgium), as well as four policy evaluation guidelines based on relevant published literature.

  10. Modeling Off-Nominal Behavior in SysML

    NASA Technical Reports Server (NTRS)

    Day, John; Donahue, Kenny; Ingham, Mitch; Kadesch, Alex; Kennedy, Kit; Post, Ethan

    2012-01-01

    Fault Management is an essential part of the system engineering process that is limited in its effectiveness by the ad hoc nature of the applied approaches and methods. Providing a rigorous way to develop and describe off-nominal behavior is a necessary step in the improvement of fault management, and as a result, will enable safe, reliable and available systems even as system complexity increases... The basic concepts described in this paper provide a foundation to build a larger set of necessary concepts and relationships for precise modeling of off-nominal behavior, and a basis for incorporating these ideas into the overall systems engineering process.. The simple FMEA example provided applies the modeling patterns we have developed and illustrates how the information in the model can be used to reason about the system and derive typical fault management artifacts.. A key insight from the FMEA work was the utility of defining failure modes as the "inverse of intent", and deriving this from the behavior models.. Additional work is planned to extend these ideas and capabilities to other types of relevant information and additional products.

  11. An Overview of the NASA Aviation Safety Program (AVSP) Systemwide Accident Prevention (SWAP) Human Performance Modeling (HPM) Element

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Goodman, Allen; Hooley, Becky L.

    2003-01-01

    An overview is provided of the Human Performance Modeling (HPM) element within the NASA Aviation Safety Program (AvSP). Two separate model development tracks for performance modeling of real-world aviation environments are described: the first focuses on the advancement of cognitive modeling tools for system design, while the second centers on a prescriptive engineering model of activity tracking for error detection and analysis. A progressive implementation strategy for both tracks is discussed in which increasingly more complex, safety-relevant applications are undertaken to extend the state-of-the-art, as well as to reveal potential human-system vulnerabilities in the aviation domain. Of particular interest is the ability to predict the precursors to error and to assess potential mitigation strategies associated with the operational use of future flight deck technologies.

  12. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  13. Evaluating Health Information Systems Using Ontologies

    PubMed Central

    Anderberg, Peter; Larsson, Tobias C; Fricker, Samuel A; Berglund, Johan

    2016-01-01

    Background There are several frameworks that attempt to address the challenges of evaluation of health information systems by offering models, methods, and guidelines about what to evaluate, how to evaluate, and how to report the evaluation results. Model-based evaluation frameworks usually suggest universally applicable evaluation aspects but do not consider case-specific aspects. On the other hand, evaluation frameworks that are case specific, by eliciting user requirements, limit their output to the evaluation aspects suggested by the users in the early phases of system development. In addition, these case-specific approaches extract different sets of evaluation aspects from each case, making it challenging to collectively compare, unify, or aggregate the evaluation of a set of heterogeneous health information systems. Objectives The aim of this paper is to find a method capable of suggesting evaluation aspects for a set of one or more health information systems—whether similar or heterogeneous—by organizing, unifying, and aggregating the quality attributes extracted from those systems and from an external evaluation framework. Methods On the basis of the available literature in semantic networks and ontologies, a method (called Unified eValuation using Ontology; UVON) was developed that can organize, unify, and aggregate the quality attributes of several health information systems into a tree-style ontology structure. The method was extended to integrate its generated ontology with the evaluation aspects suggested by model-based evaluation frameworks. An approach was developed to extract evaluation aspects from the ontology that also considers evaluation case practicalities such as the maximum number of evaluation aspects to be measured or their required degree of specificity. The method was applied and tested in Future Internet Social and Technological Alignment Research (FI-STAR), a project of 7 cloud-based eHealth applications that were developed and deployed across European Union countries. Results The relevance of the evaluation aspects created by the UVON method for the FI-STAR project was validated by the corresponding stakeholders of each case. These evaluation aspects were extracted from a UVON-generated ontology structure that reflects both the internally declared required quality attributes in the 7 eHealth applications of the FI-STAR project and the evaluation aspects recommended by the Model for ASsessment of Telemedicine applications (MAST) evaluation framework. The extracted evaluation aspects were used to create questionnaires (for the corresponding patients and health professionals) to evaluate each individual case and the whole of the FI-STAR project. Conclusions The UVON method can provide a relevant set of evaluation aspects for a heterogeneous set of health information systems by organizing, unifying, and aggregating the quality attributes through ontological structures. Those quality attributes can be either suggested by evaluation models or elicited from the stakeholders of those systems in the form of system requirements. The method continues to be systematic, context sensitive, and relevant across a heterogeneous set of health information systems. PMID:27311735

  14. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Integration of systems biology with organs-on-chips to humanize therapeutic development

    NASA Astrophysics Data System (ADS)

    Edington, Collin D.; Cirit, Murat; Chen, Wen Li Kelly; Clark, Amanda M.; Wells, Alan; Trumper, David L.; Griffith, Linda G.

