Sample records for relevant physical processes

  1. Testing the idea of privileged awareness of self-relevant information.

    PubMed

    Stein, Timo; Siebold, Alisha; van Zoest, Wieske

    2016-03-01

    Self-relevant information is prioritized in processing. Some have suggested the mechanism driving this advantage is akin to the automatic prioritization of physically salient stimuli in information processing (Humphreys & Sui, 2015). Here we investigate whether self-relevant information is prioritized for awareness under continuous flash suppression (CFS), as has been found for physical salience. Gabor patches with different orientations were first associated with the labels You or Other. Participants were more accurate in matching the self-relevant association, replicating previous findings of self-prioritization. However, breakthrough into awareness from CFS did not differ between self- and other-associated Gabors. These findings demonstrate that self-relevant information has no privileged access to awareness. Rather than modulating the initial visual processes that precede and lead to awareness, the advantage of self-relevant information may better be characterized as prioritization at later processing stages. (c) 2016 APA, all rights reserved).

  2. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  3. 42 CFR 423.578 - Exceptions process.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and medical and scientific evidence and the known relevant physical or mental characteristics of the... evidence and medical and scientific evidence and the known relevant physical or mental characteristics of... reasonable and complete exceptions procedures subject to CMS' approval for this type of coverage...

  4. 42 CFR 423.578 - Exceptions process.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and medical and scientific evidence and the known relevant physical or mental characteristics of the... evidence and medical and scientific evidence and the known relevant physical or mental characteristics of... maintain reasonable and complete exceptions procedures subject to CMS' approval for this type of coverage...

  5. Top 10 Research Questions Related to Growth and Maturation of Relevance to Physical Activity, Performance, and Fitness

    ERIC Educational Resources Information Center

    Malina, Robert M.

    2014-01-01

    Growth, maturation, and development dominate the daily lives of children and adolescents for approximately the first 2 decades of life. Growth and maturation are biological processes, while development is largely a behavioral process. The 3 processes occur simultaneously and interact. They can be influenced by physical activity and also can…

  6. Computational Cosmology

    NASA Astrophysics Data System (ADS)

    Abel, Tom

    2013-01-01

    Gravitational instability of small density fluctuations, possibly created during an early inflationary period, is the key process leading to the formation of all structure in the Universe. New numerical algorithms have recently enabled much progress in understanding the relevant physical processes dominating the first billion years of structure formation. Computational cosmologists are attempting to simulate on their supercomputers how galaxies come about. In recent years first attempts trying to follow the formation and eventual death of every single star in these model galaxies has become to be within reach. The models now include gravity for both dark matter and baryonic matter, hydrodynamics, follow the radiation from massive stars and its impact in shaping the surrounding material, gas chemistry and all the key radiative atomic and molecular physics determining the thermal state of the model gas. In a small number of cases even the rold of magnetic fields on galactic scales is being studied. At the same time we are learning more about the limitations of certain numerical techniques and developing new schemes to more accurately follow the interplay of these many different physical processes. This talk is in two parts. First we consider a birds eye view of the relevant physical processes relevant for structure formation and potential approaches in solving the relevant equations efficiently and accurately on modern supercomputers. Secondly, we focus in on one of those processes. Namely the intricate and fascinating dynamics of the likely collsionless fluid dynamics of dark matter. A novel way of following the intricate evolution of such collisionless fluids in phase space is allowing us to construct new numerical methods to help understand the nature of dark matter halos as well as problems in astrophysical and terrestial plasmas.

  7. Bridging Physics and Biology Using Resistance and Axons

    ERIC Educational Resources Information Center

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  8. Top 10 research questions related to growth and maturation of relevance to physical activity, performance, and fitness.

    PubMed

    Malina, Robert M

    2014-06-01

    Growth, maturation, and development dominate the daily lives of children and adolescents for approximately the first 2 decades of life. Growth and maturation are biological processes, while development is largely a behavioral process. The 3 processes occur simultaneously and interact. They can be influenced by physical activity and also can influence activity, performance, and fitness. Allowing for these potential interactions, 10 questions on growth and maturation that have relevance to physical activity, performance, and fitness are presented. The questions are not mutually exclusive and address several broadly defined topical areas: exercise and growth, body weight status (body mass index, adiposity rebound, "unhealthy weight gain"), movement proficiency (hypothesized barrier, role in obesity), individual differences, tracking, maturity-associated variation in performance, and corresponding variation in physical activity. Central to the discussion of each is the need for a biocultural approach recognizing the interactions of biology and behavior as potential influences on the variables of interest.

  9. An Experimental Introduction to Acoustics

    NASA Astrophysics Data System (ADS)

    Black, Andy Nicholas; Magruder, Robert H.

    2017-11-01

    Learning and understanding physics requires more than studying physics texts. It requires doing physics. Doing research is a key opportunity for students to connect physical principles with their everyday experience. A powerful way to introduce students to research and technique is through subjects in which they might find interest. Presented is an experiment that serves to introduce an advanced undergraduate or high school student to conducting research in acoustics via an experiment involving a standard dreadnought acoustic guitar, recording industry-related equipment, and relevant industrial analysis software. This experimental process is applicable to a wide range of acoustical topics including both acoustic and electric instruments. Also, the student has a hands-on experience with relevant audio engineering technology to study physical principles.

  10. Interplay between Narrative and Bodily Self in Access to Consciousness: No Difference between Self- and Non-self Attributes.

    PubMed

    Noel, Jean-Paul; Blanke, Olaf; Serino, Andrea; Salomon, Roy

    2017-01-01

    The construct of the "self" is conceived as being fundamental in promoting survival. As such, extensive studies have documented preferential processing of self-relevant stimuli. For example, attributes that relate to the self are better encoded and retrieved, and are more readily consciously perceived. The preferential processing of self-relevant information, however, appears to be especially true for physical (e.g., faces), as opposed to psychological (e.g., traits), conceptions of the self. Here, we test whether semantic attributes that participants judge as self-relevant are further processed unconsciously than attributes that were not judged as self-relevant. In Experiment 1, a continuous flash suppression paradigm was employed with "self" and "non-self" attribute words being presented subliminally, and we asked participants to categorize unseen words as either self-related or not. In a second experiment, we attempted to boost putative preferential self-processing by relation to its physical conception, that is, one's own body. To this aim, we repeated Experiment 1 while administrating acoustic stimuli either close or far from the body, i.e., within or outside peripersonal space. Results of both Experiment 1 and 2 demonstrate no difference in breaking suppression for self and non-self words. Additionally, we found that while participants were able to process the physical location of the unseen words (above or below fixation) they were not able to categorize these as self-relevant or not. Finally, results showed that sounds presented in the extra-personal space elicited a more stringent response criterion for "self" in the process of categorizing unseen visual stimuli. This shift in criterion as a consequence of sound location was restricted to the self, as no such effect was observed in the categorization of attributes occurring above or below fixation. Overall, our findings seem to indicate that subliminally presented stimuli are not semantically processed, at least inasmuch as to be categorized as self-relevant or not. However, we do demonstrate that the distance at which acoustic stimuli are presented may alter the balance between self- and non-self biases.

  11. Interplay between Narrative and Bodily Self in Access to Consciousness: No Difference between Self- and Non-self Attributes

    PubMed Central

    Noel, Jean-Paul; Blanke, Olaf; Serino, Andrea; Salomon, Roy

    2017-01-01

    The construct of the “self” is conceived as being fundamental in promoting survival. As such, extensive studies have documented preferential processing of self-relevant stimuli. For example, attributes that relate to the self are better encoded and retrieved, and are more readily consciously perceived. The preferential processing of self-relevant information, however, appears to be especially true for physical (e.g., faces), as opposed to psychological (e.g., traits), conceptions of the self. Here, we test whether semantic attributes that participants judge as self-relevant are further processed unconsciously than attributes that were not judged as self-relevant. In Experiment 1, a continuous flash suppression paradigm was employed with “self” and “non-self” attribute words being presented subliminally, and we asked participants to categorize unseen words as either self-related or not. In a second experiment, we attempted to boost putative preferential self-processing by relation to its physical conception, that is, one’s own body. To this aim, we repeated Experiment 1 while administrating acoustic stimuli either close or far from the body, i.e., within or outside peripersonal space. Results of both Experiment 1 and 2 demonstrate no difference in breaking suppression for self and non-self words. Additionally, we found that while participants were able to process the physical location of the unseen words (above or below fixation) they were not able to categorize these as self-relevant or not. Finally, results showed that sounds presented in the extra-personal space elicited a more stringent response criterion for “self” in the process of categorizing unseen visual stimuli. This shift in criterion as a consequence of sound location was restricted to the self, as no such effect was observed in the categorization of attributes occurring above or below fixation. Overall, our findings seem to indicate that subliminally presented stimuli are not semantically processed, at least inasmuch as to be categorized as self-relevant or not. However, we do demonstrate that the distance at which acoustic stimuli are presented may alter the balance between self- and non-self biases. PMID:28197110

  12. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  13. I spy with my little eye: cognitive processing of framed physical activity messages.

    PubMed

    Bassett-Gunter, Rebecca L; Latimer-Cheung, Amy E; Martin Ginis, Kathleen A; Castelhano, Monica

    2014-01-01

    The primary purpose was to examine the relative cognitive processing of gain-framed versus loss-framed physical activity messages following exposure to health risk information. Guided by the Extended Parallel Process Model, the secondary purpose was to examine the relation between dwell time, message recall, and message-relevant thoughts, as well as perceived risk, personal relevance, and fear arousal. Baseline measures of perceived risk for inactivity-related disease and health problems were administered to 77 undergraduate students. Participants read population-specific health risk information while wearing a head-mounted eye tracker, which measured dwell time on message content. Perceived risk was then reassessed. Next, participants read PA messages while the eye tracker measured dwell time on message content. Immediately following message exposure, recall, thought-listing, fear arousal, and personal relevance were measured. Dwell time on gain-framed messages was significantly greater than loss-framed messages. However, message recall and thought-listing did not differ by message frame. Dwell time was not significantly related to recall or thought-listing. Consistent with the Extended Parallel Process Model, fear arousal was significantly related to recall, thought-listing, and personal relevance. In conclusion, gain-framed messages may evoke greater dwell time than loss-famed messages. However, dwell time alone may be insufficient for evoking further cognitive processing.

  14. Culturally Relevant Physical Education in Urban Schools: Reflecting Cultural Knowledge

    ERIC Educational Resources Information Center

    Flory, Sara B.; McCaughtry, Nate

    2011-01-01

    Using a three-part theoretical framework, the cultural relevance cycle--which consists of (a) knowing community dynamics, (b) knowing how community dynamics influence educational processes, and (c) implementing strategies that reflect cultural knowledge of the community--we examined teachers' and students' perspectives on culturally relevant…

  15. Integrating the Curriculum: Quality and Relevance for Special Needs Children.

    ERIC Educational Resources Information Center

    Wessel, Janet A.

    A comprehensive, integrated physical education system that has quality and relevance for handicapped students and their nonhandicapped peers is proposed. The Achievement Based Curriculum (ABC) Model is a systematic decision-making process for an instructional system that incorporates curriculum, instruction, assessment, and evaluation in one…

  16. Atomic Processes Relevant to Antimatter Fuel Production and Storage

    DTIC Science & Technology

    1994-05-31

    TO ANTIMATTER FUEL ’ |PRODUCTION AND STORAGE DTIC S nELECTE JUL0 11994 D FINAL REPORT F * 31 MAY 1994 I * Prepared by: J.B.A. Mitchell Dept. of Physics...Atomic Processes Relevant to Antimatter Fuel Production and Storage 12. PERSONAL AUTHOR(S) J.B.A. Mitchell I 3a. TYPE JFRE qT 113b. TIME COVERED 114... antimatter production, this investigation did shed a great deal of light on the recombination process in general and so is worthy of inclusion in this report

  17. Cometary nucleus release experiments and ice physics

    NASA Technical Reports Server (NTRS)

    Huebner, W. F.

    1976-01-01

    Some physical and chemical processes involved in the evaporation and sublimation of mixtures of frozen gases are discussed. Effects of zero gravity, vacuum, and solar radiation are emphasized. Relevant experiments that can be carried out with the aid of the space shuttle are proposed.

  18. Engineering evidence for carbon monoxide toxicity cases.

    PubMed

    Galatsis, Kosmas

    2016-07-01

    Unintentional carbon monoxide poisonings and fatalities lead to many toxicity cases. Given the unusual physical properties of carbon monoxide-in that the gas is odorless and invisible-unorganized and erroneous methods in obtaining engineering evidence as required during the discovery process often occurs. Such evidence gathering spans domains that include building construction, appliance installation, industrial hygiene, mechanical engineering, combustion and physics. In this paper, we attempt to place a systematic framework that is relevant to key aspects in engineering evidence gathering for unintentional carbon monoxide poisoning cases. Such a framework aims to increase awareness of this process and relevant issues to help guide legal counsel and expert witnesses. © The Author(s) 2015.

  19. The physical basis of explosion and blast injury processes.

    PubMed

    Proud, W G

    2013-03-01

    Energetic materials are widely used in civilian and military applications, such as quarrying and mining, flares, and in munitions. Recent conflicts have involved the widespread use of improvised explosive devices to attack military, civilians and infrastructure. This article gives a basic overview of explosive technology and the underlying physical processes that produce the injuries encountered. In particular aspects relevant to primary and secondary injuries are discussed.

  20. Mental Models in Expert Physics Reasoning.

    ERIC Educational Resources Information Center

    Roschelle, Jeremy; Greeno, James G.

    Proposed is a relational framework for characterizing experienced physicists' representations of physics problem situations and the process of constructing these representations. A representation includes a coherent set of relations among: (1) a mental model of the objects in the situation, along with their relevant properties and relations; (2) a…

  1. COMMUNITY-ORIENTED DESIGN AND EVALUATION PROCESS FOR SUSTAINABLE INFRASTRUCTURE

    EPA Science Inventory

    We met our first objective by completing the physical infrastructure of the La Fortuna-Tule water and sanitation project using the CODE-PSI method. This physical component of the project was important in providing a real, relevant, community-scale test case for the methods ...

  2. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  3. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  4. Irrelevant reward and selection histories have different influences on task-relevant attentional selection.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-07-01

    Task-relevant and physically salient features influence visual selective attention. In the present study, we investigated the influence of task-irrelevant and physically nonsalient reward-associated features on visual selective attention. Two hypotheses were tested: One predicts that the effects of target-defining task-relevant and task-irrelevant features interact to modulate visual selection; the other predicts that visual selection is determined by the independent combination of relevant and irrelevant feature effects. These alternatives were tested using a visual search task that contained multiple targets, placing a high demand on the need for selectivity, and that was data-limited and required unspeeded responses, emphasizing early perceptual selection processes. One week prior to the visual search task, participants completed a training task in which they learned to associate particular colors with a specific reward value. In the search task, the reward-associated colors were presented surrounding targets and distractors, but were neither physically salient nor task-relevant. In two experiments, the irrelevant reward-associated features influenced performance, but only when they were presented in a task-relevant location. The costs induced by the irrelevant reward-associated features were greater when they oriented attention to a target than to a distractor. In a third experiment, we examined the effects of selection history in the absence of reward history and found that the interaction between task relevance and selection history differed, relative to when the features had previously been associated with reward. The results indicate that under conditions that demand highly efficient perceptual selection, physically nonsalient task-irrelevant and task-relevant factors interact to influence visual selective attention.

  5. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haworth, Daniel C; Ferreyro-Fernandez, Sebastian; Paul, Chandan

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gasmore » radiation and spectral radiation properties are important for engine-relevant conditions.« less

  6. Aspects of the Cognitive Model of Physics Problem Solving.

    ERIC Educational Resources Information Center

    Brekke, Stewart E.

    Various aspects of the cognitive model of physics problem solving are discussed in detail including relevant cues, encoding, memory, and input stimuli. The learning process involved in the recognition of familiar and non-familiar sensory stimuli is highlighted. Its four components include selection, acquisition, construction, and integration. The…

  7. Are Arabic and Verbal Numbers Processed in Different Ways?

    ERIC Educational Resources Information Center

    Kadosh, Roi Cohen; Henik, Avishai; Rubinsten, Orly

    2008-01-01

    Four experiments were conducted in order to examine effects of notation--Arabic and verbal numbers--on relevant and irrelevant numerical processing. In Experiment 1, notation interacted with the numerical distance effect, and irrelevant physical size affected numerical processing (i.e., size congruity effect) for both notations but to a lesser…

  8. Physical Uncertainty Bounds (PUB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switchingmore » out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.« less

  9. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  10. Assessing physical functioning on pain management programmes: the unique contribution of directly assessed physical performance measures and their relationship to self-reports

    PubMed Central

    Guildford, Beth J; Jacobs, Clair M; Daly-Eichenhardt, Aisling; Scott, Whitney; McCracken, Lance M

    2016-01-01

    Physical functioning is a recommended outcome domain for pain management programmes. It can be assessed by self-report and by direct assessment of performance. Although physical performance measures may provide unique and useful information about patient functioning over and above self-report measures, it is not entirely clear which of the many possible performances to assess. This study investigated a battery of three directly assessed physical performance measures and their relationship to three currently used self-report measures of general health and functioning. The three performance measures were sensitive to treatment; patients performed significantly better on all three measures following completion of the pain management programme. The three performance measures were shown to represent a single underlying dimension, and there was a significant degree of overlap between them. The performance measures were shown to be relevant in explaining variation in the self-report measures, as well as to offer a clinically relevant different dimension of assessment to self-report. Future research could focus on developing performance-based measures that capture quality of movement and that are sensitive to relevant processes of therapeutic change. PMID:28386404

  11. Principles and Techniques of Radiation Chemistry.

    ERIC Educational Resources Information Center

    Dorfman, Leon M.

    1981-01-01

    Discusses the physical processes involved in the deposition of energy from ionizing radiation in the absorber system. Identifies principles relevant to these processes which are responsible for ionization and excitation of the components of the absorber system. Briefly describes some experimental techniques in use in radiation chemical studies.…

  12. Framework and Implementation for Improving Physics Essential Skills via Computer-Based Practice: Vector Math

    ERIC Educational Resources Information Center

    Mikula, Brendon D.; Heckler, Andrew F.

    2017-01-01

    We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…

  13. Selecting relevant and feasible measurement instruments for the revised Dutch clinical practice guideline for physical therapy in patients after stroke.

    PubMed

    Otterman, Nicoline; Veerbeek, Janne; Schiemanck, Sven; van der Wees, Philip; Nollet, Frans; Kwakkel, Gert

    2017-07-01

    To select relevant and feasible instruments for the revision of the Dutch clinical practice guideline for physical therapy in patients with stroke. In this implementation study a comprehensive proposal for ICF categories and matching instruments was developed, based on reliability and validity. Relevant instruments were then selected in a consensus round by 11 knowledge brokers who were responsible for the implementation of the selected instruments. The feasibility of the selected instruments was tested by 36 physical therapists at different work settings within stroke services. Finally, instruments that were deemed relevant and feasible were included in the revised guideline. A total of 28 instruments were recommended for inclusion in the revised guideline. Nineteen instruments were retained from the previous guideline. Ten new instruments were tested in clinical practice, seven of which were found feasible. Two more instruments were added after critical appraisal of the set of the measurement instruments. The revised guideline contains 28 relevant and feasible instrument selected and tested in clinical practice by physical therapists. Further education and implementation is needed to integrate instruments in clinical practice. Further research is proposed for developing and implementing a core set of measurement instruments to be used at fixed time points to establish data registries that allow for continuous improvement of rehabilitation for stroke patients. Implications for Rehabilitation The revised Dutch Stroke Physical Therapy Guideline recommends a total of 28 instruments, that are relevant and feasible for clinical practice of physical therapist in the different settings of stroke rehabilitation. The selection of instrument in daily practice should be part of the clinical reasoning process of PTs and be tailored to individual patients' needs and the degree of priority of the affected ICF category. Suggested education strategies for further integration of instruments in of the daily practice of PTs in Stroke Rehabilitation are: 'Training on the job' and 'peer assessment in clinical situations'.

  14. On Several Relations in the Process of Developing Inclusive Education

    ERIC Educational Resources Information Center

    Jianghua, Lei; Meng, Deng

    2007-01-01

    Several issues must be addressed in the process of developing inclusive education in China. This paper reveals that the relevant stakeholders should deal carefully with the relations between universalization and quality enhancement, "learning in a regular classroom" (LRC), and the physical and psychological development of the students.…

  15. Theoretical and experimental studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Reeves, E. M.

    1975-01-01

    The processes and parameters in atomic and molecular physics that are relevant to solar physics are investigated. The areas covered include: (1) measurement of atomic and molecular parameters that contribute to discrete and continous sources of opacity and abundance determinations in the sun; (2) line broadening and scattering phenomena; and (3) development of an ion beam spectroscopic source which is used for the measurement of electron excitation cross sections of transition region and coronal ions.

  16. Surface interactions relevant to space station contamination problems

    NASA Technical Reports Server (NTRS)

    Dickinson, J. T.

    1988-01-01

    The physical and chemical processes at solid surfaces which can contribute to Space Station contamination problems are reviewed. Suggested areas for experimental studies to provide data to improve contamination modeling efforts are presented.

  17. Far from Equilibrium Percolation, Stochastic and Shape Resonances in the Physics of Life

    PubMed Central

    Poccia, Nicola; Ansuini, Alessio; Bianconi, Antonio

    2011-01-01

    Key physical concepts, relevant for the cross-fertilization between condensed matter physics and the physics of life seen as a collective phenomenon in a system out-of-equilibrium, are discussed. The onset of life can be driven by: (a) the critical fluctuations at the protonic percolation threshold in membrane transport; (b) the stochastic resonance in biological systems, a mechanism that can exploit external and self-generated noise in order to gain efficiency in signal processing; and (c) the shape resonance (or Fano resonance or Feshbach resonance) in the association and dissociation processes of bio-molecules (a quantum mechanism that could play a key role to establish a macroscopic quantum coherence in the cell). PMID:22072921

  18. The physics of proton therapy.

    PubMed

    Newhauser, Wayne D; Zhang, Rui

    2015-04-21

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy.

  19. The physics of proton therapy

    PubMed Central

    Newhauser, Wayne D; Zhang, Rui

    2015-01-01

    The physics of proton therapy has advanced considerably since it was proposed in 1946. Today analytical equations and numerical simulation methods are available to predict and characterize many aspects of proton therapy. This article reviews the basic aspects of the physics of proton therapy, including proton interaction mechanisms, proton transport calculations, the determination of dose from therapeutic and stray radiations, and shielding design. The article discusses underlying processes as well as selected practical experimental and theoretical methods. We conclude by briefly speculating on possible future areas of research of relevance to the physics of proton therapy. PMID:25803097

  20. Impact of physical permafrost processes on hydrological change

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Beer, Christian; Ekici, Altug

    2015-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact projected hydrological changes over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Observed SST and sea ice for 1979-1999 are used to consider induced changes in the simulated hydrological cycle. In addition, simulated SST and sea ice are taken from a MPI-ESM simulation conducted for CMIP5 following the RCP8.5 scenario. The corresponding simulations with ECHAM6-JSBACH are used to assess differences in projected hydrological changes induced by the permafrost relevant processes.

  1. Differences in ability to perform activities of daily living among women with fibromyalgia: A cross-sectional study.

    PubMed

    von Bülow, Cecilie; Amris, Kirstine; la Cour, Karen; Danneskiold-Samsøe, Bente; Ejlersen, Eva Wæhrens

    2015-11-01

    To investigate whether the Assessment of Motor and Process Skills (AMPS), the physical function subscales of the Fibromyalgia Impact Questionnaire (FIQ PF) and the 36-item Short Form (SF-36 PF) can identify subgroups of women with fibromyalgia with clinically relevant differences in ability to perform activities of daily living. Cross-sectional study. A total of 257 women with fibromyalgia. Participants were evaluated with the AMPS (measuring activities of daily living motor and activities of daily living process ability), FIQ and SF-36. AMPS independence cut-offs were used to divide the participants into 4 subgroups. Clinically relevant differences between subgroups were investigated based on the AMPS, FIQ PF and SF-36 PF. Participants in the 4 AMPS-derived subgroups demon-strated clinically relevant differences in observed activities of daily living motor and process ability. Neither the FIQ PF nor the SF-36 PF could differentiate between subgroups with clinically relevant differences in AMPS activities of daily living process ability. Activities of daily living process skills reflect underlying organizational and adaptive capacities of the individual and are relevant targets for interventions aiming at improving activities of daily living ability. Since self-report instruments do not capture differences in activities of daily living process ability, clinicians should include observations-based assessment of activities of daily living ability in order to individualize interventions offered.

  2. Cold comfort at the Magh Mela: social identity processes and physical hardship.

    PubMed

    Pandey, Kavita; Stevenson, Clifford; Shankar, Shail; Hopkins, Nicholas P; Reicher, Stephen D

    2014-12-01

    Humans inhabit environments that are both social and physical, and in this article we investigate if and how social identity processes shape the experience and negotiation of physically demanding environmental conditions. Specifically, we consider how severe cold can be interpreted and experienced in relation to group members' social identity. Our data comprise ethnographic observation and semi-structured interviews with pilgrims attending a month-long winter Hindu religious festival that is characterized by near-freezing conditions. The analysis explores (1) how pilgrims appraised the cold and how these appraisals were shaped by their identity as pilgrims; (2) how shared identity with other pilgrims led to forms of mutual support that made it easier to cope with the cold. Our findings therefore extend theorizing on social identity processes to highlight their relevance to physical as well as social conditions. © 2013 The British Psychological Society.

  3. Plasma physics of extreme astrophysical environments.

    PubMed

    Uzdensky, Dmitri A; Rightley, Shane

    2014-03-01

    Among the incredibly diverse variety of astrophysical objects, there are some that are characterized by very extreme physical conditions not encountered anywhere else in the Universe. Of special interest are ultra-magnetized systems that possess magnetic fields exceeding the critical quantum field of about 44 TG. There are basically only two classes of such objects: magnetars, whose magnetic activity is manifested, e.g., via their very short but intense gamma-ray flares, and central engines of supernovae (SNe) and gamma-ray bursts (GRBs)--the most powerful explosions in the modern Universe. Figuring out how these complex systems work necessarily requires understanding various plasma processes, both small-scale kinetic and large-scale magnetohydrodynamic (MHD), that govern their behavior. However, the presence of an ultra-strong magnetic field modifies the underlying basic physics to such a great extent that relying on conventional, classical plasma physics is often not justified. Instead, plasma-physical problems relevant to these extreme astrophysical environments call for constructing relativistic quantum plasma (RQP) physics based on quantum electrodynamics (QED). In this review, after briefly describing the astrophysical systems of interest and identifying some of the key plasma-physical problems important to them, we survey the recent progress in the development of such a theory. We first discuss the ways in which the presence of a super-critical field modifies the properties of vacuum and matter and then outline the basic theoretical framework for describing both non-relativistic and RQPs. We then turn to some specific astrophysical applications of relativistic QED plasma physics relevant to magnetar magnetospheres and to central engines of core-collapse SNe and long GRBs. Specifically, we discuss the propagation of light through a magnetar magnetosphere; large-scale MHD processes driving magnetar activity and responsible for jet launching and propagation in GRBs; energy-transport processes governing the thermodynamics of extreme plasma environments; micro-scale kinetic plasma processes important in the interaction of intense electric currents flowing through a magnetar magnetosphere with the neutron star surface; and magnetic reconnection of ultra-strong magnetic fields. Finally, we point out that future progress in applying RQP physics to real astrophysical problems will require the development of suitable numerical modeling capabilities.

  4. X ray timing observations and gravitational physics

    NASA Technical Reports Server (NTRS)

    Michelson, Peter F.; Wood, Kent S.

    1989-01-01

    Photon-rich x ray observations on bright compact galactic sources will make it possible to detect many fast processes that may occur in these systems on millisecond and submillisecond timescales. Many of these processes are of direct relevance to gravitational physics because they arise in regions of strong gravity near neutron stars and black holes where the dynamical timescales for compact objects of stellar mass are milliseconds. To date, such observations have been limited by the detector area and telemetry rates available. However, instruments such as the proposed X ray Large Array (XLA) would achieve collecting areas of about 100 sq m. This instrument has been described elsewhere (Wood and Michelson 1988) and was the subject of a recent prephase A feasibility study at Marshall Space Flight Center. Observations with an XLA class instrument will directly impact five primary areas of astrophysics research: the attempt to detect gravitational radiation, the study of black holes, the physics of mass accretion onto compact objects, the structure of neutron stars and nuclear matter, and the characterization of dark matter in the universe. Those observations are discussed that are most directly relevant to gravitational physics: the search for millisecond x ray pulsars that are potential sources of continuous gravitational radiation; and the use of x ray timing observations to probe the physical conditions in extreme relativistic regions of space near black holes, both stellar-sized and supermassive.

  5. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results

    Treesearch

    Pantana Tor-ngern; Ram Oren; Andrew C. Oishi; Joshua M. Uebelherr; Sari Palmroth; Lasse Tarvainen; Mikaell Ottosson-Löfvenius; Sune Linder; Jean-Christophe Domec; Torgny Näsholm

    2017-01-01

    Canopy transpiration (EC) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying EC is of both scientific and practical importance, providing information relevant to...

  6. Invited review article: physics and Monte Carlo techniques as relevant to cryogenic, phonon, and ionization readout of Cryogenic Dark Matter Search radiation detectors.

    PubMed

    Leman, Steven W

    2012-09-01

    This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.

  7. Geometric stability of topological lattice phases

    PubMed Central

    Jackson, T. S.; Möller, Gunnar; Roy, Rahul

    2015-01-01

    The fractional quantum Hall (FQH) effect illustrates the range of novel phenomena which can arise in a topologically ordered state in the presence of strong interactions. The possibility of realizing FQH-like phases in models with strong lattice effects has attracted intense interest as a more experimentally accessible venue for FQH phenomena which calls for more theoretical attention. Here we investigate the physical relevance of previously derived geometric conditions which quantify deviations from the Landau level physics of the FQHE. We conduct extensive numerical many-body simulations on several lattice models, obtaining new theoretical results in the process, and find remarkable correlation between these conditions and the many-body gap. These results indicate which physical factors are most relevant for the stability of FQH-like phases, a paradigm we refer to as the geometric stability hypothesis, and provide easily implementable guidelines for obtaining robust FQH-like phases in numerical or real-world experiments. PMID:26530311

  8. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management

    DOE PAGES

    McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid

    2016-02-17

    Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.

  9. Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCartney, John S.; Sanchez, Marcelo; Tomac, Ingrid

    Energy geotechnics involves the use of geotechnical principles to understand and engineer the coupled thermo-hydro-chemo-mechanical processes encountered in collecting, exchanging, storing, and protecting energy resources in the subsurface. In addition to research on these fundamental coupled processes and characterization of relevant material properties, applied research is being performed to develop analytical tools for the design and analysis of different geo-energy applications. In conclusion, the aims of this paper are to discuss the fundamental physics and constitutive models that are common to these different applications, and to summarize recent advances in the development of relevant analytical tools.

  10. La Sexualidad.

    ERIC Educational Resources Information Center

    Picco, Elizabeth Raptis

    This curriculum unit provides educators with 10 lessons designed to make sexuality education culturally relevant for Latino youth in grades five through eight. While affirming the traditions and characteristics of Latino families and cultures, this structured curriculum introduces sexuality as a lifelong process that goes beyond physical intimacy.…

  11. A Decision Support Tool for Sustainable Land Use, Transportation, Buildings/Infrastructure, and Materials Management

    EPA Science Inventory

    One issue for community groups, local and regional planners, and politicians, is that they require relevant information to develop programs and initiatives for incorporating sustainability principles into their physical infrastructure, operations, and decision-making processes. T...

  12. Phloem physics: mechanisms, constraints, and perspectives.

    PubMed

    Jensen, Kaare H

    2018-04-13

    Plants have evolved specialized vascular tissues for the distribution of energy, water, nutrients, and for communication. The phloem transports sugars from photosynthetic source regions (e.g. mature leaves) to sugar sinks (e.g. developing tissues such as buds, flowers, roots). Moreover, chemical signals such as hormones, RNAs and proteins also move in the phloem. Basic physical processes strongly limit phloem anatomy and function. This paper provides an overview of recent research and perspectives on phloem biomechanics and the physical constraints relevant to sugar transport in plants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Experimental constraints from flavour changing processes and physics beyond the Standard Model.

    PubMed

    Gersabeck, M; Gligorov, V V; Serra, N

    Flavour physics has a long tradition of paving the way for direct discoveries of new particles and interactions. Results over the last decade have placed stringent bounds on the parameter space of physics beyond the Standard Model. Early results from the LHC, and its dedicated flavour factory LHCb, have further tightened these constraints and reiterate the ongoing relevance of flavour studies. The experimental status of flavour observables in the charm and beauty sectors is reviewed in measurements of CP violation, neutral meson mixing, and measurements of rare decays.

  14. Quantum physics in neuroscience and psychology: A neurophysicalmodel of the mind/brain interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Jeffrey M.; Stapp, Henry P.; Beauregard, Mario

    Neuropsychological research on the neural basis of behavior generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus terms having intrinsic mentalistic and/or experiential content (e.g., ''feeling,'' ''knowing,'' and ''effort'') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrectmore » for more than three quarters of a century. Contemporary basic physical theory differs profoundly from classical physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, due to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analyzing human brain dynamics. The new framework, unlike its classical-physics-based predecessor is erected directly upon, and is compatible with, the prevailing principles of physics, and is able to represent more adequately than classical concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.« less

  15. Quantum physics in neuroscience and psychology: a neurophysical model of mind–brain interaction

    PubMed Central

    Schwartz, Jeffrey M; Stapp, Henry P; Beauregard, Mario

    2005-01-01

    Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. ‘feeling’, ‘knowing’ and ‘effort’) are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function. PMID:16147524

  16. Sexual selection and physical attractiveness : Implications for mating dynamics.

    PubMed

    Gangestad, S W

    1993-09-01

    Sexual selection processes have received much attention in recent years, attention reflected in interest in human mate preferences. Among these mate preferences are preferences for physical attractiveness. Preferences in and of themselves, however, do not fully explain the nature of the relationships that individuals attain. A tacit negotiation process underlies relationship formation and maintenance. The notion that preferences for physical attractiveness evolved under parasite-driven "good genes" sexual selection leads to predictions about the nature of trade-offs that individuals make between mates' physical attractiveness and investment potential. These predictions and relevant data are explored, with a primary emphasis on women's preferences for men's qualities. In addition, further implications of trade-offs are examined, most notably (a) the impact of environmental variations on the nature of mating and (b) some effects of trade-offs on infidelity and male attempts to control women.

  17. Employment of adaptive learning techniques for the discrimination of acoustic emissions

    NASA Astrophysics Data System (ADS)

    Erkes, J. W.; McDonald, J. F.; Scarton, H. A.; Tam, K. C.; Kraft, R. P.

    1983-11-01

    The following aspects of this study on the discrimination of acoustic emissions (AE) were examined: (1) The analytical development and assessment of digital signal processing techniques for AE signal dereverberation, noise reduction, and source characterization; (2) The modeling and verification of some aspects of key selected techniques through a computer-based simulation; and (3) The study of signal propagation physics and their effect on received signal characteristics for relevant physical situations.

  18. Harnessing the Power of Digital Data for Science and Society

    DTIC Science & Technology

    2009-01-01

    development and that the research process is responsive to the real-world needs of the implementation sector. Relationship to the Scientific Collections IWG...The Scientific Collections Interagency Working Group focuses on collections of physical objects relevant to science (e.g., biological specimens

  19. Allergenic properties and differential response of walnut subjected to processing treatments

    USDA-ARS?s Scientific Manuscript database

    Walnut is one of the most frequently involved foods in anaphylactic reactions. We investigated changes in walnut allergenicity after physical treatments by in vitro techniques and physiologically relevant assays. Changes in the allergenicity of walnut subjected to high pressure and thermal/pressur...

  20. Measurement of talent in team handball: the questionable use of motor and physical tests.

    PubMed

    Lidor, Ronnie; Falk, Bareket; Arnon, Michal; Cohen, Yoram; Segal, Gil; Lander, Yael

    2005-05-01

    Testing for selection is one of the most important fundamentals in any multistep sport program. In most ball games, coaches assess motor, physical, and technical skills on a regular basis in early stages of talent identification and development. However, selection processes are complex, are often unstructured, and lack clear-cut theory-based knowledge. For example, little is known about the relevance of the testing process to the final selection of the young prospects. The purpose of this study was to identify motor, physical, and skill variables that could provide coaches with relevant information in the selection process of young team handball players. In total, 405 players (12-13 years of age at the beginning of the testing period) were recommended by their coaches to undergo a battery of tests prior to selection to the Junior National Team. This number is the sum of all players participating in the different phases of the program. However, not all of them took part in each testing phase. The battery included physical measurements (height and weight), a 4 x 10-m running test, explosive power tests (medicine ball throw and standing long jump), speed tests (a 20-m sprint from a standing position and a 20-m sprint with a flying start), and a slalom dribbling test. Comparisons between those players eventually selected to the Junior National Team 2-3 years later with those not selected demonstrated that only the skill test served as a good indicator. In all other measurements, a wide overlap could be seen between the results of the selected and nonselected players. It is suggested that future studies investigate the usefulness of tests reflecting more specific physical ability and cognitive characteristics.

  1. Hands-on-Entropy, Energy Balance with Biological Relevance

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.

  2. HIPPOCAMPAL CONTRIBUTIONS TO THE PROCESSING OF SOCIAL EMOTIONS

    PubMed Central

    Immordino-Yang, Mary Helen; Singh, Vanessa

    2012-01-01

    Inducing and experiencing emotions about others’ mental and physical circumstances is thought to involve self-relevant processing and personal memories of similar experiences. The hippocampus is important for self-referential processing during recall and prospection; however, its contributions during social emotions have not been systematically investigated. We use event-related averaging and Granger causal connectivity mapping to investigate hippocampal contributions during the processing of varieties of admiration and compassion pertaining to protagonists’ mental versus physical circumstances (admiration for virtue, AV, versus for skill; compassion for social/psychological pain, CSP, versus for physical pain). Data were collected using a multistep emotion induction paradigm that included psychosocial interviews, BOLD fMRI and simultaneous psychophysiological recording. Given that mnemonic demands were equivalent among conditions, we tested whether: (1) the hippocampi would be recruited more strongly and for a longer duration during the processing of AV and CSP; (2) connectivity between the hippocampi and cortical systems involved in visceral somatosensation/emotional feeling, social cognitive, and self-related processing would be more extensive during AV and CSP. Results elucidate the hippocampus’ facilitative role in inducing and sustaining appropriate emotional reactions, the importance of self-related processing during social emotions, and corroborate the conception that varieties of emotional processing pertaining to others’ mental and physical situations engage at least partially distinct neural mechanisms. PMID:22012639

  3. Nonlocal approach to nonequilibrium thermodynamics and nonlocal heat diffusion processes

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-04-01

    We study some aspects of nonequilibrium thermodynamics and heat diffusion processes based on Suykens's nonlocal-in-time kinetic energy approach recently introduced in the literature. A number of properties and insights are obtained in particular the emergence of oscillating entropy and nonlocal diffusion equations which are relevant to a number of physical and engineering problems. Several features are obtained and discussed in details.

  4. Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria

    2014-11-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.

  5. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  6. Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.

    PubMed

    Korf, Jakob

    2015-08-01

    This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.

  7. Recasting particle physics by entangling physics, history and philosophy

    NASA Astrophysics Data System (ADS)

    Bertozzi, Eugenio; Levrini, Olivia

    2016-05-01

    -1The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their "regime of competence" for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students' reactions brought into light the need of clarifying the "foundational" character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.

  8. The yin and yang of formative research in designing serious (exer-)games

    USDA-ARS?s Scientific Manuscript database

    Despite its relevance, formative research on games may be an undervalued part of the game development process. At the 2014 International Society of Behavioral Nutrition and Physical Activity exergaming preconference satellite meeting, a roundtable discussion was held to assemble experiences and sugg...

  9. Chocolate: A Marvelous Natural Product of Chemistry

    ERIC Educational Resources Information Center

    Tannenbaum, Ginger

    2004-01-01

    The study of chocolate, a natural product, can be beneficial for the chemistry students as they ask frequently about the relevancy of their chemistry classes. The history of chocolate, its chemical and physical changes during processing, its composition, different crystalline forms, tempering and its viscosity are discussed.

  10. Modeling an integrative physical examination program for the Departments of Defense and Veterans Affairs.

    PubMed

    Goodrich, Scott G

    2006-10-01

    Current policies governing the Departments of Defense and Veterans Affairs physical examination programs are out of step with current evidence-based medical practice. Replacing periodic and other routine physical examination types with annual preventive health assessments would afford our service members additional health benefit at reduced cost. Additionally, the Departments of Defense and Veterans Affairs repeat the physical examination process at separation and have been unable to reconcile their respective disability evaluation systems to reduce duplication and waste. A clear, coherent, and coordinated strategy to improve the relevance and utility of our physical examination programs is long overdue. This article discusses existing physical examination programs and proposes a model for a new integrative physical examination program based on need, science, and common sense.

  11. Exploration and validation of clusters of physically abused children.

    PubMed

    Sabourin Ward, Caryn; Haskett, Mary E

    2008-05-01

    Cluster analysis was used to enhance understanding of heterogeneity in social adjustment of physically abused children. Ninety-eight physically abused children (ages 5-10) were clustered on the basis of social adjustment, as measured by observed behavior with peers on the school playground and by teacher reports of social behavior. Seventy-seven matched nonabused children served as a comparison sample. Clusters were validated on the basis of observed parental sensitivity, parents' self-reported disciplinary tactics, and children's social information processing operations (i.e., generation of solutions to peer relationship problems and attributions of peer intentions in social situations). Three subgroups of physically abused children emerged from the cluster analysis; clusters were labeled Socially Well Adjusted, Hanging in There, and Social Difficulties. Examination of cluster differences on risk and protective factors provided substantial evidence in support of the external validity of the three-cluster solution. Specifically, clusters differed significantly in attributions of peer intent and in parenting (i.e., sensitivity and harshness of parenting). Clusters also differed in the ways in which they were similar to, or different from, the comparison group of nonabused children. Results supported the contention that there were clinically relevant subgroups of physically abused children with potentially unique treatment needs. Findings also pointed to the relevance of social information processing operations and parenting context in understanding diversity among physically abused children. Pending replication, findings provide support for the importance of considering unique treatment of needs among physically abused children. A singular approach to intervention is unlikely to be effective for these children. For example, some physically abused children might need a more intensive focus on development of prosocial skills in relationships with peers while the prosocial skills of other abused children will be developmentally appropriate. In contrast, most physically abused children might benefit from training in social problem-solving skills. Findings also point to the importance of promoting positive parenting practices in addition to reducing harsh discipline of physically abusive parents.

  12. Ethical decision-making in hospice care.

    PubMed

    Walker, Andreas; Breitsameter, Christof

    2015-05-01

    Hospices are based on a holistic approach which places the physical, psychological, social and spiritual welfare of their patients at the forefront of their work. Furthermore, they draw up their own mission statements which they are at pains to follow and seek to conduct their work in accordance with codes of ethics and standards of care. Our study researched what form the processes and degrees of latitude in decision-making take in practice when questions of an ethical and ethically relevant nature arise. We used a qualitative approach. Data collection and evaluation was based on the methods of grounded theory. The study was reported to the relevant Ethics Commission who had raised no objections following the submission of the study protocol. The study at the hospices was approved by the directors of the hospices and the nursing teams. The rights of the participants were protected by obtaining informed consent. Medication in the prefinal phase and questions affecting the provision of solids and liquids in the end-of-life phase have an ethical dimension. In the context of these two fields, decisions are taken collectively. A nurse's individual (and ethically relevant) leeway in decision-making processes is restricted to the nurse's own style of administering care. The nurse's decision-making often depends to a far greater degree on her ability to adapt her concept of ideal care to fit the practical realities of her work than to any conceptual framework. An adaptive process is necessary for the nurse because she is required to incorporate the four pillars of hospice care - namely, physical, psychological, social and spiritual care - into the practice of her daily work. Ethically relevant decisions are often characterised by nurses adjusting their aspiration levels to the practical conditions with which they are confronted. © The Author(s) 2014.

  13. Review of Recent BABAR Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lista, L.

    2004-12-02

    We present a review of recent results from BaBar experiment. BaBar detector has collected about 256 millions of B{bar B} events at PEP-II, the asymmetric e{sup +}e{sup -} collider located at SLAC running at the {Upsilon}(4S) resonance. We have studied CP violation in B mesons, observing the first evidence of direct CP violation in B meson decays and measured CP asymmetries relevant for the determination of the angles of the CKM Unitarity Triangle. BaBar physics program covers many other topics, including measurements of CKM matrix elements, charm physics, and search for new physics processes.

  14. 40 CFR 63.2860 - What notifications must I submit and when?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production... address of the owner or operator. (2) The physical address of the vegetable oil production process. (3) Identification of the relevant standard, such as the vegetable oil production NESHAP, and compliance date. (4) A...

  15. 40 CFR 63.2860 - What notifications must I submit and when?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Emission Standards for Hazardous Air Pollutants: Solvent Extraction for Vegetable Oil Production... address of the owner or operator. (2) The physical address of the vegetable oil production process. (3) Identification of the relevant standard, such as the vegetable oil production NESHAP, and compliance date. (4) A...

  16. A Survey of Basic Instructional Program Graduate Teaching Assistant Development and Support Processes

    ERIC Educational Resources Information Center

    Russell, Jared A.

    2009-01-01

    For over 100 years, basic instructional programs (BIP) have played a pivotal role in providing undergraduates with opportunities to acquire sport-related skills and conceptual knowledge relevant to promoting their involvement in lifelong physical activity and establishing healthy lifestyle habits. Critical to delivering this instructional content…

  17. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  18. Indicators for evaluating European population health: a Delphi selection process.

    PubMed

    Freitas, Ângela; Santana, Paula; Oliveira, Mónica D; Almendra, Ricardo; Bana E Costa, João C; Bana E Costa, Carlos A

    2018-04-27

    Indicators are essential instruments for monitoring and evaluating population health. The selection of a multidimensional set of indicators should not only reflect the scientific evidence on health outcomes and health determinants, but also the views of health experts and stakeholders. The aim of this study is to describe the Delphi selection process designed to promote agreement on indicators considered relevant to evaluate population health at the European regional level. Indicators were selected in a Delphi survey conducted using a web-platform designed to implement and monitor participatory processes. It involved a panel of 51 experts and 30 stakeholders from different areas of knowledge and geographies. In three consecutive rounds the panel indicated their level of agreement or disagreement with indicator's relevance for evaluating population health in Europe. Inferential statistics were applied to draw conclusions on observed level of agreement (Scott's Pi interrater reliability coefficient) and opinion change (McNemar Chi-square test). Multivariate analysis of variance was conducted to check if the field of expertise influenced the panellist responses (Wilk's Lambda test). The panel participated extensively in the study (overall response rate: 80%). Eighty indicators reached group agreement for selection in the areas of: economic and social environment (12); demographic change (5); lifestyle and health behaviours (8); physical environment (6); built environment (12); healthcare services (11) and health outcomes (26). Higher convergence of group opinion towards agreement on the relevance of indicators was seen for lifestyle and health behaviours, healthcare services, and health outcomes. The panellists' field of expertise influenced responses: statistically significant differences were found for economic and social environment (p < 0.05 in round 1 and 2), physical environment (p < 0.01 in round 1) and health outcomes (p < 0.01 in round 3). The high levels of participation observed in this study, by involving experts and stakeholders and ascertaining their views, underpinned the added value of using a transparent Web-Delphi process to promote agreement on what indicators are relevant to appraise population health.

