Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach
NASA Astrophysics Data System (ADS)
Bähr, Hermann; Hanssen, Ramon F.
2012-12-01
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
Increasing reliability of Gauss-Kronrod quadrature by Eratosthenes' sieve method
NASA Astrophysics Data System (ADS)
Adam, Gh.; Adam, S.
2001-04-01
The reliability of the local error estimates returned by the Gauss-Kronrod quadrature rules can be raised up to the theoretical 100% rate of success, under error estimate sharpening, provided a number of natural validating conditions are required. The self-validating scheme of the local error estimates, which is easy to implement and adds little supplementary computing effort, strengthens considerably the correctness of the decisions within the automatic adaptive quadrature.
A method of bias correction for maximal reliability with dichotomous measures.
Penev, Spiridon; Raykov, Tenko
2010-02-01
This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.
Schmidt, Frank L; Le, Huy; Ilies, Remus
2003-06-01
On the basis of an empirical study of measures of constructs from the cognitive domain, the personality domain, and the domain of affective traits, the authors of this study examine the implications of transient measurement error for the measurement of frequently studied individual differences variables. The authors clarify relevant reliability concepts as they relate to transient error and present a procedure for estimating the coefficient of equivalence and stability (L. J. Cronbach, 1947), the only classical reliability coefficient that assesses all 3 major sources of measurement error (random response, transient, and specific factor errors). The authors conclude that transient error exists in all 3 trait domains and is especially large in the domain of affective traits. Their findings indicate that the nearly universal use of the coefficient of equivalence (Cronbach's alpha; L. J. Cronbach, 1951), which fails to assess transient error, leads to overestimates of reliability and undercorrections for biases due to measurement error.
Error Estimation and Uncertainty Propagation in Computational Fluid Mechanics
NASA Technical Reports Server (NTRS)
Zhu, J. Z.; He, Guowei; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
Numerical simulation has now become an integral part of engineering design process. Critical design decisions are routinely made based on the simulation results and conclusions. Verification and validation of the reliability of the numerical simulation is therefore vitally important in the engineering design processes. We propose to develop theories and methodologies that can automatically provide quantitative information about the reliability of the numerical simulation by estimating numerical approximation error, computational model induced errors and the uncertainties contained in the mathematical models so that the reliability of the numerical simulation can be verified and validated. We also propose to develop and implement methodologies and techniques that can control the error and uncertainty during the numerical simulation so that the reliability of the numerical simulation can be improved.
Parrett, Charles; Johnson, D.R.; Hull, J.A.
1989-01-01
Estimates of streamflow characteristics (monthly mean flow that is exceeded 90, 80, 50, and 20 percent of the time for all years of record and mean monthly flow) were made and are presented in tabular form for 312 sites in the Missouri River basin in Montana. Short-term gaged records were extended to the base period of water years 1937-86, and were used to estimate monthly streamflow characteristics at 100 sites. Data from 47 gaged sites were used in regression analysis relating the streamflow characteristics to basin characteristics and to active-channel width. The basin-characteristics equations, with standard errors of 35% to 97%, were used to estimate streamflow characteristics at 179 ungaged sites. The channel-width equations, with standard errors of 36% to 103%, were used to estimate characteristics at 138 ungaged sites. Streamflow measurements were correlated with concurrent streamflows at nearby gaged sites to estimate streamflow characteristics at 139 ungaged sites. In a test using 20 pairs of gages, the standard errors ranged from 31% to 111%. At 139 ungaged sites, the estimates from two or more of the methods were weighted and combined in accordance with the variance of individual methods. When estimates from three methods were combined the standard errors ranged from 24% to 63 %. A drainage-area-ratio adjustment method was used to estimate monthly streamflow characteristics at seven ungaged sites. The reliability of the drainage-area-ratio adjustment method was estimated to be about equal to that of the basin-characteristics method. The estimate were checked for reliability. Estimates of monthly streamflow characteristics from gaged records were considered to be most reliable, and estimates at sites with actual flow record from 1937-86 were considered to be completely reliable (zero error). Weighted-average estimates were considered to be the most reliable estimates made at ungaged sites. (USGS)
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
Revised techniques for estimating peak discharges from channel width in Montana
Parrett, Charles; Hull, J.A.; Omang, R.J.
1987-01-01
This study was conducted to develop new estimating equations based on channel width and the updated flood frequency curves of previous investigations. Simple regression equations for estimating peak discharges with recurrence intervals of 2, 5, 10 , 25, 50, and 100 years were developed for seven regions in Montana. The standard errors of estimates for the equations that use active channel width as the independent variables ranged from 30% to 87%. The standard errors of estimate for the equations that use bankfull width as the independent variable ranged from 34% to 92%. The smallest standard errors generally occurred in the prediction equations for the 2-yr flood, 5-yr flood, and 10-yr flood, and the largest standard errors occurred in the prediction equations for the 100-yr flood. The equations that use active channel width and the equations that use bankfull width were determined to be about equally reliable in five regions. In the West Region, the equations that use bankfull width were slightly more reliable than those based on active channel width, whereas in the East-Central Region the equations that use active channel width were slightly more reliable than those based on bankfull width. Compared with similar equations previously developed, the standard errors of estimate for the new equations are substantially smaller in three regions and substantially larger in two regions. Limitations on the use of the estimating equations include: (1) The equations are based on stable conditions of channel geometry and prevailing water and sediment discharge; (2) The measurement of channel width requires a site visit, preferably by a person with experience in the method, and involves appreciable measurement errors; (3) Reliability of results from the equations for channel widths beyond the range of definition is unknown. In spite of the limitations, the estimating equations derived in this study are considered to be as reliable as estimating equations based on basin and climatic variables. Because the two types of estimating equations are independent, results from each can be weighted inversely proportional to their variances, and averaged. The weighted average estimate has a variance less than either individual estimate. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu
2018-02-01
Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.
Bayes Error Rate Estimation Using Classifier Ensembles
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2003-01-01
The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.
Large Sample Confidence Intervals for Item Response Theory Reliability Coefficients
ERIC Educational Resources Information Center
Andersson, Björn; Xin, Tao
2018-01-01
In applications of item response theory (IRT), an estimate of the reliability of the ability estimates or sum scores is often reported. However, analytical expressions for the standard errors of the estimators of the reliability coefficients are not available in the literature and therefore the variability associated with the estimated reliability…
A Comparison of Three Multivariate Models for Estimating Test Battery Reliability.
ERIC Educational Resources Information Center
Wood, Terry M.; Safrit, Margaret J.
1987-01-01
A comparison of three multivariate models (canonical reliability model, maximum generalizability model, canonical correlation model) for estimating test battery reliability indicated that the maximum generalizability model showed the least degree of bias, smallest errors in estimation, and the greatest relative efficiency across all experimental…
Reliability of drivers in urban intersections.
Gstalter, Herbert; Fastenmeier, Wolfgang
2010-01-01
The concept of human reliability has been widely used in industrial settings by human factors experts to optimise the person-task fit. Reliability is estimated by the probability that a task will successfully be completed by personnel in a given stage of system operation. Human Reliability Analysis (HRA) is a technique used to calculate human error probabilities as the ratio of errors committed to the number of opportunities for that error. To transfer this notion to the measurement of car driver reliability the following components are necessary: a taxonomy of driving tasks, a definition of correct behaviour in each of these tasks, a list of errors as deviations from the correct actions and an adequate observation method to register errors and opportunities for these errors. Use of the SAFE-task analysis procedure recently made it possible to derive driver errors directly from the normative analysis of behavioural requirements. Driver reliability estimates could be used to compare groups of tasks (e.g. different types of intersections with their respective regulations) as well as groups of drivers' or individual drivers' aptitudes. This approach was tested in a field study with 62 drivers of different age groups. The subjects drove an instrumented car and had to complete an urban test route, the main features of which were 18 intersections representing six different driving tasks. The subjects were accompanied by two trained observers who recorded driver errors using standardized observation sheets. Results indicate that error indices often vary between both the age group of drivers and the type of driving task. The highest error indices occurred in the non-signalised intersection tasks and the roundabout, which exactly equals the corresponding ratings of task complexity from the SAFE analysis. A comparison of age groups clearly shows the disadvantage of older drivers, whose error indices in nearly all tasks are significantly higher than those of the other groups. The vast majority of these errors could be explained by high task load in the intersections, as they represent difficult tasks. The discussion shows how reliability estimates can be used in a constructive way to propose changes in car design, intersection layout and regulation as well as driver training.
Lewis, Matthew S; Maruff, Paul; Silbert, Brendan S; Evered, Lis A; Scott, David A
2007-02-01
The reliable change index (RCI) expresses change relative to its associated error, and is useful in the identification of postoperative cognitive dysfunction (POCD). This paper examines four common RCIs that each account for error in different ways. Three rules incorporate a constant correction for practice effects and are contrasted with the standard RCI that had no correction for practice. These rules are applied to 160 patients undergoing coronary artery bypass graft (CABG) surgery who completed neuropsychological assessments preoperatively and 1 week postoperatively using error and reliability data from a comparable healthy nonsurgical control group. The rules all identify POCD in a similar proportion of patients, but the use of the within-subject standard deviation (WSD), expressing the effects of random error, as an error estimate is a theoretically appropriate denominator when a constant error correction, removing the effects of systematic error, is deducted from the numerator in a RCI.
A General Approach for Estimating Scale Score Reliability for Panel Survey Data
ERIC Educational Resources Information Center
Biemer, Paul P.; Christ, Sharon L.; Wiesen, Christopher A.
2009-01-01
Scale score measures are ubiquitous in the psychological literature and can be used as both dependent and independent variables in data analysis. Poor reliability of scale score measures leads to inflated standard errors and/or biased estimates, particularly in multivariate analysis. Reliability estimation is usually an integral step to assess…
Examples of Nonconservatism in the CARE 3 Program
NASA Technical Reports Server (NTRS)
Dotson, Kelly J.
1988-01-01
This paper presents parameter regions in the CARE 3 (Computer-Aided Reliability Estimation version 3) computer program where the program overestimates the reliability of a modeled system without warning the user. Five simple models of fault-tolerant computer systems are analyzed; and, the parameter regions where reliability is overestimated are given. The source of the error in the reliability estimates for models which incorporate transient fault occurrences was not readily apparent. However, the source of much of the error for models with permanent and intermittent faults can be attributed to the choice of values for the run-time parameters of the program.
A Bayesian approach to parameter and reliability estimation in the Poisson distribution.
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1972-01-01
For life testing procedures, a Bayesian analysis is developed with respect to a random intensity parameter in the Poisson distribution. Bayes estimators are derived for the Poisson parameter and the reliability function based on uniform and gamma prior distributions of that parameter. A Monte Carlo procedure is implemented to make possible an empirical mean-squared error comparison between Bayes and existing minimum variance unbiased, as well as maximum likelihood, estimators. As expected, the Bayes estimators have mean-squared errors that are appreciably smaller than those of the other two.
An empirical Bayes approach for the Poisson life distribution.
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1973-01-01
A smooth empirical Bayes estimator is derived for the intensity parameter (hazard rate) in the Poisson distribution as used in life testing. The reliability function is also estimated either by using the empirical Bayes estimate of the parameter, or by obtaining the expectation of the reliability function. The behavior of the empirical Bayes procedure is studied through Monte Carlo simulation in which estimates of mean-squared errors of the empirical Bayes estimators are compared with those of conventional estimators such as minimum variance unbiased or maximum likelihood. Results indicate a significant reduction in mean-squared error of the empirical Bayes estimators over the conventional variety.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
Estimating the densities of benzene-derived explosives using atomic volumes.
Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka
2018-02-09
The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.
USDA-ARS?s Scientific Manuscript database
Error in rater estimates of plant disease severity occur, and standard area diagrams (SADs) help improve accuracy and reliability. The effects of diagram number in a SAD set on accuracy and reliability is unknown. The objective of this study was to compare estimates of pecan scab severity made witho...
Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A
2018-05-15
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Copyright © 2018. Published by Elsevier Inc.
Processes and Procedures for Estimating Score Reliability and Precision
ERIC Educational Resources Information Center
Bardhoshi, Gerta; Erford, Bradley T.
2017-01-01
Precision is a key facet of test development, with score reliability determined primarily according to the types of error one wants to approximate and demonstrate. This article identifies and discusses several primary forms of reliability estimation: internal consistency (i.e., split-half, KR-20, a), test-retest, alternate forms, interscorer, and…
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nair, S. P.; Righetti, R.
2015-05-01
Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.
Sairanen, V; Kuusela, L; Sipilä, O; Savolainen, S; Vanhatalo, S
2017-02-15
Diffusion Tensor Imaging (DTI) is commonly challenged by subject motion during data acquisition, which often leads to corrupted image data. Currently used procedure in DTI analysis is to correct or completely reject such data before tensor estimations, however assessing the reliability and accuracy of the estimated tensor in such situations has evaded previous studies. This work aims to define the loss of data accuracy with increasing image rejections, and to define a robust method for assessing reliability of the result at voxel level. We carried out simulations of every possible sub-scheme (N=1,073,567,387) of Jones30 gradient scheme, followed by confirming the idea with MRI data from four newborn and three adult subjects. We assessed the relative error of the most commonly used tensor estimates for DTI and tractography studies, fractional anisotropy (FA) and the major orientation vector (V1), respectively. The error was estimated using two measures, the widely used electric potential (EP) criteria as well as the rotationally variant condition number (CN). Our results show that CN and EP are comparable in situations with very few rejections, but CN becomes clearly more sensitive to depicting errors when more gradient vectors and images were rejected. The error in FA and V1 was also found depend on the actual FA level in the given voxel; low actual FA levels were related to high relative errors in the FA and V1 estimates. Finally, the results were confirmed with clinical MRI data. This showed that the errors after rejections are, indeed, inhomogeneous across brain regions. The FA and V1 errors become progressively larger when moving from the thick white matter bundles towards more superficial subcortical structures. Our findings suggest that i) CN is a useful estimator of data reliability at voxel level, and ii) DTI preprocessing with data rejections leads to major challenges when assessing brain tissue with lower FA levels, such as all newborn brain, as well as the adult superficial, subcortical areas commonly traced in precise connectivity analyses between cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.
Sample Size for Estimation of G and Phi Coefficients in Generalizability Theory
ERIC Educational Resources Information Center
Atilgan, Hakan
2013-01-01
Problem Statement: Reliability, which refers to the degree to which measurement results are free from measurement errors, as well as its estimation, is an important issue in psychometrics. Several methods for estimating reliability have been suggested by various theories in the field of psychometrics. One of these theories is the generalizability…
NASA Astrophysics Data System (ADS)
Huo, Ming-Xia; Li, Ying
2017-12-01
Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.
NASA Astrophysics Data System (ADS)
Kim, K.-h.; Oh, T.-s.; Park, K.-r.; Lee, J. H.; Ghim, Y.-c.
2017-11-01
One factor determining the reliability of measurements of electron temperature using a Thomson scattering (TS) system is transmittance of the optical bandpass filters in polychromators. We investigate the system performance as a function of electron temperature to determine reliable range of measurements for a given set of the optical bandpass filters. We show that such a reliability, i.e., both bias and random errors, can be obtained by building a forward model of the KSTAR TS system to generate synthetic TS data with the prescribed electron temperature and density profiles. The prescribed profiles are compared with the estimated ones to quantify both bias and random errors.
A particle swarm model for estimating reliability and scheduling system maintenance
NASA Astrophysics Data System (ADS)
Puzis, Rami; Shirtz, Dov; Elovici, Yuval
2016-05-01
Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
Nimon, Kim; Zientek, Linda Reichwein; Henson, Robin K.
2012-01-01
The purpose of this article is to help researchers avoid common pitfalls associated with reliability including incorrectly assuming that (a) measurement error always attenuates observed score correlations, (b) different sources of measurement error originate from the same source, and (c) reliability is a function of instrumentation. To accomplish our purpose, we first describe what reliability is and why researchers should care about it with focus on its impact on effect sizes. Second, we review how reliability is assessed with comment on the consequences of cumulative measurement error. Third, we consider how researchers can use reliability generalization as a prescriptive method when designing their research studies to form hypotheses about whether or not reliability estimates will be acceptable given their sample and testing conditions. Finally, we discuss options that researchers may consider when faced with analyzing unreliable data. PMID:22518107
Psychophysical measurements in children: challenges, pitfalls, and considerations.
Witton, Caroline; Talcott, Joel B; Henning, G Bruce
2017-01-01
Measuring sensory sensitivity is important in studying development and developmental disorders. However, with children, there is a need to balance reliable but lengthy sensory tasks with the child's ability to maintain motivation and vigilance. We used simulations to explore the problems associated with shortening adaptive psychophysical procedures, and suggest how these problems might be addressed. We quantify how adaptive procedures with too few reversals can over-estimate thresholds, introduce substantial measurement error, and make estimates of individual thresholds less reliable. The associated measurement error also obscures group differences. Adaptive procedures with children should therefore use as many reversals as possible, to reduce the effects of both Type 1 and Type 2 errors. Differences in response consistency, resulting from lapses in attention, further increase the over-estimation of threshold. Comparisons between data from individuals who may differ in lapse rate are therefore problematic, but measures to estimate and account for lapse rates in analyses may mitigate this problem.
Reliability and concurrent validity of Futrex and bioelectrical impedance.
Vehrs, P; Morrow, J R; Butte, N
1998-11-01
Thirty Caucasian males (aged 19-32yr) participated in this study designed to investigate the reliability of multiple bioelectrical impedance analysis (BIA) and near-infrared spectroscopy (Futrex, FTX) measurements and the validity of BIA and FTX estimations of hydrostatically (UW) determined percent body fat (%BF). Two BIA and two FTX instruments were used to make 6 measurements each of resistance (R) and optical density (OD) respectively over a 30 min period on two consecutive days. Repeated measures ANOVA indicated that FTX and BIA, using manufacturer's equations, significantly (p<0.01) under predicted UW by 2.4 and 3.8%BF respectively. Standard error of estimate (SEE) and total error (TE) terms provided by regression analysis for FTX (4.6 and 5.31%BF respectively) and BIA (5.65 and 6.95%BF, respectively) were high. Dependent t-tests revealed no significant differences in either FTX or BIA predictions of %BF using two machines. Intraclass reliabilities for BIA and FTX estimates of UW %BF across trials, days, and machines all exceeded 0.97. A significant random error term associated with FTX and a significant subject-by-day interaction associated with BIA was revealed using the generalizability model. Although FTX and BIA estimates of UW %BF were reliable, due to the significant underestimation of UW %BF and high SEE and TE, neither FTX nor BIA were considered valid estimates of hydrostatically determined %BF.
NASA Astrophysics Data System (ADS)
GonzáLez, Pablo J.; FernáNdez, José
2011-10-01
Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.
An hp-adaptivity and error estimation for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1995-01-01
This paper presents an hp-adaptive discontinuous Galerkin method for linear hyperbolic conservation laws. A priori and a posteriori error estimates are derived in mesh-dependent norms which reflect the dependence of the approximate solution on the element size (h) and the degree (p) of the local polynomial approximation. The a posteriori error estimate, based on the element residual method, provides bounds on the actual global error in the approximate solution. The adaptive strategy is designed to deliver an approximate solution with the specified level of error in three steps. The a posteriori estimate is used to assess the accuracy of a given approximate solution and the a priori estimate is used to predict the mesh refinements and polynomial enrichment needed to deliver the desired solution. Numerical examples demonstrate the reliability of the a posteriori error estimates and the effectiveness of the hp-adaptive strategy.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
NASA Astrophysics Data System (ADS)
Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne
2014-01-01
Inverse modelling techniques can be used to estimate the amount of radionuclides and the temporal profile of the source term released in the atmosphere during the accident of the Fukushima Daiichi nuclear power plant in March 2011. In Winiarek et al. (2012b), the lower bounds of the caesium-137 and iodine-131 source terms were estimated with such techniques, using activity concentration measurements. The importance of an objective assessment of prior errors (the observation errors and the background errors) was emphasised for a reliable inversion. In such critical context where the meteorological conditions can make the source term partly unobservable and where only a few observations are available, such prior estimation techniques are mandatory, the retrieved source term being very sensitive to this estimation. We propose to extend the use of these techniques to the estimation of prior errors when assimilating observations from several data sets. The aim is to compute an estimate of the caesium-137 source term jointly using all available data about this radionuclide, such as activity concentrations in the air, but also daily fallout measurements and total cumulated fallout measurements. It is crucial to properly and simultaneously estimate the background errors and the prior errors relative to each data set. A proper estimation of prior errors is also a necessary condition to reliably estimate the a posteriori uncertainty of the estimated source term. Using such techniques, we retrieve a total released quantity of caesium-137 in the interval 11.6-19.3 PBq with an estimated standard deviation range of 15-20% depending on the method and the data sets. The “blind” time intervals of the source term have also been strongly mitigated compared to the first estimations with only activity concentration data.
Reducing random measurement error in assessing postural load on the back in epidemiologic surveys.
Burdorf, A
1995-02-01
The goal of this study was to design strategies to assess postural load on the back in occupational epidemiology by taking into account the reliability of measurement methods and the variability of exposure among the workers under study. Intermethod reliability studies were evaluated to estimate the systematic bias (accuracy) and random measurement error (precision) of various methods to assess postural load on the back. Intramethod reliability studies were reviewed to estimate random variability of back load over time. Intermethod surveys have shown that questionnaires have a moderate reliability for gross activities such as sitting, whereas duration of trunk flexion and rotation should be assessed by observation methods or inclinometers. Intramethod surveys indicate that exposure variability can markedly affect the reliability of estimates of back load if the estimates are based upon a single measurement over a certain time period. Equations have been presented to evaluate various study designs according to the reliability of the measurement method, the optimum allocation of the number of repeated measurements per subject, and the number of subjects in the study. Prior to a large epidemiologic study, an exposure-oriented survey should be conducted to evaluate the performance of measurement instruments and to estimate sources of variability for back load. The strategy for assessing back load can be optimized by balancing the number of workers under study and the number of repeated measurements per worker.
An experiment in software reliability: Additional analyses using data from automated replications
NASA Technical Reports Server (NTRS)
Dunham, Janet R.; Lauterbach, Linda A.
1988-01-01
A study undertaken to collect software error data of laboratory quality for use in the development of credible methods for predicting the reliability of software used in life-critical applications is summarized. The software error data reported were acquired through automated repetitive run testing of three independent implementations of a launch interceptor condition module of a radar tracking problem. The results are based on 100 test applications to accumulate a sufficient sample size for error rate estimation. The data collected is used to confirm the results of two Boeing studies reported in NASA-CR-165836 Software Reliability: Repetitive Run Experimentation and Modeling, and NASA-CR-172378 Software Reliability: Additional Investigations into Modeling With Replicated Experiments, respectively. That is, the results confirm the log-linear pattern of software error rates and reject the hypothesis of equal error rates per individual fault. This rejection casts doubt on the assumption that the program's failure rate is a constant multiple of the number of residual bugs; an assumption which underlies some of the current models of software reliability. data raises new questions concerning the phenomenon of interacting faults.
Black, Anne C; Serowik, Kristin L; Ablondi, Karen M; Rosen, Marc I
2013-01-01
The need for accurate and reliable information about income and resources available to individuals with psychiatric disabilities is critical for the assessment of need and evaluation of programs designed to alleviate financial hardship or affect finance allocation. Measurement of finances is ubiquitous in studies of economics, poverty, and social services. However, evidence has demonstrated that these measures often contain error. We compare the 1-week test-retest reliability of income and finance data from 24 adult psychiatric outpatients using assessment-as-usual (AAU) and a new instrument, the Timeline Historical Review of Income and Financial Transactions (THRIFT). Reliability estimates obtained with the THRIFT for Income (0.77), Expenses (0.91), and Debt (0.99) domains were significantly better than those obtained with AAU. Reliability estimates for Balance did not differ. THRIFT reduced measurement error and provided more reliable information than AAU for assessment of personal finances in psychiatric patients receiving Social Security benefits. The instrument also may be useful with other low-income groups.
Nakling, Jakob; Buhaug, Harald; Backe, Bjorn
2005-10-01
In a large unselected population of normal spontaneous pregnancies, to estimate the biologic variation of the interval from the first day of the last menstrual period to start of pregnancy, and the biologic variation of gestational length to delivery; and to estimate the random error of routine ultrasound assessment of gestational age in mid-second trimester. Cohort study of 11,238 singleton pregnancies, with spontaneous onset of labour and reliable last menstrual period. The day of delivery was predicted with two independent methods: According to the rule of Nägele and based on ultrasound examination in gestational weeks 17-19. For both methods, the mean difference between observed and predicted day of delivery was calculated. The variances of the differences were combined to estimate the variances of the two partitions of pregnancy. The biologic variation of the time from last menstrual period to pregnancy start was estimated to 7.0 days (standard deviation), and the standard deviation of the time to spontaneous delivery was estimated to 12.4 days. The estimate of the standard deviation of the random error of ultrasound assessed foetal age was 5.2 days. Even when the last menstrual period is reliable, the biologic variation of the time from last menstrual period to the real start of pregnancy is substantial, and must be taken into account. Reliable information about the first day of the last menstrual period is not equivalent with reliable information about the start of pregnancy.
Validation of TRMM precipitation radar monthly rainfall estimates over Brazil
NASA Astrophysics Data System (ADS)
Franchito, Sergio H.; Rao, V. Brahmananda; Vasques, Ana C.; Santo, Clovis M. E.; Conforte, Jorge C.
2009-01-01
In an attempt to validate the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) over Brazil, TRMM PR estimates are compared with rain gauge station data from Agência Nacional de Energia Elétrica (ANEEL). The analysis is conducted on a seasonal basis and considers five geographic regions with different precipitation regimes. The results showed that TRMM PR seasonal rainfall is well correlated with ANEEL rainfall (correlation coefficients are significant at the 99% confidence level) over most of Brazil. The random and systematic errors of TRMM PR are sensitive to seasonal and regional differences. During December to February and March to May, TRMM PR rainfall is reliable over Brazil. In June to August (September to November) TRMM PR estimates are only reliable in the Amazonian and southern (Amazonian and southeastern) regions. In the other regions the relative RMS errors are larger than 50%, indicating that the random errors are high.
Partial Deconvolution with Inaccurate Blur Kernel.
Ren, Dongwei; Zuo, Wangmeng; Zhang, David; Xu, Jun; Zhang, Lei
2017-10-17
Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.Most non-blind deconvolution methods are developed under the error-free kernel assumption, and are not robust to inaccurate blur kernel. Unfortunately, despite the great progress in blind deconvolution, estimation error remains inevitable during blur kernel estimation. Consequently, severe artifacts such as ringing effects and distortions are likely to be introduced in the non-blind deconvolution stage. In this paper, we tackle this issue by suggesting: (i) a partial map in the Fourier domain for modeling kernel estimation error, and (ii) a partial deconvolution model for robust deblurring with inaccurate blur kernel. The partial map is constructed by detecting the reliable Fourier entries of estimated blur kernel. And partial deconvolution is applied to wavelet-based and learning-based models to suppress the adverse effect of kernel estimation error. Furthermore, an E-M algorithm is developed for estimating the partial map and recovering the latent sharp image alternatively. Experimental results show that our partial deconvolution model is effective in relieving artifacts caused by inaccurate blur kernel, and can achieve favorable deblurring quality on synthetic and real blurry images.
A proposed method to investigate reliability throughout a questionnaire.
Wentzel-Larsen, Tore; Norekvål, Tone M; Ulvik, Bjørg; Nygård, Ottar; Pripp, Are H
2011-10-05
Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure--to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales.
Effects of Differential Item Functioning on Examinees' Test Performance and Reliability of Test
ERIC Educational Resources Information Center
Lee, Yi-Hsuan; Zhang, Jinming
2017-01-01
Simulations were conducted to examine the effect of differential item functioning (DIF) on measurement consequences such as total scores, item response theory (IRT) ability estimates, and test reliability in terms of the ratio of true-score variance to observed-score variance and the standard error of estimation for the IRT ability parameter. The…
Gajewski, Byron J.; Lee, Robert; Dunton, Nancy
2012-01-01
Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
NASA Astrophysics Data System (ADS)
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
An experiment in software reliability
NASA Technical Reports Server (NTRS)
Dunham, J. R.; Pierce, J. L.
1986-01-01
The results of a software reliability experiment conducted in a controlled laboratory setting are reported. The experiment was undertaken to gather data on software failures and is one in a series of experiments being pursued by the Fault Tolerant Systems Branch of NASA Langley Research Center to find a means of credibly performing reliability evaluations of flight control software. The experiment tests a small sample of implementations of radar tracking software having ultra-reliability requirements and uses n-version programming for error detection, and repetitive run modeling for failure and fault rate estimation. The experiment results agree with those of Nagel and Skrivan in that the program error rates suggest an approximate log-linear pattern and the individual faults occurred with significantly different error rates. Additional analysis of the experimental data raises new questions concerning the phenomenon of interacting faults. This phenomenon may provide one explanation for software reliability decay.
NASA Astrophysics Data System (ADS)
Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai
2017-10-01
With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.
Can a sample of Landsat sensor scenes reliably estimate the global extent of tropical deforestation?
R. L. Czaplewski
2003-01-01
Tucker and Townshend (2000) conclude that wall-to-wall coverage is needed to avoid gross errors in estimations of deforestation rates' because tropical deforestation is concentrated along roads and rivers. They specifically question the reliability of the 10% sample of Landsat sensor scenes used in the global remote sensing survey conducted by the Food and...
Butler, Troy; Wildey, Timothy
2018-01-01
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Troy; Wildey, Timothy
In thist study, we develop a procedure to utilize error estimates for samples of a surrogate model to compute robust upper and lower bounds on estimates of probabilities of events. We show that these error estimates can also be used in an adaptive algorithm to simultaneously reduce the computational cost and increase the accuracy in estimating probabilities of events using computationally expensive high-fidelity models. Specifically, we introduce the notion of reliability of a sample of a surrogate model, and we prove that utilizing the surrogate model for the reliable samples and the high-fidelity model for the unreliable samples gives preciselymore » the same estimate of the probability of the output event as would be obtained by evaluation of the original model for each sample. The adaptive algorithm uses the additional evaluations of the high-fidelity model for the unreliable samples to locally improve the surrogate model near the limit state, which significantly reduces the number of high-fidelity model evaluations as the limit state is resolved. Numerical results based on a recently developed adjoint-based approach for estimating the error in samples of a surrogate are provided to demonstrate (1) the robustness of the bounds on the probability of an event, and (2) that the adaptive enhancement algorithm provides a more accurate estimate of the probability of the QoI event than standard response surface approximation methods at a lower computational cost.« less
Keller, Lisa A; Clauser, Brian E; Swanson, David B
2010-12-01
In recent years, demand for performance assessments has continued to grow. However, performance assessments are notorious for lower reliability, and in particular, low reliability resulting from task specificity. Since reliability analyses typically treat the performance tasks as randomly sampled from an infinite universe of tasks, these estimates of reliability may not be accurate. For tests built according to a table of specifications, tasks are randomly sampled from different strata (content domains, skill areas, etc.). If these strata remain fixed in the test construction process, ignoring this stratification in the reliability analysis results in an underestimate of "parallel forms" reliability, and an overestimate of the person-by-task component. This research explores the effect of representing and misrepresenting the stratification appropriately in estimation of reliability and the standard error of measurement. Both multivariate and univariate generalizability studies are reported. Results indicate that the proper specification of the analytic design is essential in yielding the proper information both about the generalizability of the assessment and the standard error of measurement. Further, illustrative D studies present the effect under a variety of situations and test designs. Additional benefits of multivariate generalizability theory in test design and evaluation are also discussed.
Clayson, Peter E; Miller, Gregory A
2017-01-01
Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.
A Flexible Latent Class Approach to Estimating Test-Score Reliability
ERIC Educational Resources Information Center
van der Palm, Daniël W.; van der Ark, L. Andries; Sijtsma, Klaas
2014-01-01
The latent class reliability coefficient (LCRC) is improved by using the divisive latent class model instead of the unrestricted latent class model. This results in the divisive latent class reliability coefficient (DLCRC), which unlike LCRC avoids making subjective decisions about the best solution and thus avoids judgment error. A computational…
Using beta binomials to estimate classification uncertainty for ensemble models.
Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin
2014-01-01
Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.
A proposed method to investigate reliability throughout a questionnaire
2011-01-01
Background Questionnaires are used extensively in medical and health care research and depend on validity and reliability. However, participants may differ in interest and awareness throughout long questionnaires, which can affect reliability of their answers. A method is proposed for "screening" of systematic change in random error, which could assess changed reliability of answers. Methods A simulation study was conducted to explore whether systematic change in reliability, expressed as changed random error, could be assessed using unsupervised classification of subjects by cluster analysis (CA) and estimation of intraclass correlation coefficient (ICC). The method was also applied on a clinical dataset from 753 cardiac patients using the Jalowiec Coping Scale. Results The simulation study showed a relationship between the systematic change in random error throughout a questionnaire and the slope between the estimated ICC for subjects classified by CA and successive items in a questionnaire. This slope was proposed as an awareness measure - to assessing if respondents provide only a random answer or one based on a substantial cognitive effort. Scales from different factor structures of Jalowiec Coping Scale had different effect on this awareness measure. Conclusions Even though assumptions in the simulation study might be limited compared to real datasets, the approach is promising for assessing systematic change in reliability throughout long questionnaires. Results from a clinical dataset indicated that the awareness measure differed between scales. PMID:21974842
Conditional Standard Errors of Measurement for Scale Scores.
ERIC Educational Resources Information Center
Kolen, Michael J.; And Others
1992-01-01
A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)
Meta-analysis in evidence-based healthcare: a paradigm shift away from random effects is overdue.
Doi, Suhail A R; Furuya-Kanamori, Luis; Thalib, Lukman; Barendregt, Jan J
2017-12-01
Each year up to 20 000 systematic reviews and meta-analyses are published whose results influence healthcare decisions, thus making the robustness and reliability of meta-analytic methods one of the world's top clinical and public health priorities. The evidence synthesis makes use of either fixed-effect or random-effects statistical methods. The fixed-effect method has largely been replaced by the random-effects method as heterogeneity of study effects led to poor error estimation. However, despite the widespread use and acceptance of the random-effects method to correct this, it too remains unsatisfactory and continues to suffer from defective error estimation, posing a serious threat to decision-making in evidence-based clinical and public health practice. We discuss here the problem with the random-effects approach and demonstrate that there exist better estimators under the fixed-effect model framework that can achieve optimal error estimation. We argue for an urgent return to the earlier framework with updates that address these problems and conclude that doing so can markedly improve the reliability of meta-analytical findings and thus decision-making in healthcare.
Acute Respiratory Distress Syndrome Measurement Error. Potential Effect on Clinical Study Results
Cooke, Colin R.; Iwashyna, Theodore J.; Hofer, Timothy P.