    2017-02-01

    "Mice are not little people" - a refrain becoming louder as the gaps between animal models and human disease become more apparent. At the same time, three emerging approaches are headed toward integration: powerful systems biology analysis of cell-cell and intracellular signaling networks in patient-derived samples; 3D tissue engineered models of human organ systems, often made from stem cells; and micro-fluidic and meso-fluidic devices that enable living systems to be sustained, perturbed and analyzed for weeks in culture. Integration of these rapidly moving fields has the potential to revolutionize development of therapeutics for complex, chronic diseases, including those that have weak genetic bases and substantial contributions from gene-environment interactions. Technical challenges in modeling complex diseases with "organs on chips" approaches include the need for relatively large tissue masses and organ-organ cross talk to capture systemic effects, such that current microfluidic formats often fail to capture the required scale and complexity for interconnected systems. These constraints drive development of new strategies for designing in vitro models, including perfusing organ models, as well as "mesofluidic" pumping and circulation in platforms connecting several organ systems, to achieve the appropriate physiological relevance.

  16. Origin of Complexity in Multicellular Organisms

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2000-06-01

    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a ``cooperative'' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave ``selfishly.'' The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multipotency of stem cells.

  17. European Union health policy and its implications for national convergence.

    PubMed

    Cucic, S

    2000-06-01

    This paper explores the relevance for health care of European Union (EU) legislation, regulation and policies. Reports, communications and other materials of the European Commission and other relevant European bodies are screened for their implications for health care, primarily on the national health system level. The paper provides a brief overview of EU history and its main institutions, followed by an analysis of health (care)-related provisions in the EU's main legal documents--its treaties. The impact of the EU actions on health protection is considered with regard to both actions in the field of public health and health protection requirements in its policies. In the public health area, information systems that are now being developed are discussed, followed by an outline of health protection requirements in EU policies that can have an impact on health systems. These policies are then analysed using the political factions model. Finally an attempt is made to predict future developments, stressing the need for a far-reaching synchronization of national systems.

  18. Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems

    NASA Astrophysics Data System (ADS)

    Curry, Dennis; Cameron, Amanda; MacDonald, Bruce; Nganou, Collins; Scheller, Hope; Marsh, James; Beale, Stefanie; Lu, Mingsheng; Shan, Zhi; Kaliaperumal, Rajendran; Xu, Heping; Servos, Mark; Bennett, Craig; Macquarrie, Stephanie; Oakes, Ken D.; Mkandawire, Martin; Zhang, Xu

    2015-11-01

    Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates.Gold nanomaterials have received great interest for their use in cancer theranostic applications over the past two decades. Many gold nanoparticle-based drug delivery system designs rely on adsorbed ligands such as DNA or cleavable linkers to load therapeutic cargo. The heightened research interest was recently demonstrated in the simple design of nanoparticle-drug conjugates wherein drug molecules are directly adsorbed onto the as-synthesized nanoparticle surface. The potent chemotherapeutic, doxorubicin often serves as a model drug for gold nanoparticle-based delivery platforms; however, the specific interaction facilitating adsorption in this system remains understudied. Here, for the first time, we propose empirical and theoretical evidence suggestive of the main adsorption process where (1) hydrophobic forces drive doxorubicin towards the gold nanoparticle surface before (2) cation-π interactions and gold-carbonyl coordination between the drug molecule and the cations on AuNP surface facilitate DOX adsorption. In addition, biologically relevant compounds, such as serum albumin and glutathione, were shown to enhance desorption of loaded drug molecules from AuNP at physiologically relevant concentrations, providing insight into the drug release and in vivo stability of such drug conjugates. Electronic supplementary information (ESI) available: DOX-AuNP absorption spectra and colored solution images, citrate displacement data, original DOX-AuNP loading isotherm, XPS data and TEM micrographs, modelling data. See DOI: 10.1039/c5nr05826k

  19. The Dirac-Moshinsky oscillator coupled to an external field and its connection to quantum optics

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Sadurní, Emerson; Seligman, Thomas H.

    2010-12-01

    The Dirac-Moshinsky oscillator is an elegant example of an exactly solvable quantum relativistic model that under certain circumstances can be mapped onto the Jaynes-Cummings model in quantum optics. In this work we show, how to do this in detail. Then we extend it by considering its coupling with an external (isospin) field and find the conditions that maintain solvability. We use this extended system to explore entanglement in relativistic systems and then identify its quantum optical analog: two different atoms interacting with an electromagnetic mode. We show different aspects of entanglement which gain relevance in this last system, which can be used to emulate the former.

  20. Calibration of the computer model describing flows in the water supply system; example of the application of a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Orłowska-Szostak, Maria; Orłowski, Ryszard

    2017-11-01

    The paper discusses some relevant aspects of the calibration of a computer model describing flows in the water supply system. The authors described an exemplary water supply system and used it as a practical illustration of calibration. A range of measures was discussed and applied, which improve the convergence and effective use of calculations in the calibration process and also the effect of such calibration which is the validity of the results obtained. Drawing up results of performed measurements, i.e. estimating pipe roughnesses, the authors performed using the genetic algorithm implementation of which is a software developed by Resan Labs company from Brazil.

  1. A portal for the ocean biogeographic information system

    USGS Publications Warehouse

    Zhang, Yunqing; Grassle, J. F.

    2002-01-01

    Since its inception in 1999 the Ocean Biogeographic Information System (OBIS) has developed into an international science program as well as a globally distributed network of biogeographic databases. An OBIS portal at Rutgers University provides the links and functional interoperability among member database systems. Protocols and standards have been established to support effective communication between the portal and these functional units. The portal provides distributed data searching, a taxonomy name service, a GIS with access to relevant environmental data, biological modeling, and education modules for mariners, students, environmental managers, and scientists. The portal will integrate Census of Marine Life field projects, national data archives, and other functional modules, and provides for network-wide analyses and modeling tools.