  19. The semantic richness of abstract concepts

    PubMed Central

    Recchia, Gabriel; Jones, Michael N.

    2012-01-01

    We contrasted the predictive power of three measures of semantic richness—number of features (NFs), contextual dispersion (CD), and a novel measure of number of semantic neighbors (NSN)—for a large set of concrete and abstract concepts on lexical decision and naming tasks. NSN (but not NF) facilitated processing for abstract concepts, while NF (but not NSN) facilitated processing for the most concrete concepts, consistent with claims that linguistic information is more relevant for abstract concepts in early processing. Additionally, converging evidence from two datasets suggests that when NSN and CD are controlled for, the features that most facilitate processing are those associated with a concept's physical characteristics and real-world contexts. These results suggest that rich linguistic contexts (many semantic neighbors) facilitate early activation of abstract concepts, whereas concrete concepts benefit more from rich physical contexts (many associated objects and locations). PMID:23205008

  20. Surface Ocean-Lower Atmosphere Studies: SOLAS

    NASA Astrophysics Data System (ADS)

    Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.

    2002-05-01

    The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.

  1. Modelling of runoff generation and soil moisture dynamics for hillslopes and micro-catchments

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Plate, Erich J.

    1997-11-01

    The modelling of hillslope hydrology is of great importance not only for the reason that all non-plain, i.e. hilly or mountainous, landscapes can be considered as being composed of a mosaic of hillslopes. A hillslope model may also be used for both research purposes and for application-oriented, detailed, hillslope-scale hydrological studies in conjunction with related scientific disciplines such as geotechnics, geo-chemistry and environmental technology. Despite the current limited application of multi-process and multi-dimensional hydrological models (particularly at the hillslope scale), hardly any comprehensive model has been available for operational use. In this paper we introduce a model which considers most of the relevant hillslope hydrological processes. Some recent applications are described which demonstrate its ability to narrow the stated gap in hillslope hydrological modelling. The modelling system accounts for the hydrological processes of interception, evapotranspiration, infiltration, soil-moisture movement (where the flow processes can be modelled in three dimensions), surface runoff, subsurface stormflow and streamflow discharge. The relevant process interactions are also included. Special regard has been given to consideration of state-of-the-art knowledge concerning rapid soilwater flow processes during storm conditions (e.g. macropore infiltration, lateral subsurface stormflow, return flow) and to its transfer to and inclusion within an operational modelling scheme. The model is "physically based" in the sense that its parameters have a physical meaning and can be obtained or derived from field measurements. This somewhat weaker than usual definition of a physical basis implies that some of the sub-models (still) contain empirical components, that the effects of the high spatial and temporal variability found in nature cannot always be expressed within the various physical laws, i.e. that the laws are scale dependent, and that due to limitations of measurements and data processing, one can express only averaged and incomplete data conditions. Several applications demonstrate the reliable performance of the model for one-, two- and three-dimensional simulations. The described examples of application are part of a comprehensive erosion and agro-chemical transport study in a loessy agricultural catchment in southwestern Germany, and of a study on the sealing efficacy of capillary barriers in landfill covers.

  2. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  3. Electric field control in DC cable test termination by nano silicone rubber composite

    NASA Astrophysics Data System (ADS)

    Song, Shu-Wei; Li, Zhongyuan; Zhao, Hong; Zhang, Peihong; Han, Baozhong; Fu, Mingli; Hou, Shuai

    2017-07-01

    The electric field distributions in high voltage direct current cable termination are investigated with silicone rubber nanocomposite being the electric stress control insulator. The nanocomposite is composed of silicone rubber, nanoscale carbon black and graphitic carbon. The experimental results show that the physical parameters of the nanocomposite, such as thermal activation energy and nonlinearity-relevant coefficient, can be manipulated by varying the proportion of the nanoscale fillers. The numerical simulation shows that safe electric field distribution calls for certain parametric region of the thermal activation energy and nonlinearity-relevant coefficient. Outside the safe parametric region, local maximum of electric field strength around the stress cone appears in the termination insulator, enhancing the breakdown of the cable termination. In the presence of the temperature gradient, thermal activation energy and nonlinearity-relevant coefficient work as complementary factors to produce a reasonable electric field distribution. The field maximum in the termination insulator show complicate variation in the transient processes. The stationary field distribution favors the increase of the nonlinearity-relevant coefficient; for the transient field distribution in the process of negative lighting impulse, however, an optimized value of the nonlinearity-relevant coefficient is necessary to equalize the electric field in the termination.

  4. Bridging Physics and Biology Using Resistance and Axons

    NASA Astrophysics Data System (ADS)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  5. High School Health and Physical Education: Reinforcing the 3Rs

    ERIC Educational Resources Information Center

    Moore, John

    2009-01-01

    The ultimate goal of the education process should be to improve instruction and increase student learning. To effectively accomplish this would truly result in education reform. Therefore, the first step in bringing about education reform is to provide academic rigor, vocational relevance and curricula relationships in programs that students see…

  6. Early prediction of extreme stratospheric polar vortex states based on causal precursors

    NASA Astrophysics Data System (ADS)

    Kretschmer, Marlene; Runge, Jakob; Coumou, Dim

    2017-08-01

    Variability in the stratospheric polar vortex (SPV) can influence the tropospheric circulation and thereby winter weather. Early predictions of extreme SPV states are thus important to improve forecasts of winter weather including cold spells. However, dynamical models are usually restricted in lead time because they poorly capture low-frequency processes. Empirical models often suffer from overfitting problems as the relevant physical processes and time lags are often not well understood. Here we introduce a novel empirical prediction method by uniting a response-guided community detection scheme with a causal discovery algorithm. This way, we objectively identify causal precursors of the SPV at subseasonal lead times and find them to be in good agreement with known physical drivers. A linear regression prediction model based on the causal precursors can explain most SPV variability (r2 = 0.58), and our scheme correctly predicts 58% (46%) of extremely weak SPV states for lead times of 1-15 (16-30) days with false-alarm rates of only approximately 5%. Our method can be applied to any variable relevant for (sub)seasonal weather forecasts and could thus help improving long-lead predictions.

  7. Multi-scale Modeling of Chromosomal DNA in Living Cells

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew

    The organization and dynamics of chromosomal DNA play a pivotal role in a range of biological processes, including gene regulation, homologous recombination, replication, and segregation. Establishing a quantitative theoretical model of DNA organization and dynamics would be valuable in bridging the gap between the molecular-level packaging of DNA and genome-scale chromosomal processes. Our research group utilizes analytical theory and computational modeling to establish a predictive theoretical model of chromosomal organization and dynamics. In this talk, I will discuss our efforts to develop multi-scale polymer models of chromosomal DNA that are both sufficiently detailed to address specific protein-DNA interactions while capturing experimentally relevant time and length scales. I will demonstrate how these modeling efforts are capable of quantitatively capturing aspects of behavior of chromosomal DNA in both prokaryotic and eukaryotic cells. This talk will illustrate that capturing dynamical behavior of chromosomal DNA at various length scales necessitates a range of theoretical treatments that accommodate the critical physical contributions that are relevant to in vivo behavior at these disparate length and time scales. National Science Foundation, Physics of Living Systems Program (PHY-1305516).

  8. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.

    PubMed

    Ciarrocchi, Esther; Belcari, Nicola

    2017-12-01

    Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.

  9. A toolbox for determining subdiffusive mechanisms

    NASA Astrophysics Data System (ADS)

    Meroz, Yasmine; Sokolov, Igor M.

    2015-04-01

    Subdiffusive processes have become a field of great interest in the last decades, due to amounting experimental evidence of subdiffusive behavior in complex systems, and especially in biological systems. Different physical scenarios leading to subdiffusion differ in the details of the dynamics. These differences are what allow to theoretically reconstruct the underlying physics from the results of observations, and will be the topic of this review. We review the main statistical analyses available today to distinguish between these scenarios, categorizing them according to the relevant characteristics. We collect the available tools and statistical tests, presenting them within a broader perspective. We also consider possible complications such as the subordination of subdiffusive mechanisms. Due to the advances in single particle tracking experiments in recent years, we focus on the relevant case of where the available experimental data is scant, at the level of single trajectories.

  10. An integrated operational definition and conceptual model of asthma self-management in teens.

    PubMed

    Mammen, Jennifer; Rhee, Hyekyun; Norton, Sally A; Butz, Arlene M; Halterman, Jill S; Arcoleo, Kimberly

    2018-01-19

    A previous definition of adolescent asthma self-management was derived from interviews with clinicians/researchers and published literature; however, it did not incorporate perspectives of teens or parents. Therefore, we conducted in-depth interviews with teens and parents and synthesized present findings with the prior analysis to develop a more encompassing definition and model. Focal concepts were qualitatively extracted from 14-day self-management voice-diaries (n = 14) and 1-hour interviews (n = 42) with teens and parents (28 individuals) along with concepts found in the previous clinical/research oriented analysis. Conceptual structure and relationships were identified and key findings synthesized to develop a revised definition and model of adolescent asthma self-management. There were two primary self-management constructs: processes of self-management and tasks of self-management. Self-management was defined as the iterative process of assessing, deciding, and responding to specific situations in order to achieve personally important outcomes. Clinically relevant asthma self-management tasks included monitoring asthma, managing active issues through pharmacologic and non-pharmacologic strategies, preventing future issues, and communicating with others as needed. Self-management processes were reciprocally influenced by intrapersonal factors (both cognitive and physical), interpersonal factors (family, social and physical environments), and personally relevant asthma and non-asthma outcomes. This is the first definition of asthma self-management incorporating teen, parent, clinician, and researcher perspectives, which suggests that self-management processes and behaviors are influenced by individually variable personal and interpersonal factors, and are driven by personally important outcomes. Clinicians and researchers should investigate teens' symptom perceptions, medication beliefs, current approaches to symptom management, relevant outcomes, and personal priorities.

  11. Better assessment of physical function: item improvement is neglected but essential

    PubMed Central

    2009-01-01

    Introduction Physical function is a key component of patient-reported outcome (PRO) assessment in rheumatology. Modern psychometric methods, such as Item Response Theory (IRT) and Computerized Adaptive Testing, can materially improve measurement precision at the item level. We present the qualitative and quantitative item-evaluation process for developing the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank. Methods The process was stepwise: we searched extensively to identify extant Physical Function items and then classified and selectively reduced the item pool. We evaluated retained items for content, clarity, relevance and comprehension, reading level, and translation ease by experts and patient surveys, focus groups, and cognitive interviews. We then assessed items by using classic test theory and IRT, used confirmatory factor analyses to estimate item parameters, and graded response modeling for parameter estimation. We retained the 20 Legacy (original) Health Assessment Questionnaire Disability Index (HAQ-DI) and the 10 SF-36's PF-10 items for comparison. Subjects were from rheumatoid arthritis, osteoarthritis, and healthy aging cohorts (n = 1,100) and a national Internet sample of 21,133 subjects. Results We identified 1,860 items. After qualitative and quantitative evaluation, 124 newly developed PROMIS items composed the PROMIS item bank, which included revised Legacy items with good fit that met IRT model assumptions. Results showed that the clearest and best-understood items were simple, in the present tense, and straightforward. Basic tasks (like dressing) were more relevant and important versus complex ones (like dancing). Revised HAQ-DI and PF-10 items with five response options had higher item-information content than did comparable original Legacy items with fewer response options. IRT analyses showed that the Physical Function domain satisfied general criteria for unidimensionality with one-, two-, three-, and four-factor models having comparable model fits. Correlations between factors in the test data sets were > 0.90. Conclusions Item improvement must underlie attempts to improve outcome assessment. The clear, personally important and relevant, ability-framed items in the PROMIS Physical Function item bank perform well in PRO assessment. They will benefit from further study and application in a wider variety of rheumatic diseases in diverse clinical groups, including those at the extremes of physical functioning, and in different administration modes. PMID:20015354

  12. Better assessment of physical function: item improvement is neglected but essential.

    PubMed

    Bruce, Bonnie; Fries, James F; Ambrosini, Debbie; Lingala, Bharathi; Gandek, Barbara; Rose, Matthias; Ware, John E

    2009-01-01

    Physical function is a key component of patient-reported outcome (PRO) assessment in rheumatology. Modern psychometric methods, such as Item Response Theory (IRT) and Computerized Adaptive Testing, can materially improve measurement precision at the item level. We present the qualitative and quantitative item-evaluation process for developing the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function item bank. The process was stepwise: we searched extensively to identify extant Physical Function items and then classified and selectively reduced the item pool. We evaluated retained items for content, clarity, relevance and comprehension, reading level, and translation ease by experts and patient surveys, focus groups, and cognitive interviews. We then assessed items by using classic test theory and IRT, used confirmatory factor analyses to estimate item parameters, and graded response modeling for parameter estimation. We retained the 20 Legacy (original) Health Assessment Questionnaire Disability Index (HAQ-DI) and the 10 SF-36's PF-10 items for comparison. Subjects were from rheumatoid arthritis, osteoarthritis, and healthy aging cohorts (n = 1,100) and a national Internet sample of 21,133 subjects. We identified 1,860 items. After qualitative and quantitative evaluation, 124 newly developed PROMIS items composed the PROMIS item bank, which included revised Legacy items with good fit that met IRT model assumptions. Results showed that the clearest and best-understood items were simple, in the present tense, and straightforward. Basic tasks (like dressing) were more relevant and important versus complex ones (like dancing). Revised HAQ-DI and PF-10 items with five response options had higher item-information content than did comparable original Legacy items with fewer response options. IRT analyses showed that the Physical Function domain satisfied general criteria for unidimensionality with one-, two-, three-, and four-factor models having comparable model fits. Correlations between factors in the test data sets were > 0.90. Item improvement must underlie attempts to improve outcome assessment. The clear, personally important and relevant, ability-framed items in the PROMIS Physical Function item bank perform well in PRO assessment. They will benefit from further study and application in a wider variety of rheumatic diseases in diverse clinical groups, including those at the extremes of physical functioning, and in different administration modes.

  13. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  14. Bridging the Gaps: the Promise of Omics Studies in Pediatric Exercise Research

    PubMed Central

    Radom-Aizik, Shlomit; Cooper, Dan M.

    2018-01-01

    In this review, we highlight promising new discoveries that may generate useful and clinically relevant insights into the mechanisms that link exercise with growth during critical periods of development. Growth in childhood and adolescence is unique among mammals, and is a dynamic process regulated by an evolution of hormonal and inflammatory mediators, age-dependent progression of gene expression, and environmentally modulated epigenetic mechanisms. Many of these same processes likely affect molecular transducers of physical activity. How the molecular signaling associated with growth is synchronized with signaling associated with exercise is poorly understood. Recent advances in “omics,” namely, genomics and epigenetics, metabolomics, and proteomics, now provide exciting approaches and tools that can be used for the first time to address this gap. A biologic definition of “healthy” exercise that links the metabolic transducers of physical activity with parallel processes that regulate growth will transform health policy and guidelines that promote optimal use of physical activity. PMID:27137166

  15. The new biological anthropology: bringing Washburn's new physical anthropology into 2010 and beyond--the 2008 AAPA luncheon lecture.

    PubMed

    Fuentes, Agustin

    2010-01-01

    Nearly 60 years ago, Sherwood Washburn issued a call for a "New Physical Anthropology," a transition from measurement and classification toward a focus on the processes and mechanisms of evolutionary change. He advocated multidisciplinary and interdisciplinary approaches to the understanding of human behavior, biology, and history. Many interpret this as a call for a practice that is both biological and anthropological. Is this what we do? Are we biological anthropologists yet? In this essay, I explore what we, Physical Anthropologists, as a discipline are doing in the context of a New Physical Anthropology, where we might be headed, and why this discussion is crucial to our relevance. Copyright © 2010 Wiley-Liss, Inc.

  16. Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    Lukin, Vyacheslav

    2017-10-01

    The Town Meeting on Plasma Physics at the National Science Foundation will provide an opportunity for Q&A about the variety of NSF programs and solicitations relevant to a broad cross-section of the academic plasma science community, from graduating college seniors to senior leaders in the field, and from plasma astrophysics to basic physics to plasma engineering communities. We will discuss recent NSF-hosted events, research awards, and multi-agency partnerships aimed at enabling the progress of science in plasma science and engineering. Future outlook for plasma physics and broader plasma science support at NSF, with an emphasis on how you can help NSF to help the community, will be speculated upon within the uncertainty of the federal budgeting process.

  17. Beauty and the beast: Psychobiologic and evolutionary perspectives on body dysmorphic disorder.

    PubMed

    Stein, Dan J; Carey, Paul D; Warwick, James

    2006-06-01

    Body dysmorphic disorder (BDD) is characterized by preoccupation with a defect in appearance. Concepts of beauty play a particularly crucial role in humans' mental and social life, and may have specific psychobiologic and evolutionary underpinnings. In particular, there is a growing literature on the neurocircuitry underpinning the body schema, body image and facial expression processing, and aesthetic and symmetry judgments. Speculatively, disruptions in cognitive-affective processes relevant to judgements about physical beauty lead to BDD.

  18. Physical Processes Controlling Earth's Climate

    NASA Technical Reports Server (NTRS)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  19. Social emotional information processing in adults: Development and psychometrics of a computerized video assessment in healthy controls and aggressive individuals.

    PubMed

    Coccaro, Emil F; Fanning, Jennifer R; Fisher, Eliana; Couture, Laurel; Lee, Royce J

    2017-02-01

    A computerized version of an assessment of Social-Emotional Information Processing (SEIP) using audio-video film stimuli instead of written narrative vignettes was developed for use in adult participants. This task allows for an assessment of encoding or relevant/irrelevant social-emotional information, attribution bias, and endorsement of appropriate, physically aggressive, and relationally aggressive responses to aversive social-emotional stimuli. The psychometric properties of this Video-SEIP (V-SEIP) assessment were examined in 75 healthy controls (HC) and in 75 individuals with DSM-5 Intermittent Explosive Disorder (IED) and were also compared with the original questionnaire (SEIP-Q) version of the task (HC=26; IED=26). Internal consistency, inter-rater reliability, and test-retest properties of the V-SEIP were good to excellent. In addition, IED participants displayed reduced encoding of relevant information from the film clips, elevated hostile attribution bias, elevated negative emotional response, and elevated endorsement of physically aggressive and relationally aggressive responses to the ambiguous social-emotional stimuli presented in the V-SEIP. These data indicate that the V-SEIP represents a valid and comprehensive alternative to the paper-and-pencil assessment of social-emotional information processing biases in adults. Copyright © 2016. Published by Elsevier B.V.

  20. 3D freeform printing of silk fibroin.

    PubMed

    Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L

    2018-04-15

    Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Thermophysics Issues Relevant to High-Speed Earth Entry of Large Asteroids

    NASA Technical Reports Server (NTRS)

    Prabhu, D.; Saunders, D.; Agrawal, P.; Allen, G.; Bauschlicher, C.; Brandis, A.; Chen, Y.-K.; Jaffe, R.; Schulz, J.; Stern, E.; hide

    2016-01-01

    Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) how multiple bodies interact, and (iii) the influence of wall blowing on flow dynamics.

  2. Probing Student Reasoning Approaches through the Lens of Dual-Process Theories: A Case Study in Buoyancy

    ERIC Educational Resources Information Center

    Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2018-01-01

    A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and…

  3. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  4. Restorative Justice as Social Justice for Victims of Gendered Violence: A Standpoint Feminist Perspective

    ERIC Educational Resources Information Center

    van Wormer, Katherine

    2009-01-01

    This article provides an overview of restorative justice as a process and examines its relevance to women who have been victimized by physical and sexual abuse. The starting point is the justice system with its roots in adversarial, offender-oriented practices of obtaining justice. The widespread dissatisfaction by battered women and rape victims…

  5. Physical activity in anorexia nervosa: How relevant is it to therapy response?

    PubMed

    Sauchelli, S; Arcelus, J; Sánchez, I; Riesco, N; Jiménez-Murcia, S; Granero, R; Gunnard, K; Baños, R; Botella, C; de la Torre, R; Fernández-García, J C; Fernández-Real, J M; Frühbeck, G; Gómez-Ambrosi, J; Tinahones, F J; Casanueva, F F; Menchón, J M; Fernandez-Aranda, F

    2015-11-01

    Elevated physical activity has been observed in some patients with anorexia nervosa (AN) despite their emaciated condition. However, its effects on treatment outcome remain unclear. This study aimed to examine objectively measured physical activity in this clinical population and how it might be related to a partial hospitalization therapy response, after considering potential confounders. The sample comprised 88 AN patients consecutively enrolled in a day hospital treatment program, and 116 healthy-weight controls. All participants were female and a baseline assessment took place using an accelerometer (Actiwatch AW7) to measure physical activity, the Eating Disorders Inventory-2 and the Depression subscale of the Symptom Checklist-Revised. Outcome was evaluated upon the termination of the treatment program by expert clinicians. Although AN patients and controls did not differ in the average time spent in moderate-to-vigorous physical activity (MVPA) (P=.21), nor daytime physical activity (P=.34), fewer AN patients presented a high physical activity profile compared to the controls (37% vs. 61%, respectively; P=.014). Both lower levels of MVPA and greater eating disorder severity had a direct effect on a poor treatment outcome. Depression symptoms in the patients were associated with lower MVPA, as well as with an older age, a shorter duration of the disorder and greater eating disorder psychopathology. There is a notable variation in the physical activity profile of AN patients, characterized by either low or very high patterns. Physical activity is a highly relevant issue in AN that must be taken into account during the treatment process. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  7. Cyberspatial mechanics.

    PubMed

    Bayne, Jay S

    2008-06-01

    In support of a generalization of systems theory, this paper introduces a new approach in modeling complex distributed systems. It offers an analytic framework for describing the behavior of interactive cyberphysical systems (CPSs), which are networked stationary or mobile information systems responsible for the real-time governance of physical processes whose behaviors unfold in cyberspace. The framework is predicated on a cyberspace-time reference model comprising three spatial dimensions plus time. The spatial domains include geospatial, infospatial, and sociospatial references, the latter describing relationships among sovereign enterprises (rational agents) that choose voluntarily to organize and interoperate for individual and mutual benefit through geospatial (physical) and infospatial (logical) transactions. Of particular relevance to CPSs are notions of timeliness and value, particularly as they relate to the real-time governance of physical processes and engagements with other cooperating CPS. Our overarching interest, as with celestial mechanics, is in the formation and evolution of clusters of cyberspatial objects and the federated systems they form.

  8. A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    NASA Astrophysics Data System (ADS)

    Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.

  9. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams

    PubMed Central

    Rouinfar, Amy; Agra, Elise; Larson, Adam M.; Rebello, N. Sanjay; Loschky, Lester C.

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants’ attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants’ verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers’ attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions. PMID:25324804

  10. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    PubMed

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  11. Analog assessment of frustration tolerance: association with self-reported child abuse risk and physiological reactivity.

    PubMed

    Rodriguez, Christina M; Russa, Mary Bower; Kircher, John C

    2015-08-01

    Although frustration has long been implicated in promoting aggression, the potential for poor frustration tolerance to function as a risk factor for physical child abuse risk has received minimal attention. Instead, much of the extant literature has examined the role of anger in physical abuse risk, relying on self-reports of the experience or expression of anger, despite the fact that this methodology is often acknowledged as vulnerable to bias. Therefore, the present investigation examined whether a more implicit, analog assessment of frustration tolerance specifically relevant to parenting would reveal an association with various markers of elevated physical child abuse risk in a series of samples that varied with regard to age, parenting status, and abuse risk. An analog task was designed to evoke parenting-relevant frustration: the task involved completing an unsolvable task while listening to a crying baby or a toddler's temper tantrum; time scores were generated to gauge participants' persistence in the task when encountering such frustration. Across these studies, low frustration tolerance was associated with increased physical child abuse potential, greater use of parent-child aggression in discipline encounters, dysfunctional disciplinary style, support for physical discipline use and physical discipline escalation, and increased heart rate. Future research directions that could better inform intervention and prevention programs are discussed, including working to clarify the processes underlying frustration intolerance and potential interactive influences that may exacerbate physical child abuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Models of Solar Wind Structures and Their Interaction with the Earth's Space Environment

    NASA Astrophysics Data System (ADS)

    Watermann, J.; Wintoft, P.; Sanahuja, B.; Saiz, E.; Poedts, S.; Palmroth, M.; Milillo, A.; Metallinou, F.-A.; Jacobs, C.; Ganushkina, N. Y.; Daglis, I. A.; Cid, C.; Cerrato, Y.; Balasis, G.; Aylward, A. D.; Aran, A.

    2009-11-01

    The discipline of “Space Weather” is built on the scientific foundation of solar-terrestrial physics but with a strong orientation toward applied research. Models describing the solar-terrestrial environment are therefore at the heart of this discipline, for both physical understanding of the processes involved and establishing predictive capabilities of the consequences of these processes. Depending on the requirements, purely physical models, semi-empirical or empirical models are considered to be the most appropriate. This review focuses on the interaction of solar wind disturbances with geospace. We cover interplanetary space, the Earth’s magnetosphere (with the exception of radiation belt physics), the ionosphere (with the exception of radio science), the neutral atmosphere and the ground (via electromagnetic induction fields). Space weather relevant state-of-the-art physical and semi-empirical models of the various regions are reviewed. They include models for interplanetary space, its quiet state and the evolution of recurrent and transient solar perturbations (corotating interaction regions, coronal mass ejections, their interplanetary remnants, and solar energetic particle fluxes). Models of coupled large-scale solar wind-magnetosphere-ionosphere processes (global magnetohydrodynamic descriptions) and of inner magnetosphere processes (ring current dynamics) are discussed. Achievements in modeling the coupling between magnetospheric processes and the neutral and ionized upper and middle atmospheres are described. Finally we mention efforts to compile comprehensive and flexible models from selections of existing modules applicable to particular regions and conditions in interplanetary space and geospace.

  13. Psychological Pathways Linking Social Support to Health Outcomes: A Visit with the “Ghosts” of Research Past, Present, and Future

    PubMed Central

    Uchino, Bert N.; Bowen, Kimberly; Carlisle, McKenzie; Birmingham, Wendy

    2012-01-01

    Contemporary models postulate the importance of psychological mechanisms linking perceived and received social support to physical health outcomes. In this review, we examine studies that directly tested the potential psychological mechanisms responsible for links between social support and health-relevant physiological processes (1980s to 2010). Inconsistent with existing theoretical models, no evidence was found that psychological mechanisms such as depression, perceived stress, and other affective processes are directly responsible for links between support and health. We discuss the importance of considering statistical/design issues, emerging conceptual perspectives, and limitations of our existing models for future research aimed at elucidating the psychological mechanisms responsible for links between social support and physical health outcomes. PMID:22326104

  14. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  15. Across-horizon scattering and information transfer

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  16. [Methodologic inconsistency in anamnesis education at medical schools].

    PubMed

    Zago, M A

    1989-01-01

    Some relevant points of the process of obtaining the medical anamnesis and physical examination, and the formulation of diagnostic hypotheses are analyzed. The main methodological features include: preponderance of qualitative data, absence of preselected hypotheses, direct involvement of the observer (physician) with the data source (patient), and selection of hypotheses and changes of the patient during the process. Thus, diagnostic investigation does not follow the paradigm of quantitative scientific method, rooted on the logic positivism, which dominates medical research and education.

  17. The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Micolich, A. P.; Cochrane, J. W.; Hamilton, A. R.

    2007-12-01

    There has recently been significant interest in rubrene single-crystals grown using physical vapour transport techniques due to their application in high-mobility organic field-effect transistor (OFET) devices. Despite numerous studies of the electrical properties of such crystals, there has only been one study to date focussing on characterising and optimising the crystal growth as a function of the relevant growth parameters. Here we present a study of the dependence of the yield of useful crystals (defined as crystals with at least one dimension of order 1 mm) on the temperature and volume flow of carrier gas used in the physical vapour growth process.

  18. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  19. Suitability aero-geophysical methods for generating conceptual soil maps and their use in the modeling of process-related susceptibility maps

    NASA Astrophysics Data System (ADS)

    Tilch, Nils; Römer, Alexander; Jochum, Birgit; Schattauer, Ingrid

    2014-05-01

    In the past years, several times large-scale disasters occurred in Austria, which were characterized not only by flooding, but also by numerous shallow landslides and debris flows. Therefore, for the purpose of risk prevention, national and regional authorities also require more objective and realistic maps with information about spatially variable susceptibility of the geosphere for hazard-relevant gravitational mass movements. There are many and various proven methods and models (e.g. neural networks, logistic regression, heuristic methods) available to create such process-related (e.g. flat gravitational mass movements in soil) suszeptibility maps. But numerous national and international studies show a dependence of the suitability of a method on the quality of process data and parameter maps (f.e. Tilch & Schwarz 2011, Schwarz & Tilch 2011). In this case, it is important that also maps with detailed and process-oriented information on the process-relevant geosphere will be considered. One major disadvantage is that only occasionally area-wide process-relevant information exists. Similarly, in Austria often only soil maps for treeless areas are available. However, in almost all previous studies, randomly existing geological and geotechnical maps were used, which often have been specially adapted to the issues and objectives. This is one reason why very often conceptual soil maps must be derived from geological maps with only hard rock information, which often have a rather low quality. Based on these maps, for example, adjacent areas of different geological composition and process-relevant physical properties are razor sharp delineated, which in nature appears quite rarly. In order to obtain more realistic information about the spatial variability of the process-relevant geosphere (soil cover) and its physical properties, aerogeophysical measurements (electromagnetic, radiometric), carried out by helicopter, from different regions of Austria were interpreted. Previous studies show that, especially with radiometric measurements, the two-dimensional spatial variability of the nature of the process-relevant soil, close to the surface can be determined. In addition, the electromagnetic measurements are more important to obtain three-dimensional information of the deeper geological conditions and to improve the area-specific geological knowledge and understanding. The validation of these measurements is done with terrestrial geoelectrical measurements. So both aspects, radiometric and electromagnetic measurements, are important and subsequently, interpretation of the geophysical results can be used as the parameter maps in the modeling of more realistic susceptibility maps with respect to various processes. Within this presentation, results of geophysical measurements, the outcome and the derived parameter maps, as well as first process-oriented susceptibility maps in terms of gravitational soil mass movements will be presented. As an example results which were obtained with a heuristic method in an area in Vorarlberg (Western Austria) will be shown. References: Schwarz, L. & Tilch, N. (2011): Why are good process data so important for the modelling of landslide susceptibility maps?- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6), Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_schwarz_tilch_1.pdf] Tilch, N. & Schwarz, L. (2011): Spatial and scale-dependent variability in data quality and their influence on susceptibility maps for gravitational mass movements in soil, modelled by heuristic method.- EGU-Postersession "Landslide hazard and risk assessment, and landslide management" (NH 3.6); Vienna. [http://www.geologie.ac.at/fileadmin/user_upload/dokumente/pdf/poster/poster_2011_egu_tilch_schwarz.pdf

  20. Building of Projecting Competence among Future Teachers in the Conditions of Introduction of Inclusive Education

    ERIC Educational Resources Information Center

    Ketrish, Evgeniya V.; Dorozhkin, Evgenij M.; Permyakov, ?leg ?.; Tretyakova, Natalia V.; Andryukhina, Tatiana V.; Mantulenko, Valentina V.

    2016-01-01

    The relevance of the researched problem is caused by the need of consideration of teachers' readiness for work in the conditions of inclusive education, and change of process of their professional training (on the example of specialists in the sphere of physical education). The purpose of publication consists in the development of pedagogical…

  1. The Evaluation of Modelling Competences: Difficulties and Potentials for the Learning of the Sciences

    ERIC Educational Resources Information Center

    Lopes, J. Bernardino; Costa, Nilza

    2007-01-01

    Modelling is an inherent process for the construction and use of science concepts that mobilize diverse specific competences. The aims of this work are to put forward a means of evaluating modelling competences that is relevant for physics teaching and science education research and to identify the potentials and constraints in the development of…

  2. Annotated bibliography on soil erosion and erosion control in subarctic and high-latitude regions of North America.

    Treesearch

    C.W. Slaughter; J.W. Aldrich

    1989-01-01

    This annotated bibliography emphasizes the physical processes of upland soil erosion, prediction of soil erosion and sediment yield, and erosion control. The bibliography is divided into two sections: (1) references specific to Alaska, the Arctic and subarctic, and similar high-latitude settings; and (2) references relevant to understanding erosion, sediment production...

  3. Modeling RF-induced Plasma-Surface Interactions with VSim

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Smithe, David N.; Pankin, Alexei Y.; Roark, Christine M.; Stoltz, Peter H.; Zhou, Sean C.-D.; Kruger, Scott E.

    2014-10-01

    An overview of ongoing enhancements to the Plasma Discharge (PD) module of Tech-X's VSim software tool is presented. A sub-grid kinetic sheath model, developed for the accurate computation of sheath potentials near metal and dielectric-coated walls, enables the physical effects of DC and RF sheath dynamics to be included in macroscopic-scale plasma simulations that need not explicitly resolve sheath scale lengths. Sheath potential evolution, together with particle behavior near the sheath (e.g. sputtering), can thus be simulated in complex, experimentally relevant geometries. Simulations of RF sheath-enhanced impurity production near surfaces of the C-Mod field-aligned ICRF antenna are presented to illustrate the model; impurity mitigation techniques are also explored. Model extensions to capture the physics of secondary electron emission and of multispecies plasmas are summarized, together with a discussion of improved tools for plasma chemistry and IEDF/EEDF visualization and modeling. The latter tools are also highly relevant for commercial plasma processing applications. Ultimately, we aim to establish VSimPD as a robust, efficient computational tool for modeling fusion and industrial plasma processes. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501.

  4. A consistent framework to predict mass fluxes and depletion times for DNAPL contaminations in heterogeneous aquifers under uncertainty

    NASA Astrophysics Data System (ADS)

    Koch, Jonas; Nowak, Wolfgang

    2013-04-01

    At many hazardous waste sites and accidental spills, dense non-aqueous phase liquids (DNAPLs) such as TCE, PCE, or TCA have been released into the subsurface. Once a DNAPL is released into the subsurface, it serves as persistent source of dissolved-phase contamination. In chronological order, the DNAPL migrates through the porous medium and penetrates the aquifer, it forms a complex pattern of immobile DNAPL saturation, it dissolves into the groundwater and forms a contaminant plume, and it slowly depletes and bio-degrades in the long-term. In industrial countries the number of such contaminated sites is tremendously high to the point that a ranking from most risky to least risky is advisable. Such a ranking helps to decide whether a site needs to be remediated or may be left to natural attenuation. Both the ranking and the designing of proper remediation or monitoring strategies require a good understanding of the relevant physical processes and their inherent uncertainty. To this end, we conceptualize a probabilistic simulation framework that estimates probability density functions of mass discharge, source depletion time, and critical concentration values at crucial target locations. Furthermore, it supports the inference of contaminant source architectures from arbitrary site data. As an essential novelty, the mutual dependencies of the key parameters and interacting physical processes are taken into account throughout the whole simulation. In an uncertain and heterogeneous subsurface setting, we identify three key parameter fields: the local velocities, the hydraulic permeabilities and the DNAPL phase saturations. Obviously, these parameters depend on each other during DNAPL infiltration, dissolution and depletion. In order to highlight the importance of these mutual dependencies and interactions, we present results of several model set ups where we vary the physical and stochastic dependencies of the input parameters and simulated processes. Under these changes, the probability density functions demonstrate strong statistical shifts in their expected values and in their uncertainty. Considering the uncertainties of all key parameters but neglecting their interactions overestimates the output uncertainty. However, consistently using all available physical knowledge when assigning input parameters and simulating all relevant interactions of the involved processes reduces the output uncertainty significantly back down to useful and plausible ranges. When using our framework in an inverse setting, omitting a parameter dependency within a crucial physical process would lead to physical meaningless identified parameters. Thus, we conclude that the additional complexity we propose is both necessary and adequate. Overall, our framework provides a tool for reliable and plausible prediction, risk assessment, and model based decision support for DNAPL contaminated sites.

  5. Integration of Biological and Physical Sciences to Advance Ecological Understanding of Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Luce, C. H.; Buffington, J. M.; Rieman, B. E.; Dunham, J. B.; McKean, J. A.; Thurow, R. F.; Gutierrez-Teira, B.; Rosenberger, A. E.

    2005-05-01

    Conservation and restoration of freshwater stream and river habitats are important goals for land management and natural resources research. Several examples of research have emerged showing that many species are adapted to temporary habitat disruptions, but that these adaptations are sensitive to the spatial grain and extent of disturbance as well as to its duration. When viewed from this perspective, questions of timing, spatial pattern, and relevant scales emerge as critical issues. In contrast, much regulation, management, and research remains tied to pollutant loading paradigms that are insensitive to either time or space scales. It is becoming clear that research is needed to examine questions and hypotheses about how physical processes affect ecological processes. Two overarching questions concisely frame the scientific issues: 1) How do we quantify physical watershed processes in a way that is meaningful to biological and ecological processes, and 2) how does the answer to that question vary with changing spatial and temporal scales? A joint understanding of scaling characteristics of physical process and the plasticity of aquatic species will be needed to accomplish this research; hence a strong need exists for integrative and collaborative development. Considering conservation biology problems in this fashion can lead to creative and non-obvious solutions because the integrated system has important non-linearities and feedbacks related to a biological system that has responded to substantial natural variability in the past. We propose that research beginning with ecological theories and principles followed with a structured examination of each physical process as related to the specific ecological theories is a strong approach to developing the necessary science, and such an approach may form a basis for development of scaling theories of hydrologic and geomorphic process. We illustrate the approach with several examples.

  6. EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space

    NASA Astrophysics Data System (ADS)

    Koepke, Mark

    2008-07-01

    The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.

  7. Dual-process models of health-related behaviour and cognition: a review of theory.

    PubMed

    Houlihan, S

    2018-03-01

    The aim of this review was to synthesise a spectrum of theories incorporating dual-process models of health-related behaviour. Review of theory, adapted loosely from Cochrane-style systematic review methodology. Inclusion criteria were specified to identify all relevant dual-process models that explain decision-making in the context of decisions made about human health. Data analysis took the form of iterative template analysis (adapted from the conceptual synthesis framework used in other reviews of theory), and in this way theories were synthesised on the basis of shared theoretical constructs and causal pathways. Analysis and synthesis proceeded in turn, instead of moving uni-directionally from analysis of individual theories to synthesis of multiple theories. Namely, the reviewer considered and reconsidered individual theories and theoretical components in generating the narrative synthesis' main findings. Drawing on systematic review methodology, 11 electronic databases were searched for relevant dual-process theories. After de-duplication, 12,198 records remained. Screening of title and abstract led to the exclusion of 12,036 records, after which 162 full-text records were assessed. Of those, 21 records were included in the review. Moving back and forth between analysis of individual theories and the synthesis of theories grouped on the basis of theme or focus yielded additional insights into the orientation of a theory to an individual. Theories could be grouped in part on their treatment of an individual as an irrational actor, as social actor, as actor in a physical environment or as a self-regulated actor. Synthesising identified theories into a general dual-process model of health-related behaviour indicated that such behaviour is the result of both propositional and unconscious reasoning driven by an individual's response to internal cues (such as heuristics, attitude and affect), physical cues (social and physical environmental stimuli) as well as regulating factors (such as habit) that mediate between them. Copyright © 2017. Published by Elsevier Ltd.

  8. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  9. Using compression calorimetry to characterize powder compaction behavior of pharmaceutical materials.

    PubMed

    Buckner, Ira S; Friedman, Ross A; Wurster, Dale Eric

    2010-02-01

    The process by which pharmaceutical powders are compressed into cohesive compacts or tablets has been studied using a compression calorimeter. Relating the various thermodynamic results to relevant physical processes has been emphasized. Work, heat, and internal energy change values have been determined with the compression calorimeter for common pharmaceutical materials. A framework of equations has been proposed relating the physical processes of friction, reversible deformation, irreversible deformation, and inter-particle bonding to the compression calorimetry values. The results indicate that irreversible deformation dominated many of the thermodynamic values, especially the net internal energy change following the compression-decompression cycle. The relationships between the net work and the net heat from the complete cycle were very clear indicators of predominating deformation mechanisms. Likewise, the ratio of energy stored as internal energy to the initial work input distinguished the materials according to their brittle or plastic deformation tendencies. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  10. Fermi-level effects in semiconductor processing: A modeling scheme for atomistic kinetic Monte Carlo simulators

    NASA Astrophysics Data System (ADS)

    Martin-Bragado, I.; Castrillo, P.; Jaraiz, M.; Pinacho, R.; Rubio, J. E.; Barbolla, J.; Moroz, V.

    2005-09-01

    Atomistic process simulation is expected to play an important role for the development of next generations of integrated circuits. This work describes an approach for modeling electric charge effects in a three-dimensional atomistic kinetic Monte Carlo process simulator. The proposed model has been applied to the diffusion of electrically active boron and arsenic atoms in silicon. Several key aspects of the underlying physical mechanisms are discussed: (i) the use of the local Debye length to smooth out the atomistic point-charge distribution, (ii) algorithms to correctly update the charge state in a physically accurate and computationally efficient way, and (iii) an efficient implementation of the drift of charged particles in an electric field. High-concentration effects such as band-gap narrowing and degenerate statistics are also taken into account. The efficiency, accuracy, and relevance of the model are discussed.

  11. Thermally driven advection for radioxenon transport from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Sun, Yunwei; Carrigan, Charles R.

    2016-05-01

    Barometric pumping is a ubiquitous process resulting in migration of gases in the subsurface that has been studied as the primary mechanism for noble gas transport from an underground nuclear explosion (UNE). However, at early times following a UNE, advection driven by explosion residual heat is relevant to noble gas transport. A rigorous measure is needed for demonstrating how, when, and where advection is important. In this paper three physical processes of uncertain magnitude (oscillatory advection, matrix diffusion, and thermally driven advection) are parameterized by using boundary conditions, system properties, and source term strength. Sobol' sensitivity analysis is conducted to evaluate the importance of all physical processes influencing the xenon signals. This study indicates that thermally driven advection plays a more important role in producing xenon signals than oscillatory advection and matrix diffusion at early times following a UNE, and xenon isotopic ratios are observed to have both time and spatial dependence.

  12. Barriers to success: physical separation optimizes event-file retrieval in shared workspaces.

    PubMed

    Klempova, Bibiana; Liepelt, Roman

    2017-07-08

    Sharing tasks with other persons can simplify our work and life, but seeing and hearing other people's actions may also be very distracting. The joint Simon effect (JSE) is a standard measure of referential response coding when two persons share a Simon task. Sequential modulations of the joint Simon effect (smJSE) are interpreted as a measure of event-file processing containing stimulus information, response information and information about the just relevant control-state active in a given social situation. This study tested effects of physical (Experiment 1) and virtual (Experiment 2) separation of shared workspaces on referential coding and event-file processing using a joint Simon task. In Experiment 1, participants performed this task in individual (go-nogo), joint and standard Simon task conditions with and without a transparent curtain (physical separation) placed along the imagined vertical midline of the monitor. In Experiment 2, participants performed the same tasks with and without receiving background music (virtual separation). For response times, physical separation enhanced event-file retrieval indicated by an enlarged smJSE in the joint Simon task with curtain than without curtain (Experiment1), but did not change referential response coding. In line with this, we also found evidence for enhanced event-file processing through physical separation in the joint Simon task for error rates. Virtual separation did neither impact event-file processing, nor referential coding, but generally slowed down response times in the joint Simon task. For errors, virtual separation hampered event-file processing in the joint Simon task. For the cognitively more demanding standard two-choice Simon task, we found music to have a degrading effect on event-file retrieval for response times. Our findings suggest that adding a physical separation optimizes event-file processing in shared workspaces, while music seems to lead to a more relaxed task processing mode under shared task conditions. In addition, music had an interfering impact on joint error processing and more generally when dealing with a more complex task in isolation.

  13. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    NASA Astrophysics Data System (ADS)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  14. Multi-scale and multi-domain computational astrophysics.

    PubMed

    van Elteren, Arjen; Pelupessy, Inti; Zwart, Simon Portegies

    2014-08-06

    Astronomical phenomena are governed by processes on all spatial and temporal scales, ranging from days to the age of the Universe (13.8 Gyr) as well as from kilometre size up to the size of the Universe. This enormous range in scales is contrived, but as long as there is a physical connection between the smallest and largest scales it is important to be able to resolve them all, and for the study of many astronomical phenomena this governance is present. Although covering all these scales is a challenge for numerical modellers, the most challenging aspect is the equally broad and complex range in physics, and the way in which these processes propagate through all scales. In our recent effort to cover all scales and all relevant physical processes on these scales, we have designed the Astrophysics Multipurpose Software Environment (AMUSE). AMUSE is a Python-based framework with production quality community codes and provides a specialized environment to connect this plethora of solvers to a homogeneous problem-solving environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Gambling as a teaching aid in the introductory physics laboratory

    NASA Astrophysics Data System (ADS)

    Horodynski-Matsushigue, L. B.; Pascholati, P. R.; Vanin, V. R.; Dias, J. F.; Yoneama, M.-L.; Siqueira, P. T. D.; Amaku, M.; Duarte, J. L. M.

    1998-07-01

    Dice throwing is used to illustrate relevant concepts of the statistical theory of uncertainties, in particular the meaning of a limiting distribution, the standard deviation, and the standard deviation of the mean. It is an important part in a sequence of especially programmed laboratory activities, developed for freshmen, at the Institute of Physics of the University of São Paulo. It is shown how this activity is employed within a constructive teaching approach, which aims at a growing understanding of the measuring processes and of the fundamentals of correct statistical handling of experimental data.

  16. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  17. Outside-school physical activity participation and motivation in physical education.

    PubMed

    Shen, Bo

    2014-03-01

    Experience in non-school contexts can shape and reshape students' motivation and mediate their learning in school. Outside-school physical activity may provide students with an extensive cognitive and affective foundation and influence their motivation in physical education. Although a trans-contextual effect of physical education has been explored, very little empirical research has examined the impact from outside-school context to physical education. Using self-determination theory and a hierarchical model of motivation, this study was designed to examine the association between participation in organized outside-school physical activity programmes and self-determination process in physical education. Participants included 545 9th graders (305 males and 240 females, age range = 14-16 years, mean age = 14.66 years) enrolled in required physical education classes in three suburban high schools in a large Midwest metropolitan area in the United States. Self-determination variables were measured using relevant instruments, and information on organized outside-school physical activity experiences was gathered in a survey. Structural equation modelling analyses were conducted. Students who participated in organized outside-school physical activity programmes displayed overall higher motivation; however, the strength of associations among the self-determination variables (i.e., pathways from perceived autonomy support to relatedness, from autonomy to competence, and from self-determined motivation to in-class physical activity engagement) was stronger for their non-participant counterparts. There are dynamic relationships between participation in organized outside-school physical activity programmes and self-determination process in physical education. Physical educators need to identify, appreciate, and instructionally address individual students' differences during teaching and learning. © 2012 The British Psychological Society.

  18. Protection motivation theory and physical activity in the general population: a systematic literature review.

    PubMed

    Bui, Linh; Mullan, Barbara; McCaffery, Kirsten

    2013-01-01

    An appropriate theoretical framework may be useful for guiding the development of physical activity interventions. This review investigates the effectiveness of the protection motivation theory (PMT), a model based on the cognitive mediation processes of behavioral change, in the prediction and promotion of physical activity participation. A literature search was conducted using the databases MEDLINE, PsycINFO, PubMed, and Web of Science, and a manual search was conducted on relevant reference lists. Studies were included if they tested or applied the PMT, measured physical activity, and sampled from healthy populations. A total of 20 studies were reviewed, grouped into four design categories: prediction, stage discrimination, experimental manipulation, and intervention. The results indicated that the PMT's coping appraisal construct of self-efficacy generally appears to be the most effective in predicting and promoting physical activity participation. In conclusion, the PMT shows some promise, however, there are still substantial gaps in the evidence.