2016-01-01
Rationale: Identifying patients with acute respiratory distress syndrome (ARDS) is a recognized challenge. Experts often have only moderate agreement when applying the clinical definition of ARDS to patients. However, no study has fully examined the implications of low reliability measurement of ARDS on clinical studies. Objectives: To investigate how the degree of variability in ARDS measurement commonly reported in clinical studies affects study power, the accuracy of treatment effect estimates, and the measured strength of risk factor associations. Methods: We examined the effect of ARDS measurement error in randomized clinical trials (RCTs) of ARDS-specific treatments and cohort studies using simulations. We varied the reliability of ARDS diagnosis, quantified as the interobserver reliability (κ-statistic) between two reviewers. In RCT simulations, patients identified as having ARDS were enrolled, and when measurement error was present, patients without ARDS could be enrolled. In cohort studies, risk factors as potential predictors were analyzed using reviewer-identified ARDS as the outcome variable. Measurements and Main Results: Lower reliability measurement of ARDS during patient enrollment in RCTs seriously degraded study power. Holding effect size constant, the sample size necessary to attain adequate statistical power increased by more than 50% as reliability declined, although the result was sensitive to ARDS prevalence. In a 1,400-patient clinical trial, the sample size necessary to maintain similar statistical power increased to over 1,900 when reliability declined from perfect to substantial (κ = 0.72). Lower reliability measurement diminished the apparent effectiveness of an ARDS-specific treatment from a 15.2% (95% confidence interval, 9.4–20.9%) absolute risk reduction in mortality to 10.9% (95% confidence interval, 4.7–16.2%) when reliability declined to moderate (κ = 0.51). In cohort studies, the effect on risk factor associations was similar. Conclusions: ARDS measurement error can seriously degrade statistical power and effect size estimates of clinical studies. The reliability of ARDS measurement warrants careful attention in future ARDS clinical studies. PMID:27159648
Pre- and postprocessing techniques for determining goodness of computational meshes
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Westermann, T.; Bass, J. M.
1993-01-01
Research in error estimation, mesh conditioning, and solution enhancement for finite element, finite difference, and finite volume methods has been incorporated into AUDITOR, a modern, user-friendly code, which operates on 2D and 3D unstructured neutral files to improve the accuracy and reliability of computational results. Residual error estimation capabilities provide local and global estimates of solution error in the energy norm. Higher order results for derived quantities may be extracted from initial solutions. Within the X-MOTIF graphical user interface, extensive visualization capabilities support critical evaluation of results in linear elasticity, steady state heat transfer, and both compressible and incompressible fluid dynamics.
Wagner, Brian J.; Gorelick, Steven M.
1986-01-01
A simulation nonlinear multiple-regression methodology for estimating parameters that characterize the transport of contaminants is developed and demonstrated. Finite difference contaminant transport simulation is combined with a nonlinear weighted least squares multiple-regression procedure. The technique provides optimal parameter estimates and gives statistics for assessing the reliability of these estimates under certain general assumptions about the distributions of the random measurement errors. Monte Carlo analysis is used to estimate parameter reliability for a hypothetical homogeneous soil column for which concentration data contain large random measurement errors. The value of data collected spatially versus data collected temporally was investigated for estimation of velocity, dispersion coefficient, effective porosity, first-order decay rate, and zero-order production. The use of spatial data gave estimates that were 2–3 times more reliable than estimates based on temporal data for all parameters except velocity. Comparison of estimated linear and nonlinear confidence intervals based upon Monte Carlo analysis showed that the linear approximation is poor for dispersion coefficient and zero-order production coefficient when data are collected over time. In addition, examples demonstrate transport parameter estimation for two real one-dimensional systems. First, the longitudinal dispersivity and effective porosity of an unsaturated soil are estimated using laboratory column data. We compare the reliability of estimates based upon data from individual laboratory experiments versus estimates based upon pooled data from several experiments. Second, the simulation nonlinear regression procedure is extended to include an additional governing equation that describes delayed storage during contaminant transport. The model is applied to analyze the trends, variability, and interrelationship of parameters in a mourtain stream in northern California.
Test Reliability at the Individual Level
Hu, Yueqin; Nesselroade, John R.; Erbacher, Monica K.; Boker, Steven M.; Burt, S. Alexandra; Keel, Pamela K.; Neale, Michael C.; Sisk, Cheryl L.; Klump, Kelly
2016-01-01
Reliability has a long history as one of the key psychometric properties of a test. However, a given test might not measure people equally reliably. Test scores from some individuals may have considerably greater error than others. This study proposed two approaches using intraindividual variation to estimate test reliability for each person. A simulation study suggested that the parallel tests approach and the structural equation modeling approach recovered the simulated reliability coefficients. Then in an empirical study, where forty-five females were measured daily on the Positive and Negative Affect Schedule (PANAS) for 45 consecutive days, separate estimates of reliability were generated for each person. Results showed that reliability estimates of the PANAS varied substantially from person to person. The methods provided in this article apply to tests measuring changeable attributes and require repeated measures across time on each individual. This article also provides a set of parallel forms of PANAS. PMID:28936107
Methods for estimating flood frequency in Montana based on data through water year 1998
Parrett, Charles; Johnson, Dave R.
2004-01-01
Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the different methods and the average standard errors of prediction. When all three methods were combined, the average standard errors of prediction ranged from 37.4 percent to 120.2 percent. Weighting of estimates reduced the standard errors of prediction for all T-year flood estimates in four regions, reduced the standard errors of prediction for some T-year flood estimates in two regions, and provided no reduction in average standard error of prediction in two regions. A computer program for solving the regression equations, weighting estimates, and determining reliability of individual estimates was developed and placed on the USGS Montana District World Wide Web page. A new regression method, termed Region of Influence regression, also was tested. Test results indicated that the Region of Influence method was not as reliable as the regional equations based on generalized least squares regression. Two additional methods for estimating flood frequency at ungaged sites located on the same streams as gaged sites also are described. The first method, based on a drainage-area-ratio adjustment, is intended for use on streams where the ungaged site of interest is located near a gaged site. The second method, based on interpolation between gaged sites, is intended for use on streams that have two or more streamflow-gaging stations.
Iterative random vs. Kennard-Stone sampling for IR spectrum-based classification task using PLS2-DA
NASA Astrophysics Data System (ADS)
Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz
2018-04-01
External testing (ET) is preferred over auto-prediction (AP) or k-fold-cross-validation in estimating more realistic predictive ability of a statistical model. With IR spectra, Kennard-stone (KS) sampling algorithm is often used to split the data into training and test sets, i.e. respectively for model construction and for model testing. On the other hand, iterative random sampling (IRS) has not been the favored choice though it is theoretically more likely to produce reliable estimation. The aim of this preliminary work is to compare performances of KS and IRS in sampling a representative training set from an attenuated total reflectance - Fourier transform infrared spectral dataset (of four varieties of blue gel pen inks) for PLS2-DA modeling. The `best' performance achievable from the dataset is estimated with AP on the full dataset (APF, error). Both IRS (n = 200) and KS were used to split the dataset in the ratio of 7:3. The classic decision rule (i.e. maximum value-based) is employed for new sample prediction via partial least squares - discriminant analysis (PLS2-DA). Error rate of each model was estimated repeatedly via: (a) AP on full data (APF, error); (b) AP on training set (APS, error); and (c) ET on the respective test set (ETS, error). A good PLS2-DA model is expected to produce APS, error and EVS, error that is similar to the APF, error. Bearing that in mind, the similarities between (a) APS, error vs. APF, error; (b) ETS, error vs. APF, error and; (c) APS, error vs. ETS, error were evaluated using correlation tests (i.e. Pearson and Spearman's rank test), using series of PLS2-DA models computed from KS-set and IRS-set, respectively. Overall, models constructed from IRS-set exhibits more similarities between the internal and external error rates than the respective KS-set, i.e. less risk of overfitting. In conclusion, IRS is more reliable than KS in sampling representative training set.
Candela, L.; Olea, R.A.; Custodio, E.
1988-01-01
Groundwater quality observation networks are examples of discontinuous sampling on variables presenting spatial continuity and highly skewed frequency distributions. Anywhere in the aquifer, lognormal kriging provides estimates of the variable being sampled and a standard error of the estimate. The average and the maximum standard error within the network can be used to dynamically improve the network sampling efficiency or find a design able to assure a given reliability level. The approach does not require the formulation of any physical model for the aquifer or any actual sampling of hypothetical configurations. A case study is presented using the network monitoring salty water intrusion into the Llobregat delta confined aquifer, Barcelona, Spain. The variable chloride concentration used to trace the intrusion exhibits sudden changes within short distances which make the standard error fairly invariable to changes in sampling pattern and to substantial fluctuations in the number of wells. ?? 1988.
Pruitt, Sandi L; Jeffe, Donna B; Yan, Yan; Schootman, Mario
2012-04-01
Limited psychometric research has examined the reliability of self-reported measures of neighbourhood conditions, the effect of measurement error on associations between neighbourhood conditions and health, and potential differences in the reliabilities between neighbourhood strata (urban vs rural and low vs high poverty). We assessed overall and stratified reliability of self-reported perceived neighbourhood conditions using five scales (social and physical disorder, social control, social cohesion, fear) and four single items (multidimensional neighbouring). We also assessed measurement error-corrected associations of these conditions with self-rated health. Using random-digit dialling, 367 women without breast cancer (matched controls from a larger study) were interviewed twice, 2-3 weeks apart. Test-retest (intraclass correlation coefficients (ICC)/weighted κ) and internal consistency reliability (Cronbach's α) were assessed. Differences in reliability across neighbourhood strata were tested using bootstrap methods. Regression calibration corrected estimates for measurement error. All measures demonstrated satisfactory internal consistency (α ≥ 0.70) and either moderate (ICC/κ=0.41-0.60) or substantial (ICC/κ=0.61-0.80) test-retest reliability in the full sample. Internal consistency did not differ by neighbourhood strata. Test-retest reliability was significantly lower among rural (vs urban) residents for two scales (social control, physical disorder) and two multidimensional neighbouring items; test-retest reliability was higher for physical disorder and lower for one multidimensional neighbouring item among the high (vs low) poverty strata. After measurement error correction, the magnitude of associations between neighbourhood conditions and self-rated health were larger, particularly in the rural population. Research is needed to develop and test reliable measures of perceived neighbourhood conditions relevant to the health of rural populations.
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
Deng, Zhimin; Tian, Tianhai
2014-07-29
The advances of systems biology have raised a large number of sophisticated mathematical models for describing the dynamic property of complex biological systems. One of the major steps in developing mathematical models is to estimate unknown parameters of the model based on experimentally measured quantities. However, experimental conditions limit the amount of data that is available for mathematical modelling. The number of unknown parameters in mathematical models may be larger than the number of observation data. The imbalance between the number of experimental data and number of unknown parameters makes reverse-engineering problems particularly challenging. To address the issue of inadequate experimental data, we propose a continuous optimization approach for making reliable inference of model parameters. This approach first uses a spline interpolation to generate continuous functions of system dynamics as well as the first and second order derivatives of continuous functions. The expanded dataset is the basis to infer unknown model parameters using various continuous optimization criteria, including the error of simulation only, error of both simulation and the first derivative, or error of simulation as well as the first and second derivatives. We use three case studies to demonstrate the accuracy and reliability of the proposed new approach. Compared with the corresponding discrete criteria using experimental data at the measurement time points only, numerical results of the ERK kinase activation module show that the continuous absolute-error criteria using both function and high order derivatives generate estimates with better accuracy. This result is also supported by the second and third case studies for the G1/S transition network and the MAP kinase pathway, respectively. This suggests that the continuous absolute-error criteria lead to more accurate estimates than the corresponding discrete criteria. We also study the robustness property of these three models to examine the reliability of estimates. Simulation results show that the models with estimated parameters using continuous fitness functions have better robustness properties than those using the corresponding discrete fitness functions. The inference studies and robustness analysis suggest that the proposed continuous optimization criteria are effective and robust for estimating unknown parameters in mathematical models.
Ensemble-Based Parameter Estimation in a Coupled General Circulation Model
Liu, Y.; Liu, Z.; Zhang, S.; ...
2014-09-10
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
Measurement-based reliability/performability models
NASA Technical Reports Server (NTRS)
Hsueh, Mei-Chen
1987-01-01
Measurement-based models based on real error-data collected on a multiprocessor system are described. Model development from the raw error-data to the estimation of cumulative reward is also described. A workload/reliability model is developed based on low-level error and resource usage data collected on an IBM 3081 system during its normal operation in order to evaluate the resource usage/error/recovery process in a large mainframe system. Thus, both normal and erroneous behavior of the system are modeled. The results provide an understanding of the different types of errors and recovery processes. The measured data show that the holding times in key operational and error states are not simple exponentials and that a semi-Markov process is necessary to model the system behavior. A sensitivity analysis is performed to investigate the significance of using a semi-Markov process, as opposed to a Markov process, to model the measured system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; Anderson, Kevin K.; White, Amanda M.
Background: A microarray of enzyme-linked immunosorbent assays, or ELISA microarray, predicts simultaneously the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Making sound biological inferences as well as improving the ELISA microarray process require require both concentration predictions and creditable estimates of their errors. Methods: We present a statistical method based on monotonic spline statistical models, penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict concentrations and estimate prediction errors in ELISA microarray. PCLS restrains the flexible spline to a fit of assay intensitymore » that is a monotone function of protein concentration. With MC, both modeling and measurement errors are combined to estimate prediction error. The spline/PCLS/MC method is compared to a common method using simulated and real ELISA microarray data sets. Results: In contrast to the rigid logistic model, the flexible spline model gave credible fits in almost all test cases including troublesome cases with left and/or right censoring, or other asymmetries. For the real data sets, 61% of the spline predictions were more accurate than their comparable logistic predictions; especially the spline predictions at the extremes of the prediction curve. The relative errors of 50% of comparable spline and logistic predictions differed by less than 20%. Monte Carlo simulation rendered acceptable asymmetric prediction intervals for both spline and logistic models while propagation of error produced symmetric intervals that diverged unrealistically as the standard curves approached horizontal asymptotes. Conclusions: The spline/PCLS/MC method is a flexible, robust alternative to a logistic/NLS/propagation-of-error method to reliably predict protein concentrations and estimate their errors. The spline method simplifies model selection and fitting, and reliably estimates believable prediction errors. For the 50% of the real data sets fit well by both methods, spline and logistic predictions are practically indistinguishable, varying in accuracy by less than 15%. The spline method may be useful when automated prediction across simultaneous assays of numerous proteins must be applied routinely with minimal user intervention.« less
Saleem, Muhammad; Sharif, Kashif; Fahmi, Aliya
2018-04-27
Applications of Pareto distribution are common in reliability, survival and financial studies. In this paper, A Pareto mixture distribution is considered to model a heterogeneous population comprising of two subgroups. Each of two subgroups is characterized by the same functional form with unknown distinct shape and scale parameters. Bayes estimators have been derived using flat and conjugate priors using squared error loss function. Standard errors have also been derived for the Bayes estimators. An interesting feature of this study is the preparation of components of Fisher Information matrix.
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Chinn, D. S.; Chan, J. C.; Patel, G. B.; Klosko, S. M.
1993-01-01
A new method has been developed to provide a direct test of the error calibrations of gravity models based on actual satellite observations. The basic approach projects the error estimates of the gravity model parameters onto satellite observations, and the results of these projections are then compared with data residual computed from the orbital fits. To allow specific testing of the gravity error calibrations, subset solutions are computed based on the data set and data weighting of the gravity model. The approach is demonstrated using GEM-T3 to show that the gravity error estimates are well calibrated and that reliable predictions of orbit accuracies can be achieved for independent orbits.
Analytic score distributions for a spatially continuous tridirectional Monte Carol transport problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, T.E.
1996-01-01
The interpretation of the statistical error estimates produced by Monte Carlo transport codes is still somewhat of an art. Empirically, there are variance reduction techniques whose error estimates are almost always reliable, and there are variance reduction techniques whose error estimates are often unreliable. Unreliable error estimates usually result from inadequate large-score sampling from the score distribution`s tail. Statisticians believe that more accurate confidence interval statements are possible if the general nature of the score distribution can be characterized. Here, the analytic score distribution for the exponential transform applied to a simple, spatially continuous Monte Carlo transport problem is provided.more » Anisotropic scattering and implicit capture are included in the theory. In large part, the analytic score distributions that are derived provide the basis for the ten new statistical quality checks in MCNP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Liu, Z.; Zhang, S.
Parameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parametermore » estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Altogether, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.« less
Network Adjustment of Orbit Errors in SAR Interferometry
NASA Astrophysics Data System (ADS)
Bahr, Hermann; Hanssen, Ramon
2010-03-01
Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.
Reliability Estimation for Aggregated Data: Applications for Organizational Research.
ERIC Educational Resources Information Center
Hart, Roland J.; Bradshaw, Stephen C.
This report provides the statistical tools necessary to measure the extent of error that exists in organizational record data and group survey data. It is felt that traditional methods of measuring error are inappropriate or incomplete when applied to organizational groups, especially in studies of organizational change when the same variables are…
NASA Technical Reports Server (NTRS)
Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)
2002-01-01
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.
Psychometrics Matter in Health Behavior: A Long-term Reliability Generalization Study.
Pickett, Andrew C; Valdez, Danny; Barry, Adam E
2017-09-01
Despite numerous calls for increased understanding and reporting of reliability estimates, social science research, including the field of health behavior, has been slow to respond and adopt such practices. Therefore, we offer a brief overview of reliability and common reporting errors; we then perform analyses to examine and demonstrate the variability of reliability estimates by sample and over time. Using meta-analytic reliability generalization, we examined the variability of coefficient alpha scores for a well-designed, consistent, nationwide health study, covering a span of nearly 40 years. For each year and sample, reliability varied. Furthermore, reliability was predicted by a sample characteristic that differed among age groups within each administration. We demonstrated that reliability is influenced by the methods and individuals from which a given sample is drawn. Our work echoes previous calls that psychometric properties, particularly reliability of scores, are important and must be considered and reported before drawing statistical conclusions.
NASA Astrophysics Data System (ADS)
Berthet, Lionel; Marty, Renaud; Bourgin, François; Viatgé, Julie; Piotte, Olivier; Perrin, Charles
2017-04-01
An increasing number of operational flood forecasting centres assess the predictive uncertainty associated with their forecasts and communicate it to the end users. This information can match the end-users needs (i.e. prove to be useful for an efficient crisis management) only if it is reliable: reliability is therefore a key quality for operational flood forecasts. In 2015, the French flood forecasting national and regional services (Vigicrues network; www.vigicrues.gouv.fr) implemented a framework to compute quantitative discharge and water level forecasts and to assess the predictive uncertainty. Among the possible technical options to achieve this goal, a statistical analysis of past forecasting errors of deterministic models has been selected (QUOIQUE method, Bourgin, 2014). It is a data-based and non-parametric approach based on as few assumptions as possible about the forecasting error mathematical structure. In particular, a very simple assumption is made regarding the predictive uncertainty distributions for large events outside the range of the calibration data: the multiplicative error distribution is assumed to be constant, whatever the magnitude of the flood. Indeed, the predictive distributions may not be reliable in extrapolation. However, estimating the predictive uncertainty for these rare events is crucial when major floods are of concern. In order to improve the forecasts reliability for major floods, an attempt at combining the operational strength of the empirical statistical analysis and a simple error modelling is done. Since the heteroscedasticity of forecast errors can considerably weaken the predictive reliability for large floods, this error modelling is based on the log-sinh transformation which proved to reduce significantly the heteroscedasticity of the transformed error in a simulation context, even for flood peaks (Wang et al., 2012). Exploratory tests on some operational forecasts issued during the recent floods experienced in France (major spring floods in June 2016 on the Loire river tributaries and flash floods in fall 2016) will be shown and discussed. References Bourgin, F. (2014). How to assess the predictive uncertainty in hydrological modelling? An exploratory work on a large sample of watersheds, AgroParisTech Wang, Q. J., Shrestha, D. L., Robertson, D. E. and Pokhrel, P (2012). A log-sinh transformation for data normalization and variance stabilization. Water Resources Research, , W05514, doi:10.1029/2011WR010973
ERIC Educational Resources Information Center
Meyer, J. Patrick; Liu, Xiang; Mashburn, Andrew J.
2014-01-01
Researchers often use generalizability theory to estimate relative error variance and reliability in teaching observation measures. They also use it to plan future studies and design the best possible measurement procedures. However, designing the best possible measurement procedure comes at a cost, and researchers must stay within their budget…
ERIC Educational Resources Information Center
Wilson, Celia M.
2010-01-01
Research pertaining to the distortion of the squared canonical correlation coefficient has traditionally been limited to the effects of sampling error and associated correction formulas. The purpose of this study was to compare the degree of attenuation of the squared canonical correlation coefficient under varying conditions of score reliability.…
Palta, Mari; Chen, Han-Yang; Kaplan, Robert M; Feeny, David; Cherepanov, Dasha; Fryback, Dennis G
2011-01-01
Standard errors of measurement (SEMs) of health-related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics, and is a component of reliability. To estimate the SEM of 5 HRQoL indexes. The National Health Measurement Study (NHMS) was a population-based survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures. A total of 3844 randomly selected adults from the noninstitutionalized population aged 35 to 89 y in the contiguous United States and 265 cataract patients. The SF6-36v2™, QWB-SA, EQ-5D, HUI2, and HUI3 were included. An item-response theory approach captured joint variation in indexes into a composite construct of health (theta). The authors estimated 1) the test-retest standard deviation (SEM-TR) from COMHS, 2) the structural standard deviation (SEM-S) around theta from NHMS, and 3) reliability coefficients. SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2), and 0.134 (HUI3), whereas SEM-S was 0.071, 0.094, 0.084, 0.074, and 0.117, respectively. These yield reliability coefficients 0.66 (COMHS) and 0.71 (NHMS) for SF-6D, 0.59 and 0.64 for QWB-SA, 0.61 and 0.70 for EQ-5D, 0.64 and 0.80 for HUI2, and 0.75 and 0.77 for HUI3, respectively. The SEM varied across levels of health, especially for HUI2, HUI3, and EQ-5D, and was influenced by ceiling effects. Limitations. Repeated measures were 5 mo apart, and estimated theta contained measurement error. The 2 types of SEM are similar and substantial for all the indexes and vary across health.
Field design factors affecting the precision of ryegrass forage yield estimation
USDA-ARS?s Scientific Manuscript database
Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision and accuracy of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to ...
Ability Self-Estimates and Self-Efficacy: Meaningfully Distinct?
ERIC Educational Resources Information Center
Bubany, Shawn T.; Hansen, Jo-Ida C.
2010-01-01
Conceptual differences between self-efficacy and ability self-estimate scores, used in vocational psychology and career counseling, were examined with confirmatory factor analysis, discriminate relations, and reliability analysis. Results suggest that empirical differences may be due to measurement error or scale content, rather than due to the…
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.
Correction of stream quality trends for the effects of laboratory measurement bias
Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.
1993-01-01
We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.
Error Estimation for the Linearized Auto-Localization Algorithm
Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando
2012-01-01
The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965
Validity and Reliability of a New Device (WIMU®) for Measuring Hamstring Muscle Extensibility.
Muyor, José M
2017-09-01
The aims of the current study were 1) to evaluate the validity of the WIMU ® system for measuring hamstring muscle extensibility in the passive straight leg raise (PSLR) test using an inclinometer for the criterion and 2) to determine the test-retest reliability of the WIMU ® system to measure hamstring muscle extensibility during the PSLR test. 55 subjects were evaluated on 2 separate occasions. Data from a Unilever inclinometer and WIMU ® system were collected simultaneously. Intraclass correlation coefficients (ICCs) for the validity were very high (0.983-1); a very low systematic bias (-0.21°--0.42°), random error (0.05°-0.04°) and standard error of the estimate (0.43°-0.34°) were observed (left-right leg, respectively) between the 2 devices (inclinometer and the WIMU ® system). The R 2 between the devices was 0.999 (p<0.001) in both the left and right legs. The test-retest reliability of the WIMU ® system was excellent, with ICCs ranging from 0.972-0.995, low coefficients of variation (0.01%), and a low standard error of the estimate (0.19-0.31°). The WIMU ® system showed strong concurrent validity and excellent test-retest reliability for the evaluation of hamstring muscle extensibility in the PSLR test. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Migneault, Gerard E.
1987-01-01
Emulation techniques can be a solution to a difficulty that arises in the analysis of the reliability of guidance and control computer systems for future commercial aircraft. Described here is the difficulty, the lack of credibility of reliability estimates obtained by analytical modeling techniques. The difficulty is an unavoidable consequence of the following: (1) a reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Use of emulation techniques for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques is then discussed. Finally several examples of the application of emulation techniques are described.
Is Coefficient Alpha Robust to Non-Normal Data?
Sheng, Yanyan; Sheng, Zhaohui
2011-01-01
Coefficient alpha has been a widely used measure by which internal consistency reliability is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality has been noted as another important assumption for alpha. Earlier work on evaluating this assumption considered either exclusively non-normal error score distributions, or limited conditions. In view of this and the availability of advanced methods for generating univariate non-normal data, Monte Carlo simulations were conducted to show that non-normal distributions for true or error scores do create problems for using alpha to estimate the internal consistency reliability. The sample coefficient alpha is affected by leptokurtic true score distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes, not test lengths, help improve the accuracy, bias, or precision of using it with non-normal data. PMID:22363306
NASA Astrophysics Data System (ADS)
Ha, Taesung
A probabilistic risk assessment (PRA) was conducted for a loss of coolant accident, (LOCA) in the McMaster Nuclear Reactor (MNR). A level 1 PRA was completed including event sequence modeling, system modeling, and quantification. To support the quantification of the accident sequence identified, data analysis using the Bayesian method and human reliability analysis (HRA) using the accident sequence evaluation procedure (ASEP) approach were performed. Since human performance in research reactors is significantly different from that in power reactors, a time-oriented HRA model (reliability physics model) was applied for the human error probability (HEP) estimation of the core relocation. This model is based on two competing random variables: phenomenological time and performance time. The response surface and direct Monte Carlo simulation with Latin Hypercube sampling were applied for estimating the phenomenological time, whereas the performance time was obtained from interviews with operators. An appropriate probability distribution for the phenomenological time was assigned by statistical goodness-of-fit tests. The human error probability (HEP) for the core relocation was estimated from these two competing quantities: phenomenological time and operators' performance time. The sensitivity of each probability distribution in human reliability estimation was investigated. In order to quantify the uncertainty in the predicted HEPs, a Bayesian approach was selected due to its capability of incorporating uncertainties in model itself and the parameters in that model. The HEP from the current time-oriented model was compared with that from the ASEP approach. Both results were used to evaluate the sensitivity of alternative huinan reliability modeling for the manual core relocation in the LOCA risk model. This exercise demonstrated the applicability of a reliability physics model supplemented with a. Bayesian approach for modeling human reliability and its potential usefulness of quantifying model uncertainty as sensitivity analysis in the PRA model.
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Reichert, Peter; Kavetski, Dmitri; Albert, Calro
2016-04-01
The calibration of hydrological models based on signatures (e.g. Flow Duration Curves - FDCs) is often advocated as an alternative to model calibration based on the full time series of system responses (e.g. hydrographs). Signature based calibration is motivated by various arguments. From a conceptual perspective, calibration on signatures is a way to filter out errors that are difficult to represent when calibrating on the full time series. Such errors may for example occur when observed and simulated hydrographs are shifted, either on the "time" axis (i.e. left or right), or on the "streamflow" axis (i.e. above or below). These shifts may be due to errors in the precipitation input (time or amount), and if not properly accounted in the likelihood function, may cause biased parameter estimates (e.g. estimated model parameters that do not reproduce the recession characteristics of a hydrograph). From a practical perspective, signature based calibration is seen as a possible solution for making predictions in ungauged basins. Where streamflow data are not available, it may in fact be possible to reliably estimate streamflow signatures. Previous research has for example shown how FDCs can be reliably estimated at ungauged locations based on climatic and physiographic influence factors. Typically, the goal of signature based calibration is not the prediction of the signatures themselves, but the prediction of the system responses. Ideally, the prediction of system responses should be accompanied by a reliable quantification of the associated uncertainties. Previous approaches for signature based calibration, however, do not allow reliable estimates of streamflow predictive distributions. Here, we illustrate how the Bayesian approach can be employed to obtain reliable streamflow predictive distributions based on signatures. A case study is presented, where a hydrological model is calibrated on FDCs and additional signatures. We propose an approach where the likelihood function for the signatures is derived from the likelihood for streamflow (rather than using an "ad-hoc" likelihood for the signatures as done in previous approaches). This likelihood is not easily tractable analytically and we therefore cannot apply "simple" MCMC methods. This numerical problem is solved using Approximate Bayesian Computation (ABC). Our result indicate that the proposed approach is suitable for producing reliable streamflow predictive distributions based on calibration to signature data. Moreover, our results provide indications on which signatures are more appropriate to represent the information content of the hydrograph.
ERIC Educational Resources Information Center
Padilla, Miguel A.; Divers, Jasmin
2016-01-01
Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…
Assessing the Reliability of Curriculum-Based Measurement: An Application of Latent Growth Modeling
ERIC Educational Resources Information Center
Yeo, Seungsoo; Kim, Dong-Il; Branum-Martin, Lee; Wayman, Miya Miura; Espin, Christine A.
2012-01-01
The purpose of this study was to demonstrate the use of Latent Growth Modeling (LGM) as a method for estimating reliability of Curriculum-Based Measurement (CBM) progress-monitoring data. The LGM approach permits the error associated with each measure to differ at each time point, thus providing an alternative method for examining of the…
An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.
Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes
2017-10-01
This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.
Robust Methods for Moderation Analysis with a Two-Level Regression Model.
Yang, Miao; Yuan, Ke-Hai
2016-01-01
Moderation analysis has many applications in social sciences. Most widely used estimation methods for moderation analysis assume that errors are normally distributed and homoscedastic. When these assumptions are not met, the results from a classical moderation analysis can be misleading. For more reliable moderation analysis, this article proposes two robust methods with a two-level regression model when the predictors do not contain measurement error. One method is based on maximum likelihood with Student's t distribution and the other is based on M-estimators with Huber-type weights. An algorithm for obtaining the robust estimators is developed. Consistent estimates of standard errors of the robust estimators are provided. The robust approaches are compared against normal-distribution-based maximum likelihood (NML) with respect to power and accuracy of parameter estimates through a simulation study. Results show that the robust approaches outperform NML under various distributional conditions. Application of the robust methods is illustrated through a real data example. An R program is developed and documented to facilitate the application of the robust methods.
Difficulties in tracking the long-term global trend in tropical forest area.
Grainger, Alan
2008-01-15
The long-term trend in tropical forest area receives less scrutiny than the tropical deforestation rate. We show that constructing a reliable trend is difficult and evidence for decline is unclear, within the limits of errors involved in making global estimates. A time series for all tropical forest area, using data from Forest Resources Assessments (FRAs) of the United Nations Food and Agriculture Organization, is dominated by three successively corrected declining trends. Inconsistencies between these trends raise questions about their reliability, especially because differences seem to result as much from errors as from changes in statistical design and use of new data. A second time series for tropical moist forest area shows no apparent decline. The latter may be masked by the errors involved, but a "forest return" effect may also be operating, in which forest regeneration in some areas offsets deforestation (but not biodiversity loss) elsewhere. A better monitoring program is needed to give a more reliable trend. Scientists who use FRA data should check how the accuracy of their findings depends on errors in the data.
In vivo estimation of target registration errors during augmented reality laparoscopic surgery.
Thompson, Stephen; Schneider, Crispin; Bosi, Michele; Gurusamy, Kurinchi; Ourselin, Sébastien; Davidson, Brian; Hawkes, David; Clarkson, Matthew J
2018-06-01
Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver image guidance system. The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features. We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data. The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving this reliably remains a significant challenge. We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for laparoscopic surgery.
Evaluation of TRMM Ground-Validation Radar-Rain Errors Using Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Wolff, David B.
2009-01-01
Ground-validation (GV) radar-rain products are often utilized for validation of the Tropical Rainfall Measuring Mission (TRMM) spaced-based rain estimates, and hence, quantitative evaluation of the GV radar-rain product error characteristics is vital. This study uses quality-controlled gauge data to compare with TRMM GV radar rain rates in an effort to provide such error characteristics. The results show that significant differences of concurrent radar-gauge rain rates exist at various time scales ranging from 5 min to 1 day, despite lower overall long-term bias. However, the differences between the radar area-averaged rain rates and gauge point rain rates cannot be explained as due to radar error only. The error variance separation method is adapted to partition the variance of radar-gauge differences into the gauge area-point error variance and radar rain estimation error variance. The results provide relatively reliable quantitative uncertainty evaluation of TRMM GV radar rain estimates at various times scales, and are helpful to better understand the differences between measured radar and gauge rain rates. It is envisaged that this study will contribute to better utilization of GV radar rain products to validate versatile spaced-based rain estimates from TRMM, as well as the proposed Global Precipitation Measurement, and other satellites.
Pomeroy, Emma; Macintosh, Alison; Wells, Jonathan C K; Cole, Tim J; Stock, Jay T
2018-05-01
Estimating body mass from skeletal dimensions is widely practiced, but methods for estimating its components (lean and fat mass) are poorly developed. The ability to estimate these characteristics would offer new insights into the evolution of body composition and its variation relative to past and present health. This study investigates the potential of long bone cross-sectional properties as predictors of body, lean, and fat mass. Humerus, femur and tibia midshaft cross-sectional properties were measured by peripheral quantitative computed tomography in sample of young adult women (n = 105) characterized by a range of activity levels. Body composition was estimated from bioimpedance analysis. Lean mass correlated most strongly with both upper and lower limb bone properties (r values up to 0.74), while fat mass showed weak correlations (r ≤ 0.29). Estimation equations generated from tibial midshaft properties indicated that lean mass could be estimated relatively reliably, with some improvement using logged data and including bone length in the models (minimum standard error of estimate = 8.9%). Body mass prediction was less reliable and fat mass only poorly predicted (standard errors of estimate ≥11.9% and >33%, respectively). Lean mass can be predicted more reliably than body mass from limb bone cross-sectional properties. The results highlight the potential for studying evolutionary trends in lean mass from skeletal remains, and have implications for understanding the relationship between bone morphology and body mass or composition. © 2018 The Authors. American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.
An analysis of estimation of pulmonary blood flow by the single-breath method
NASA Technical Reports Server (NTRS)
Srinivasan, R.
1986-01-01
The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.
Brackley, Victoria; Ball, Kevin; Tor, Elaine
2018-05-12
The effectiveness of the swimming turn is highly influential to overall performance in competitive swimming. The push-off or wall contact, within the turn phase, is directly involved in determining the speed the swimmer leaves the wall. Therefore, it is paramount to develop reliable methods to measure the wall-contact-time during the turn phase for training and research purposes. The aim of this study was to determine the concurrent validity and reliability of the Pool Pad App to measure wall-contact-time during the freestyle and backstroke tumble turn. The wall-contact-times of nine elite and sub-elite participants were recorded during their regular training sessions. Concurrent validity statistics included the standardised typical error estimate, linear analysis and effect sizes while the intraclass correlating coefficient (ICC) was used for the reliability statistics. The standardised typical error estimate resulted in a moderate Cohen's d effect size with an R 2 value of 0.80 and the ICC between the Pool Pad and 2D video footage was 0.89. Despite these measurement differences, the results from this concurrent validity and reliability analyses demonstrated that the Pool Pad is suitable for measuring wall-contact-time during the freestyle and backstroke tumble turn within a training environment.
Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels
NASA Technical Reports Server (NTRS)
Moher, Michael L.; Lodge, John H.
1990-01-01
A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
Correcting Measurement Error in Latent Regression Covariates via the MC-SIMEX Method
ERIC Educational Resources Information Center
Rutkowski, Leslie; Zhou, Yan
2015-01-01
Given the importance of large-scale assessments to educational policy conversations, it is critical that subpopulation achievement is estimated reliably and with sufficient precision. Despite this importance, biased subpopulation estimates have been found to occur when variables in the conditioning model side of a latent regression model contain…
On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha
ERIC Educational Resources Information Center
Sijtsma, Klaas
2009-01-01
This discussion paper argues that both the use of Cronbach's alpha as a reliability estimate and as a measure of internal consistency suffer from major problems. First, alpha always has a value, which cannot be equal to the test score's reliability given the inter-item covariance matrix and the usual assumptions about measurement error. Second, in…
ERIC Educational Resources Information Center
Abry, Tashia; Cash, Anne H.; Bradshaw, Catherine P.
2014-01-01
Generalizability theory (GT) offers a useful framework for estimating the reliability of a measure while accounting for multiple sources of error variance. The purpose of this study was to use GT to examine multiple sources of variance in and the reliability of school-level teacher and high school student behaviors as observed using the tool,…
Terry, Leann; Kelley, Ken
2012-11-01
Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.
Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.
Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A
2015-01-01
The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.
Reliability and Validity Assessment of a Linear Position Transducer
Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.
2015-01-01
The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300
NASA Technical Reports Server (NTRS)
Migneault, G. E.
1979-01-01
Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.
Hess, G.W.; Bohman, L.R.
1996-01-01
Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada were developed using streamflow records at six gaged sites and basin physical and climatic characteristics. Streamflow data at gaged sites were related by regression techniques to concurrent flows at nearby gaging stations so that monthly mean streamflows for periods of missing or no record can be estimated for gaged sites in central Nevada. The standard error of estimate for relations at these sites ranged from 12 to 196 percent. Also, monthly streamflow data for selected percent exceedence levels were used in regression analyses with basin and climatic variables to determine relations for ungaged basins for annual and monthly percent exceedence levels. Analyses indicate that the drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the annual percent exceedence, the standard error of estimate of the relations for ungaged sites ranged from 51 to 96 percent and standard error of prediction for ungaged sites ranged from 96 to 249 percent. For the monthly percent exceedence values, the standard error of estimate of the relations ranged from 31 to 168 percent, and the standard error of prediction ranged from 115 to 3,124 percent. Reliability and limitations of the estimating methods are described.
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation
NASA Astrophysics Data System (ADS)
Tobon-Gomez, Catalina; Sukno, Federico M.; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F.
2012-07-01
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18% LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.
Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F
2012-07-07
Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.
Evaluation of statistical models for forecast errors from the HBV model
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Renard, Benjamin; Steinsland, Ingelin; Kolberg, Sjur
2010-04-01
SummaryThree statistical models for the forecast errors for inflow into the Langvatn reservoir in Northern Norway have been constructed and tested according to the agreement between (i) the forecast distribution and the observations and (ii) median values of the forecast distribution and the observations. For the first model observed and forecasted inflows were transformed by the Box-Cox transformation before a first order auto-regressive model was constructed for the forecast errors. The parameters were conditioned on weather classes. In the second model the Normal Quantile Transformation (NQT) was applied on observed and forecasted inflows before a similar first order auto-regressive model was constructed for the forecast errors. For the third model positive and negative errors were modeled separately. The errors were first NQT-transformed before conditioning the mean error values on climate, forecasted inflow and yesterday's error. To test the three models we applied three criterions: we wanted (a) the forecast distribution to be reliable; (b) the forecast intervals to be narrow; (c) the median values of the forecast distribution to be close to the observed values. Models 1 and 2 gave almost identical results. The median values improved the forecast with Nash-Sutcliffe R eff increasing from 0.77 for the original forecast to 0.87 for the corrected forecasts. Models 1 and 2 over-estimated the forecast intervals but gave the narrowest intervals. Their main drawback was that the distributions are less reliable than Model 3. For Model 3 the median values did not fit well since the auto-correlation was not accounted for. Since Model 3 did not benefit from the potential variance reduction that lies in bias estimation and removal it gave on average wider forecasts intervals than the two other models. At the same time Model 3 on average slightly under-estimated the forecast intervals, probably explained by the use of average measures to evaluate the fit.
Zijlstra, Agnes; Zijlstra, Wiebren
2013-09-01
Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Simmons, D. B.
1975-01-01
The DOMONIC system has been modified to run on the Univac 1108 and the CDC 6600 as well as the IBM 370 computer system. The DOMONIC monitor system has been implemented to gather data which can be used to optimize the DOMONIC system and to predict the reliability of software developed using DOMONIC. The areas of quality metrics, error characterization, program complexity, program testing, validation and verification are analyzed. A software reliability model for estimating program completion levels and one on which to base system acceptance have been developed. The DAVE system which performs flow analysis and error detection has been converted from the University of Colorado CDC 6400/6600 computer to the IBM 360/370 computer system for use with the DOMONIC system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, F.J.; Christensen, D.H.
1980-09-01
Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less
Groschen, George E.
1985-01-01
Two simulations of the projected pumping a low estimate, as much as 46.2 cubic feet per second during 2011-20; and a high estimate, as much as 60.0 cubic feet per second during the same period indicate that no further regional water-quality deterioration is likely to occur. Many important properties and conditions are estimated from poor or insufficient field data, and possible ranges of these properties and conditions are tested. In spite of the errors and data deficiencies, the results are based on the best estimates currently available. The reliability of the conclusions rests on the adequacy of the data and the demonstrated sensitivity of the model results to errors in estimates of these properties.
Palta, Mari; Chen, Han-Yang; Kaplan, Robert M.; Feeny, David; Cherepanov, Dasha; Fryback, Dennis
2011-01-01
Background Standard errors of measurement (SEMs) of health related quality of life (HRQoL) indexes are not well characterized. SEM is needed to estimate responsiveness statistics and provides guidance on using indexes on the individual and group level. SEM is also a component of reliability. Purpose To estimate SEM of five HRQoL indexes. Design The National Health Measurement Study (NHMS) was a population based telephone survey. The Clinical Outcomes and Measurement of Health Study (COMHS) provided repeated measures 1 and 6 months post cataract surgery. Subjects 3844 randomly selected adults from the non-institutionalized population 35 to 89 years old in the contiguous United States and 265 cataract patients. Measurements The SF6-36v2™, QWB-SA, EQ-5D, HUI2 and HUI3 were included. An item-response theory (IRT) approach captured joint variation in indexes into a composite construct of health (theta). We estimated: (1) the test-retest standard deviation (SEM-TR) from COMHS, (2) the structural standard deviation (SEM-S) around the composite construct from NHMS and (3) corresponding reliability coefficients. Results SEM-TR was 0.068 (SF-6D), 0.087 (QWB-SA), 0.093 (EQ-5D), 0.100 (HUI2) and 0.134 (HUI3), while SEM-S was 0.071, 0.094, 0.084, 0.074 and 0.117, respectively. These translate into reliability coefficients for SF-6D: 0.66 (COMHS) and 0.71 (NHMS), for QWB: 0.59 and 0.64, for EQ-5D: 0.61 and 0.70 for HUI2: 0.64 and 0.80, and for HUI3: 0.75 and 0.77, respectively. The SEM varied considerably across levels of health, especially for HUI2, HUI3 and EQ-5D, and was strongly influenced by ceiling effects. Limitations Repeated measures were five months apart and estimated theta contain measurement error. Conclusions The two types of SEM are similar and substantial for all the indexes, and vary across the range of health. PMID:20935280
Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen
2016-01-01
Exterior orientation parameters’ (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model. PMID:27077855
Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen
2016-04-11
Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.
Covariance analysis for evaluating head trackers
NASA Astrophysics Data System (ADS)
Kang, Donghoon
2017-10-01
Existing methods for evaluating the performance of head trackers usually rely on publicly available face databases, which contain facial images and the ground truths of their corresponding head orientations. However, most of the existing publicly available face databases are constructed by assuming that a frontal head orientation can be determined by compelling the person under examination to look straight ahead at the camera on the first video frame. Since nobody can accurately direct one's head toward the camera, this assumption may be unrealistic. Rather than obtaining estimation errors, we present a method for computing the covariance of estimation error rotations to evaluate the reliability of head trackers. As an uncertainty measure of estimators, the Schatten 2-norm of a square root of error covariance (or the algebraic average of relative error angles) can be used. The merit of the proposed method is that it does not disturb the person under examination by asking him to direct his head toward certain directions. Experimental results using real data validate the usefulness of our method.
Optimal full motion video registration with rigorous error propagation
NASA Astrophysics Data System (ADS)
Dolloff, John; Hottel, Bryant; Doucette, Peter; Theiss, Henry; Jocher, Glenn
2014-06-01
Optimal full motion video (FMV) registration is a crucial need for the Geospatial community. It is required for subsequent and optimal geopositioning with simultaneous and reliable accuracy prediction. An overall approach being developed for such registration is presented that models relevant error sources in terms of the expected magnitude and correlation of sensor errors. The corresponding estimator is selected based on the level of accuracy of the a priori information of the sensor's trajectory and attitude (pointing) information, in order to best deal with non-linearity effects. Estimator choices include near real-time Kalman Filters and batch Weighted Least Squares. Registration solves for corrections to the sensor a priori information for each frame. It also computes and makes available a posteriori accuracy information, i.e., the expected magnitude and correlation of sensor registration errors. Both the registered sensor data and its a posteriori accuracy information are then made available to "down-stream" Multi-Image Geopositioning (MIG) processes. An object of interest is then measured on the registered frames and a multi-image optimal solution, including reliable predicted solution accuracy, is then performed for the object's 3D coordinates. This paper also describes a robust approach to registration when a priori information of sensor attitude is unavailable. It makes use of structure-from-motion principles, but does not use standard Computer Vision techniques, such as estimation of the Essential Matrix which can be very sensitive to noise. The approach used instead is a novel, robust, direct search-based technique.
Mayo, Ann M
2015-01-01
It is important for CNSs and other APNs to consider the reliability and validity of instruments chosen for clinical practice, evidence-based practice projects, or research studies. Psychometric testing uses specific research methods to evaluate the amount of error associated with any particular instrument. Reliability estimates explain more about how well the instrument is designed, whereas validity estimates explain more about scores that are produced by the instrument. An instrument may be architecturally sound overall (reliable), but the same instrument may not be valid. For example, if a specific group does not understand certain well-constructed items, then the instrument does not produce valid scores when used with that group. Many instrument developers may conduct reliability testing only once, yet continue validity testing in different populations over many years. All CNSs should be advocating for the use of reliable instruments that produce valid results. Clinical nurse specialists may find themselves in situations where reliability and validity estimates for some instruments that are being utilized are unknown. In such cases, CNSs should engage key stakeholders to sponsor nursing researchers to pursue this most important work.
NASA Astrophysics Data System (ADS)
Liu, Yiming; Shi, Yimin; Bai, Xuchao; Zhan, Pei
2018-01-01
In this paper, we study the estimation for the reliability of a multicomponent system, named N- M-cold-standby redundancy system, based on progressive Type-II censoring sample. In the system, there are N subsystems consisting of M statistically independent distributed strength components, and only one of these subsystems works under the impact of stresses at a time and the others remain as standbys. Whenever the working subsystem fails, one from the standbys takes its place. The system fails when the entire subsystems fail. It is supposed that the underlying distributions of random strength and stress both belong to the generalized half-logistic distribution with different shape parameter. The reliability of the system is estimated by using both classical and Bayesian statistical inference. Uniformly minimum variance unbiased estimator and maximum likelihood estimator for the reliability of the system are derived. Under squared error loss function, the exact expression of the Bayes estimator for the reliability of the system is developed by using the Gauss hypergeometric function. The asymptotic confidence interval and corresponding coverage probabilities are derived based on both the Fisher and the observed information matrices. The approximate highest probability density credible interval is constructed by using Monte Carlo method. Monte Carlo simulations are performed to compare the performances of the proposed reliability estimators. A real data set is also analyzed for an illustration of the findings.
Field reliability of competency and sanity opinions: A systematic review and meta-analysis.
Guarnera, Lucy A; Murrie, Daniel C
2017-06-01
We know surprisingly little about the interrater reliability of forensic psychological opinions, even though courts and other authorities have long called for known error rates for scientific procedures admitted as courtroom testimony. This is particularly true for opinions produced during routine practice in the field, even for some of the most common types of forensic evaluations-evaluations of adjudicative competency and legal sanity. To address this gap, we used meta-analytic procedures and study space methodology to systematically review studies that examined the interrater reliability-particularly the field reliability-of competency and sanity opinions. Of 59 identified studies, 9 addressed the field reliability of competency opinions and 8 addressed the field reliability of sanity opinions. These studies presented a wide range of reliability estimates; pairwise percentage agreements ranged from 57% to 100% and kappas ranged from .28 to 1.0. Meta-analytic combinations of reliability estimates obtained by independent evaluators returned estimates of κ = .49 (95% CI: .40-.58) for competency opinions and κ = .41 (95% CI: .29-.53) for sanity opinions. This wide range of reliability estimates underscores the extent to which different evaluation contexts tend to produce different reliability rates. Unfortunately, our study space analysis illustrates that available field reliability studies typically provide little information about contextual variables crucial to understanding their findings. Given these concerns, we offer suggestions for improving research on the field reliability of competency and sanity opinions, as well as suggestions for improving reliability rates themselves. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
The modal surface interpolation method for damage localization
NASA Astrophysics Data System (ADS)
Pina Limongelli, Maria
2017-05-01
The Interpolation Method (IM) has been previously proposed and successfully applied for damage localization in plate like structures. The method is based on the detection of localized reductions of smoothness in the Operational Deformed Shapes (ODSs) of the structure. The IM can be applied to any type of structure provided the ODSs are estimated accurately in the original and in the damaged configurations. If the latter circumstance fails to occur, for example when the structure is subjected to an unknown input(s) or if the structural responses are strongly corrupted by noise, both false and missing alarms occur when the IM is applied to localize a concentrated damage. In order to overcome these drawbacks a modification of the method is herein investigated. An ODS is the deformed shape of a structure subjected to a harmonic excitation: at resonances the ODS are dominated by the relevant mode shapes. The effect of noise at resonance is usually lower with respect to other frequency values hence the relevant ODS are estimated with higher reliability. Several methods have been proposed to reliably estimate modal shapes in case of unknown input. These two circumstances can be exploited to improve the reliability of the IM. In order to reduce or eliminate the drawbacks related to the estimation of the ODSs in case of noisy signals, in this paper is investigated a modified version of the method based on a damage feature calculated considering the interpolation error relevant only to the modal shapes and not to all the operational shapes in the significant frequency range. Herein will be reported the comparison between the results of the IM in its actual version (with the interpolation error calculated summing up the contributions of all the operational shapes) and in the new proposed version (with the estimation of the interpolation error limited to the modal shapes).
Di Nuovo, Alessandro G; Di Nuovo, Santo; Buono, Serafino
2012-02-01
The estimation of a person's intelligence quotient (IQ) by means of psychometric tests is indispensable in the application of psychological assessment to several fields. When complex tests as the Wechsler scales, which are the most commonly used and universally recognized parameter for the diagnosis of degrees of retardation, are not applicable, it is necessary to use other psycho-diagnostic tools more suited for the subject's specific condition. But to ensure a homogeneous diagnosis it is necessary to reach a common metric, thus, the aim of our work is to build models able to estimate accurately and reliably the Wechsler IQ, starting from different psycho-diagnostic tools. Four different psychometric tests (Leiter international performance scale; coloured progressive matrices test; the mental development scale; psycho educational profile), along with the Wechsler scale, were administered to a group of 40 mentally retarded subjects, with various pathologies, and control persons. The obtained database is used to evaluate Wechsler IQ estimation models starting from the scores obtained in the other tests. Five modelling methods, two statistical and three from machine learning, that belong to the family of artificial neural networks (ANNs) are employed to build the estimator. Several error metrics for estimated IQ and for retardation level classification are defined to compare the performance of the various models with univariate and multivariate analyses. Eight empirical studies show that, after ten-fold cross-validation, best average estimation error is of 3.37 IQ points and mental retardation level classification error of 7.5%. Furthermore our experiments prove the superior performance of ANN methods over statistical regression ones, because in all cases considered ANN models show the lowest estimation error (from 0.12 to 0.9 IQ points) and the lowest classification error (from 2.5% to 10%). Since the estimation performance is better than the confidence interval of Wechsler scales (five IQ points), we consider models built very accurate and reliable and they can be used into help clinical diagnosis. Therefore a computer software based on the results of our work is currently used in a clinical center and empirical trails confirm its validity. Furthermore positive results in our multivariate studies suggest new approaches for clinicians. Copyright © 2011 Elsevier B.V. All rights reserved.
Racemization of aspartic acid in root dentin as a tool for age estimation in a Kuwaiti population.
Elfawal, Mohamed Amin; Alqattan, Sahib Issa; Ghallab, Noha Ayman
2015-01-01
Estimation of age is one of the most significant tasks in forensic practice. Amino acid racemization is considered one of the most reliable and accurate methods of age estimation and aspartic acid shows a high racemization reaction rate. The present study has investigated the application of aspartic acid racemization in age estimation in a Kuwaiti population using root dentin from a total of 89 upper first premolar teeth. The D/L ratio of aspartic acid was obtained by HPLC technique in a test group of 50 subjects and a linear regression line was established between aspartic acid racemization and age. The correlation coefficient (r) was 0.97, and the standard error of estimation was ±1.26 years. The racemization age "t" of each subject was calculated by applying the following formula: ln [(1 + D/L)/(1 - D/L)] = 0.003181 t + (-0.01591). When the proposed formula "estimated age t = ln [(1 + D/L)/(1 - D/L)] + 0.01591/0.003181" was applied to a validation group of 39 subjects, the range of error was less than one year in 82.1% of the cases and the standard error of estimation was ±1.12. The current work has established a reasonably significant correlation of the D-/L-aspartic acid ratio with age, and proposed an apparently reliable formula for calculating the age in Kuwaiti populations through aspartic acid racemization. Further research is required to find out whether similar findings are applicable to other ethnic populations. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant
Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar
2015-01-01
Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485
Toward Automatic Verification of Goal-Oriented Flow Simulations
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2014-01-01
We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.
GPS/DR Error Estimation for Autonomous Vehicle Localization.
Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In
2015-08-21
Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level.
GPS/DR Error Estimation for Autonomous Vehicle Localization
Lee, Byung-Hyun; Song, Jong-Hwa; Im, Jun-Hyuck; Im, Sung-Hyuck; Heo, Moon-Beom; Jee, Gyu-In
2015-01-01
Autonomous vehicles require highly reliable navigation capabilities. For example, a lane-following method cannot be applied in an intersection without lanes, and since typical lane detection is performed using a straight-line model, errors can occur when the lateral distance is estimated in curved sections due to a model mismatch. Therefore, this paper proposes a localization method that uses GPS/DR error estimation based on a lane detection method with curved lane models, stop line detection, and curve matching in order to improve the performance during waypoint following procedures. The advantage of using the proposed method is that position information can be provided for autonomous driving through intersections, in sections with sharp curves, and in curved sections following a straight section. The proposed method was applied in autonomous vehicles at an experimental site to evaluate its performance, and the results indicate that the positioning achieved accuracy at the sub-meter level. PMID:26307997
TLE uncertainty estimation using robust weighted differencing
NASA Astrophysics Data System (ADS)
Geul, Jacco; Mooij, Erwin; Noomen, Ron
2017-05-01
Accurate knowledge of satellite orbit errors is essential for many types of analyses. Unfortunately, for two-line elements (TLEs) this is not available. This paper presents a weighted differencing method using robust least-squares regression for estimating many important error characteristics. The method is applied to both classic and enhanced TLEs, compared to previous implementations, and validated using Global Positioning System (GPS) solutions for the GOCE satellite in Low-Earth Orbit (LEO), prior to its re-entry. The method is found to be more accurate than previous TLE differencing efforts in estimating initial uncertainty, as well as error growth. The method also proves more reliable and requires no data filtering (such as outlier removal). Sensitivity analysis shows a strong relationship between argument of latitude and covariance (standard deviations and correlations), which the method is able to approximate. Overall, the method proves accurate, computationally fast, and robust, and is applicable to any object in the satellite catalogue (SATCAT).
NASA Astrophysics Data System (ADS)
Próchniewicz, Dominik
2014-03-01
The reliability of precision GNSS positioning primarily depends on correct carrier-phase ambiguity resolution. An optimal estimation and correct validation of ambiguities necessitates a proper definition of mathematical positioning model. Of particular importance in the model definition is the taking into account of the atmospheric errors (ionospheric and tropospheric refraction) as well as orbital errors. The use of the network of reference stations in kinematic positioning, known as Network-based Real-Time Kinematic (Network RTK) solution, facilitates the modeling of such errors and their incorporation, in the form of correction terms, into the functional description of positioning model. Lowered accuracy of corrections, especially during atmospheric disturbances, results in the occurrence of unaccounted biases, the so-called residual errors. The taking into account of such errors in Network RTK positioning model is possible by incorporating the accuracy characteristics of the correction terms into the stochastic model of observations. In this paper we investigate the impact of the expansion of the stochastic model to include correction term variances on the reliability of the model solution. In particular the results of instantaneous solution that only utilizes a single epoch of GPS observations, is analyzed. Such a solution mode due to the low number of degrees of freedom is very sensitive to an inappropriate mathematical model definition. Thus the high level of the solution reliability is very difficult to achieve. Numerical tests performed for a test network located in mountain area during ionospheric disturbances allows to verify the described method for the poor measurement conditions. The results of the ambiguity resolution as well as the rover positioning accuracy shows that the proposed method of stochastic modeling can increase the reliability of instantaneous Network RTK performance.
Structural Reliability Using Probability Density Estimation Methods Within NESSUS
NASA Technical Reports Server (NTRS)
Chamis, Chrisos C. (Technical Monitor); Godines, Cody Ric
2003-01-01
A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been proposed by the Society of Automotive Engineers (SAE). The test cases compare different probabilistic methods within NESSUS because it is important that a user can have confidence that estimates of stochastic parameters of a response will be within an acceptable error limit. For each response, the mean, standard deviation, and 0.99 percentile, are repeatedly estimated which allows confidence statements to be made for each parameter estimated, and for each method. Thus, the ability of several stochastic methods to efficiently and accurately estimate density parameters is compared using four valid test cases. While all of the reliability methods used performed quite well, for the new LHS module within NESSUS it was found that it had a lower estimation error than MC when they were used to estimate the mean, standard deviation, and 0.99 percentile of the four different stochastic responses. Also, LHS required a smaller amount of calculations to obtain low error answers with a high amount of confidence than MC. It can therefore be stated that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ and the newest LHS module is a valuable new enhancement of the program.
Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model
NASA Astrophysics Data System (ADS)
Yuan, Zhongda; Deng, Junxiang; Wang, Dawei
2018-02-01
Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.
Some computational techniques for estimating human operator describing functions
NASA Technical Reports Server (NTRS)
Levison, W. H.
1986-01-01
Computational procedures for improving the reliability of human operator describing functions are described. Special attention is given to the estimation of standard errors associated with mean operator gain and phase shift as computed from an ensemble of experimental trials. This analysis pertains to experiments using sum-of-sines forcing functions. Both open-loop and closed-loop measurement environments are considered.
A soft-computing methodology for noninvasive time-spatial temperature estimation.
Teixeira, César A; Ruano, Maria Graça; Ruano, António E; Pereira, Wagner C A
2008-02-01
The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 degrees C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 degrees C, being "elected" as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.
On the robustness of a Bayes estimate. [in reliability theory
NASA Technical Reports Server (NTRS)
Canavos, G. C.
1974-01-01
This paper examines the robustness of a Bayes estimator with respect to the assigned prior distribution. A Bayesian analysis for a stochastic scale parameter of a Weibull failure model is summarized in which the natural conjugate is assigned as the prior distribution of the random parameter. The sensitivity analysis is carried out by the Monte Carlo method in which, although an inverted gamma is the assigned prior, realizations are generated using distribution functions of varying shape. For several distributional forms and even for some fixed values of the parameter, simulated mean squared errors of Bayes and minimum variance unbiased estimators are determined and compared. Results indicate that the Bayes estimator remains squared-error superior and appears to be largely robust to the form of the assigned prior distribution.
Montuno, Michael A; Kohner, Andrew B; Foote, Kelly D; Okun, Michael S
2013-01-01
Deep brain stimulation (DBS) is an effective technique that has been utilized to treat advanced and medication-refractory movement and psychiatric disorders. In order to avoid implanted pulse generator (IPG) failure and consequent adverse symptoms, a better understanding of IPG battery longevity and management is necessary. Existing methods for battery estimation lack the specificity required for clinical incorporation. Technical challenges prevent higher accuracy longevity estimations, and a better approach to managing end of DBS battery life is needed. The literature was reviewed and DBS battery estimators were constructed by the authors and made available on the web at http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator. A clinical algorithm for management of DBS battery life was constructed. The algorithm takes into account battery estimations and clinical symptoms. Existing methods of DBS battery life estimation utilize an interpolation of averaged current drains to calculate how long a battery will last. Unfortunately, this technique can only provide general approximations. There are inherent errors in this technique, and these errors compound with each iteration of the battery estimation. Some of these errors cannot be accounted for in the estimation process, and some of the errors stem from device variation, battery voltage dependence, battery usage, battery chemistry, impedance fluctuations, interpolation error, usage patterns, and self-discharge. We present web-based battery estimators along with an algorithm for clinical management. We discuss the perils of using a battery estimator without taking into account the clinical picture. Future work will be needed to provide more reliable management of implanted device batteries; however, implementation of a clinical algorithm that accounts for both estimated battery life and for patient symptoms should improve the care of DBS patients. © 2012 International Neuromodulation Society.
Mihm, F G; Feeley, T W; Jamieson, S W
1987-01-01
The thermal dye double indicator dilution technique for estimating lung water was compared with gravimetric analyses in nine human subjects who were organ donors. As observed in animal studies, the thermal dye measurement of extravascular thermal volume (EVTV) consistently overestimated gravimetric extravascular lung water (EVLW), the mean (SEM) difference being 3.43 (0.59) ml/kg. In eight of the nine subjects the EVTV -3.43 ml/kg would yield an estimate of EVLW that would be from 3.23 ml/kg under to 3.37 ml/kg over the actual value EVLW at the 95% confidence limits. Reproducibility, assessed with the standard error of the mean percentage, suggested that a 15% change in EVTV can be reliably detected with repeated measurements. One subject was excluded from analysis because the EVTV measurement grossly underestimated its actual EVLW. This error was associated with regional injury observed on gross examination of the lung. Experimental and clinical evidence suggest that the thermal dye measurement provides a reliable estimate of lung water in diffuse pulmonary oedema states. PMID:3616974
Methods for determining time of death.
Madea, Burkhard
2016-12-01
Medicolegal death time estimation must estimate the time since death reliably. Reliability can only be provided empirically by statistical analysis of errors in field studies. Determining the time since death requires the calculation of measurable data along a time-dependent curve back to the starting point. Various methods are used to estimate the time since death. The current gold standard for death time estimation is a previously established nomogram method based on the two-exponential model of body cooling. Great experimental and practical achievements have been realized using this nomogram method. To reduce the margin of error of the nomogram method, a compound method was developed based on electrical and mechanical excitability of skeletal muscle, pharmacological excitability of the iris, rigor mortis, and postmortem lividity. Further increasing the accuracy of death time estimation involves the development of conditional probability distributions for death time estimation based on the compound method. Although many studies have evaluated chemical methods of death time estimation, such methods play a marginal role in daily forensic practice. However, increased precision of death time estimation has recently been achieved by considering various influencing factors (i.e., preexisting diseases, duration of terminal episode, and ambient temperature). Putrefactive changes may be used for death time estimation in water-immersed bodies. Furthermore, recently developed technologies, such as H magnetic resonance spectroscopy, can be used to quantitatively study decompositional changes. This review addresses the gold standard method of death time estimation in forensic practice and promising technological and scientific developments in the field.
Stochastic estimation of plant-available soil water under fluctuating water table depths
NASA Astrophysics Data System (ADS)
Or, Dani; Groeneveld, David P.
1994-12-01
Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.
Between-day reliability of the trapezius muscle H-reflex and M-wave.
Vangsgaard, Steffen; Hansen, Ernst A; Madeleine, Pascal
2015-12-01
The aim of this study was to investigate the between-day reliability of the trapezius muscle H-reflex and M-wave. Sixteen healthy subjects were studied on 2 consecutive days. Trapezius muscle H-reflexes were evoked by electrical stimulation of the C3/4 cervical nerves; M-waves were evoked by electrical stimulation of the accessory nerve. Relative reliability was estimated by intraclass correlation coefficients (ICC2,1 ). Absolute reliability was estimated by computing the standard error of measurement (SEM) and the smallest real difference (SRD). Bland-Altman plots were constructed to detect any systematic bias. Variables showed substantial to excellent relative reliability (ICC = 0.70-0.99). The relative SEM ranged from 1.4% to 34.8%; relative SRD ranged from 3.8% to 96.5%. No systematic bias was present in the data. The amplitude and latency of the trapezius muscle H-reflex and M-wave in healthy young subjects can be measured reliably across days. © 2015 Wiley Periodicals, Inc.
Ban, Ilija; Troelsen, Anders; Kristensen, Morten Tange
2016-10-01
The Constant score (CS) has been the primary endpoint in most studies on clavicle fractures. However, the CS was not developed to assess patients with clavicle fractures. Our aim was to examine inter-rater reliability and agreement of the CS in patients with clavicle fractures. The secondary aim was to estimate the correlation between the CS and the Disabilities of the Arm, Shoulder and Hand score and the internal consistency of the 2 scores. On the basis of sample sizing, 36 patients (31 male and 5 female patients; mean age, 41.3 years) with clavicle fractures underwent standardized CS assessment at a mean of 6.8 weeks (SD, 1.0 weeks) after injury. Reliability and agreement of the CS were determined by 2 raters. The interclass correlation coefficient (ICC2,1), standard error of measurement, minimal detectable change, Cronbach α coefficient, and Pearson correlation coefficient were estimated. Inter-rater reliability of the total CS was excellent (interclass correlation coefficient, 0.94; 95% confidence interval, 0.88-0.97), with no systematic difference between the 2 raters (P = .75). The standard error of measurement (measurement error at the group level) was 4.9, whereas the minimal detectable change (smallest change needed to indicate a real change for an individual) was 13.6 CS points. The internal consistency of the 10 CS items was good, with a Cronbach α of .85, and we found a strong correlation (r = -0.92) between the CS and Disabilities of the Arm, Shoulder and Hand score. The CS was found to be reliable for assessing patients with clavicle fractures, especially at the group level. With high inter-rater reliability and agreement, in addition to good internal consistency, the standardized CS used in this study can be used for comparison of results from different settings. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Permeability Estimation of Rock Reservoir Based on PCA and Elman Neural Networks
NASA Astrophysics Data System (ADS)
Shi, Ying; Jian, Shaoyong
2018-03-01
an intelligent method which based on fuzzy neural networks with PCA algorithm, is proposed to estimate the permeability of rock reservoir. First, the dimensionality reduction process is utilized for these parameters by principal component analysis method. Further, the mapping relationship between rock slice characteristic parameters and permeability had been found through fuzzy neural networks. The estimation validity and reliability for this method were tested with practical data from Yan’an region in Ordos Basin. The result showed that the average relative errors of permeability estimation for this method is 6.25%, and this method had the better convergence speed and more accuracy than other. Therefore, by using the cheap rock slice related information, the permeability of rock reservoir can be estimated efficiently and accurately, and it is of high reliability, practicability and application prospect.
Is the encoding of Reward Prediction Error reliable during development?
Keren, Hanna; Chen, Gang; Benson, Brenda; Ernst, Monique; Leibenluft, Ellen; Fox, Nathan A; Pine, Daniel S; Stringaris, Argyris
2018-05-16
Reward Prediction Errors (RPEs), defined as the difference between the expected and received outcomes, are integral to reinforcement learning models and play an important role in development and psychopathology. In humans, RPE encoding can be estimated using fMRI recordings, however, a basic measurement property of RPE signals, their test-retest reliability across different time scales, remains an open question. In this paper, we examine the 3-month and 3-year reliability of RPE encoding in youth (mean age at baseline = 10.6 ± 0.3 years), a period of developmental transitions in reward processing. We show that RPE encoding is differentially distributed between the positive values being encoded predominantly in the striatum and negative RPEs primarily encoded in the insula. The encoding of negative RPE values is highly reliable in the right insula, across both the long and the short time intervals. Insula reliability for RPE encoding is the most robust finding, while other regions, such as the striatum, are less consistent. Striatal reliability appeared significant as well once covarying for factors, which were possibly confounding the signal to noise ratio. By contrast, task activation during feedback in the striatum is highly reliable across both time intervals. These results demonstrate the valence-dependent differential encoding of RPE signals between the insula and striatum, and the consistency of RPE signals or lack thereof, during childhood and into adolescence. Characterizing the regions where the RPE signal in BOLD fMRI is a reliable marker is key for estimating reward-processing alterations in longitudinal designs, such as developmental or treatment studies. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Accuracy assessment in the Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Houston, A. G.; Pitts, D. E.; Feiveson, A. H.; Badhwar, G.; Ferguson, M.; Hsu, E.; Potter, J.; Chhikara, R.; Rader, M.; Ahlers, C.
1979-01-01
The Accuracy Assessment System (AAS) of the Large Area Crop Inventory Experiment (LACIE) was responsible for determining the accuracy and reliability of LACIE estimates of wheat production, area, and yield, made at regular intervals throughout the crop season, and for investigating the various LACIE error sources, quantifying these errors, and relating them to their causes. Some results of using the AAS during the three years of LACIE are reviewed. As the program culminated, AAS was able not only to meet the goal of obtaining accurate statistical estimates of sampling and classification accuracy, but also the goal of evaluating component labeling errors. Furthermore, the ground-truth data processing matured from collecting data for one crop (small grains) to collecting, quality-checking, and archiving data for all crops in a LACIE small segment.
Berke, Ethan M; Shi, Xun
2009-04-29
Travel time is an important metric of geographic access to health care. We compared strategies of estimating travel times when only subject ZIP code data were available. Using simulated data from New Hampshire and Arizona, we estimated travel times to nearest cancer centers by using: 1) geometric centroid of ZIP code polygons as origins, 2) population centroids as origin, 3) service area rings around each cancer center, assigning subjects to rings by assuming they are evenly distributed within their ZIP code, 4) service area rings around each center, assuming the subjects follow the population distribution within the ZIP code. We used travel times based on street addresses as true values to validate estimates. Population-based methods have smaller errors than geometry-based methods. Within categories (geometry or population), centroid and service area methods have similar errors. Errors are smaller in urban areas than in rural areas. Population-based methods are superior to the geometry-based methods, with the population centroid method appearing to be the best choice for estimating travel time. Estimates in rural areas are less reliable.
Attia, A; Dhahbi, W; Chaouachi, A; Padulo, J; Wong, D P; Chamari, K
2017-03-01
Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen's d >1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height.