  2. High-performance work systems in health care management, part 1: development of an evidence-informed model.

    PubMed

    Garman, Andrew N; McAlearney, Ann Scheck; Harrison, Michael I; Song, Paula H; McHugh, Megan

    2011-01-01

    : Although management practices are recognized as important factors in improving health care quality and efficiency, most research thus far has focused on individual practices, ignoring or underspecifying the contexts within which these practices are operating. Research from other industries, which has increasingly focused on systems rather than individual practices, has yielded results that may benefit health services management. : Our goal was to develop a conceptual model on the basis of prior research from health care as well as other industries that could be used to inform important contextual considerations within health care. : Using theoretical frameworks from A. Donabedian (1966), P. M. Wright, T. M. Gardner, and L. M. Moynihan (2003), and B. Schneider, D. B. Smith, and H. W. Goldstein (2000) and review methods adapted from R. Pawson (2006b), we reviewed relevant research from peer-reviewed and other industry-relevant sources to inform our model. The model we developed was then reviewed with a panel of practitioners, including experts in quality and human resource management, to assess the applicability of the model to health care settings. : The resulting conceptual model identified four practice bundles, comprising 14 management practices as well as nine factors influencing adoption and perceived sustainability of these practices. The mechanisms by which these practices influence care outcomes are illustrated using the example of hospital-acquired infections. In addition, limitations of the current evidence base are discussed, and an agenda for future research in health care settings is outlined. : Results may help practitioners better conceptualize management practices as part of a broader system of work practices. This may, in turn, help practitioners to prioritize management improvement efforts more systematically.

  3. Soft matter food physics--the physics of food and cooking.

    PubMed

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  4. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  5. Coupled socioeconomic-crop modelling for the participatory local analysis of climate change impacts on smallholder farmers in Guatemala

    NASA Astrophysics Data System (ADS)

    Malard, J. J.; Adamowski, J. F.; Wang, L. Y.; Rojas, M.; Carrera, J.; Gálvez, J.; Tuy, H. A.; Melgar-Quiñonez, H.

    2015-12-01

    The modelling of the impacts of climate change on agriculture requires the inclusion of socio-economic factors. However, while cropping models and economic models of agricultural systems are common, dynamically coupled socio-economic-biophysical models have not received as much success. A promising methodology for modelling the socioeconomic aspects of coupled natural-human systems is participatory system dynamics modelling, in which stakeholders develop mental maps of the socio-economic system that are then turned into quantified simulation models. This methodology has been successful in the water resources management field. However, while the stocks and flows of water resources have also been represented within the system dynamics modelling framework and thus coupled to the socioeconomic portion of the model, cropping models are ill-suited for such reformulation. In addition, most of these system dynamics models were developed without stakeholder input, limiting the scope for the adoption and implementation of their results. We therefore propose a new methodology for the analysis of climate change variability on agroecosystems which uses dynamically coupled system dynamics (socio-economic) and biophysical (cropping) models to represent both physical and socioeconomic aspects of the agricultural system, using two case studies (intensive market-based agricultural development versus subsistence crop-based development) from rural Guatemala. The system dynamics model component is developed with relevant governmental and NGO stakeholders from rural and agricultural development in the case study regions and includes such processes as education, poverty and food security. Common variables with the cropping models (yield and agricultural management choices) are then used to dynamically couple the two models together, allowing for the analysis of the agroeconomic system's response to and resilience against various climatic and socioeconomic shocks.

  6. Enterprise and system of systems capability development life-cycle processes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, David Franklin

    2014-08-01

    This report and set of appendices are a collection of memoranda originally drafted circa 2007-2009 for the purpose of describing and detailing a models-based systems engineering approach for satisfying enterprise and system-of-systems life cycle process requirements. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. The main thrust of the material presents a rational exposâe of a structured enterprise development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of standard systems engineering processes. While themore » approach described invokes application of the Department of Defense Architectural Framework (DoDAF), it is suitable for use with other architectural description frameworks.« less

  7. Revolutionary land use change in the 21st century: Is (rangeland) science relevant?

    USGS Publications Warehouse

    Herrick, J.E.; Brown, J.R.; Bestelmeyer, B.T.; Andrews, S.S.; Baldi, G.; Davies, J.; Duniway, M.; Havstad, K.M.; Karl, J.W.; Karlen, D.L.; Peters, Debra P.C.; Quinton, J.N.; Riginos, C.; Shaver, P.L.; Steinaker, D.; Twomlow, S.

    2012-01-01

    Rapidly increasing demand for food, fiber, and fuel together with new technologies and the mobility of global capital are driving revolutionary changes in land use throughout the world. Efforts to increase land productivity include conversion of millions of hectares of rangelands to crop production, including many marginal lands with low resistance and resilience to degradation. Sustaining the productivity of these lands requires careful land use planning and innovative management systems. Historically, this responsibility has been left to agronomists and others with expertise in crop production. In this article, we argue that the revolutionary land use changes necessary to support national and global food security potentially make rangeland science more relevant now than ever. Maintaining and increasing relevance will require a revolutionary change in range science from a discipline that focuses on a particular land use or land cover to one that addresses the challenge of managing all lands that, at one time, were considered to be marginal for crop production. We propose four strategies to increase the relevance of rangeland science to global land management: 1) expand our awareness and understanding of local to global economic, social, and technological trends in order to anticipate and identify drivers and patterns of conversion; 2) emphasize empirical studies and modeling that anticipate the biophysical (ecosystem services) and societal consequences of large-scale changes in land cover and use; 3) significantly increase communication and collaboration with the disciplines and sectors of society currently responsible for managing the new land uses; and 4) develop and adopt a dynamic and flexible resilience-based land classification system and data-supported conceptual models (e.g., state-and-transition models) that represent all lands, regardless of use and the consequences of land conversion to various uses instead of changes in state or condition that are focused on a single land use.