  19. Dialogue concerning the survival of the one great world system: a study of the post-war scientific and theological perception of time scales as a relevant moral category in analyzing the dilemmas of the nuclear age

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, D.J.F.

    1985-01-01

    This thesis seeks to extend the search for the moral implications inherent in the development, possession, and the threatened use of physical/astrophysical processes and in current understandings of the evolution of the physical universe. The nature of normal/theological discussion will not be a primary concern although clearly some residual position that such discussion is meaningful is presupposed. Neither is the nature of science or the scientific method at issue. It is assumed that both theology and science have long since negotiated the confidence crises of adolescence, and have mustered the requisite self-esteem regarding their respective disciplines. The aim of thismore » work is to present the concept of time scales as a relevant moral category. It investigates the use of this concept and its relationship to the other categories developed in the relevant scientific literature. The question is raised as to the validity of and the future of the concept of time scales as a common moral ground.« less

  20. Graphene oxide based contacts as probes of biomedical signals

    NASA Astrophysics Data System (ADS)

    Hallfors, N. G.; Devarajan, A.; Farhat, I. A. H.; Abdurahman, A.; Liao, K.; Gater, D. L.; Elnaggar, M. I.; Isakovic, A. F.

    We have developed a series of graphene oxide (GOx) on polymer contacts and have demonstrated these to be useful for collection of standard biomedically relevant signals, such as electrocardiogram (ECG). The process is wet solution-based and allows for control and tuning of the basic physical parameters of GOx, such as electrical and optical properties, simply by choosing the number of GOx layers. Our GOx characterization measurements show spectral (FTIR, XPS, IR absorbance) features most relevant to such performance, and point towards the likely explanations about the mechanisms for controlling the physical properties relevant for the contact performance. Structural (X-ray topography) and surface characterization (AFM, SEM) indicates to what degree these contacts can be considered homogeneous and therefore provide information on yield and repeatability. We compare the ECG signals recorded by standard commercial probes (Ag/AgCl) and GOx probes, displaying minor differences the solution to which may lead to a whole new way we perform ECG data collection, including wearable electronics and IoT friendly ECG monitoring. We acknowledge support from Mubadala-SRC AC4ES and from SRC 2011-KJ-2190. We thank J. B. Warren and G. L. Carr (BNL) for assistance.

  1. Application of the Transtheoretical Model of behavior change to the physical activity behavior of WIC mothers.

    PubMed

    Fahrenwald, Nancy L; Walker, Susan Noble

    2003-01-01

    This descriptive-correlational study examined the Transtheoretical Model (TTM) of behavior change in relationship to the physical activity behavior of mothers receiving assistance from the Women, Infants, and Children program. A purposive sample (N = 30) of six women at each of the five stages of readiness for behavior change was used. Relationships between stage of behavior change (measured using the Stage of Exercise Adoption tool) and other TTM constructs were examined. The constructs and corresponding instruments included physical activity behavior (Seven-Day Physical Activity Recall), pros, cons, decisional balance (Exercise Benefits/Barriers Scale and two open-ended questions), self-efficacy (Self-efficacy for Exercise scale), and processes of behavior change (Processes of Exercise Adoption tool and the Social Support for Exercise scale). Significant relationships were found between stage of behavior change and two physical activity energy expenditure indices (rs = 0.71-0.73, p < 0.01), daily minutes of moderate to very hard physical activity (rs = 0.81, p < 0.01), pros (rs = 0.56, p < 0.01), cons (rs = -0.52, p < 0.05), decisional balance (rs = 0.56, p < 0.01), and self-efficacy (rs = 0.56, p < 0.01). Use of the 10 processes of change differed by stage of change. Pros to physical activity included a sense of accomplishment, increased strength, stress relief, and getting in shape after pregnancy. Cons included fatigue, childcare, and cold weather. Results support the TTM as relevant to WIC mothers and suggest strategies to increase physical activity in this population.

  2. Forecasting in the presence of expectations

    NASA Astrophysics Data System (ADS)

    Allen, R.; Zivin, J. G.; Shrader, J.

    2016-05-01

    Physical processes routinely influence economic outcomes, and actions by economic agents can, in turn, influence physical processes. This feedback creates challenges for forecasting and inference, creating the potential for complementarity between models from different academic disciplines. Using the example of prediction of water availability during a drought, we illustrate the potential biases in forecasts that only take part of a coupled system into account. In particular, we show that forecasts can alter the feedbacks between supply and demand, leading to inaccurate prediction about future states of the system. Although the example is specific to drought, the problem of feedback between expectations and forecast quality is not isolated to the particular model-it is relevant to areas as diverse as population assessments for conservation, balancing the electrical grid, and setting macroeconomic policy.

  3. Madres para la Salud: design of a theory-based intervention for postpartum Latinas.

    PubMed

    Keller, Colleen; Records, Kathie; Ainsworth, Barbara; Belyea, Michael; Permana, Paska; Coonrod, Dean; Vega-López, Sonia; Nagle-Williams, Allison

    2011-05-01

    Weight gain in young women suggests that childbearing may be an important contributor to the development of obesity in women. Depressive symptoms can interfere with resumption of normal activity levels following childbirth or with the initiation of or adherence to physical activity programs essential for losing pregnancy weight. Depression symptoms may function directly to promote weight gain through a physiologic mechanism. Obesity and its related insulin resistance may contribute to depressed mood physiologically. Although physical activity has well-established beneficial effects on weight management and depression, women tend to under participate in physical activity during childbearing years. Further, the mechanisms underpinning the interplay of overweight, obesity, physical activity, depression, and inflammatory processes are not clearly explained. This report describes the theoretical rationale, design considerations, and cultural relevance for "Madres para la Salud" [Mothers for Health]. Madres para la Salud is a 12 month prospective, randomized controlled trial exploring the effectiveness of a culturally specific intervention using "bouts" of physical activity to effect changes in body fat, systemic and fat tissue inflammation, and postpartum depression symptoms in sedentary postpartum Latinas. The significance and innovation of Madres para la Salud includes use of a theory-driven approach to intervention, specification and cultural relevance of a social support intervention, use of a Promotora model to incorporate cultural approaches, use of objective measures of physical activity in post partum Latinas women, and the examination of biomarkers indicative of cardiovascular risk related to physical activity behaviors in postpartum Latinas. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Madres para la Salud: Design of a Theory-based Intervention for Postpartum Latinas

    PubMed Central

    Keller, Colleen; Records, Kathie; Ainsworth, Barbara; Belyea, Michael; Permana, Paska; Coonrod, Dean; Vega-López, Sonia; Nagle-Williams, Allison

    2011-01-01

    Background Weight gain in young women suggests that childbearing may be an important contributor to the development of obesity in women. Depressive symptoms can interfere with resumption of normal activity levels following childbirth or with the initiation of or adherence to physical activity programs essential for losing pregnancy weight. Depression symptoms may function directly to promote weight gain through a physiologic mechanism. Obesity and its related insulin resistance may contribute to depressed mood physiologically. Although physical activity has well-established beneficial effects on weight management and depression, women tend to under participate in physical activity during childbearing years. Further, the mechanisms underpinning the interplay of overweight, obesity, physical activity, depression, and inflammatory processes are not clearly explained. Objectives This report describes the theoretical rationale, design considerations, and cultural relevance for “Madres para la Salud” [Mothers for Health]. Design and Methods Madres para la Salud is a 12 month prospective, randomized controlled trial exploring the effectiveness of a culturally specific intervention using “bouts” of physical activity to effect changes in body fat, systemic and fat tissue inflammation, and postpartum depression symptoms in sedentary postpartum Latinas. Summary The significance and innovation of Madres para la Salud includes use of a theory-driven approach to intervention, specification and cultural relevance of a social support intervention, use of a Promotora model to incorporate cultural approaches, use of objective measures of physical activity in post partum Latinas women, and the examination of biomarkers indicative of cardiovascular risk related to physical activity behaviors in postpartum Latinas. PMID:21238614

  5. Addressing physical inactivity in Omani adults: perceptions of public health managers.

    PubMed

    Mabry, Ruth M; Al-Busaidi, Zakiya Q; Reeves, Marina M; Owen, Neville; Eakin, Elizabeth G

    2014-03-01

    To explore barriers and solutions to addressing physical inactivity and prolonged sitting in the adult population of Oman. Qualitative study involving semi-structured interviews that took place from October 2011 to January 2012. Participants were recruited through purposive sampling. Data collection and analysis was an iterative process; later interviews explored emerging themes. Interviews were audio-recorded and transcribed and continued until data saturation; this occurred by the tenth interviewee. Thematic content analysis was carried out, guided by an ecological model of health behaviour. Muscat, Oman. Ten mid-level public health managers. Barriers for physical inactivity were grouped around four themes: (i) intrapersonal (lack of motivation, awareness and time); (ii) social (norms restricting women's participation in outdoor activity, low value of physical activity); (iii) environment (lack of places to be active, weather); and (iv) policy (ineffective health communication, limited resources). Solutions focused on culturally sensitive interventions at the environment (building sidewalks and exercise facilities) and policy levels (strengthening existing interventions and coordinating actions with relevant sectors). Participants' responses regarding sitting time were similar to, but much more limited than those related to physical inactivity, except for community participation and voluntarism, which were given greater emphasis as possible solutions to reduce sitting time. Given the increasing prevalence of chronic disease in Oman and the Arabian Gulf, urgent action is required to implement gender-relevant public health policies and programmes to address physical inactivity, a key modifiable risk factor. Additionally, research on the determinants of physical inactivity and prolonged sitting time is required to guide policy makers.

  6. Nanoparticle-based concretes for the restoration of historical and contemporary buildings: a new way for CO2 reduction in architecture

    NASA Astrophysics Data System (ADS)

    Greco, Enrico; Ciliberto, Enrico; Verdura, Pietro Damiano; Lo Giudice, Elio; Navarra, Giuseppe

    2016-05-01

    The production of the cement is a highly energy-intensive process and contributes to the release of pollutants into the atmosphere due to both the chemical reactions occurring in the kiln and, in most cases, the burning of fossil fuels for power production. So, the reduction of the cement content in a concrete would be indirectly useful to decrease the pollutant emissions in the atmosphere. The results of our investigation indicate that the replacement levels of cement by the 4 % of nanoparticles show a positive increasing of many physical and chemical properties allowing a relevant saving of cement content inside a concrete mixture. The compressive strengths, tensile splitting, propagations of ultrasonic pulses and water permeability tests were investigated on different models and realistic structures by the ISO EN rules. The influence of the nanoparticles on physical and mechanical properties was measured at different ripening times. Both silica and iron oxides make cement pastes harder and accelerated hydration processes of the cements. A remarkable decreasing in water permeability was also observed showing that nanoconcretes can be used as innovative restoration systems for cement-based historical and contemporary artefacts in order to avoid carbonation processes. Moreover, a smaller quantity of cement binder inside the mortar causes relevant positive effects on the reduction of carbon dioxide emission in the atmosphere.

  7. WE-E-204-02: Journal of Medical Physics and JACMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goriely, S.; Bauswein, A.; Janka, H.-T.

    About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularlymore » in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.« less

  9. Threshold response using modulated continuous wave illumination for multilayer 3D optical data storage

    NASA Astrophysics Data System (ADS)

    Saini, A.; Christenson, C. W.; Khattab, T. A.; Wang, R.; Twieg, R. J.; Singer, K. D.

    2017-01-01

    In order to achieve a high capacity 3D optical data storage medium, a nonlinear or threshold writing process is necessary to localize data in the axial dimension. To this end, commercial multilayer discs use thermal ablation of metal films or phase change materials to realize such a threshold process. This paper addresses a threshold writing mechanism relevant to recently reported fluorescence-based data storage in dye-doped co-extruded multilayer films. To gain understanding of the essential physics, single layer spun coat films were used so that the data is easily accessible by analytical techniques. Data were written by attenuating the fluorescence using nanosecond-range exposure times from a 488 nm continuous wave laser overlapping with the single photon absorption spectrum. The threshold writing process was studied over a range of exposure times and intensities, and with different fluorescent dyes. It was found that all of the dyes have a common temperature threshold where fluorescence begins to attenuate, and the physical nature of the thermal process was investigated.

  10. Historical perspectives of autonomy within the medical profession: considerations for 21st century physical therapy practice.

    PubMed

    Johnson, Michael P; Abrams, Sandra L

    2005-10-01

    As a part of the American Physical Therapy Association's (APTA) vision statement, by the year 2020, physical therapists "will hold all privileges of autonomous practice." This vision statement and the ideals held within it are elemental to the direction of our continued growth as a profession. Many members and nonmembers, however, appear confused and perhaps even intimidated by the concept of autonomous practice. This paper will review and discuss the processes used by other health care professions to gain autonomy within the US health care system. In particular, the processes used by physicians, which were extremely effective and have been used as a template by many other health professions, including physical therapy. Further discussion will focus on the physical therapy profession, emphasizing the parallels with medicine and considering many issues relevant to the goal of autonomous practice. By understanding the past and considering the present, readers will develop an appreciation of (1) the foundation for autonomous practice in health care, (2) the vision of the APTA and why the profession is well positioned to achieve this vision, and (3) the factors we need to consider to hold (and maintain) all privileges of autonomous practice.

  11. Radiation Physics for Space and High Altitude Air Travel

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)

    2000-01-01

    Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.

  12. Selective attentional processing to fall-relevant stimuli among older adults who fear falling.

    PubMed

    Brown, Lesley A; White, Patti; Doan, Jonathan B; de Bruin, Natalie

    2011-05-01

    Fear of falling is known to affect more than half of community-dwelling older adults over 60 years of age. This fear is associated with physical and psychological effects that increase the risk of falling. The authors' theory is that attentional processing biases may exist in this population that serve to perpetuate fear of falling and subsequently increase fall risk. As a starting point in testing this proposition, the authors examined selective attentional processing bias to fall-relevant stimuli among older adults. Thirty older adult participants (M(age) = 70.8 ± 5.8), self-categorized to be Fearful of Falling (FF, n = 15) or Non-Fearful of Falling (NF, n = 15) completed a visual dot-probe paradigm to determine detection latencies to fall-threatening and general-threat stimuli. Attentional processing was defined using three index scores: attentional bias, congruency index, and incongruency index. Bias indicates capture of attention, whereas congruency and incongruency imply vigilance and disengagement difficulty, respectively. Both groups showed an attentional bias to fall-threat words but those who were fearful of falling also showed an incongruency effect for fall-threat words. These findings confirm that selective attentional processing profiles for fall-relevant stimuli differ between older adults who exhibit fear of falling and those who do not have this fear. Moreover, in accordance with current interpretations of selective attentional processing, the incongruency effect noted among fall-fearful older adults presents a possibility for a difficulty disengaging from fall-threatening stimuli.

  13. Radiofrequency and microwave radiation in the microelectronics industry.

    PubMed

    Cohen, R

    1986-01-01

    The microscopic precision required to produce minute integrated circuits is dependent on several processes utilizing radiofrequency and microwave radiation. This article provides a review of radiofrequency and microwave exposures in microelectronics and of the physical and biologic properties of these types of radiation; summarizes the existing, relevant medical literature; and provides the clinician with guidelines for diagnosis and treatment of excessive exposures to microwave and radiofrequency radiation.

  14. European Scientific Notes. Volume 38, Number 6.

    DTIC Science & Technology

    1984-06-01

    powerful information-processing theories and + * eye-movement analysis provides .i path toward integration in cognitive psychology. The Neo-Piayetian...differences. This work has in turn led to While confirming the hierarchical aspect similar studies of adult cognitive of Piagetian theory in part, the results...Convection Phenomena, and Experiments in languages of the conference are French Solid State Physics Relevant to Litho- and English , with simultaneous

  15. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.

  16. A Novel Model for Predicting Rehospitalization Risk Incorporating Physical Function, Cognitive Status, and Psychosocial Support Using Natural Language Processing.

    PubMed

    Greenwald, Jeffrey L; Cronin, Patrick R; Carballo, Victoria; Danaei, Goodarz; Choy, Garry

    2017-03-01

    With the increasing focus on reducing hospital readmissions in the United States, numerous readmissions risk prediction models have been proposed, mostly developed through analyses of structured data fields in electronic medical records and administrative databases. Three areas that may have an impact on readmission but are poorly captured using structured data sources are patients' physical function, cognitive status, and psychosocial environment and support. The objective of the study was to build a discriminative model using information germane to these 3 areas to identify hospitalized patients' risk for 30-day all cause readmissions. We conducted clinician focus groups to identify language used in the clinical record regarding these 3 areas. We then created a dataset including 30,000 inpatients, 10,000 from each of 3 hospitals, and searched those records for the focus group-derived language using natural language processing. A 30-day readmission prediction model was developed on 75% of the dataset and validated on the other 25% and also on hospital specific subsets. Focus group language was aggregated into 35 variables. The final model had 16 variables, a validated C-statistic of 0.74, and was well calibrated. Subset validation of the model by hospital yielded C-statistics of 0.70-0.75. Deriving a 30-day readmission risk prediction model through identification of physical, cognitive, and psychosocial issues using natural language processing yielded a model that performs similarly to the better performing models previously published with the added advantage of being based on clinically relevant factors and also automated and scalable. Because of the clinical relevance of the variables in the model, future research may be able to test if targeting interventions to identified risks results in reductions in readmissions.

  17. Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation

    NASA Astrophysics Data System (ADS)

    Šarić, Andela; Michaels, Thomas C. T.; Zaccone, Alessio; Knowles, Tuomas P. J.; Frenkel, Daan

    2016-12-01

    Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications in many research areas ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focussing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of filament nucleation that includes a conformational conversion of the nucleating building-block as an additional slow step in the nucleation process. Using computer simulations, we study the concentration dependence of the nucleation rate. We find that, under these circumstances, the reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in the conformational conversion. Our results thus provide a novel interpretation of the common kinetic descriptors of protein filament formation, including the reaction order of the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical descriptions of protein aggregation.

  18. Kinetics of spontaneous filament nucleation via oligomers: Insights from theory and simulation.

    PubMed

    Šarić, Anđela; Michaels, Thomas C T; Zaccone, Alessio; Knowles, Tuomas P J; Frenkel, Daan

    2016-12-07

    Nucleation processes are at the heart of a large number of phenomena, from cloud formation to protein crystallization. A recently emerging area where nucleation is highly relevant is the initiation of filamentous protein self-assembly, a process that has broad implications in many research areas ranging from medicine to nanotechnology. As such, spontaneous nucleation of protein fibrils has received much attention in recent years with many theoretical and experimental studies focussing on the underlying physical principles. In this paper we make a step forward in this direction and explore the early time behaviour of filamentous protein growth in the context of nucleation theory. We first provide an overview of the thermodynamics and kinetics of spontaneous nucleation of protein filaments in the presence of one relevant degree of freedom, namely the cluster size. In this case, we review how key kinetic observables, such as the reaction order of spontaneous nucleation, are directly related to the physical size of the critical nucleus. We then focus on the increasingly prominent case of filament nucleation that includes a conformational conversion of the nucleating building-block as an additional slow step in the nucleation process. Using computer simulations, we study the concentration dependence of the nucleation rate. We find that, under these circumstances, the reaction order of spontaneous nucleation with respect to the free monomer does no longer relate to the overall physical size of the nucleating aggregate but rather to the portion of the aggregate that actively participates in the conformational conversion. Our results thus provide a novel interpretation of the common kinetic descriptors of protein filament formation, including the reaction order of the nucleation step or the scaling exponent of lag times, and put into perspective current theoretical descriptions of protein aggregation.

  19. Resolving the Origin of Pseudo-Single Domain Magnetic Behavior

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew P.; Almeida, Trevor P.; Church, Nathan S.; Harrison, Richard J.; Heslop, David; Li, Yiliang; Li, Jinhua; Muxworthy, Adrian R.; Williams, Wyn; Zhao, Xiang

    2017-12-01

    The term "pseudo-single domain" (PSD) has been used to describe the transitional state in rock magnetism that spans the particle size range between the single domain (SD) and multidomain (MD) states. The particle size range for the stable SD state in the most commonly occurring terrestrial magnetic mineral, magnetite, is so narrow ( 20-75 nm) that it is widely considered that much of the paleomagnetic record of interest is carried by PSD rather than stable SD particles. The PSD concept has, thus, become the dominant explanation for the magnetization associated with a major fraction of particles that record paleomagnetic signals throughout geological time. In this paper, we argue that in contrast to the SD and MD states, the term PSD does not describe the relevant physical processes, which have been documented extensively using three-dimensional micromagnetic modeling and by parallel research in material science and solid-state physics. We also argue that features attributed to PSD behavior can be explained by nucleation of a single magnetic vortex immediately above the maximum stable SD transition size. With increasing particle size, multiple vortices, antivortices, and domain walls can nucleate, which produce variable cancellation of magnetic moments and a gradual transition into the MD state. Thus, while the term PSD describes a well-known transitional state, it fails to describe adequately the physics of the relevant processes. We recommend that use of this term should be discontinued in favor of "vortex state," which spans a range of behaviors associated with magnetic vortices.

  20. Physical Causation. Phil Dowe, Physical causation (Cambridge Studies in Probability, Induction, and Decision Theory), Cambridge University Press, Cambridge, 2000, pp. ix+224, price US60.00, ISBN: 0-521-78049-7 hbk

    NASA Astrophysics Data System (ADS)

    Hausman, Daniel M.

    Causation is a frustrating subject. Suppose one begins with some promising idea such as that causation is counterfactual dependence or statistical relevance. One then develops this idea with care and intelligence, revises and improves it to cope with criticisms, and by the time one is finished, sane people will be looking elsewhere. If one wants conclusive reasons to reject the counterfactual theory of causation, one can do no better than to read Lewis' (1986) many postscripts. If one wants the best refutation of a probabilistic theory of causation, then one should read my colleague, Ellery Eells' (1991) magisterial defense. In Physical Causation, Phil Dowe performs the same service for physical process/interaction theories of causation.

  1. Learning physical descriptors for materials science by compressed sensing

    NASA Astrophysics Data System (ADS)

    Ghiringhelli, Luca M.; Vybiral, Jan; Ahmetcik, Emre; Ouyang, Runhai; Levchenko, Sergey V.; Draxl, Claudia; Scheffler, Matthias

    2017-02-01

    The availability of big data in materials science offers new routes for analyzing materials properties and functions and achieving scientific understanding. Finding structure in these data that is not directly visible by standard tools and exploitation of the scientific information requires new and dedicated methodology based on approaches from statistical learning, compressed sensing, and other recent methods from applied mathematics, computer science, statistics, signal processing, and information science. In this paper, we explain and demonstrate a compressed-sensing based methodology for feature selection, specifically for discovering physical descriptors, i.e., physical parameters that describe the material and its properties of interest, and associated equations that explicitly and quantitatively describe those relevant properties. As showcase application and proof of concept, we describe how to build a physical model for the quantitative prediction of the crystal structure of binary compound semiconductors.

  2. Self-relevant beauty evaluation: Evidence from an event-related potentials study.

    PubMed

    Kong, Fanchang; Zhang, Yan; Tian, Yuan; Fan, Cuiying; Zhou, Zongkui

    2015-03-01

    This study examines the electrophysiological correlates of beauty evaluation when participants performed the self-reference task. About 13 (7 men, 6 women) undergraduates participated in the experiment using event-related potentials. Results showed that the response to self-relevant information was faster compared to other-relevant information and no significant differences for self-relevant relative to mother-relevant information were observed. Both physical and interior beauty words for self-relevant information showed an enhanced late positive component as compared to other-relevant information. Physical beauty for self-relevant information yielded a larger late positive component in contrast to mother-relevant information but not for interior beauty. This study indicates that beauty is specific to the person who judges it though an individual and one's mother may hold similar views of interior beauty.

  3. The development and validation of the Physical Appearance Comparison Scale-3 (PACS-3).

    PubMed

    Schaefer, Lauren M; Thompson, J Kevin

    2018-05-21

    Appearance comparison processes are implicated in the development of body-image disturbance and disordered eating. The Physical Appearance Comparison Scale-Revised (PACS-R) assesses the simple frequency of appearance comparisons; however, research has suggested that other aspects of appearance comparisons (e.g., comparison direction) may moderate the association between comparisons and their negative outcomes. In the current study, the PACS-R was revised to examine aspects of comparisons with relevance to body-image and eating outcomes. Specifically, the measure was modified to examine (a) dimensions of physical appearance relevant to men and women (i.e., weight-shape, muscularity, and overall physical appearance), (b) comparisons with proximal and distal targets, (c) upward versus downward comparisons, and (d) the acute emotional impact of comparisons. The newly revised measure, labeled the PACS-3, along with existing measures of appearance comparison, body satisfaction, eating pathology, and self-esteem, was completed by 1,533 college men and women. Exploratory and confirmatory factor analyses were conducted to examine the factor structure of the PACS-3. In addition, the reliability, convergent validity, and incremental validity of the PACS-3 scores were examined. The final PACS-3 comprises 27 items and 9 subscales: Proximal: Frequency, Distal: Frequency, Muscular: Frequency, Proximal: Direction, Distal: Direction, Muscular: Direction, Proximal: Effect, Distal: Effect, and Muscular: Effect. the PACS-3 subscale scores demonstrated good reliability and convergent validity. Moreover, the PACS-3 subscales greatly improved the prediction of body satisfaction and disordered eating relative to existing measures of appearance comparison. Overall, the PACS-3 improves upon existing scales and offers a comprehensive assessment of appearance-comparison processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. An Introduction to Data Analysis in Asteroseismology

    NASA Astrophysics Data System (ADS)

    Campante, Tiago L.

    A practical guide is presented to some of the main data analysis concepts and techniques employed contemporarily in the asteroseismic study of stars exhibiting solar-like oscillations. The subjects of digital signal processing and spectral analysis are introduced first. These concern the acquisition of continuous physical signals to be subsequently digitally analyzed. A number of specific concepts and techniques relevant to asteroseismology are then presented as we follow the typical workflow of the data analysis process, namely, the extraction of global asteroseismic parameters and individual mode parameters (also known as peak-bagging) from the oscillation spectrum.

  5. Introductory Physics Laboratories for Life Scientists - Hands on Physics of Complex Systems

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Moore, Kim

    2015-03-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully implemented as the required physics course for premeds at the University of Maryland. The laboratories include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories.

  6. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions.

    PubMed

    Pannese, Alessia; Grandjean, Didier; Frühholz, Sascha

    2016-12-01

    Discriminating between auditory signals of different affective value is critical to successful social interaction. It is commonly held that acoustic decoding of such signals occurs in the auditory system, whereas affective decoding occurs in the amygdala. However, given that the amygdala receives direct subcortical projections that bypass the auditory cortex, it is possible that some acoustic decoding occurs in the amygdala as well, when the acoustic features are relevant for affective discrimination. We tested this hypothesis by combining functional neuroimaging with the neurophysiological phenomena of repetition suppression (RS) and repetition enhancement (RE) in human listeners. Our results show that both amygdala and auditory cortex responded differentially to physical voice features, suggesting that the amygdala and auditory cortex decode the affective quality of the voice not only by processing the emotional content from previously processed acoustic features, but also by processing the acoustic features themselves, when these are relevant to the identification of the voice's affective value. Specifically, we found that the auditory cortex is sensitive to spectral high-frequency voice cues when discriminating vocal anger from vocal fear and joy, whereas the amygdala is sensitive to vocal pitch when discriminating between negative vocal emotions (i.e., anger and fear). Vocal pitch is an instantaneously recognized voice feature, which is potentially transferred to the amygdala by direct subcortical projections. These results together provide evidence that, besides the auditory cortex, the amygdala too processes acoustic information, when this is relevant to the discrimination of auditory emotions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks.

    PubMed

    Herrera, Mauricio; Armelini, Guillermo; Salvaj, Erica

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions.

  8. Understanding Social Contagion in Adoption Processes Using Dynamic Social Networks

    PubMed Central

    2015-01-01

    There are many studies in the marketing and diffusion literature of the conditions in which social contagion affects adoption processes. Yet most of these studies assume that social interactions do not change over time, even though actors in social networks exhibit different likelihoods of being influenced across the diffusion period. Rooted in physics and epidemiology theories, this study proposes a Susceptible Infectious Susceptible (SIS) model to assess the role of social contagion in adoption processes, which takes changes in social dynamics over time into account. To study the adoption over a span of ten years, the authors used detailed data sets from a community of consumers and determined the importance of social contagion, as well as how the interplay of social and non-social influences from outside the community drives adoption processes. Although social contagion matters for diffusion, it is less relevant in shaping adoption when the study also includes social dynamics among members of the community. This finding is relevant for managers and entrepreneurs who trust in word-of-mouth marketing campaigns whose effect may be overestimated if marketers fail to acknowledge variations in social interactions. PMID:26505473

  9. Nuclear Physics in High School: what are the previous knowledge?

    NASA Astrophysics Data System (ADS)

    Pombo, F. de O.

    2017-11-01

    Nuclear physics is a branch of physics that about a century occupies an important space in the theoretical, experimental and scientific fields. Currently, its relevance in application is concentrated in several areas such as energy production, diagnostic processes and medical treatment and nuclear bombs, high destructive power. Whereas, according to legal regulations, the teaching of physics must make the student competent in the understanding of the world and assuming the perspective of Paulo Freire (2011) that education is not done on the subject, but together with him, in dialogue with his point of departure, his prior knowledge, we established the general objective of raising students prior knowledge of the third year of high School at Nair Ferreira Neves school, in São Sebastião-SP, about nuclear physics. We concluded that the school has not fulfilled its role in relation to nuclear physics, because students have information from other means of information and these knowledge are stereotyped and mistaken, damaging the world's reading and exercising full citizenship.

  10. The Auroral Planetary Imaging and Spectroscopy (APIS) service

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Prangé, R.; Henry, F.; Le Sidaner, P.

    2015-06-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service, accessible online, provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro-imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multi-spectral combined analysis.

  11. Physical-chemical processes of diamond grinding

    NASA Astrophysics Data System (ADS)

    Lobanov, D. V.; Arhipov, P. V.; Yanyushkin, A. S.; Skeeba, V. Yu

    2017-10-01

    The article focuses on the relevance of the research into the problem of diamond abrasive metal-bonded tool performance loss with a view to enhancing the effectiveness of high-strength materials finishing processing. The article presents the results of theoretical and empirical studies of loading layer formation on the surface of diamond wheels during processing high-strength materials. The theoretical part deals with the physical and chemical processes at the contact area of the diamond wheel and work surface with the viewpoint of the electrochemical potentials equilibrium state. We defined dependencies for calculating the loading layer dimensions. The practical part of work centers on various electron-microscopic, spectral and X-ray diffraction studies of the metal-bonded wheel samples during diamond grinding. The analysis of the research results revealed the composition and structure of the loading layer. The validity of the theoretical data is confirmed by sufficient convergence of the calculated values with the results of empirical research. In order to reduce the intensity of loading and improve the cutting properties of metal-bonded diamond abrasive tools, it is recommended to use combined methods for more efficient processing of high-strength materials.

  12. Designing persuasive health materials using processing fluency: a literature review.

    PubMed

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2017-06-08

    Health materials to promote health behaviors should be readable and generate favorable evaluations of the message. Processing fluency (the subjective experience of ease with which people process information) has been increasingly studied over the past decade. In this review, we explore effects and instantiations of processing fluency and discuss the implications for designing effective health materials. We searched seven online databases using "processing fluency" as the key word. In addition, we gathered relevant publications using reference snowballing. We included published records that were written in English and applicable to the design of health materials. We found 40 articles that were appropriate for inclusion. Various instantiations of fluency have a uniform effect on human judgment: fluently processed stimuli generate positive judgments (e.g., liking, confidence). Processing fluency is used to predict the effort needed for a given task; accordingly, it has an impact on willingness to undertake the task. Physical perceptual, lexical, syntactic, phonological, retrieval, and imagery fluency were found to be particularly relevant to the design of health materials. Health-care professionals should consider the use of a perceptually fluent design, plain language, numeracy with an appropriate degree of precision, a limited number of key points, and concrete descriptions that make recipients imagine healthy behavior. Such fluently processed materials that are easy to read and understand have enhanced perspicuity and persuasiveness.

  13. Exploring the Relationship of Task Performance and Physical and Cognitive Fatigue During a Daylong Light Precision Task.

    PubMed

    Yung, Marcus; Manji, Rahim; Wells, Richard P

    2017-11-01

    Our aim was to explore the relationship between fatigue and operation system performance during a simulated light precision task over an 8-hr period using a battery of physical (central and peripheral) and cognitive measures. Fatigue may play an important role in the relationship between poor ergonomics and deficits in quality and productivity. However, well-controlled laboratory studies in this area have several limitations, including the lack of work relevance of fatigue exposures and lack of both physical and cognitive measures. There remains a need to understand the relationship between physical and cognitive fatigue and task performance at exposure levels relevant to realistic production or light precision work. Errors and fatigue measures were tracked over the course of a micropipetting task. Fatigue responses from 10 measures and errors in pipetting technique, precision, and targeting were submitted to principal component analysis to descriptively analyze features and patterns. Fatigue responses and error rates contributed to three principal components (PCs), accounting for 50.9% of total variance. Fatigue responses grouped within the three PCs reflected central and peripheral upper extremity fatigue, postural sway, and changes in oculomotor behavior. In an 8-hr light precision task, error rates shared similar patterns to both physical and cognitive fatigue responses, and/or increases in arousal level. The findings provide insight toward the relationship between fatigue and operation system performance (e.g., errors). This study contributes to a body of literature documenting task errors and fatigue, reflecting physical (both central and peripheral) and cognitive processes.

  14. Electroweak Sudakov Corrections to New Physics Searches at the LHC

    NASA Astrophysics Data System (ADS)

    Chiesa, Mauro; Montagna, Guido; Barzè, Luca; Moretti, Mauro; Nicrosini, Oreste; Piccinini, Fulvio; Tramontano, Francesco

    2013-09-01

    We compute the one-loop electroweak Sudakov corrections to the production process Z(νν¯)+n jets, with n=1, 2, 3, in pp collisions at the LHC. It represents the main irreducible background to new physics searches at the energy frontier. The results are obtained at the leading and next-to-leading logarithmic accuracy by implementing the general algorithm of Denner and Pozzorini in the event generator for multiparton processes alpgen. For the standard selection cuts used by the ATLAS and CMS Collaborations, we show that the Sudakov corrections to the relevant observables can grow up to -40% at s=14TeV. We also include the contribution due to undetected real radiation of massive gauge bosons, to show to what extent the partial cancellation with the large negative virtual corrections takes place in realistic event selections.

  15. "Dis-able bodied" or "dis-able minded": stakeholders' return-to-work experiences compared between physical and mental health conditions.

    PubMed

    Vossen, Emmie; Van Gestel, Nicolette; Van der Heijden, Beatrice I J M; Rouwette, Etiënne A J A

    2017-05-01

    This study aimed to explore if and why the return-to-work (RTW) experiences of various workplace stakeholders in the Netherlands and Denmark differ between physical and mental health conditions, and to understand the consequences of potentially different experiences for the RTW process in both health conditions. We studied 21 cases of long-term sickness absence, and held a total of 61 semi-structured interviews with the various actors involved in these cases. Physical cases were seen as "easy" and mental cases as "difficult" to manage, based on the visibility and predictability of health complaints. On this ground, assessing work ability and following required RTW actions were perceived as more urgent in mental than in physical cases. Despite these perceptions, in practice, the assessment of work ability seemed to impair the RTW process in mental cases (but not in physical ones), and the (non-)uptake of RTW actions appeared to have similar results in both mental and physical cases. With these outcomes, the effectiveness of a differential approach is questioned, and the relevance of a bidirectional dialog on work ability and a phased RTW plan is highlighted, regardless of the absence cause. Our study also demonstrates how policymakers need to strike a balance between obligatory and permissive legislation to better involve workplaces in RTW issues. Implications for rehabilitation Both physically and mentally sick-listed employees could benefit from a bidirectional dialog on work ability as well as from a phased RTW plan. A greater role for employers in the RTW process should be accompanied with a support for sick-listed employees, in both physical and mental sickness absence cases. Dutch and Danish RTW legislation could be improved by carefully balancing obligatory and permissive rules and regulations to involve workplaces in RTW matters.

  16. Pulsar extinction. [astrophysics

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baker, K.; Turk, J. S.

    1975-01-01

    Radio emission from pulsars, attributed to an instability associated with the creation of electron-positron pairs from gamma rays was investigated. The condition for pair creation therefore lead to an extinction condition. The relevant physical processes were analyzed in the context of a mathematical model, according to which radiation originated at the polar caps and magnetic field lines changed from a closed configuration to an open configuration at the force balance or corotation radius.

  17. Evidence for a Global Martian Soil Composition Extends to Gale Crater

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; King, P. L.; Schmidt, M. E.; Leshin, L.; Morris, R. V.; Squyres, S. W.; Campbell, J. L.

    2013-01-01

    The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a single, localized region with Gale Crater, providing key insights into planetary scale processes.

  18. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  19. Application of all relevant feature selection for failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Paja, W.; Wrzesień, M.; Niemiec, R.; Rudnicki, W. R.

    2015-07-01

    The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.

  20. WE-E-204-00: Where to Send My Manuscript

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  1. WE-E-204-01: ASTRO Based Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, E.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  2. TU-B-16A-01: To Which Journal Should I Submit My Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J; Mills, M; Klein, E

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given the large number (about 100) competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose ofmore » this symposium is to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. The senior editors for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase chances of acceptance To help decipher which journal is appropriate for a given work.« less

  3. WE-E-204-03: Radiology and Other Imaging Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  4. Computational data sciences for assessment and prediction of climate extremes

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  5. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  6. Development of Motivate4Change Using the Intervention Mapping Protocol: An Interactive Technology Physical Activity and Medication Adherence Promotion Program for Hospitalized Heart Failure Patients.

    PubMed

    Oosterom-Calo, Rony; Te Velde, Saskia J; Stut, Wim; Brug, Johannes

    2015-07-20

    It is important that heart failure (HF) patients adhere to their medication regimen and engage in physical activity. Evidence shows that adherence to these HF self-management behaviors can be improved with appropriate interventions. To further promote medication adherence and physical activity among HF patients, we developed an intervention for hospitalized HF patients. The intervention mapping protocol was applied in the development of the intervention. This entailed performing a needs assessment, defining change objectives, selecting determinants and strategies, and developing the materials. The resulting intervention, Motivate4Change, makes use of interactive technology and provides HF patients with personalized feedback and advice. Specific change objectives were defined. The relevant behavioral determinants for the physical activity program were practical knowledge on physical activity performance and self-efficacy for, and perceived benefits of, physical activity. For medication-taking, the selected determinants were practical knowledge on medication-taking, perceived barriers to medication-taking, beliefs about the necessity and harm regarding the medication prescribed, and beliefs about overprescribing and harm of medication in general. The change objectives and behavior change determinants were translated in feedback and advice strategies in an interactive technology program that included tailored feedback and advice, and role models in videos in which the behaviors and overcoming barriers were demonstrated. Relevant stakeholders were involved in the interventions development process. The intervention was pretested among HF patients and adjustments were made accordingly. The interactive technology physical activity and medication adherence promotion program for hospitalized HF patients was systematically developed using the intervention mapping protocol and was based on the available theory and evidence regarding HF self-management behavior change. The intervention's efficacy is yet to be determined in evaluation research.

  7. Exploring the Relevance of the Personal and Social Responsibility Model in Adapted Physical Activity: A Collective Case Study

    ERIC Educational Resources Information Center

    Wright, Paul M.; White, Katherine; Gaebler-Spira, Deborah

    2004-01-01

    The purpose of this study was to examine the application of the Personal and Social Responsibility Model (PSRM) in an adapted physical activity program. Although the PSRM was developed for use with underserved youth, scholars in the field of adapted physical activity have noted its potential relevance for children with disabilities. Using a…

  8. Relevance of physics to the pharmacy major.

    PubMed

    McCall, Richard P

    2007-08-15

    To offer a physics course that is relevant to pharmacy students, yet still contains many of the fundamental principles of physics. The course was modified over a period of several years to include activities and examples that were related to other courses in the curriculum. Course evaluations were given to assess student attitudes about the importance of physics in the pharmacy curriculum. Students' attitudes have changed over time to appreciate the role that physics plays in their studies. Students gained confidence in their ability to learn in other courses.

  9. Physics education through computational tools: the case of geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, Y.; Santana, A.; Mendoza, L. M.

    2013-09-01

    Recently, with the development of more powerful and accurate computational tools, the inclusion of new didactic materials in the classroom is known to have increased. However, the form in which these materials can be used to enhance the learning process is still under debate. Many different methodologies have been suggested for constructing new relevant curricular material and, among them, just-in-time teaching (JiTT) has arisen as an effective and successful way to improve the content of classes. In this paper, we will show the implemented pedagogic strategies for the courses of geometrical and optical physics for students of optometry. Thus, the use of the GeoGebra software for the geometrical optics class and the employment of new in-house software for the physical optics class created using the high-level programming language Python is shown with the corresponding activities developed for each of these applets.

  10. Physics of the inner heliosphere: Mechanisms, models and observational signatures

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.

    1987-01-01

    Selected problems concerned with the important physical processes that occur in the corona and solar wind acceleration region, particularly time dependent phenomena were studied. Both the physics of the phenomena and the resultant effects on observational signatures, particularly spectroscopic signatures were also studied. Phenomena under study include: wave motions, particularly Alfven and fast mode waves; the formation of standing shocks in the inner heliosphere as a result of momentum and/or heat addition to the wind; and coronal transient phenomena where momentum and/or heat are deposited in the corona to produce transient plasma heating and/or mass ejection. The development of theoretical models for the inner heliosphere, the theoretical investigation of spectroscopic plasma diagnostics for this region, and the analysis of existing skylab and other relevant data are also included.

  11. Modelling language evolution: Examples and predictions

    NASA Astrophysics Data System (ADS)

    Gong, Tao; Shuai, Lan; Zhang, Menghan

    2014-06-01

    We survey recent computer modelling research of language evolution, focusing on a rule-based model simulating the lexicon-syntax coevolution and an equation-based model quantifying the language competition dynamics. We discuss four predictions of these models: (a) correlation between domain-general abilities (e.g. sequential learning) and language-specific mechanisms (e.g. word order processing); (b) coevolution of language and relevant competences (e.g. joint attention); (c) effects of cultural transmission and social structure on linguistic understandability; and (d) commonalities between linguistic, biological, and physical phenomena. All these contribute significantly to our understanding of the evolutions of language structures, individual learning mechanisms, and relevant biological and socio-cultural factors. We conclude the survey by highlighting three future directions of modelling studies of language evolution: (a) adopting experimental approaches for model evaluation; (b) consolidating empirical foundations of models; and (c) multi-disciplinary collaboration among modelling, linguistics, and other relevant disciplines.

  12. Effect of Chemical and Physical Properties on the In Vitro Degradation of 3D Printed High Resolution Poly(propylene fumarate) Scaffolds.

    PubMed

    Walker, Jason M; Bodamer, Emily; Krebs, Olivia; Luo, Yuanyuan; Kleinfehn, Alex; Becker, Matthew L; Dean, David

    2017-04-10

    Two distinct molecular masses of poly(propylene fumarate) (PPF) are combined with an additive manufacturing process to fabricate highly complex scaffolds possessing controlled chemical properties and porous architecture. Scaffolds were manufactured with two polymer molecular masses and two architecture styles. Degradation was assessed in an accelerated in vitro environment. The purpose of the degradation study is not to model or mimic in vivo degradation, but to efficiently compare the effect of modulating scaffold properties. This is the first study addressing degradation of chain-growth synthesized PPF, a process that allows for considerably more control over molecular mass distribution. It demonstrates that, with greater process control, not only is scaffold fabrication reproducible, but the mechanical properties and degradation kinetics can be tailored by altering the physical properties of the scaffold. This is a clear step forward in using PPF to address unmet medical needs while meeting regulatory demands and ultimately obtaining clinical relevancy.

  13. Therapeutic considerations of sarcopenia in heart failure patients.

    PubMed

    Saitoh, Masakazu; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen

    2018-02-01

    Sarcopenia is a common feature, and affects 20-47% of patients with heart failure (HF). Sarcopenia is also an independent predictor of impaired functional capacity, even after adjusting for clinical relevant variables, which is associated with adverse outcome in patients with HF. Areas covered: Several different pathophysiological pathways are involved in sarcopenic processes including altered nutrient intake and absorption, hormonal factor, inflammatory processes, oxidative stress, cellular proteolysis, and unhealthy lifestyle. Nutritional therapy, physical activity and/or exercise training have been associated with improved muscle mass or physical performance in HF. Few studies reported beneficial effects for muscle mass and physical performance, in those who received angiotensin-converting enzyme (ACE) inhibitors, or/and beta-blocker. In addition, testosterone, selective androgen receptor modulators, ghrelin agonist and myostatin inhibitors are currently under study as possible future therapeutic options. Expert commentary: Regular and adequate level of physical activity and/or exercise training, and sufficient nutritional intake or special nutritional supplementation may represent the best strategy for prevention or delay of sarcopenia and worsening physical performance in patients with HF. Maximal tolerated dosages of standard therapies for HF such as ACE-inhibitors or beta-blockers are first-line strategy, however it is difficult to recommend other pharmacological agents as part of routine treatment of sarcopenia.

  14. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  15. Simulating galactic dust grain evolution on a moving mesh

    NASA Astrophysics Data System (ADS)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  16. Spectral enstrophy budget in a shear-less flow with turbulent/non-turbulent interface

    NASA Astrophysics Data System (ADS)

    Cimarelli, Andrea; Cocconi, Giacomo; Frohnapfel, Bettina; De Angelis, Elisabetta

    2015-12-01

    A numerical analysis of the interaction between decaying shear free turbulence and quiescent fluid is performed by means of global statistical budgets of enstrophy, both, at the single-point and two point levels. The single-point enstrophy budget allows us to recognize three physically relevant layers: a bulk turbulent region, an inhomogeneous turbulent layer, and an interfacial layer. Within these layers, enstrophy is produced, transferred, and finally destroyed while leading to a propagation of the turbulent front. These processes do not only depend on the position in the flow field but are also strongly scale dependent. In order to tackle this multi-dimensional behaviour of enstrophy in the space of scales and in physical space, we analyse the spectral enstrophy budget equation. The picture consists of an inviscid spatial cascade of enstrophy from large to small scales parallel to the interface moving towards the interface. At the interface, this phenomenon breaks, leaving place to an anisotropic cascade where large scale structures exhibit only a cascade process normal to the interface thus reducing their thickness while retaining their lengths parallel to the interface. The observed behaviour could be relevant for both the theoretical and the modelling approaches to flow with interacting turbulent/nonturbulent regions. The scale properties of the turbulent propagation mechanisms highlight that the inviscid turbulent transport is a large-scale phenomenon. On the contrary, the viscous diffusion, commonly associated with small scale mechanisms, highlights a much richer physics involving small lengths, normal to the interface, but at the same time large scales, parallel to the interface.

  17. Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics

    DOE PAGES

    Laney, Daniel; Langer, Steven; Weber, Christopher; ...

    2014-01-01

    This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less

  18. Modeling socio-cultural processes in network-centric environments

    NASA Astrophysics Data System (ADS)

    Santos, Eunice E.; Santos, Eugene, Jr.; Korah, John; George, Riya; Gu, Qi; Kim, Keumjoo; Li, Deqing; Russell, Jacob; Subramanian, Suresh

    2012-05-01

    The major focus in the field of modeling & simulation for network centric environments has been on the physical layer while making simplifications for the human-in-the-loop. However, the human element has a big impact on the capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model and analyze various socio-cultural processes within network centric environments. The key innovation in our methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional mappings between them. We represent socio-cultural information such as friendships, professional relationships and temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We will leverage previous work on a network performance modeling framework called Network-Centric Operations Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating relevant factors and providing analyses of the results.