Attia, A; Chaouachi, A; Padulo, J; Wong, DP; Chamari, K
2016-01-01
Common methods to estimate vertical jump height (VJH) are based on the measurements of flight time (FT) or vertical reaction force. This study aimed to assess the measurement errors when estimating the VJH with flight time using photocell devices in comparison with the gold standard jump height measured by a force plate (FP). The second purpose was to determine the intrinsic reliability of the Optojump photoelectric cells in estimating VJH. For this aim, 20 subjects (age: 22.50±1.24 years) performed maximal vertical jumps in three modalities in randomized order: the squat jump (SJ), counter-movement jump (CMJ), and CMJ with arm swing (CMJarm). Each trial was simultaneously recorded by the FP and Optojump devices. High intra-class correlation coefficients (ICCs) for validity (0.98-0.99) and low limits of agreement (less than 1.4 cm) were found; even a systematic difference in jump height was consistently observed between FT and double integration of force methods (-31% to -27%; p<0.001) and a large effect size (Cohen’s d>1.2). Intra-session reliability of Optojump was excellent, with ICCs ranging from 0.98 to 0.99, low coefficients of variation (3.98%), and low standard errors of measurement (0.8 cm). It was concluded that there was a high correlation between the two methods to estimate the vertical jump height, but the FT method cannot replace the gold standard, due to the large systematic bias. According to our results, the equations of each of the three jump modalities were presented in order to obtain a better estimation of the jump height. PMID:28416900
Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2013-10-01
We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.
Vašek, Jakub; Viehmannová, Iva; Ocelák, Martin; Cachique Huansi, Danter; Vejl, Pavel
2017-01-01
An analysis of the population structure and genetic diversity for any organism often depends on one or more molecular marker techniques. Nonetheless, these techniques are not absolutely reliable because of various sources of errors arising during the genotyping process. Thus, a complex analysis of genotyping error was carried out with the AFLP method in 169 samples of the oil seed plant Plukenetia volubilis L. from small isolated subpopulations in the Peruvian Amazon. Samples were collected in nine localities from the region of San Martin. Analysis was done in eight datasets with a genotyping error from 0 to 5%. Using eleven primer combinations, 102 to 275 markers were obtained according to the dataset. It was found that it is only possible to obtain the most reliable and robust results through a multiple-level filtering process. Genotyping error and software set up influence both the estimation of population structure and genetic diversity, where in our case population number (K) varied between 2–9 depending on the dataset and statistical method used. Surprisingly, discrepancies in K number were caused more by statistical approaches than by genotyping errors themselves. However, for estimation of genetic diversity, the degree of genotyping error was critical because descriptive parameters (He, FST, PLP 5%) varied substantially (by at least 25%). Due to low gene flow, P. volubilis mostly consists of small isolated subpopulations (ΦPT = 0.252–0.323) with some degree of admixture given by socio-economic connectivity among the sites; a direct link between the genetic and geographic distances was not confirmed. The study illustrates the successful application of AFLP to infer genetic structure in non-model plants. PMID:28910307
Paksi, Borbala; Demetrovics, Zsolt; Magi, Anna; Felvinczi, Katalin
2017-06-01
This paper introduces the methods and methodological findings of the National Survey on Addiction Problems in Hungary (NSAPH 2015). Use patterns of smoking, alcohol use and other psychoactive substances were measured as well as that of certain behavioural addictions (problematic gambling - PGSI, DSM-V, eating disorders - SCOFF, problematic internet use - PIUQ, problematic on-line gaming - POGO, problematic social media use - FAS, exercise addictions - EAI-HU, work addiction - BWAS, compulsive buying - CBS). The paper describes the applied measurement techniques, sample selection, recruitment of respondents and the data collection strategy as well. Methodological results of the survey including reliability and validity of the measures are reported. The NSAPH 2015 research was carried out on a nationally representative sample of the Hungarian adult population aged 16-64 yrs (gross sample 2477, net sample 2274 persons) with the age group of 18-34 being overrepresented. Statistical analysis of the weight-distribution suggests that weighting did not create any artificial distortion in the database leaving the representativeness of the sample unaffected. The size of the weighted sample of the 18-64 years old adult population is 1490 persons. The extent of the theoretical margin of error in the weighted sample is ±2,5%, at a reliability level of 95% which is in line with the original data collection plans. Based on the analysis of reliability and the extent of errors beyond sampling within the context of the database we conclude that inconsistencies create relatively minor distortions in cumulative prevalence rates; consequently the database makes possible the reliable estimation of risk factors related to different substance use behaviours. The reliability indexes of measurements used for prevalence estimates of behavioural addictions proved to be appropriate, though the psychometric features in some cases suggest the presence of redundant items. The comparison of parameters of errors beyond sample selection in the current and previous data collections indicates that trend estimates and their interpretation requires outstanding attention and in some cases even correction procedures might become necessary.
Bowman, Gene L.; Shannon, Jackilen; Ho, Emily; Traber, Maret G.; Frei, Balz; Oken, Barry S.; Kaye, Jeffery A.; Quinn, Joseph F.
2010-01-01
Introduction There is great interest in nutritional strategies for the prevention of age-related cognitive decline, yet the best methods for nutritional assessment in populations at risk for dementia are still evolving. Our study objective was to test the reliability and validity of two common nutritional assessments (plasma nutrient biomarkers and Food Frequency Questionnaire) in people at risk for dementia. Methods Thirty-eight elders, half with amnestic -Mild Cognitive Impairment and half with intact cognition were recruited. Nutritional assessments were collected together at baseline and again at 1 month. Intraclass and Pearson correlation coefficients quantified reliability and validity. Results Twenty-six nutrients were examined and reliability was very good or better for 77% (20/26, ICC ≥ .75) of the plasma nutrient biomarkers and for 88% of the FFQ estimates. Twelve of the plasma nutrient estimates were as reliable as the commonly measured plasma cholesterol (ICC=.92). FFQ and plasma long-chain fatty acids (docosahexaenoic acid, r =.39, eicosapentaenoic acid, r = .39) and carotenoids (α-carotene, r =.49; lutein + zeaxanthin, r = .48; β-carotene, r = .43; β-cryptoxanthin, r = .41) were correlated, but no other FFQ estimates correlated with respective nutrient biomarkers. Correlations between FFQ and plasma fatty acids and carotenoids were significantly stronger after removing subjects with MCI. Conclusion The reliability and validity of plasma and FFQ nutrient estimates vary according to the nutrient of interest. Memory deficit attenuates FFQ estimate validity and inflates FFQ estimate reliability. Many plasma nutrient biomarkers have very good reliability over 1-month regardless of memory state. This method can circumvent sources of error seen in other less direct methods of nutritional assessment. PMID:20856100
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Improved estimates of ocean heat content from 1960 to 2015.
Cheng, Lijing; Trenberth, Kevin E; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang
2017-03-01
Earth's energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.
Improved estimates of ocean heat content from 1960 to 2015
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang
2017-01-01
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study. PMID:28345033
Improved estimates of ocean heat content from 1960 to 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide here updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the datarich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and withmore » variability on decadal and multidecadal time scales (signal) that can be reliably distinguished fromsampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition,OHC changes in sixmajor oceans are reliable on decadal timescales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.« less
Improved estimates of ocean heat content from 1960 to 2015
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John; ...
2017-03-10
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide here updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the datarich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and withmore » variability on decadal and multidecadal time scales (signal) that can be reliably distinguished fromsampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition,OHC changes in sixmajor oceans are reliable on decadal timescales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.« less
A Radial Basis Function Approach to Financial Time Series Analysis
1993-12-01
including efficient methods for parameter estimation and pruning, a pointwise prediction error estimator, and a methodology for controlling the "data...collection of practical techniques to address these issues for a modeling methodology . Radial Basis Function networks. These techniques in- clude efficient... methodology often then amounts to a careful consideration of the interplay between model complexity and reliability. These will be recurrent themes
Smile line assessment comparing quantitative measurement and visual estimation.
Van der Geld, Pieter; Oosterveld, Paul; Schols, Jan; Kuijpers-Jagtman, Anne Marie
2011-02-01
Esthetic analysis of dynamic functions such as spontaneous smiling is feasible by using digital videography and computer measurement for lip line height and tooth display. Because quantitative measurements are time-consuming, digital videography and semiquantitative (visual) estimation according to a standard categorization are more practical for regular diagnostics. Our objective in this study was to compare 2 semiquantitative methods with quantitative measurements for reliability and agreement. The faces of 122 male participants were individually registered by using digital videography. Spontaneous and posed smiles were captured. On the records, maxillary lip line heights and tooth display were digitally measured on each tooth and also visually estimated according to 3-grade and 4-grade scales. Two raters were involved. An error analysis was performed. Reliability was established with kappa statistics. Interexaminer and intraexaminer reliability values were high, with median kappa values from 0.79 to 0.88. Agreement of the 3-grade scale estimation with quantitative measurement showed higher median kappa values (0.76) than the 4-grade scale estimation (0.66). Differentiating high and gummy smile lines (4-grade scale) resulted in greater inaccuracies. The estimation of a high, average, or low smile line for each tooth showed high reliability close to quantitative measurements. Smile line analysis can be performed reliably with a 3-grade scale (visual) semiquantitative estimation. For a more comprehensive diagnosis, additional measuring is proposed, especially in patients with disproportional gingival display. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Improving lidar turbulence estimates for wind energy
NASA Astrophysics Data System (ADS)
Newman, J. F.; Clifton, A.; Churchfield, M. J.; Klein, P.
2016-09-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.
Improving Lidar Turbulence Estimates for Wind Energy: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Churchfield, Matthew
2016-10-01
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
Improving Lidar Turbulence Estimates for Wind Energy
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; ...
2016-10-03
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. Results indicate that the model works well under stable conditions but cannot fully mitigate the effects of variance contamination under unstable conditions. To understand how variance contamination affects lidar TI estimates, a new set of equations was derived in previous work to characterize the actual variance measured by a lidar. Terms in these equations were quantified using a lidar simulator and modeled wind field, and the new equations were then implemented into the TI error model.« less
NASA Astrophysics Data System (ADS)
Ressel, Simon; Bill, Florian; Holtz, Lucas; Janshen, Niklas; Chica, Antonio; Flower, Thomas; Weidlich, Claudia; Struckmann, Thorsten
2018-02-01
The operation of vanadium redox flow batteries requires reliable in situ state of charge (SOC) monitoring. In this study, two SOC estimation approaches for the negative half cell are investigated. First, in situ open circuit potential measurements are combined with Coulomb counting in a one-step calibration of SOC and Nernst potential which doesn't need additional reference SOCs. In-sample and out-of-sample SOCs are estimated and analyzed, estimation errors ≤ 0.04 are obtained. In the second approach, temperature corrected in situ electrolyte density measurements are used for the first time in vanadium redox flow batteries for SOC estimation. In-sample and out-of-sample SOC estimation errors ≤ 0.04 demonstrate the feasibility of this approach. Both methods allow recalibration during battery operation. The actual capacity obtained from SOC calibration can be used in a state of health model.
On modeling human reliability in space flights - Redundancy and recovery operations
NASA Astrophysics Data System (ADS)
Aarset, M.; Wright, J. F.
The reliability of humans is of paramount importance to the safety of space flight systems. This paper describes why 'back-up' operators might not be the best solution, and in some cases, might even degrade system reliability. The problem associated with human redundancy calls for special treatment in reliability analyses. The concept of Standby Redundancy is adopted, and psychological and mathematical models are introduced to improve the way such problems can be estimated and handled. In the past, human reliability has practically been neglected in most reliability analyses, and, when included, the humans have been modeled as a component and treated numerically the way technical components are. This approach is not wrong in itself, but it may lead to systematic errors if too simple analogies from the technical domain are used in the modeling of human behavior. In this paper redundancy in a man-machine system will be addressed. It will be shown how simplification from the technical domain, when applied to human components of a system, may give non-conservative estimates of system reliability.
Cooley, Richard L.
1983-01-01
This paper investigates factors influencing the degree of improvement in estimates of parameters of a nonlinear regression groundwater flow model by incorporating prior information of unknown reliability. Consideration of expected behavior of the regression solutions and results of a hypothetical modeling problem lead to several general conclusions. First, if the parameters are properly scaled, linearized expressions for the mean square error (MSE) in parameter estimates of a nonlinear model will often behave very nearly as if the model were linear. Second, by using prior information, the MSE in properly scaled parameters can be reduced greatly over the MSE of ordinary least squares estimates of parameters. Third, plots of estimated MSE and the estimated standard deviation of MSE versus an auxiliary parameter (the ridge parameter) specifying the degree of influence of the prior information on regression results can help determine the potential for improvement of parameter estimates. Fourth, proposed criteria can be used to make appropriate choices for the ridge parameter and another parameter expressing degree of overall bias in the prior information. Results of a case study of Truckee Meadows, Reno-Sparks area, Washoe County, Nevada, conform closely to the results of the hypothetical problem. In the Truckee Meadows case, incorporation of prior information did not greatly change the parameter estimates from those obtained by ordinary least squares. However, the analysis showed that both sets of estimates are more reliable than suggested by the standard errors from ordinary least squares.
Pearson, Richard
2011-03-01
To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.
Improving precision of forage yield trials: A case study
USDA-ARS?s Scientific Manuscript database
Field-based agronomic and genetic research relies heavily on the data generated from field evaluations. Therefore, it is imperative to optimize the precision of yield estimates in cultivar evaluation trials to make reliable selections. Experimental error in yield trials is sensitive to several facto...
Kolehmainen, V; Vauhkonen, M; Karjalainen, P A; Kaipio, J P
1997-11-01
In electrical impedance tomography (EIT), difference imaging is often preferred over static imaging. This is because of the many unknowns in the forward modelling which make it difficult to obtain reliable absolute resistivity estimates. However, static imaging and absolute resistivity values are needed in some potential applications of EIT. In this paper we demonstrate by simulation the effects of different error components that are included in the reconstruction of static EIT images. All simulations are carried out in two dimensions with the so-called complete electrode model. Errors that are considered are the modelling error in the boundary shape of an object, errors in the electrode sizes and localizations and errors in the contact impedances under the electrodes. Results using both adjacent and trigonometric current patterns are given.
Instrumental variables vs. grouping approach for reducing bias due to measurement error.
Batistatou, Evridiki; McNamee, Roseanne
2008-01-01
Attenuation of the exposure-response relationship due to exposure measurement error is often encountered in epidemiology. Given that error cannot be totally eliminated, bias correction methods of analysis are needed. Many methods require more than one exposure measurement per person to be made, but the `group mean OLS method,' in which subjects are grouped into several a priori defined groups followed by ordinary least squares (OLS) regression on the group means, can be applied with one measurement. An alternative approach is to use an instrumental variable (IV) method in which both the single error-prone measure and an IV are used in IV analysis. In this paper we show that the `group mean OLS' estimator is equal to an IV estimator with the group mean used as IV, but that the variance estimators for the two methods are different. We derive a simple expression for the bias in the common estimator which is a simple function of group size, reliability and contrast of exposure between groups, and show that the bias can be very small when group size is large. We compare this method with a new proposal (group mean ranking method), also applicable with a single exposure measurement, in which the IV is the rank of the group means. When there are two independent exposure measurements per subject, we propose a new IV method (EVROS IV) and compare it with Carroll and Stefanski's (CS IV) proposal in which the second measure is used as an IV; the new IV estimator combines aspects of the `group mean' and `CS' strategies. All methods are evaluated in terms of bias, precision and root mean square error via simulations and a dataset from occupational epidemiology. The `group mean ranking method' does not offer much improvement over the `group mean method.' Compared with the `CS' method, the `EVROS' method is less affected by low reliability of exposure. We conclude that the group IV methods we propose may provide a useful way to handle mismeasured exposures in epidemiology with or without replicate measurements. Our finding may also have implications for the use of aggregate variables in epidemiology to control for unmeasured confounding.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-02-20
The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990-92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45-64 years (1987-89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI.
Bidulescu, Aurelian; Chambless, Lloyd E; Siega-Riz, Anna Maria; Zeisel, Steven H; Heiss, Gerardo
2009-01-01
Background The repeatability of a risk factor measurement affects the ability to accurately ascertain its association with a specific outcome. Choline is involved in methylation of homocysteine, a putative risk factor for cardiovascular disease, to methionine through a betaine-dependent pathway (one-carbon metabolism). It is unknown whether dietary intake of choline meets the recommended Adequate Intake (AI) proposed for choline (550 mg/day for men and 425 mg/day for women). The Estimated Average Requirement (EAR) remains to be established in population settings. Our objectives were to ascertain the reliability of choline and related nutrients (folate and methionine) intakes assessed with a brief food frequency questionnaire (FFQ) and to estimate dietary intake of choline and betaine in a bi-ethnic population. Methods We estimated the FFQ dietary instrument reliability for the Atherosclerosis Risk in Communities (ARIC) study and the measurement error for choline and related nutrients from a stratified random sample of the ARIC study participants at the second visit, 1990–92 (N = 1,004). In ARIC, a population-based cohort of 15,792 men and women aged 45–64 years (1987–89) recruited at four locales in the U.S., diet was assessed in 15,706 baseline study participants using a version of the Willett 61-item FFQ, expanded to include some ethnic foods. Intraindividual variability for choline, folate and methionine were estimated using mixed models regression. Results Measurement error was substantial for the nutrients considered. The reliability coefficients were 0.50 for choline (0.50 for choline plus betaine), 0.53 for folate, 0.48 for methionine and 0.43 for total energy intake. In the ARIC population, the median and the 75th percentile of dietary choline intake were 284 mg/day and 367 mg/day, respectively. 94% of men and 89% of women had an intake of choline below that proposed as AI. African Americans had a lower dietary intake of choline in both genders. Conclusion The three-year reliability of reported dietary intake was similar for choline and related nutrients, in the range as that published in the literature for other micronutrients. Using a brief FFQ to estimate intake, the majority of individuals in the ARIC cohort had an intake of choline below the values proposed as AI. PMID:19232103
Van der Elst, Wim; Molenberghs, Geert; Hilgers, Ralf-Dieter; Verbeke, Geert; Heussen, Nicole
2016-11-01
There are various settings in which researchers are interested in the assessment of the correlation between repeated measurements that are taken within the same subject (i.e., reliability). For example, the same rating scale may be used to assess the symptom severity of the same patients by multiple physicians, or the same outcome may be measured repeatedly over time in the same patients. Reliability can be estimated in various ways, for example, using the classical Pearson correlation or the intra-class correlation in clustered data. However, contemporary data often have a complex structure that goes well beyond the restrictive assumptions that are needed with the more conventional methods to estimate reliability. In the current paper, we propose a general and flexible modeling approach that allows for the derivation of reliability estimates, standard errors, and confidence intervals - appropriately taking hierarchies and covariates in the data into account. Our methodology is developed for continuous outcomes together with covariates of an arbitrary type. The methodology is illustrated in a case study, and a Web Appendix is provided which details the computations using the R package CorrMixed and the SAS software. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Attitude and Trajectory Estimation Using Earth Magnetic Field Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1996-01-01
The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.
Between-day reliability of a method for non-invasive estimation of muscle composition.
Simunič, Boštjan
2012-08-01
Tensiomyography is a method for valid and non-invasive estimation of skeletal muscle fibre type composition. The validity of selected temporal tensiomyographic measures has been well established recently; there is, however, no evidence regarding the method's between-day reliability. Therefore it is the aim of this paper to establish the between-day repeatability of tensiomyographic measures in three skeletal muscles. For three consecutive days, 10 healthy male volunteers (mean±SD: age 24.6 ± 3.0 years; height 177.9 ± 3.9 cm; weight 72.4 ± 5.2 kg) were examined in a supine position. Four temporal measures (delay, contraction, sustain, and half-relaxation time) and maximal amplitude were extracted from the displacement-time tensiomyogram. A reliability analysis was performed with calculations of bias, random error, coefficient of variation (CV), standard error of measurement, and intra-class correlation coefficient (ICC) with a 95% confidence interval. An analysis of ICC demonstrated excellent agreement (ICC were over 0.94 in 14 out of 15 tested parameters). However, lower CV was observed in half-relaxation time, presumably because of the specifics of the parameter definition itself. These data indicate that for the three muscles tested, tensiomyographic measurements were reproducible across consecutive test days. Furthermore, we indicated the most possible origin of the lowest reliability detected in half-relaxation time. Copyright © 2012 Elsevier Ltd. All rights reserved.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
Feischl, Michael; Gantner, Gregor; Praetorius, Dirk
2015-01-01
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698
Multi-Sensor Improved Sea Surface Temperature (MISST) for GODAE
2008-01-01
its methodology to add 3 retrieval error information to the US Navy operational data stream. Quantitative estimates of reliability are added to...hycom.rsmas.miami.edu/ “ POSITIV : Prototype Operational System – ISAR – Temperature Instrumentation for the VOS fleet” CIRA/CSU Joint Hurricane Testbed project
Bayesian Meta-Analysis of Coefficient Alpha
ERIC Educational Resources Information Center
Brannick, Michael T.; Zhang, Nanhua
2013-01-01
The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman
2016-01-01
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694
Small Area Variance Estimation for the Siuslaw NF in Oregon and Some Results
S. Lin; D. Boes; H.T. Schreuder
2006-01-01
The results of a small area prediction study for the Siuslaw National Forest in Oregon are presented. Predictions were made for total basal area, number of trees and mortality per ha on a 0.85 mile grid using data on a 1.7 mile grid and additional ancillary information from TM. A reliable method of estimating prediction errors for individual plot predictions called the...
Retention-error patterns in complex alphanumeric serial-recall tasks.
Mathy, Fabien; Varré, Jean-Stéphane
2013-01-01
We propose a new method based on an algorithm usually dedicated to DNA sequence alignment in order to both reliably score short-term memory performance on immediate serial-recall tasks and analyse retention-error patterns. There can be considerable confusion on how performance on immediate serial list recall tasks is scored, especially when the to-be-remembered items are sampled with replacement. We discuss the utility of sequence-alignment algorithms to compare the stimuli to the participants' responses. The idea is that deletion, substitution, translocation, and insertion errors, which are typical in DNA, are also typical putative errors in short-term memory (respectively omission, confusion, permutation, and intrusion errors). We analyse four data sets in which alphanumeric lists included a few (or many) repetitions. After examining the method on two simple data sets, we show that sequence alignment offers 1) a compelling method for measuring capacity in terms of chunks when many regularities are introduced in the material (third data set) and 2) a reliable estimator of individual differences in short-term memory capacity. This study illustrates the difficulty of arriving at a good measure of short-term memory performance, and also attempts to characterise the primary factors underpinning remembering and forgetting.
Rong, Hao; Tian, Jin; Zhao, Tingdi
2016-01-01
In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Baert, Isabel A C; Lluch, Enrique; Struyf, Thomas; Peeters, Greta; Van Oosterwijck, Sophie; Tuynman, Joanna; Rufai, Salim; Struyf, Filip
2018-06-01
The therapeutic value of proprioceptive-based exercises in knee osteoarthritis (KOA) management warrants investigation of proprioceptive testing methods easily accessible in clinical practice. To estimate inter- and intrarater reliability of the knee joint position sense (KJPS) test and knee force sense (KFS) test in subjects with and without KOA. Cross-sectional test-retest design. Two blinded raters performed independently repeated measures of the KJPS and KFS test, using an analogue inclinometer and handheld dynamometer, respectively, in eight KOA patients (12 symptomatic knees) and 26 healthy controls (52 asymptomatic knees). Intraclass correlation coefficients (ICCs; model 2,1), standard error of measurement (SEM) and minimal detectable change with 95% confidence bounds (MDC 95 ) were calculated. For KJPS, results showed good to excellent test-retest agreement (ICCs 0.70-0.95 in KOA patients; ICCs 0.65-0.85 in healthy controls). A 2° measurement error (SEM 1°) was reported when measuring KJPS in multiple test positions and calculating mean repositioning error. Testing KOA patients pre and post therapy a repositioning error larger than 4° (MDC 95 ) is needed to consider true change. Measuring KFS using handheld dynamometry showed poor to fair interrater and poor to excellent intrarater reliability in subjects with and without KOA. Measuring KJPS in multiple test positions using an analogue inclinometer and calculating mean repositioning error is reliable and can be used in clinical practice. We do not recommend the use of the KFS test to clinicians. Further research is required to establish diagnostic accuracy and validity of our KJPS test in larger knee pain populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Measuring Fisher Information Accurately in Correlated Neural Populations
Kohn, Adam; Pouget, Alexandre
2015-01-01
Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735
Gaussian copula as a likelihood function for environmental models
NASA Astrophysics Data System (ADS)
Wani, O.; Espadas, G.; Cecinati, F.; Rieckermann, J.
2017-12-01
Parameter estimation of environmental models always comes with uncertainty. To formally quantify this parametric uncertainty, a likelihood function needs to be formulated, which is defined as the probability of observations given fixed values of the parameter set. A likelihood function allows us to infer parameter values from observations using Bayes' theorem. The challenge is to formulate a likelihood function that reliably describes the error generating processes which lead to the observed monitoring data, such as rainfall and runoff. If the likelihood function is not representative of the error statistics, the parameter inference will give biased parameter values. Several uncertainty estimation methods that are currently being used employ Gaussian processes as a likelihood function, because of their favourable analytical properties. Box-Cox transformation is suggested to deal with non-symmetric and heteroscedastic errors e.g. for flow data which are typically more uncertain in high flows than in periods with low flows. Problem with transformations is that the results are conditional on hyper-parameters, for which it is difficult to formulate the analyst's belief a priori. In an attempt to address this problem, in this research work we suggest learning the nature of the error distribution from the errors made by the model in the "past" forecasts. We use a Gaussian copula to generate semiparametric error distributions . 1) We show that this copula can be then used as a likelihood function to infer parameters, breaking away from the practice of using multivariate normal distributions. Based on the results from a didactical example of predicting rainfall runoff, 2) we demonstrate that the copula captures the predictive uncertainty of the model. 3) Finally, we find that the properties of autocorrelation and heteroscedasticity of errors are captured well by the copula, eliminating the need to use transforms. In summary, our findings suggest that copulas are an interesting departure from the usage of fully parametric distributions as likelihood functions - and they could help us to better capture the statistical properties of errors and make more reliable predictions.
Effects of uncertainty and variability on population declines and IUCN Red List classifications.
Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M
2018-01-22
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.
Assessment of pollutant mean concentrations in the Yangtze estuary based on MSN theory.
Ren, Jing; Gao, Bing-Bo; Fan, Hai-Mei; Zhang, Zhi-Hong; Zhang, Yao; Wang, Jin-Feng
2016-12-15
Reliable assessment of water quality is a critical issue for estuaries. Nutrient concentrations show significant spatial distinctions between areas under the influence of fresh-sea water interaction and anthropogenic effects. For this situation, given the limitations of general mean estimation approaches, a new method for surfaces with non-homogeneity (MSN) was applied to obtain optimized linear unbiased estimations of the mean nutrient concentrations in the study area in the Yangtze estuary from 2011 to 2013. Other mean estimation methods, including block Kriging (BK), simple random sampling (SS) and stratified sampling (ST) inference, were applied simultaneously for comparison. Their performance was evaluated by estimation error. The results show that MSN had the highest accuracy, while SS had the highest estimation error. ST and BK were intermediate in terms of their performance. Thus, MSN is an appropriate method that can be adopted to reduce the uncertainty of mean pollutant estimation in estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2004-01-01
Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar. Error model modifications for non-raining situations will be required, however. Sampling error appears to represent only a fraction of the total error in monthly, 2S0-resolution TMI estimates; the remaining error is attributed to physical inconsistency or non-representativeness of cloud-resolving model simulated profiles supporting the algorithm.
Gilliom, Robert J.; Helsel, Dennis R.
1986-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1986-02-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less
The influence of phonological context on the sound errors of a speaker with Wernicke's aphasia.
Goldmann, R E; Schwartz, M F; Wilshire, C E
2001-09-01
A corpus of phonological errors produced in narrative speech by a Wernicke's aphasic speaker (R.W.B.) was tested for context effects using two new methods for establishing chance baselines. A reliable anticipatory effect was found using the second method, which estimated chance from the distance between phoneme repeats in the speech sample containing the errors. Relative to this baseline, error-source distances were shorter than expected for anticipations, but not perseverations. R.W.B.'s anticipation/perseveration ratio measured intermediate between a nonaphasic error corpus and that of a more severe aphasic speaker (both reported in Schwartz et al., 1994), supporting the view that the anticipatory bias correlates to severity. Finally, R.W.B's anticipations favored word-initial segments, although errors and sources did not consistently share word or syllable position. Copyright 2001 Academic Press.
Zhang, Tangtang; Wen, Jun; van der Velde, Rogier; Meng, Xianhong; Li, Zhenchao; Liu, Yuanyong; Liu, Rong
2008-01-01
The total atmospheric water vapor content (TAWV) and land surface temperature (LST) play important roles in meteorology, hydrology, ecology and some other disciplines. In this paper, the ENVISAT/AATSR (The Advanced Along-Track Scanning Radiometer) thermal data are used to estimate the TAWV and LST over the Loess Plateau in China by using a practical split window algorithm. The distribution of the TAWV is accord with that of the MODIS TAWV products, which indicates that the estimation of the total atmospheric water vapor content is reliable. Validations of the LST by comparing with the ground measurements indicate that the maximum absolute derivation, the maximum relative error and the average relative error is 4.0K, 11.8% and 5.0% respectively, which shows that the retrievals are believable; this algorithm can provide a new way to estimate the LST from AATSR data. PMID:27879795
A Compact VLSI System for Bio-Inspired Visual Motion Estimation.
Shi, Cong; Luo, Gang
2018-04-01
This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.
Oddou-Muratorio, S; Houot, M-L; Demesure-Musch, B; Austerlitz, F
2003-12-01
The joint development of polymorphic molecular markers and paternity analysis methods provides new approaches to investigate ongoing patterns of pollen flow in natural plant populations. However, paternity studies are hindered by false paternity assignment and the nondetection of true fathers. To gauge the risk of these two types of errors, we performed a simulation study to investigate the impact on paternity analysis of: (i) the assumed values for the size of the breeding male population (NBMP), and (ii) the rate of scoring error in genotype assessment. Our simulations were based on microsatellite data obtained from a natural population of the entomophilous wild service tree, Sorbus torminalis (L.) Crantz. We show that an accurate estimate of NBMP is required to minimize both types of errors, and we assess the reliability of a technique used to estimate NBMP based on parent-offspring genetic data. We then show that scoring errors in genotype assessment only slightly affect the assessment of paternity relationships, and conclude that it is generally better to neglect the scoring error rate in paternity analyses within a nonisolated population.
NASA Astrophysics Data System (ADS)
Carroll, T. A.; Strassmeier, K. G.
2014-03-01
Context. In recent years, we have seen a rapidly growing number of stellar magnetic field detections for various types of stars. Many of these magnetic fields are estimated from spectropolarimetric observations (Stokes V) by using the so-called center-of-gravity (COG) method. Unfortunately, the accuracy of this method rapidly deteriorates with increasing noise and thus calls for a more robust procedure that combines signal detection and field estimation. Aims: We introduce an estimation method that provides not only the effective or mean longitudinal magnetic field from an observed Stokes V profile but also uses the net absolute polarization of the profile to obtain an estimate of the apparent (i.e., velocity resolved) absolute longitudinal magnetic field. Methods: By combining the COG method with an orthogonal-matching-pursuit (OMP) approach, we were able to decompose observed Stokes profiles with an overcomplete dictionary of wavelet-basis functions to reliably reconstruct the observed Stokes profiles in the presence of noise. The elementary wave functions of the sparse reconstruction process were utilized to estimate the effective longitudinal magnetic field and the apparent absolute longitudinal magnetic field. A multiresolution analysis complements the OMP algorithm to provide a robust detection and estimation method. Results: An extensive Monte-Carlo simulation confirms the reliability and accuracy of the magnetic OMP approach where a mean error of under 2% is found. Its full potential is obtained for heavily noise-corrupted Stokes profiles with signal-to-noise variance ratios down to unity. In this case a conventional COG method yields a mean error for the effective longitudinal magnetic field of up to 50%, whereas the OMP method gives a maximum error of 18%. It is, moreover, shown that even in the case of very small residual noise on a level between 10-3 and 10-5, a regime reached by current multiline reconstruction techniques, the conventional COG method incorrectly interprets a large portion of the residual noise as a magnetic field, with values of up to 100 G. The magnetic OMP method, on the other hand, remains largely unaffected by the noise, regardless of the noise level the maximum error is no greater than 0.7 G.
Care 3 phase 2 report, maintenance manual
NASA Technical Reports Server (NTRS)
Bryant, L. A.; Stiffler, J. J.
1982-01-01
CARE 3 (Computer-Aided Reliability Estimation, version three) is a computer program designed to help estimate the reliability of complex, redundant systems. Although the program can model a wide variety of redundant structures, it was developed specifically for fault-tolerant avionics systems--systems distinguished by the need for extremely reliable performance since a system failure could well result in the loss of human life. It substantially generalizes the class of redundant configurations that could be accommodated, and includes a coverage model to determine the various coverage probabilities as a function of the applicable fault recovery mechanisms (detection delay, diagnostic scheduling interval, isolation and recovery delay, etc.). CARE 3 further generalizes the class of system structures that can be modeled and greatly expands the coverage model to take into account such effects as intermittent and transient faults, latent faults, error propagation, etc.
Temporal Correlations and Neural Spike Train Entropy
NASA Astrophysics Data System (ADS)
Schultz, Simon R.; Panzeri, Stefano
2001-06-01
Sampling considerations limit the experimental conditions under which information theoretic analyses of neurophysiological data yield reliable results. We develop a procedure for computing the full temporal entropy and information of ensembles of neural spike trains, which performs reliably for limited samples of data. This approach also yields insight to the role of correlations between spikes in temporal coding mechanisms. The method, when applied to recordings from complex cells of the monkey primary visual cortex, results in lower rms error information estimates in comparison to a ``brute force'' approach.
Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys
NASA Astrophysics Data System (ADS)
Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.
2016-12-01
Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.
Casartelli, Nicola; Müller, Roland; Maffiuletti, Nicola A
2010-11-01
The aim of the present study was to verify the validity and reliability of the Myotest accelerometric system (Myotest SA, Sion, Switzerland) for the assessment of vertical jump height. Forty-four male basketball players (age range: 9-25 years) performed series of squat, countermovement and repeated jumps during 2 identical test sessions separated by 2-15 days. Flight height was simultaneously quantified with the Myotest system and validated photoelectric cells (Optojump). Two calculation methods were used to estimate the jump height from Myotest recordings: flight time (Myotest-T) and vertical takeoff velocity (Myotest-V). Concurrent validity was investigated comparing Myotest-T and Myotest-V to the criterion method (Optojump), and test-retest reliability was also examined. As regards validity, Myotest-T overestimated jumping height compared to Optojump (p < 0.001) with a systematic bias of approximately 7 cm, even though random errors were low (2.7 cm) and intraclass correlation coefficients (ICCs) where high (>0.98), that is, excellent validity. Myotest-V overestimated jumping height compared to Optojump (p < 0.001), with high random errors (>12 cm), high limits of agreement ratios (>36%), and low ICCs (<0.75), that is, poor validity. As regards reliability, Myotest-T showed high ICCs (range: 0.92-0.96), whereas Myotest-V showed low ICCs (range: 0.56-0.89), and high random errors (>9 cm). In conclusion, Myotest-T is a valid and reliable method for the assessment of vertical jump height, and its use is legitimate for field-based evaluations, whereas Myotest-V is neither valid nor reliable.