  8. Neural Systems with Numerically Matched Input-Output Statistic: Isotonic Bivariate Statistical Modeling

    PubMed Central

    Fiori, Simone

    2007-01-01

    Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there are “holes” in the data) or when the data sets have been acquired independently. Also, statistical modeling is useful when the amount of available data is enough to show relevant statistical features of the phenomenon underlying the data. We propose to tackle the problem of statistical modeling via a neural (nonlinear) system that is able to match its input-output statistic to the statistic of the available data sets. A key point of the new implementation proposed here is that it is based on look-up-table (LUT) neural systems, which guarantee a computationally advantageous way of implementing neural systems. A number of numerical experiments, performed on both synthetic and real-world data sets, illustrate the features of the proposed modeling procedure. PMID:18566641

  9. Testing HyDE on ADAPT

    NASA Technical Reports Server (NTRS)

    Sweet, Adam

    2008-01-01

    The IVHM Project in the Aviation Safety Program has funded research in electrical power system (EPS) health management. This problem domain contains both discrete and continuous behavior, and thus is directly relevant for the hybrid diagnostic tool HyDE. In FY2007 work was performed to expand the HyDE diagnosis model of the ADAPT system. The work completed resulted in a HyDE model with the capability to diagnose five times the number of ADAPT components previously tested. The expanded diagnosis model passed a corresponding set of new ADAPT fault injection scenario tests with no incorrect faults reported. The time required for the HyDE diagnostic system to isolate the fault varied widely between tests; this variance was reduced by tuning HyDE input parameters. These results and other diagnostic design trade-offs are discussed. Finally, possible future improvements for both the HyDE diagnostic model and HyDE itself are presented.

  10. The model and the planning method of volume and variety assessment of innovative products in an industrial enterprise

    NASA Astrophysics Data System (ADS)

    Anisimov, V. G.; Anisimov, E. G.; Saurenko, T. N.; Sonkin, M. A.

    2017-01-01

    In the long term, the innovative development strategy efficiency is considered as the most crucial condition for assurance of economic system competitiveness in market conditions. It determines the problem relevance of such justification strategies with regard to specific systems features and conditions of their operation. The problem solution for industrial enterprises can be based on mathematical models of supporting the decision-making on the elements of the innovative manufacturing program. An optimization model and the planning method of innovative products volume and variety are suggested. The feature of the suggested model lies in the nonlinear nature of the objective function. It allows taking into consideration the law of diminishing marginal utility. The suggested method of optimization takes into account the system features and enables the effective implementation of manufacturing capabilities in modern conditions of production organization and sales in terms of market saturation.

  11. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models

    NASA Astrophysics Data System (ADS)

    Lee, Peter; Calvo, Conrado J.; Alfonso-Almazán, José M.; Quintanilla, Jorge G.; Chorro, Francisco J.; Yan, Ping; Loew, Leslie M.; Filgueiras-Rama, David; Millet, José

    2017-02-01

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  12. Low-Cost Optical Mapping Systems for Panoramic Imaging of Complex Arrhythmias and Drug-Action in Translational Heart Models.

    PubMed

    Lee, Peter; Calvo, Conrado J; Alfonso-Almazán, José M; Quintanilla, Jorge G; Chorro, Francisco J; Yan, Ping; Loew, Leslie M; Filgueiras-Rama, David; Millet, José

    2017-02-27

    Panoramic optical mapping is the primary method for imaging electrophysiological activity from the entire outer surface of Langendorff-perfused hearts. To date, it is the only method of simultaneously measuring multiple key electrophysiological parameters, such as transmembrane voltage and intracellular free calcium, at high spatial and temporal resolution. Despite the impact it has already had on the fields of cardiac arrhythmias and whole-heart computational modeling, present-day system designs precludes its adoption by the broader cardiovascular research community because of their high costs. Taking advantage of recent technological advances, we developed and validated low-cost optical mapping systems for panoramic imaging using Langendorff-perfused pig hearts, a clinically-relevant model in basic research and bioengineering. By significantly lowering financial thresholds, this powerful cardiac electrophysiology imaging modality may gain wider use in research and, even, teaching laboratories, which we substantiated using the lower-cost Langendorff-perfused rabbit heart model.

  13. Nonlinear adhesion dynamics of confined lipid membranes

    NASA Astrophysics Data System (ADS)

    To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier

    Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.

  14. Animal models of speech and vocal communication deficits associated with psychiatric disorders

    PubMed Central

    Konopka, Genevieve; Roberts, Todd F.

    2015-01-01

    Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298

  15. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  16. Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Siegel, Ronald A.

    While many drug delivery systems target constant, or zero-order drug release, certain drugs and hormones must be delivered in rhythmic pulses in order to achieve their optimal effect. Here we describe studies with two model autonomous rhythmic delivery systems. The first system is driven by a pH oscillator that modulates the ionization state of a model drug, benzoic acid, which can permeate through a lipophilic membrane when the drug is uncharged. The second system is based on a nonlinear negative feedback instability that arises from coupling of swelling of a hydrogel membrane to an enzymatic reaction, with the hydrogel controlling access of substrate to the enzyme, and the enzyme's product controlling the hydrogel's swelling state. The latter system, whose autonomous oscillations are driven by glucose at constant external activity, is shown to deliver gonadotropin releasing hormone (GnRH) in rhythmic pulses, with periodicity of the same order as observed in sexually mature adult humans. Relevant experimental results and some mathematical models are reviewed.