  19. Comparing motivational, self-regulatory and habitual processes in a computer-tailored physical activity intervention in hospital employees - protocol for the PATHS randomised controlled trial.

    PubMed

    Kwasnicka, Dominika; Vandelanotte, Corneel; Rebar, Amanda; Gardner, Benjamin; Short, Camille; Duncan, Mitch; Crook, Dawn; Hagger, Martin S

    2017-05-26

    Most people do not engage in sufficient physical activity to confer health benefits and to reduce risk of chronic disease. Healthcare professionals frequently provide guidance on physical activity, but often do not meet guideline levels of physical activity themselves. The main objective of this study is to develop and test the efficacy of a tailored intervention to increase healthcare professionals' physical activity participation and quality of life, and to reduce work-related stress and absenteeism. This is the first study to compare the additive effects of three forms of a tailored intervention using different techniques from behavioural theory, which differ according to their focus on motivational, self-regulatory and/or habitual processes. Healthcare professionals (N = 192) will be recruited from four hospitals in Perth, Western Australia, via email lists, leaflets, and posters to participate in the four group randomised controlled trial. Participants will be randomised to one of four conditions: (1) education only (non-tailored information only), (2) education plus intervention components to enhance motivation, (3) education plus components to enhance motivation and self-regulation, and (4) education plus components to enhance motivation, self-regulation and habit formation. All intervention groups will receive a computer-tailored intervention administered via a web-based platform and will receive supporting text-messages containing tailored information, prompts and feedback relevant to each condition. All outcomes will be assessed at baseline, and at 3-month follow-up. The primary outcome assessed in this study is physical activity measured using activity monitors. Secondary outcomes include: quality of life, stress, anxiety, sleep, and absenteeism. Website engagement, retention, preferences and intervention fidelity will also be evaluated as well as potential mediators and moderators of intervention effect. This is the first study to examine a tailored, technology-supported intervention aiming to increase physical activity in healthcare professionals. The study will evaluate whether including additional theory-based behaviour change techniques aimed at promoting motivation, self-regulation and habit will lead to increased physical activity participation relative to information alone. The online platform developed in this study has potential to deliver efficient, scalable and personally-relevant intervention that can be translated to other occupational settings. Australian New-Zealand Clinical Trial Registry: ACTRN12616000462482, submitted 29/03/2016, prospectively registered 8/04/2016.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  1. Inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach to QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesterenko, A. V.

    The dispersive approach to QCD, which properly embodies the intrinsically nonperturbative constraints originating in the kinematic restrictions on relevant physical processes and extends the applicability range of perturbation theory towards the infrared domain, is briefly overviewed. The study of OPAL (update 2012) and ALEPH (update 2014) experimental data on inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach is presented.

  2. Theoretical Foundation for Weld Modeling

    NASA Technical Reports Server (NTRS)

    Traugott, S.

    1986-01-01

    Differential equations describe physics of tungsten/inert-gas and plasma-arc welding in aluminum. Report collects and describes necessary theoretical foundation upon which numerical welding model is constructed for tungsten/inert gas or plasma-arc welding in aluminum without keyhole. Governing partial differential equations for flow of heat, metal, and current given, together with boundary conditions relevant to welding process. Numerical estimates for relative importance of various phenomena and required properties of 2219 aluminum included

  3. Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.

    2016-01-01

    The Object-Oriented Turbomachinery Analysis Code (OTAC) is a new meanline/streamline turbomachinery modeling tool being developed at NASA GRC. During the development process, a limitation of the code was discovered in relation to the analysis of choked flow in axial turbines. This paper describes the relevant physics for choked flow as well as the changes made to OTAC to enable analysis in this flow regime.

  4. Simulation of plasma loading of high-pressure RF cavities

    NASA Astrophysics Data System (ADS)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  5. A comparison of two finite element models of tidal hydrodynamics using a North Sea data set

    USGS Publications Warehouse

    Walters, R.A.; Werner, F.E.

    1989-01-01

    Using the region of the English Channel and the southern bight of the North Sea, we systematically compare the results of two independent finite element models of tidal hydrodynamics. The model intercomparison provides a means for increasing our understanding of the relevant physical processes in the region in question as well as a means for the evaluation of certain algorithmic procedures of the two models. ?? 1989.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, J.R.; Duke, T.W.; Harwell, M.A.

    Potential effects of oil drilling-fluid discharges upon Thalassia seagrass ecosystems were examined to provide general insights and raise ecotoxicological issues relevant to problems of addressing a priori, ecolgical effects of anthropogenic actions. Microcosm experiments have demonstrated effects upon both autotrophic and heterotrophic species, as well as the processes of primary productivity and decomposition. Significant ecological changes may result from disturbance effects related to the physical presence of higher particle loads, in addition to effects resulting from toxic features of drilling fluids.

  7. Thermomechanical Simulation of the Splashing of Ceramic Droplets on a Rigid Substrate

    NASA Astrophysics Data System (ADS)

    Bertagnolli, Mauro; Marchese, Maurizio; Jacucci, Gianni; St. Doltsinis, Ioannis; Noelting, Swen

    1997-05-01

    Finite element simulation techniques have been applied to the spreading process of single ceramic liquid droplets impacting on a flat cold surface under plasma-spraying conditions. The goal of the present investigation is to predict the geometrical form of the splat as a function of technological process parameters, such as initial temperature and velocity, and to follow the thermal field developing in the droplet up to solidification. A non-linear finite element programming system has been utilized in order to model the complex physical phenomena involved in the present impact process. The Lagrangean description of the motion of the viscous melt in the drops, as constrained by surface tension and the developing contact with the target, has been coupled to an analysis of transient thermal phenomena accounting also for the solidification of the material. The present study refers to a parameter spectrum as from experimental data of technological relevance. The significance of process parameters for the most pronounced physical phenomena is discussed as are also the consequences of modelling. We consider the issue of solidification as well and touch on the effect of partially unmelted material.

  8. Laboratory Modelling of Volcano Plumbing Systems: a review

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to understand the distinct key features of volcanic plumbing systems: dykes, cone sheets, sills, laccoliths, caldera-related structures, ground deformation, magma/fault interactions, and explosive vents. Barenblatt, G.I., 2003. Scaling. Cambridge University Press, Cambridge. Galland, O., Holohan, E.P., van Wyk de Vries, B., Burchardt, S., Accepted. Laboratory modelling of volcanic plumbing systems: A review, in: Breitkreuz, C., Rocchi, S. (Eds.), Laccoliths, sills and dykes: Physical geology of shallow level magmatic systems. Springer.

  9. Recommendations for a culturally relevant Internet-based tool to promote physical activity among overweight young African American women, Alabama, 2010-2011.

    PubMed

    Durant, Nefertiti H; Joseph, Rodney P; Cherrington, Andrea; Cuffee, Yendelela; Knight, BernNadette; Lewis, Dwight; Allison, Jeroan J

    2014-01-16

    Innovative approaches are needed to promote physical activity among young adult overweight and obese African American women. We sought to describe key elements that African American women desire in a culturally relevant Internet-based tool to promote physical activity among overweight and obese young adult African American women. A mixed-method approach combining nominal group technique and traditional focus groups was used to elicit recommendations for the development of an Internet-based physical activity promotion tool. Participants, ages 19 to 30 years, were enrolled in a major university. Nominal group technique sessions were conducted to identify themes viewed as key features for inclusion in a culturally relevant Internet-based tool. Confirmatory focus groups were conducted to verify and elicit more in-depth information on the themes. Twenty-nine women participated in nominal group (n = 13) and traditional focus group sessions (n = 16). Features that emerged to be included in a culturally relevant Internet-based physical activity promotion tool were personalized website pages, diverse body images on websites and in videos, motivational stories about physical activity and women similar to themselves in size and body shape, tips on hair care maintenance during physical activity, and online social support through social media (eg, Facebook, Twitter). Incorporating existing social media tools and motivational stories from young adult African American women in Internet-based tools may increase the feasibility, acceptability, and success of Internet-based physical activity programs in this high-risk, understudied population.

  10. Parameter dimensionality reduction of a conceptual model for streamflow prediction in Canadian, snowmelt dominated ungauged basins

    NASA Astrophysics Data System (ADS)

    Arsenault, Richard; Poissant, Dominique; Brissette, François

    2015-11-01

    This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.

  11. Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, T. G.; Smithe, D. N.

    2015-02-01

    The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.

  12. Large-scale experiments for the vulnerability analysis of buildings impacted and intruded by fluviatile torrential hazard processes

    NASA Astrophysics Data System (ADS)

    Sturm, Michael; Gems, Bernhard; Fuchs, Sven; Mazzorana, Bruno; Papathoma-Köhle, Maria; Aufleger, Markus

    2016-04-01

    In European mountain regions, losses due to torrential hazards are still considerable high despite the ongoing debate on an overall increasing or decreasing trend. Recent events in Austria severely revealed that due to technical and economic reasons, an overall protection of settlements in the alpine environment against torrential hazards is not feasible. On the side of the hazard process, events with unpredictable intensities may represent overload scenarios for existent protection structures in the torrent catchments. They bear a particular risk of significant losses in the living space. Although the importance of vulnerability is widely recognised, there is still a research gap concerning its assessment. Currently, potential losses at buildings due to torrential hazards and their comparison with reinstatement costs are determined by the use of empirical functions. Hence, relations of process intensities and the extent of losses, gathered by the analysis of historic hazard events and the information of object-specific restoration values, are used. This approach does not represent a physics-based and integral concept since relevant and often crucial processes, as the intrusion of the fluid-sediment-mixture into elements at risk, are not considered. Based on these findings, our work is targeted at extending these findings and models of present risk research in the context of an integral, more physics-based vulnerability analysis concept. Fluviatile torrential hazard processes and their impacts on the building envelope are experimentally modelled. Material intrusion processes are thereby explicitly considered. Dynamic impacts are gathered quantitatively and spatially distributed by the use of a large set of force transducers. The experimental tests are accomplished with artificial, vertical and skewed plates, including also openings for material intrusion. Further, the impacts on specific buildings within the test site of the work, the fan apex of the Schnannerbach torrent in Tyrol (Austria), are analysed in detail. A couple of buildings are entirely reconstructed within the physical scale model at the scale 1:30. They include basement and first floor and thereby all relevant openings on the building envelopes. The results from experimental modelling represent the data basis for further physics-based vulnerability analysis. Hence, the applied vulnerability analysis concept significantly extends the methods presently used in flood risk assessment. The results of the study are of basic importance for practical application, as they provide extensive information to support hazard zone mapping and management, as well as the planning of local technical protection measures.

  13. Phenomenological study of decoherence in solid-state spin qubits due to nuclear spin diffusion

    NASA Astrophysics Data System (ADS)

    Biercuk, Michael J.; Bluhm, Hendrik

    2011-06-01

    We present a study of the prospects for coherence preservation in solid-state spin qubits using dynamical decoupling protocols. Recent experiments have provided the first demonstrations of multipulse dynamical decoupling sequences in this qubit system, but quantitative analyses of potential coherence improvements have been hampered by a lack of concrete knowledge of the relevant noise processes. We present calculations of qubit coherence under the application of arbitrary dynamical decoupling pulse sequences based on an experimentally validated semiclassical model. This phenomenological approach bundles the details of underlying noise processes into a single experimentally relevant noise power spectral density. Our results show that the dominant features of experimental measurements in a two-electron singlet-triplet spin qubit can be replicated using a 1/ω2 noise power spectrum associated with nuclear spin flips in the host material. Beginning with this validation, we address the effects of nuclear programming, high-frequency nuclear spin dynamics, and other high-frequency classical noise sources, with conjectures supported by physical arguments and microscopic calculations where relevant. Our results provide expected performance bounds and identify diagnostic metrics that can be measured experimentally in order to better elucidate the underlying nuclear spin dynamics.

  14. The DC8 as an Exemplar of Relevant Physics

    ERIC Educational Resources Information Center

    Lockett, T. K.

    1974-01-01

    Presents data on aircraft take off and landing, including measurements of turning speeds, triangle of velocities method, fuel consumption, air pressure differences, air turbulence, maintenance inspection, and airborne radar. Indicates the materials can serve as relevant physics examples in teaching sixth and seventh form pupils. (CC)

  15. Effective ergodicity breaking in an exclusion process with varying system length

    NASA Astrophysics Data System (ADS)

    Schultens, Christoph; Schadschneider, Andreas; Arita, Chikashi

    2015-09-01

    Stochastic processes of interacting particles in systems with varying length are relevant e.g. for several biological applications. We try to explore what kind of new physical effects one can expect in such systems. As an example, we extend the exclusive queueing process that can be viewed as a one-dimensional exclusion process with varying length, by introducing Langmuir kinetics. This process can be interpreted as an effective model for a queue that interacts with other queues by allowing incoming and leaving of customers in the bulk. We find surprising indications for breaking of ergodicity in a certain parameter regime, where the asymptotic growth behavior depends on the initial length. We show that a random walk with site-dependent hopping probabilities exhibits qualitatively the same behavior.

  16. Problems with vision associated with limitations or avoidance of driving in older populations.

    PubMed

    Satariano, William A; MacLeod, Kara E; Cohn, Theodore E; Ragland, David R

    2004-09-01

    This report examines the role of (a) disease processes affecting vision, (b) reported troubles with vision, (c) physical symptoms affecting the eyes, and (d) objective measures in reported driving limitation due to problems with eyesight among older drivers. Data for this study (N = 1,840) were obtained from participants in a community-based study of aging and physical performance in people age 55 or older in the city of Sonoma, California. Each of 16 visual conditions was assessed for impact on reported driving limitation due to eyesight by calculating a "risk" ratio. Then, prevalence of the condition was combined with the ratio to generate an attributable risk for that condition for vision-related limitations in driving. Each condition was significantly associated with reported limitations in driving due to eyesight. "Avoiding physical activity due to vision" (ratio = 3.4) and "trouble seeing steps up/down stairs" (ratio = 2.9) had the strongest association. However, "glasses/contacts required for driving" and "trouble with glare from sun/lights" had the highest attributable risks (35.8 and 29.4). The risk ratio is relevant for evaluating individuals; the attributable risk is relevant to planning countermeasures in populations. Addressing specific problems related to vision should substantially reduce driving limitations due to eyesight.

  17. Experimental quantum simulations of many-body physics with trapped ions.

    PubMed

    Schneider, Ch; Porras, Diego; Schaetz, Tobias

    2012-02-01

    Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.

  18. Extensions of the survival advantage in memory: examining the role of ancestral context and implied social isolation.

    PubMed

    Kostic, Bogdan; McFarlan, Chastity C; Cleary, Anne M

    2012-07-01

    Recent work (e.g., Nairne & Pandeirada, 2010) has shown that words are remembered better when they have been processed for their survival value in a grasslands context than when processed in other contexts. It has been suggested that this is because human memory systems were shaped by evolution specifically to help humans survive. Thus far, the survival processing advantage has mainly been shown with grasslands contexts, which are thought to be particularly relevant to human evolution. The present study demonstrated the survival processing advantage with other contexts (e.g., lost in a jungle), including with contexts that should not, in and of themselves, be relevant to human evolution (e.g., lost in outer space). We further examined whether implied social isolation plays a critical role in the survival advantage to memory by comparing scenarios in which the person is alone versus with other people present (e.g., lost at sea alone or with others), and whether the perceived source of danger is social isolation or other human attackers. A survival advantage was shown in both the isolation and the group settings, and whether the primary source of danger was isolation or other human attackers did not matter. These findings suggest that the survival advantage in memory is not dependent on evolutionarily relevant physical contexts (e.g., grasslands) or particular sources of perceived danger (social isolation vs. perceived attackers), showing the advantage to be robust and applicable to a variety of scenarios. 2012 APA, all rights reserved

  19. Evaluating experimental molecular physics studies of radiation damage in DNA*

    NASA Astrophysics Data System (ADS)

    Śmiałek, Małgorzata A.

    2016-11-01

    The field of Atomic and Molecular Physics (AMP) is a mature field exploring the spectroscopy, excitation, ionisation of atoms and molecules in all three phases. Understanding of the spectroscopy and collisional dynamics of AMP has been fundamental to the development and application of quantum mechanics and is applied across a broad range of disparate disciplines including atmospheric sciences, astrochemistry, combustion and environmental science, and in central to core technologies such as semiconductor fabrications, nanotechnology and plasma processing. In recent years the molecular physics also started significantly contributing to the area of the radiation damage at molecular level and thus cancer therapy improvement through both experimental and theoretical advances, developing new damage measurement and analysis techniques. It is therefore worth to summarise and highlight the most prominent findings from the AMP community that contribute towards better understanding of the fundamental processes in biologically-relevant systems as well as to comment on the experimental challenges that were met for more complex investigation targets. Contribution to the Topical Issue "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic, B. Sivaraman.

  20. Experimental Validation of Various Temperature Modells for Semi-Physical Tyre Model Approaches

    NASA Astrophysics Data System (ADS)

    Hackl, Andreas; Scherndl, Christoph; Hirschberg, Wolfgang; Lex, Cornelia

    2017-10-01

    With increasing level of complexity and automation in the area of automotive engineering, the simulation of safety relevant Advanced Driver Assistance Systems (ADAS) leads to increasing accuracy demands in the description of tyre contact forces. In recent years, with improvement in tyre simulation, the needs for coping with tyre temperatures and the resulting changes in tyre characteristics are rising significantly. Therefore, experimental validation of three different temperature model approaches is carried out, discussed and compared in the scope of this article. To investigate or rather evaluate the range of application of the presented approaches in combination with respect of further implementation in semi-physical tyre models, the main focus lies on the a physical parameterisation. Aside from good modelling accuracy, focus is held on computational time and complexity of the parameterisation process. To evaluate this process and discuss the results, measurements from a Hoosier racing tyre 6.0 / 18.0 10 LCO C2000 from an industrial flat test bench are used. Finally the simulation results are compared with the measurement data.

  1. Planetary nebulae: 20 years of Hubble inquiry

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    2012-08-01

    The Hubble Space Telescope has served the critical roles of microscope and movie camera in the past 20 years of research on planetary nebulae (``PNe''). We have glimpsed the details of the evolving structures of neutral and ionized post-AGB objects, built ingenious heuristic models that mimic these structures, and constrained most of the relevant physical processes with careful observations and interpretation. We have searched for close physical binary stars with spatial resolution ~50 AU at 1 AU, located jets emerging from the nucleus at speeds up to 2000 km s-1 and matched newly discovered molecular and X-ray emission regions to physical substructures in order to better understand how stellar winds and ionizing radiation interact to form the lovely symmetries that are observed. Ultraviolet spectra of CNO in PNe help to uncover how stars process deep inside AGB stars with unstable nuclear burning zones. HST broadband imaging has been at the forefront of uncovering surprisingly complex wind morphologies produced at the tip of the AGB, and has led to an increasing realization of the potentially vital roles of close binary stars and emerging magnetic fields in shaping stellar winds.

  2. Recommendations for standardizing validation procedures assessing physical activity of older persons by monitoring body postures and movements.

    PubMed

    Lindemann, Ulrich; Zijlstra, Wiebren; Aminian, Kamiar; Chastin, Sebastien F M; de Bruin, Eling D; Helbostad, Jorunn L; Bussmann, Johannes B J

    2014-01-10

    Physical activity is an important determinant of health and well-being in older persons and contributes to their social participation and quality of life. Hence, assessment tools are needed to study this physical activity in free-living conditions. Wearable motion sensing technology is used to assess physical activity. However, there is a lack of harmonisation of validation protocols and applied statistics, which make it hard to compare available and future studies. Therefore, the aim of this paper is to formulate recommendations for assessing the validity of sensor-based activity monitoring in older persons with focus on the measurement of body postures and movements. Validation studies of body-worn devices providing parameters on body postures and movements were identified and summarized and an extensive inter-active process between authors resulted in recommendations about: information on the assessed persons, the technical system, and the analysis of relevant parameters of physical activity, based on a standardized and semi-structured protocol. The recommended protocols can be regarded as a first attempt to standardize validity studies in the area of monitoring physical activity.

  3. Korean immigrant women's physical activity experience: a situation-specific theory.

    PubMed

    Im, Eun-Ok; Chang, Sun Ju; Nguyen, Giang; Stringer, Lynn; Chee, Wonshik; Chee, Eunice

    2015-01-01

    To develop successful physical activity promotion programs for midlife immigrant women, especially for Korean immigrant midlife women, concrete theoretical bases are needed. However, virtually no theoretical frameworks and/or theories exist that can explain the influences of immigration transition on the physical activity experience of midlife immigrant women in general or Korean immigrant midlife women in specific. The purpose of this article is to present a situation-specific theory on physical activity experience of Korean immigrant midlife women (SPAKIM) with its development process. An integrative approach was used to develop the theory based on the midlife women's attitudes toward physical activity (MAPA) theory, the transitions theory, a review of the relevant literature, and two studies on midlife women's attitudes toward physical activity. The proposed theory includes nature of transitions, nonmodifiable and modifiable transition conditions, contexts of daily life, patterns of response, and nursing therapeutics as major concepts, and each major concept includes several related subconcepts. Because several concepts of the theory were developed mainly based on the literature review, the major concepts and related subconcepts need to be further developed and evaluated in future studies.

  4. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  5. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    NASA Astrophysics Data System (ADS)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  6. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  7. Using a Cultural Framework to Assess Motivation for Physical Activity Among Older Hispanic Women: Application of the PEN-3 Model.

    PubMed

    Perez, Adriana; Fleury, Julie

    Culturally relevant strategies for intervention design and implementation, emphasizing strengths and resources, are essential to address cardiovascular health disparities among older Hispanic women. The purpose of this article is to present the process and results of focus group discussions conducted to understand the meaning of cultural, social, and contextual strengths to promote motivation for physical activity and cardiovascular health in this population. The PEN-3 model guided analysis of focus group data. Fifteen older Hispanic women (mean = 61, SD = 6) participated in 3 focus groups. Three interrelated domains were evaluated: (a) cultural identity, (b) relationships and expectations, and (c) cultural empowerment.

  8. Awareness of Age-Related Change: Examination of a (Mostly) Unexplored Concept

    PubMed Central

    Wahl, Hans-Werner

    2010-01-01

    This theoretical article discusses the emerging concept of awareness of age-related change (AARC). We propose that a focus on AARC extends the research traditions on subjective age experiences and age identity and that examination of this concept can serve a stimulating role in social gerontology. After defining and contrasting AARC against similar concepts, several reasons for the relevance of this mostly unexplored construct are provided. The sample domains of health and physical functioning, cognitive functioning, and interpersonal relations are used to illustrate the relevance of AARC. Based on this review, we then provide a heuristic framework that describes antecedents, processes, and outcomes related to AARC. Overall, we argue that research on AARC should become an integral part of social gerontological research. PMID:20008026

  9. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less

  10. Reconstructing the spectrotemporal modulations of real-life sounds from fMRI response patterns

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Valente, Giancarlo; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2017-01-01

    Ethological views of brain functioning suggest that sound representations and computations in the auditory neural system are optimized finely to process and discriminate behaviorally relevant acoustic features and sounds (e.g., spectrotemporal modulations in the songs of zebra finches). Here, we show that modeling of neural sound representations in terms of frequency-specific spectrotemporal modulations enables accurate and specific reconstruction of real-life sounds from high-resolution functional magnetic resonance imaging (fMRI) response patterns in the human auditory cortex. Region-based analyses indicated that response patterns in separate portions of the auditory cortex are informative of distinctive sets of spectrotemporal modulations. Most relevantly, results revealed that in early auditory regions, and progressively more in surrounding regions, temporal modulations in a range relevant for speech analysis (∼2–4 Hz) were reconstructed more faithfully than other temporal modulations. In early auditory regions, this effect was frequency-dependent and only present for lower frequencies (<∼2 kHz), whereas for higher frequencies, reconstruction accuracy was higher for faster temporal modulations. Further analyses suggested that auditory cortical processing optimized for the fine-grained discrimination of speech and vocal sounds underlies this enhanced reconstruction accuracy. In sum, the present study introduces an approach to embed models of neural sound representations in the analysis of fMRI response patterns. Furthermore, it reveals that, in the human brain, even general purpose and fundamental neural processing mechanisms are shaped by the physical features of real-world stimuli that are most relevant for behavior (i.e., speech, voice). PMID:28420788

  11. Toward the automated analysis of plasma physics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mynick, H.E.

    1989-04-01

    A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications inmore » form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs.« less

  12. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberi, Kirstin; Scarpulla, Michael A.

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  13. Computational physics of the mind

    NASA Astrophysics Data System (ADS)

    Duch, Włodzisław

    1996-08-01

    In the XIX century and earlier physicists such as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of the mind. In this paper several approaches relevant to modeling of the mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From a computational point of view realistic models require massively parallel architectures.

  14. Photoassisted physical vapor epitaxial growth of semiconductors: a review of light-induced modifications to growth processes

    DOE PAGES

    Alberi, Kirstin; Scarpulla, Michael A.

    2017-11-22

    Herein, we review the remarkable range of modifications to materials properties associated with photoexcitation of the growth surface during physical vapor epitaxy of semiconductors. We concentrate on mechanisms producing measureable, utilizable changes in crystalline perfection, phase, composition, doping, and defect distribution. We outline the relevant physics of different mechanisms, concentrating on those yielding effects orthogonal to the primary growth variables of temperature and atomic or molecular fluxes and document the phenomenological effects reported. Based on experimental observations from a range of semiconductor systems and growth conditions, the primary effects include enhanced anion desorption, molecular dissociation, increased doping efficiency, modification tomore » defect populations and improvements to the crystalline quality of epilayers grown at low temperatures. Future research directions and technological applications are also discussed.« less

  15. The situation specificity of youth responses to peer provocation.

    PubMed

    Dirks, Melanie A; Treat, Teresa A; Weersing, V Robin

    2007-01-01

    Previous studies have identified peer provocation as a challenging class of situations for youth. The work presented here builds on previous methods of assessing peer provocation by (a) increasing the contextual detail of the vignettes; (b) developing a reliable, descriptive coding system of the range of youth responses to physical, verbal, and relational provocation; and (c) assessing the relevance of these situations for a sample (N = 76) of ethnically diverse, economically disadvantaged youth ages 12 to 14. The vignettes were used to examine the situation specificity of youth responses to provocation. Situation and identity of aggressor were both predictors of youth responses. For example, participants "matched" physical aggression to physical provocation. These findings are consistent with previous studies demonstrating the situation specificity of social information processing, even within the relatively homogeneous category of peer provocations.

  16. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia

    PubMed Central

    Young, Jared W.; Markou, Athina

    2015-01-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients’ inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. PMID:26194891

  17. Self-referential and anxiety-relevant information processing in subclinical social anxiety: an fMRI study.

    PubMed

    Abraham, Anna; Kaufmann, Carolin; Redlich, Ronny; Hermann, Andrea; Stark, Rudolf; Stevens, Stephan; Hermann, Christiane

    2013-03-01

    The fear of negative evaluation is one of the hallmark features of social anxiety. Behavioral evidence thus far largely supports cognitive models which postulate that information processing biases in the face of socially relevant information are a key factor underlying this widespread phobia. So far only one neuroimaging study has explicitly focused on the fear of negative evaluation in social anxiety where the brain responses of social phobics were compared to healthy participants during the processing of self-referential relative to other-referential criticism, praise or neutral information. Only self-referential criticism led to stronger activations in emotion-relevant regions of the brain, such as the amygdala and medial prefrontal cortices (mPFC), in the social phobics. The objective of the current study was to determine whether these findings could be extended to subclinical social anxiety. In doing so, the specificity of this self-referential bias was also examined by including both social and non-social (physical illness-related) threat information as well as a highly health anxious control group in the experimental paradigm. The fMRI findings indicated that the processing of emotional stimuli was accompanied by activations in the amygdala and the ventral mPFC, while self-referential processing was associated with activity in regions such as the mPFC, posterior cingulate and temporal poles. Despite the validation of the paradigm, the results revealed that the previously reported behavioral and brain biases associated with social phobia could not be unequivocally extended to subclinical social anxiety. The divergence between the findings is explored in detail with reference to paradigm differences and conceptual issues.

  18. The Teaching Effectiveness of a Relevant Physics Course

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1998-04-01

    If America is to achieve the science literacy that is ssential to industrialized democracy, all students must study such topics as scientific methodology, pseudoscience, critical thinking, ozone depletion, technological risk, and global warming. My large-enrollment liberal-arts physics course covers the great principles of physics along with several such philosophical and societal topics. Students find these topics relevant and fascinating, leading to strong course evaluations and large enrollments by non-scientists even in courses labeled physics. I will describe this course and present some evidence indicating that the course is effective in communicating physics and its interdisciplinary connections. A textbook, Physics: Concepts and Connections (Prentice Hall, 1995, 2nd edition to appear in June 1998), is available.

  19. Separating stages of arithmetic verification: An ERP study with a novel paradigm.

    PubMed

    Avancini, Chiara; Soltész, Fruzsina; Szűcs, Dénes

    2015-08-01

    In studies of arithmetic verification, participants typically encounter two operands and they carry out an operation on these (e.g. adding them). Operands are followed by a proposed answer and participants decide whether this answer is correct or incorrect. However, interpretation of results is difficult because multiple parallel, temporally overlapping numerical and non-numerical processes of the human brain may contribute to task execution. In order to overcome this problem here we used a novel paradigm specifically designed to tease apart the overlapping cognitive processes active during arithmetic verification. Specifically, we aimed to separate effects related to detection of arithmetic correctness, detection of the violation of strategic expectations, detection of physical stimulus properties mismatch and numerical magnitude comparison (numerical distance effects). Arithmetic correctness, physical stimulus properties and magnitude information were not task-relevant properties of the stimuli. We distinguished between a series of temporally highly overlapping cognitive processes which in turn elicited overlapping ERP effects with distinct scalp topographies. We suggest that arithmetic verification relies on two major temporal phases which include parallel running processes. Our paradigm offers a new method for investigating specific arithmetic verification processes in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Application of all-relevant feature selection for the failure analysis of parameter-induced simulation crashes in climate models

    NASA Astrophysics Data System (ADS)

    Paja, Wiesław; Wrzesien, Mariusz; Niemiec, Rafał; Rudnicki, Witold R.

    2016-03-01

    Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.

  1. Hybrid simulations of weakly collisional plasmas

    NASA Astrophysics Data System (ADS)

    Xia, Qian; Reville, Brian; Tzoufras, Michail

    2016-10-01

    Laser produced plasma experiments can be exploited to investigate phenomena of astrophysical relevance. The high densities and velocities that can be generated in the laboratory provide ideal conditions to investigate weakly collisional or collisionless plasma shock physics. In addition, the high temperatures permit magnetic and kinetic Reynolds numbers that are difficult to achieve in other plasma experiments, opening the possibility to study plasma dynamo. Many of these experiments are based on a classic plasma physics problem, namely the interpenetration of two plasma flows. To investigate this phenomenon, we are constructing a novel multi-dimensional hybrid numerical scheme, that solves the ion distribution kinetically via a Vlasov-Fokker-Planck equation, with electrons providing a charge neutralizing fluid. This allows us to follow the evolution on hydrodynamic timescales, while permitting inclusion ofcollisionlesseffects on small scales. It also could be used to study the increasing collisional effects due to the stiff gradient and weakly anisotropic velocity distribution. We present some preliminary validation tests for the code, demonstrating its ability to accurately model key processes that are relevant to laboratory and astrophysical plasmas.

  2. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  3. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  4. Simulation of plasma loading of high-pressure RF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.; Samulyak, R.; Yonehara, K.

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  5. Liquid interfacial water and brines in the upper surface of Mars

    NASA Astrophysics Data System (ADS)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  6. Modeling soil processes - are we lost in diversity?

    NASA Astrophysics Data System (ADS)

    Vogel, Hans-Joerg; Schlüter, Steffen

    2015-04-01

    Soils are among the most complex environmental systems. Soil functions - e.g. production of biomass, habitat for organisms, reactor for and storage of organic matter, filter for ground water - emerge from a multitude of processes interacting at different scales. It still remains a challenge to model and predict these functions including their stability and resilience towards external perturbations. As an inherent property of complex systems it is prohibitive to unravel all the relevant process in all detail to derive soil functions and their dynamics from first principles. Hence, when modeling soil processes and their interactions one is close to be lost in the overwhelming diversity and spatial heterogeneity of soil properties. In this contribution we suggest to look for characteristic similarities within the hyperdimensional state space of soil properties. The underlying hypothesis is that this state space is not evenly and/or randomly populated but that processes of self organization produce attractors of physical, chemical and biological properties which can be identified. (The formation of characteristic soil horizons is an obvious example). To render such a concept operational a suitable and limited set of indicators is required. Ideally, such indicators are i) related to soil functions, ii) are measurable and iii) are integral measures of the relevant physical, chemical and biological soil properties. This would allow for identifying suitable attractors. We will discuss possible indicators and will focus on soil structure as an especially promising candidate. It governs the availability of water and gas, it effects the spatial distribution of organic matter and, moreover, it forms the habitat of soil organisms and it is formed by soil biota. Quantification of soil structural properties became possible only recently with the development of more powerful tools for non-invasive imaging. Future research need to demonstrate in how far these tools can be used to identify functional soil types (i.e. attractors) allowing for modeling soil processes at an integral level. We provide an example from the 100-years fertilization experiment in Bad-Lauchstädt.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, M; Schmidt, M; Knutson, N

    Purpose: Physics second-checks for external beam radiation therapy are performed, in-part, to verify that the machine parameters in the Record-and-Verify (R&V) system that will ultimately be sent to the LINAC exactly match the values initially calculated by the Treatment Planning System (TPS). While performing the second-check, a large portion of the physicists’ time is spent navigating and arranging display windows to locate and compare the relevant numerical values (MLC position, collimator rotation, field size, MU, etc.). Here, we describe the development of a software tool that guides the physicist by aggregating and succinctly displaying machine parameter data relevant to themore » physics second-check process. Methods: A data retrieval software tool was developed using Python to aggregate data and generate a list of machine parameters that are commonly verified during the physics second-check process. This software tool imported values from (i) the TPS RT Plan DICOM file and (ii) the MOSAIQ (R&V) Structured Query Language (SQL) database. The machine parameters aggregated for this study included: MLC positions, X&Y jaw positions, collimator rotation, gantry rotation, MU, dose rate, wedges and accessories, cumulative dose, energy, machine name, couch angle, and more. Results: A GUI interface was developed to generate a side-by-side display of the aggregated machine parameter values for each field, and presented to the physicist for direct visual comparison. This software tool was tested for 3D conformal, static IMRT, sliding window IMRT, and VMAT treatment plans. Conclusion: This software tool facilitated the data collection process needed in order for the physicist to conduct a second-check, thus yielding an optimized second-check workflow that was both more user friendly and time-efficient. Utilizing this software tool, the physicist was able to spend less time searching through the TPS PDF plan document and the R&V system and focus the second-check efforts on assessing the patient-specific plan-quality.« less

  8. Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.

    PubMed

    MacMartin, Douglas G; Tziperman, Eli

    2014-09-08

    Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.

  9. Recommendations for a Culturally Relevant Internet-Based Tool to Promote Physical Activity Among Overweight Young African American Women, Alabama, 2010–2011

    PubMed Central

    Joseph, Rodney P.; Cherrington, Andrea; Cuffee, Yendelela; Knight, BernNadette; Lewis, Dwight; Allison, Jeroan J.

    2014-01-01

    Introduction Innovative approaches are needed to promote physical activity among young adult overweight and obese African American women. We sought to describe key elements that African American women desire in a culturally relevant Internet-based tool to promote physical activity among overweight and obese young adult African American women. Methods A mixed-method approach combining nominal group technique and traditional focus groups was used to elicit recommendations for the development of an Internet-based physical activity promotion tool. Participants, ages 19 to 30 years, were enrolled in a major university. Nominal group technique sessions were conducted to identify themes viewed as key features for inclusion in a culturally relevant Internet-based tool. Confirmatory focus groups were conducted to verify and elicit more in-depth information on the themes. Results Twenty-nine women participated in nominal group (n = 13) and traditional focus group sessions (n = 16). Features that emerged to be included in a culturally relevant Internet-based physical activity promotion tool were personalized website pages, diverse body images on websites and in videos, motivational stories about physical activity and women similar to themselves in size and body shape, tips on hair care maintenance during physical activity, and online social support through social media (eg, Facebook, Twitter). Conclusion Incorporating existing social media tools and motivational stories from young adult African American women in Internet-based tools may increase the feasibility, acceptability, and success of Internet-based physical activity programs in this high-risk, understudied population. PMID:24433625

  10. Of trophies and pillars: exploring the terror management functions of short-term and long-term relationship partners.

    PubMed

    Kosloff, Spee; Greenberg, Jeff; Sullivan, Daniel; Weise, David

    2010-08-01

    Prior terror management research shows that mortality salience (MS) motivates both self-esteem striving and worldview bolstering. The present research examined these processes in the context of dating preferences. It was hypothesized that in short-term romantic contexts, MS-induced self-esteem striving motivates interest in dating a physically attractive other, whereas in long-term romantic contexts, MS-induced motives for worldview validation heighten interest in dating a same-religion other. Study 1 showed that in a short-term dating context, MS increased preference for an attractive but religiously dissimilar person, whereas in a long-term dating context, MS increased preference for a religiously similar, less attractive person. Study 2 clarified that MS motivates preference for attractive short-term partners for their self-enhancing properties rather than their potential sexual availability. Study 3 supported the theorized processes, showing that under MS, self-esteem-relevant constructs became spontaneously accessible in short-term dating contexts, whereas worldview-relevant constructs became spontaneously accessible in long-term dating contexts.

  11. Method for extracting relevant electrical parameters from graphene field-effect transistors using a physical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boscá, A., E-mail: alberto.bosca@upm.es; Dpto. de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid 28040; Pedrós, J.

    2015-01-28

    Due to its intrinsic high mobility, graphene has proved to be a suitable material for high-speed electronics, where graphene field-effect transistor (GFET) has shown excellent properties. In this work, we present a method for extracting relevant electrical parameters from GFET devices using a simple electrical characterization and a model fitting. With experimental data from the device output characteristics, the method allows to calculate parameters such as the mobility, the contact resistance, and the fixed charge. Differentiated electron and hole mobilities and direct connection with intrinsic material properties are some of the key aspects of this method. Moreover, the method outputmore » values can be correlated with several issues during key fabrication steps such as the graphene growth and transfer, the lithographic steps, or the metalization processes, providing a flexible tool for quality control in GFET fabrication, as well as a valuable feedback for improving the material-growth process.« less

  12. A systematic policy approach to changing the food system and physical activity environments to prevent obesity.

    PubMed

    Sacks, Gary; Swinburn, Boyd A; Lawrence, Mark A

    2008-06-05

    As obesity prevention becomes an increasing health priority in many countries, including Australia and New Zealand, the challenge that governments are now facing is how to adopt a systematic policy approach to increase healthy eating and regular physical activity. This article sets out a structure for systematically identifying areas for obesity prevention policy action across the food system and full range of physical activity environments. Areas amenable to policy intervention can be systematically identified by considering policy opportunities for each level of governance (local, state, national, international and organisational) in each sector of the food system (primary production, food processing, distribution, marketing, retail, catering and food service) and each sector that influences physical activity environments (infrastructure and planning, education, employment, transport, sport and recreation). Analysis grids are used to illustrate, in a structured fashion, the broad array of areas amenable to legal and regulatory intervention across all levels of governance and all relevant sectors. In the Australian context, potential regulatory policy intervention areas are widespread throughout the food system, e.g., land-use zoning (primary production within local government), food safety (food processing within state government), food labelling (retail within national government). Policy areas for influencing physical activity are predominantly local and state government responsibilities including, for example, walking and cycling environments (infrastructure and planning sector) and physical activity education in schools (education sector). The analysis structure presented in this article provides a tool to systematically identify policy gaps, barriers and opportunities for obesity prevention, as part of the process of developing and implementing a comprehensive obesity prevention strategy. It also serves to highlight the need for a coordinated approach to policy development and implementation across all levels of government in order to ensure complementary policy action.

  13. Where glaciers meet water: Subaqueous melt and its relevance to glaciers in various settings

    NASA Astrophysics Data System (ADS)

    Truffer, Martin; Motyka, Roman J.

    2016-03-01

    Glacier change is ubiquitous, but the fastest and largest magnitude changes occur in glaciers that terminate in water. This includes the most rapidly retreating glaciers, and also several advancing ones, often in similar regional climate settings. Furthermore, water-terminating glaciers show a large range in morphology, particularly when ice flow into ocean water is compared to that into freshwater lakes. All water-terminating glaciers share the ability to lose significant volume of ice at the front, either through mechanical calving or direct melt from the water in contact. Here we present a review of the subaqueous melt process. We discuss the relevant physics and show how different physical settings can lead to different glacial responses. We find that subaqueous melt can be an important trigger for glacier change. It can explain many of the morphological differences, such as the existence or absence of floating tongues. Subaqueous melting is influenced by glacial runoff, which is largely a function of atmospheric conditions. This shows a tight connection between atmosphere, oceans and lakes, and glaciers. Subaqueous melt rates, even if shown to be large, should always be discussed in the context of ice supply to the glacier front to assess its overall relevance. We find that melt is often relevant to explain seasonal evolution, can be instrumental in shifting a glacier into a different dynamical regime, and often forms a large part of a glacier's mass loss. On the other hand, in some cases, melt is a small component of mass loss and does not significantly affect glacier response.

  14. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    PubMed Central

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in line with observations in Mendelian disease. PMID:21249183

  15. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  16. Mujeres Fuertes y Corazones Saludables: adaptation of the StrongWomen -healthy hearts program for rural Latinas using an intervention mapping approach.

    PubMed

    Perry, Cynthia K; McCalmont, Jean C; Ward, Judy P; Menelas, Hannah-Dulya K; Jackson, Christie; De Witz, Jazmyne R; Solanki, Emma; Seguin, Rebecca A

    2017-12-28

    To describe our use of intervention mapping as a systematic method to adapt an evidence-based physical activity and nutrition program to reflect the needs of rural Latinas. An intervention mapping process involving six steps guided the adaptation of an evidence based physical activity and nutrition program, using a community-based participatory research approach. We partnered with a community advisory board of rural Latinas throughout the adaptation process. A needs assessment and logic models were used to ascertain which program was the best fit for adaptation. Once identified, we collaborated with one of the developers of the original program (StrongWomen - Healthy Hearts) during the adaptation process. First, essential theoretical methods and program elements were identified, and additional elements were added or adapted. Next, we reviewed and made changes to reflect the community and cultural context of the practical applications, intervention strategies, program curriculum, materials, and participant information. Finally, we planned for the implementation and evaluation of the adapted program, Mujeres Fuertes y Corazones Saludables, within the context of the rural community. A pilot study will be conducted with overweight, sedentary, middle-aged, Spanish-speaking Latinas. Outcome measures will assess change in weight, physical fitness, physical activity, and nutrition behavior. The intervention mapping process was feasible and provided a systematic approach to balance fit and fidelity in the adaptation of an evidence-based program. Collaboration with community members ensured that the components of the curriculum that were adapted were culturally appropriate and relevant within the local community context.

  17. Interplay of Physical Mechanisms and Biofilm Processes: Review of Microfluidic Methods

    PubMed Central

    Karimi, A.; Karig, D.; Kumar, A.; Ardekani, A. M.

    2014-01-01

    Bacteria in natural and artificial environments often reside in self-organized, integrated communities known as biofilms. Biofilms are highly structured entities consisting of bacterial cells embedded in a matrix of self-produced extracellular polymeric substances (EPS). The EPS matrix acts like a biological ‘glue’ enabling microbes to adhere to and colonize a wide range of surfaces. Once integrated into biofilms, bacterial cells can withstand various forms of stress such as antibiotics, hydrodynamic shear and other environmental challenges. Because of this, biofilms of pathogenic bacteria can be a significant health hazard often leading to recurrent infections. Biofilms can also lead to clogging and material degradation; on the other hand they are an integral part of various environmental processes such as carbon sequestration and nitrogen cycles. There are several determinants of biofilm morphology and dynamics, including the genotypic and phenotypic states of constituent cells and various environmental conditions. Here, we present an overview of the role of relevant physical processes in biofilm formation, including propulsion mechanisms, hydrodynamic effects, and transport of quorum sensing signals. We also provide a survey of microfluidic techniques utilized to unravel the associated physical mechanisms. Further, we discuss the future research areas for exploring new ways to extend the scope of the microfluidic approach in biofilm studies. PMID:25385289

  18. A domain-decomposed multi-model plasma simulation of collisionless magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Datta, I. A. M.; Shumlak, U.; Ho, A.; Miller, S. T.

    2017-10-01

    Collisionless magnetic reconnection is a process relevant to many areas of plasma physics in which energy stored in magnetic fields within highly conductive plasmas is rapidly converted into kinetic and thermal energy. Both in natural phenomena such as solar flares and terrestrial aurora as well as in magnetic confinement fusion experiments, the reconnection process is observed on timescales much shorter than those predicted by a resistive MHD model. As a result, this topic is an active area of research in which plasma models with varying fidelity have been tested in order to understand the proper physics explaining the reconnection process. In this research, a hybrid multi-model simulation employing the Hall-MHD and two-fluid plasma models on a decomposed domain is used to study this problem. The simulation is set up using the WARPXM code developed at the University of Washington, which uses a discontinuous Galerkin Runge-Kutta finite element algorithm and implements boundary conditions between models in the domain to couple their variable sets. The goal of the current work is to determine the parameter regimes most appropriate for each model to maintain sufficient physical fidelity over the whole domain while minimizing computational expense. This work is supported by a Grant from US AFOSR.

  19. Manual Physical Therapists' Use of Biopsychosocial History Taking in the Management of Patients with Back or Neck Pain in Clinical Practice

    PubMed Central

    Oostendorp, Rob A. B.; Elvers, Hans; Mikołajewska, Emilia; Laekeman, Marjan; van Trijffel, Emiel; Samwel, Han; Duquet, William

    2015-01-01

    Objective. To develop and evaluate process indicators relevant to biopsychosocial history taking in patients with chronic back and neck pain. Methods. The SCEBS method, covering the Somatic, Psychological (Cognition, Emotion, and Behavior), and Social dimensions of chronic pain, was used to evaluate biopsychosocial history taking by manual physical therapists (MPTs). In Phase I, process indicators were developed while in Phase II indicators were tested in practice. Results. Literature-based recommendations were transformed into 51 process indicators. Twenty MTPs contributed 108 patient audio recordings. History taking was excellent (98.3%) for the Somatic dimension, very inadequate for Cognition (43.1%) and Behavior (38.3%), weak (27.8%) for Emotion, and low (18.2%) for the Social dimension. MTPs estimated their coverage of the Somatic dimension as excellent (100%), as adequate for Cognition, Emotion, and Behavior (60.1%), and as very inadequate for the Social dimension (39.8%). Conclusion. MTPs perform screening for musculoskeletal pain mainly through the use of somatic dimension of (chronic) pain. Psychological and social dimensions of chronic pain were inadequately covered by MPTs. Furthermore, a substantial discrepancy between actual and self-estimated use of biopsychosocial history taking was noted. We strongly recommend full implementation of the SCEBS method in educational programs in manual physical therapy. PMID:25945358

  20. Objectification of people and thoughts: An attitude change perspective.

    PubMed

    Briñol, Pablo; Petty, Richard E; Belding, Jennifer

    2017-06-01

    Many objectification phenomena can be understood from a mind-body dualism perspective in which the more people focus on their bodies, the less they focus on their minds. Instead of viewing mind and body in opposition to each other, we advocate for a more reciprocal view in which mind and body work in conjunction. Consistent with an integrated mind-body approach, we begin our review by describing research on embodied persuasion revealing that focusing on our own body can reduce but also increase thinking (elaboration), as well as affecting the use of thoughts in forming evaluations (validation). Next, we extend our integrated view to a new domain and suggest that physical objects can influence thoughts and that one's thoughts can also be objectified. The first portion of this section focuses on research on enclothed cognition revealing that wearing physical objects can operate through the same processes of elaboration (increasing and decreasing thinking) and validation (increasing and decreasing thought usage) as the body. The second portion reveals that thoughts can be understood and treated as if they were physical objects affecting evaluative processes by influencing elaboration and validation processes. The final section provides some practical guidance relevant to campaigns designed to reduce the objectification of women and the infrahumanization of stigmatized groups. © 2017 The British Psychological Society.