Study on UKF based federal integrated navigation for high dynamic aviation
NASA Astrophysics Data System (ADS)
Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie
2011-08-01
High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is superior than EKF based integrated scheme, in which has smaller estimation error and quickly convergence rate.
Accuracy and Reliability of the Klales et al. (2012) Morphoscopic Pelvic Sexing Method.
Lesciotto, Kate M; Doershuk, Lily J
2018-01-01
Klales et al. (2012) devised an ordinal scoring system for the morphoscopic pelvic traits described by Phenice (1969) and used for sex estimation of skeletal remains. The aim of this study was to test the accuracy and reliability of the Klales method using a large sample from the Hamann-Todd collection (n = 279). Two observers were blinded to sex, ancestry, and age and used the Klales et al. method to estimate the sex of each individual. Sex was correctly estimated for females with over 95% accuracy; however, the male allocation accuracy was approximately 50%. Weighted Cohen's kappa and intraclass correlation coefficient analysis for evaluating intra- and interobserver error showed moderate to substantial agreement for all traits. Although each trait can be reliably scored using the Klales method, low accuracy rates and high sex bias indicate better trait descriptions and visual guides are necessary to more accurately reflect the range of morphological variation. © 2017 American Academy of Forensic Sciences.
Fortin, Carole; Feldman, Debbie Ehrmann; Cheriet, Farida; Gravel, Denis; Gauthier, Frédérique; Labelle, Hubert
2012-03-01
To determine overall, test-retest and inter-rater reliability of posture indices among persons with idiopathic scoliosis. A reliability study using two raters and two test sessions. Tertiary care paediatric centre. Seventy participants aged between 10 and 20 years with different types of idiopathic scoliosis (Cobb angle 15 to 60°) were recruited from the scoliosis clinic. Based on the XY co-ordinates of natural reference points (e.g., eyes) as well as markers placed on several anatomical landmarks, 32 angular and linear posture indices taken from digital photographs in the standing position were calculated from a specially developed software program. Generalisability theory served to estimate the reliability and standard error of measurement (SEM) for the overall, test-retest and inter-rater designs. Bland and Altman's method was also used to document agreement between sessions and raters. In the random design, dependability coefficients demonstrated a moderate level of reliability for six posture indices (ϕ=0.51 to 0.72) and a good level of reliability for 26 posture indices out of 32 (ϕ≥0.79). Error attributable to marker placement was negligible for most indices. Limits of agreement and SEM values were larger for shoulder protraction, trunk list, Q angle, cervical lordosis and scoliosis angles. The most reproducible indices were waist angles and knee valgus and varus. Posture can be assessed in a global fashion from photographs in persons with idiopathic scoliosis. Despite the good reliability of marker placement, other studies are needed to minimise measurement errors in order to provide a suitable tool for monitoring change in posture over time. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Estimation of distributional parameters for censored trace-level water-quality data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilliom, R.J.; Helsel, D.R.
1984-01-01
A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water-sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations,more » for determining the best-performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least-squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification. 6 figs., 6 tabs.« less
Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi.
Chen, Jing; Zhang, Yi; Xue, Wei
2018-04-28
In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.
Equations for estimating Clark Unit-hydrograph parameters for small rural watersheds in Illinois
Straub, Timothy D.; Melching, Charles S.; Kocher, Kyle E.
2000-01-01
Simulation of the measured discharge hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results. The error in peak discharge for 21 of the 29 verification storms was less than 25 percent, and the error in time-to-peak discharge for 18 of the 29 verification storms also was less than 25 percent. Therefore, applying the estimation equations to determine TC and R for design-storm simulation may result in reliable design hydrographs, as long as the physical characteristics of the watersheds under consideration are within the range of those characteristics for the watersheds in this study [area: 0.02-2.3 mi2, main-channel length: 0.17-3.4 miles, main-channel slope: 10.5-229 feet per mile, and insignificant percentage of impervious cover].
Heli/SITAN: A Terrain Referenced Navigation algorithm for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollowell, J.
1990-01-01
Heli/SITAN is a Terrain Referenced Navigation (TRN) algorithm that utilizes radar altimeter ground clearance measurements in combination with a conventional navigation system and a stored digital terrain elevation map to accurately estimate a helicopter's position. Multiple Model Adaptive Estimation (MMAE) techniques are employed using a bank of single state Kalman filters to ensure that reliable position estimates are obtained even in the face of large initial position errors. A real-time implementation of the algorithm was tested aboard a US Army UH-1 helicopter equipped with a Singer-Kearfott Doppler Velocity Sensor (DVS) and a Litton LR-80 strapdown Attitude and Heading Reference Systemmore » (AHRS). The median radial error of the position fixes provided in real-time by this implementation was less than 50 m for a variety of mission profiles. 6 refs., 7 figs.« less
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study’s aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion “Fuprecol study”. Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland–Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the “Fuprecol study” health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9–17.9 years old in a school setting in Colombia. PMID:26474474
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study's aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion "Fuprecol study". Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland-Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the "Fuprecol study" health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9-17.9 years old in a school setting in Colombia.
Quantifying uncertainty in geoacoustic inversion. II. Application to broadband, shallow-water data.
Dosso, Stan E; Nielsen, Peter L
2002-01-01
This paper applies the new method of fast Gibbs sampling (FGS) to estimate the uncertainties of seabed geoacoustic parameters in a broadband, shallow-water acoustic survey, with the goal of interpreting the survey results and validating the method for experimental data. FGS applies a Bayesian approach to geoacoustic inversion based on sampling the posterior probability density to estimate marginal probability distributions and parameter covariances. This requires knowledge of the statistical distribution of the data errors, including both measurement and theory errors, which is generally not available. Invoking the simplifying assumption of independent, identically distributed Gaussian errors allows a maximum-likelihood estimate of the data variance and leads to a practical inversion algorithm. However, it is necessary to validate these assumptions, i.e., to verify that the parameter uncertainties obtained represent meaningful estimates. To this end, FGS is applied to a geoacoustic experiment carried out at a site off the west coast of Italy where previous acoustic and geophysical studies have been performed. The parameter uncertainties estimated via FGS are validated by comparison with: (i) the variability in the results of inverting multiple independent data sets collected during the experiment; (ii) the results of FGS inversion of synthetic test cases designed to simulate the experiment and data errors; and (iii) the available geophysical ground truth. Comparisons are carried out for a number of different source bandwidths, ranges, and levels of prior information, and indicate that FGS provides reliable and stable uncertainty estimates for the geoacoustic inverse problem.
Llerena, Katiah; Wynn, Jonathan K; Hajcak, Greg; Green, Michael F; Horan, William P
2016-07-01
Accurately monitoring one's performance on daily life tasks, and integrating internal and external performance feedback are necessary for guiding productive behavior. Although internal feedback processing, as indexed by the error-related negativity (ERN), is consistently impaired in schizophrenia, initial findings suggest that external performance feedback processing, as indexed by the feedback negativity (FN), may actually be intact. The current study evaluated internal and external feedback processing task performance and test-retest reliability in schizophrenia. 92 schizophrenia outpatients and 63 healthy controls completed a flanker task (ERN) and a time estimation task (FN). Analyses examined the ΔERN and ΔFN defined as difference waves between correct/positive versus error/negative feedback conditions. A temporal principal component analysis was conducted to distinguish the ΔERN and ΔFN from overlapping neural responses. We also assessed test-retest reliability of ΔERN and ΔFN in patients over a 4-week interval. Patients showed reduced ΔERN accompanied by intact ΔFN. In patients, test-retest reliability for both ΔERN and ΔFN over a four-week period was fair to good. Individuals with schizophrenia show a pattern of impaired internal, but intact external, feedback processing. This pattern has implications for understanding the nature and neural correlates of impaired feedback processing in schizophrenia. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Pernot, Pascal; Savin, Andreas
2018-06-01
Benchmarking studies in computational chemistry use reference datasets to assess the accuracy of a method through error statistics. The commonly used error statistics, such as the mean signed and mean unsigned errors, do not inform end-users on the expected amplitude of prediction errors attached to these methods. We show that, the distributions of model errors being neither normal nor zero-centered, these error statistics cannot be used to infer prediction error probabilities. To overcome this limitation, we advocate for the use of more informative statistics, based on the empirical cumulative distribution function of unsigned errors, namely, (1) the probability for a new calculation to have an absolute error below a chosen threshold and (2) the maximal amplitude of errors one can expect with a chosen high confidence level. Those statistics are also shown to be well suited for benchmarking and ranking studies. Moreover, the standard error on all benchmarking statistics depends on the size of the reference dataset. Systematic publication of these standard errors would be very helpful to assess the statistical reliability of benchmarking conclusions.
Furlan, Leonardo; Sterr, Annette
2018-01-01
Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed to by learning. We suggest therefore that motor learning studies could complement their p -value-based analyses of difference with statistics such as SEM and MDC in order to inform as to the likely cause or origin of any reported changes in performance.
High rate concatenated coding systems using bandwidth efficient trellis inner codes
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1989-01-01
High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.
NASA Astrophysics Data System (ADS)
He, Bin; Frey, Eric C.
2010-06-01
Accurate and precise estimation of organ activities is essential for treatment planning in targeted radionuclide therapy. We have previously evaluated the impact of processing methodology, statistical noise and variability in activity distribution and anatomy on the accuracy and precision of organ activity estimates obtained with quantitative SPECT (QSPECT) and planar (QPlanar) processing. Another important factor impacting the accuracy and precision of organ activity estimates is accuracy of and variability in the definition of organ regions of interest (ROI) or volumes of interest (VOI). The goal of this work was thus to systematically study the effects of VOI definition on the reliability of activity estimates. To this end, we performed Monte Carlo simulation studies using randomly perturbed and shifted VOIs to assess the impact on organ activity estimates. The 3D NCAT phantom was used with activities that modeled clinically observed 111In ibritumomab tiuxetan distributions. In order to study the errors resulting from misdefinitions due to manual segmentation errors, VOIs of the liver and left kidney were first manually defined. Each control point was then randomly perturbed to one of the nearest or next-nearest voxels in three ways: with no, inward or outward directional bias, resulting in random perturbation, erosion or dilation, respectively, of the VOIs. In order to study the errors resulting from the misregistration of VOIs, as would happen, e.g. in the case where the VOIs were defined using a misregistered anatomical image, the reconstructed SPECT images or projections were shifted by amounts ranging from -1 to 1 voxels in increments of with 0.1 voxels in both the transaxial and axial directions. The activity estimates from the shifted reconstructions or projections were compared to those from the originals, and average errors were computed for the QSPECT and QPlanar methods, respectively. For misregistration, errors in organ activity estimations were linear in the shift for both the QSPECT and QPlanar methods. QPlanar was less sensitive to object definition perturbations than QSPECT, especially for dilation and erosion cases. Up to 1 voxel misregistration or misdefinition resulted in up to 8% error in organ activity estimates, with the largest errors for small or low uptake organs. Both types of VOI definition errors produced larger errors in activity estimates for a small and low uptake organs (i.e. -7.5% to 5.3% for the left kidney) than for a large and high uptake organ (i.e. -2.9% to 2.1% for the liver). We observed that misregistration generally had larger effects than misdefinition, with errors ranging from -7.2% to 8.4%. The different imaging methods evaluated responded differently to the errors from misregistration and misdefinition. We found that QSPECT was more sensitive to misdefinition errors, but less sensitive to misregistration errors, as compared to the QPlanar method. Thus, sensitivity to VOI definition errors should be an important criterion in evaluating quantitative imaging methods.
Methods for estimating streamflow at mountain fronts in southern New Mexico
Waltemeyer, S.D.
1994-01-01
The infiltration of streamflow is potential recharge to alluvial-basin aquifers at or near mountain fronts in southern New Mexico. Data for 13 streamflow-gaging stations were used to determine a relation between mean annual stream- flow and basin and climatic conditions. Regression analysis was used to develop an equation that can be used to estimate mean annual streamflow on the basis of drainage areas and mean annual precipi- tation. The average standard error of estimate for this equation is 46 percent. Regression analysis also was used to develop an equation to estimate mean annual streamflow on the basis of active- channel width. Measurements of the width of active channels were determined for 6 of the 13 gaging stations. The average standard error of estimate for this relation is 29 percent. Stream- flow estimates made using a regression equation based on channel geometry are considered more reliable than estimates made from an equation based on regional relations of basin and climatic conditions. The sample size used to develop these relations was small, however, and the reported standard error of estimate may not represent that of the entire population. Active-channel-width measurements were made at 23 ungaged sites along the Rio Grande upstream from Elephant Butte Reservoir. Data for additional sites would be needed for a more comprehensive assessment of mean annual streamflow in southern New Mexico.
A semi-automatic method for left ventricle volume estimate: an in vivo validation study
NASA Technical Reports Server (NTRS)
Corsi, C.; Lamberti, C.; Sarti, A.; Saracino, G.; Shiota, T.; Thomas, J. D.
2001-01-01
This study aims to the validation of the left ventricular (LV) volume estimates obtained by processing volumetric data utilizing a segmentation model based on level set technique. The validation has been performed by comparing real-time volumetric echo data (RT3DE) and magnetic resonance (MRI) data. A validation protocol has been defined. The validation protocol was applied to twenty-four estimates (range 61-467 ml) obtained from normal and pathologic subjects, which underwent both RT3DE and MRI. A statistical analysis was performed on each estimate and on clinical parameters as stroke volume (SV) and ejection fraction (EF). Assuming MRI estimates (x) as a reference, an excellent correlation was found with volume measured by utilizing the segmentation procedure (y) (y=0.89x + 13.78, r=0.98). The mean error on SV was 8 ml and the mean error on EF was 2%. This study demonstrated that the segmentation technique is reliably applicable on human hearts in clinical practice.
Van Nguyen; Javaid, Abdul Q; Weitnauer, Mary Ann
2014-01-01
We introduce the Spectrum-averaged Harmonic Path (SHAPA) algorithm for estimation of heart rate (HR) and respiration rate (RR) with Impulse Radio Ultrawideband (IR-UWB) radar. Periodic movement of human torso caused by respiration and heart beat induces fundamental frequencies and their harmonics at the respiration and heart rates. IR-UWB enables capture of these spectral components and frequency domain processing enables a low cost implementation. Most existing methods of identifying the fundamental component either in frequency or time domain to estimate the HR and/or RR lead to significant error if the fundamental is distorted or cancelled by interference. The SHAPA algorithm (1) takes advantage of the HR harmonics, where there is less interference, and (2) exploits the information in previous spectra to achieve more reliable and robust estimation of the fundamental frequency in the spectrum under consideration. Example experimental results for HR estimation demonstrate how our algorithm eliminates errors caused by interference and produces 16% to 60% more valid estimates.
Maximum likelihood techniques applied to quasi-elastic light scattering
NASA Technical Reports Server (NTRS)
Edwards, Robert V.
1992-01-01
There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.
Reliability of reflectance measures in passive filters
NASA Astrophysics Data System (ADS)
Saldiva de André, Carmen Diva; Afonso de André, Paulo; Rocha, Francisco Marcelo; Saldiva, Paulo Hilário Nascimento; Carvalho de Oliveira, Regiani; Singer, Julio M.
2014-08-01
Measurements of optical reflectance in passive filters impregnated with a reactive chemical solution may be transformed to ozone concentrations via a calibration curve and constitute a low cost alternative for environmental monitoring, mainly to estimate human exposure. Given the possibility of errors caused by exposure bias, it is common to consider sets of m filters exposed during a certain period to estimate the latent reflectance on n different sample occasions at a certain location. Mixed models with sample occasions as random effects are useful to analyze data obtained under such setups. The intra-class correlation coefficient of the mean of the m measurements is an indicator of the reliability of the latent reflectance estimates. Our objective is to determine m in order to obtain a pre-specified reliability of the estimates, taking possible outliers into account. To illustrate the procedure, we consider an experiment conducted at the Laboratory of Experimental Air Pollution, University of São Paulo, Brazil (LPAE/FMUSP), where sets of m = 3 filters were exposed during 7 days on n = 9 different occasions at a certain location. The results show that the reliability of the latent reflectance estimates for each occasion obtained under homoskedasticity is km = 0.74. A residual analysis suggests that the within-occasion variance for two of the occasions should be different from the others. A refined model with two within-occasion variance components was considered, yielding km = 0.56 for these occasions and km = 0.87 for the remaining ones. To guarantee that all estimates have a reliability of at least 80% we require measurements on m = 10 filters on each occasion.
Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation
Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier
2017-01-01
The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622
Ramsthaler, Frank; Kettner, Mattias; Verhoff, Marcel A
2014-01-01
In forensic anthropological casework, estimating age-at-death is key to profiling unknown skeletal remains. The aim of this study was to examine the reliability of a new, simple, fast, and inexpensive digital odontological method for age-at-death estimation. The method is based on the original Lamendin method, which is a widely used technique in the repertoire of odontological aging methods in forensic anthropology. We examined 129 single root teeth employing a digital camera and imaging software for the measurement of the luminance of the teeth's translucent root zone. Variability in luminance detection was evaluated using statistical technical error of measurement analysis. The method revealed stable values largely unrelated to observer experience, whereas requisite formulas proved to be camera-specific and should therefore be generated for an individual recording setting based on samples of known chronological age. Multiple regression analysis showed a highly significant influence of the coefficients of the variables "arithmetic mean" and "standard deviation" of luminance for the regression formula. For the use of this primer multivariate equation for age-at-death estimation in casework, a standard error of the estimate of 6.51 years was calculated. Step-by-step reduction of the number of embedded variables to linear regression analysis employing the best contributor "arithmetic mean" of luminance yielded a regression equation with a standard error of 6.72 years (p < 0.001). The results of this study not only support the premise of root translucency as an age-related phenomenon, but also demonstrate that translucency reflects a number of other influencing factors in addition to age. This new digital measuring technique of the zone of dental root luminance can broaden the array of methods available for estimating chronological age, and furthermore facilitate measurement and age classification due to its low dependence on observer experience.
The effects of non-stationary noise on electromagnetic response estimates
NASA Astrophysics Data System (ADS)
Banks, R. J.
1998-11-01
The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
Cooley, Richard L.
1982-01-01
Prior information on the parameters of a groundwater flow model can be used to improve parameter estimates obtained from nonlinear regression solution of a modeling problem. Two scales of prior information can be available: (1) prior information having known reliability (that is, bias and random error structure) and (2) prior information consisting of best available estimates of unknown reliability. A regression method that incorporates the second scale of prior information assumes the prior information to be fixed for any particular analysis to produce improved, although biased, parameter estimates. Approximate optimization of two auxiliary parameters of the formulation is used to help minimize the bias, which is almost always much smaller than that resulting from standard ridge regression. It is shown that if both scales of prior information are available, then a combined regression analysis may be made.
NASA Technical Reports Server (NTRS)
French, V. (Principal Investigator)
1982-01-01
An evaluation was made of Thompson-Type models which use trend terms (as a surrogate for technology), meteorological variables based on monthly average temperature, and total precipitation to forecast and estimate corn yields in Iowa, Illinois, and Indiana. Pooled and unpooled Thompson-type models were compared. Neither was found to be consistently superior to the other. Yield reliability indicators show that the models are of limited use for large area yield estimation. The models are objective and consistent with scientific knowledge. Timely yield forecasts and estimates can be made during the growing season by using normals or long range weather forecasts. The models are not costly to operate and are easy to use and understand. The model standard errors of prediction do not provide a useful current measure of modeled yield reliability.
Single point estimation of phenytoin dosing: a reappraisal.
Koup, J R; Gibaldi, M; Godolphin, W
1981-11-01
A previously proposed method for estimation of phenytoin dosing requirement using a single serum sample obtained 24 hours after intravenous loading dose (18 mg/Kg) has been re-evaluated. Using more realistic values for the volume of distribution of phenytoin (0.4 to 1.2 L/Kg), simulations indicate that the proposed method will fail to consistently predict dosage requirements. Additional simulations indicate that two samples obtained during the 24 hour interval following the iv loading dose could be used to more reliably predict phenytoin dose requirement. Because of the nonlinear relationship which exists between phenytoin dose administration rate (RO) and the mean steady state serum concentration (CSS), small errors in prediction of the required RO result in much larger errors in CSS.
Uncertainty in predicting soil hydraulic properties at the hillslope scale with indirect methods
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2007-02-01
SummarySeveral hydrological applications require the characterisation of the soil hydraulic properties at large spatial scales. Pedotransfer functions (PTFs) are being developed as simplified methods to estimate soil hydraulic properties as an alternative to direct measurements, which are unfeasible for most practical circumstances. The objective of this study is to quantify the uncertainty in PTFs spatial predictions at the hillslope scale as related to the sampling density, due to: (i) the error in estimated soil physico-chemical properties and (ii) PTF model error. The analysis is carried out on a 2-km-long experimental hillslope in South Italy. The method adopted is based on a stochastic generation of patterns of soil variables using sequential Gaussian simulation, conditioned to the observed sample data. The following PTFs are applied: Vereecken's PTF [Vereecken, H., Diels, J., van Orshoven, J., Feyen, J., Bouma, J., 1992. Functional evaluation of pedotransfer functions for the estimation of soil hydraulic properties. Soil Sci. Soc. Am. J. 56, 1371-1378] and HYPRES PTF [Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database of hydraulic properties of European soils. Geoderma 90, 169-185]. The two PTFs estimate reliably the soil water retention characteristic even for a relatively coarse sampling resolution, with prediction uncertainties comparable to the uncertainties in direct laboratory or field measurements. The uncertainty of soil water retention prediction due to the model error is as much as or more significant than the uncertainty associated with the estimated input, even for a relatively coarse sampling resolution. Prediction uncertainties are much more important when PTF are applied to estimate the saturated hydraulic conductivity. In this case model error dominates the overall prediction uncertainties, making negligible the effect of the input error.
NASA Astrophysics Data System (ADS)
Hemmings, J. C. P.; Challenor, P. G.
2012-04-01
A wide variety of different plankton system models have been coupled with ocean circulation models, with the aim of understanding and predicting aspects of environmental change. However, an ability to make reliable inferences about real-world processes from the model behaviour demands a quantitative understanding of model error that remains elusive. Assessment of coupled model output is inhibited by relatively limited observing system coverage of biogeochemical components. Any direct assessment of the plankton model is further inhibited by uncertainty in the physical state. Furthermore, comparative evaluation of plankton models on the basis of their design is inhibited by the sensitivity of their dynamics to many adjustable parameters. Parameter uncertainty has been widely addressed by calibrating models at data-rich ocean sites. However, relatively little attention has been given to quantifying uncertainty in the physical fields required by the plankton models at these sites, and tendencies in the biogeochemical properties due to the effects of horizontal processes are often neglected. Here we use model twin experiments, in which synthetic data are assimilated to estimate a system's known "true" parameters, to investigate the impact of error in a plankton model's environmental input data. The experiments are supported by a new software tool, the Marine Model Optimization Testbed, designed for rigorous analysis of plankton models in a multi-site 1-D framework. Simulated errors are derived from statistical characterizations of the mixed layer depth, the horizontal flux divergence tendencies of the biogeochemical tracers and the initial state. Plausible patterns of uncertainty in these data are shown to produce strong temporal and spatial variability in the expected simulation error variance over an annual cycle, indicating variation in the significance attributable to individual model-data differences. An inverse scheme using ensemble-based estimates of the simulation error variance to allow for this environment error performs well compared with weighting schemes used in previous calibration studies, giving improved estimates of the known parameters. The efficacy of the new scheme in real-world applications will depend on the quality of statistical characterizations of the input data. Practical approaches towards developing reliable characterizations are discussed.
Accurate, robust and reliable calculations of Poisson-Boltzmann binding energies
Nguyen, Duc D.; Wang, Bao
2017-01-01
Poisson-Boltzmann (PB) model is one of the most popular implicit solvent models in biophysical modeling and computation. The ability of providing accurate and reliable PB estimation of electrostatic solvation free energy, ΔGel, and binding free energy, ΔΔGel, is important to computational biophysics and biochemistry. In this work, we investigate the grid dependence of our PB solver (MIBPB) with SESs for estimating both electrostatic solvation free energies and electrostatic binding free energies. It is found that the relative absolute error of ΔGel obtained at the grid spacing of 1.0 Å compared to ΔGel at 0.2 Å averaged over 153 molecules is less than 0.2%. Our results indicate that the use of grid spacing 0.6 Å ensures accuracy and reliability in ΔΔGel calculation. In fact, the grid spacing of 1.1 Å appears to deliver adequate accuracy for high throughput screening. PMID:28211071
NASA Technical Reports Server (NTRS)
Haas, Evan; DeLuccia, Frank
2016-01-01
In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lon N. Haney; David I. Gertman
2003-04-01
Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less
Pontolillo, James; Eganhouse, R.P.
2001-01-01
The accurate determination of an organic contaminant?s physico-chemical properties is essential for predicting its environmental impact and fate. Approximately 700 publications (1944?2001) were reviewed and all known aqueous solubilities (Sw) and octanol-water partition coefficients (Kow) for the organochlorine pesticide, DDT, and its persistent metabolite, DDE were compiled and examined. Two problems are evident with the available database: 1) egregious errors in reporting data and references, and 2) poor data quality and/or inadequate documentation of procedures. The published literature (particularly the collative literature such as compilation articles and handbooks) is characterized by a preponderance of unnecessary data duplication. Numerous data and citation errors are also present in the literature. The percentage of original Sw and Kow data in compilations has decreased with time, and in the most recent publications (1994?97) it composes only 6?26 percent of the reported data. The variability of original DDT/DDE Sw and Kow data spans 2?4 orders of magnitude, and there is little indication that the uncertainty in these properties has declined over the last 5 decades. A criteria-based evaluation of DDT/DDE Sw and Kow data sources shows that 95?100 percent of the database literature is of poor or unevaluatable quality. The accuracy and reliability of the vast majority of the data are unknown due to inadequate documentation of the methods of determination used by the authors. [For example, estimates of precision have been reported for only 20 percent of experimental Sw data and 10 percent of experimental Kow data.] Computational methods for estimating these parameters have been increasingly substituted for direct or indirect experimental determination despite the fact that the data used for model development and validation may be of unknown reliability. Because of the prevalence of errors, the lack of methodological documentation, and unsatisfactory data quality, the reliability of the DDT/ DDE Sw and Kow database is questionable. The nature and extent of the errors documented in this study are probably indicative of a more general problem in the literature of hydrophobic organic compounds. Under these circumstances, estimation of critical environmental parameters on the basis of Sw and Kow (for example, bioconcentration factors, equilibrium partition coefficients) is inadvisable because it will likely lead to incorrect environmental risk assessments. The current state of the database indicates that much greater efforts are needed to: 1) halt the proliferation of erroneous data and references, 2) initiate a coordinated program to develop improved methods of property determination, 3) establish and maintain consistent reporting requirements for physico-chemical property data, and 4) create a mechanism for archiving reliable data for widespread use in the scientific/regulatory community.
Bourret, A; Garant, D
2017-03-01
Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.
Clark, S; Rose, D J
2001-04-01
To establish reliability estimates of the 75% Limits of Stability Test (75% LOS test) when administered to community-dwelling older adults with a history of falls. Generalizability theory was used to estimate both the relative contribution of identified error sources to the total measurement error and generalizability coefficients. A random effects repeated-measures analysis of variance (ANOVA) was used to assess consistency of LOS test movement variables across both days and targets. A motor control research laboratory in a university setting. Fifty community-dwelling older adults with 2 or more falls in the previous year. Spatial and temporal measures of dynamic balance derived from the 75% LOS test included average movement velocity, maximum center of gravity (COG) excursion, end-point COG excursion, and directional control. Estimated generalizability coefficients for 2 testing days ranged from.58 to.87. Total variance in LOS test measures attributable to inconsistencies in day-to-day test performance (Day and Subject x Day facets) ranged from 2.5% to 8.4%. The ANOVA results indicated that no significant differences were observed in the LOS test variables across the 2 testing days. The 75% LOS test administered to older adult fallers on 2 consecutive days provides consistent and reliable measures of dynamic balance.
System statistical reliability model and analysis
NASA Technical Reports Server (NTRS)
Lekach, V. S.; Rood, H.
1973-01-01
A digital computer code was developed to simulate the time-dependent behavior of the 5-kwe reactor thermoelectric system. The code was used to determine lifetime sensitivity coefficients for a number of system design parameters, such as thermoelectric module efficiency and degradation rate, radiator absorptivity and emissivity, fuel element barrier defect constant, beginning-of-life reactivity, etc. A probability distribution (mean and standard deviation) was estimated for each of these design parameters. Then, error analysis was used to obtain a probability distribution for the system lifetime (mean = 7.7 years, standard deviation = 1.1 years). From this, the probability that the system will achieve the design goal of 5 years lifetime is 0.993. This value represents an estimate of the degradation reliability of the system.
Dutch population specific sex estimation formulae using the proximal femur.
Colman, K L; Janssen, M C L; Stull, K E; van Rijn, R R; Oostra, R J; de Boer, H H; van der Merwe, A E
2018-05-01
Sex estimation techniques are frequently applied in forensic anthropological analyses of unidentified human skeletal remains. While morphological sex estimation methods are able to endure population differences, the classification accuracy of metric sex estimation methods are population-specific. No metric sex estimation method currently exists for the Dutch population. The purpose of this study is to create Dutch population specific sex estimation formulae by means of osteometric analyses of the proximal femur. Since the Netherlands lacks a representative contemporary skeletal reference population, 2D plane reconstructions, derived from clinical computed tomography (CT) data, were used as an alternative source for a representative reference sample. The first part of this study assesses the intra- and inter-observer error, or reliability, of twelve measurements of the proximal femur. The technical error of measurement (TEM) and relative TEM (%TEM) were calculated using 26 dry adult femora. In addition, the agreement, or accuracy, between the dry bone and CT-based measurements was determined by percent agreement. Only reliable and accurate measurements were retained for the logistic regression sex estimation formulae; a training set (n=86) was used to create the models while an independent testing set (n=28) was used to validate the models. Due to high levels of multicollinearity, only single variable models were created. Cross-validated classification accuracies ranged from 86% to 92%. The high cross-validated classification accuracies indicate that the developed formulae can contribute to the biological profile and specifically in sex estimation of unidentified human skeletal remains in the Netherlands. Furthermore, the results indicate that clinical CT data can be a valuable alternative source of data when representative skeletal collections are unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimating Coastal Digital Elevation Model (DEM) Uncertainty
NASA Astrophysics Data System (ADS)
Amante, C.; Mesick, S.
2017-12-01
Integrated bathymetric-topographic digital elevation models (DEMs) are representations of the Earth's solid surface and are fundamental to the modeling of coastal processes, including tsunami, storm surge, and sea-level rise inundation. Deviations in elevation values from the actual seabed or land surface constitute errors in DEMs, which originate from numerous sources, including: (i) the source elevation measurements (e.g., multibeam sonar, lidar), (ii) the interpolative gridding technique (e.g., spline, kriging) used to estimate elevations in areas unconstrained by source measurements, and (iii) the datum transformation used to convert bathymetric and topographic data to common vertical reference systems. The magnitude and spatial distribution of the errors from these sources are typically unknown, and the lack of knowledge regarding these errors represents the vertical uncertainty in the DEM. The National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) has developed DEMs for more than 200 coastal communities. This study presents a methodology developed at NOAA NCEI to derive accompanying uncertainty surfaces that estimate DEM errors at the individual cell-level. The development of high-resolution (1/9th arc-second), integrated bathymetric-topographic DEMs along the southwest coast of Florida serves as the case study for deriving uncertainty surfaces. The estimated uncertainty can then be propagated into the modeling of coastal processes that utilize DEMs. Incorporating the uncertainty produces more reliable modeling results, and in turn, better-informed coastal management decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J.J. Jr.; Hyder, Z.
The Nguyen and Pinder method is one of four techniques commonly used for analysis of response data from slug tests. Limited field research has raised questions about the reliability of the parameter estimates obtained with this method. A theoretical evaluation of this technique reveals that errors were made in the derivation of the analytical solution upon which the technique is based. Simulation and field examples show that the errors result in parameter estimates that can differ from actual values by orders of magnitude. These findings indicate that the Nguyen and Pinder method should no longer be a tool in themore » repertoire of the field hydrogeologist. If data from a slug test performed in a partially penetrating well in a confined aquifer need to be analyzed, recent work has shown that the Hvorslev method is the best alternative among the commonly used techniques.« less
OSA severity assessment based on sleep breathing analysis using ambient microphone.
Dafna, E; Tarasiuk, A; Zigel, Y
2013-01-01
In this paper, an audio-based system for severity estimation of obstructive sleep apnea (OSA) is proposed. The system estimates the apnea-hypopnea index (AHI), which is the average number of apneic events per hour of sleep. This system is based on a Gaussian mixture regression algorithm that was trained and validated on full-night audio recordings. Feature selection process using a genetic algorithm was applied to select the best features extracted from time and spectra domains. A total of 155 subjects, referred to in-laboratory polysomnography (PSG) study, were recruited. Using the PSG's AHI score as a gold-standard, the performances of the proposed system were evaluated using a Pearson correlation, AHI error, and diagnostic agreement methods. Correlation of R=0.89, AHI error of 7.35 events/hr, and diagnostic agreement of 77.3% were achieved, showing encouraging performances and a reliable non-contact alternative method for OSA severity estimation.
NASA Astrophysics Data System (ADS)
Roozegar, Mehdi; Mahjoob, Mohammad J.; Ayati, Moosa
2017-05-01
This paper deals with adaptive estimation of the unknown parameters and states of a pendulum-driven spherical robot (PDSR), which is a nonlinear in parameters (NLP) chaotic system with parametric uncertainties. Firstly, the mathematical model of the robot is deduced by applying the Newton-Euler methodology for a system of rigid bodies. Then, based on the speed gradient (SG) algorithm, the states and unknown parameters of the robot are estimated online for different step length gains and initial conditions. The estimated parameters are updated adaptively according to the error between estimated and true state values. Since the errors of the estimated states and parameters as well as the convergence rates depend significantly on the value of step length gain, this gain should be chosen optimally. Hence, a heuristic fuzzy logic controller is employed to adjust the gain adaptively. Simulation results indicate that the proposed approach is highly encouraging for identification of this NLP chaotic system even if the initial conditions change and the uncertainties increase; therefore, it is reliable to be implemented on a real robot.
Error control techniques for satellite and space communications
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.
1986-01-01
High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.