  17. The Space Environmental Impact System

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.

    2009-12-01

    The Space Environmental Impact System (SEIS) is an operational tool for incorporating environmental data sets into DoD Modeling and Simulation (M&S) which allows for enhanced decision making regarding acquisitions, testing, operations and planning. The SEIS system creates, from the environmental archives and developed rule-base, a tool for describing the effects of the space environment on particular military systems, both historically and in real-time. The system uses data available over the web, and in particular data provided by NASA’s virtual observatory network, as well as modeled data generated specifically for this purpose. The rule base system developed to support SEIS is an open XML based model which can be extended to events from any environmental domain. This presentation will show how the SEIS tool allows users to easily and accurately evaluate the effect of space weather in terms that are meaningful to them as well as discuss the relevant standards used in its construction and go over lessons learned from fielding an operational environmental decision tool.

  18. Data Base Management: Proceedings of a Conference, November 1-2, 1984 Held at Monterey, California.

    DTIC Science & Technology

    1985-07-31

    Dolby Put the Information in the San Jose State University Database Not the Program San Jose , California 4:15 Douglas Lenat Relevance of Machine...network model permits multiple owners for one subsidi- ary entity. The DAPLEX network model includes the subset connection as well. I The SOCRATE system... Jose State University San Js, California -. A ..... .. .... [. . . ...- . . . - Js . . . .*es L * Dolby** PUT TIM INFORMATION IN THE DATABASE, NOT THE

  19. Psychosocial work environment and health in U.S. metropolitan areas: a test of the demand-control and demand-control-support models.

    PubMed

    Muntaner, C; Schoenbach, C

    1994-01-01

    The authors use confirmatory factor analysis to investigate the psychosocial dimensions of work environments relevant to health outcomes, in a representative sample of five U.S. metropolitan areas. Through an aggregated inference system, scales from Schwartz and associates' job scoring system and from the Dictionary of Occupational Titles (DOT) were employed to examine two alternative models: the demand-control model of Karasek and Theorell and Johnson's demand-control-support model. Confirmatory factor analysis was used to test the two models. The two multidimensional models yielded better fits than an unstructured model. After allowing for the measurement error variance due to the method of assessment (Schwartz and associates' system or DOT), both models yielded acceptable goodness-of-fit indices, but the fit of the demand-control-support model was significantly better. Overall these results indicate that the dimensions of Control (substantive complexity of work, skill discretion, decision authority), Demands (physical exertion, physical demands and hazards), and Social Support (coworker and supervisor social supports) provide an acceptable account of the psychosocial dimensions of work associated with health outcomes.

  20. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  1. Predicting the resilience and recovery of aquatic systems: A framework for model evolution within environmental observatories

    NASA Astrophysics Data System (ADS)

    Hipsey, Matthew R.; Hamilton, David P.; Hanson, Paul C.; Carey, Cayelan C.; Coletti, Janaine Z.; Read, Jordan S.; Ibelings, Bas W.; Valesini, Fiona J.; Brookes, Justin D.

    2015-09-01

    Maintaining the health of aquatic systems is an essential component of sustainable catchment management, however, degradation of water quality and aquatic habitat continues to challenge scientists and policy-makers. To support management and restoration efforts aquatic system models are required that are able to capture the often complex trajectories that these systems display in response to multiple stressors. This paper explores the abilities and limitations of current model approaches in meeting this challenge, and outlines a strategy based on integration of flexible model libraries and data from observation networks, within a learning framework, as a means to improve the accuracy and scope of model predictions. The framework is comprised of a data assimilation component that utilizes diverse data streams from sensor networks, and a second component whereby model structural evolution can occur once the model is assessed against theoretically relevant metrics of system function. Given the scale and transdisciplinary nature of the prediction challenge, network science initiatives are identified as a means to develop and integrate diverse model libraries and workflows, and to obtain consensus on diagnostic approaches to model assessment that can guide model adaptation. We outline how such a framework can help us explore the theory of how aquatic systems respond to change by bridging bottom-up and top-down lines of enquiry, and, in doing so, also advance the role of prediction in aquatic ecosystem management.

  2. A new course and textbook on Physical Models of Living Systems, for science and engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Nelson, Philip

    2015-03-01

    I'll describe an intermediate-level course on ``Physical Models of Living Systems.'' The only prerequisite is first-year university physics and calculus. The course is a response to rapidly growing interest among undergraduates in a broad range of science and engineering majors. Students acquire several research skills that are often not addressed in traditional courses: Basic modeling skills Probabilistic modeling skills Data analysis methods Computer programming using a general-purpose platform like MATLAB or Python Dynamical systems, particularly feedback control. These basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including: Virus dynamics Bacterial genetics and evolution of drug resistance Statistical inference Superresolution microscopy Synthetic biology Naturally evolved cellular circuits. Work supported by NSF Grants EF-0928048 and DMR-0832802.