  1. The Bioactivity of Cartilage Extracellular Matrix in Articular Cartilage Regeneration

    PubMed Central

    Sutherland, Amanda J.; Converse, Gabriel L.; Hopkins, Richard A.; Detamore, Michael S.

    2014-01-01

    Cartilage matrix is a particularly promising acellular material for cartilage regeneration given the evidence supporting its chondroinductive character. The ‘raw materials’ of cartilage matrix can serve as building blocks and signals for enhanced tissue regeneration. These matrices can be created by chemical or physical methods: physical methods disrupt cellular membranes and nuclei but may not fully remove all cell components and DNA, whereas chemical methods when combined with physical methods are particularly effective in fully decellularizing such materials. Critical endpoints include no detectable residual DNA or immunogenic antigens. It is important to first delineate between the sources of the cartilage matrix, i.e., derived from matrix produced by cells in vitro or from native tissue, and then to further characterize the cartilage matrix based on the processing method, i.e., decellularization or devitalization. With these distinctions, four types of cartilage matrices exist: decellularized native cartilage (DCC), devitalized native cartilage (DVC), decellularized cell derived matrix (DCCM), and devitalized cell derived matrix (DVCM). Delivery of cartilage matrix may be a straightforward approach without the need for additional cells or growth factors. Without additional biological additives, cartilage matrix may be attractive from a regulatory and commercialization standpoint. Source and delivery method are important considerations for clinical translation. Only one currently marketed cartilage matrix medical device is decellularized, although trends in filed patents suggest additional decellularized products may be available in the future. To choose the most relevant source and processing for cartilage matrix, qualifying testing needs to include targeting the desired application, optimizing delivery of the material, identify relevant FDA regulations, assess availability of raw materials, and immunogenic properties of the product. PMID:25044502

  2. Surface studies relevant to silicon carbide chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Stinespring, C. D.; Wormhoudt, J. C.

    1989-01-01

    Reactions of C2H4, C3H8, and CH4 on the Si(111) surface and C2H4 on the Si(100) surface were investigated for surface temperatures in the range of 1062-1495 K. Results led to the identification of the reaction products, a characterization of the solid-state transport process, a determination of the nucleation mechanism and growth kinetics, and an assessment of orientation effects. Based on these results and on the modeling studies of Stinespring and Wormhoudt (1988) on the associated gas phase chemistry, a physical model for the two-step beta-SiC CVD process is proposed.

  3. How is post-industrial decline associated with the geography of physical activity? Evidence from the Health Survey for England.

    PubMed

    Rind, Esther; Jones, Andy; Southall, Humphrey

    2014-03-01

    In recent decades, the prevalence of physical activity has declined considerably in many developed countries, which has been related to rising levels of obesity and several weight-related medical conditions, such as coronary heart disease. There is evidence that areas exhibiting particularly low levels of physical activity have undergone a strong transition away from employment in physically demanding occupations. It is proposed that such processes of deindustrialisation may be causally linked to unexplained geographical disparities in physical activity. This study investigates how geographical variations in deindustrialisation are associated with current levels of physical activity across different activity domains and relevant macro-economic time periods in England. The analysis includes data on 27,414 adults from the Health Survey for England 2006 and 2008 who reported total, occupational, domestic, recreational and walking activity. Based on employment change in industries associated with heavy manual work, a local measurement of industrial decline was developed, covering the period 1841-2001. We applied a multilevel modelling approach to study associations between industrial decline and physical activity. Results indicate that the process of deindustrialisation appears to be associated with patterns of physical activity and that this is independent of household income. The effects observed were generally similar for men and women. However, the nature of the association differed across areas, time periods and employment types; in particular, residents of districts characterised by a history of manufacturing and mining employment had increased odds of reporting low activity levels. We conclude that post-industrial change may be a factor in explaining present-day variations in physical activity, emphasising the plausible impact of inherited cultures and regional identities on health related behaviours. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Tactical physical preparation: the case for a movement-based approach.

    PubMed

    Kechijian, Doug; Rush, Stephen

    2012-01-01

    Progressive injury prevention and physical preparation programs are needed in military special operations to optimize mission success and Operator quality of life and longevity. While physical risk is inherent in Special Operations, non-traumatic injuries resulting from overuse, poor biomechanics, and arbitrary exercise selection can be alleviated with proper medical care and patient education. An integrated approach to physical readiness that recognizes the continuity between rehabilitation and performance training is advocated to ensure that physiological adaptations do not come at the expense of orthopedic health or movement proficiency. Movement quality should be regularly evaluated and enforced throughout the training process to minimize preventable injuries and avoid undermining previous rehabilitative care. While fitness and proper movement are not substitutes for Operator specific tasks, they are foundational to many tactically-relevant skills. In light of how much is at stake, sports medicine care in the military, especially special operations, should parallel that which is practiced in professional and collegiate athletics. 2012.

  5. Vision and change in introductory physics for the life sciences

    NASA Astrophysics Data System (ADS)

    Mochrie, S. G. J.

    2016-07-01

    Since 2010, our physics department has offered a re-imagined calculus-based introductory physics sequence for the life sciences. These courses include a selection of biologically and medically relevant topics that we believe are more meaningful to undergraduate premedical and biological science students than those found in a traditional course. In this paper, we highlight new aspects of the first-semester course, and present a comparison of student evaluations of this course versus a more traditional one. We also present the effect on student perception of the relevance of physics to biology and medicine after having taken this course.

  6. Clinically Relevant Physical Benefits of Exercise Interventions in Breast Cancer Survivors.

    PubMed

    Kirkham, Amy A; Bland, Kelcey A; Sayyari, Sarah; Campbell, Kristin L; Davis, Margot K

    2016-02-01

    Evidence is currently limited for the effect of exercise on breast cancer clinical outcomes. However, several of the reported physical benefits of exercise, including peak oxygen consumption, functional capacity, muscle strength and lean mass, cardiovascular risk factors, and bone health, have established associations with disability, cardiovascular disease risk, morbidity, and mortality. This review will summarize the clinically relevant physical benefits of exercise interventions in breast cancer survivors and discuss recommendations for achieving these benefits. It will also describe potential differences in intervention delivery that may impact outcomes and, lastly, describe current physical activity guidelines for cancer survivors.

  7. How an interacting many-body system tunnels through a potential barrier to open space

    PubMed Central

    Lode, Axel U.J.; Streltsov, Alexej I.; Sakmann, Kaspar; Alon, Ofir E.; Cederbaum, Lorenz S.

    2012-01-01

    The tunneling process in a many-body system is a phenomenon which lies at the very heart of quantum mechanics. It appears in nature in the form of α-decay, fusion and fission in nuclear physics, and photoassociation and photodissociation in biology and chemistry. A detailed theoretical description of the decay process in these systems is a very cumbersome problem, either because of very complicated or even unknown interparticle interactions or due to a large number of constituent particles. In this work, we theoretically study the phenomenon of quantum many-body tunneling in a transparent and controllable physical system, an ultracold atomic gas. We analyze a full, numerically exact many-body solution of the Schrödinger equation of a one-dimensional system with repulsive interactions tunneling to open space. We show how the emitted particles dissociate or fragment from the trapped and coherent source of bosons: The overall many-particle decay process is a quantum interference of single-particle tunneling processes emerging from sources with different particle numbers taking place simultaneously. The close relation to atom lasers and ionization processes allows us to unveil the great relevance of many-body correlations between the emitted and trapped fractions of the wave function in the respective processes. PMID:22869703

  8. Neural evidence reveals the rapid effects of reward history on selective attention.

    PubMed

    MacLean, Mary H; Giesbrecht, Barry

    2015-05-05

    Selective attention is often framed as being primarily driven by two factors: task-relevance and physical salience. However, factors like selection and reward history, which are neither currently task-relevant nor physically salient, can reliably and persistently influence visual selective attention. The current study investigated the nature of the persistent effects of irrelevant, physically non-salient, reward-associated features. These features affected one of the earliest reliable neural indicators of visual selective attention in humans, the P1 event-related potential, measured one week after the reward associations were learned. However, the effects of reward history were moderated by current task demands. The modulation of visually evoked activity supports the hypothesis that reward history influences the innate salience of reward associated features, such that even when no longer relevant, nor physically salient, these features have a rapid, persistent, and robust effect on early visual selective attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Can the History of Science Contribute to Modelling in Physics Teaching?

    NASA Astrophysics Data System (ADS)

    Machado, Juliana; Braga, Marco Antônio Barbosa

    2016-10-01

    A characterization of the modelling process in science is proposed for science education, based on Mario Bunge's ideas about the construction of models in science. Galileo's Dialogues are analysed as a potentially fruitful starting point to implement strategies aimed at modelling in the classroom in the light of that proposal. It is argued that a modelling process for science education can be conceived as the evolution from phenomenological approaches towards more representational ones, emphasizing the role of abstraction and idealization in model construction. The shift of reference of theories—from sensible objects to conceptual objects—and the black-box models construction process, which are both explicitly presented features in Galileo's Dialogues, are indicated as highly relevant aspects for modelling in science education.

  10. Graphene nanoribbons: Relevance of etching process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused bymore » more or larger localized states at the edges of the ashed device compared to the RIE defined device.« less

  11. Permafrost on Mars: distribution, formation, and geological role

    NASA Technical Reports Server (NTRS)

    Nummedal, D.

    1984-01-01

    The morphology of channels, valleys, chaotic and fretted terrains and many smaller features on Mars is consistent with the hypothesis that localized deterioration of thick layers of ice-rich permafrost was a dominant geologic process on the Martian surface. Such ground ice deterioration gave rise to large-scale mass movement, including sliding, slumping and sediment gravity flowage, perhaps also catastropic floods. In contrast to Earth, such mass movement processes on Mars lack effective competition from erosion by surface runoff. Therefore, Martian features due to mass movement grew to reach immense size without being greatly modified by secondary erosional processes. The Viking Mission to Mars in 1976 provided adequate measurements of the relevant physical parameters to constrain models for Martian permafrost.

  12. CLINICAL APPROACH TO THE DIAGNOSTIC EVALUATION OF HERDITARY AND ACQUIRED NEUROMUSCULAR DISEASES

    PubMed Central

    McDonald, Craig M.

    2012-01-01

    SYNOPSIS In the context of a neuromuscular disease diagnostic evaluation, the clinician still must be able to obtain a relevant patient and family history and perform focused general, musculoskeletal, neurologic and functional physical examinations to direct further diagnostic evaluations. Laboratory studies for hereditary neuromuscular diseases include relevant molecular genetic studies. The EMG and nerve conduction studies remain an extension of the physical examination and help to guide further diagnostic studies such as molecular genetic studies, and muscle and nerve biopsies. All diagnostic information needs to be interpreted not in isolation, but within the context of relevant historical information, family history, physical examination findings, and laboratory data, electrophysiologic findings, pathologic findings, and molecular genetic findings if obtained. PMID:22938875

  13. Making data matter: Voxel printing for the digital fabrication of data across scales and domains.

    PubMed

    Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri

    2018-05-01

    We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.

  14. A physically based connection between fractional calculus and fractal geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butera, Salvatore, E-mail: sg.butera@gmail.com; Di Paola, Mario, E-mail: mario.dipaola@unipa.it

    2014-11-15

    We show a relation between fractional calculus and fractals, based only on physical and geometrical considerations. The link has been found in the physical origins of the power-laws, ruling the evolution of many natural phenomena, whose long memory and hereditary properties are mathematically modelled by differential operators of non integer order. Dealing with the relevant example of a viscous fluid seeping through a fractal shaped porous medium, we show that, once a physical phenomenon or process takes place on an underlying fractal geometry, then a power-law naturally comes up in ruling its evolution, whose order is related to the anomalousmore » dimension of such geometry, as well as to the model used to describe the physics involved. By linearizing the non linear dependence of the response of the system at hand to a proper forcing action then, exploiting the Boltzmann superposition principle, a fractional differential equation is found, describing the dynamics of the system itself. The order of such equation is again related to the anomalous dimension of the underlying geometry.« less

  15. Aristotelian Physics in the Context of Teaching Science: A Historical-Philosophical Approach

    NASA Astrophysics Data System (ADS)

    Lombardi, Olimpia

    Nowadays in the community of researchers there is a practically unanimous consensus about the relevance of the history of science to the educational process. In this context, Aristotelian physics was rediscovered and reassessed for didactic purposes. But unfortunately, it is very often presented in a rather fragmentary and oversimplified way that distorts the true meaning of Aristotelian concepts. Facing this problem, the purpose of the present paper is to point out some blunders that originate in the partial reading of Aristotle's work. Particularly, it intends to contribute to the following points: (i) to warn against a hurried identification of pre-scientific notions and Aristotelian physical concepts; (ii) to promote an epistemologically not naïve and historiographically not anachronic interpretation of Aristotle's work on physics, both in the theoretical and in the methodological aspects; (iii) to warn against the interpretative confusion that arises from projecting the conceptual frame of contemporary science on Aristotelian physics, ignoring Aristotle's natural philosophy as a whole; (iv) to show the need of understanding the metaphysical foundations of the Aristotelian system; (v) to promote a return to the reading of the original texts.

  16. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale, process-based approach evaluates whether a commonly used restoration strategy creates geomorphic heterogeneity at scales relevant to fish diversity and microhabitat utilization, an understanding that will improve the efficiency and success of future restoration projects.

  17. Ultrafast Phenomena XIV

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  18. Treatment of Fourth Class Midshipmen: Hazing and Its Impact on Academic and Military Performance; and Psychological and Physical Health

    DTIC Science & Technology

    2005-06-01

    the candidates are treated with indifference by both male and female members of the tribe. The process culminates when the base of the boy’s penis ...imbedded in the tribe’s religion. Puberty rites are very relevant when discussing indoctrination or initiation. Tribes such as the Apache...mentioned. When a boy reached puberty , he was often sent by himself, or in a group, to fast, pray and perform initiate ceremonies. During this time he

  19. Single and double photoemission and generalizations

    NASA Astrophysics Data System (ADS)

    Pavlyukh, Yaroslav

    2016-03-01

    A unified diagrammatic treatment of single and double electron photoemission currents is presented. The irreducible lesser density-density response function is the starting point of these derivations. Diagrams for higher order processes in which several electrons are observed in coincidence can likewise be obtained. For physically relevant situations, in which the photoemission cross-section can be written as the Fermi Golden rule, the diagrams from the nonequilibrium Green's function approach can be put in direct correspondence with the diagrams of the scattering theory.

  20. Classical and Ablative Richtmyer-Meshkov Instability and Other ICF-Relevant Plasma Flows Diagnosed With Monochromatic X-Ray Imaging

    DTIC Science & Technology

    2007-08-01

    5] Our experiments on the 3 kJ Nike KrF laser at NRL [6] seek detailed understanding of laser plasma interactions and the physical processes...Research Laboratory (NRL). It has been first used in our ICF-related hydrodynamic experiments on the NRL’s Nike KrF laser [17], and later implemented...as implemented on Nike . In Section 3 we present some results of our hydrodynamic experiments, which have been made possible by this diagnostics. In

  1. Preformulation considerations for controlled release dosage forms. Part I. Selecting candidates.

    PubMed

    Chrzanowski, Frank

    2008-01-01

    The physical-chemical properties of interest for controlled release (CR) dosage form development presented are based on the author's experience. Part I addresses selection of the final form based on a logical progression of physical-chemical properties evaluation of candidate forms and elimination of forms with undesirable properties from further evaluation in order to simplify final form selection. Several candidate forms which could include salt, free base or acid, polymorphic and amorphic forms of a new chemical entity (NCE) or existing drug substance (DS) are prepared and evaluated for critical properties in a scheme relevant to manufacturing processes, predictive of problems, requiring small amounts of test materials and simple analytical tools. A stability indicating assay is not needed to initiate the evaluation. This process is applicable to CR and immediate release (IR) dosage form development. The critical properties evaluated are melting, crystallinity, solubilities in water, 0.1 N HCl, and SIF, hygrodymamics, i.e., moisture sorption and loss at extremes of RH, and LOD at typical wet granulation drying conditions, and processability, i.e., corrosivity, and filming and/or sticking upon compression.

  2. Heavy baryons as polarimeters at colliders

    DOE PAGES

    Galanti, Mario; Giammanco, Andrea; Grossman, Yuval; ...

    2015-11-10

    In new-physics processes that produce b or c jets, a measurement of the initial b or c-quark polarization could provide crucial information about the structure of the new physics. In the heavy-quark limit, the b and c-quark polarizations are preserved in the lightest baryons they hadronize into, Lambda(b) and Lambda(c), respectively. We revisit the prediction for the polarization retention after the hadronization process and extend it to the case of transverse polarization. We show how ATLAS and CMS can measure the b-quark polarization using semileptonic Lambda(b) decays, and the c-quark polarization using Lambda(+)(c) -> pK(-)pi(+) decays. For calibrating both measurementsmore » we suggest to use t (t) over bar samples in which these polarizations can be measured with precision of order 10% using 100thfb(-1) of data in Run 2 of the LHC. Measurements of the transverse polarization in QCD events at ATLAS, CMS and LHCb are motivated as well. The proposed measurements give access to nonperturbative QCD parameters relevant to the dynamics of the hadronization process.« less

  3. Astrophysical Flows

    NASA Astrophysics Data System (ADS)

    Pringle, James E.; King, Andrew

    2003-07-01

    Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This new graduate textbook provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.• Provides coverage of the fundamental fluid dynamical processes an astrophysical theorist needs to know • Introduces new mathematical theory and techniques in a straightforward manner • Includes end-of-chapter problems to illustrate the course and introduce additional ideas

  4. Quantum Tunnelling to the Origin and Evolution of Life

    PubMed Central

    Trixler, Frank

    2013-01-01

    Quantum tunnelling is a phenomenon which becomes relevant at the nanoscale and below. It is a paradox from the classical point of view as it enables elementary particles and atoms to permeate an energetic barrier without the need for sufficient energy to overcome it. Tunnelling might seem to be an exotic process only important for special physical effects and applications such as the Tunnel Diode, Scanning Tunnelling Microscopy (electron tunnelling) or Near-field Optical Microscopy operating in photon tunnelling mode. However, this review demonstrates that tunnelling can do far more, being of vital importance for life: physical and chemical processes which are crucial in theories about the origin and evolution of life can be traced directly back to the effects of quantum tunnelling. These processes include the chemical evolution in stellar interiors and within the cold interstellar medium, prebiotic chemistry in the atmosphere and subsurface of planetary bodies, planetary habitability via insolation and geothermal heat as well as the function of biomolecular nanomachines. This review shows that quantum tunnelling has many highly important implications to the field of molecular and biological evolution, prebiotic chemistry and astrobiology. PMID:24039543

  5. Of Huge Mice and Tiny Elephants: Exploring the Relationship Between Inhibitory Processes and Preschool Math Skills

    PubMed Central

    Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia

    2016-01-01

    The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition. PMID:26779057

  6. Of Huge Mice and Tiny Elephants: Exploring the Relationship Between Inhibitory Processes and Preschool Math Skills.

    PubMed

    Merkley, Rebecca; Thompson, Jodie; Scerif, Gaia

    2015-01-01

    The cognitive mechanisms underpinning the well-established relationship between inhibitory control and early maths skills remain unclear. We hypothesized that a specific aspect of inhibitory control drives its association with distinct math skills in very young children: the ability to ignore stimulus dimensions that are in conflict with task-relevant representations. We used an Animal Size Stroop task in which 3- to 6-year-olds were required to ignore the physical size of animal pictures to compare their real-life dimensions. In Experiment 1 (N = 58), performance on this task correlated with standardized early mathematics achievement. In Experiment 2 (N = 48), performance on the Animal Size Stroop task related to the accuracy of magnitude comparison, specifically for trials on which the physical size of dot arrays was incongruent with their numerosity. This highlights a process-oriented relationship between interference control and resolving conflict between discrete and continuous quantity, and in turn calls for further detailed empirical investigations of whether, how and why inhibitory processes matter to emerging numerical cognition.

  7. Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Forouzan, Mehdi M.; Chao, Chien-Wei; Bustamante, Danilo; Mazzeo, Brian A.; Wheeler, Dean R.

    2016-04-01

    The fabrication process of Li-ion battery electrodes plays a prominent role in the microstructure and corresponding cell performance. Here, a mesoscale particle dynamics simulation is developed to relate the manufacturing process of a cathode containing Toda NCM-523 active material to physical and structural properties of the dried film. Particle interactions are simulated with shifted-force Lennard-Jones and granular Hertzian functions. LAMMPS, a freely available particle simulator, is used to generate particle trajectories and resulting predicted properties. To make simulations of the full film thickness feasible, the carbon binder domain (CBD) is approximated with μm-scale particles, each representing about 1000 carbon black particles and associated binder. Metrics for model parameterization and validation are measured experimentally and include the following: slurry viscosity, elasticity of the dried film, shrinkage ratio during drying, volume fraction of phases, slurry and dried film densities, and microstructure cross sections. Simulation results are in substantial agreement with experiment, showing that the simulations reasonably reproduce the relevant physics of particle arrangement during fabrication.

  8. COHERENT constraints to conventional and exotic neutrino physics

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2018-02-01

    The process of neutral-current coherent elastic neutrino-nucleus scattering, consistent with the Standard Model (SM) expectation, has been recently measured by the COHERENT experiment at the Spallation Neutron Source. On the basis of the observed signal and our nuclear calculations for the relevant Cs and I isotopes, the extracted constraints on both conventional and exotic neutrino physics are updated. The present study concentrates on various SM extensions involving vector and tensor nonstandard interactions as well as neutrino electromagnetic properties, with an emphasis on the neutrino magnetic moment and the neutrino charge radius. Furthermore, models addressing a light sterile neutrino state and scenarios with new propagator fields—such as vector Z' and scalar bosons—are examined, and the corresponding regions excluded by the COHERENT experiment are presented.

  9. Photodisintegration reactions for nuclear astrophysics studies at ELI-NP

    NASA Astrophysics Data System (ADS)

    Matei, C.; Balabanski, D.; Filipescu, D. M.; Tesileanu, O.

    2018-01-01

    Extreme Light Infrastructure - Nuclear Physics facility will come online in Bucharest-Magurele, Romania, in 2018 and will deliver high intensity laser and brilliant gamma beams. We present the physics cases and instruments proposed at ELI-NP to measure capture reactions by means of the inverse photodisintegration reaction. We propose to study the 16O(γ, α)12C reaction using a Time Projection Chamber detector with electronic readout. Several other reactions, such as 24Mg(γ, α)20Ne and reactions on heavy nuclei relevant in the p-process, are central to stellar evolution and will be investigated with a proposed Silicon Strip Detector array and a 4π neutron detector. The status of the experimental facilities and first-day experiments will be presented in detail.

  10. Adaptive Memory: Evaluating Alternative Forms of Fitness-Relevant Processing in the Survival Processing Paradigm

    PubMed Central

    Sandry, Joshua; Trafimow, David; Marks, Michael J.; Rice, Stephen

    2013-01-01

    Memory may have evolved to preserve information processed in terms of its fitness-relevance. Based on the assumption that the human mind comprises different fitness-relevant adaptive mechanisms contributing to survival and reproductive success, we compared alternative fitness-relevant processing scenarios with survival processing. Participants rated words for relevancy to fitness-relevant and control conditions followed by a delay and surprise recall test (Experiment 1a). Participants recalled more words processed for their relevance to a survival situation. We replicated these findings in an online study (Experiment 2) and a study using revised fitness-relevant scenarios (Experiment 3). Across all experiments, we did not find a mnemonic benefit for alternative fitness-relevant processing scenarios, questioning assumptions associated with an evolutionary account of remembering. Based on these results, fitness-relevance seems to be too wide-ranging of a construct to account for the memory findings associated with survival processing. We propose that memory may be hierarchically sensitive to fitness-relevant processing instructions. We encourage future researchers to investigate the underlying mechanisms responsible for survival processing effects and work toward developing a taxonomy of adaptive memory. PMID:23585858

  11. Back to the Future: Consistency-Based Trajectory Tracking

    NASA Technical Reports Server (NTRS)

    Kurien, James; Nayak, P. Pandurand; Norvig, Peter (Technical Monitor)

    2000-01-01

    Given a model of a physical process and a sequence of commands and observations received over time, the task of an autonomous controller is to determine the likely states of the process and the actions required to move the process to a desired configuration. We introduce a representation and algorithms for incrementally generating approximate belief states for a restricted but relevant class of partially observable Markov decision processes with very large state spaces. The algorithm presented incrementally generates, rather than revises, an approximate belief state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit past assumptions about the process' evolution when the belief state is ruled out. The system presented has been implemented and results on examples from the domain of spacecraft control are presented.

  12. An overview and process evaluation of TeleWalk: a telephone-based counseling intervention to encourage walking in older adults.

    PubMed

    Kolt, Gregory S; Oliver, Melody; Schofield, Grant M; Kerse, Ngaire; Garrett, Nick; Latham, Nancy K

    2006-09-01

    Despite the benefits associated with a physically active lifestyle, many older adults are insufficiently active to achieve health gain, and also exhibit decreased activity levels with age. Insufficient physical activity in this population is associated with increased morbidity, mortality and demand on health care services and expenditure. There is a clear need for effective intervention to encourage physical activity in older adults. The aim of this paper is to describe the development and participant evaluation of a randomized controlled trial of TeleWalk, a telephone-based motivational counseling intervention to encourage physical activity in adults aged 65 years and older. Participants (N = 186, mean age 74 +/- 6 years) were recruited through their General Practitioner (primary care physician) and randomized to either receive eight telephone counseling sessions and related printed materials over 3 months (intervention group) or participate in outcome assessments only (control group). Intervention group participants were mailed an anonymous evaluation questionnaire on intervention completion. A high response rate was achieved (70%). All respondents (100%) agreed or strongly agreed that a good overall level of service and support was provided, and that the counselor was understanding and supportive. Nearly all respondents agreed or strongly agreed that the service was professional, the counselor advice was helpful and motivating and the information provided was relevant (97, 95 and 89%, respectively). Most (87%) agreed or strongly agreed that the telephone calls encouraged them to be physically active. Among the participants who received printed material, most agreed or strongly agreed that these encouraged them to become or remain active. Findings from this evaluation can be used to inform such interventions and ensure their relevance to community-dwelling older adults.

  13. Utility of stages of change construct in the planning of physical activity interventions among playgroup mothers.

    PubMed

    Jones, Carlie; Jancey, Jonine; Howat, Peter; Dhaliwal, Satvinder; Burns, Sharyn; McManus, Alexandra; Hills, Andrew P; Anderson, Annie S

    2013-07-29

    The objective of this research was to assess the physical activity levels among a unique cohort of Western Australian (WA) mothers with young children who attend a WA Playgroup. Associated factors were also investigated, including self-efficacy for physical activity, social support for exercise, relevant socio-demographic correlates, as well as the stages of change construct within the Transtheoretical Model (TTM). 421 women completed a questionnaire assessing physical activity behaviours. Of these, 368 participants completed the relevant physical activity evaluation items. 82.5% and 17.5% of the sample were classified as active and inactive, respectively. Associations between physical activity status and exercise stage of change were found. Additional associations were established for partner support and self-efficacy for physical activity. The majority of the sample was classified as active. Despite the high percentage of active participants, this study confirms the usefulness of the stages of change measure in that it can be utilised by health promotion practitioners to report physical activity behaviour and develop appropriate intervention strategies among a time poor and hard to reach population. Specifically the results are relevant to mothers in over 16,000 WA families who are involved with Playgroup WA programs. Interventions aimed at improving physical activity levels in mothers with young children should also consider the need to improve self-efficacy and social support.

  14. Examining Physical and Sexual Abuse Histories as Correlates of Suicide Risk Among Firefighters.

    PubMed

    Hom, Melanie A; Matheny, Natalie L; Stanley, Ian H; Rogers, Megan L; Cougle, Jesse R; Joiner, Thomas E

    2017-12-01

    Research indicates that physical and sexual abuse are associated with increased suicide risk; however, these associations have not been investigated among firefighters-an occupational group that has been shown to be at elevated suicide risk. This study examined whether physical and sexual abuse histories are associated with (a) career suicide ideation, plans, and attempts; and (b) current suicide risk (controlling for theoretically relevant symptoms) in this occupational group. A sample of 929 U.S. firefighters completed self-report surveys that assessed lifetime history of physical and sexual abuse; career suicide ideation, plans, and attempts; current suicide risk; and theoretically relevant symptoms. Logistic regression analyses revealed that individuals who reported a history of physical abuse were significantly more likely to report career suicide ideation, adjusted odds ratio [AOR] = 6.12, plans, AOR = 13.05, and attempts, AOR = 23.81, than those who did not. A similar pattern of findings emerged for individuals who reported a sexual abuse history, AORs = 7.83, 18.35, and 29.58 respectively. Linear regression analyses revealed that physical and sexual abuse histories each significantly predicted current suicide risk, even after controlling for theoretically relevant symptoms and demographics, pr 2 = .07 and .06, respectively. Firefighters with a history of physical and/or sexual abuse may be at increased risk for suicidal thoughts and behaviors. A history of physical and sexual abuse were each significantly correlated with current suicide risk in this population, even after accounting for the effects of theoretically relevant symptoms. Thus, when conceptualizing suicide risk among firefighters, factors not necessarily related to one's firefighter career should be considered. Copyright © 2017 International Society for Traumatic Stress Studies.

  15. Stochastic processes on multiple scales: averaging, decimation and beyond

    NASA Astrophysics Data System (ADS)

    Bo, Stefano; Celani, Antonio

    The recent advances in handling microscopic systems are increasingly motivating stochastic modeling in a large number of physical, chemical and biological phenomena. Relevant processes often take place on widely separated time scales. In order to simplify the description, one usually focuses on the slower degrees of freedom and only the average effect of the fast ones is retained. It is then fundamental to eliminate such fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. We shall present how this can be done by either decimating or coarse-graining the fast processes and discuss applications to physical, biological and chemical examples. With the same tools we will address the fate of functionals of the stochastic trajectories (such as residence times, counting statistics, fluxes, entropy production, etc.) upon elimination of the fast variables. In general, for functionals, such elimination can present additional difficulties. In some cases, it is not possible to express them in terms of the effective trajectories on the slow degrees of freedom but additional details of the fast processes must be retained. We will focus on such cases and show how naive procedures can lead to inconsistent results.

  16. The "Finding Physics" Project: Recognizing and Exploring Physics outside the Classroom

    ERIC Educational Resources Information Center

    Beck, Judith; Perkins, James

    2016-01-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives.…

  17. Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior

    PubMed Central

    Hall, Peter A.; Fong, Geoffrey T.

    2015-01-01

    Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196

  18. Prolonged grief symptoms related to loss of physical functioning: examining unique associations with medical service utilization.

    PubMed

    Holland, Jason M; Graves, Stacy; Klingspon, Kara L; Rozalski, Vincent

    2016-01-01

    Prolonged grief, a severe and chronic form of grieving most commonly studied in the context of bereavement, may have relevance to losses associated with chronic illness (e.g. grief related to loss of functioning or loss of a planned future). The purpose of the present study is to examine the unique associations between prolonged grief symptoms and service utilization patterns. An online self-report assessment battery was administered among a sample of 275 older adults with at least one chronic illness that caused significant physical impairment. Even after statistically controlling for relevant physical health (e.g. severity of physical limitations, somatic symptoms, number of chronic illnesses) and psychosocial variables (e.g. social support, depression/anxiety), more severe prolonged grief symptoms were associated with a greater number of emergency room visits, overnight stays in the hospital and total nights in the hospital. These findings highlight the importance of screening for prolonged grief symptomatology with older individuals with a debilitating chronic illness. Recent evidence suggests that prolonged grief may have relevance for losses associated with physical illness. The present study shows that prolonged grief reactions related to physical illness (e.g. grieving the loss of functioning) are uniquely associated with increased hospital-based service utilization. Given the relevance of prolonged grief reactions in this population, practitioners may wish to assess for these symptoms. Future clinical research should focus on developing interventions to target prolonged grief symptoms associated with these losses.

  19. Improvement of Physical Therapist Assessment of Risk of Falls in the Hospital and Discharge Handover Through an Intervention to Modify Clinical Behavior.

    PubMed

    Thomas, Susie; Mackintosh, Shylie

    2016-06-01

    Discharge from the hospital is a high risk transition period for older adults at risk of falls. Guidelines relevant to physical therapists for managing this risk are well documented, but commonly not implemented. This project implemented an intervention to improve physical therapists' adherence to key guideline recommendations for managing risk of falls on discharge from one hospital. A pretest-posttest study design was undertaken and was underpinned by the Theoretical Domains Framework (TDF) to aid in the design of interventions to increase physical therapists' adherence to guideline recommendations and to identify barriers to these interventions. A multifaceted intervention was implemented, including the establishment of a governance committee, education sessions, development of a "pathway" to guide practice, modification of an existing standardized assessment proforma, development of standardized processes and indicators for handover, increasing availability of educational handouts, audit and feedback processes, and allocation of dedicated staffing to oversee falls prevention within the physical therapy department. There were significant improvements in physical therapist behavior leading to key guideline recommendations being met, including: the proportion of patients who were identified to be at risk of falls (6.3% preintervention versus 94.8% postintervention) prior to discharge, an increase in documentation of clinical handover at discharge (68.6% preintervention versus 90.9% postintervention), and improvement in the quality of this documented clinical handover (34.9% of case notes met 5 criteria preintervention versus 92.9% postintervention). The approach was resource intensive and consequently may be difficult to replicate at other sites. A multifaceted intervention underpinned by the TDF, designed to modify physical therapists' behavior to improve adherence to guideline recommendations for managing risk of falls on discharge from one hospital, was successful. © 2016 American Physical Therapy Association.

  20. National policy on physical activity: the development of a policy audit tool.

    PubMed

    Bull, Fiona C; Milton, Karen; Kahlmeier, Sonja

    2014-02-01

    Physical inactivity is a leading risk factor for noncommunicable disease worldwide. Increasing physical activity requires large scale actions and relevant, supportive national policy across multiple sectors. The policy audit tool (PAT) was developed to provide a standardized instrument to assess national policy approaches to physical activity. A draft tool, based on earlier work, was developed and pilot-tested in 7 countries. After several rounds of revisions, the final PAT comprises 27 items and collects information on 1) government structure, 2) development and content of identified key policies across multiple sectors, 3) the experience of policy implementation at both the national and local level, and 4) a summary of the PAT completion process. PAT provides a standardized instrument for assessing progress of national policy on physical activity. Engaging a diverse international group of countries in the development helped ensure PAT has applicability across a wide range of countries and contexts. Experiences from the development of the PAT suggests that undertaking an audit of health enhancing physical activity (HEPA) policy can stimulate greater awareness of current policy opportunities and gaps, promote critical debate across sectors, and provide a catalyst for collaboration on policy level actions. The final tool is available online.

  1. Exploring Possible Selves in a First-Year Physics Foundation Class: Engaging Students by Establishing Relevance

    ERIC Educational Resources Information Center

    Bennett, Dawn; Roberts, Lynne; Creagh, Christine

    2016-01-01

    Students often complain that they cannot see the relevance of what they are being taught in foundation physics classes. While revising and adjusting the curriculum and teaching are important, this study suggests it might also be useful to help students view their learning in relation to their future career aspirations. This paper reports on a…

  2. Process and implementation of participatory ergonomic interventions: a systematic review.

    PubMed

    van Eerd, Dwayne; Cole, Donald; Irvin, Emma; Mahood, Quenby; Keown, Kiera; Theberge, Nancy; Village, Judy; St Vincent, Marie; Cullen, Kim

    2010-10-01

    Participatory ergonomic (PE) interventions may vary in implementation. A systematic review was done to determine the evidence regarding context, barriers and facilitators to the implementation of participatory ergonomic interventions in workplaces. In total, 17 electronic databases were searched. Data on PE process and implementation were extracted from documents meeting content and quality criteria and synthesised. The search yielded 2151 references. Of these, 190 documents were relevant and 52 met content and quality criteria. Different ergonomic teams were described in the documents as were the type, duration and content of ergonomic training. PE interventions tended to focus on physical and work process changes and report positive impacts. Resources, programme support, ergonomic training, organisational training and communication were the most often noted facilitators or barriers. Successful PE interventions require the right people to be involved, appropriate ergonomic training and clear responsibilities. Addressing key facilitators and barriers such as programme support, resources, and communication is paramount. STATEMENT OF RELEVANCE: A recent systematic review has suggested that PE has some effect on reducing symptoms, lost days of work and claims. Systematic reviews of effectiveness provide practitioners with the desire to implement but do not provide clear information about how. This article reviews the literature on process and implementation of PE.

  3. The STRATAFORM Project: U.S. Geological Survey geotechnical studies

    USGS Publications Warehouse

    Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth

    2001-01-01

    This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts of the project.

  4. Assisted dying in liberalised jurisdictions and the role of psychiatry: a clinician's view.

    PubMed

    Macleod, Sandy

    2012-10-01

    Assisted dying is a contentious and topical issue. Mental disorder is a relevant influence on requests of hastened death. The psychiatry of dying is not a prominent component in the assessment of euthanasia and physician-assisted suicide (PAS) in jurisdictions with liberalised assisted dying laws. The literature on the assessment processes, with particular reference to mental status, involved in euthanasia requests is considered. An experienced palliative medicine specialist and psychiatrist selectively reviewed the recent literature published about the mental health issues involved in euthanasia and PAS. Assessments of competency, sustained wish to die prematurely, depressive disorder, demoralisation and 'unbearable suffering' in the terminally ill are clinically uncertain and difficult tasks. There is a growing psychiatric and psychological literature on the mental status of the terminally ill. As yet psychiatry does not have the expertise to 'select' those whose wish for hastened death is rational, humane and 'healthy'. Rarely in those societies with liberalised assisted dying laws are psychiatrists involved in the decision-making for individuals requesting early death. This role is fulfilled by non-specialists. There remain significant concerns about the accuracy of psychiatric assessment in the terminally ill. Mental processes are more relevant influences on a hastened wish to die than are the physical symptoms of terminal malignant disease. Psychiatric review of persons requesting euthanasia is relevant. It is not obligatory or emphasised in those legislations allowing assisted dying. Psychiatry needs to play a greater role in the assessment processes of euthanasia and PAS.

  5. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers

    NASA Astrophysics Data System (ADS)

    Brotton, Stephen J.; Kaiser, Ralf I.

    2013-05-01

    We describe an original apparatus comprising of an acoustic levitator enclosed within a pressure-compatible process chamber. To characterize any chemical and physical modifications of the levitated particle, the chamber is interfaced to complimentary, high-sensitivity Raman (4390-170 cm-1), and Fourier transform infrared (FTIR) (10 000-500 cm-1) spectroscopic probes. The temperature of the levitated particle can be accurately controlled by heating using a carbon dioxide laser emitting at 10.6 μm. The advantages of levitating a small particle combined with the two spectroscopic probes, process chamber, and infrared laser heating makes novel experiments possible relevant to the fields of, for example, planetary science, astrobiology, and combustion chemistry. We demonstrate that this apparatus is well suited to study the dehydration of a variety of particles including minerals and biological samples; and offers the possibility of investigating combustion processes involving micrometer-sized particles such as graphite. Furthermore, we show that the FTIR spectrometer enables the study of chemical reactions on the surfaces of porous samples and scientifically and technologically relevant, micrometer-thick levitated sheets. The FTIR spectrometer can also be used to investigate non-resonant and resonant scattering from small, irregularly-shaped particles across the mid-infrared range from 2.5 μm to 25 μm, which is relevant to scattering from interplanetary dust and biological, micrometer-sized samples but cannot be accurately modelled using Mie theory.

  6. 20 CFR 404.1560 - When we will consider your vocational background.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. (b) Past relevant work. We will first compare our assessment of your residual functional capacity with the physical and mental demands of your past relevant work. (1) Definition of past relevant work. Past relevant work is work that you have done within the past 15 years, that was substantial gainful...

  7. Soil frost-induced soil moisture precipitation feedback and effects on atmospheric states

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-04-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. As it is a thermal phenomenon, its characteristics are highly dependent on climatic factors. The impact of the currently observed warming, which is projected to persist during the coming decades due to anthropogenic CO2 input, certainly has effects for the vast permafrost areas of the high northern latitudes. The quantification of these effects, however, is scientifically still an open question. This is partly due to the complexity of the system, where several feedbacks are interacting between land and atmosphere, sometimes counterbalancing each other. Moreover, until recently, many global circulation models (GCMs) and Earth system models (ESMs) lacked the sufficient representation of permafrost physics in their land surface schemes. Within the European Union FP7 project PAGE21, the land surface scheme JSBACH of the Max-Planck-Institute for Meteorology ESM (MPI-ESM) has been equipped with the representation of relevant physical processes for permafrost studies. These processes include the effects of freezing and thawing of soil water for both energy and water cycles, thermal properties depending on soil water and ice contents, and soil moisture movement being influenced by the presence of soil ice. In the present study, it will be analysed how these permafrost relevant processes impact large-scale hydrology and climate over northern hemisphere high latitude land areas. For this analysis, the atmosphere-land part of MPI-ESM, ECHAM6-JSBACH, is driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without the newly implemented permafrost processes. Results show a large improvement in the simulated discharge. On one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction of soil moisture leads to a positive land atmosphere feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil moisture - atmosphere feedbacks have previously not been in the research focus over the high latitudes. These results point out the importance of high latitude physical processes at the land surface for the regional climate.

  8. Multimethod Prediction of Physical Parent-Child Aggression Risk in Expectant Mothers and Fathers with Social Information Processing Theory

    PubMed Central

    Rodriguez, Christina M.; Smith, Tamika L.; Silvia, Paul J.

    2015-01-01

    The Social Information Processing (SIP) model postulates that parents undergo a series of stages in implementing physical discipline that can escalate into physical child abuse. The current study utilized a multimethod approach to investigate whether SIP factors can predict risk of parent-child aggression (PCA) in a diverse sample of expectant mothers and fathers. SIP factors of PCA attitudes, negative child attributions, reactivity, and empathy were considered as potential predictors of PCA risk; additionally, analyses considered whether personal history of PCA predicted participants’ own PCA risk through its influence on their attitudes and attributions. Findings indicate that, for both mothers and fathers, history influenced attitudes but not attributions in predicting PCA risk, and attitudes and attributions predicted PCA risk; empathy and reactivity predicted negative child attributions for expectant mothers, but only reactivity significantly predicted attributions for expectant fathers. Path models for expectant mothers and fathers were remarkably similar. Overall, the findings provide support for major aspects of the SIP model. Continued work is needed in studying the progression of these factors across time for both mothers and fathers as well as the inclusion of other relevant ecological factors to the SIP model. PMID:26631420

  9. "Kinect-ing" with clinicians: a knowledge translation resource to support decision making about video game use in rehabilitation.

    PubMed

    Levac, Danielle; Espy, Deborah; Fox, Emily; Pradhan, Sujata; Deutsch, Judith E

    2015-03-01

    Microsoft's Kinect for Xbox 360 virtual reality (VR) video games are promising rehabilitation options because they involve motivating, full-body movement practice. However, these games were designed for recreational use, which creates challenges for clinical implementation. Busy clinicians require decision-making support to inform game selection and implementation that address individual therapeutic goals. This article describes the development and preliminary evaluation of a knowledge translation (KT) resource to support clinical decision making about selection and use of Kinect games in physical therapy. The knowledge-to-action framework guided the development of the Kinecting With Clinicians (KWiC) resource. Five physical therapists with VR and video game expertise analyzed the Kinect Adventure games. A consensus-building method was used to arrive at categories to organize clinically relevant attributes guiding game selection and game play. The process and results of an exploratory usability evaluation of the KWiC resource by clinicians through interviews and focus groups at 4 clinical sites is described. Subsequent steps in the evaluation and KT process are proposed, including making the KWiC resource Web-based and evaluating the utility of the online resource in clinical practice. © 2015 American Physical Therapy Association.

  10. Uncertainties in s-process nucleosynthesis in massive stars determined by Monte Carlo variations

    NASA Astrophysics Data System (ADS)

    Nishimura, N.; Hirschi, R.; Rauscher, T.; St. J. Murphy, A.; Cescutti, G.

    2017-08-01

    The s-process in massive stars produces the weak component of the s-process (nuclei up to A ˜ 90), in amounts that match solar abundances. For heavier isotopes, such as barium, production through neutron capture is significantly enhanced in very metal-poor stars with fast rotation. However, detailed theoretical predictions for the resulting final s-process abundances have important uncertainties caused both by the underlying uncertainties in the nuclear physics (principally neutron-capture reaction and β-decay rates) as well as by the stellar evolution modelling. In this work, we investigated the impact of nuclear-physics uncertainties relevant to the s-process in massive stars. Using a Monte Carlo based approach, we performed extensive nuclear reaction network calculations that include newly evaluated upper and lower limits for the individual temperature-dependent reaction rates. We found that most of the uncertainty in the final abundances is caused by uncertainties in the neutron-capture rates, while β-decay rate uncertainties affect only a few nuclei near s-process branchings. The s-process in rotating metal-poor stars shows quantitatively different uncertainties and key reactions, although the qualitative characteristics are similar. We confirmed that our results do not significantly change at different metallicities for fast rotating massive stars in the very low metallicity regime. We highlight which of the identified key reactions are realistic candidates for improved measurement by future experiments.

  11. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  12. Structural evolution of a granular medium during simultaneous penetration

    NASA Astrophysics Data System (ADS)

    González-Gutiérrez, Jorge; Carreón, Yojana J. P.; Moctezuma, R. E.

    2018-01-01

    Typically, fluidized beds are granular systems composed of solid particles through which a fluid flows. They are relevant to a wide variety of disciplines such as physics, chemistry, engineering, among others. Generally, the fluidized beds are characterized by different flow regimes such as particulate, bubbling, slugging, turbulent, fast fluidization, and pneumatic conveying. Here, we report the experimental study of the structural evolution of a granular system due to simultaneous penetration of intruders in the presence of an upward airflow. We found that the granular medium evolves from the static state to the turbulent regime showing the coexistence of three regions in different flow regimes. Interestingly, the cooperative dynamic of intruders correlate with the formation of such regions. As a non-invasive method, we use lacunarity and fractal dimension to quantitatively describe the patterns arising within the system during the different stages of the penetration process. Finally, we found that our results would allow us to relate the evolution of the visual patterns appearing in the process with different physical properties of the system.

  13. Impact of the Test Device on the Behavior of the Acoustic Emission Signals: Contribution of the Numerical Modeling to Signal Processing

    NASA Astrophysics Data System (ADS)

    Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie

    2018-01-01

    In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.