Nitschke, J E; Nattrass, C L; Disler, P B; Chou, M J; Ooi, K T
1999-02-01
Repeated measures design for intra- and interrater reliability. To determine the intra- and interrater reliability of the lumbar spine range of motion measured with a dual inclinometer, and the thoracolumbar spine range of motion measured with a long-arm goniometer, as recommended in the American Medical Association Guides. The American Medical Association Guides (2nd and 4th editions) recommend using measurements of thoracolumbar and lumbar range of movement, respectively, to estimate the percentage of permanent impairment in patients with chronic low back pain. However, the reliability of this method of estimating impairment has not been determined. In all, 34 subjects participated in the study, 21 women with a mean age of 40.1 years (SD, +/- 11.1) and 13 men with a mean age of 47.7 years (SD, +/- 12.1). Measures of thoracolumbar flexion, extension, lateral flexion, and rotation were obtained with a long-arm goniometer. Lumbar flexion, extension, and lateral flexion were measured with a dual inclinometer. Measurements were taken by two examiners on one occasion and by one examiner on two occasions approximately 1 week apart. The results showed poor intra- and interrater reliability for all measurements taken with both instruments. Measurement error expressed in degrees showed that measurements taken by different raters exhibited systematic as well as random differences. As a result, subjects measured by two different examiners on the same day, with either instrument, could give impairment ratings ranging between 0% and 18% of the whole person (excluding rotation), in which percentage impairment is calculated using the average range of motion and the average systematic and random error in degrees for the group for each movement (flexion, extension, and lateral flexion). The poor reliability of the American Medical Association Guides' spinal range of motion model can result in marked variation in the percentage of whole-body impairment. These findings have implications for compensation bodies in Australia and other countries that use the American Medical Association Guides' procedure to estimate impairment in chronic low back pain patients.
Varughese, J K; Wentzel-Larsen, T; Vassbotn, F; Moen, G; Lund-Johansen, M
2010-04-01
In this volumetric study of the vestibular schwannoma, we evaluated the accuracy and reliability of several approximation methods that are in use, and determined the minimum volume difference that needs to be measured for it to be attributable to an actual difference rather than a retest error. We also found empirical proportionality coefficients for the different methods. DESIGN/SETTING AND PARTICIPANTS: Methodological study with investigation of three different VS measurement methods compared to a reference method that was based on serial slice volume estimates. These volume estimates were based on: (i) one single diameter, (ii) three orthogonal diameters or (iii) the maximal slice area. Altogether 252 T1-weighted MRI images with gadolinium contrast, from 139 VS patients, were examined. The retest errors, in terms of relative percentages, were determined by undertaking repeated measurements on 63 scans for each method. Intraclass correlation coefficients were used to assess the agreement between each of the approximation methods and the reference method. The tendency for approximation methods to systematically overestimate/underestimate different-sized tumours was also assessed, with the help of Bland-Altman plots. The most commonly used approximation method, the maximum diameter, was the least reliable measurement method and has inherent weaknesses that need to be considered. This includes greater retest errors than area-based measurements (25% and 15%, respectively), and that it was the only approximation method that could not easily be converted into volumetric units. Area-based measurements can furthermore be more reliable for smaller volume differences than diameter-based measurements. All our findings suggest that the maximum diameter should not be used as an approximation method. We propose the use of measurement modalities that take into account growth in multiple dimensions instead.
Ruiz, Jonatan R; Ortega, Francisco B; Castro-Piñero, Jose
2014-11-30
We investigated the criterion-related validity and the reliability of the 1/4 mile run-walk test (MRWT) in children and adolescents. A total of 86 children (n=42 girls) completed a maximal graded treadmill test using a gas analyzer and the 1/4MRW test. We investigated the test-retest reliability of the 1/4MRWT in a different group of children and adolescents (n=995, n=418 girls). The 1/4MRWT time, sex, and BMI significantly contributed to predict measured VO2peak (R2= 0.32). There was no systematic bias in the cross-validation group (P>0.1). The root mean sum of squared errors (RMSE) and the percentage error were 6.9 ml/kg/min and 17.7%, respectively, and the accurate prediction (i.e. the percentage of estimations within ±4.5 ml/kg/min of VO2peak) was 48.8%. The reliability analysis showed that the mean inter-trial difference ranged from 0.6 seconds in children aged 6-11 years to 1.3 seconds in adolescents aged 12-17 years (all P. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Hill, B.R.; DeCarlo, E.H.; Fuller, C.C.; Wong, M.F.
1998-01-01
Reliable estimates of sediment-budget errors are important for interpreting sediment-budget results. Sediment-budget errors are commonly considered equal to sediment-budget imbalances, which may underestimate actual sediment-budget errors if they include compensating positive and negative errors. We modified the sediment 'fingerprinting' approach to qualitatively evaluate compensating errors in an annual (1991) fine (<63 ??m) sediment budget for the North Halawa Valley, a mountainous, forested drainage basin on the island of Oahu, Hawaii, during construction of a major highway. We measured concentrations of aeolian quartz and 137Cs in sediment sources and fluvial sediments, and combined concentrations of these aerosols with the sediment budget to construct aerosol budgets. Aerosol concentrations were independent of the sediment budget, hence aerosol budgets were less likely than sediment budgets to include compensating errors. Differences between sediment-budget and aerosol-budget imbalances therefore provide a measure of compensating errors in the sediment budget. The sediment-budget imbalance equalled 25% of the fluvial fine-sediment load. Aerosol-budget imbalances were equal to 19% of the fluvial 137Cs load and 34% of the fluval quartz load. The reasonably close agreement between sediment- and aerosol-budget imbalances indicates that compensating errors in the sediment budget were not large and that the sediment-budget imbalance as a reliable measure of sediment-budget error. We attribute at least one-third of the 1991 fluvial fine-sediment load to highway construction. Continued monitoring indicated that highway construction produced 90% of the fluvial fine-sediment load during 1992. Erosion of channel margins and attrition of coarse particles provided most of the fine sediment produced by natural processes. Hillslope processes contributed relatively minor amounts of sediment.
Kovalchik, Stephanie A; Cumberland, William G
2012-05-01
Subgroup analyses are important to medical research because they shed light on the heterogeneity of treatment effectts. A treatment-covariate interaction in an individual patient data (IPD) meta-analysis is the most reliable means to estimate how a subgroup factor modifies a treatment's effectiveness. However, owing to the challenges in collecting participant data, an approach based on aggregate data might be the only option. In these circumstances, it would be useful to assess the relative efficiency and power loss of a subgroup analysis without patient-level data. We present methods that use aggregate data to estimate the standard error of an IPD meta-analysis' treatment-covariate interaction for regression models of a continuous or dichotomous patient outcome. Numerical studies indicate that the estimators have good accuracy. An application to a previously published meta-regression illustrates the practical utility of the methodology. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Syamlal, Madhava; Celik, Ismail B.; Benyahia, Sofiane
2017-07-12
The two-fluid model (TFM) has become a tool for the design and troubleshooting of industrial fluidized bed reactors. To use TFM for scale up with confidence, the uncertainty in its predictions must be quantified. Here, we study two sources of uncertainty: discretization and time-averaging. First, we show that successive grid refinement may not yield grid-independent transient quantities, including cross-section–averaged quantities. Successive grid refinement would yield grid-independent time-averaged quantities on sufficiently fine grids. A Richardson extrapolation can then be used to estimate the discretization error, and the grid convergence index gives an estimate of the uncertainty. Richardson extrapolation may not workmore » for industrial-scale simulations that use coarse grids. We present an alternative method for coarse grids and assess its ability to estimate the discretization error. Second, we assess two methods (autocorrelation and binning) and find that the autocorrelation method is more reliable for estimating the uncertainty introduced by time-averaging TFM data.« less
Reliability of the Fox-walk test in patients with rheumatoid arthritis.
Verberkt, Cornelia Antonia; Fridén, Cecilia; Grooten, Wilhelmus Johannes Andreas; Opava, Christina H
2012-01-01
The Fox-walk test is a new method used to estimate aerobic capacity outside a clinical environment, which may be useful in the implementation of daily health-enhancing physical activity. The aim of our study was to investigate the reliability of the test in people with rheumatoid arthritis (RA). Fifteen participants performed the Fox-walk test three times with weekly intervals. The intraclass correlation coefficient (ICC), the standard error of measurement (SEM) and the smallest detectable change (SDC) were used to estimate the reliability. General health perception, lower limb pain and fatigue were measured to determine their potential influence on the reliability. There were no systematic differences between the three test occasions (p = 0.190) and the reliability was almost perfect (ICC = 0.982). None of the covariates influenced the reliability. The SEM was 0.999 ml/kg/min or 3.4% and the SDC was 2.769 ml/kg/min or 9.4%. These findings demonstrate that the Fox-walk test is reliable in people with RA and enables differentiation between people with RA and monitoring progress. The validity of the test among people with RA is still to be determined. • The Fox-walk test is a new method to estimate aerobic capacity and could be performed walking or running. • The test is self administered without expensive equipment and is available in 150 public places in Sweden and several other European countries. • The Fox-walk test is a reliable test for use among people with rheumatoid arthritis monitoring the progress of their physical activity.
Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco
2014-01-01
Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454
Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun
2017-08-01
The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.
Spectral estimates of net radiation and soil heat flux
Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.
1990-01-01
Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.
An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.
Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M
2012-06-01
On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.
Observations of cloud liquid water path over oceans: Optical and microwave remote sensing methods
NASA Technical Reports Server (NTRS)
Lin, Bing; Rossow, William B.
1994-01-01
Published estimates of cloud liquid water path (LWP) from satellite-measured microwave radiation show little agreement, even about the relative magnitudes of LWP in the tropics and midlatitudes. To understand these differences and to obtain more reliable estimate, optical and microwave LWP retrieval methods are compared using the International Satellite Cloud Climatology Project (ISCCP) and special sensor microwave/imager (SSM/I) data. Errors in microwave LWP retrieval associated with uncertainties in surface, atmosphere, and cloud properties are assessed. Sea surface temperature may not produce great LWP errors, if accurate contemporaneous measurements are used in the retrieval. An uncertainty of estimated near-surface wind speed as high as 2 m/s produces uncertainty in LWP of about 5 mg/sq cm. Cloud liquid water temperature has only a small effect on LWP retrievals (rms errors less than 2 mg/sq cm), if errors in the temperature are less than 5 C; however, such errors can produce spurious variations of LWP with latitude and season. Errors in atmospheric column water vapor (CWV) are strongly coupled with errors in LWP (for some retrieval methods) causing errors as large as 30 mg/sq cm. Because microwave radiation is much less sensitive to clouds with small LWP (less than 7 mg/sq cm) than visible wavelength radiation, the microwave results are very sensitive to the process used to separate clear and cloudy conditions. Different cloud detection sensitivities in different microwave retrieval methods bias estimated LWP values. Comparing ISCCP and SSM/I LWPs, we find that the two estimated values are consistent in global, zonal, and regional means for warm, nonprecipitating clouds, which have average LWP values of about 5 mg/sq cm and occur much more frequently than precipitating clouds. Ice water path (IWP) can be roughly estimated from the differences between ISCCP total water path and SSM/I LWP for cold, nonprecipitating clouds. IWP in the winter hemisphere is about 3 times the LWP but only half the LWP in the summer hemisphere. Precipitating clouds contribute significantly to monthly, zonal mean LWP values determined from microwave, especially in the intertropical convergence zone (ITCZ), because they have almost 10 times the liquid water (cloud plus precipitation) of nonprecipitating clouds on average. There are significant differences among microwave LWP estimates associated with the treatment of precipitating clouds.
De Angelis, Danilo; Mele, Elia; Gibelli, Daniele; Merelli, Vera; Spagnoli, Laura; Cattaneo, Cristina
2015-01-01
The Lamendin method is widely reported as one of the most reliable means of age estimation of skeletal remains, but very little is known concerning the influence of burial in soil. This study aimed at verifying the reliability of the Lamendin method on corpses buried for 16 years in a cemetery. The Lamendin and the Prince and Ubelaker methods were applied. In all age groups except the 40- to 49-year-olds, the error was higher in the buried sample. The age-at-death error ranged between 10.7 and 36.8 years for the Lamendin method (vs. the reported 7.3-18.9 years) and 9.5 and 35.7 for the Prince and Ubelaker one (vs. the original 5.2-32.6 years); in all age groups, the error is closer to that found on archeological populations. These results suggest caution in applying the Lamendin method to forensic cases of human remains buried even for a brief period under soil. © 2014 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Hernández, Mario R.; Francés, Félix
2015-04-01
One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.
Maassen, Gerard H
2010-08-01
In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.
NASA Astrophysics Data System (ADS)
Tiberi, Lara; Costa, Giovanni
2017-04-01
The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.
Selecting statistical model and optimum maintenance policy: a case study of hydraulic pump.
Ruhi, S; Karim, M R
2016-01-01
Proper maintenance policy can play a vital role for effective investigation of product reliability. Every engineered object such as product, plant or infrastructure needs preventive and corrective maintenance. In this paper we look at a real case study. It deals with the maintenance of hydraulic pumps used in excavators by a mining company. We obtain the data that the owner had collected and carry out an analysis and building models for pump failures. The data consist of both failure and censored lifetimes of the hydraulic pump. Different competitive mixture models are applied to analyze a set of maintenance data of a hydraulic pump. Various characteristics of the mixture models, such as the cumulative distribution function, reliability function, mean time to failure, etc. are estimated to assess the reliability of the pump. Akaike Information Criterion, adjusted Anderson-Darling test statistic, Kolmogrov-Smirnov test statistic and root mean square error are considered to select the suitable models among a set of competitive models. The maximum likelihood estimation method via the EM algorithm is applied mainly for estimating the parameters of the models and reliability related quantities. In this study, it is found that a threefold mixture model (Weibull-Normal-Exponential) fits well for the hydraulic pump failures data set. This paper also illustrates how a suitable statistical model can be applied to estimate the optimum maintenance period at a minimum cost of a hydraulic pump.
Reducing sampling error in faecal egg counts from black rhinoceros (Diceros bicornis).
Stringer, Andrew P; Smith, Diane; Kerley, Graham I H; Linklater, Wayne L
2014-04-01
Faecal egg counts (FECs) are commonly used for the non-invasive assessment of parasite load within hosts. Sources of error, however, have been identified in laboratory techniques and sample storage. Here we focus on sampling error. We test whether a delay in sample collection can affect FECs, and estimate the number of samples needed to reliably assess mean parasite abundance within a host population. Two commonly found parasite eggs in black rhinoceros (Diceros bicornis) dung, strongyle-type nematodes and Anoplocephala gigantea, were used. We find that collection of dung from the centre of faecal boluses up to six hours after defecation does not affect FECs. More than nine samples were needed to greatly improve confidence intervals of the estimated mean parasite abundance within a host population. These results should improve the cost-effectiveness and efficiency of sampling regimes, and support the usefulness of FECs when used for the non-invasive assessment of parasite abundance in black rhinoceros populations.
The hockey-stick method to estimate evening dim light melatonin onset (DLMO) in humans.
Danilenko, Konstantin V; Verevkin, Evgeniy G; Antyufeev, Viktor S; Wirz-Justice, Anna; Cajochen, Christian
2014-04-01
The onset of melatonin secretion in the evening is the most reliable and most widely used index of circadian timing in humans. Saliva (or plasma) is usually sampled every 0.5-1 hours under dim-light conditions in the evening 5-6 hours before usual bedtime to assess the dim-light melatonin onset (DLMO). For many years, attempts have been made to find a reliable objective determination of melatonin onset time either by fixed or dynamic threshold approaches. The here-developed hockey-stick algorithm, used as an interactive computer-based approach, fits the evening melatonin profile by a piecewise linear-parabolic function represented as a straight line switching to the branch of a parabola. The switch point is considered to reliably estimate melatonin rise time. We applied the hockey-stick method to 109 half-hourly melatonin profiles to assess the DLMOs and compared these estimates to visual ratings from three experts in the field. The DLMOs of 103 profiles were considered to be clearly quantifiable. The hockey-stick DLMO estimates were on average 4 minutes earlier than the experts' estimates, with a range of -27 to +13 minutes; in 47% of the cases the difference fell within ±5 minutes, in 98% within -20 to +13 minutes. The raters' and hockey-stick estimates showed poor accordance with DLMOs defined by threshold methods. Thus, the hockey-stick algorithm is a reliable objective method to estimate melatonin rise time, which does not depend on a threshold value and is free from errors arising from differences in subjective circadian phase estimates. The method is available as a computerized program that can be easily used in research settings and clinical practice either for salivary or plasma melatonin values.
Done, Terence; Roelfsema, Chris; Harvey, Andrew; Schuller, Laura; Hill, Jocelyn; Schläppy, Marie-Lise; Lea, Alexandra; Bauer-Civiello, Anne; Loder, Jennifer
2017-04-15
Reef Check Australia (RCA) has collected data on benthic composition and cover at >70 sites along >1000km of Australia's Queensland coast from 2002 to 2015. This paper quantifies the accuracy, precision and power of RCA benthic composition data, to guide its application and interpretation. A simulation study established that the inherent accuracy of the Reef Check point sampling protocol is high (<±7% error absolute), in the range of estimates of benthic cover from 1% to 50%. A field study at three reef sites indicated that, despite minor observer- and deployment-related biases, the protocol does reliably document moderate ecological changes in coral communities. The error analyses were then used to guide the interpretation of inter-annual variability and long term trends at three study sites in RCA's major 2002-2015 data series for the Queensland coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
Benchmarking passive seismic methods of estimating the depth of velocity interfaces down to ~300 m
NASA Astrophysics Data System (ADS)
Czarnota, Karol; Gorbatov, Alexei
2016-04-01
In shallow passive seismology it is generally accepted that the spatial autocorrelation (SPAC) method is more robust than the horizontal-over-vertical spectral ratio (HVSR) method at resolving the depth to surface-wave velocity (Vs) interfaces. Here we present results of a field test of these two methods over ten drill sites in western Victoria, Australia. The target interface is the base of Cenozoic unconsolidated to semi-consolidated clastic and/or carbonate sediments of the Murray Basin, which overlie Paleozoic crystalline rocks. Depths of this interface intersected in drill holes are between ~27 m and ~300 m. Seismometers were deployed in a three-arm spiral array, with a radius of 250 m, consisting of 13 Trillium Compact 120 s broadband instruments. Data were acquired at each site for 7-21 hours. The Vs architecture beneath each site was determined through nonlinear inversion of HVSR and SPAC data using the neighbourhood algorithm, implemented in the geopsy modelling package (Wathelet, 2005, GRL v35). The HVSR technique yielded depth estimates of the target interface (Vs > 1000 m/s) generally within ±20% error. Successful estimates were even obtained at a site with an inverted velocity profile, where Quaternary basalts overlie Neogene sediments which in turn overlie the target basement. Half of the SPAC estimates showed significantly higher errors than were obtained using HVSR. Joint inversion provided the most reliable estimates but was unstable at three sites. We attribute the surprising success of HVSR over SPAC to a low content of transient signals within the seismic record caused by low levels of anthropogenic noise at the benchmark sites. At a few sites SPAC waveform curves showed clear overtones suggesting that more reliable SPAC estimates may be obtained utilizing a multi-modal inversion. Nevertheless, our study indicates that reliable basin thickness estimates in the Australian conditions tested can be obtained utilizing HVSR data from a single seismometer, without a priori knowledge of the surface-wave velocity of the basin material, thereby negating the need to deploy cumbersome arrays.
The Trojan Lifetime Champions Health Survey: development, validity, and reliability.
Sorenson, Shawn C; Romano, Russell; Scholefield, Robin M; Schroeder, E Todd; Azen, Stanley P; Salem, George J
2015-04-01
Self-report questionnaires are an important method of evaluating lifespan health, exercise, and health-related quality of life (HRQL) outcomes among elite, competitive athletes. Few instruments, however, have undergone formal characterization of their psychometric properties within this population. To evaluate the validity and reliability of a novel health and exercise questionnaire, the Trojan Lifetime Champions (TLC) Health Survey. Descriptive laboratory study. A large National Collegiate Athletic Association Division I university. A total of 63 university alumni (age range, 24 to 84 years), including former varsity collegiate athletes and a control group of nonathletes. Participants completed the TLC Health Survey twice at a mean interval of 23 days with randomization to the paper or electronic version of the instrument. Content validity, feasibility of administration, test-retest reliability, parallel-form reliability between paper and electronic forms, and estimates of systematic and typical error versus differences of clinical interest were assessed across a broad range of health, exercise, and HRQL measures. Correlation coefficients, including intraclass correlation coefficients (ICCs) for continuous variables and κ agreement statistics for ordinal variables, for test-retest reliability averaged 0.86, 0.90, 0.80, and 0.74 for HRQL, lifetime health, recent health, and exercise variables, respectively. Correlation coefficients, again ICCs and κ, for parallel-form reliability (ie, equivalence) between paper and electronic versions averaged 0.90, 0.85, 0.85, and 0.81 for HRQL, lifetime health, recent health, and exercise variables, respectively. Typical measurement error was less than the a priori thresholds of clinical interest, and we found minimal evidence of systematic test-retest error. We found strong evidence of content validity, convergent construct validity with the Short-Form 12 Version 2 HRQL instrument, and feasibility of administration in an elite, competitive athletic population. These data suggest that the TLC Health Survey is a valid and reliable instrument for assessing lifetime and recent health, exercise, and HRQL, among elite competitive athletes. Generalizability of the instrument may be enhanced by additional, larger-scale studies in diverse populations.
Results and Error Estimates from GRACE Forward Modeling over Greenland, Canada, and Alaska
NASA Astrophysics Data System (ADS)
Bonin, J. A.; Chambers, D. P.
2012-12-01
Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Greenland and Antarctica. However, the accuracy of the forward model technique has not been determined, nor is it known how the distribution of the local basins affects the results. We use a "truth" model composed of hydrology and ice-melt slopes as an example case, to estimate the uncertainties of this forward modeling method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We then apply these optimal parameters in a forward model estimate created from RL05 GRACE data. We compare the resulting mass slopes with the expected systematic errors from the simulation, as well as GIA and basic trend-fitting uncertainties. We also consider whether specific regions (such as Ellesmere Island and Baffin Island) can be estimated reliably using our optimal basin layout.
Helsel, Dennis R.; Gilliom, Robert J.
1986-01-01
Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.
A mathematical model of diurnal variations in human plasma melatonin levels
NASA Technical Reports Server (NTRS)
Brown, E. N.; Choe, Y.; Shanahan, T. L.; Czeisler, C. A.
1997-01-01
Studies in animals and humans suggest that the diurnal pattern in plasma melatonin levels is due to the hormone's rates of synthesis, circulatory infusion and clearance, circadian control of synthesis onset and offset, environmental lighting conditions, and error in the melatonin immunoassay. A two-dimensional linear differential equation model of the hormone is formulated and is used to analyze plasma melatonin levels in 18 normal healthy male subjects during a constant routine. Recently developed Bayesian statistical procedures are used to incorporate correctly the magnitude of the immunoassay error into the analysis. The estimated parameters [median (range)] were clearance half-life of 23.67 (14.79-59.93) min, synthesis onset time of 2206 (1940-0029), synthesis offset time of 0621 (0246-0817), and maximum N-acetyltransferase activity of 7.17(2.34-17.93) pmol x l(-1) x min(-1). All were in good agreement with values from previous reports. The difference between synthesis offset time and the phase of the core temperature minimum was 1 h 15 min (-4 h 38 min-2 h 43 min). The correlation between synthesis onset and the dim light melatonin onset was 0.93. Our model provides a more physiologically plausible estimate of the melatonin synthesis onset time than that given by the dim light melatonin onset and the first reliable means of estimating the phase of synthesis offset. Our analysis shows that the circadian and pharmacokinetics parameters of melatonin can be reliably estimated from a single model.
NASA Astrophysics Data System (ADS)
Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe
2018-01-01
In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.
Test-Retest Analyses of the Test of English as a Foreign Language. TOEFL Research Reports Report 45.
ERIC Educational Resources Information Center
Henning, Grant
This study provides information about the total and component scores of the Test of English as a Foreign Language (TOEFL). First, the study provides comparative global and component estimates of test-retest, alternate-form, and internal-consistency reliability, controlling for sources of measurement error inherent in the examinees and the testing…
Joint Source-Channel Coding by Means of an Oversampled Filter Bank Code
NASA Astrophysics Data System (ADS)
Marinkovic, Slavica; Guillemot, Christine
2006-12-01
Quantized frame expansions based on block transforms and oversampled filter banks (OFBs) have been considered recently as joint source-channel codes (JSCCs) for erasure and error-resilient signal transmission over noisy channels. In this paper, we consider a coding chain involving an OFB-based signal decomposition followed by scalar quantization and a variable-length code (VLC) or a fixed-length code (FLC). This paper first examines the problem of channel error localization and correction in quantized OFB signal expansions. The error localization problem is treated as an[InlineEquation not available: see fulltext.]-ary hypothesis testing problem. The likelihood values are derived from the joint pdf of the syndrome vectors under various hypotheses of impulse noise positions, and in a number of consecutive windows of the received samples. The error amplitudes are then estimated by solving the syndrome equations in the least-square sense. The message signal is reconstructed from the corrected received signal by a pseudoinverse receiver. We then improve the error localization procedure by introducing a per-symbol reliability information in the hypothesis testing procedure of the OFB syndrome decoder. The per-symbol reliability information is produced by the soft-input soft-output (SISO) VLC/FLC decoders. This leads to the design of an iterative algorithm for joint decoding of an FLC and an OFB code. The performance of the algorithms developed is evaluated in a wavelet-based image coding system.
Error correcting coding-theory for structured light illumination systems
NASA Astrophysics Data System (ADS)
Porras-Aguilar, Rosario; Falaggis, Konstantinos; Ramos-Garcia, Ruben
2017-06-01
Intensity discrete structured light illumination systems project a series of projection patterns for the estimation of the absolute fringe order using only the temporal grey-level sequence at each pixel. This work proposes the use of error-correcting codes for pixel-wise correction of measurement errors. The use of an error correcting code is advantageous in many ways: it allows reducing the effect of random intensity noise, it corrects outliners near the border of the fringe commonly present when using intensity discrete patterns, and it provides a robustness in case of severe measurement errors (even for burst errors where whole frames are lost). The latter aspect is particular interesting in environments with varying ambient light as well as in critical safety applications as e.g. monitoring of deformations of components in nuclear power plants, where a high reliability is ensured even in case of short measurement disruptions. A special form of burst errors is the so-called salt and pepper noise, which can largely be removed with error correcting codes using only the information of a given pixel. The performance of this technique is evaluated using both simulations and experiments.
Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.
Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko
2017-06-01
Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.
Age estimation from dental cementum incremental lines and periodontal disease.
Dias, P E M; Beaini, T L; Melani, R F H
2010-12-01
Age estimation by counting incremental lines in cementum added to the average age of tooth eruption is considered an accurate method by some authors, while others reject it stating weak correlation between estimated and actual age. The aim of this study was to evaluate this technique and check the influence of periodontal disease on age estimates by analyzing both the number of cementum lines and the correlation between cementum thickness and actual age on freshly extracted teeth. Thirty one undecalcified ground cross sections of approximately 30 µm, from 25 teeth were prepared, observed, photographed and measured. Images were enhanced by software and counts were made by one observer, and the results compared with two control-observers. There was moderate correlation ((r)=0.58) for the entire sample, with mean error of 9.7 years. For teeth with periodontal pathologies, correlation was 0.03 with a mean error of 22.6 years. For teeth without periodontal pathologies, correlation was 0.74 with mean error of 1.6 years. There was correlation of 0.69 between cementum thickness and known age for the entire sample, 0.25 for teeth with periodontal problems and 0.75 for teeth without periodontal pathologies. The technique was reliable for periodontally sound teeth, but not for periodontally diseased teeth.
2016-01-01
Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627
Dealing with dietary measurement error in nutritional cohort studies.
Freedman, Laurence S; Schatzkin, Arthur; Midthune, Douglas; Kipnis, Victor
2011-07-20
Dietary measurement error creates serious challenges to reliably discovering new diet-disease associations in nutritional cohort studies. Such error causes substantial underestimation of relative risks and reduction of statistical power for detecting associations. On the basis of data from the Observing Protein and Energy Nutrition Study, we recommend the following approaches to deal with these problems. Regarding data analysis of cohort studies using food-frequency questionnaires, we recommend 1) using energy adjustment for relative risk estimation; 2) reporting estimates adjusted for measurement error along with the usual relative risk estimates, whenever possible (this requires data from a relevant, preferably internal, validation study in which participants report intakes using both the main instrument and a more detailed reference instrument such as a 24-hour recall or multiple-day food record); 3) performing statistical adjustment of relative risks, based on such validation data, if they exist, using univariate (only for energy-adjusted intakes such as densities or residuals) or multivariate regression calibration. We note that whereas unadjusted relative risk estimates are biased toward the null value, statistical significance tests of unadjusted relative risk estimates are approximately valid. Regarding study design, we recommend increasing the sample size to remedy loss of power; however, it is important to understand that this will often be an incomplete solution because the attenuated signal may be too small to distinguish from unmeasured confounding in the model relating disease to reported intake. Future work should be devoted to alleviating the problem of signal attenuation, possibly through the use of improved self-report instruments or by combining dietary biomarkers with self-report instruments.
Huxel Bliven, Kellie C; Snyder Valier, Alison R; Bay, R Curtis; Sauers, Eric L
2017-04-01
The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. To describe stage III of scale development: reliability and validity of the FAST. Cohort study (diagnosis); Level of evidence, 2. Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM 95 and MDC 95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM 95 and MDC 95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury.
Huxel Bliven, Kellie C.; Snyder Valier, Alison R.; Bay, R. Curtis; Sauers, Eric L.
2017-01-01
Background: The Functional Arm Scale for Throwers (FAST) is an upper extremity (UE) region-specific and population-specific patient-reported outcome (PRO) scale developed to measure health-related quality of life in throwers with UE injuries. Stages I and II, described in a companion paper, of FAST development produced a 22-item scale and a 9-item pitcher module. Stage III of scale development, establishing reliability and validity of the FAST, is reported herein. Purpose: To describe stage III of scale development: reliability and validity of the FAST. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: Data from throwing athletes collected over 5 studies were pooled to assess reliability and validity of the FAST. Reliability was estimated using FAST scores from 162 throwing athletes who were injured (n = 23) and uninjured (n = 139). Concurrent validity was estimated using FAST scores and Disabilities of the Arm, Shoulder, and Hand (DASH) and Kerlan-Jobe Orthopaedic Clinic (KJOC) scores from 106 healthy, uninjured throwing athletes. Known-groups validity was estimated using FAST scores from 557 throwing athletes who were injured (n = 142) and uninjured (n = 415). Reliability and validity were assessed using intraclass correlation coefficients (ICCs), and measurement error was assessed using standard error of measurement (SEM) and minimum detectable change (MDC). Receiver operating characteristic curves and sensitivity/specificity values were estimated for known-groups validity. Data from a separate group (n = 18) of postsurgical and nonoperative/conservative rehabilitation patients were analyzed to report responsiveness of the FAST. Results: The FAST total, subscales, and pitcher module scores demonstrated excellent test-retest reliability (ICC, 0.91-0.98). The SEM95 and MDC95 for the FAST total score were 3.8 and 10.5 points, respectively. The SEM95 and MDC95 for the pitcher module score were 5.7 and 15.7 points, respectively. The FAST scores showed acceptable correlation with DASH (ICC, 0.49-0.82) and KJOC (ICC, 0.62-0.81) scores. The FAST total score classified 85.1% of players into the correct injury group. For predicting UE injury status, a FAST total cutoff score of 10.0 out of 100.0 was 91% sensitive and 75% specific, and a pitcher module score of 10.0 out of 100.0 was 87% sensitive and 78% specific. The FAST total score demonstrated responsiveness on several indices between intake and discharge time points. Conclusion: The FAST is a reliable, valid, and responsive UE region-specific and population-specific PRO scale for measuring patient-reported health care outcomes in throwing athletes with injury. PMID:28451614
Reliability of fish size estimates obtained from multibeam imaging sonar
Hightower, Joseph E.; Magowan, Kevin J.; Brown, Lori M.; Fox, Dewayne A.
2013-01-01
Multibeam imaging sonars have considerable potential for use in fisheries surveys because the video-like images are easy to interpret, and they contain information about fish size, shape, and swimming behavior, as well as characteristics of occupied habitats. We examined images obtained using a dual-frequency identification sonar (DIDSON) multibeam sonar for Atlantic sturgeon Acipenser oxyrinchus oxyrinchus, striped bass Morone saxatilis, white perch M. americana, and channel catfish Ictalurus punctatus of known size (20–141 cm) to determine the reliability of length estimates. For ranges up to 11 m, percent measurement error (sonar estimate – total length)/total length × 100 varied by species but was not related to the fish's range or aspect angle (orientation relative to the sonar beam). Least-square mean percent error was significantly different from 0.0 for Atlantic sturgeon (x̄ = −8.34, SE = 2.39) and white perch (x̄ = 14.48, SE = 3.99) but not striped bass (x̄ = 3.71, SE = 2.58) or channel catfish (x̄ = 3.97, SE = 5.16). Underestimating lengths of Atlantic sturgeon may be due to difficulty in detecting the snout or the longer dorsal lobe of the heterocercal tail. White perch was the smallest species tested, and it had the largest percent measurement errors (both positive and negative) and the lowest percentage of images classified as good or acceptable. Automated length estimates for the four species using Echoview software varied with position in the view-field. Estimates tended to be low at more extreme azimuthal angles (fish's angle off-axis within the view-field), but mean and maximum estimates were highly correlated with total length. Software estimates also were biased by fish images partially outside the view-field and when acoustic crosstalk occurred (when a fish perpendicular to the sonar and at relatively close range is detected in the side lobes of adjacent beams). These sources of bias are apparent when files are processed manually and can be filtered out when producing automated software estimates. Multibeam sonar estimates of fish size should be useful for research and management if these potential sources of bias and imprecision are addressed.
Stratford, Paul W.; Kennedy, Deborah M.; Woodhouse, Linda J.; Spadoni, Gregory
2008-01-01
Purpose: To estimate the test–retest reliability of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain sub-scale and performance-specific assessments of pain, as well as the association between these measures for patients awaiting primary total hip or knee arthroplasty as a consequence of osteoarthritis. Methods: A total of 164 patients awaiting unilateral primary hip or knee arthroplasty completed four performance measures (self-paced walk, timed up and go, stair test, six-minute walk) and the WOMAC. Scores for 22 of these patients provided test–retest reliability data. Estimates of test–retest reliability (Type 2,1 intraclass correlation coefficient [ICC] and standard error of measurement [SEM]) and the association between measures were examined. Results: ICC values for individual performance-specific pain ratings were between 0.70 and 0.86; SEM values were between 0.97 and 1.33 pain points. ICC estimates for the four-item performance pain ratings and the WOMAC pain sub-scale were 0.82 and 0.57 respectively. The correlation between the sum of the pain scores for the four performance measures and the WOMAC pain sub-scale was 0.62. Conclusion: Reliability estimates for the performance-specific assessments of pain using the numeric pain rating scale were consistent with values reported for patients with a spectrum of musculoskeletal conditions. The reliability estimate for the WOMAC pain sub-scale was lower than typically reported in the literature. The level of association between the WOMAC pain sub-scale and the various performance-specific pain scales suggests that the scores can be used interchangeably when applied to groups but not for individual patients. PMID:20145758
Liu, Geng; Niu, Junjie; Zhang, Chao; Guo, Guanlin
2015-12-01
Data distribution is usually skewed severely by the presence of hot spots in contaminated sites. This causes difficulties for accurate geostatistical data transformation. Three types of typical normal distribution transformation methods termed the normal score, Johnson, and Box-Cox transformations were applied to compare the effects of spatial interpolation with normal distribution transformation data of benzo(b)fluoranthene in a large-scale coking plant-contaminated site in north China. Three normal transformation methods decreased the skewness and kurtosis of the benzo(b)fluoranthene, and all the transformed data passed the Kolmogorov-Smirnov test threshold. Cross validation showed that Johnson ordinary kriging has a minimum root-mean-square error of 1.17 and a mean error of 0.19, which was more accurate than the other two models. The area with fewer sampling points and that with high levels of contamination showed the largest prediction standard errors based on the Johnson ordinary kriging prediction map. We introduce an ideal normal transformation method prior to geostatistical estimation for severely skewed data, which enhances the reliability of risk estimation and improves the accuracy for determination of remediation boundaries.