  3. Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

    NASA Astrophysics Data System (ADS)

    Lowe, Rachel; Bailey, Trevor C.; Stephenson, David B.; Graham, Richard J.; Coelho, Caio A. S.; Sá Carvalho, Marilia; Barcellos, Christovam

    2011-03-01

    This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5°×2.5° longitude-latitude grid with time lags relevant to dengue transmission, an El Niño Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM—generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil.

  4. Self-assembled 3D spheroids and hollow-fibre bioreactors improve MSC-derived hepatocyte-like cell maturation in vitro.

    PubMed

    Cipriano, Madalena; Freyer, Nora; Knöspel, Fanny; Oliveira, Nuno G; Barcia, Rita; Cruz, Pedro E; Cruz, Helder; Castro, Matilde; Santos, Jorge M; Zeilinger, Katrin; Miranda, Joana P

    2017-04-01

    3D cultures of human stem cell-derived hepatocyte-like cells (HLCs) have emerged as promising models for short- and long-term maintenance of hepatocyte phenotype in vitro cultures by better resembling the in vivo environment of the liver and consequently increase the translational value of the resulting data. In this study, the first stage of hepatic differentiation of human neonatal mesenchymal stem cells (hnMSCs) was performed in 2D monolayer cultures for 17 days. The second stage was performed by either maintaining cells in 2D cultures for an extra 10 days, as control, or alternatively cultured in 3D as self-assembled spheroids or in multicompartment membrane bioreactor system. All systems enabled hnMSC differentiation into HLCs as shown by positive immune staining of hepatic markers CK-18, HNF-4α, albumin, the hepatic transporters OATP-C and MRP-2 as well as drug-metabolizing enzymes like CYP1A2 and CYP3A4. Similarly, all models also displayed relevant glucose, phase I and phase II metabolism, the ability to produce albumin and to convert ammonia into urea. However, EROD activity and urea production were increased in both 3D systems. Moreover, the spheroids revealed higher bupropion conversion, whereas bioreactor showed increased albumin production and capacity to biotransform diclofenac. Additionally, diclofenac resulted in an IC 50 value of 1.51 ± 0.05 and 0.98 ± 0.03 in 2D and spheroid cultures, respectively. These data suggest that the 3D models tested improved HLC maturation showing a relevant biotransformation capacity and thus provide more appropriate reliable models for mechanistic studies and more predictive systems for in vitro toxicology applications.

  5. Systems Measures of Water Distribution System Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less

  6. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  7. Tissue Chips to aid drug development and modeling for rare diseases

    PubMed Central

    Low, Lucie A.; Tagle, Danilo A.

    2016-01-01

    Introduction The technologies used to design, create and use microphysiological systems (MPS, “tissue chips” or “organs-on-chips”) have progressed rapidly in the last 5 years, and validation studies of the functional relevance of these platforms to human physiology, and response to drugs for individual model organ systems, are well underway. These studies are paving the way for integrated multi-organ systems that can model diseases and predict drug efficacy and toxicology of multiple organs in real-time, improving the potential for diagnostics and development of novel treatments of rare diseases in the future. Areas covered This review will briefly summarize the current state of tissue chip research and highlight model systems where these microfabricated (or bioengineered) devices are already being used to screen therapeutics, model disease states, and provide potential treatments in addition to helping elucidate the basic molecular and cellular phenotypes of rare diseases. Expert opinion Microphysiological systems hold great promise and potential for modeling rare disorders, as well as for their potential use to enhance the predictive power of new drug therapeutics, plus potentially increase the statistical power of clinical trials while removing the inherent risks of these trials in rare disease populations. PMID:28626620

  8. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around one of the Earth-Moon collinear Lagrangian points, L1 or L2, is discussed to point out some relevant outcomes for the potential implementation of such a mission.

  9. Repairing quite swimmingly: advances in regenerative medicine using zebrafish.

    PubMed

    Goessling, Wolfram; North, Trista E

    2014-07-01

    Regenerative medicine has the promise to alleviate morbidity and mortality caused by organ dysfunction, longstanding injury and trauma. Although regenerative approaches for a few diseases have been highly successful, some organs either do not regenerate well or have no current treatment approach to harness their intrinsic regenerative potential. In this Review, we describe the modeling of human disease and tissue repair in zebrafish, through the discovery of disease-causing genes using classical forward-genetic screens and by modulating clinically relevant phenotypes through chemical genetic screening approaches. Furthermore, we present an overview of those organ systems that regenerate well in zebrafish in contrast to mammalian tissue, as well as those organs in which the regenerative potential is conserved from fish to mammals, enabling drug discovery in preclinical disease-relevant models. We provide two examples from our own work in which the clinical translation of zebrafish findings is either imminent or has already proven successful. The promising results in multiple organs suggest that further insight into regenerative mechanisms and novel clinically relevant therapeutic approaches will emerge from zebrafish research in the future. © 2014. Published by The Company of Biologists Ltd.

  10. Modelling and simulation of heat pipes with TAIThermIR (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Winkelmann, Max E.

    2016-10-01

    Regarding thermal camouflage usually one has to reduce the surface temperature of an object. All vehicles and installations having a combustion engine usually produce a lot of heat with results on hot spots on the surface which are highly conspicuous. Using heat pipes to transfer this heat to another place on the surface more efficiently might be a way to reduce those hotspots and the overall conspicuity. In a first approach, a model for the Software TAIThermIR was developed to test which parameters of the heat pipes are relevant and what effects can be achieved. It will be shown, that the thermal resistivity of contact zones are quite relevant and the thermal coupling of the engine (source of heat) defines if the alteration of the thermal signature is large or not. Furthermore the impact of the use of heat pipes in relation to surface material is discussed. The influence of different weather scenarios on the change of signatures due to the use of heat pipes is of minor relevance and depends on the choice of the surface material. Finally application issues for real systems are discussed.