  14. Scaling and Systems Considerations in Pulsed Inductive Thrusters

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    Performance scaling in pulsed inductive thrusters is discussed in the context of previous experimental studies and modeling results. Two processes, propellant ionization and acceleration, are interconnected where overall thruster performance and operation are concerned, but they are separated here to gain physical insight into each process and arrive at quantitative criteria that should be met to address or mitigate inherent inductive thruster difficulties. The effects of preionization in lowering the discharge energy requirements relative to a case where no preionization is employed, and in influencing the location of the initial current sheet, are described. The relevant performance scaling parameters for the acceleration stage are reviewed, emphasizing their physical importance and the numerical values required for efficient acceleration. The scaling parameters are then related to the design of the pulsed power train providing current to the acceleration stage. The impact of various choices in pulsed power train and circuit topology selection are reviewed, paying special attention to how these choices mitigate or exacerbate switching, lifetime, and power consumption issues.

  15. Physics, Techniques and Review of Neuroradiological Applications of Diffusion Kurtosis Imaging (DKI).

    PubMed

    Marrale, M; Collura, G; Brai, M; Toschi, N; Midiri, F; La Tona, G; Lo Casto, A; Gagliardo, C

    2016-12-01

    In recent years many papers about diagnostic applications of diffusion tensor imaging (DTI) have been published. This is because DTI allows to evaluate in vivo and in a non-invasive way the process of diffusion of water molecules in biological tissues. However, the simplified description of the diffusion process assumed in DTI does not permit to completely map the complex underlying cellular components and structures, which hinder and restrict the diffusion of water molecules. These limitations can be partially overcome by means of diffusion kurtosis imaging (DKI). The aim of this paper is the description of the theory of DKI, a new topic of growing interest in radiology. DKI is a higher order diffusion model that is a straightforward extension of the DTI model. Here, we analyze the physics underlying this method, we report our MRI acquisition protocol with the preprocessing pipeline used and the DKI parametric maps obtained on a 1.5 T scanner, and we review the most relevant clinical applications of this technique in various neurological diseases.

  16. Δ L =3 processes: Proton decay and the LHC

    NASA Astrophysics Data System (ADS)

    Fonseca, Renato M.; Hirsch, Martin; Srivastava, Rahul

    2018-04-01

    We discuss lepton number violation in three units. From an effective field theory point of view, Δ L =3 processes can only arise from dimension 9 or higher operators. These operators also violate baryon number, hence many of them will induce proton decay. Given the high dimensionality of these operators, in order to have a proton half-life in the observable range, the new physics associated to Δ L =3 processes should be at a scale as low as 1 TeV. This opens up the possibility of searching for such processes not only in proton decay experiments but also at the LHC. In this work we analyze the relevant d =9 , 11, 13 operators which violate lepton number in three units. We then construct one simple concrete model with interesting low- and high-energy phenomenology.

  17. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    NASA Astrophysics Data System (ADS)

    Adrich, Przemysław

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  18. Kinetics in the real world: linking molecules, processes, and systems.

    PubMed

    Kohse-Höinghaus, Katharina; Troe, Jürgen; Grabow, Jens-Uwe; Olzmann, Matthias; Friedrichs, Gernot; Hungenberg, Klaus-Dieter

    2018-04-25

    Unravelling elementary steps, reaction pathways, and kinetic mechanisms is key to understanding the behaviour of many real-world chemical systems that span from the troposphere or even interstellar media to engines and process reactors. Recent work in chemical kinetics provides detailed information on the reactive changes occurring in chemical systems, often on the atomic or molecular scale. The optimisation of practical processes, for instance in combustion, catalysis, battery technology, polymerisation, and nanoparticle production, can profit from a sound knowledge of the underlying fundamental chemical kinetics. Reaction mechanisms can combine information gained from theory and experiments to enable the predictive simulation and optimisation of the crucial process variables and influences on the system's behaviour that may be exploited for both monitoring and control. Chemical kinetics, as one of the pillars of Physical Chemistry, thus contributes importantly to understanding and describing natural environments and technical processes and is becoming increasingly relevant for interactions in and with the real world.

  19. The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.

    PubMed

    Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin

    2012-08-30

    Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Accelerating research into bio-based FDCA-polyesters by using small scale parallel film reactors.

    PubMed

    Gruter, Gert-Jan M; Sipos, Laszlo; Adrianus Dam, Matheus

    2012-02-01

    High Throughput experimentation has been well established as a tool in early stage catalyst development and catalyst and process scale-up today. One of the more challenging areas of catalytic research is polymer catalysis. The main difference with most non-polymer catalytic conversions is the fact that the product is not a well defined molecule and the catalytic performance cannot be easily expressed only in terms of catalyst activity and selectivity. In polymerization reactions, polymer chains are formed that can have various lengths (resulting in a molecular weight distribution rather than a defined molecular weight), that can have different compositions (when random or block co-polymers are produced), that can have cross-linking (often significantly affecting physical properties), that can have different endgroups (often affecting subsequent processing steps) and several other variations. In addition, for polyolefins, mass and heat transfer, oxygen and moisture sensitivity, stereoregularity and many other intrinsic features make relevant high throughput screening in this field an incredible challenge. For polycondensation reactions performed in the melt often the viscosity becomes already high at modest molecular weights, which greatly influences mass transfer of the condensation product (often water or methanol). When reactions become mass transfer limited, catalyst performance comparison is often no longer relevant. This however does not mean that relevant experiments for these application areas cannot be performed on small scale. Relevant catalyst screening experiments for polycondensation reactions can be performed in very efficient small scale parallel equipment. Both transesterification and polycondensation as well as post condensation through solid-stating in parallel equipment have been developed. Next to polymer synthesis, polymer characterization also needs to be accelerated without making concessions to quality in order to draw relevant conclusions.

  1. Selective attention to affective value alters how the brain processes taste stimuli.

    PubMed

    Grabenhorst, Fabian; Rolls, Edmund T

    2008-02-01

    How does selective attention to affect influence sensory processing? In an fMRI investigation, when subjects were instructed to remember and rate the pleasantness of a taste stimulus, 0.1 M monosodium glutamate, activations were greater in the medial orbitofrontal and pregenual cingulate cortex than when subjects were instructed to remember and rate the intensity of the taste. When the subjects were instructed to remember and rate the intensity, activations were greater in the insular taste cortex. An interaction analysis showed that this dissociation of taste processing, depending on whether attention to pleasantness or intensity was relevant, was highly significant (P < 0.0002). Thus, depending on the context in which tastes are presented and whether affect is relevant, the brain responds to a taste differently. These findings show that, when attention is paid to affective value, the brain systems engaged to represent the sensory stimulus of taste are different from those engaged when attention is directed to the physical properties of a stimulus such as its intensity. This differential biasing of brain regions engaged in processing a sensory stimulus, depending on whether the cognitive demand is for affect-related vs. more sensory-related processing, may be an important aspect of cognition and attention. This has many implications for understanding the effects not only of taste but also of other sensory stimuli.

  2. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: control of structure and functional properties

    NASA Astrophysics Data System (ADS)

    D'Addato, Sergio; Chiara Spadaro, Maria

    2018-03-01

    Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.

  3. The APIS service : a tool for accessing value-added HST planetary auroral observations over 1997-2015

    NASA Astrophysics Data System (ADS)

    Lamy, L.; Henry, F.; Prangé, R.; Le Sidaner, P.

    2015-10-01

    The Auroral Planetary Imaging and Spectroscopy (APIS) service http://obspm.fr/apis/ provides an open and interactive access to processed auroral observations of the outer planets and their satellites. Such observations are of interest for a wide community at the interface between planetology, magnetospheric and heliospheric physics. APIS consists of (i) a high level database, built from planetary auroral observations acquired by the Hubble Space Telescope (HST) since 1997 with its mostly used Far-Ultraviolet spectro- imagers, (ii) a dedicated search interface aimed at browsing efficiently this database through relevant conditional search criteria (Figure 1) and (iii) the ability to interactively work with the data online through plotting tools developed by the Virtual Observatory (VO) community, such as Aladin and Specview. This service is VO compliant and can therefore also been queried by external search tools of the VO community. The diversity of available data and the capability to sort them out by relevant physical criteria shall in particular facilitate statistical studies, on long-term scales and/or multi-instrumental multispectral combined analysis [1,2]. We will present the updated capabilities of APIS with several examples. Several tutorials are available online.

  4. Birth, life and death of an Anticyclonic eddy in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Torres, R.; Sallee, J. B.; Schwarz, J.; Hosegood, P. J.; Taylor, J. R.; Adams, K.; Bachman, S.; Stamper, M. A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is a climatically relevant frontal structure of global importance, which regularly develops instabilities growing into meanders, and eventually evolving into long-lived anticyclonic eddies. These eddies exhibit sustained primary productivity that can last several months fuelled by local resupply of nutrients. During April-May 2015 we conducted an intensive field experiment in the Southern Ocean where we sampled and tracked an ACC meander as it developed into an eddy and later vanished some 90 days later. The physical characteristics of the meander and eddy were observed with a combination of high resolution hydrography, ADCP and turbulence observations, in addition to biogeochemical observations of nutrients and phytoplankton. The life and death of the eddy was subsequently tracked through Argo, BIO-Argo Lagrangian profilers and remote sensing. In this presentation we will use observations and ecosystem modelling to discuss the physical processes that sustain the observed high Chlorophyll levels in the eddy and explore how the eddy evolution impacts the rate of nutrient supply and how this translates into the observed changes in chlorophyll. We will discuss the relevance of eddy formation to Chlorophyll and productivity in the region.

  5. Creative Learning Identities

    ERIC Educational Resources Information Center

    Jeffrey, Bob

    2008-01-01

    Making learning relevant involves many aspects of teaching such as attention to levels of maturity, individual inclinations, emotional, physical, aesthetic and cognitive activity and group dynamics. However, making learning relevant is not only a teacher led activity, for learners make activities relevant by the identification of connections with…

  6. Thermodynamic limits set relevant constraints to the soil-plant-atmosphere system and to optimality in terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel; Renner, Maik

    2016-04-01

    The soil-plant-atmosphere system is a complex system that is strongly shaped by interactions between the physical environment and vegetation. This complexity appears to demand equally as complex models to fully capture the dynamics of the coupled system. What we describe here is an alternative approach that is based on thermodynamics and which allows for comparatively simple formulations free of empirical parameters by assuming that the system is so complex that its emergent dynamics are only constrained by the thermodynamics of the system. This approach specifically makes use of the second law of thermodynamics, a fundamental physical law that is typically not being considered in Earth system science. Its relevance to land surface processes is that it fundamentally sets a direction as well as limits to energy conversions and associated rates of mass exchange, but it requires us to formulate land surface processes as thermodynamic processes that are driven by energy conversions. We describe an application of this approach to the surface energy balance partitioning at the diurnal scale. In this application the turbulent heat fluxes of sensible and latent heat are described as the result of a convective heat engine that is driven by solar radiative heating of the surface and that operates at its thermodynamic limit. The predicted fluxes from this approach compare very well to observations at several sites. This suggests that the turbulent exchange fluxes between the surface and the atmosphere operate at their thermodynamic limit, so that thermodynamics imposes a relevant constraint to the land surface-atmosphere system. Yet, thermodynamic limits do not entirely determine the soil-plant-atmosphere system because vegetation affects these limits, for instance by affecting the magnitude of surface heating by absorption of solar radiation in the canopy layer. These effects are likely to make the conditions at the land surface more favorable for photosynthetic activity, which then links this thermodynamic approach to optimality in vegetation. We also contrast this approach to common, semi-empirical approaches of surface-atmosphere exchange and discuss how thermodynamics may set a broader range of transport limitations and optimality in the soil-plant-atmosphere system.

  7. Study of shock waves and related phenomena motivated by astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.

    This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less

  8. Radiative Processes in Jets

    NASA Astrophysics Data System (ADS)

    Vila, Gabriela S.

    Relativistic jets and collimated outflows are ubiquitous phenomena in astrophysical settings, from young stellar objects up to Active Galactic Nuclei. The observed emission from some of these jets can cover the whole electromagnetic spectrum, from radio to gamma-rays. The relevant features of the spectral energy distributions depend on the nature of the source and on the characteristics of the surrounding environment. Here the author reviews the main physical processes that command the interactions between populations of relativistic particles locally accelerated in the jets, with matter, radiation and magnetic fields. Special attention is given to the conditions that lead to the dominance of the different radiative mechanisms. Examples from various types of sources are used to illustrate these effects.

  9. Study of shock waves and related phenomena motivated by astrophysics

    DOE PAGES

    Drake, R. P.; Keiter, P. A.; Kuranz, C. C.; ...

    2016-04-01

    This study discusses the recent research in High-Energy-Density Physics at our Center. Our work in complex hydrodynamics is now focused on mode coupling in the Richtmyer-Meshkov process and on the supersonic Kelvin-Helmholtz instability. These processes are believed to occur in a wide range of astrophysical circumstances. In radiation hydrodynamics, we are studying radiative reverse shocks relevant to cataclysmic variable stars. Our work on magnetized flows seeks to produce magnetized jets and study their interactions. We build the targets for all these experiments, and simulate them using our CRASH code. We also conduct diagnostic research, focused primarily on imaging x-ray spectroscopymore » and its applications to scattering and fluorescence.« less

  10. A numerical investigation of the President's Day storm of February 18-19, 1979

    NASA Technical Reports Server (NTRS)

    Nappi, A. J.; Warner, T. T.

    1983-01-01

    The reported investigation is based on the use of a three-dimensional, primitive equation model. The President's Day storm, formed in the Gulf of Mexico as a massive anticyclone, affected the northern states with record-breaking cold temperatures. Attention is given to the physical processes relevant to storm formation, the forecast model, a description of experiments and model forecasts, and model results. An attempt is made to determine the important dynamic processes at work during the evolution of the storm. The jet streak interactions which occurred in the cyclogenetic environment, the effects of cold air damming, and the formation of a strong mesoscale coastal front are found to be of particular interest.

  11. Policy-Making Theory as an Analytical Framework in Policy Analysis: Implications for Research Design and Professional Advocacy.

    PubMed

    Sheldon, Michael R

    2016-01-01

    Policy studies are a recent addition to the American Physical Therapy Association's Research Agenda and are critical to our understanding of various federal, state, local, and organizational policies on the provision of physical therapist services across the continuum of care. Policy analyses that help to advance the profession's various policy agendas will require relevant theoretical frameworks to be credible. The purpose of this perspective article is to: (1) demonstrate the use of a policy-making theory as an analytical framework in a policy analysis and (2) discuss how sound policy analysis can assist physical therapists in becoming more effective change agents, policy advocates, and partners with other relevant stakeholder groups. An exploratory study of state agency policy responses to address work-related musculoskeletal disorders is provided as a contemporary example to illustrate key points and to demonstrate the importance of selecting a relevant analytical framework based on the context of the policy issue under investigation. © 2016 American Physical Therapy Association.

  12. Do students benefit from drawing productive diagrams themselves while solving introductory physics problems? The case of two electrostatics problems

    NASA Astrophysics Data System (ADS)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    An appropriate diagram is a required element of a solution building process in physics problem solving and it can transform a given problem into a representation that is easier to exploit for solving the problem. A major focus while helping introductory physics students learn problem solving is to help them appreciate that drawing diagrams facilitates problem solving. We conducted an investigation in which two different interventions were implemented during recitation quizzes throughout the semester in a large enrolment, algebra-based introductory physics course. Students were either (1) asked to solve problems in which the diagrams were drawn for them or (2) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed a rubric to score the problem solving performance of students in different intervention groups. We investigated two problems involving electric field and electric force and found that students who drew productive diagrams were more successful problem solvers and that a higher level of relevant detail in a student’s diagram corresponded to a better score. We also conducted think-aloud interviews with nine students who were at the time taking an equivalent introductory algebra-based physics course in order to gain insight into how drawing diagrams affects the problem solving process. These interviews supported some of the interpretations of the quantitative results. We end by discussing instructional implications of the findings.

  13. Designing and testing a classroom curriculum to teach preschoolers about the biology of physical activity: The respiration system as an underlying biological causal mechanism

    NASA Astrophysics Data System (ADS)

    Ewing, Tracy S.

    The present study examined young children's understanding of respiration and oxygen as a source of vital energy underlying physical activity. Specifically, the purpose of the study was to explore whether a coherent biological theory, characterized by an understanding that bodily parts (heart and lungs) and processes (oxygen in respiration) as part of a biological system, can be taught as a foundational concept to reason about physical activity. The effects of a biology-based intervention curriculum designed to teach preschool children about bodily functions as a part of the respiratory system, the role of oxygen as a vital substance and how physical activity acts an energy source were examined. Participants were recruited from three private preschool classrooms (two treatment; 1 control) in Southern California and included a total of 48 four-year-old children (30 treatment; 18 control). Findings from this study suggested that young children could be taught relevant biological concepts about the role of oxygen in respiratory processes. Children who received biology-based intervention curriculum made significant gains in their understanding of the biology of respiration, identification of physical and sedentary activities. In addition these children demonstrated that coherence of conceptual knowledge was correlated with improved accuracy at activity identification and reasoning about the inner workings of the body contributing to endurance. Findings from this study provided evidence to support the benefits of providing age appropriate but complex coherent biological instruction to children in early childhood settings.

  14. Applications of dewetting in micro and nanotechnology.

    PubMed

    Gentili, Denis; Foschi, Giulia; Valle, Francesco; Cavallini, Massimiliano; Biscarini, Fabio

    2012-06-21

    Dewetting is a spontaneous phenomenon where a thin film on a surface ruptures into an ensemble of separated objects, like droplets, stripes, and pillars. Spatial correlations with characteristic distance and object size emerge spontaneously across the whole dewetted area, leading to regular motifs with long-range order. Characteristic length scales depend on film thickness, which is a convenient and robust technological parameter. Dewetting is therefore an attractive paradigm for organizing a material into structures of well-defined micro- or nanometre-size, precisely positioned on a surface, thus avoiding lithographical processes. This tutorial review introduces the reader to the physical-chemical basis of dewetting, shows how the dewetting process can be applied to different functional materials with relevance in technological applications, and highlights the possible strategies to control the length scales of the dewetting process.

  15. Data evaluation, analysis, and scientific study

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1991-01-01

    Extensive work was performed in data analysis and modeling of solar active phenomena. The work consisted in the study of UV data from the Ultraviolet Spectrometer and Polarimeter (UVSP) instrument on board the Solar Maximum Mission satellite. These data were studied in conjunction with X-rays from the Hard X-ray Imaging Spectrometer (HXIS) instrument, and with H-alpha and magnetographic data from ground-based observatories. The processes we studied are the active phenomena which result from the interaction of the solar magnetic fields with the plasma in the outer regions of the solar atmosphere. These processes include some very dynamic processes such as the prominence eruptions and the 'microflares'. Our research aimed at characterizing the following: the observed phenomena, the possible physical models, and the relevance to the chromospheric and coronal heating.

  16. Development of silicon growth techniques from melt with surface heating

    NASA Astrophysics Data System (ADS)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  17. Reframing conceptual physics: Improving relevance to elementary education and sonography majors

    NASA Astrophysics Data System (ADS)

    LaFazia, David Gregory

    This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design principles. The unit is designed to be educative in nature and serves as a model for the reframing of other units. A number of the design principles are highly transdisciplinary in nature and may be applied for reframing instructional units outside of the physics and science disciplines.

  18. Free Electron coherent sources: From microwave to X-rays

    NASA Astrophysics Data System (ADS)

    Dattoli, Giuseppe; Di Palma, Emanuele; Pagnutti, Simonetta; Sabia, Elio

    2018-04-01

    The term Free Electron Laser (FEL) will be used, in this paper, to indicate a wide collection of devices aimed at providing coherent electromagnetic radiation from a beam of "free" electrons, unbound at the atomic or molecular states. This article reviews the similarities that link different sources of coherent radiation across the electromagnetic spectrum from microwaves to X-rays, and compares the analogies with conventional laser sources. We explore developing a point of view that allows a unified analytical treatment of these devices, by the introduction of appropriate global variables (e.g. gain, saturation intensity, inhomogeneous broadening parameters, longitudinal mode coupling strength), yielding a very effective way for the determination of the relevant design parameters. The paper looks also at more speculative aspects of FEL physics, which may address the relevance of quantum effects in the lasing process.

  19. Geomatic Methods for the Analysis of Data in the Earth Sciences: Lecture Notes in Earth Sciences, Vol. 95

    NASA Astrophysics Data System (ADS)

    Pavlis, Nikolaos K.

    Geomatics is a trendy term that has been used in recent years to describe academic departments that teach and research theories, methods, algorithms, and practices used in processing and analyzing data related to the Earth and other planets. Naming trends aside, geomatics could be considered as the mathematical and statistical “toolbox” that allows Earth scientists to extract information about physically relevant parameters from the available data and accompany such information with some measure of its reliability. This book is an attempt to present the mathematical-statistical methods used in data analysis within various disciplines—geodesy, geophysics, photogrammetry and remote sensing—from a unifying perspective that inverse problem formalism permits. At the same time, it allows us to stretch the relevance of statistical methods in achieving an optimal solution.

  20. Cosmic secrets

    NASA Astrophysics Data System (ADS)

    Schommers, W.

    1. The absolute truth. 1.1. Final truth. 1.2. Two important questions. 1.3. Why does the cosmos exist? 1.4. Are the laws of nature independent of the observer's own nature? 1.5. Self0indulgence was dominant. 1.6. Newton's mechanics and its overestimation. 1.7. Scientific realism. 1.8. An important principle: as little outside world as possible. 1.9. Inside world and outside world. 1.10. Principal questions. 1.11. How does science progress? 1.12. Final remarks -- 2. The projection principle. 2.1. The elements of space and time. 2.2. Relationship between matter and space-time. 2.3. Two relevant features. 2.4. Two kinds of "objects". 2.5. Perception processes. 2.6. Inside world and outside world. 2.7. The influence of evolution. 2.8. Information in the picture versus information in basic reality (outside reality). 2.9. Other biological systems. 2.10. How many (geometrical) objects can be in space-time? 2.11. Two types of space-time? 2.12. Summary -- 3. Fictitious realities. 3.1. Conventional quantum theory: critical remarks. 3.2. The projection principle in connection with fictitious realities. 3.3. Distribution of information. 3.4. Basic transformation effects. 3.5. Pictures within projection theory. 3.6. Auxiliary construction. 3.7. Basic laws. 3.8. Extension of conventional quantum theory. 3.9. Only processes are relevant! 3.10. Interactions. 3.11. Distance-independent interactions. 3.12. Arbitrary jumps within (r, t)-space. 3.13.Mach's principle: preliminary remarks. 3.14. Can a lone, elementary object exist in the cosmos? 3.15. The meaning of the potential functions. 3.16. Time. 3.17. Time travel in physics. 3.18. Summary -- 4. Basic reality and levels of reality. 4.1. Hard objects. 4.2. General physical laws. 4.3. States of mind. 4.4. Outside world and basic reality. 4.5. Objective processes. 4.6. Observations. 4.7. No interactions within (r, t)-space. 4.8. The general cannot be deduced from the particular. 4.9. Remarks on the notion "world equation". 4.10. On the anthropic principle. 4.11. Summary -- 5. Cosmological constant and physical reality. 5.1. Introductory remarks. 5.2. The cosmological constant. 5.3. Critical remarks on basic quantum theory. 5.4. Projection theory and the emptying. 5.5. Artificial vacuum effects!? 5.6. On the observation of physically real process. 5.7. Curved spaces. 5.8. Flatness and horizon problem. 5.8. Summary -- 6. Final remarks.

  1. Bi-centenary of successes of Fourier theorem: its power and limitations in optical system designs

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2007-09-01

    We celebrate the two hundred years of successful use of the Fourier theorem in optics. However, there is a great enigma associated with the Fourier transform integral. It is one of the most pervasively productive and useful tool of physics and optics because its foundation is based on the superposition of harmonic functions and yet we have never declared it as a principle of physics for valid reasons. And, yet there are a good number of situations where we pretend it to be equivalent to the superposition principle of physics, creating epistemological problems of enormous magnitude. The purpose of the paper is to elucidate the problems while underscoring the successes and the elegance of the Fourier theorem, which are not explicitly discussed in the literature. We will make our point by taking six major engineering fields of optics and show in each case why it works and under what restricted conditions by bringing in the relevant physics principles. The fields are (i) optical signal processing, (ii) Fourier transform spectrometry, (iii) classical spectrometry of pulsed light, (iv) coherence theory, (v) laser mode locking and (vi) pulse broadening. We underscore that mathematical Fourier frequencies, not being physical frequencies, cannot generate real physical effects on our detectors. Appreciation of this fundamental issue will open up ways to be innovative in many new optical instrument designs. We underscore the importance of always validating our design platforms based on valid physics principles (actual processes undergoing in nature) captured by an appropriate hypothesis based on diverse observations. This paper is a comprehensive view of the power and limitations of Fourier Transform by summarizing a series of SPIE conference papers presented during 2003-2007.

  2. Active Galactic Nuclei at All Wavelengths and from All Angles

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    2017-11-01

    AGN are quite unique astronomical sources emitting over more than 20 orders of magnitude in frequency, with different electromagnetic bands providing windows on different sub-structures and their physics. They come in a large number of flavors only partially related to intrinsic differences. I highlight here the types of sources selected in different bands, the relevant selection effects and biases, and the underlying physical processes. I then look at the "big picture" by describing the most important parameters one needs to describe the variety of AGN classes and by discussing AGN at all frequencies in terms of their sky surface density. I conclude with a look at the most pressing open issues and the main new facilities, which will flood us with new data to tackle them.

  3. Active Galactic Nuclei at all wavelengths and from all angles

    NASA Astrophysics Data System (ADS)

    Padovani, Paolo

    2017-11-01

    AGN are quite unique astronomical sources emitting over more than twenty orders of magnitude in frequency, with different electromagnetic bands providing windows on different sub-structures and their physics. They come in a large number of flavors only partially related to intrinsic differences. I highlight here the types of sources selected in different bands, the relevant selection effects and biases, and the underlying physical processes. I then look at the ``big picture'' by describing the most important parameters one needs to describe the variety of AGN classes and by discussing AGN at all frequencies in terms of their sky surface density. I conclude with a look at the most pressing open issues and the main new facilities, which will flood us with new data to tackle them.

  4. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  5. Thermalization and prethermalization in isolated quantum systems: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Mori, Takashi; Ikeda, Tatsuhiko N.; Kaminishi, Eriko; Ueda, Masahito

    2018-06-01

    The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several remarkable features, which emerge from quantum entanglement and are quite distinct from those in classical systems. Experimentally, well isolated and highly controllable ultracold quantum gases offer an ideal testbed to study the nonequilibrium dynamics in isolated quantum systems, promoting intensive recent theoretical endeavors on this fundamental subject. Besides thermalization, many isolated quantum systems show intriguing behavior in relaxation processes, especially prethermalization. Prethermalization occurs when there is a clear separation of relevant time scales and has several different physical origins depending on individual systems. In this review, we overview theoretical approaches to the problems of thermalization and prethermalization.

  6. Lexical Studies of Filipino Person Descriptors: Adding Personality-Relevant Social and Physical Attributes

    PubMed Central

    Imperio, Shellah Myra; Church, A. Timothy; Katigbak, Marcia S.; Reyes, Jose Alberto S.

    2009-01-01

    Lexical studies have focused on traits. In the Filipino language, we investigated whether additional dimensions can be identified when personality-relevant terms for social roles, statuses, and effects, plus physical attributes, are included. Filipino students (N = 496) rated themselves on 268 such terms, plus 253 markers of trait and evaluative dimensions. We identified 10 dimensions of social and physical attributes—Prominence, Uselessness, Attractiveness, Respectability, Uniqueness, Destructiveness, Presentableness, Strength, Dangerousness, and Charisma. Most of these dimensions did not correspond in a one-to-one manner to Filipino or alternative trait models (Big Five, HEXACO, ML7). However, considerable redundancy was observed between the social and physical attribute dimensions and trait and evaluative dimensions. Thus, social and physical attributes communicate information about personality traits, and vice-versa. PMID:19779603

  7. Associations between positive and negative affect and 12-month physical disorders in a national sample.

    PubMed

    Weiser, Eric B

    2012-06-01

    Associations between positive and negative affect and a range of 12-month physical disorders were investigated in the Midlife Development in the United States Survey, a nationally representative sample of 3,032 adults ages 25-74. These associations were examined, controlling for relevant sociodemographic and psychiatric covariates. High positive affect was associated with decreased risk of physical disorders, whereas high negative affect was associated with increased risk. However, associations between positive affect and physical disorders were partially attenuated following adjustment for concurrent negative affect. Additionally, high affect balance was associated with decreased risk of physical disorders before and after adjustments. These findings underscore the relevance of affective disposition in health status, suggesting that both positive and negative affect may serve as viable health risk parameters.

  8. Systems modelling methodology for the analysis of apoptosis signal transduction and cell death decisions.

    PubMed

    Rehm, Markus; Prehn, Jochen H M

    2013-06-01

    Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Restorative justice as social justice for victims of gendered violence: a standpoint feminist perspective.

    PubMed

    van Wormer, Katherine

    2009-04-01

    This article provides an overview of restorative justice as a process and examines its relevance to women who have been victimized by physical and sexual abuse. The starting point is the justice system with its roots in adversarial, offender-oriented practices of obtaining justice. The widespread dissatisfaction by battered women and rape victims and their advocates with the current system of mandatory law enforcement opens the door for consideration of alternative forms of dealing with domestic violence. Restorative justice strategies, as argued here, have several major advantages. Like social work, these strategies are solution-based rather than problem-based processes, give voice to marginalized people, and focus on healing and reconciliation. Moreover, restorative justice offers an avenue through which the profession of social work can re-establish its historic role in criminal justice. The four models most relevant to women's victimization are victim-offender conferencing, family group conferencing, healing circles, and community reparations. Each model is examined separately from a feminist standpoint. The discussion is informed by insights from the teachings of standpoint feminist theory and social work values, especially social justice.

  10. The Relevance of Interoception in Chronic Tinnitus: Analyzing Interoceptive Sensibility and Accuracy

    PubMed Central

    Lau, Pia; Miesen, Miriam; Wunderlich, Robert; Stein, Alwina; Engell, Alva; Gerlach, Alexander L.; Junghöfer, Markus; Ehring, Thomas

    2015-01-01

    In order to better understand tinnitus and distress associated with tinnitus, psychological variables such as emotional and cognitive processing are a central element in theoretical models of this debilitating condition. Interoception, that is, the perception of internal processes, may be such a psychological factor relevant to tinnitus. Against this background, 20 participants suffering from chronic tinnitus and 20 matched healthy controls were tested with questionnaires, assessing interoceptive sensibility, and participated in two tasks, assessing interoceptive accuracy: the Schandry task, a heartbeat estimation assignment, and a skin conductance fluctuations perception task assessing the participants' ability to perceive phasic increases in sympathetic activation were used. To test stress reactivity, a construct tightly connected to tinnitus onset, we also included a stress induction. No differences between the groups were found for interoceptive accuracy and sensibility. However, the tinnitus group tended to overestimate the occurrence of phasic activation. Loudness of the tinnitus was associated with reduced interoceptive performance under stress. Our results indicate that interoceptive sensibility and accuracy do not play a significant role in tinnitus. However, tinnitus might be associated with a tendency to overestimate physical changes. PMID:26583114

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V.

    Here, a new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX 3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewedmore » with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH 3NH 3PbI 3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2- dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.« less

  12. Effects of food processing on food allergens.

    PubMed

    Sathe, Shridhar K; Sharma, Girdhari M

    2009-08-01

    Food allergies are on the rise in Western countries. With the food allergen labeling requirements in the US and EU, there is an interest in learning how food processing affects food allergens. Numerous foods are processed in different ways at home, in institutional settings, and in industry. Depending on the processing method and the food, partial or complete removal of the offending allergen may be possible as illustrated by reduction of peanut allergen in vitro IgE immunoreactivity upon soaking and blanching treatments. When the allergen is discretely located in a food, one may physically separate and remove it from the food. For example, lye peeling has been reported to produce hypoallergenic peach nectar. Protein denaturation and/or hydrolysis during food processing can be used to produce hypoallergenic products. This paper provides a short overview of basic principles of food processing followed by examples of their effects on food allergen stability. Reviewed literature suggests assessment of processing effects on clinically relevant reactivity of food allergens is warranted.

  13. A Study of Flame Physics and Solid Propellant Rocket Physics

    DTIC Science & Technology

    2007-10-01

    and ellipsoids, and the packing of pellets relevant to igniter modeling. Other topics are the instabilities of smolder waves, premixed flame...instabilities in narrow tubes, and flames supported by a spinning porous plug burner . Much of this work has been reported in the high-quality archival...perchlorate in fuel binder, the combustion of model propellant packs of ellipses and ellipsoids, and the packing of pellets relevant to igniter modeling

  14. Nanostructure symmetry: Relevance for physics and computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupertuis, Marc-André; Oberli, D. Y.; Karlsson, K. F.

    2014-03-31

    We review the research done in recent years in our group on the effects of nanostructure symmetry, and outline its relevance both for nanostructure physics and for computations of their electronic and optical properties. The exemples of C3v and C2v quantum dots are used. A number of surprises and non-trivial aspects are outlined, and a few symmetry-based tools for computing and analysis are shortly presented.

  15. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.

  16. 49 CFR 845.25 - Examination of witnesses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... witnesses. (b) Materiality, relevancy, and competency of witness testimony, exhibits, or physical evidence... inquiry, opportunity shall be given to show materiality, relevancy, or competency of the testimony or...

  17. On the tidal interaction between protoplanets and the primordial solar nebula. II - Self-consistent nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Papaloizou, J.

    1986-01-01

    A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.

  18. Measurement model as a means for studying the process of emotion origination

    NASA Astrophysics Data System (ADS)

    Taymanov, R.; Baksheeva, Iu; Sapozhnikova, K.; Chunovkina, A.

    2016-11-01

    In the last edition of the International Vocabulary of Metrology the concept “measurement” was spread outside the field of physical quantities. This fact makes it relevant to analyze the experience of developing the models of multidimensional quantity measurements. The model of measurements of expected emotions caused by musical and other acoustic impacts, is considered. The model relies upon a hypothesis of a nonlinear conversion of acoustic signals to a neurophysiological reaction giving rise to emotion. Methods for checking this hypothesis as well as experimental results are given.

  19. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  20. Keyword extraction by nonextensivity measure.

    PubMed

    Mehri, Ali; Darooneh, Amir H

    2011-05-01

    The presence of a long-range correlation in the spatial distribution of a relevant word type, in spite of random occurrences of an irrelevant word type, is an important feature of human-written texts. We classify the correlation between the occurrences of words by nonextensive statistical mechanics for the word-ranking process. In particular, we look at the nonextensivity parameter as an alternative metric to measure the spatial correlation in the text, from which the words may be ranked in terms of this measure. Finally, we compare different methods for keyword extraction. © 2011 American Physical Society

  1. Preface: Special Topic on Ions in Water.

    PubMed

    Allen, Heather C; Tobias, Douglas J

    2018-06-14

    This special topic contains a diverse collection of 40 articles that span the vast range of subjects that fall under the heading "Ions in Water," a longstanding mainstay of chemical physics. The investigations reported herein employ state-of-the-art theoretical, computational, and experimental techniques, as well as combinations thereof, to provide new insights into the fundamental aspects of ion solvation and the important roles that ions play in mediating physicochemical processes occurring in solutions and at interfaces in a wide variety of settings relevant to biological, environmental, and technological applications.

  2. Preface: Special Topic on Ions in Water

    NASA Astrophysics Data System (ADS)

    Allen, Heather C.; Tobias, Douglas J.

    2018-06-01

    This special topic contains a diverse collection of 40 articles that span the vast range of subjects that fall under the heading "Ions in Water," a longstanding mainstay of chemical physics. The investigations reported herein employ state-of-the-art theoretical, computational, and experimental techniques, as well as combinations thereof, to provide new insights into the fundamental aspects of ion solvation and the important roles that ions play in mediating physicochemical processes occurring in solutions and at interfaces in a wide variety of settings relevant to biological, environmental, and technological applications.

  3. Estrellas de carbono galácticas en el VVV

    NASA Astrophysics Data System (ADS)

    Merlo, D. C.

    2015-08-01

    One of the characteristics of carbon stars is their variability, which depends on the evolutionary state and mass. Therefore, the study of this property is relevant to explain the physical processes occurring in their atmospheres. The VVV survey provides an excellent opportunity to carry out this kind of analysis, as it allows to have deep infrared multi-epoch photometry in order to build high-quality light-curves. Here we present an implemented method for identifying galactic carbon stars within the coverage area of VVV and the first results obtained.

  4. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    NASA Technical Reports Server (NTRS)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  5. Association of normative beliefs and anger with aggression and antisocial behavior in Russian male juvenile offenders and high school students.

    PubMed

    Sukhodolsky, Denis G; Ruchkin, Vladislav V

    2004-04-01

    Examined the association of anger experience and two types of normative beliefs with physical aggression and nonaggressive antisocial behavior in 361 juvenile offenders and 206 high school students in Russia. All participants were male and ranged in age from 14 to 18 years. Higher frequency of aggressive acts was significantly associated with higher levels of anger and stronger beliefs that physical aggression is an appropriate course of action in conflicts. After statistically controlling for nonaggressive antisocial behavior, the relationship between physical aggression and antisocial beliefs was not significant. Similarly, with physical aggression controlled, nonaggressive antisocial behavior was uniquely associated with approval of deviancy, but not with anger or beliefs legitimizing aggression. Juvenile offenders reported higher levels of anger experience and higher frequency of aggression and antisocial behavior compared to high school students. There were no differences in normative beliefs between these two groups. This specificity of association of social-cognitive and emotion-regulation processes to aggressive and nonaggressive forms of antisocial behavior may be relevant to understanding the mechanisms of cognitive-behavioral therapy for conduct disorder and antisocial behavior.

  6. Transfer entropy in physical systems and the arrow of time

    NASA Astrophysics Data System (ADS)

    Spinney, Richard E.; Lizier, Joseph T.; Prokopenko, Mikhail

    2016-08-01

    Recent developments have cemented the realization that many concepts and quantities in thermodynamics and information theory are shared. In this paper, we consider a highly relevant quantity in information theory and complex systems, the transfer entropy, and explore its thermodynamic role by considering the implications of time reversal upon it. By doing so we highlight the role of information dynamics on the nuanced question of observer perspective within thermodynamics by relating the temporal irreversibility in the information dynamics to the configurational (or spatial) resolution of the thermodynamics. We then highlight its role in perhaps the most enduring paradox in modern physics, the manifestation of a (thermodynamic) arrow of time. We find that for systems that process information such as those undergoing feedback, a robust arrow of time can be formulated by considering both the apparent physical behavior which leads to conventional entropy production and the information dynamics which leads to a quantity we call the information theoretic arrow of time. We also offer an interpretation in terms of optimal encoding of observed physical behavior.

  7. Research Update: Sport and Physical Activity for People with Physical Disabilities.

    ERIC Educational Resources Information Center

    Smith, Ralph W.

    1993-01-01

    Examines research on sport and physical activity for individuals with physical disabilities, focusing on psychosocial characteristics of participants, physiological impacts of participation, and performance enhancement. With the advent of the Americans with Disabilities Act (1990), such research has relevance for all recreation professionals. (SM)

  8. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions and crystal orientation fabric, and comparison with data from continuous flow analysis of chemical impurities. A microstructural characterisation of the analysed core is presented with emphasis on the observed variations in crystal orientation fabric. The relevance of these results for palaeoclimate reconstruction and geophysical applications in ice are discussed.

  9. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia.

    PubMed

    Young, Jared W; Markou, Athina

    2015-09-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Field and remote sensing for findings on the functions and evolutions of deltas

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Valentini, E.

    2013-12-01

    In a rapidly changing environment we realise that traditional knowledge of physical processes (both biotic and a-biotic) is insufficient to adequately deal with societal threats and opportunities particularly in low laying deltas, such changes to environments as a result of urbanization or changes to ecosystems as a result of climate change. Pattern formation and strong bio-morphological interactions are a striking features in deltas: vegetation distribution has been observed to be related with tidal channel network, with wind/wave forces as well as with the urbanization and natural built, but the relationship between the relevant biological, physical and anthropogenic processes are fairly unexplored. Through the combination of spaceborne optical and SAR imagery, we derived both ecological and morphological parameters, to be integrated for a multi-temporal analysis of the dominant processes and trends in a specific delta. Based on inter annual and intra annual time series of fractional abundance from multispectral imagery, the vegetation phenology in urbanized, non urbanized and buffer zones of the Po delta and adjoin wetlands were calculated and the relationship between them and the major physical drivers was studied. The results highlight that over time, the dynamics of different subsystems represents a balance between inputs (forcing agents like climate) and natural responses (related responses like the vegetation evolution) relevant to urbanization. Basically the urbanization is strongly linked with the phenology and spatial patterns of vegetation cover and not with the channel distribution. Agricultural and farmers uses are in fact the urban edges and they didn't changed obviously if seasonal trends are subtracted from the inter-annual ones. Changes in buffer zones if they were closer to urban or agricultural areas were observed different from the adjoining coastal areas. Finally the uncertainties calculation of the Delta system (i.e. subsidence rates or erosion rates) using new monitoring techniques such as satellite remote sensing shows to be a specific added value that could be used for simulations over varying time scales and it should be considered as a potential ';add in' for an integrated management approach that could be exported in major delta (i.e. Mekong).

  11. The role of probabilistic formulations of sediment transport aimed at describing the behavior of soil-mantled hillslopes over geomorphic timescales (Invited)

    NASA Astrophysics Data System (ADS)

    Furbish, D. J.; Roering, J. J.

    2013-12-01

    Recent discussions of local versus nonlocal sediment transport on hillslopes offer a lens for considering uncertainty in formulations of transport rates that are aimed at characterizing patchy, intermittent sediment motions in steeplands. Here we describe a general formulation for transport that is based on a convolution integral of the factors controlling the entrainment and disentrainment of sediment particles on a hillslope. In essence, such a formulation represents a ';flux' version of the Master equation, a general probabilistic (kinematic) formulation of mass conservation. As such, with the relevant physics invoked to represent entrainment and disentrainment, a nonlocal formulation quite happily accommodates local transport (and looks/behaves like a local formulation), as well as nonlocal transport, depending on the characteristic length scale of particle motions relative to the length scale at which the factors controlling particle transport are defined or measured. Nonetheless, nonlocal formulations of the sediment flux have mostly (but not entirely) outpaced experimental and field-based observations needed to inform the theory. At risk is bringing to bear a sophisticated mathematics that is not supported by our uncertain understanding of the processes involved. Experimental and field-based measurements of entrainment rates and particle travel distances are difficult to obtain, notably given the intermittency of many hillslope transport processes and the slow rates of change in hillslope morphology. A ';test' of a specific nonlocal formulation applied to hillslope evolution must therefore in part rest on consistency between measured hillslope configurations and predicted (i.e., modeled) hillslope configurations predicated on the proposed nonlocal formulation, assuming sufficient knowledge of initial and boundary conditions. On the other hand, because of its probabilistic basis, the formulation is in principle well suited to the task of describing transport relevant to geomorphic timescales -- in view of the stochastic nature of the transport processes occurring over these timescales and the uncertainty of our understanding of the physics involved. Moreover, in its basic form, the nonlocal formulation of the sediment flux is such that appropriate physics can be readily embedded within it as we learn more. And, the formulation is space-time averaged in a way that accommodates discontinuous (patchy, intermittent) sediment motions.

  12. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  13. Chapter 4: A policy process and tools for international non-governmental organizations in the health sector using ISPRM as a case in point.

    PubMed

    Reinhardt, Jan D; von Groote, Per M; DeLisa, Joel A; Melvin, John L; Bickenbach, Jerome E; Stucki, Gerold

    2009-09-01

    The politics of international non-governmental organizations (NGOs) such as the International Society of Physical and Rehabilitation Medicine (ISPRM) serve the function of selecting and attaining particular socially valued goals. The selection and attainment of goals as the primary function of political action can be structured along a policy process or cycle comprising the stages of strategic goal setting and planning of strategic pathways, agenda setting, resource mobilization, implementation, evaluation and innovation. At the various stages of this policy process different policy tools or instruments, which can be used to influence citizen and organizational behaviour in the light of defined goals, can be applied. The objective of this paper is to introduce and describe policy tools of potential relevance to ISPRM with regard to different policy functions and stages of the policy process.

  14. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  15. Experimental Replication of an Aeroengine Combustion Instability

    NASA Technical Reports Server (NTRS)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  16. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  17. Unlocking Potentials of Microwaves for Food Safety and Quality

    PubMed Central

    Tang, Juming

    2015-01-01

    Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. PMID:26242920

  18. Unlocking Potentials of Microwaves for Food Safety and Quality.

    PubMed

    Tang, Juming

    2015-08-01

    Microwave is an effective means to deliver energy to food through polymeric package materials, offering potential for developing short-time in-package sterilization and pasteurization processes. The complex physics related to microwave propagation and microwave heating require special attention to the design of process systems and development of thermal processes in compliance with regulatory requirements for food safety. This article describes the basic microwave properties relevant to heating uniformity and system design, and provides a historical overview on the development of microwave-assisted thermal sterilization (MATS) and pasteurization systems in research laboratories and used in food plants. It presents recent activities on the development of 915 MHz single-mode MATS technology, the procedures leading to regulatory acceptance, and sensory results of the processed products. The article discusses needs for further efforts to bridge remaining knowledge gaps and facilitate transfer of academic research to industrial implementation. © 2015 Institute of Food Technologists®

  19. Cortisol rapidly affects amplitudes of heartbeat-evoked brain potentials--implications for the contribution of stress to an altered perception of physical sensations?

    PubMed

    Schulz, André; Strelzyk, Florian; Ferreira de Sá, Diana S; Naumann, Ewald; Vögele, Claus; Schächinger, Hartmut

    2013-11-01

    Little is known about the impact of stress and stress hormones on the processing of visceral-afferent signals. Clinical data suggest that cortisol may lower the threshold for interoceptive stimuli, while a pharmacological administration of cortisol decreases the sensitivity for physical symptoms. To clarify the role of cortisol for the processing of interoceptive signals, we investigated 16 healthy men on two occasions, once during the infusion of 4 mg of cortisol and once during the infusion of a placebo substance. Heartbeat-evoked potentials (HEP; derived from resting EEG and ECG, during open and closed eyes), which are psychophysiological indicators for the cortical processing of cardioceptive signals, were measured over 6-min periods once before, and four times after the infusion (1-7, 11-17, 21-27 and 31-37 min). We found that HEP amplitudes were higher during open than during closed eyes between 1 and 17 min after cortisol infusion. There was no effect of cortisol on heart rate. We conclude that cortisol may rapidly modulate the cortical processing of cardioceptive neural signals. These results may have relevance for the effects of stress on the development and maintenance of psychosomatic symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Sensitivities of marine carbon fluxes to ocean change.

    PubMed

    Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas

    2009-12-08

    Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is approximately 1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial-interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.

  1. On the design and operation of primary settling tanks in state of the art wastewater treatment and water resources recovery.

    PubMed

    Patziger, Miklos; Günthert, Frank Wolfgang; Jardin, Norbert; Kainz, Harald; Londong, Jörg

    2016-11-01

    In state of the art wastewater treatment, primary settling tanks (PSTs) are considered as an integral part of the biological wastewater and sludge treatment process, as well as of the biogas and electric energy production. Consequently they strongly influence the efficiency of the entire wastewater treatment plant. However, in the last decades the inner physical processes of PSTs, largely determining their efficiency, have been poorly addressed. In common practice PSTs are still solely designed and operated based on the surface overflow rate and the hydraulic retention time (HRT) as a black box. The paper shows the results of a comprehensive investigation programme, including 16 PSTs. Their removal efficiency and inner physical processes (like the settling process of primary sludge), internal flow structures within PSTs and their impact on performance were investigated. The results show that: (1) the removal rates of PSTs are generally often underestimated in current design guidelines, (2) the removal rate of different PSTs shows a strongly fluctuating pattern even in the same range of the HRT, and (3) inlet design of PSTs becomes highly relevant in the removal efficiency at rather high surface overflow rates, above 5 m/h, which is the upper design limit of PSTs for dry weather load.