NASA Astrophysics Data System (ADS)
Verkade, J. S.; Brown, J. D.; Davids, F.; Reggiani, P.; Weerts, A. H.
2017-12-01
Two statistical post-processing approaches for estimation of predictive hydrological uncertainty are compared: (i) 'dressing' of a deterministic forecast by adding a single, combined estimate of both hydrological and meteorological uncertainty and (ii) 'dressing' of an ensemble streamflow forecast by adding an estimate of hydrological uncertainty to each individual streamflow ensemble member. Both approaches aim to produce an estimate of the 'total uncertainty' that captures both the meteorological and hydrological uncertainties. They differ in the degree to which they make use of statistical post-processing techniques. In the 'lumped' approach, both sources of uncertainty are lumped by post-processing deterministic forecasts using their verifying observations. In the 'source-specific' approach, the meteorological uncertainties are estimated by an ensemble of weather forecasts. These ensemble members are routed through a hydrological model and a realization of the probability distribution of hydrological uncertainties (only) is then added to each ensemble member to arrive at an estimate of the total uncertainty. The techniques are applied to one location in the Meuse basin and three locations in the Rhine basin. Resulting forecasts are assessed for their reliability and sharpness, as well as compared in terms of multiple verification scores including the relative mean error, Brier Skill Score, Mean Continuous Ranked Probability Skill Score, Relative Operating Characteristic Score and Relative Economic Value. The dressed deterministic forecasts are generally more reliable than the dressed ensemble forecasts, but the latter are sharper. On balance, however, they show similar quality across a range of verification metrics, with the dressed ensembles coming out slightly better. Some additional analyses are suggested. Notably, these include statistical post-processing of the meteorological forecasts in order to increase their reliability, thus increasing the reliability of the streamflow forecasts produced with ensemble meteorological forcings.
Validity and reliability of Nike + Fuelband for estimating physical activity energy expenditure.
Tucker, Wesley J; Bhammar, Dharini M; Sawyer, Brandon J; Buman, Matthew P; Gaesser, Glenn A
2015-01-01
The Nike + Fuelband is a commercially available, wrist-worn accelerometer used to track physical activity energy expenditure (PAEE) during exercise. However, validation studies assessing the accuracy of this device for estimating PAEE are lacking. Therefore, this study examined the validity and reliability of the Nike + Fuelband for estimating PAEE during physical activity in young adults. Secondarily, we compared PAEE estimation of the Nike + Fuelband with the previously validated SenseWear Armband (SWA). Twenty-four participants (n = 24) completed two, 60-min semi-structured routines consisting of sedentary/light-intensity, moderate-intensity, and vigorous-intensity physical activity. Participants wore a Nike + Fuelband and SWA, while oxygen uptake was measured continuously with an Oxycon Mobile (OM) metabolic measurement system (criterion). The Nike + Fuelband (ICC = 0.77) and SWA (ICC = 0.61) both demonstrated moderate to good validity. PAEE estimates provided by the Nike + Fuelband (246 ± 67 kcal) and SWA (238 ± 57 kcal) were not statistically different than OM (243 ± 67 kcal). Both devices also displayed similar mean absolute percent errors for PAEE estimates (Nike + Fuelband = 16 ± 13 %; SWA = 18 ± 18 %). Test-retest reliability for PAEE indicated good stability for Nike + Fuelband (ICC = 0.96) and SWA (ICC = 0.90). The Nike + Fuelband provided valid and reliable estimates of PAEE, that are similar to the previously validated SWA, during a routine that included approximately equal amounts of sedentary/light-, moderate- and vigorous-intensity physical activity.
Photograph-based ergonomic evaluations using the Rapid Office Strain Assessment (ROSA).
Liebregts, J; Sonne, M; Potvin, J R
2016-01-01
The Rapid Office Strain Assessment (ROSA) was developed to assess musculoskeletal disorder (MSD) risk factors for computer workstations. This study examined the validity and reliability of remotely conducted, photo-based assessments using ROSA. Twenty-three office workstations were assessed on-site by an ergonomist, and 5 photos were obtained. Photo-based assessments were conducted by three ergonomists. The sensitivity and specificity of the photo-based assessors' ability to correctly classify workstations was 79% and 55%, respectively. The moderate specificity associated with false positive errors committed by the assessors could lead to unnecessary costs to the employer. Error between on-site and photo-based final scores was a considerable ∼2 points on the 10-point ROSA scale (RMSE = 2.3), with a moderate relationship (ρ = 0.33). Interrater reliability ranged from fairly good to excellent (ICC = 0.667-0.856) and was comparable to previous results. Sources of error include the parallax effect, poor estimations of small joint (e.g. hand/wrist) angles, and boundary errors in postural binning. While this method demonstrated potential validity, further improvements should be made with respect to photo-collection and other protocols for remotely-based ROSA assessments. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
LaValley, Brian W.; Little, Phillip D.; Walter, Chris J.
2011-01-01
This report documents the capabilities of the EDICT tools for error modeling and error propagation analysis when operating with models defined in the Architecture Analysis & Design Language (AADL). We discuss our experience using the EDICT error analysis capabilities on a model of the Scalable Processor-Independent Design for Enhanced Reliability (SPIDER) architecture that uses the Reliable Optical Bus (ROBUS). Based on these experiences we draw some initial conclusions about model based design techniques for error modeling and analysis of highly reliable computing architectures.
System reliability and recovery.
DOT National Transportation Integrated Search
1971-06-01
The paper exhibits a variety of reliability techniques applicable to future ATC data processing systems. Presently envisioned schemes for error detection, error interrupt and error analysis are considered, along with methods of retry, reconfiguration...
Evaluating concentration estimation errors in ELISA microarray experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, Don S.; White, Amanda M.; Varnum, Susan M.
Enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay to predict a protein concentration in a sample. Deploying ELISA in a microarray format permits simultaneous prediction of the concentrations of numerous proteins in a small sample. These predictions, however, are uncertain due to processing error and biological variability. Evaluating prediction error is critical to interpreting biological significance and improving the ELISA microarray process. Evaluating prediction error must be automated to realize a reliable high-throughput ELISA microarray system. Methods: In this paper, we present a statistical method based on propagation of error to evaluate prediction errors in the ELISA microarray process. Althoughmore » propagation of error is central to this method, it is effective only when comparable data are available. Therefore, we briefly discuss the roles of experimental design, data screening, normalization and statistical diagnostics when evaluating ELISA microarray prediction errors. We use an ELISA microarray investigation of breast cancer biomarkers to illustrate the evaluation of prediction errors. The illustration begins with a description of the design and resulting data, followed by a brief discussion of data screening and normalization. In our illustration, we fit a standard curve to the screened and normalized data, review the modeling diagnostics, and apply propagation of error.« less
Krishan, Kewal; Kanchan, Tanuj; Sharma, Abhilasha
2012-05-01
Estimation of stature is an important parameter in identification of human remains in forensic examinations. The present study is aimed to compare the reliability and accuracy of stature estimation and to demonstrate the variability in estimated stature and actual stature using multiplication factor and regression analysis methods. The study is based on a sample of 246 subjects (123 males and 123 females) from North India aged between 17 and 20 years. Four anthropometric measurements; hand length, hand breadth, foot length and foot breadth taken on the left side in each subject were included in the study. Stature was measured using standard anthropometric techniques. Multiplication factors were calculated and linear regression models were derived for estimation of stature from hand and foot dimensions. Derived multiplication factors and regression formula were applied to the hand and foot measurements in the study sample. The estimated stature from the multiplication factors and regression analysis was compared with the actual stature to find the error in estimated stature. The results indicate that the range of error in estimation of stature from regression analysis method is less than that of multiplication factor method thus, confirming that the regression analysis method is better than multiplication factor analysis in stature estimation. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Neural network uncertainty assessment using Bayesian statistics: a remote sensing application
NASA Technical Reports Server (NTRS)
Aires, F.; Prigent, C.; Rossow, W. B.
2004-01-01
Neural network (NN) techniques have proved successful for many regression problems, in particular for remote sensing; however, uncertainty estimates are rarely provided. In this article, a Bayesian technique to evaluate uncertainties of the NN parameters (i.e., synaptic weights) is first presented. In contrast to more traditional approaches based on point estimation of the NN weights, we assess uncertainties on such estimates to monitor the robustness of the NN model. These theoretical developments are illustrated by applying them to the problem of retrieving surface skin temperature, microwave surface emissivities, and integrated water vapor content from a combined analysis of satellite microwave and infrared observations over land. The weight uncertainty estimates are then used to compute analytically the uncertainties in the network outputs (i.e., error bars and correlation structure of these errors). Such quantities are very important for evaluating any application of an NN model. The uncertainties on the NN Jacobians are then considered in the third part of this article. Used for regression fitting, NN models can be used effectively to represent highly nonlinear, multivariate functions. In this situation, most emphasis is put on estimating the output errors, but almost no attention has been given to errors associated with the internal structure of the regression model. The complex structure of dependency inside the NN is the essence of the model, and assessing its quality, coherency, and physical character makes all the difference between a blackbox model with small output errors and a reliable, robust, and physically coherent model. Such dependency structures are described to the first order by the NN Jacobians: they indicate the sensitivity of one output with respect to the inputs of the model for given input data. We use a Monte Carlo integration procedure to estimate the robustness of the NN Jacobians. A regularization strategy based on principal component analysis is proposed to suppress the multicollinearities in order to make these Jacobians robust and physically meaningful.
Measurement of vertebral rotation: Perdriolle versus Raimondi.
Weiss, H R
1995-01-01
The measurement of vertebral rotation according to Perdriolle is widely used in the French-speaking and Anglo-American countries. Even in this measurement technique there may be a relatively high estimation error because of the not very accurate grading in steps of 5 degrees. The measurement according to Raimondi seems to be easier to use and is more accurate, with 2 degrees steps. The purpose of our study was to determine the technical error of both measuring methods. The apex vertebra of 40 curves on 20 anteroposterior (AP) radiographs were measured by using the Perdriolle torsion meter and the Regolo Raimondi. Interrater and intrarater reliability were computed. The thoracic Cobb angle was 43 degrees, the lumbar Cobb angle 36 degrees. The average rotation according to Perdriolle was 19.1 degrees thoracic (SD 11.14), 12.7 degrees lumbar (11.21). Measurement of vertebral rotation according to Raimondi showed an average rotation of 20.25 degrees in the thoracic region (11.40) and 13.4 degrees lumbar (10.92). The intrarater reliability was r = 0.991 (Perdriolle) and r = 0.997 (Raimondi). The average intrarater error was 1.025 degrees in the Perdriolle measurement and 0.4 degrees in the Raimondi measurement. Interrater error was on average 3.112 degrees for the Perdriolle measurement and 3.630 degrees for the Raimondi measurement. This shows that both methods are useful tools for the follow-up of vertebral rotation as projected on standard X-rays for the experienced clinical. The Raimondi ruler is easier to use and is slightly more reliable.
NASA Astrophysics Data System (ADS)
Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang
2018-05-01
The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.
Markov chains for testing redundant software
NASA Technical Reports Server (NTRS)
White, Allan L.; Sjogren, Jon A.
1988-01-01
A preliminary design for a validation experiment has been developed that addresses several problems unique to assuring the extremely high quality of multiple-version programs in process-control software. The procedure uses Markov chains to model the error states of the multiple version programs. The programs are observed during simulated process-control testing, and estimates are obtained for the transition probabilities between the states of the Markov chain. The experimental Markov chain model is then expanded into a reliability model that takes into account the inertia of the system being controlled. The reliability of the multiple version software is computed from this reliability model at a given confidence level using confidence intervals obtained for the transition probabilities during the experiment. An example demonstrating the method is provided.
Hoppe, Matthias W; Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen
2018-01-01
This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6-8.0%; CV: 1.1-5.1%) and sprint mechanical properties (TEE: 4.5-14.3%; CV: 3.1-7.5%) than the 10 Hz GPS (TEE: 3.0-12.9%; CV: 2.5-13.0% and TEE: 4.1-23.1%; CV: 3.3-20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0-6.0%; CV: 0.7-5.0% and TEE: 2.1-9.2%; CV: 1.6-7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that 18 Hz GPS has enhanced validity and reliability for determining movement patterns in team sports compared to 10 Hz GPS, whereas 20 Hz LPS had superior validity and reliability overall. However, compared to 10 Hz GPS, 18 Hz GPS and 20 Hz LPS technologies had more outliers due to measurement errors, which limits their practical applications at this time.
Measurement properties of the WOMAC LK 3.1 pain scale.
Stratford, P W; Kennedy, D M; Woodhouse, L J; Spadoni, G F
2007-03-01
The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) is applied extensively to patients with osteoarthritis of the hip or knee. Previous work has challenged the validity of its physical function scale however an extensive evaluation of its pain scale has not been reported. Our purpose was to estimate internal consistency, factorial validity, test-retest reliability, and the standard error of measurement (SEM) of the WOMAC LK 3.1 pain scale. Four hundred and seventy-four patients with osteoarthritis of the hip or knee awaiting arthroplasty were administered the WOMAC. Estimates of internal consistency (coefficient alpha), factorial validity (confirmatory factor analysis), and the SEM based on internal consistency (SEM(IC)) were obtained. Test-retest reliability [Type 2,1 intraclass correlation coefficients (ICC)] and a corresponding SEM(TRT) were estimated on a subsample of 36 patients. Our estimates were: internal consistency alpha=0.84; SEM(IC)=1.48; Type 2,1 ICC=0.77; SEM(TRT)=1.69. Confirmatory factor analysis failed to support a single factor structure of the pain scale with uncorrelated error terms. Two comparable models provided excellent fit: (1) a model with correlated error terms between the walking and stairs items, and between night and sit items (chi2=0.18, P=0.98); (2) a two factor model with walking and stairs items loading on one factor, night and sit items loading on a second factor, and the standing item loading on both factors (chi2=0.18, P=0.98). Our examination of the factorial structure of the WOMAC pain scale failed to support a single factor and internal consistency analysis yielded a coefficient less than optimal for individual patient use. An alternate strategy to summing the five-item responses when considering individual patient application would be to interpret item responses separately or to sum only those items which display homogeneity.
Software Fault Tolerance: A Tutorial
NASA Technical Reports Server (NTRS)
Torres-Pomales, Wilfredo
2000-01-01
Because of our present inability to produce error-free software, software fault tolerance is and will continue to be an important consideration in software systems. The root cause of software design errors is the complexity of the systems. Compounding the problems in building correct software is the difficulty in assessing the correctness of software for highly complex systems. After a brief overview of the software development processes, we note how hard-to-detect design faults are likely to be introduced during development and how software faults tend to be state-dependent and activated by particular input sequences. Although component reliability is an important quality measure for system level analysis, software reliability is hard to characterize and the use of post-verification reliability estimates remains a controversial issue. For some applications software safety is more important than reliability, and fault tolerance techniques used in those applications are aimed at preventing catastrophes. Single version software fault tolerance techniques discussed include system structuring and closure, atomic actions, inline fault detection, exception handling, and others. Multiversion techniques are based on the assumption that software built differently should fail differently and thus, if one of the redundant versions fails, it is expected that at least one of the other versions will provide an acceptable output. Recovery blocks, N-version programming, and other multiversion techniques are reviewed.
Estimation of stature using lower limb measurements in Sudanese Arabs.
Ahmed, Altayeb Abdalla
2013-07-01
The estimation of stature from body parts is one of the most vital parts of personal identification in medico-legal autopsies, especially when mutilated and amputated limbs or body parts are found. The aim of this study was to assess the reliability and accuracy of using lower limb measurements for stature estimations. The stature, tibial length, bimalleolar breadth, foot length and foot breadth of 160 right-handed Sudanese Arab subjects, 80 men and 80 women (25-30 years old), were measured. The reliability of measurement acquisition was tested prior to the primary data collection. The data were analysed using basic univariate analysis and linear and multiple regression analyses. The results showed acceptable standards of measurement errors and reliability. Sex differences were significant for all of the measurements. There was a positive correlation coefficient between lower-limb dimensions and stature (P-value < 0.01). The best predictors were tibial length and foot length. The stature prediction accuracy ranged from ± 2.75-5.40 cm, which is comparable to the established skeletal standards for the lower limbs. This study provides new forensic standards for stature estimation using the lower limb measurements of Sudanese Arabs. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Astrophysics Data System (ADS)
Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi
2017-02-01
There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.
Statistically Self-Consistent and Accurate Errors for SuperDARN Data
NASA Astrophysics Data System (ADS)
Reimer, A. S.; Hussey, G. C.; McWilliams, K. A.
2018-01-01
The Super Dual Auroral Radar Network (SuperDARN)-fitted data products (e.g., spectral width and velocity) are produced using weighted least squares fitting. We present a new First-Principles Fitting Methodology (FPFM) that utilizes the first-principles approach of Reimer et al. (2016) to estimate the variance of the real and imaginary components of the mean autocorrelation functions (ACFs) lags. SuperDARN ACFs fitted by the FPFM do not use ad hoc or empirical criteria. Currently, the weighting used to fit the ACF lags is derived from ad hoc estimates of the ACF lag variance. Additionally, an overcautious lag filtering criterion is used that sometimes discards data that contains useful information. In low signal-to-noise (SNR) and/or low signal-to-clutter regimes the ad hoc variance and empirical criterion lead to underestimated errors for the fitted parameter because the relative contributions of signal, noise, and clutter to the ACF variance is not taken into consideration. The FPFM variance expressions include contributions of signal, noise, and clutter. The clutter is estimated using the maximal power-based self-clutter estimator derived by Reimer and Hussey (2015). The FPFM was successfully implemented and tested using synthetic ACFs generated with the radar data simulator of Ribeiro, Ponomarenko, et al. (2013). The fitted parameters and the fitted-parameter errors produced by the FPFM are compared with the current SuperDARN fitting software, FITACF. Using self-consistent statistical analysis, the FPFM produces reliable or trustworthy quantitative measures of the errors of the fitted parameters. For an SNR in excess of 3 dB and velocity error below 100 m/s, the FPFM produces 52% more data points than FITACF.
López-Pascual, Juan; Cáceres, Magda Liliana; De Rosario, Helios; Page, Álvaro
2016-02-08
The reliability of joint rotation measurements is an issue of major interest, especially in clinical applications. The effect of instrumental errors and soft tissue artifacts on the variability of human motion measures is well known, but the influence of the representation of joint motion has not yet been studied. The aim of the study was to compare the within-subject reliability of three rotation formalisms for the calculation of the shoulder elevation joint angles. Five repetitions of humeral elevation in the scapular plane of 27 healthy subjects were recorded using a stereophotogrammetry system. The humerothoracic joint angles were calculated using the YX'Y" and XZ'Y" Euler angle sequences and the attitude vector. A within-subject repeatability study was performed for the three representations. ICC, SEM and CV were the indices used to estimate the error in the calculation of the angle amplitudes and the angular waveforms with each method. Excellent results were obtained in all representations for the main angle (elevation), but there were remarkable differences for axial rotation and plane of elevation. The YX'Y" sequence generally had the poorest reliability in the secondary angles. The XZ'Y' sequence proved to be the most reliable representation of axial rotation, whereas the attitude vector had the highest reliability in the plane of elevation. These results highlight the importance of selecting the method used to describe the joint motion when within-subjects reliability is an important issue of the experiment. This may be of particular importance when the secondary angles of motions are being studied. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matos, José P.; Schaefli, Bettina; Schleiss, Anton J.
2017-04-01
Uncertainty affects hydrological modelling efforts from the very measurements (or forecasts) that serve as inputs to the more or less inaccurate predictions that are produced. Uncertainty is truly inescapable in hydrology and yet, due to the theoretical and technical hurdles associated with its quantification, it is at times still neglected or estimated only qualitatively. In recent years the scientific community has made a significant effort towards quantifying this hydrologic prediction uncertainty. Despite this, most of the developed methodologies can be computationally demanding, are complex from a theoretical point of view, require substantial expertise to be employed, and are constrained by a number of assumptions about the model error distribution. These assumptions limit the reliability of many methods in case of errors that show particular cases of non-normality, heteroscedasticity, or autocorrelation. The present contribution builds on a non-parametric data-driven approach that was developed for uncertainty quantification in operational (real-time) forecasting settings. The approach is based on the concept of Pareto optimality and can be used as a standalone forecasting tool or as a postprocessor. By virtue of its non-parametric nature and a general operating principle, it can be applied directly and with ease to predictions of streamflow, water stage, or even accumulated runoff. Also, it is a methodology capable of coping with high heteroscedasticity and seasonal hydrological regimes (e.g. snowmelt and rainfall driven events in the same catchment). Finally, the training and operation of the model are very fast, making it a tool particularly adapted to operational use. To illustrate its practical use, the uncertainty quantification method is coupled with a process-based hydrological model to produce statistically reliable forecasts for an Alpine catchment located in Switzerland. Results are presented and discussed in terms of their reliability and resolution.
Unified Computational Methods for Regression Analysis of Zero-Inflated and Bound-Inflated Data
Yang, Yan; Simpson, Douglas
2010-01-01
Bounded data with excess observations at the boundary are common in many areas of application. Various individual cases of inflated mixture models have been studied in the literature for bound-inflated data, yet the computational methods have been developed separately for each type of model. In this article we use a common framework for computing these models, and expand the range of models for both discrete and semi-continuous data with point inflation at the lower boundary. The quasi-Newton and EM algorithms are adapted and compared for estimation of model parameters. The numerical Hessian and generalized Louis method are investigated as means for computing standard errors after optimization. Correlated data are included in this framework via generalized estimating equations. The estimation of parameters and effectiveness of standard errors are demonstrated through simulation and in the analysis of data from an ultrasound bioeffect study. The unified approach enables reliable computation for a wide class of inflated mixture models and comparison of competing models. PMID:20228950
Two-voice fundamental frequency estimation
NASA Astrophysics Data System (ADS)
de Cheveigné, Alain
2002-05-01
An algorithm is presented that estimates the fundamental frequencies of two concurrent voices or instruments. The algorithm models each voice as a periodic function of time, and jointly estimates both periods by cancellation according to a previously proposed method [de Cheveigné and Kawahara, Speech Commun. 27, 175-185 (1999)]. The new algorithm improves on the old in several respects; it allows an unrestricted search range, effectively avoids harmonic and subharmonic errors, is more accurate (it uses two-dimensional parabolic interpolation), and is computationally less costly. It remains subject to unavoidable errors when periods are in certain simple ratios and the task is inherently ambiguous. The algorithm is evaluated on a small database including speech, singing voice, and instrumental sounds. It can be extended in several ways; to decide the number of voices, to handle amplitude variations, and to estimate more than two voices (at the expense of increased processing cost and decreased reliability). It makes no use of instrument models, learned or otherwise, although it could usefully be combined with such models. [Work supported by the Cognitique programme of the French Ministry of Research and Technology.
Software reliability: Application of a reliability model to requirements error analysis
NASA Technical Reports Server (NTRS)
Logan, J.
1980-01-01
The application of a software reliability model having a well defined correspondence of computer program properties to requirements error analysis is described. Requirements error categories which can be related to program structural elements are identified and their effect on program execution considered. The model is applied to a hypothetical B-5 requirement specification for a program module.
Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.
Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John
2016-01-01
Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and conservation actions are based.
NASA Technical Reports Server (NTRS)
Houston, A. G.; Feiveson, A. H.; Chhikara, R. S.; Hsu, E. M. (Principal Investigator)
1979-01-01
A statistical methodology was developed to check the accuracy of the products of the experimental operations throughout crop growth and to determine whether the procedures are adequate to accomplish the desired accuracy and reliability goals. It has allowed the identification and isolation of key problems in wheat area yield estimation, some of which have been corrected and some of which remain to be resolved. The major unresolved problem in accuracy assessment is that of precisely estimating the bias of the LACIE production estimator. Topics covered include: (1) evaluation techniques; (2) variance and bias estimation for the wheat production estimate; (3) the 90/90 evaluation; (4) comparison of the LACIE estimate with reference standards; and (5) first and second order error source investigations.
Reliable absolute analog code retrieval approach for 3D measurement
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun
2017-11-01
The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.
mBEEF-vdW: Robust fitting of error estimation density functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes
Here, we propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator overmore » the training datasets. Using this estimator, we show that the robust loss function leads to a 10% improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.« less
mBEEF-vdW: Robust fitting of error estimation density functionals
Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; ...
2016-06-15
Here, we propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator overmore » the training datasets. Using this estimator, we show that the robust loss function leads to a 10% improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.« less
Berglund, Lars; Garmo, Hans; Lindbäck, Johan; Svärdsudd, Kurt; Zethelius, Björn
2008-09-30
The least-squares estimator of the slope in a simple linear regression model is biased towards zero when the predictor is measured with random error. A corrected slope may be estimated by adding data from a reliability study, which comprises a subset of subjects from the main study. The precision of this corrected slope depends on the design of the reliability study and estimator choice. Previous work has assumed that the reliability study constitutes a random sample from the main study. A more efficient design is to use subjects with extreme values on their first measurement. Previously, we published a variance formula for the corrected slope, when the correction factor is the slope in the regression of the second measurement on the first. In this paper we show that both designs improve by maximum likelihood estimation (MLE). The precision gain is explained by the inclusion of data from all subjects for estimation of the predictor's variance and by the use of the second measurement for estimation of the covariance between response and predictor. The gain of MLE enhances with stronger true relationship between response and predictor and with lower precision in the predictor measurements. We present a real data example on the relationship between fasting insulin, a surrogate marker, and true insulin sensitivity measured by a gold-standard euglycaemic insulin clamp, and simulations, where the behavior of profile-likelihood-based confidence intervals is examined. MLE was shown to be a robust estimator for non-normal distributions and efficient for small sample situations. Copyright (c) 2008 John Wiley & Sons, Ltd.
Stenneberg, Martijn S; Busstra, Harm; Eskes, Michel; van Trijffel, Emiel; Cattrysse, Erik; Scholten-Peeters, Gwendolijne G M; de Bie, Rob A
2018-04-01
There is a lack of valid, reliable, and feasible instruments for measuring planar active cervical range of motion (aCROM) and associated 3D coupling motions in patients with neck pain. Smartphones have advanced sensors and appear to be suitable for these measurements. To estimate the concurrent validity and interrater reliability of a new iPhone application for assessing planar aCROM and associated 3D coupling motions in patients with neck pain, using an electromagnetic tracking device as a reference test. Cross-sectional study. Two samples of neck pain patients were recruited; 30 patients for the validity study and 26 patients for the reliability study. Validity was estimated using intraclass correlation coefficients (ICCs), and by calculating 95% limits of agreement (LoA). To estimate interrater reliability, ICCs were calculated. Cervical 3D coupling motions were analyzed by calculating the cross-correlation coefficients and ratio between the main motions and coupled motions for both instruments. ICCs for concurrent validity and interrater reliability ranged from 0.90 to 0.99. The width of the 95% LoA ranged from about 5° for right lateral bending to 11° for total rotation. No significant differences were found between both devices for associated coupling motion analysis. The iPhone application appears to be a useful discriminative tool for the measurement of planar aCROM and associated coupling motions in patients with neck pain. It fulfills the need for a valid, reliable, and feasible instrument in clinical practice and research. Therapists and researchers should consider measurement error when interpreting scores. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leach, Julia M; Mancini, Martina; Peterka, Robert J; Hayes, Tamara L; Horak, Fay B
2014-09-29
The Nintendo Wii balance board (WBB) has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation) research domains. Although the WBB has been proposed as an alternative to the "gold standard" laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP) measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP) to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz). Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB's CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway direction. There was no difference in error across the 12 WBB's, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB's CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB's CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 2-6 mm (before calibration) to 0.5-2 mm (after calibration). WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain) CoP sway measures, from -10.5% (before calibration) to -0.05% (after calibration) (percent errors averaged across all sway measures and in both sway directions). In this study, we characterized the WBB's CoP measurement error under controlled, dynamic conditions and implemented a linear calibration procedure for WBB CoP signals that is recommended to reduce CoP measurement error and provide more reliable estimates of time-domain CoP measures. Despite our promising results, additional work is necessary to understand how our findings translate to the clinical and rehabilitation research domains. Once the WBB's CoP measurement error is fully characterized in human postural sway (which differs from our simulated postural sway in both amplitude and frequency content), it may be used to measure CoP displacement in situations where lower accuracy and precision is acceptable.
Leach, Julia M.; Mancini, Martina; Peterka, Robert J.; Hayes, Tamara L.; Horak, Fay B.
2014-01-01
The Nintendo Wii balance board (WBB) has generated significant interest in its application as a postural control measurement device in both the clinical and (basic, clinical, and rehabilitation) research domains. Although the WBB has been proposed as an alternative to the “gold standard” laboratory-grade force plate, additional research is necessary before the WBB can be considered a valid and reliable center of pressure (CoP) measurement device. In this study, we used the WBB and a laboratory-grade AMTI force plate (AFP) to simultaneously measure the CoP displacement of a controlled dynamic load, which has not been done before. A one-dimensional inverted pendulum was displaced at several different displacement angles and load heights to simulate a variety of postural sway amplitudes and frequencies (<1 Hz). Twelve WBBs were tested to address the issue of inter-device variability. There was a significant effect of sway amplitude, frequency, and direction on the WBB's CoP measurement error, with an increase in error as both sway amplitude and frequency increased and a significantly greater error in the mediolateral (ML) (compared to the anteroposterior (AP)) sway direction. There was no difference in error across the 12 WBB's, supporting low inter-device variability. A linear calibration procedure was then implemented to correct the WBB's CoP signals and reduce measurement error. There was a significant effect of calibration on the WBB's CoP signal accuracy, with a significant reduction in CoP measurement error (quantified by root-mean-squared error) from 2–6 mm (before calibration) to 0.5–2 mm (after calibration). WBB-based CoP signal calibration also significantly reduced the percent error in derived (time-domain) CoP sway measures, from −10.5% (before calibration) to −0.05% (after calibration) (percent errors averaged across all sway measures and in both sway directions). In this study, we characterized the WBB's CoP measurement error under controlled, dynamic conditions and implemented a linear calibration procedure for WBB CoP signals that is recommended to reduce CoP measurement error and provide more reliable estimates of time-domain CoP measures. Despite our promising results, additional work is necessary to understand how our findings translate to the clinical and rehabilitation research domains. Once the WBB's CoP measurement error is fully characterized in human postural sway (which differs from our simulated postural sway in both amplitude and frequency content), it may be used to measure CoP displacement in situations where lower accuracy and precision is acceptable. PMID:25268919
Robust sensor fusion of unobtrusively measured heart rate.
Wartzek, Tobias; Brüser, Christoph; Walter, Marian; Leonhardt, Steffen
2014-03-01
Contactless vital sign measurement technologies often have the drawback of severe motion artifacts and periods in which no signal is available. However, using several identical or physically different sensors, redundancy can be used to decrease the error in noncontact heart rate estimation, while increasing the time period during which reliable data are available. In this paper, we show for the first time two major results in case of contactless heart rate measurements deduced from a capacitive ECG and optical pulse signals. First, an artifact detection is an essential preprocessing step to allow a reliable fusion. Second, the robust but computationally efficient median already provides good results; however, using a Bayesian approach, and a short time estimation of the variance, best results in terms of difference to reference heart rate and temporal coverage can be achieved. In this paper, six sensor signals were used and coverage increased from 0-90% to 80-94%, while the difference between the estimated heart rate and the gold standard was less than ±2 BPM.
Soft error evaluation and vulnerability analysis in Xilinx Zynq-7010 system-on chip
NASA Astrophysics Data System (ADS)
Du, Xuecheng; He, Chaohui; Liu, Shuhuan; Zhang, Yao; Li, Yonghong; Xiong, Ceng; Tan, Pengkang
2016-09-01
Radiation-induced soft errors are an increasingly important threat to the reliability of modern electronic systems. In order to evaluate system-on chip's reliability and soft error, the fault tree analysis method was used in this work. The system fault tree was constructed based on Xilinx Zynq-7010 All Programmable SoC. Moreover, the soft error rates of different components in Zynq-7010 SoC were tested by americium-241 alpha radiation source. Furthermore, some parameters that used to evaluate the system's reliability and safety were calculated using Isograph Reliability Workbench 11.0, such as failure rate, unavailability and mean time to failure (MTTF). According to fault tree analysis for system-on chip, the critical blocks and system reliability were evaluated through the qualitative and quantitative analysis.
Human Reliability and the Cost of Doing Business
NASA Technical Reports Server (NTRS)
DeMott, Diana
2014-01-01
Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. JOe; Ronald L. Boring
Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understandmore » from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.« less
Yu, Chanki; Lee, Sang Wook
2016-05-20
We present a reliable and accurate global optimization framework for estimating parameters of isotropic analytical bidirectional reflectance distribution function (BRDF) models. This approach is based on a branch and bound strategy with linear programming and interval analysis. Conventional local optimization is often very inefficient for BRDF estimation since its fitting quality is highly dependent on initial guesses due to the nonlinearity of analytical BRDF models. The algorithm presented in this paper employs L1-norm error minimization to estimate BRDF parameters in a globally optimal way and interval arithmetic to derive our feasibility problem and lower bounding function. Our method is developed for the Cook-Torrance model but with several normal distribution functions such as the Beckmann, Berry, and GGX functions. Experiments have been carried out to validate the presented method using 100 isotropic materials from the MERL BRDF database, and our experimental results demonstrate that the L1-norm minimization provides a more accurate and reliable solution than the L2-norm minimization.