  11. Introduction: the plurality of modeling.

    PubMed

    Huneman, Philippe; Lemoine, Maël

    2014-08-01

    Philosophers of science have recently focused on the scientific activity of modeling phenomena, and explicated several of its properties, as well as the activities embedded into it. A first approach to modeling has been elaborated in terms of representing a target system: yet other epistemic functions, such as producing data or detecting phenomena, are at least as relevant. Additional useful distinctions have emerged, such as the one between phenomenological and mechanistic models. In biological sciences, besides mathematical models, models now come in three forms: in vivo, in vitro and in silico. Each has been investigated separately, and many specific problems they raised have been laid out. Another relevant distinction is disciplinary: do models differ in significant ways according to the discipline involved-medicine or biology, evolutionary biology or earth science? Focusing on either this threefold distinction or the disciplinary boundaries reveals that they might not be sufficient from a philosophical perspective. On the contrary, focusing on the interaction between these various kinds of models, some interesting forms of explanation come to the fore, as is exemplified by the papers included in this issue. On the other hand, a focus on the use of models, rather than on their content, shows that the distinction between biological and medical models is theoretically sound.

  12. Bacillus subtilis Lipid Extract, A Branched-Chain Fatty Acid Model Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickels, Jonathan D.; Chatterjee, Sneha; Mostofian, Barmak

    Lipid extracts are an excellent choice of model biomembrane; however at present, there are no commercially available lipid extracts or computational models that mimic microbial membranes containing the branched-chain fatty acids found in many pathogenic and industrially relevant bacteria. Here, we advance the extract of Bacillus subtilis as a standard model for these diverse systems, providing a detailed experimental description and equilibrated atomistic bilayer model included as Supporting Information to this Letter and at (http://cmb.ornl.gov/members/cheng). The development and validation of this model represents an advance that enables more realistic simulations and experiments on bacterial membranes and reconstituted bacterial membrane proteins.

  13. Review of simulation techniques for Aquifer Thermal Energy Storage (ATES)

    NASA Astrophysics Data System (ADS)

    Mercer, J. W.; Faust, C. R.; Miller, W. J.; Pearson, F. J., Jr.

    1981-03-01

    The analysis of aquifer thermal energy storage (ATES) systems rely on the results from mathematical and geochemical models. Therefore, the state-of-the-art models relevant to ATES were reviewed and evaluated. These models describe important processes active in ATES including ground-water flow, heat transport (heat flow), solute transport (movement of contaminants), and geochemical reactions. In general, available models of the saturated ground-water environment are adequate to address most concerns associated with ATES; that is, design, operation, and environmental assessment. In those cases where models are not adequate, development should be preceded by efforts to identify significant physical phenomena and relate model parameters to measurable quantities.

  14. The acclimative biogeochemical model of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Kerimoglu, Onur; Hofmeister, Richard; Maerz, Joeran; Riethmüller, Rolf; Wirtz, Kai W.

    2017-10-01

    Ecosystem models often rely on heuristic descriptions of autotrophic growth that fail to reproduce various stationary and dynamic states of phytoplankton cellular composition observed in laboratory experiments. Here, we present the integration of an advanced phytoplankton growth model within a coupled three-dimensional physical-biogeochemical model and the application of the model system to the southern North Sea (SNS) defined on a relatively high resolution (˜ 1.5-4.5 km) curvilinear grid. The autotrophic growth model, recently introduced by Wirtz and Kerimoglu (2016), is based on a set of novel concepts for the allocation of internal resources and operation of cellular metabolism. The coupled model system consists of the General Estuarine Transport Model (GETM) as the hydrodynamical driver, a lower-trophic-level model and a simple sediment diagenesis model. We force the model system with realistic atmospheric and riverine fluxes, background turbidity caused by suspended particulate matter (SPM) and open ocean boundary conditions. For a simulation for the period 2000-2010, we show that the model system satisfactorily reproduces the physical and biogeochemical states of the system within the German Bight characterized by steep salinity; nutrient and chlorophyll (Chl) gradients, as inferred from comparisons against observation data from long-term monitoring stations; sparse in situ measurements; continuous transects; and satellites. The model also displays skill in capturing the formation of thin chlorophyll layers at the pycnocline, which is frequently observed within the stratified regions during summer. A sensitivity analysis reveals that the vertical distributions of phytoplankton concentrations estimated by the model can be qualitatively sensitive to the description of the light climate and dependence of sinking rates on the internal nutrient reserves. A non-acclimative (fixed-physiology) version of the model predicted entirely different vertical profiles, suggesting that accounting for physiological flexibility might be relevant for a consistent representation of the vertical distribution of phytoplankton biomass. Our results point to significant variability in the cellular chlorophyll-to-carbon ratio (Chl : C) across seasons and the coastal to offshore transition. Up to 3-fold-higher Chl : C at the coastal areas in comparison to those at the offshore areas contribute to the steepness of the chlorophyll gradient. The model also predicts much higher phytoplankton concentrations at the coastal areas in comparison to its non-acclimative equivalent. Hence, findings of this study provide evidence for the relevance of physiological flexibility, here reflected by spatial and seasonal variations in Chl : C, for a realistic description of biogeochemical fluxes, particularly in the environments displaying strong resource gradients.