  2. Drama advertisements: moderating effects of self-relevance on the relations among empathy, information processing, and attitudes.

    PubMed

    Chebat, Jean-Charles; Vercollier, Sarah Drissi; Gélinas-Chebat, Claire

    2003-06-01

    The effects of drama versus lecture format in public service advertisements are studied in a 2 (format) x 2 (malaria vs AIDS) factorial design. Two structural equation models are built (one for each level of self-relevance), showing two distinct patterns. In both low and high self-relevant situations, empathy plays a key role. Under low self-relevance conditions, drama enhances information processing through empathy. Under high self-relevant conditions, the advertisement format has neither significant cognitive or empathetic effects. The information processing generated by the highly relevant topic affects viewers' empathy, which in turn affects the attitude the advertisement and the behavioral intent. As predicted by the Elaboration Likelihood Model, the advertisement format enhances the attitudes and information processing mostly under low self-relevant conditions. Under low self-relevant conditions, empathy enhances information processing while under high self-relevance, the converse relation holds.

  3. The Amygdala: An Agent of Change in Adolescent Neural Networks

    PubMed Central

    Scherf, K. Suzanne; Smyth, Joshua M.; Delgado, Mauricio R.

    2013-01-01

    A unique component of adolescent development is the need to master new developmental tasks in which peer interactions become primary (for the purposes of becoming autonomous from parents, forming intimate friendships, and romantic/sexual partnerships). Previously, it has been suggested that the ability to master these tasks requires an important re-organization in the relation between perceptual, motivational, affective, and cognitive systems in a very general and broad way that is fundamentally influenced by the infusion of sex hormones during pubertal development (Scherf et al., 2012). Herein, we extend this argument to suggest that the amygdala, which is vastly connected with cortical and subcortical regions and contains sex hormone receptors, may lie at the heart of this re-organization. We propose that during adolescent development there is a shift in the attribution of relevance to existing stimuli and contexts that is mediated by the amygdala (e.g., heightened relevance of peer faces, reduced relevance of physical distance from parents). As a result, amygdala inputs to existing stable neural networks are re-weighted (increased or decreased), which destabilizes the functional interactions among regions within these networks and allows for a critical restructuring of the network functional organization. This process of network re-organization enables processing of qualitatively new kinds of social information and the emergence of novel behaviors that support mastery of adolescent-specific developmental tasks. PMID:23756154

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. Themore » approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.« less

  5. Physics in the Great Depression

    ERIC Educational Resources Information Center

    Weiner, Charles

    1970-01-01

    Describes the criticism of science during the early 1930's, when questions about the internal dynamics of the physics community- reduced research funds, slackening employment opportunities and lower public esteem for physics and its relationship with society were raised. States that the problem of social relevance of physics is still very real…

  6. Physics in Literature

    ERIC Educational Resources Information Center

    Manos, Harry

    2014-01-01

    Physics offers a cross-discipline perspective to understanding other subjects. The purpose of this paper is to provide examples of physics in literature that physics and astronomy teachers can use to give students an indication of the relevance of science as depicted in the humanities. It is not possible to cite the thousands of examples…

  7. Physical examination of upper extremity compressive neuropathies.

    PubMed

    Popinchalk, Samuel P; Schaffer, Alyssa A

    2012-10-01

    A thorough history and physical examination are vital to the assessment of upper extremity compressive neuropathies. This article summarizes relevant anatomy and physical examination findings associated with upper extremity compressive neuropathies. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Efficacy of bowel cancer appeals for promoting physical activity.

    PubMed

    Jalleh, Geoffrey; Donovan, Robert J; Slevin, Terry; Dixon, Helen

    2005-08-01

    To investigate the potential efficacy of bowel cancer prevention messages in increasing intentions to be more physically active. A convenience sample of 281 physically inactive persons aged 30-60 years was recruited in the Perth city centre and randomly assigned to a bowel cancer and physical activity message or a heart disease and physical activity message. After reading a booklet containing information about physical activity and its link either to bowel cancer (n = 141) or cardiovascular disease (n = 140), respondents filled in a self-completion questionnaire. The main response measures were impact on intentions to be more physically active, and perceived believability and relevance of the message. Perceived believability of the message was high in both conditions. Perceived personal relevance of the message was substantially lower in the bowel cancer than the cardiovascular disease condition. Overall, the cardiovascular disease condition achieved somewhat higher behavioural intentions than the bowel cancer condition. The finding that two in three respondents in the bowel cancer condition had increased intention to increase their level of physical activity provides support for the potential efficacy of promoting physical activity in reducing the risk of bowel cancer.

  9. FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    NASA Astrophysics Data System (ADS)

    Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.

    2013-03-01

    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.

  10. Dynamic Emulation Modelling (DEMo) of large physically-based environmental models

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2012-12-01

    In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.

  11. Developing a physical activity legacy from the London 2012 Olympic and Paralympic Games: a policy-led systematic review.

    PubMed

    Weed, Mike; Coren, Esther; Fiore, Jo; Wellard, Ian; Mansfield, Louise; Chatziefstathiou, Dikaia; Dowse, Suzanne

    2012-03-01

    There is no evidence that previous Olympic Games have raised physical activity levels in adult populations. However, it may be premature to assume that this lack of previous evidence for an inherent effect is an indication that there is no potential to proactively harness the Games to generate a physical activity or sport legacy. Given that the political goal of achieving a physical activity legacy had already been set, the policy-led aim of this systematic review was to examine the processes by which the London 2012 Olympic and Paralympic Games might deliver a physical activity (as opposed to sport) legacy. Searches were conducted on five databases: SPORTS DISCUS, CINAHL, PsychLNFO, MEDLINE and Web of Knowledge. There are two key findings: first, that communities that are not positively engaged with hosting the 2012 Games in London are likely to be beyond the reach of any initiatives seeking to harness the Games to develop legacies in any area; second, major events such as London 2012 can, if promoted in the right way, generate a 'festival effect' that may have the potential to be harnessed to promote physical activity among the least active. The 'festival effect' derives from the promotion of the 2012 Games as a national festival that is bigger than and beyond sport, but that is also rooted in the lives of local and cultural communities, thus creating a strong desire to participate in some way in an event that is both nationally significant and locally or culturally relevant. Physical activity policy makers and professionals should seek to satisfy this desire to participate through providing physical activity (rather than sport) opportunities presented as fun community events or programmes. The key to generating a physical activity legacy among the least active adults through this process is to de-emphasise the sporting element of the 2012 Games and promote the festival element.

  12. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  13. Anger Expression, Momentary Anger, and Symptom Severity in Patients with Chronic Disease.

    PubMed

    Russell, Michael A; Smith, Timothy W; Smyth, Joshua M

    2016-04-01

    Anger expression styles are associated with physical health, and may affect health by modulating anger experience in daily life. Research examining this process in the daily lives of clinically relevant populations, such as patients with chronic disease, is needed. Community adults with asthma (N = 97) or rheumatoid arthritis (RA; N = 31) completed measures of trait-level anger expression styles (anger-in and anger-out), followed by ecological momentary assessments of anger and physical health five times daily for 7 days. High anger-in predicted greater momentary anger, physical limitations, and greater asthma symptoms. High anger-out predicted reduced RA symptoms. Momentary anger was robustly associated with more severe symptoms in daily life. Three-way interactions showed that anger-in moderated these momentary anger-symptom associations more consistently in men. Anger expression styles, particularly anger-in, may affect the day-to-day adjustment of patients with chronic disease in part by altering the dimensions of everyday anger experience, in ways that appear to differ by gender.

  14. Anger Expression, Momentary Anger, and Symptom Severity in Patients with Chronic Disease

    PubMed Central

    Russell, Michael A.; Smith, Timothy W.; Smyth, Joshua M.

    2015-01-01

    Background Anger expression styles are associated with physical health, and may affect health by modulating anger experience in daily life. Research examining this process in the daily lives of clinically relevant populations, such as patients with chronic disease, is needed. Method Community adults with asthma (N=97) or rheumatoid arthritis (RA; N=31) completed measures of trait-level anger expression styles (anger-in and anger-out), followed by ecological momentary assessments of anger and physical health 5 times daily for 7 days. Results High anger-in predicted greater momentary anger, physical limitations, and greater asthma symptoms. High anger-out predicted reduced RA symptoms. Momentary anger was robustly associated with more severe symptoms in daily life. Three-way interactions showed anger-in moderated these momentary anger-symptom associations more consistently in men. Conclusions Anger expression styles, particularly anger-in, may affect the day-to-day adjustment of patients with chronic disease in part by altering the dimensions of everyday anger experience, in ways that appear to differ by gender. PMID:26493555

  15. Constructing constitutive relationships for seismic and aseismic fault slip

    USGS Publications Warehouse

    Beeler, N.M.

    2009-01-01

    For the purpose of modeling natural fault slip, a useful result from an experimental fault mechanics study would be a physically-based constitutive relation that well characterizes all the relevant observations. This report describes an approach for constructing such equations. Where possible the construction intends to identify or, at least, attribute physical processes and contact scale physics to the observations such that the resulting relations can be extrapolated in conditions and scale between the laboratory and the Earth. The approach is developed as an alternative but is based on Ruina (1983) and is illustrated initially by constructing a couple of relations from that study. In addition, two example constitutive relationships are constructed; these describe laboratory observations not well-modeled by Ruina's equations: the unexpected shear-induced weakening of silica-rich rocks at high slip speed (Goldsby and Tullis, 2002) and fault strength in the brittle ductile transition zone (Shimamoto, 1986). The examples, provided as illustration, may also be useful for quantitative modeling.

  16. PATIENT'S RIGHT TO INFORMED CONSENT IN REPUBLIC SRPSKA: LEGAL AND ETHICAL ASPECTS (WITH SPECIAL REFERENCE TO PHYSICAL REHABILITATION).

    PubMed

    Milinkovic, Igor; Majstorovic, Biljana

    2014-12-01

    The principle of informed consent, which requires a patient's fully-informed consent prior to the medical treatment, is closely connected with the value of human dignity. The realization and protection of a patient's dignity is not possible without his/her right to choose the character and scope of medical treatment. This goal cannot be adequately achieved within the traditional model of medical paternalism characterized by the physician's authoritative position. The first part of the article deals with the content and ethical significance of the informed consent doctrine. The legal framework of informed consent in Republic Srpska (RS), one of the two Bosnia and Herzegovina (BH)entities, is analyzed. Special reference is made to the relevance of the informed consent principle within the physical rehabilitation process. Although ethical aspects of physical rehabilitation are often overlooked, this medical field possesses a strong ethical dimension (including an appropriate realization of the patient's right to informed consent).

  17. Variation by Gender in Abu Dhabi High School Students' Interests in Physics

    NASA Astrophysics Data System (ADS)

    Badri, Masood; Mazroui, Karima Al; Al Rashedi, Asma; Yang, Guang

    2016-04-01

    Abu Dhabi high school students' interest in physics in different contexts was investigated with a survey conducted in connection with the international project, The Relevance of Science Education (ROSE). The sample consisted of 2248 students in public and private schools. Means of most items that belong to the school physics context for both girls and boys were below the score of (3.0). The most interesting topics for both genders were connected with fantasy items. The least interesting items (particularly for girls) were connected with artifacts and technological processes. Girls assigned the highest scores for "why we dream" and "life and death." Boys assigned the highest scores for "inventions and discoveries" and "life outside of earth." The main message of the study is that new curricular approaches and textbooks can be developed through combining technological and human contexts. The implications for curriculum development, teacher professional development programs, and other education strategies in Abu Dhabi are discussed in light of the ROSE survey.

  18. The physics of lipid droplet nucleation, growth and budding.

    PubMed

    Thiam, Abdou Rachid; Forêt, Lionel

    2016-08-01

    Lipid droplets (LDs) are intracellular oil-in-water emulsion droplets, covered by a phospholipid monolayer and mainly present in the cytosol. Despite their important role in cellular metabolism and growing number of newly identified functions, LD formation mechanism from the endoplasmic reticulum remains poorly understood. To form a LD, the oil molecules synthesized in the ER accumulate between the monolayer leaflets and induce deformation of the membrane. This formation process works through three steps: nucleation, growth and budding, exactly as in phase separation and dewetting phenomena. These steps involve sequential biophysical membrane remodeling mechanisms for which we present basic tools of statistical physics, membrane biophysics, and soft matter science underlying them. We aim to highlight relevant factors that could control LD formation size, site and number through this physics description. An emphasis will be given to a currently underestimated contribution of the molecular interactions between lipids to favor an energetically costless mechanism of LD formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of exercise on cognitive performance in community-dwelling older adults: review of intervention trials and recommendations for public health practice and research.

    PubMed

    Snowden, Mark; Steinman, Lesley; Mochan, Kara; Grodstein, Francine; Prohaska, Thomas R; Thurman, David J; Brown, David R; Laditka, James N; Soares, Jesus; Zweiback, Damita J; Little, Deborah; Anderson, Lynda A

    2011-04-01

    There is evidence from observational studies that increasing physical activity may reduce the risk of cognitive decline in older adults. Exercise intervention trials have found conflicting results. A systematic review of physical activity and exercise intervention trials on cognition in older adults was conducted. Six scientific databases and reference lists of previous reviews were searched. Thirty studies were eligible for inclusion. Articles were grouped into intervention-outcome pairings. Interventions were grouped as cardiorespiratory, strength, and multicomponent exercises. Cognitive outcomes were general cognition, executive function, memory, reaction time, attention, cognitive processing, visuospatial, and language. An eight-member multidisciplinary panel rated the quality and effectiveness of each pairing. Although there were some positive studies, the panel did not find sufficient evidence that physical activity or exercise improved cognition in older adults. Future research should report exercise adherence, use longer study durations, and determine the clinical relevance of measures used. © 2011, Copyright the Authors. Journal compilation © 2011, The American Geriatrics Society.

  20. Reduction of collisional-radiative models for transient, atomic plasmas

    NASA Astrophysics Data System (ADS)

    Abrantes, Richard June; Karagozian, Ann; Bilyeu, David; Le, Hai

    2017-10-01

    Interactions between plasmas and any radiation field, whether by lasers or plasma emissions, introduce many computational challenges. One of these computational challenges involves resolving the atomic physics, which can influence other physical phenomena in the radiated system. In this work, a collisional-radiative (CR) model with reduction capabilities is developed to capture the atomic physics at a reduced computational cost. Although the model is made with any element in mind, the model is currently supplemented by LANL's argon database, which includes the relevant collisional and radiative processes for all of the ionic stages. Using the detailed data set as the true solution, reduction mechanisms in the form of Boltzmann grouping, uniform grouping, and quasi-steady-state (QSS), are implemented to compare against the true solution. Effects on the transient plasma stemming from the grouping methods are compared. Distribution A: Approved for public release; unlimited distribution, PA (Public Affairs) Clearance Number 17449. This work was supported by the Air Force Office of Scientific Research (AFOSR), Grant Number 17RQCOR463 (Dr. Jason Marshall).

  1. Forming of science teacher thinking through integrated laboratory exercises

    NASA Astrophysics Data System (ADS)

    Horváthová, Daniela; Rakovská, Mária; Zelenický, Ľubomír

    2017-01-01

    Within the three-semester optional course Science we have also included into curricula the subject entitled Science Practicum consisting of laboratory exercises of complementary natural scientific disciplines whose content exceeds the boundaries of relevant a scientific discipline (physics, biology, …). The paper presents the structure and selected samples of laboratory exercises of physical part of Science Practicum in which we have processed in an integrated way the knowledge of physics and biology at secondary grammar school. When planning the exercises we have proceeded from those areas of mentioned disciplines in which we can appropriately apply integration of knowledge and where the measurement methods are used. We have focused on the integration of knowledge in the field of human sensory organs (eye, ear), dolphins, bats (spatial orientation) and bees (ommatidium of faceted eye) and their modelling. Laboratory exercises are designed in such a way that they would motivate future teachers of natural scientific subjects to work independently with specialized literature of the mentioned natural sciences and ICT.

  2. 2017 Topical Workshop on Electronics for Particle Physics

    NASA Astrophysics Data System (ADS)

    2017-09-01

    The workshop will cover all aspects of electronics for particle physics experiments, and accelerator instrumentation of general interest to users. LHC experiments (and their operational experience) will remain a focus of the meeting but a strong emphasis on R&D for future experimentation will be maintained, such as SLHC, CLIC, ILC, neutrino facilities as well as other particle and astroparticle physics experiments. The purpose of the workshop is: To present results and original concepts for electronic research and development relevant to experiments as well as accelerator and beam instrumentation at future facilities; To review the status of electronics for the LHC experiments; To identify and encourage common efforts for the development of electronics; To promote information exchange and collaboration in the relevant engineering and physics communities.

  3. What Is Physics Problem-Solving Competency? The Views of Arnold Sommerfeld and Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Niss, Martin

    2018-05-01

    A central goal of physics education is to teach problem-solving competency, but the description of the nature of this competency is somehwat fragmentary and implicit in the literature. The present article uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions on the nature of physics problem-solving competency. The first, Sommerfeld's, is a "theory first, phenomenon second" approach. Here, the relevant problems originate in one of the theories of physics and the goal of the problem-solver is to make a mathematical analysis of the relevant equation(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi's position is a "phenomenon first, theory second" approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions are illustrated with solutions to two problems and it is shown that the two positions are reflected in problem collections of university educations in physics.

  4. Introduction to the special issue Hermann Weyl and the philosophy of the 'New Physics'

    NASA Astrophysics Data System (ADS)

    De Bianchi, Silvia; Catren, Gabriel

    2018-02-01

    This Special Issue Hermann Weyl and the Philosophy of the 'New Physics' has two main objectives: first, to shed fresh light on the relevance of Weyl's work for modern physics and, second, to evaluate the importance of Weyl's work and ideas for contemporary philosophy of physics. Regarding the first objective, this Special Issue emphasizes aspects of Weyl's work (e.g. his work on spinors in n dimensions) whose importance has recently been emerging in research fields across both mathematical and experimental physics, as well as in the history and philosophy of physics. Regarding the second objective, this Special Issue addresses the relevance of Weyl's ideas regarding important open problems in the philosophy of physics, such as the problem of characterizing scientific objectivity and the problem of providing a satisfactory interpretation of fundamental symmetries in gauge theories and quantum mechanics. In this Introduction, we sketch the state of the art in Weyl studies and we summarize the content of the contributions to the present volume.

  5. The importance of psychological and social factors in influencing the uptake and maintenance of physical activity after stroke: a structured review of the empirical literature.

    PubMed

    Morris, Jacqui; Oliver, Tracey; Kroll, Thilo; Macgillivray, Steve

    2012-01-01

    Background. People with stroke are not maintaining adequate engagement in physical activity (PA) for health and functional benefit. This paper sought to describe any psychological and social factors that may influence physical activity engagement after stroke. Methods. A structured literature review of studies indexed in MEDLINE, CinAHL, P&BSC, and PsycINFO using search terms relevant to stroke, physical disabilities, and PA. Publications reporting empirical findings (quantitative or qualitative) regarding psychological and/or social factors were included. Results. Twenty studies from 19 publications (9 surveys, 1 RCT, and 10 qualitative studies) were included. Seventeen studies reported findings pertinent to psychological factors and fourteen findings pertinent to social factors. Conclusion. Self-efficacy, physical activity beliefs, and social support appear particularly relevant to physical activity behaviour after stroke and should be included in theoretically based physical interventions. The Transtheoretical Model and the Theory of Planned Behaviour are candidate behavioural models that may support intervention development.

  6. Evaluating Questionnaires Used to Assess Self-Reported Physical Activity and Psychosocial Outcomes Among Survivors of Adolescent and Young Adult Cancer: A Cognitive Interview Study.

    PubMed

    Wurz, Amanda; Brunet, Jennifer

    2017-09-01

    Physical activity is increasingly being studied as a way to improve psychosocial outcomes (e.g., quality of life, self-efficacy, physical self-perceptions, self-esteem, body image, posttraumatic growth) among survivors of adolescent and young adult (AYA) cancer. Assessing levels of and associations between self-reported physical activity and psychosocial outcomes requires clear, appropriate, and relevant questionnaires. To explore how survivors of AYA cancer interpreted and responded to the following eight published questionnaires: Leisure Time Exercise Questionnaire, Exercise Self-Efficacy Scale, Physical Self-Description Questionnaire, Rosenberg Global Self-Esteem Scale, Multidimensional Body-Self Relations Questionnaire, Posttraumatic Growth Inventory, Functional Assessment of Cancer Therapy-General (FACT-G), RAND 36-Item Health Survey 1.0 (RAND-36), cognitive interviews were conducted with three men and four women age 18-36 years who were diagnosed with cancer at age 16-35 years. Initially, the first seven questionnaires listed above were assessed. Summaries of the interviews were prepared and compared across participants. Potential concerns were identified with the FACT-G; thus, a second interview was conducted with participants to explore the clarity, appropriateness, and relevance of the RAND-36. Concerns identified for the FACT-G related mostly to the lack of relevance of items pertaining to cancer-specific aspects of quality of life given that participants were posttreatment. No or few concerns related to comprehension and/or structure/logic were identified for the other questionnaires. In general, the questionnaires assessed were clear, appropriate, and relevant. Participants' feedback suggested they could be used to assess self-reported physical activity and varied psychosocial outcomes in studies with survivors of AYA cancer, either with or without slight modifications.

  7. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.

  8. Standard Model of Particle Physics--a health physics perspective.

    PubMed

    Bevelacqua, J J

    2010-11-01

    The Standard Model of Particle Physics is reviewed with an emphasis on its relationship to the physics supporting the health physics profession. Concepts important to health physics are emphasized and specific applications are presented. The capability of the Standard Model to provide health physics relevant information is illustrated with application of conservation laws to neutron and muon decay and in the calculation of the neutron mean lifetime.

  9. Towards high fidelity numerical wave tanks for modelling coastal and ocean engineering processes

    NASA Astrophysics Data System (ADS)

    Cozzuto, G.; Dimakopoulos, A.; de Lataillade, T.; Kees, C. E.

    2017-12-01

    With the increasing availability of computational resources, the engineering and research community is gradually moving towards using high fidelity Comutational Fluid Mechanics (CFD) models to perform numerical tests for improving the understanding of physical processes pertaining to wave propapagation and interaction with the coastal environment and morphology, either physical or man-made. It is therefore important to be able to reproduce in these models the conditions that drive these processes. So far, in CFD models the norm is to use regular (linear or nonlinear) waves for performing numerical tests, however, only random waves exist in nature. In this work, we will initially present the verification and validation of numerical wave tanks based on Proteus, an open-soruce computational toolkit based on finite element analysis, with respect to the generation, propagation and absorption of random sea states comprising of long non-repeating wave sequences. Statistical and spectral processing of results demonstrate that the methodologies employed (including relaxation zone methods and moving wave paddles) are capable of producing results of similar quality to the wave tanks used in laboratories (Figure 1). Subsequently cases studies of modelling complex process relevant to coastal defences and floating structures such as sliding and overturning of composite breakwaters, heave and roll response of floating caissons are presented. Figure 1: Wave spectra in the numerical wave tank (coloured symbols), compared against the JONSWAP distribution

  10. Collective Cell Migration in Embryogenesis Follows the Laws of Wetting.

    PubMed

    Wallmeyer, Bernhard; Trinschek, Sarah; Yigit, Sargon; Thiele, Uwe; Betz, Timo

    2018-01-09

    Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Signal processing for molecular and cellular biological physics: an emerging field.

    PubMed

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  12. Speedup for quantum optimal control from automatic differentiation based on graphics processing units

    NASA Astrophysics Data System (ADS)

    Leung, Nelson; Abdelhafez, Mohamed; Koch, Jens; Schuster, David

    2017-04-01

    We implement a quantum optimal control algorithm based on automatic differentiation and harness the acceleration afforded by graphics processing units (GPUs). Automatic differentiation allows us to specify advanced optimization criteria and incorporate them in the optimization process with ease. We show that the use of GPUs can speedup calculations by more than an order of magnitude. Our strategy facilitates efficient numerical simulations on affordable desktop computers and exploration of a host of optimization constraints and system parameters relevant to real-life experiments. We demonstrate optimization of quantum evolution based on fine-grained evaluation of performance at each intermediate time step, thus enabling more intricate control on the evolution path, suppression of departures from the truncated model subspace, as well as minimization of the physical time needed to perform high-fidelity state preparation and unitary gates.

  13. Signal processing for molecular and cellular biological physics: an emerging field

    PubMed Central

    Little, Max A.; Jones, Nick S.

    2013-01-01

    Recent advances in our ability to watch the molecular and cellular processes of life in action—such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer—raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied. PMID:23277603

  14. Entropy production in mesoscopic stochastic thermodynamics: nonequilibrium kinetic cycles driven by chemical potentials, temperatures, and mechanical forces

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Kjelstrup, Signe; Kolomeisky, Anatoly B.; Bedeaux, Dick

    2016-04-01

    Nonequilibrium thermodynamics (NET) investigates processes in systems out of global equilibrium. On a mesoscopic level, it provides a statistical dynamic description of various complex phenomena such as chemical reactions, ion transport, diffusion, thermochemical, thermomechanical and mechanochemical fluxes. In the present review, we introduce a mesoscopic stochastic formulation of NET by analyzing entropy production in several simple examples. The fundamental role of nonequilibrium steady-state cycle kinetics is emphasized. The statistical mechanics of Onsager’s reciprocal relations in this context is elucidated. Chemomechanical, thermomechanical, and enzyme-catalyzed thermochemical energy transduction processes are discussed. It is argued that mesoscopic stochastic NET in phase space provides a rigorous mathematical basis of fundamental concepts needed for understanding complex processes in chemistry, physics and biology. This theory is also relevant for nanoscale technological advances.

  15. A Chemical Model of the Coma of Comet C/2009 P1 (Garradd)

    NASA Astrophysics Data System (ADS)

    Boice, Daniel C.; Kawakita, H.; Kobayashi, H.; Naka, C.; Phelps, L.

    2012-10-01

    Modeling is essential to understand the important physical and chemical processes that occur in cometary comae. Photochemistry is a major source of ions and electrons that further initiate key gas-phase reactions, leading to the plethora of molecules and atoms observed in comets. The effects of photoelectrons that react via impacts are important to the overall ionization. We identify the relevant processes within a global modeling framework to understand simultaneous observations in the visible and near-IR of Comet C/2009 (Garradd) and to provide valuable insights into the intrinsic properties of its nucleus. Details of these processes are presented in the collision-dominated, inner coma of the comet to evaluate the relative chemical pathways and the relationship between parent and sibling molecules. Acknowledgements: We appreciate support from the NSF Planetary Astronomy Program.

  16. Emotional sentience and the nature of phenomenal experience.

    PubMed

    Kauffman, Katherine Peil

    2015-12-01

    When phenomenal experience is examined through the lens of physics, several conundrums come to light including: Specificity of mind-body interactions, feelings of free will in a deterministic universe, and the relativity of subjective perception. The new biology of "emotion" can shed direct light upon these issues, via a broadened categorical definition that includes both affective feelings and their coupled (yet often subconscious) hedonic motivations. In this new view, evaluative (good/bad) feelings that trigger approach/avoid behaviors emerged with life itself, a crude stimulus-response information loop between organism and its environment, a semiotic signaling system embodying the first crude form of "mind". Emotion serves the ancient function of sensory-motor self-regulation and affords organisms - at every level of complexity - an active, adaptive, role in evolution. A careful examination of the biophysics involved in emotional "self-regulatory" signaling, however, acknowledges constituents that are incompatible with classical physics. This requires a further investigation, proposed herein, of the fundamental nature of "the self" as the subjective observer central to the measurement process in quantum mechanics, and ultimately as an active, unified, self-awareness with a centrally creative role in "self-organizing" processes and physical forces of the classical world. In this deeper investigation, a new phenomenological dualism is proposed: The flow of complex human experience is instantiated by both a classically embodied mind and a deeper form of quantum consciousness that is inherent in the universe itself, implying much deeper - more Whiteheadian - interpretations of the "self-regulatory" and "self-relevant" nature of emotional stimulus. A broad stroke, speculative, intuitive sketch of this new territory is then set forth, loosely mapped to several theoretical models of consciousness, potentially relevant mathematical devices and pertinent philosophical themes, in an attempt to acknowledge the myriad questions - and limitations - implicit in the quest to understand "sentience" in any ontologically pansentient universe. Copyright © 2015. Published by Elsevier Ltd.

  17. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena

    DOE PAGES

    Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume; ...

    2017-07-10

    Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less

  18. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume

    Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less

  19. Experimental Studies of Nuclear Physics Input for γ -Process Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Scholz, Philipp; Heim, Felix; Mayer, Jan; Netterdon, Lars; Zilges, Andreas

    The predictions of reaction rates for the γ process in the scope of the Hauser-Feshbach statistical model crucially depend on nuclear physics input-parameters as optical-model potentials (OMP) or γ -ray strength functions. Precise cross-section measurements at astrophysically relevant energies help to constrain adopted models and, therefore, to reduce the uncertainties in the theoretically predicted reaction rates. During the last years, several cross-sections of charged-particle induced reactions on heavy nuclei have been measured at the University of Cologne. Either by means of the in-beam method at the HORUS γ -ray spectrometer or the activation technique using the Cologne Clover Counting Setup, total and partial cross-sections could be used to further constrain different models for nuclear physics input-parameters. It could be shown that modifications on the α -OMP in the case of the 112Sn(α , γ ) reaction also improve the description of the recently measured cross sections of the 108Cd(α , γ ) and 108Cd(α , n) reaction and other reactions as well. Partial cross-sections of the 92Mo(p, γ ) reaction were used to improve the γ -strength function model in 93Tc in the same way as it was done for the 89Y(p, γ ) reaction.

  20. Multimethod prediction of physical parent-child aggression risk in expectant mothers and fathers with Social Information Processing theory.

    PubMed

    Rodriguez, Christina M; Smith, Tamika L; Silvia, Paul J

    2016-01-01

    The Social Information Processing (SIP) model postulates that parents undergo a series of stages in implementing physical discipline that can escalate into physical child abuse. The current study utilized a multimethod approach to investigate whether SIP factors can predict risk of parent-child aggression (PCA) in a diverse sample of expectant mothers and fathers. SIP factors of PCA attitudes, negative child attributions, reactivity, and empathy were considered as potential predictors of PCA risk; additionally, analyses considered whether personal history of PCA predicted participants' own PCA risk through its influence on their attitudes and attributions. Findings indicate that, for both mothers and fathers, history influenced attitudes but not attributions in predicting PCA risk, and attitudes and attributions predicted PCA risk; empathy and reactivity predicted negative child attributions for expectant mothers, but only reactivity significantly predicted attributions for expectant fathers. Path models for expectant mothers and fathers were remarkably similar. Overall, the findings provide support for major aspects of the SIP model. Continued work is needed in studying the progression of these factors across time for both mothers and fathers as well as the inclusion of other relevant ecological factors to the SIP model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems.

    PubMed

    Craig, D Q; Royall, P G; Kett, V L; Hopton, M L

    1999-03-15

    Many pharmaceuticals, either by accident or design, may exist in a total or partially amorphous state. Consequently, it is essential to have an understanding of the physico-chemical principles underpinning the behaviour of such systems. In this discussion, the nature of the glassy state will be described, with particular emphasis on the molecular processes associated with glass transitional behaviour and the use of thermal methods for characterising the glass transition temperature, Tg. The practicalities of such measurements, the significance of the accompanying relaxation endotherm and plasticization effects are considered. The advantages and difficulties associated with the use of amorphous drugs will be outlined, with discussion given regarding the problems associated with physical and chemical stability. Finally, the principles of freeze drying will be described, including discussion of the relevance of glass transitional behaviour to product stability. Copyright

  2. Social aggravation: Understanding the complex role of social relationships on stress and health-relevant physiology.

    PubMed

    Birmingham, Wendy C; Holt-Lunstad, Julianne

    2018-04-05

    There is a rich literature on social support and physical health, but research has focused primarily on the protective effects of social relationship. The stress buffering model asserts that relationships may be protective by being a source of support when coping with stress, thereby blunting health relevant physiological responses. Research also indicates relationships can be a source of stress, also influencing health. In other words, the social buffering influence may have a counterpart, a social aggravating influence that has an opposite or opposing effect. Drawing upon existing conceptual models, we expand these to delineate how social relationships may influence stress processes and ultimately health. This review summarizes the existing literature that points to the potential deleterious physiological effects of our relationships when they are sources of stress or exacerbate stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Electricity and colloidal stability: how charge distribution in the tissue can affects wound healing.

    PubMed

    Farber, Paulo Luiz; Hochman, Bernardo; Furtado, Fabianne; Ferreira, Lydia Masako

    2014-02-01

    The role of endogenous electric fields in wound healing is still not fully understood. Electric fields are of fundamental importance in various biological processes, ranging from embryonic development to disease progression, as described by many investigators in the last century. This hypothesis brings together some relevant literature on the importance of electric fields in physiology and pathology, the theory of biologically closed electric circuits, skin battery (a phenomenon that occurs after skin injury and seems to be involved in tissue repair), the relationship between electric charge and interstitial exclusion, and how skin tissues can be regarded as colloidal systems. The importance of electric charges, as established in the early works on the subject and the relevance of zeta potential and colloid stability are also analyzed, and together bring a new light for the physics involved in the wound repair of all the body tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Investigating and improving introductory physics students’ understanding of the electric field and superposition principle

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-09-01

    We discuss an investigation of the difficulties that students in a university introductory physics course have with the electric field and superposition principle and how that research was used as a guide in the development and evaluation of a research-validated tutorial on these topics to help students learn these concepts better. The tutorial uses a guided enquiry-based approach to learning and involved an iterative process of development and evaluation. During its development, we obtained feedback both from physics instructors who regularly teach introductory physics in which these concepts are taught and from students for whom the tutorial is intended. The iterative process continued and the feedback was incorporated in the later versions of the tutorial until the researchers were satisfied with the performance of a diverse group of introductory physics students on the post-test after they worked on the tutorial in an individual one-on-one interview situation. Then the final version of the tutorial was administered in several sections of the university physics course after traditional instruction in relevant concepts. We discuss the performance of students in individual interviews and on the pre-test administered before the tutorial (but after traditional lecture-based instruction) and on the post-test administered after the tutorial. We also compare student performance in sections of the class in which students worked on the tutorial with other similar sections of the class in which students only learned via traditional instruction. We find that students performed significantly better in the sections of the class in which the tutorial was used compared to when students learned the material via only lecture-based instruction.

  5. Using Machine Learning as a fast emulator of physical processes within the Met Office's Unified Model

    NASA Astrophysics Data System (ADS)

    Prudden, R.; Arribas, A.; Tomlinson, J.; Robinson, N.

    2017-12-01

    The Unified Model is a numerical model of the atmosphere used at the UK Met Office (and numerous partner organisations including Korean Meteorological Agency, Australian Bureau of Meteorology and US Air Force) for both weather and climate applications.Especifically, dynamical models such as the Unified Model are now a central part of weather forecasting. Starting from basic physical laws, these models make it possible to predict events such as storms before they have even begun to form. The Unified Model can be simply described as having two components: one component solves the navier-stokes equations (usually referred to as the "dynamics"); the other solves relevant sub-grid physical processes (usually referred to as the "physics"). Running weather forecasts requires substantial computing resources - for example, the UK Met Office operates the largest operational High Performance Computer in Europe - and the cost of a typical simulation is spent roughly 50% in the "dynamics" and 50% in the "physics". Therefore there is a high incentive to reduce cost of weather forecasts and Machine Learning is a possible option because, once a machine learning model has been trained, it is often much faster to run than a full simulation. This is the motivation for a technique called model emulation, the idea being to build a fast statistical model which closely approximates a far more expensive simulation. In this paper we discuss the use of Machine Learning as an emulator to replace the "physics" component of the Unified Model. Various approaches and options will be presented and the implications for further model development, operational running of forecasting systems, development of data assimilation schemes, and development of ensemble prediction techniques will be discussed.

  6. Microbial degradation on glacier surface is the missing piece of environmental fate of pesticides in cold areas

    NASA Astrophysics Data System (ADS)

    Ambrosini, Roberto; Ferrario, Claudia; Pittino, Francesca; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Azzoni, Roberto S.; Diolaiuti, Guglielmina A.; Smiraglia, Claudio; Franzetti, Andrea; Villa, Sara

    2017-04-01

    Organic contaminants deposited on glacier surfaces undergo different partition and degradation processes which determine their environmental fate and accumulation into the trophic chains. Among these processes, biodegradation by supraglacial bacteria has been neglected so far. To assess the relevance of biodegradative processes, in situ microcosm experiments were conducted simulating cryoconite hole systems on an Alpine glacier exposed to the organophosphorus insecticide chlorpyrifos (CPF) as model of xenobiotic molecule which accumulate on glaciers after medium range transports. Results showed that biodegradation is the most efficient process contributing to the removal of CPF on the glacier surface. The high concentrations of CPF in cryoconite and its half-life in the range of 35 - 69 days indicated that biodegradation process can significantly contrast the release of CPF transported on glaciers. Moreover, the metabolic versatility of cryoconite bacteria suggest that these habitats might contribute to the degradation of a wide class of pollutants with different physical-chemical properties. Metagenomics data indicated that photoheterotrophic bacteria might be involved in the biodegradation of CPF by using light to supplement their metabolic demands, thus contributing to the biological removal of CPF without the constrain of using this pesticide as sole energy source. In conclusion. cryoconite might act as a "biofilter" for organic pollutants on glaciers by accumulating them and promoting their biodegradation. Owing to its relevance, the contribution of cryoconite to the removal of organic pollutants should be included in the models predicting the environmental fate of these compounds in cold areas.

  7. 20 CFR 404.1560 - When we will consider your vocational background.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... benefits based on disability which began before age 22, or widow's or widower's benefits based on... section. (b) Past relevant work. We will first compare our assessment of your residual functional capacity with the physical and mental demands of your past relevant work. (1) Definition of past relevant work...

  8. Physics Insight into "The Canterbury Tales" Chronotope

    ERIC Educational Resources Information Center

    Bogdanov, S. R.; Oversby, J.; Popov, O. A.; Teteleva, E. M.

    2015-01-01

    Many students regard physics as an isolated, sophisticated and perhaps a boring branch of science. Meanwhile, physics is embedded in most events and issues of society, culture and everyday life. To find and include such relevant contexts is one of the challenges for every physics teacher. Here we present our findings, which concern the classic…

  9. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  10. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  11. From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.

    PubMed

    Kaufmann, Kerstin; Chen, Dijun

    2017-01-01

    Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.

  12. Physical Activity and Sport in the Lives of Girls. Physical & Mental Health Dimensions from an Interdisciplinary Approach.

    ERIC Educational Resources Information Center

    Minnesota Univ., Minneapolis. Center for Research on Girls and Women in Sport.

    This report highlights relevant research and expert opinion on girls' involvement in physical activity and sport. Research findings revealed: (1) more girls are participating in a wider array of physical activities than ever before; (2) regular physical activity in adolescence can reduce risk for obesity and hyperlipidemia, increase bone mass and…

  13. Best Practices in Physics Program Assessment: Should APS Provide Accreditation Standards for Physics?

    NASA Astrophysics Data System (ADS)

    Hodapp, Theodore

    The Phys21 report, ``Preparing Physics Students for 21st Century Careers,'' provides guidance for physics programs to improve their degree programs to make them more relevant for student career choices. Undertaking such changes and assessing impact varies widely by institution, with many departments inventing assessments with each periodic departmental or programmatic review. American Physical Society has embarked on a process to integrate information from Phys21, the results of other national studies, and educational research outcomes to generate a best-practices guide to help physics departments conduct program review, assessment, and improvement. It is anticipated that departments will be able to use this document to help with their role in university-level accreditation, and in making the case for improvements to departmental programs. Accreditation of physics programs could stem from such a document, and I will discuss some of the thinking of the APS Committee on Education in creating this guide, and how they are advising APS to move forward in the higher education landscape that is increasingly subject to standards-based evaluations. I will describe plans for the design, review, and dissemination of this guide, and how faculty can provide input into its development. This material is based upon work supported by the National Science Foundation under Grant No. 1540570. Opinions expressed do not necessarily reflect those of the NSF.

  14. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  15. Cognitive Science: Problem Solving And Learning For Physics Education

    NASA Astrophysics Data System (ADS)

    Ross, Brian H.

    2007-11-01

    Cognitive Science has focused on general principles of problem solving and learning that might be relevant for physics education research. This paper examines three selected issues that have relevance for the difficulty of transfer in problem solving domains: specialized systems of memory and reasoning, the importance of content in thinking, and a characterization of memory retrieval in problem solving. In addition, references to these issues are provided to allow the interested researcher entries to the literatures.

  16. Connecting Projects to Complete the In Situ Resource Utilization Paradigm

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Sanders, Gerald B.

    2017-01-01

    Terrain Identify specifics such as slope, rockiness, traction parameters Identify what part of ISRU needs each Physical Geotechnical Hardness, density, cohesion, etc. Identify what part of ISRU needs each (e.g., excavation needs to know hardness, density; soil processing needs to know density, cohesion; etc.)Mineral Identify specifics Identify what part of ISRU needs each Volatile Identify specifics Identify what part of ISRU needs each Atmosphere Identify specifics Identify what part of ISRU needs each Environment Identify specifics Identify what part of ISRU needs each Resource Characterization What: Develop an instrument suite to locate and evaluate the physical, mineral, and volatile resources at the lunar poles Neutron Spectrometer Near Infrared (IR) to locate subsurface hydrogen surface water Near IR for mineral identification Auger drill for sample removal down to 1 m Oven with Gas Chromatograph Mass Spectrometer to quantify volatiles present ISRU relevance: Water volatile resource characterization and subsurface material access removal Site Evaluation Resource Mapping What: Develop and utilize new data products and tools for evaluating potential exploration sites for selection and overlay mission data to map terrain, environment, and resource information e.g., New techniques applied to generate Digital Elevation Map (DEMs) at native scale of images (1mpxl)ISRU relevance: Resource mapping and estimation with terrain and environment information is needed for extraction planning Mission Planning and Operations What: Develop and utilize tools and procedures for planning mission operations and real time changes Planning tools include detailed engineering models (e.g., power and data) of surface segment systems allows evaluation of designs ISRU relevance: Allows for iterative engineering as a function of environment and hardware performance.

  17. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  18. SU-E-E-01: ABR Diagnostic Radiology Core Exam: Was Our Redesigned Physics Course Successful in Teaching Physics to Radiology Residents?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanal, K; Hoff, M; Dickinson, R

    Purpose: Our purpose is to evaluate the effectiveness of our two year physics course in preparing radiology residents for the American Board of Radiology (ABR) diagnostic radiology exam. Methods: We designed a new two-year physics course that integrates radiology clinical content and practice and is primarily based on the AAPM curriculum and RSNA/AAPM physics modules. Biweekly classes focus on relevant concepts from assigned reading and use audience response systems to encourage participation. Teaching efficiency is optimized through lecturer rotations of physicists, radiologists, and guest speakers. An emphasis is placed on clinical relevance by requiring lab work and providing equipment demonstrations.more » Periodic quiz were given during the course. The course website was also redesigned for usability, and physics review lectures were conducted two weeks before the board exam to refresh key concepts. At the completion of our first two-year course, we conducted a confidential evaluation of the faculty and course. The evaluation assessed metrics such as overall organization, clinical relevance of content, and level of difficulty, with a rating scale from poor to excellent. Results: Our evaluation indicated that the redesigned course provided effective board exam preparation, with most responses between good and excellent. There was some criticism on the course length and on chronological discontinuity, but the review lectures were appreciated by the residents. All of our residents passed the physics component of the ABR exam with scores exceeding the minimum passing score by a significant margin. Conclusion: The course evaluation and board exam results indicate that our new two-year course format provides valuable board exam preparation. This is possible thanks to the time and effort taken by the physics faculty on ensuring the residents get quality physics education.« less

  19. Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes

    NASA Astrophysics Data System (ADS)

    Kinefuchi, K.; Funaki, I.; Shimada, T.; Abe, T.

    2012-10-01

    Under certain conditions during rocket flights, ionized exhaust plumes from solid rocket motors may interfere with radio frequency transmissions. To understand the relevant physical processes involved in this phenomenon and establish a prediction process for in-flight attenuation levels, we attempted to measure microwave attenuation caused by rocket exhaust plumes in a sea-level static firing test for a full-scale solid propellant rocket motor. The microwave attenuation level was calculated by a coupling simulation of the inviscid-frozen-flow computational fluid dynamics of an exhaust plume and detailed analysis of microwave transmissions by applying a frequency-dependent finite-difference time-domain method with the Drude dispersion model. The calculated microwave attenuation level agreed well with the experimental results, except in the case of interference downstream the Mach disk in the exhaust plume. It was concluded that the coupling estimation method based on the physics of the frozen plasma flow with Drude dispersion would be suitable for actual flight conditions, although the mixing and afterburning in the plume should be considered depending on the flow condition.

  20. Time domain simulations of preliminary breakdown pulses in natural lightning.

    PubMed

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-06-16

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations.

  1. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  2. Preface

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris; Witherspoon, Paul A.; Gale, John

    How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.

  3. Statistical Physics of Population Genetics in the Low Population Size Limit

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder

    The understanding of evolutionary processes lends itself naturally to theory and computation, and the entire field of population genetics has benefited greatly from the influx of methods from applied mathematics for decades. However, in spite of all this effort, there are a number of key dynamical models of evolution that have resisted analytical treatment. In addition, modern DNA sequencing technologies have magnified the amount of genetic data available, revealing an excess of rare genetic variants in human genomes, challenging the predictions of conventional theory. Here I will show that methods from statistical physics can be used to model the distribution of genetic variants, incorporating selection and spatial degrees of freedom. In particular, a functional path-integral formulation of the Wright-Fisher process maps exactly to the dynamics of a particle in an effective potential, beyond the mean field approximation. In the small population size limit, the dynamics are dominated by instanton-like solutions which determine the probability of fixation in short timescales. These results are directly relevant for understanding the unusual genetic variant distribution at moving frontiers of populations.

  4. Time domain simulations of preliminary breakdown pulses in natural lightning

    PubMed Central

    Carlson, B E; Liang, C; Bitzer, P; Christian, H

    2015-01-01

    Lightning discharge is a complicated process with relevant physical scales spanning many orders of magnitude. In an effort to understand the electrodynamics of lightning and connect physical properties of the channel to observed behavior, we construct a simulation of charge and current flow on a narrow conducting channel embedded in three-dimensional space with the time domain electric field integral equation, the method of moments, and the thin-wire approximation. The method includes approximate treatment of resistance evolution due to lightning channel heating and the corona sheath of charge surrounding the lightning channel. Focusing our attention on preliminary breakdown in natural lightning by simulating stepwise channel extension with a simplified geometry, our simulation reproduces the broad features observed in data collected with the Huntsville Alabama Marx Meter Array. Some deviations in pulse shape details are evident, suggesting future work focusing on the detailed properties of the stepping mechanism. Key Points Preliminary breakdown pulses can be reproduced by simulated channel extension Channel heating and corona sheath formation are crucial to proper pulse shape Extension processes and channel orientation significantly affect observations PMID:26664815

  5. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  6. A novel ionic amphiphilic chitosan derivative as a stabilizer of nanoemulsions: Improvement of antimicrobial activity of Cymbopogon citratus essential oil.

    PubMed

    Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca

    2017-04-01

    Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.