  15. Novel algorithm implementations in DARC: the Durham AO real-time controller

    NASA Astrophysics Data System (ADS)

    Basden, Alastair; Bitenc, Urban; Jenkins, David

    2016-07-01

    The Durham AO Real-time Controller has been used on-sky with the CANARY AO demonstrator instrument since 2010, and is also used to provide control for several AO test-benches, including DRAGON. Over this period, many new real-time algorithms have been developed, implemented and demonstrated, leading to performance improvements for CANARY. Additionally, the computational performance of this real-time system has continued to improve. Here, we provide details about recent updates and changes made to DARC, and the relevance of these updates, including new algorithms, to forthcoming AO systems. We present the computational performance of DARC when used on different hardware platforms, including hardware accelerators, and determine the relevance and potential for ELT scale systems. Recent updates to DARC have included algorithms to handle elongated laser guide star images, including correlation wavefront sensing, with options to automatically update references during AO loop operation. Additionally, sub-aperture masking options have been developed to increase signal to noise ratio when operating with non-symmetrical wavefront sensor images. The development of end-user tools has progressed with new options for configuration and control of the system. New wavefront sensor camera models and DM models have been integrated with the system, increasing the number of possible hardware configurations available, and a fully open-source AO system is now a reality, including drivers necessary for commercial cameras and DMs. The computational performance of DARC makes it suitable for ELT scale systems when implemented on suitable hardware. We present tests made on different hardware platforms, along with the strategies taken to optimise DARC for these systems.

  16. Predicting remaining life by fusing the physics of failure modeling with diagnostics

    NASA Astrophysics Data System (ADS)

    Kacprzynski, G. J.; Sarlashkar, A.; Roemer, M. J.; Hess, A.; Hardman, B.

    2004-03-01

    Technology that enables failure prediction of critical machine components (prognostics) has the potential to significantly reduce maintenance costs and increase availability and safety. This article summarizes a research effort funded through the U.S. Defense Advanced Research Projects Agency and Naval Air System Command aimed at enhancing prognostic accuracy through more advanced physics-of-failure modeling and intelligent utilization of relevant diagnostic information. H-60 helicopter gear is used as a case study to introduce both stochastic sub-zone crack initiation and three-dimensional fracture mechanics lifing models along with adaptive model updating techniques for tuning key failure mode variables at a local material/damage site based on fused vibration features. The overall prognostic scheme is aimed at minimizing inherent modeling and operational uncertainties via sensed system measurements that evolve as damage progresses.

  17. Spacing distribution functions for 1D point island model with irreversible attachment

    NASA Astrophysics Data System (ADS)

    Gonzalez, Diego; Einstein, Theodore; Pimpinelli, Alberto

    2011-03-01

    We study the configurational structure of the point island model for epitaxial growth in one dimension. In particular, we calculate the island gap and capture zone distributions. Our model is based on an approximate description of nucleation inside the gaps. Nucleation is described by the joint probability density p xy n (x,y), which represents the probability density to have nucleation at position x within a gap of size y. Our proposed functional form for p xy n (x,y) describes excellently the statistical behavior of the system. We compare our analytical model with extensive numerical simulations. Our model retains the most relevant physical properties of the system. This work was supported by the NSF-MRSEC at the University of Maryland, Grant No. DMR 05-20471, with ancillary support from the Center for Nanophysics and Advanced Materials (CNAM).

  18. Robust fault detection of wind energy conversion systems based on dynamic neural networks.

    PubMed

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate.

  19. Robust Fault Detection of Wind Energy Conversion Systems Based on Dynamic Neural Networks

    PubMed Central

    Talebi, Nasser; Sadrnia, Mohammad Ali; Darabi, Ahmad

    2014-01-01

    Occurrence of faults in wind energy conversion systems (WECSs) is inevitable. In order to detect the occurred faults at the appropriate time, avoid heavy economic losses, ensure safe system operation, prevent damage to adjacent relevant systems, and facilitate timely repair of failed components; a fault detection system (FDS) is required. Recurrent neural networks (RNNs) have gained a noticeable position in FDSs and they have been widely used for modeling of complex dynamical systems. One method for designing an FDS is to prepare a dynamic neural model emulating the normal system behavior. By comparing the outputs of the real system and neural model, incidence of the faults can be identified. In this paper, by utilizing a comprehensive dynamic model which contains both mechanical and electrical components of the WECS, an FDS is suggested using dynamic RNNs. The presented FDS detects faults of the generator's angular velocity sensor, pitch angle sensors, and pitch actuators. Robustness of the FDS is achieved by employing an adaptive threshold. Simulation results show that the proposed scheme is capable to detect the faults shortly and it has very low false and missed alarms rate. PMID:24744774

  20. THYROID HORMONES AND NERVOUS SYSTEM DEVELOPMENT: SITE-OF-ACTION AND RELEVANCE OF AN ANIMAL MODEL OF DEVELOPMENTAL HYPYOTHYROXINEMIA-INDUCED HEARING LOSS.

    EPA Science Inventory

    Previous research demonstrated that perinatal exposure to Aroclor 1254 (A1254) resulted in both hypothyroxinemia (HPX) and a low-frequency ototoxicity (hearing loss). We hypothesized that the ototoxicity resulted from A1254- induced HPX during the postnatal critical period of c...

Top