  7. Study on Quality Indicator System of Rhythmic Gymnasts in Analytic Hierarchy Process

    NASA Astrophysics Data System (ADS)

    Luo, Lin

    2017-08-01

    The rhythmic gymnastics (RG) is a sport item with the direct aim of winning as well as a good ornamental value. The scientific selection by the rhythmic gymnasts is necessary for the success, and also the beginning for the scientific training of the gymnasts in their special training stage. According to RG characteristics and the physical characteristics of the gymnasts, also in combination with the investigations & interviews to the coaches who have years of training experience in RG, the experts & scholars on RG study & teaching in universities, and by referring to relevant documents, this paper established the quality indicator system in analytic hierarchy process (AHP). We summarized and selected several indicators obviously influencing the RG training and divided them into the three types of factors: physical factors, flexibility & strength factors, and speed & dexterity factors, according to which 12 specific indicators, their weights and comprehensive evaluation coefficients. Based on these indicators, we established the quality indicator system of the gymnasts, and developed corresponding software system, providing scientific theoretical basis & practical application basis for the selection & evaluation of the gymnasts.

  8. Modes of Visual Recognition and Perceptually Relevant Sketch-based Coding for Images

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.

    1991-01-01

    A review of visual recognition studies is used to define two levels of information requirements. These two levels are related to two primary subdivisions of the spatial frequency domain of images and reflect two distinct different physical properties of arbitrary scenes. In particular, pathologies in recognition due to cerebral dysfunction point to a more complete split into two major types of processing: high spatial frequency edge based recognition vs. low spatial frequency lightness (and color) based recognition. The former is more central and general while the latter is more specific and is necessary for certain special tasks. The two modes of recognition can also be distinguished on the basis of physical scene properties: the highly localized edges associated with reflectance and sharp topographic transitions vs. smooth topographic undulation. The extreme case of heavily abstracted images is pursued to gain an understanding of the minimal information required to support both modes of recognition. Here the intention is to define the semantic core of transmission. This central core of processing can then be fleshed out with additional image information and coding and rendering techniques.

  9. Information trade-offs for optical quantum communication.

    PubMed

    Wilde, Mark M; Hayden, Patrick; Guha, Saikat

    2012-04-06

    Recent work has precisely characterized the achievable trade-offs between three key information processing tasks-classical communication (generation or consumption), quantum communication (generation or consumption), and shared entanglement (distribution or consumption), measured in bits, qubits, and ebits per channel use, respectively. Slices and corner points of this three-dimensional region reduce to well-known protocols for quantum channels. A trade-off coding technique can attain any point in the region and can outperform time sharing between the best-known protocols for accomplishing each information processing task by itself. Previously, the benefits of trade-off coding that had been found were too small to be of practical value (viz., for the dephasing and the universal cloning machine channels). In this Letter, we demonstrate that the associated performance gains are in fact remarkably high for several physically relevant bosonic channels that model free-space or fiber-optic links, thermal-noise channels, and amplifiers. We show that significant performance gains from trade-off coding also apply when trading photon-number resources between transmitting public and private classical information simultaneously over secret-key-assisted bosonic channels. © 2012 American Physical Society

  10. Mobile Applications for Participation at the Shopping Mall: Content Analysis and Usability for Persons with Physical Disabilities and Communication or Cognitive Limitations

    PubMed Central

    Auger, Claudine; Leduc, Emilie; Labbé, Delphine; Guay, Cassioppée; Fillion, Brigitte; Bottari, Carolina; Swaine, Bonnie

    2014-01-01

    The aim of this exploratory study was to determine the important features in content and usability of existing mobile applications evaluating environmental barriers and facilitators (EBF) to participation for persons with physical disabilities presenting mild communication or cognitive limitations. A rigorous process based on a user-centered design approach led to the identification of two relevant mobile applications to evaluate the EBF. An accessibility expert, the research team as well as five users then tested the mobile applications in a shopping mall. A thematic content analysis of the research team’s and users’ comments established 10 categories of key features that adequately respond to the needs of the clientele targeted in this study. In terms of content, granularity and contextualization of the information provided were considered important. With respect to usability, relevant features were place finding, rating system, presentation of results, compatibility, user-friendliness, aesthetics, credibility of the information as well as connectivity/interactiveness. The research team and the users agreed on some aspects such as aesthetics, but had different perspectives on features such as the rating system or the connectivity/interactiveness of the application. The users proposed new features suggesting that the existing mobile applications did not correspond to all their needs. PMID:25513999

  11. Spoilage of sous vide cooked salmon (Salmo salar) stored under refrigeration.

    PubMed

    Díaz, P; Garrido, M D; Bañón, S

    2011-02-01

    The spoilage of Sous Vide 'SV' cooked salmon stored under refrigeration was studied. Samples were packaged under vacuum in polyamide-polypropylene pouches, cooked at an oven temperature/time of 80 (°)C/45 min, quickly chilled at 3 (°)C and stored at 2 (°)C for 0, 5 or 10 weeks for catering use. Microbial (aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae), physical-chemical (pH, water activity, TBARS, acidity, L*a*b* color, texture profile analysis and shear force) and sensory (appearance, odor, flavor, texture and overall quality) parameters were determined. SV processing prevented the growth of aerobic and anaerobic psychrotrophs, lactic acid bacteria, molds and yeasts and Enterobacteriaceae. There were no relevant changes in pH, water activity, TBARS, CIELab color associated with cooked salmon spoilage. Instrumental texture data were contradictory. Slight decrease in lactic acid levels was found. In contrast, the SV cooked salmon suffered considerable sensory deterioration during its refrigerated storage, consisting of severe losses of cooked salmon odor and flavor, slight rancidity, discoloration associated with white precipitation, and moderates softness, and loss of chewiness and juiciness. No acidification, putrefaction or relevant rancidity was detected. The sensory spoilage preceded microbiological and physical-chemical spoilage, suggesting that microbiological quality alone may overestimate the shelf life of SV cooked salmon.

  12. Individual and social learning processes involved in the acquisition and generalization of tool use in macaques

    PubMed Central

    Macellini, S.; Maranesi, M.; Bonini, L.; Simone, L.; Rozzi, S.; Ferrari, P. F.; Fogassi, L.

    2012-01-01

    Macaques can efficiently use several tools, but their capacity to discriminate the relevant physical features of a tool and the social factors contributing to their acquisition are still poorly explored. In a series of studies, we investigated macaques' ability to generalize the use of a stick as a tool to new objects having different physical features (study 1), or to new contexts, requiring them to adapt the previously learned motor strategy (study 2). We then assessed whether the observation of a skilled model might facilitate tool-use learning by naive observer monkeys (study 3). Results of study 1 and study 2 showed that monkeys trained to use a tool generalize this ability to tools of different shape and length, and learn to adapt their motor strategy to a new task. Study 3 demonstrated that observing a skilled model increases the observers' manipulations of a stick, thus facilitating the individual discovery of the relevant properties of this object as a tool. These findings support the view that in macaques, the motor system can be modified through tool use and that it has a limited capacity to adjust the learnt motor skills to a new context. Social factors, although important to facilitate the interaction with tools, are not crucial for tool-use learning. PMID:22106424

  13. Health effects of atmospheric particulates: a medical geology perspective.

    PubMed

    Duzgoren-Aydin, Nurdan S

    2008-01-01

    In this review, atmospheric particulates as composite airborne earth materials often containing both natural and anthropogenic components were examined in the context of medical geology. Despite a vast number of both experimental and epidemiological studies confirming the direct and indirect links between atmospheric particulates and human health, the exact nature of mechanisms affecting the particulate-induced pathogenesis largely remains unexplored. Future in depth research on these areas would be most successful if potential mechanisms are examined with reference to the physical (e.g., size, shape and surface), chemical, mineralogical and source characteristics of particulate matters. The underlying goal of this review was to present the relevant terminology and processes proposed in the literature to explain the interfaces and interactions between atmospheric particles and human body within the framework of "atmospheric particle cycles." The complexities of the interactions were demonstrated through case studies focusing on particulate matter air pollution and malignant mesothelioma occurrences due to environmental exposure to erionite-a fibrous zeolite mineral. There is an urgent need for a standard protocol or speciation methods applicable to earth-materials to guide and streamline studies on etiology of mineral-induced diseases. This protocol or speciation methods should provide relevant procedures to determine the level and extent of physical, chemical and mineralogical heterogeneity of particulate matters as well as quantitative in-situ particulate characteristics.

  14. Monte Carlo simulation of ion-material interactions in nuclear fusion devices

    NASA Astrophysics Data System (ADS)

    Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.

    2017-06-01

    One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.

  15. Mobile applications for participation at the shopping mall: content analysis and usability for persons with physical disabilities and communication or cognitive limitations.

    PubMed

    Auger, Claudine; Leduc, Emilie; Labbé, Delphine; Guay, Cassioppée; Fillion, Brigitte; Bottari, Carolina; Swaine, Bonnie

    2014-12-01

    The aim of this exploratory study was to determine the important features in content and usability of existing mobile applications evaluating environmental barriers and facilitators (EBF) to participation for persons with physical disabilities presenting mild communication or cognitive limitations. A rigorous process based on a user-centered design approach led to the identification of two relevant mobile applications to evaluate the EBF. An accessibility expert, the research team as well as five users then tested the mobile applications in a shopping mall. A thematic content analysis of the research team's and users' comments established 10 categories of key features that adequately respond to the needs of the clientele targeted in this study. In terms of content, granularity and contextualization of the information provided were considered important. With respect to usability, relevant features were place finding, rating system, presentation of results, compatibility, user-friendliness, aesthetics, credibility of the information as well as connectivity/interactiveness. The research team and the users agreed on some aspects such as aesthetics, but had different perspectives on features such as the rating system or the connectivity/interactiveness of the application. The users proposed new features suggesting that the existing mobile applications did not correspond to all their needs.

  16. Overview of Icing Physics Relevant to Scaling

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    An understanding of icing physics is required for the development of both scaling methods and ice-accretion prediction codes. This paper gives an overview of our present understanding of the important physical processes and the associated similarity parameters that determine the shape of Appendix C ice accretions. For many years it has been recognized that ice accretion processes depend on flow effects over the model, on droplet trajectories, on the rate of water collection and time of exposure, and, for glaze ice, on a heat balance. For scaling applications, equations describing these events have been based on analyses at the stagnation line of the model and have resulted in the identification of several non-dimensional similarity parameters. The parameters include the modified inertia parameter of the water drop, the accumulation parameter and the freezing fraction. Other parameters dealing with the leading edge heat balance have also been used for convenience. By equating scale expressions for these parameters to the values to be simulated a set of equations is produced which can be solved for the scale test conditions. Studies in the past few years have shown that at least one parameter in addition to those mentioned above is needed to describe surface-water effects, and some of the traditional parameters may not be as significant as once thought. Insight into the importance of each parameter, and the physical processes it represents, can be made by viewing whether ice shapes change, and the extent of the change, when each parameter is varied. Experimental evidence is presented to establish the importance of each of the traditionally used parameters and to identify the possible form of a new similarity parameter to be used for scaling.

  17. Integrating research evidence and physical activity policy making-REPOPA project.

    PubMed

    Aro, Arja R; Bertram, Maja; Hämäläinen, Riitta-Maija; Van De Goor, Ien; Skovgaard, Thomas; Valente, Adriana; Castellani, Tommaso; Chereches, Razvan; Edwards, Nancy

    2016-06-01

    Evidence shows that regular physical activity is enhanced by supporting environment. Studies are needed to integrate research evidence into health enhancing, cross-sector physical activity (HEPA) policy making. This article presents the rationale, study design, measurement procedures and the initial results of the first phase of six European countries in a five-year research project (2011-2016), REsearch into POlicy to enhance Physical Activity (REPOPA). REPOPA is programmatic research; it consists of linked studies; the first phase studied the use of evidence in 21 policies in implementation to learn more in depth from the policy making process and carried out 86 qualitative stakeholder interviews. The second, ongoing phase builds on the central findings of the first phase in each country; it consists of two sets of interventions: game simulations to study cross-sector collaboration and organizational change processes in the use of evidence and locally tailored interventions to increase knowledge integration. The results of the first two study phases will be tested and validated among policy makers and other stakeholders in the third phase using a Delphi process. Initial results from the first project phase showed the lack of explicit evidence use in HEPA policy making. Facilitators and barriers of the evidence use were the availability of institutional resources and support but also networking between researchers and policy makers. REPOPA will increase understanding use of research evidence in different contexts; develop guidance and tools and establish sustainable structures such as networks and platforms between academics and policy makers across relevant sectors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Measurement theory in local quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp

    In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less

  19. Toward better physics labs for future biologists

    NASA Astrophysics Data System (ADS)

    Moore, K.; Giannini, J.; Losert, W.

    2014-05-01

    We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been developed and tested in two small test classes at the University of Maryland, College Park (UMD) in 2012-2013. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. These prerequisites permit the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce students to research-grade equipment and modern physics analysis tools in contexts relevant to biology while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Preliminary student response results from these two classes are discussed.

  20. Soft matter food physics--the physics of food and cooking.

    PubMed

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  1. Parental perceptions of facilitators and barriers to physical activity for children with intellectual disabilities: A mixed methods systematic review.

    PubMed

    McGarty, Arlene M; Melville, Craig A

    2018-02-01

    There is a need increase our understanding of what factors affect physical activity participation in children with intellectual disabilities (ID) and develop effective methods to overcome barriers and increase activity levels. This study aimed to systematically review parental perceptions of facilitators and barriers to physical activity for children with ID. A systematic search of Embase, Medline, ERIC, Web of Science, and PsycINFO was conducted (up to and including August, 2017) to identify relevant papers. A meta-ethnography approach was used to synthesise qualitative and quantitative results through the generation of third-order themes and a theoretical model. Ten studies were included, which ranged from weak to strong quality. Seventy-one second-order themes and 12 quantitative results were extracted. Five third-order themes were developed: family, child factors, inclusive programmes and facilities, social motivation, and child's experiences of physical activity. It is theorised that these factors can be facilitators or barriers to physical activity, depending on the information and education of relevant others, e.g. parents and coaches. Parents have an important role in supporting activity in children with ID. Increasing the information and education given to relevant others could be an important method of turning barriers into facilitators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Increasing the frequency of physical activity very brief advice for cancer patients. Development of an intervention using the behaviour change wheel.

    PubMed

    Webb, J; Foster, J; Poulter, E

    2016-04-01

    Being physically active has multiple benefits for cancer patients. Despite this only 23% are active to the national recommendations and 31% are completely inactive. A cancer diagnosis offers a teachable moment in which patients might be more receptive to lifestyle changes. Nurses are well placed to offer physical activity advice, however, only 9% of UK nurses involved in cancer care talk to all cancer patients about physical activity. A change in the behaviour of nurses is needed to routinely deliver physical activity advice to cancer patients. As recommended by the Medical Research Council, behavioural change interventions should be evidenced-based and use a relevant and coherent theoretical framework to stand the best chance of success. This paper presents a case study on the development of an intervention to improve the frequency of delivery of very brief advice (VBA) on physical activity by nurses to cancer patients, using the Behaviour Change Wheel (BCW). The eight composite steps outlined by the BCW guided the intervention development process. An iterative approach was taken involving key stakeholders (n = 45), with four iterations completed in total. This was not defined a priori but emerged during the development process. A 60 min training intervention, delivered in either a face-to-face or online setting, with follow-up at eight weeks, was designed to improve the capability, opportunity and motivation of nurses to deliver VBA on physical activity to people living with cancer. This intervention incorporates seven behaviour change techniques of goal setting coupled with commitment; instructions on how to perform the behaviour; salience of the consequences of delivering VBA; a demonstration on how to give VBA, all delivered via a credible source with objects added to the environment to support behavioural change. The BCW is a time consuming process, however, it provides a useful and comprehensive framework for intervention development and greater control over intervention replication and evaluation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Designer's approach for scene selection in tests of preference and restoration along a continuum of natural to manmade environments.

    PubMed

    Hunter, MaryCarol R; Askarinejad, Ali

    2015-01-01

    It is well-established that the experience of nature produces an array of positive benefits to mental well-being. Much less is known about the specific attributes of green space which produce these effects. In the absence of translational research that links theory with application, it is challenging to design urban green space for its greatest restorative potential. This translational research provides a method for identifying which specific physical attributes of an environmental setting are most likely to influence preference and restoration responses. Attribute identification was based on a triangulation process invoking environmental psychology and aesthetics theories, principles of design founded in mathematics and aesthetics, and empirical research on the role of specific physical attributes of the environment in preference or restoration responses. From this integration emerged a list of physical attributes defining aspects of spatial structure and environmental content found to be most relevant to the perceptions involved with preference and restoration. The physical attribute list offers a starting point for deciphering which scene stimuli dominate or collaborate in preference and restoration responses. To support this, functional definitions and metrics-efficient methods for attribute quantification are presented. Use of these research products and the process for defining place-based metrics can provide (a) greater control in the selection and interpretation of the scenes/images used in tests of preference and restoration and (b) an expanded evidence base for well-being designers of the built environment.

  4. Designer's approach for scene selection in tests of preference and restoration along a continuum of natural to manmade environments

    PubMed Central

    Hunter, MaryCarol R.; Askarinejad, Ali

    2015-01-01

    It is well-established that the experience of nature produces an array of positive benefits to mental well-being. Much less is known about the specific attributes of green space which produce these effects. In the absence of translational research that links theory with application, it is challenging to design urban green space for its greatest restorative potential. This translational research provides a method for identifying which specific physical attributes of an environmental setting are most likely to influence preference and restoration responses. Attribute identification was based on a triangulation process invoking environmental psychology and aesthetics theories, principles of design founded in mathematics and aesthetics, and empirical research on the role of specific physical attributes of the environment in preference or restoration responses. From this integration emerged a list of physical attributes defining aspects of spatial structure and environmental content found to be most relevant to the perceptions involved with preference and restoration. The physical attribute list offers a starting point for deciphering which scene stimuli dominate or collaborate in preference and restoration responses. To support this, functional definitions and metrics—efficient methods for attribute quantification are presented. Use of these research products and the process for defining place-based metrics can provide (a) greater control in the selection and interpretation of the scenes/images used in tests of preference and restoration and (b) an expanded evidence base for well-being designers of the built environment. PMID:26347691

  5. Nuclear Physics in Space: What We Can Learn From Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moskalenko, Igor V.

    2004-01-01

    Studies and discoveries in cosmic-ray physics and generally in Astrophysics provide a fertile ground for research in many areas of Particle Physics and Cosmology, such as the search for dark matter, antimatter, new particles, and exotic physics, studies of the nucleosynthesis, origin of Galactic and extragalactic gamma-ray diffuse emission, formation of the large scale structure of the universe etc. In several years new missions are planned for cosmic-ray experiments, which will tremendously increase the quality and accuracy of cosmic-ray data. On the other hand, direct measurements of cosmic rays are possible in only one location on the outskirts of the Milky Way galaxy and present only a snapshot of very dynamic processes. It has been recently realized that direct information about the fluxes and spectra of cosmic rays in distant locations is provided by the Galactic diffuse gamma-rays, therefore, complementing the local cosmic-ray studies. A wealth of information is also contained in the isotopic abundances of cosmic rays, therefore, accurate evaluation of the isotopic production cross sections is of primary importance for Astrophysics of cosmic rays, studies of the galactic chemical evolution, and Cosmology. In this talk, I will show new results obtained with GALPROP, the most advanced numerical model for cosmic-ray propagation, which includes in a self-consistent way all cosmic-ray species (stable and long-lived radioactive isotopes from H to Ni, antiprotons, positrons and electrons, gamma rays and synchrotron radiation), and all relevant processes and reactions.

  6. High-performance coupled poro-hydro-mechanical models to resolve fluid escape pipes

    NASA Astrophysics Data System (ADS)

    Räss, Ludovic; Makhnenko, Roman; Podladchikov, Yury

    2017-04-01

    Field observations and laboratory experiments exhibit inelastic deformation features arising in many coupled settings relevant to geo-applications. These irreversible deformations and their specific patterns suggest a rather ductile or brittle mechanism, such as viscous creep or micro cracks, taking place on both geological (long) and human (short) timescales. In order to understand the underlying mechanisms responsible for these deformation features, there is a current need to accurately resolve the non-linearities inherent to strongly coupled physical processes. Among the large variety of modelling tools and softwares available nowadays in the community, very few are capable to efficiently solve coupled systems with high accuracy in both space and time and run efficiently on modern hardware. Here, we propose a robust framework to solve coupled multi-physics hydro-mechanical processes on very high spatial and temporal resolution in both two and three dimensions. Our software relies on the Finite-Difference Method and a pseudo-transient scheme is used to converge to the implicit solution of the system of poro-visco-elasto-plastic equations at each physical time step. The rheology including viscosity estimates for major reservoir rock types is inferred from novel lab experiments and confirms the ease of flow of sedimentary rocks. Our results propose a physical mechanism responsible for the generation of high permeability pathways in fluid saturated porous media and predict their propagation in rates observable on operational timescales. Finally, our software scales linearly on more than 5000 GPUs.

  7. Written threat: Electrophysiological evidence for an attention bias to affective words in social anxiety disorder.

    PubMed

    Wabnitz, Pascal; Martens, Ulla; Neuner, Frank

    2016-01-01

    Social anxiety disorder (SAD) is associated with heightened sensitivity to threat cues, typically represented by emotional facial expressions. To examine if this bias can be transferred to a general hypersensitivity or whether it is specific to disorder relevant cues, we investigated electrophysiological correlates of emotional word processing (alpha activity and event-related potentials) in 20 healthy participants and 20 participants with SAD. The experimental task was a silent reading of neutral, positive, physically threatening and socially threatening words (the latter were abusive swear words) while responding to a randomly presented dot. Subsequently, all participants were asked to recall as many words as possible during an unexpected recall test. Participants with SAD showed blunted sensory processing followed by a rapid processing of emotional words during early stages (early posterior negativity - EPN). At later stages, all participants showed enhanced processing of negative (physically and socially threatening) compared to neutral and positive words (N400). Moreover, at later processing stages alpha activity was increased specifically for negative words in participants with SAD but not in healthy controls. Recall of emotional words for all subjects was best for socially threatening words, followed by negative and positive words irrespective of social anxiety. The present findings indicate that SAD is associated with abnormalities in emotional word processing characterised by early hypervigilance to emotional cues followed by cognitive avoidance at later processing stages. Most importantly, the specificity of these attentional biases seems to change as a function of time with a general emotional bias at early and a more specific bias at later processing stages.

  8. Process-based reference conditions: An alternative approach for managed river systems

    NASA Astrophysics Data System (ADS)

    Grams, P.; Melis, T.; Wright, S.; Schmidt, J.; Topping, D.

    2008-12-01

    Physical reference conditions, whether based on historic information or the condition of nearby less impaired systems, provide necessary information that contributes to an assessment of stream condition and the nature of channel transformation. In many cases, however, the utility of this traditional 'reference' approach may end at the assessment stage and not be applicable to establishing and implementing restoration goals. Ongoing impacts such as continued existence of an upstream dam or the persistence of invasive vegetation may render restoration based on a physical reference infeasible. In these circumstances, an alternative approach is to identify and describe reference processes in place of physical reference conditions. This is the case for the Colorado River where large dams, a commitment to hydropower production, and legal mandates for regional distribution and off- channel consumption of water greatly reduce the relevance of historical conditions in setting goals for rehabilitation. In this setting, two strategies are available for setting reference conditions. One is maintenance of post-dam sediment mass balance, which attempts to ensure that the channel does not continue to degrade or aggrade and that riverine habitats do not continue to diverge from their historical condition. Post- dam sediment mass balance can be quantified at a reconnaissance or project scale. The second strategy is to define key processes that maintain the native ecosystem. These processes may, or may not, be consistent with maintenance of sediment mass balance, but they may be key to rejuvenation of spawning and rearing habitats, maintenance of historical ranges of temperature and turbidity, maintenance of a sustainable food base for the native aquatic community, or maintaining other riverine resources. Both strategies require careful monitoring of processes (e.g. sediment flux), which may add considerably to the cost and complexity of a monitoring program. An additional challenge in adopting the second strategy is that it is difficult to define when a process is adequately restored, since many ecosystem processes collectively limit recovery of populations of native communities.

  9. At the Very Root of the Development of Interest: Using Human Body Contexts to Improve Women's Emotional Engagement in Introductory Physics

    ERIC Educational Resources Information Center

    Allaire-Duquette, Geneviève; Charland, Patrick; Riopel, Martin

    2014-01-01

    In physics, women find contexts concerning human biology, medical applications, or natural phenomena highly relevant (Hoffmann, 2002), and the rareness or absence of these in physics curricula may make it more difficult for women to develop and maintain their interest in physics. To date, research in physics education addressing student's…

  10. The International Safety Framework for nuclear power source applications in outer space-Useful and substantial guidance

    NASA Astrophysics Data System (ADS)

    Summerer, L.; Wilcox, R. E.; Bechtel, R.; Harbison, S.

    2015-06-01

    In 2009, the International Safety Framework for Nuclear Power Source Applications in Outer Space was adopted, following a multi-year process that involved all major space faring nations under the auspices of a partnership between the UN Committee on the Peaceful Uses of Outer Space and the International Atomic Energy Agency. The Safety Framework reflects an international consensus on best practices to achieve safety. Following the 1992 UN Principles Relevant to the Use of Nuclear Power Sources in Outer Space, it is the second attempt by the international community to draft guidance promoting the safety of applications of nuclear power sources in space missions. NPS applications in space have unique safety considerations compared with terrestrial applications. Mission launch and outer space operational requirements impose size, mass and other space environment limitations not present for many terrestrial nuclear facilities. Potential accident conditions could expose nuclear power sources to extreme physical conditions. The Safety Framework is structured to provide guidance for both the programmatic and technical aspects of safety. In addition to sections containing specific guidance for governments and for management, it contains technical guidance pertinent to the design, development and all mission phases of space NPS applications. All sections of the Safety Framework contain elements directly relevant to engineers and space mission designers for missions involving space nuclear power sources. The challenge for organisations and engineers involved in the design and development processes of space nuclear power sources and applications is to implement the guidance provided in the Safety Framework by integrating it into the existing standard space mission infrastructure of design, development and operational requirements, practices and processes. This adds complexity to the standard space mission and launch approval processes. The Safety Framework is deliberately generic to remain relevantly independent of technological progress, of national organisational setups and of space mission types. Implementing its guidance therefore leaves room for interpretation and adaptation. Relying on reported practices, we analyse the guidance particularly relevant to engineers and space mission designers.

  11. Effects of Coherence and Relevance on Shallow and Deep Text Processing.

    ERIC Educational Resources Information Center

    Lehman, Stephen; Schraw, Gregory

    2002-01-01

    Examines the effects of coherence and relevance on shallow and deeper text processing, testing the hypothesis that enhancing the relevance of text segments compensates for breaks in local and global coherence. Results reveal that breaks in local coherence had no effect on any outcome measures, whereas relevance enhanced deeper processing.…

  12. Feasibility and Reliability of Physical Fitness Tests in Older Adults with Intellectual Disability: A Pilot Study

    ERIC Educational Resources Information Center

    Hilgenkamp, Thessa I. M.; van Wijck, Ruud; Evenhuis, Heleen M.

    2012-01-01

    Background: Physical fitness is relevant for wellbeing and health, but knowledge on the feasibility and reliability of instruments to measure physical fitness for older adults with intellectual disability is lacking. Methods: Feasibility and test-retest reliability of a physical fitness test battery (Box and Block Test, Response Time Test, walking…

  13. Engaging Students in Physical Education: Key Challenges and Opportunities for Physical Educators in Urban Settings

    ERIC Educational Resources Information Center

    Sliwa, Sarah; Nihiser, Allison; Lee, Sarah; McCaughtry, Nathan; Culp, Brian; Michael, Shannon

    2017-01-01

    In October 2009, "JOPERD" published a special issue about "Engaging Urban Youths in Physical Education and Physical Activity." Seven years later, many of the considerations mentioned remain relevant, such as large class sizes, limited access to equipment, and the lack of a dedicated gymnasium or outdoor space. These structural…

  14. (Fundamental of hadron physics from the theoretical and the experimental points of view)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luccio, A.

    1991-02-19

    A winter course at a School of Nuclear Physics was organized by the Italian Government Agency INFN. Lectures included fundamental of Hadron Physics from the theoretical and the experimental points of view. The present traveler was invited to hold a course on relevant accelerator physics. All expenses were paid by the Italians.

  15. Determinants of Physical Activity in Adolescents and Young Adults: The Basis for High School and College Physical Education To Promote Active Lifestyles.

    ERIC Educational Resources Information Center

    Nahas, Markus V.; Goldfine, Bernie; Collins, Mitchell A.

    2003-01-01

    Reviews factors that influence high school and college students' physical activity adoption and/or maintenance based on recent behavioral research. Relevant determinants of physical activity include self-efficacy, intentions, perceived barriers, enjoyment, stages of change, and social support. Suggestions for behavior modifications to increase…

  16. Brettanomyces bruxellensis yeasts: impact on wine and winemaking.

    PubMed

    Agnolucci, Monica; Tirelli, Antonio; Cocolin, Luca; Toffanin, Annita

    2017-09-21

    Yeasts belonging to the Brettanomyces/Dekkera genus are non-conventional yeasts, which affect winemaking by causing wine spoilage all over the world. This mini-review focuses on recent results concerning the presence of Brettanomyces bruxellensis throughout the wine processing chain. Here, culture-dependent and independent methods to detect this yeast on grapes and at the very early stage of wine production are encompassed. Chemical, physical and biological tools, devised for the prevention and control of such a detrimental species during winemaking are also presented. Finally, the mini-review identifies future research areas relevant to the improvement of wine safety and sensory profiles.

  17. Conference on the Physics and Chemistry of Semiconductor Interfaces (26th) Held in the Catamaran Resort Hotel in Pacific Beach, San Diego, California on 17 January 1999 to 21 January 1999. Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena

    DTIC Science & Technology

    2000-01-27

    99)03604-5] I. INTRODUCTION Electron spin is becoming increasingly popular in elec- tronics. New devices, now generally referred to as spintron...relevant spin relaxation mechanisms are very sensitive to factors like mo- bility (which is higher in QWs), electron-hole separation (smaller in...from a naive theory . In addition to explaining experiment, the spin -hot-spot model predicts the behavior of other polyvalent metals. The model is

  18. Interfacial solvation thermodynamics

    NASA Astrophysics Data System (ADS)

    Ben-Amotz, Dor

    2016-10-01

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies.

  19. M4SF-17LL010302072: The Roles of Diffusion and Corrosion in Radionuclide Retardation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavarin, Mavrik; Balboni, E.; Atkins-Duffin, Cindy

    This progress report (Level 4 Milestone Number M4SF-17LL010302072) summarizes research conducted at Lawrence Livermore National Laboratory (LLNL) within the Crystalline Disposal R&D Activity Number M4SF-17LL01030207 and Crystalline International Collaborations Activity Number M4SF-17LL01030208. The focus of this research is the interaction of radionuclides with Engineered Barrier System (EBS) and host rock materials at various physicochemical conditions relevant to subsurface repository environments. They include both chemical and physical processes such as solubility, sorption, and diffusion.

  20. Developing and Assessing Curriculum on the Physics of Medical Instruments

    ERIC Educational Resources Information Center

    Christensen, Warren; Johnson, James K.; Van Ness, Grace R.; Mylott, Elliot; Dunlap, Justin C.; Anderson, Elizabeth A.; Widenhorn, Ralf

    2013-01-01

    Undergraduate educational settings often struggle to provide students with authentic biologically or medically relevant situations and problems that simultaneously improve their understanding of physics. Through exercises and laboratory activities developed in an elective Physics in Biomedicine course for upper-level biology or pre-health majors…

  1. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  2. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6-18.

    PubMed

    Dobbins, Maureen; De Corby, Kara; Robeson, Paula; Husson, Heather; Tirilis, Daiva

    2009-01-21

    The World Health Organization estimates that 1.9 million deaths worldwide are attributable to physical inactivity. Chronic diseases associated with physical inactivity include cancer, diabetes and coronary heart disease. The purpose of this systematic review is to summarize the evidence of the effectiveness of school-based interventions in promoting physical activity and fitness in children and adolescents. The search strategy included searching several databases. In addition, reference lists of included articles and background papers were reviewed for potentially relevant studies, as well as references from relevant Cochrane reviews. Primary authors of included studies were contacted as needed for additional information. To be included, the intervention had to be relevant to public health practice, implemented, facilitated, or promoted by staff in local public health units, implemented in a school setting and aimed at increasing physical activity, report on outcomes for children and adolescents (aged 6 to 18 years), and use a prospective design with a control group. Standardized tools were used by two independent reviewers to rate each study's methodological quality and for data extraction. Where discrepancies existed discussion occurred until consensus was reached. The results were summarized narratively due to wide variations in the populations, interventions evaluated and outcomes measured. 13,841 titles were identified and screened and 482 articles were retrieved. Multiple publications on the same project were combined and counted as one project, resulting in 395 distinct project accounts (studies). Of the 395 studies 104 were deemed relevant and of those, four were assessed as having strong methodological quality, 22 were of moderate quality and 78 were considered weak. In total 26 studies were included in the review. There is good evidence that school-based physical activity interventions have a positive impact on four of the nine outcome measures. Specifically positive effects were observed for duration of physical activity, television viewing, VO2 max, and blood cholesterol. Generally school-based interventions had no effect on leisure time physical activity rates, systolic and diastolic blood pressure, body mass index, and pulse rate. At a minimum, a combination of printed educational materials and changes to the school curriculum that promote physical activity result in positive effects. Given that there are no harmful effects and that there is some evidence of positive effects on lifestyle behaviours and physical health status measures, ongoing physical activity promotion in schools is recommended at this time.

  3. Intriguing optoelectronic properties of metal halide perovskites

    DOE PAGES

    Manser, Joseph S.; Christians, Jeffrey A.; Kamat, Prashant V.

    2016-06-21

    Here, a new chapter in the long and distinguished history of perovskites is being written with the breakthrough success of metal halide perovskites (MHPs) as solution-processed photovoltaic (PV) absorbers. The current surge in MHP research has largely arisen out of their rapid progress in PV devices; however, these materials are potentially suitable for a diverse array of optoelectronic applications. Like oxide perovskites, MHPs have ABX 3 stoichiometry, where A and B are cations and X is a halide anion. Here, the underlying physical and photophysical properties of inorganic (A = inorganic) and hybrid organic-inorganic (A = organic) MHPs are reviewedmore » with an eye toward their potential application in emerging optoelectronic technologies. Significant attention is given to the prototypical compound methylammonium lead iodide (CH 3NH 3PbI 3) due to the preponderance of experimental and theoretical studies surrounding this material. We also discuss other salient MHP systems, including 2- dimensional compounds, where relevant. More specifically, this review is a critical account of the interrelation between MHP electronic structure, absorption, emission, carrier dynamics and transport, and other relevant photophysical processes that have propelled these materials to the forefront of modern optoelectronics research.« less

  4. 2D and 3D virtual interactive laboratories of physics on Unity platform

    NASA Astrophysics Data System (ADS)

    González, J. D.; Escobar, J. H.; Sánchez, H.; De la Hoz, J.; Beltrán, J. R.

    2017-12-01

    Using the cross-platform game engine Unity, we develop virtual laboratories for PC, consoles, mobile devices and website as an innovative tool to study physics. There is extensive uptake of ICT in the teaching of science and its impact on the learning, and considering the limited availability of laboratories for physics teaching and the difficulties this causes in the learning of school students, we design the virtual laboratories to enhance studentâĂŹs knowledge of concepts in physics. To achieve this goal, we use Unity due to provide support bump mapping, reflection mapping, parallax mapping, dynamics shadows using shadows maps, full-screen post-processing effects and render-to-texture. Unity can use the best variant for the current video hardware and, if none are compatible, to use an alternative shader that may sacrifice features for performance. The control over delivery to mobile devices, web browsers, consoles and desktops is the main reason Unity is the best option among the same kind cross-platform. Supported platforms include Android, Apple TV, Linux, iOS, Nintendo 3DS line, macOS, PlayStation 4, Windows Phone 8, Wii but also an asset server and Nvidia’s PhysX physics engine which is the most relevant tool on Unity for our PhysLab.

  5. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    NASA Astrophysics Data System (ADS)

    Reisenegger, Andreas; Zepeda, Felipe S.

    2016-03-01

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.

  6. Physics Mining of Multi-Source Data Sets

    NASA Technical Reports Server (NTRS)

    Helly, John; Karimabadi, Homa; Sipes, Tamara

    2012-01-01

    Powerful new parallel data mining algorithms can produce diagnostic and prognostic numerical models and analyses from observational data. These techniques yield higher-resolution measures than ever before of environmental parameters by fusing synoptic imagery and time-series measurements. These techniques are general and relevant to observational data, including raster, vector, and scalar, and can be applied in all Earth- and environmental science domains. Because they can be highly automated and are parallel, they scale to large spatial domains and are well suited to change and gap detection. This makes it possible to analyze spatial and temporal gaps in information, and facilitates within-mission replanning to optimize the allocation of observational resources. The basis of the innovation is the extension of a recently developed set of algorithms packaged into MineTool to multi-variate time-series data. MineTool is unique in that it automates the various steps of the data mining process, thus making it amenable to autonomous analysis of large data sets. Unlike techniques such as Artificial Neural Nets, which yield a blackbox solution, MineTool's outcome is always an analytical model in parametric form that expresses the output in terms of the input variables. This has the advantage that the derived equation can then be used to gain insight into the physical relevance and relative importance of the parameters and coefficients in the model. This is referred to as physics-mining of data. The capabilities of MineTool are extended to include both supervised and unsupervised algorithms, handle multi-type data sets, and parallelize it.

  7. Burnout during residency training: a literature review.

    PubMed

    Ishak, Waguih William; Lederer, Sara; Mandili, Carla; Nikravesh, Rose; Seligman, Laurie; Vasa, Monisha; Ogunyemi, Dotun; Bernstein, Carol A

    2009-12-01

    Burnout is a state of mental and physical exhaustion related to work or care giving activities. Burnout during residency training has gained significant attention secondary to concerns regarding job performance and patient care. This article reviews the relevant literature on burnout in order to provide information to educators about its prevalence, features, impact, and potential interventions. Studies were identified through a Medline and PsychInfo search from 1974 to 2009. Fifty-one studies were identified. Definition and description of burnout and measurement methods are presented followed by a thorough review of the studies. An examination of the burnout literature reveals that it is prevalent in medical students (28%-45%), residents (27%-75%, depending on specialty), as well as practicing physicians. Psychological distress and physical symptoms can impact work performance and patient safety. Distress during medical school can lead to burnout, which in turn can result in negative consequences as a working physician. Burnout also poses significant challenges during early training years in residency. Time demands, lack of control, work planning, work organization, inherently difficult job situations, and interpersonal relationships, are considered factors contributing to residents' burnout. Potential interventions include workplace-driven and individual-driven measures. Workplace interventions include education about burnout, workload modifications, increasing the diversity of work duties, stress management training, mentoring, emotional intelligence training, and wellness workshops. Individual-driven behavioral, social, and physical activities include promoting interpersonal professional relations, meditation, counseling, and exercise. Educators need to develop an active awareness of burnout and ought to consider incorporating relevant instruction and interventions during the process of training resident physicians.

  8. A Data-Driven Approach to Develop Physically Sound Predictors: Application to Depth-Averaged Velocities and Drag Coefficients on Vegetated Flows

    NASA Astrophysics Data System (ADS)

    Tinoco, R. O.; Goldstein, E. B.; Coco, G.

    2016-12-01

    We use a machine learning approach to seek accurate, physically sound predictors, to estimate two relevant flow parameters for open-channel vegetated flows: mean velocities and drag coefficients. A genetic programming algorithm is used to find a robust relationship between properties of the vegetation and flow parameters. We use data published from several laboratory experiments covering a broad range of conditions to obtain: a) in the case of mean flow, an equation that matches the accuracy of other predictors from recent literature while showing a less complex structure, and b) for drag coefficients, a predictor that relies on both single element and array parameters. We investigate different criteria for dataset size and data selection to evaluate their impact on the resulting predictor, as well as simple strategies to obtain only dimensionally consistent equations, and avoid the need for dimensional coefficients. The results show that a proper methodology can deliver physically sound models representative of the processes involved, such that genetic programming and machine learning techniques can be used as powerful tools to study complicated phenomena and develop not only purely empirical, but "hybrid" models, coupling results from machine learning methodologies into physics-based models.

  9. Networking—a statistical physics perspective

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho; Saad, David

    2013-03-01

    Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.

  10. RELEVANCE OF WHOLE BODY VIBRATION EXERCISE IN SPORT: A SHORT REVIEW WITH SOCCER, DIVER AND COMBAT SPORT.

    PubMed

    Morel, Danielle Soares; Dionello, Carla da Fontoura; Moreira-Marconi, Eloá; Brandão-Sobrinho-Neto, Samuel; Paineiras-Domingos, Laisa Liane; Souza, Patrícia Lopes; Sá-Caputo, Danúbia da Cunha; Dias, Glenda; Figueiredo, Claudia; Carmo, Roberto Carlos Resende; Paiva, Patrícia de Castro; Sousa-Gonçalves, Cintia Renata; Kütter, Cristiane Ribeiro; Guedes-Aguiar, Eliane de Oliveira; Cloak, Ross; Bernardo-Filho, Mario

    2017-01-01

    Whole body vibration exercise (WBVE) has been used as a safe and accessible exercise and important reviews have been published about the use of this exercise to manage diseases and to improve physical conditions of athletes The aim of this paper is to highlight the relevance of WBVE to soccer players, divers and combat athletes. This study was made through a systematic review of publications involving WBVE and the selected sports in two databases (Pubmed and PEDRo). It were identified 10 studies involving WBVE and sports (6 of soccer, 2 of diving and 2 of sport combat) with 156 subjects (80 soccer players, 32 divers and 44 combat athletes), with age from 17 to 44 years old. The use of WBVE has proven to be a safe and useful strategy to improve the physical conditions of players of different sports. These findings may have clinical relevance and should be considered as a strategy to be used to try improve the physical conditions of players.

  11. Wave heating of the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Arregui, Iñigo

    2015-04-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere.

  12. The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference

    PubMed Central

    Lieberman, Matthew D.; Eisenberger, Naomi I.

    2015-01-01

    Dorsal anterior cingulate cortex (dACC) activation is commonly observed in studies of pain, executive control, conflict monitoring, and salience processing, making it difficult to interpret the dACC’s specific psychological function. Using Neurosynth, an automated brainmapping database [of over 10,000 functional MRI (fMRI) studies], we performed quantitative reverse inference analyses to explore the best general psychological account of the dACC function P(Ψ process|dACC activity). Results clearly indicated that the best psychological description of dACC function was related to pain processing—not executive, conflict, or salience processing. We conclude by considering that physical pain may be an instance of a broader class of survival-relevant goals monitored by the dACC, in contrast to more arbitrary temporary goals, which may be monitored by the supplementary motor area. PMID:26582792

  13. On Roles of Models in Information Systems

    NASA Astrophysics Data System (ADS)

    Sølvberg, Arne

    The increasing penetration of computers into all aspects of human activity makes it desirable that the interplay among software, data and the domains where computers are applied is made more transparent. An approach to this end is to explicitly relate the modeling concepts of the domains, e.g., natural science, technology and business, to the modeling concepts of software and data. This may make it simpler to build comprehensible integrated models of the interactions between computers and non-computers, e.g., interaction among computers, people, physical processes, biological processes, and administrative processes. This chapter contains an analysis of various facets of the modeling environment for information systems engineering. The lack of satisfactory conceptual modeling tools seems to be central to the unsatisfactory state-of-the-art in establishing information systems. The chapter contains a proposal for defining a concept of information that is relevant to information systems engineering.

  14. The dynamics of meaningful social interactions and the emergence of collective knowledge

    PubMed Central

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-01-01

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games. PMID:26174482

  15. Wave heating of the solar atmosphere

    PubMed Central

    Arregui, Iñigo

    2015-01-01

    Magnetic waves are a relevant component in the dynamics of the solar atmosphere. Their significance has increased because of their potential as a remote diagnostic tool and their presumed contribution to plasma heating processes. We discuss our current understanding of coronal heating by magnetic waves, based on recent observational evidence and theoretical advances. The discussion starts with a selection of observational discoveries that have brought magnetic waves to the forefront of the coronal heating discussion. Then, our theoretical understanding of the nature and properties of the observed waves and the physical processes that have been proposed to explain observations are described. Particular attention is given to the sequence of processes that link observed wave characteristics with concealed energy transport, dissipation and heat conversion. We conclude with a commentary on how the combination of theory and observations should help us to understand and quantify magnetic wave heating of the solar atmosphere. PMID:25897091

  16. The dynamics of meaningful social interactions and the emergence of collective knowledge

    NASA Astrophysics Data System (ADS)

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-07-01

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.

  17. The dynamics of meaningful social interactions and the emergence of collective knowledge.

    PubMed

    Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka

    2015-07-15

    Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions &Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor's expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.

  18. The U.S. national nuclear forensics library, nuclear materials information program, and data dictionary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael

    2011-02-17

    Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less

  19. Understanding and Defining sociohydrological spaces and their boundaries: an interdisciplinary perspective from collective fieldwork

    NASA Astrophysics Data System (ADS)

    Riaux, Jeanne; Leduc, Christian; Ben Aïssa, Nadhira; Burte, Julien; Calvez, Roger; habaieb, Hamadi; Ogilvie, Andrew; Massuel, Sylvain; Rochette, Romain

    2014-05-01

    Focussing on the interactions between water and society, researchers from various scientific disciplines have worked together on a common case study, the Merguellil catchment in Central Tunisia. The aim was to foster interactions between wide-ranging disciplines and their associated approaches, as the segmented analysis of water resources, uses and management is known to limit the comprehensive understanding of water issues. One of the major difficulties in developing a interdisciplinary approach is defining a suitable common observation space or "territory". Research in social sciences notably showed that hydrological catchments, suited to integrated water resource management, are rarely relevant to socio-political issues (water transfers, management of interfluves, etc.). Likewise, hydrological research regularly highlights the mismatch between surface and ground water processes and boundaries. Hydrological, hydrogeological and sociological boundaries also fluctuate when considering different time frames, socio-political organisations and processes. Finally, a suitable observation space must also be coherent to the variety of local stakeholders involved in the research. The present paper addressed the question of what is a common multidisciplinary observation space? What approach can help define and identify boundaries that make sense to hydrologists, agronomists, anthropologists and local stakeholders? How do we reconcile physical limits and territories? In the first instance, we focus on the value and importance of fieldwork, crucial in anthropology, but equally important for hydrologists and agronomists. Through a mutual process of defining the limits and characteristics of our research object, relevant socio-hydrological spaces were able to emerge These were circumscribed through the physical characteristics (based upon hydrological boundaries and processes) and the human particularities (political organisation, productive activities) of the study area. The characteristics of these spaces are described and the differences between them are highlighted. The presence of surface water resources in the upper catchment and the reliance of riparian populations on these resources are shown to heavily condition the behaviour and boundaries of this sociohydrological space, when compared to the downstream Kairouan irrigation plain. Crucially, relevant observation scales can not be defined through an overlap of hydrological boundaries and socio-political territories. Furthermore the value and benefits of a commonly defined socio hydrological space are highlighted through the observed interactions between surface and ground water resources, hydro agricultural activities and the history of local populations. More widely, the paper also discusses the importance of historical trajectories, upscaling difficulties and the interactions which develop for and around water resources, which must be accounted for when defining a suitable socio-hydrological space.

  20. Children and Exercise: Appropriate Practices for Grades K-6

    ERIC Educational Resources Information Center

    Fisher, Michele

    2009-01-01

    Growth and development have a profound effect on physical fitness, response to exercise, and exercise programming in children. This article reviews the essential pediatric exercise physiology concepts relevant to physical education programs for K-6 children. Indices of physical fitness such as cardiorespiratory endurance, muscular strength, and…

Top