Rong, Xing; Du, Yong; Frey, Eric C
2012-06-21
Quantitative Yttrium-90 ((90)Y) bremsstrahlung single photon emission computed tomography (SPECT) imaging has shown great potential to provide reliable estimates of (90)Y activity distribution for targeted radionuclide therapy dosimetry applications. One factor that potentially affects the reliability of the activity estimates is the choice of the acquisition energy window. In contrast to imaging conventional gamma photon emitters where the acquisition energy windows are usually placed around photopeaks, there has been great variation in the choice of the acquisition energy window for (90)Y imaging due to the continuous and broad energy distribution of the bremsstrahlung photons. In quantitative imaging of conventional gamma photon emitters, previous methods for optimizing the acquisition energy window assumed unbiased estimators and used the variance in the estimates as a figure of merit (FOM). However, for situations, such as (90)Y imaging, where there are errors in the modeling of the image formation process used in the reconstruction there will be bias in the activity estimates. In (90)Y bremsstrahlung imaging this will be especially important due to the high levels of scatter, multiple scatter, and collimator septal penetration and scatter. Thus variance will not be a complete measure of reliability of the estimates and thus is not a complete FOM. To address this, we first aimed to develop a new method to optimize the energy window that accounts for both the bias due to model-mismatch and the variance of the activity estimates. We applied this method to optimize the acquisition energy window for quantitative (90)Y bremsstrahlung SPECT imaging in microsphere brachytherapy. Since absorbed dose is defined as the absorbed energy from the radiation per unit mass of tissues in this new method we proposed a mass-weighted root mean squared error of the volume of interest (VOI) activity estimates as the FOM. To calculate this FOM, two analytical expressions were derived for calculating the bias due to model-mismatch and the variance of the VOI activity estimates, respectively. To obtain the optimal acquisition energy window for general situations of interest in clinical (90)Y microsphere imaging, we generated phantoms with multiple tumors of various sizes and various tumor-to-normal activity concentration ratios using a digital phantom that realistically simulates human anatomy, simulated (90)Y microsphere imaging with a clinical SPECT system and typical imaging parameters using a previously validated Monte Carlo simulation code, and used a previously proposed method for modeling the image degrading effects in quantitative SPECT reconstruction. The obtained optimal acquisition energy window was 100-160 keV. The values of the proposed FOM were much larger than the FOM taking into account only the variance of the activity estimates, thus demonstrating in our experiment that the bias of the activity estimates due to model-mismatch was a more important factor than the variance in terms of limiting the reliability of activity estimates.
Estimation of perspective errors in 2D2C-PIV measurements for 3D concentrated vortices
NASA Astrophysics Data System (ADS)
Ma, Bao-Feng; Jiang, Hong-Gang
2018-06-01
Two-dimensional planar PIV (2D2C) is still extensively employed in flow measurement owing to its availability and reliability, although more advanced PIVs have been developed. It has long been recognized that there exist perspective errors in velocity fields when employing the 2D2C PIV to measure three-dimensional (3D) flows, the magnitude of which depends on out-of-plane velocity and geometric layouts of the PIV. For a variety of vortex flows, however, the results are commonly represented by vorticity fields, instead of velocity fields. The present study indicates that the perspective error in vorticity fields relies on gradients of the out-of-plane velocity along a measurement plane, instead of the out-of-plane velocity itself. More importantly, an estimation approach to the perspective error in 3D vortex measurements was proposed based on a theoretical vortex model and an analysis on physical characteristics of the vortices, in which the gradient of out-of-plane velocity is uniquely determined by the ratio of the maximum out-of-plane velocity to maximum swirling velocity of the vortex; meanwhile, the ratio has upper limits for naturally formed vortices. Therefore, if the ratio is imposed with the upper limits, the perspective error will only rely on the geometric layouts of PIV that are known in practical measurements. Using this approach, the upper limits of perspective errors of a concentrated vortex can be estimated for vorticity and other characteristic quantities of the vortex. In addition, the study indicates that the perspective errors in vortex location, vortex strength, and vortex radius can be all zero for axisymmetric vortices if they are calculated by proper methods. The dynamic mode decomposition on an oscillatory vortex indicates that the perspective errors of each DMD mode are also only dependent on the gradient of out-of-plane velocity if the modes are represented by vorticity.
3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models
Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.
2015-01-01
3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722
Automatic Certification of Kalman Filters for Reliable Code Generation
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd; Schumann, Johann; Richardson, Julian
2005-01-01
AUTOFILTER is a tool for automatically deriving Kalman filter code from high-level declarative specifications of state estimation problems. It can generate code with a range of algorithmic characteristics and for several target platforms. The tool has been designed with reliability of the generated code in mind and is able to automatically certify that the code it generates is free from various error classes. Since documentation is an important part of software assurance, AUTOFILTER can also automatically generate various human-readable documents, containing both design and safety related information. We discuss how these features address software assurance standards such as DO-178B.
Estimating random errors due to shot noise in backscatter lidar observations.
Liu, Zhaoyan; Hunt, William; Vaughan, Mark; Hostetler, Chris; McGill, Matthew; Powell, Kathleen; Winker, David; Hu, Yongxiang
2006-06-20
We discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson- distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root mean square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF, uncertainties can be reliably calculated from or for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations lidar and tested using data from the Lidar In-space Technology Experiment.
Estimating Random Errors Due to Shot Noise in Backscatter Lidar Observations
NASA Technical Reports Server (NTRS)
Liu, Zhaoyan; Hunt, William; Vaughan, Mark A.; Hostetler, Chris A.; McGill, Matthew J.; Powell, Kathy; Winker, David M.; Hu, Yongxiang
2006-01-01
In this paper, we discuss the estimation of random errors due to shot noise in backscatter lidar observations that use either photomultiplier tube (PMT) or avalanche photodiode (APD) detectors. The statistical characteristics of photodetection are reviewed, and photon count distributions of solar background signals and laser backscatter signals are examined using airborne lidar observations at 532 nm using a photon-counting mode APD. Both distributions appear to be Poisson, indicating that the arrival at the photodetector of photons for these signals is a Poisson stochastic process. For Poisson-distributed signals, a proportional, one-to-one relationship is known to exist between the mean of a distribution and its variance. Although the multiplied photocurrent no longer follows a strict Poisson distribution in analog-mode APD and PMT detectors, the proportionality still exists between the mean and the variance of the multiplied photocurrent. We make use of this relationship by introducing the noise scale factor (NSF), which quantifies the constant of proportionality that exists between the root-mean-square of the random noise in a measurement and the square root of the mean signal. Using the NSF to estimate random errors in lidar measurements due to shot noise provides a significant advantage over the conventional error estimation techniques, in that with the NSF uncertainties can be reliably calculated from/for a single data sample. Methods for evaluating the NSF are presented. Algorithms to compute the NSF are developed for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar and tested using data from the Lidar In-space Technology Experiment (LITE). OCIS Codes:
A wireless sensor network based personnel positioning scheme in coal mines with blind areas.
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures.
A Wireless Sensor Network Based Personnel Positioning Scheme in Coal Mines with Blind Areas
Liu, Zhigao; Li, Chunwen; Wu, Danchen; Dai, Wenhan; Geng, Shaobo; Ding, Qingqing
2010-01-01
This paper proposes a novel personnel positioning scheme for a tunnel network with blind areas, which compared with most existing schemes offers both low-cost and high-precision. Based on the data models of tunnel networks, measurement networks and mobile miners, the global positioning method is divided into four steps: (1) calculate the real time personnel location in local areas using a location engine, and send it to the upper computer through the gateway; (2) correct any localization errors resulting from the underground tunnel environmental interference; (3) determine the global three-dimensional position by coordinate transformation; (4) estimate the personnel locations in the blind areas. A prototype system constructed to verify the positioning performance shows that the proposed positioning system has good reliability, scalability, and positioning performance. In particular, the static localization error of the positioning system is less than 2.4 m in the underground tunnel environment and the moving estimation error is below 4.5 m in the corridor environment. The system was operated continuously over three months without any failures. PMID:22163446
The simple procedure for the fluxgate magnetometers calibration
NASA Astrophysics Data System (ADS)
Marusenkov, Andriy
2014-05-01
The fluxgate magnetometers are widely used in geophysics investigations including the geomagnetic field monitoring at the global network of geomagnetic observatories as well as for electromagnetic sounding of the Earth's crust conductivity. For solving these tasks the magnetometers have to be calibrated with an appropriate level of accuracy. As a particular case, the ways to satisfy the recent requirements to the scaling and orientation errors of 1-second INTERNAGNET magnetometers are considered in the work. The goal of the present study was to choose a simple and reliable calibration method for estimation of scale factors and angular errors of the three-axis magnetometers in the field. There are a large number of the scalar calibration methods, which use a free rotation of the sensor in the calibration field followed by complicated data processing procedures for numerical solution of the high-order equations set. The chosen approach also exploits the Earth's magnetic field as a calibrating signal, but, in contrast to other methods, the sensor has to be oriented in some particular positions in respect to the total field vector, instead of the sensor free rotation. This allows to use very simple and straightforward linear computation formulas and, as a result, to achieve more reliable estimations of the calibrated parameters. The estimation of the scale factors is performed by the sequential aligning of each component of the sensor in two positions: parallel and anti-parallel to the Earth's magnetic field vector. The estimation of non-orthogonality angles between each pair of components is performed after sequential aligning of the components at the angles +/- 45 and +/- 135 degrees of arc in respect to the total field vector. Due to such four positions approach the estimations of the non-orthogonality angles are invariant to the zero offsets and non-linearity of transfer functions of the components. The experimental justifying of the proposed method by means of the Coil Calibration system reveals, that the achieved accuracy (<0.04 % for scale factors and 0.03 degrees of arc for angle errors) is sufficient for many applications, particularly for satisfying the INTERMAGNET requirements to 1-second instruments.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
The Foraging Ecology of Royal and Sandwich Terns in North Carolina, USA
McGinnis, T.W.; Emslie, S.D.
2001-01-01
Population sizes of territorial male red-winged blackbirds (Agelaius phoeniceus) were determined with counts of territorial males (area count) and a Petersen-Lincoln Index method for roadsides (roadside estimate). Weather conditions and time of day did not influence either method. Combined roadside estimates had smaller error bounds than the individual transect estimates and were not hindered by the problem of zero recaptures. Roadside estimates were usually one-half as large as the area counts, presumably due to an observer bias for marked birds. The roadside estimate provides only an index of major changes in populations of territorial male redwings. When the roadside estimate is employed, the area count should be used to determine the amount and nature of observer bias. For small population surveys, the area count is probably more reliable and accurate than the roadside estimate.
Determining population size of territorial red-winged blackbirds
Albers, P.H.
1976-01-01
Population sizes of territorial male red-winged blackbirds (Agelaius phoeniceus) were determined with counts of territorial males (area count) and a Petersen-Lincoln Index method for roadsides (roadside estimate). Weather conditions and time of day did not influence either method. Combined roadside estimates had smaller error bounds than the individual transect estimates and were not hindered by the problem of zero recaptures. Roadside estimates were usually one-half as large as the area counts, presumably due to an observer bias for marked birds. The roadside estimate provides only an index of major changes in populations of territorial male redwings. When the roadside estimate is employed, the area count should be used to determine the amount and nature of observer bias. For small population surveys, the area count is probably more reliable and accurate than the roadside estimate.
ERIC Educational Resources Information Center
Onwuegbuzie, Anthony J.; Daniel, Larry G.
The purposes of this paper are to identify common errors made by researchers when dealing with reliability coefficients and to outline best practices for reporting and interpreting reliability coefficients. Common errors that researchers make are: (1) stating that the instruments are reliable; (2) incorrectly interpreting correlation coefficients;…
Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie
2017-08-01
This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Micro CT based truth estimation of nodule volume
NASA Astrophysics Data System (ADS)
Kinnard, L. M.; Gavrielides, M. A.; Myers, K. J.; Zeng, R.; Whiting, B.; Lin-Gibson, S.; Petrick, N.
2010-03-01
With the advent of high-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that there is variability associated with the patient, the software tool and the CT system. A primary goal of our current research efforts is to quantify the various sources of measurement error and, when possible, minimize their effects. In order to assess the bias of an estimate, the actual value, or "truth," must be known. In this work we investigate the reliability of micro CT to determine the "true" volume of synthetic nodules. The advantage of micro CT over other truthing methods is that it can provide both absolute volume and shape information in a single measurement. In the current study we compare micro CT volume truth to weight-density truth for spherical, elliptical, spiculated and lobulated nodules with diameters from 5 to 40 mm, and densities of -630 and +100 HU. The percent differences between micro CT and weight-density volume for -630 HU nodules range from [-21.7%, -0.6%] (mean= -11.9%) and the differences for +100 HU nodules range from [-0.9%, 3.0%] (mean=1.7%).
Turner, T H; Renfroe, J B; Elm, J; Duppstadt-Delambo, A; Hinson, V K
2016-01-01
Ability to identify change is crucial for measuring response to interventions and tracking disease progression. Beyond psychometrics, investigations of Parkinson's disease with mild cognitive impairment (PD-MCI) must consider fluctuating medication, motor, and mental status. One solution is to employ 90% reliable change indices (RCIs) from test manuals to account for account measurement error and practice effects. The current study examined robustness of 90% RCIs for 19 commonly used executive function tests in 14 PD-MCI subjects assigned to the placebo arm of a 10-week randomized controlled trial of atomoxetine in PD-MCI. Using 90% RCIs, the typical participant showed spurious improvement on one measure, and spurious decline on another. Reliability estimates from healthy adults standardization samples and PD-MCI were similar. In contrast to healthy adult samples, practice effects were minimal in this PD-MCI group. Separate 90% RCIs based on the PD-MCI sample did not further reduce error rate. In the present study, application of 90% RCIs based on healthy adults in standardization samples effectively reduced misidentification of change in a sample of PD-MCI. Our findings support continued application of 90% RCIs when using executive function tests to assess change in neurological populations with fluctuating status.
Evaluation of errors in quantitative determination of asbestos in rock
NASA Astrophysics Data System (ADS)
Baietto, Oliviero; Marini, Paola; Vitaliti, Martina
2016-04-01
The quantitative determination of the content of asbestos in rock matrices is a complex operation which is susceptible to important errors. The principal methodologies for the analysis are Scanning Electron Microscopy (SEM) and Phase Contrast Optical Microscopy (PCOM). Despite the PCOM resolution is inferior to that of SEM, PCOM analysis has several advantages, including more representativity of the analyzed sample, more effective recognition of chrysotile and a lower cost. The DIATI LAA internal methodology for the analysis in PCOM is based on a mild grinding of a rock sample, its subdivision in 5-6 grain size classes smaller than 2 mm and a subsequent microscopic analysis of a portion of each class. The PCOM is based on the optical properties of asbestos and of the liquids with note refractive index in which the particles in analysis are immersed. The error evaluation in the analysis of rock samples, contrary to the analysis of airborne filters, cannot be based on a statistical distribution. In fact for airborne filters a binomial distribution (Poisson), which theoretically defines the variation in the count of fibers resulting from the observation of analysis fields, chosen randomly on the filter, can be applied. The analysis in rock matrices instead cannot lean on any statistical distribution because the most important object of the analysis is the size of the of asbestiform fibers and bundles of fibers observed and the resulting relationship between the weights of the fibrous component compared to the one granular. The error evaluation generally provided by public and private institutions varies between 50 and 150 percent, but there are not, however, specific studies that discuss the origin of the error or that link it to the asbestos content. Our work aims to provide a reliable estimation of the error in relation to the applied methodologies and to the total content of asbestos, especially for the values close to the legal limits. The error assessments must be made through the repetition of the same analysis on the same sample to try to estimate the error on the representativeness of the sample and the error related to the sensitivity of the operator, in order to provide a sufficiently reliable uncertainty of the method. We used about 30 natural rock samples with different asbestos content, performing 3 analysis on each sample to obtain a trend sufficiently representative of the percentage. Furthermore we made on one chosen sample 10 repetition of the analysis to try to define more specifically the error of the methodology.
Can Family Planning Service Statistics Be Used to Track Population-Level Outcomes?
Magnani, Robert J; Ross, John; Williamson, Jessica; Weinberger, Michelle
2018-03-21
The need for annual family planning program tracking data under the Family Planning 2020 (FP2020) initiative has contributed to renewed interest in family planning service statistics as a potential data source for annual estimates of the modern contraceptive prevalence rate (mCPR). We sought to assess (1) how well a set of commonly recorded data elements in routine service statistics systems could, with some fairly simple adjustments, track key population-level outcome indicators, and (2) whether some data elements performed better than others. We used data from 22 countries in Africa and Asia to analyze 3 data elements collected from service statistics: (1) number of contraceptive commodities distributed to clients, (2) number of family planning service visits, and (3) number of current contraceptive users. Data quality was assessed via analysis of mean square errors, using the United Nations Population Division World Contraceptive Use annual mCPR estimates as the "gold standard." We also examined the magnitude of several components of measurement error: (1) variance, (2) level bias, and (3) slope (or trend) bias. Our results indicate modest levels of tracking error for data on commodities to clients (7%) and service visits (10%), and somewhat higher error rates for data on current users (19%). Variance and slope bias were relatively small for all data elements. Level bias was by far the largest contributor to tracking error. Paired comparisons of data elements in countries that collected at least 2 of the 3 data elements indicated a modest advantage of data on commodities to clients. None of the data elements considered was sufficiently accurate to be used to produce reliable stand-alone annual estimates of mCPR. However, the relatively low levels of variance and slope bias indicate that trends calculated from these 3 data elements can be productively used in conjunction with the Family Planning Estimation Tool (FPET) currently used to produce annual mCPR tracking estimates for FP2020. © Magnani et al.
Scene-based nonuniformity correction algorithm based on interframe registration.
Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao
2011-06-01
In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared focal plane arrays based on interframe registration. This method estimates the global translation between two adjacent frames and minimizes the mean square error between the two properly registered images to make any two detectors with the same scene produce the same output value. In this way, the accumulation of the registration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detector's gain and offset.
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression.
Henn, Mark-Alexander; Silver, Richard M; Villarrubia, John S; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M; Ming, Bin; Vladár, András E
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ 2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges.
Skin Friction at Very High Reynolds Numbers in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Watson, Ralph D.; Anders, John B.; Hall, Robert M.
2006-01-01
Skin friction coefficients were derived from measurements using standard measurement technologies on an axisymmetric cylinder in the NASA Langley National Transonic Facility (NTF) at Mach numbers from 0.2 to 0.85. The pressure gradient was nominally zero, the wall temperature was nominally adiabatic, and the ratio of boundary layer thickness to model diameter within the measurement region was 0.10 to 0.14, varying with distance along the model. Reynolds numbers based on momentum thicknesses ranged from 37,000 to 605,000. The measurements approximately doubled the range of available data for flat plate skin friction coefficients. Three different techniques were used to measure surface shear. The maximum error of Preston tube measurements was estimated to be 2.5 percent, while that of Clauser derived measurements was estimated to be approximately 5 percent. Direct measurements by skin friction balance proved to be subject to large errors and were not considered reliable.
Incorporating harvest rates into the sex-age-kill model for white-tailed deer
Norton, Andrew S.; Diefenbach, Duane R.; Rosenberry, Christopher S.; Wallingford, Bret D.
2013-01-01
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes.
NASA Astrophysics Data System (ADS)
Panhwar, Sher Khan; Liu, Qun; Khan, Fozia; Siddiqui, Pirzada J. A.
2012-03-01
Using surplus production model packages of ASPIC (a stock-production model incorporating covariates) and CEDA (Catch effort data analysis), we analyzed the catch and effort data of Sillago sihama fishery in Pakistan. ASPIC estimates the parameters of MSY (maximum sustainable yield), F msy (fishing mortality), q (catchability coefficient), K (carrying capacity or unexploited biomass) and B1/K (maximum sustainable yield over initial biomass). The estimated non-bootstrapped value of MSY based on logistic was 598 t and that based on the Fox model was 415 t, which showed that the Fox model estimation was more conservative than that with the logistic model. The R 2 with the logistic model (0.702) is larger than that with the Fox model (0.541), which indicates a better fit. The coefficient of variation (cv) of the estimated MSY was about 0.3, except for a larger value 88.87 and a smaller value of 0.173. In contrast to the ASPIC results, the R 2 with the Fox model (0.651-0.692) was larger than that with the Schaefer model (0.435-0.567), indicating a better fit. The key parameters of CEDA are: MSY, K, q, and r (intrinsic growth), and the three error assumptions in using the models are normal, log normal and gamma. Parameter estimates from the Schaefer and Pella-Tomlinson models were similar. The MSY estimations from the above two models were 398 t, 549 t and 398 t for normal, log-normal and gamma error distributions, respectively. The MSY estimates from the Fox model were 381 t, 366 t and 366 t for the above three error assumptions, respectively. The Fox model estimates were smaller than those for the Schaefer and the Pella-Tomlinson models. In the light of the MSY estimations of 415 t from ASPIC for the Fox model and 381 t from CEDA for the Fox model, MSY for S. sihama is about 400 t. As the catch in 2003 was 401 t, we would suggest the fishery should be kept at the current level. Production models used here depend on the assumption that CPUE (catch per unit effort) data used in the study can reliably quantify temporal variability in population abundance, hence the modeling results would be wrong if such an assumption is not met. Because the reliability of this CPUE data in indexing fish population abundance is unknown, we should be cautious with the interpretation and use of the derived population and management parameters.
Tarescavage, Anthony M; Wygant, Dustin B; Boutacoff, Lana I; Ben-Porath, Yossef S
2013-12-01
In the current study, we examined the reliability, validity, and clinical utility of Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF; Ben-Porath & Tellegen, 2011) scores in a sample of 759 bariatric surgery candidates. We provide descriptives for all scales, internal consistency and standard error of measurement estimates for all substantive scales, external correlates of substantive scales using chart review and self-report criteria, and relative risk ratios to assess the clinical utility of the instrument. Results generally support the reliability, validity, and clinical utility of MMPI-2-RF scale scores in the psychological evaluation of bariatric surgery candidates. Limitations, future directions, and practical application of these results are discussed. (c) 2013 APA, all rights reserved.
Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.
NASA Technical Reports Server (NTRS)
Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.
1973-01-01
Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.
Reliability and coverage analysis of non-repairable fault-tolerant memory systems
NASA Technical Reports Server (NTRS)
Cox, G. W.; Carroll, B. D.
1976-01-01
A method was developed for the construction of probabilistic state-space models for nonrepairable systems. Models were developed for several systems which achieved reliability improvement by means of error-coding, modularized sparing, massive replication and other fault-tolerant techniques. From the models developed, sets of reliability and coverage equations for the systems were developed. Comparative analyses of the systems were performed using these equation sets. In addition, the effects of varying subunit reliabilities on system reliability and coverage were described. The results of these analyses indicated that a significant gain in system reliability may be achieved by use of combinations of modularized sparing, error coding, and software error control. For sufficiently reliable system subunits, this gain may far exceed the reliability gain achieved by use of massive replication techniques, yet result in a considerable saving in system cost.
A Vision System For A Mars Rover
NASA Astrophysics Data System (ADS)
Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.
1987-01-01
A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.
A vision system for a Mars rover
NASA Technical Reports Server (NTRS)
Wilcox, Brian H.; Gennery, Donald B.; Mishkin, Andrew H.; Cooper, Brian K.; Lawton, Teri B.; Lay, N. Keith; Katzmann, Steven P.
1988-01-01
A Mars rover must be able to sense its local environment with sufficient resolution and accuracy to avoid local obstacles and hazards while moving a significant distance each day. Power efficiency and reliability are extremely important considerations, making stereo correlation an attractive method of range sensing compared to laser scanning, if the computational load and correspondence errors can be handled. Techniques for treatment of these problems, including the use of more than two cameras to reduce correspondence errors and possibly to limit the computational burden of stereo processing, have been tested at JPL. Once a reliable range map is obtained, it must be transformed to a plan view and compared to a stored terrain database, in order to refine the estimated position of the rover and to improve the database. The slope and roughness of each terrain region are computed, which form the basis for a traversability map allowing local path planning. Ongoing research and field testing of such a system is described.
Demerath, E W; Guo, S S; Chumlea, W C; Towne, B; Roche, A F; Siervogel, R M
2002-03-01
The purpose of the study was to compare estimates of body density and percentage body fat from air displacement plethysmography (ADP) to those from hydrodensitometry (HD) in adults and children and to provide a review of similar recent studies. Body density and percentage body fat (% BF) were assessed by ADP and HD on the same day in 87 adults aged 18-69 y (41 males and 46 females) and 39 children aged 8-17 y (19 males and 20 females). Differences between measured and predicted thoracic gas volumes determined during the ADP procedure and the resultant effects of those differences on body composition estimates were also compared. In a subset of 50 individuals (31 adults and 19 children), reliability of ADP was measured and the relative ease or difficulty of ADP and HD were probed with a questionnaire. The coefficient of reliability between %BF on day 1 and day 2 was 96.4 in adults and 90.1 in children, and the technical error of measurement of 1.6% in adults and 1.8% in children. Using a predicted rather than a measured thoracic gas volume did not significantly affect percentage body fat estimates in adults, but resulted in overestimates of percentage body fat in children. Mean percentage body fat from ADP was higher than percentage body fat from HD, although this was statistically significant only in adults (29.3 vs 27.7%, P<0.05). The 95% confidence interval of the between-method differences for all subjects was -7 to +9% body fat, and the root mean square error (r.m.s.e.) was approximately 4% body fat. In the subset of individuals who were asked to compare the two methods, 46 out of 50 (92%) indicated that they preferred the ADP to HD. ADP is a reliable method of measuring body composition that subjects found preferable to underwater weighing. However, as shown here and in most other studies, there are differences in percentage body fat estimates assessed by the two methods, perhaps related to body size, age or other factors, that are sufficient to preclude ADP from being used interchangeably with underwater weighing on an individual basis.
ERIC Educational Resources Information Center
Schumacker, Randall E.; Smith, Everett V., Jr.
2007-01-01
Measurement error is a common theme in classical measurement models used in testing and assessment. In classical measurement models, the definition of measurement error and the subsequent reliability coefficients differ on the basis of the test administration design. Internal consistency reliability specifies error due primarily to poor item…
The Trojan Lifetime Champions Health Survey: Development, Validity, and Reliability
Sorenson, Shawn C.; Romano, Russell; Scholefield, Robin M.; Schroeder, E. Todd; Azen, Stanley P.; Salem, George J.
2015-01-01
Context Self-report questionnaires are an important method of evaluating lifespan health, exercise, and health-related quality of life (HRQL) outcomes among elite, competitive athletes. Few instruments, however, have undergone formal characterization of their psychometric properties within this population. Objective To evaluate the validity and reliability of a novel health and exercise questionnaire, the Trojan Lifetime Champions (TLC) Health Survey. Design Descriptive laboratory study. Setting A large National Collegiate Athletic Association Division I university. Patients or Other Participants A total of 63 university alumni (age range, 24 to 84 years), including former varsity collegiate athletes and a control group of nonathletes. Intervention(s) Participants completed the TLC Health Survey twice at a mean interval of 23 days with randomization to the paper or electronic version of the instrument. Main Outcome Measure(s) Content validity, feasibility of administration, test-retest reliability, parallel-form reliability between paper and electronic forms, and estimates of systematic and typical error versus differences of clinical interest were assessed across a broad range of health, exercise, and HRQL measures. Results Correlation coefficients, including intraclass correlation coefficients (ICCs) for continuous variables and κ agreement statistics for ordinal variables, for test-retest reliability averaged 0.86, 0.90, 0.80, and 0.74 for HRQL, lifetime health, recent health, and exercise variables, respectively. Correlation coefficients, again ICCs and κ, for parallel-form reliability (ie, equivalence) between paper and electronic versions averaged 0.90, 0.85, 0.85, and 0.81 for HRQL, lifetime health, recent health, and exercise variables, respectively. Typical measurement error was less than the a priori thresholds of clinical interest, and we found minimal evidence of systematic test-retest error. We found strong evidence of content validity, convergent construct validity with the Short-Form 12 Version 2 HRQL instrument, and feasibility of administration in an elite, competitive athletic population. Conclusions These data suggest that the TLC Health Survey is a valid and reliable instrument for assessing lifetime and recent health, exercise, and HRQL, among elite competitive athletes. Generalizability of the instrument may be enhanced by additional, larger-scale studies in diverse populations. PMID:25611315
Weafer, Jessica; Baggott, Matthew J; de Wit, Harriet
2013-12-01
Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (i.e., delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (i.e., the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (i.e., attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n = 128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r range: .76-.89, ps < .001); impulsive action (r range: .65-.73, ps < .001); and inattention (r range: .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood, as measured by the Profile of Mood States, was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse.
Reliability analysis of the objective structured clinical examination using generalizability theory.
Trejo-Mejía, Juan Andrés; Sánchez-Mendiola, Melchor; Méndez-Ramírez, Ignacio; Martínez-González, Adrián
2016-01-01
The objective structured clinical examination (OSCE) is a widely used method for assessing clinical competence in health sciences education. Studies using this method have shown evidence of validity and reliability. There are no published studies of OSCE reliability measurement with generalizability theory (G-theory) in Latin America. The aims of this study were to assess the reliability of an OSCE in medical students using G-theory and explore its usefulness for quality improvement. An observational cross-sectional study was conducted at National Autonomous University of Mexico (UNAM) Faculty of Medicine in Mexico City. A total of 278 fifth-year medical students were assessed with an 18-station OSCE in a summative end-of-career final examination. There were four exam versions. G-theory with a crossover random effects design was used to identify the main sources of variance. Examiners, standardized patients, and cases were considered as a single facet of analysis. The exam was applied to 278 medical students. The OSCE had a generalizability coefficient of 0.93. The major components of variance were stations, students, and residual error. The sites and the versions of the tests had minimum variance. Our study achieved a G coefficient similar to that found in other reports, which is acceptable for summative tests. G-theory allows the estimation of the magnitude of multiple sources of error and helps decision makers to determine the number of stations, test versions, and examiners needed to obtain reliable measurements.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
Weafer, Jessica; Baggott, Matthew J.; de Wit, Harriet
2014-01-01
Behavioral measures of impulsivity are widely used in substance abuse research, yet relatively little attention has been devoted to establishing their psychometric properties, especially their reliability over repeated administration. The current study examined the test-retest reliability of a battery of standardized behavioral impulsivity tasks, including measures of impulsive choice (delay discounting, probability discounting, and the Balloon Analogue Risk Task), impulsive action (the stop signal task, the go/no-go task, and commission errors on the continuous performance task), and inattention (attention lapses on a simple reaction time task and omission errors on the continuous performance task). Healthy adults (n=128) performed the battery on two separate occasions. Reliability estimates for the individual tasks ranged from moderate to high, with Pearson correlations within the specific impulsivity domains as follows: impulsive choice (r = .76 - .89, ps < .001); impulsive action (r = .65 - .73, ps < .001); and inattention (r = .38-.42, ps < .001). Additionally, the influence of day-to-day fluctuations in mood as measured by the Profile of Mood States was assessed in relation to variability in performance on each of the behavioral tasks. Change in performance on the delay discounting task was significantly associated with change in positive mood and arousal. No other behavioral measures were significantly associated with mood. In sum, the current analysis demonstrates that behavioral measures of impulsivity are reliable measures and thus can be confidently used to assess various facets of impulsivity as intermediate phenotypes for drug abuse. PMID:24099351
Reliability analysis of the objective structured clinical examination using generalizability theory.
Trejo-Mejía, Juan Andrés; Sánchez-Mendiola, Melchor; Méndez-Ramírez, Ignacio; Martínez-González, Adrián
2016-01-01
Background The objective structured clinical examination (OSCE) is a widely used method for assessing clinical competence in health sciences education. Studies using this method have shown evidence of validity and reliability. There are no published studies of OSCE reliability measurement with generalizability theory (G-theory) in Latin America. The aims of this study were to assess the reliability of an OSCE in medical students using G-theory and explore its usefulness for quality improvement. Methods An observational cross-sectional study was conducted at National Autonomous University of Mexico (UNAM) Faculty of Medicine in Mexico City. A total of 278 fifth-year medical students were assessed with an 18-station OSCE in a summative end-of-career final examination. There were four exam versions. G-theory with a crossover random effects design was used to identify the main sources of variance. Examiners, standardized patients, and cases were considered as a single facet of analysis. Results The exam was applied to 278 medical students. The OSCE had a generalizability coefficient of 0.93. The major components of variance were stations, students, and residual error. The sites and the versions of the tests had minimum variance. Conclusions Our study achieved a G coefficient similar to that found in other reports, which is acceptable for summative tests. G-theory allows the estimation of the magnitude of multiple sources of error and helps decision makers to determine the number of stations, test versions, and examiners needed to obtain reliable measurements.
Accessibility limits recall from visual working memory.
Rajsic, Jason; Swan, Garrett; Wilson, Daryl E; Pratt, Jay
2017-09-01
In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response error in these tasks has been largely studied with respect to failures of encoding and maintenance; however, the retrieval operations used in these tasks remain poorly understood. By varying the number and type of object features provided as a cue in a visual delayed-estimation paradigm, we directly assess the nature of retrieval errors in delayed estimation from VWM. Our results demonstrate that providing additional object features in a single cue reliably improves recall, largely by reducing swap, or misbinding, responses. In addition, performance simulations using the binding pool model (Swan & Wyble, 2014) were able to mimic this pattern of performance across a large span of parameter combinations, demonstrating that the binding pool provides a possible mechanism underlying this pattern of results that is not merely a symptom of one particular parametrization. We conclude that accessing visual working memory is a noisy process, and can lead to errors over and above those of encoding and maintenance limitations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Spatial regression test for ensuring temperature data quality in southern Spain
NASA Astrophysics Data System (ADS)
Estévez, J.; Gavilán, P.; García-Marín, A. P.
2018-01-01
Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.
Integrating Solar PV in Utility System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, A.; Botterud, A.; Wu, J.
2013-10-31
This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, andmore » day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.« less
Multiconfiguration calculations of electronic isotope shift factors in Al i
NASA Astrophysics Data System (ADS)
Filippin, Livio; Beerwerth, Randolf; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per
2016-12-01
The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope shift factors.
Reliability of the Cooking Task in adults with acquired brain injury.
Poncet, Frédérique; Swaine, Bonnie; Taillefer, Chantal; Lamoureux, Julie; Pradat-Diehl, Pascale; Chevignard, Mathilde
2015-01-01
Acquired brain injury (ABI) often leads to deficits in executive functioning (EF) responsible for severe and long-standing disabilities in daily life activities. The Cooking Task is an ecological and valid test of EF involving multi-tasking in a real environment. Given its complex scoring system, it is important to establish the tool's reliability. The objective of the study was to examine the reliability of the Cooking Task (internal consistency, inter-rater and test-retest reliability). A total of 160 patients with ABI (113 men, mean age 37 years, SD = 14.3) were tested using the Cooking Task. For test-retest reliability, patients were assessed by the same rater on two occasions (mean interval 11 days) while two raters independently and simultaneously observed and scored patients' performances to estimate inter-rater reliability. Internal consistency was high for the global scale (Cronbach α = .74). Inter-rater reliability (n = 66) for total errors was also high (ICC = .93), however the test-retest reliability (n = 11) was poor (ICC = .36). In general the Cooking Task appears to be a reliable tool. The low test-retest results were expected given the importance of EF in the performance of novel tasks.
MEASUREMENT: ACCOUNTING FOR RELIABILITY IN PERFORMANCE ESTIMATES.
Waterman, Brian; Sutter, Robert; Burroughs, Thomas; Dunagan, W Claiborne
2014-01-01
When evaluating physician performance measures, physician leaders are faced with the quandary of determining whether departures from expected physician performance measurements represent a true signal or random error. This uncertainty impedes the physician leader's ability and confidence to take appropriate performance improvement actions based on physician performance measurements. Incorporating reliability adjustment into physician performance measurement is a valuable way of reducing the impact of random error in the measurements, such as those caused by small sample sizes. Consequently, the physician executive has more confidence that the results represent true performance and is positioned to make better physician performance improvement decisions. Applying reliability adjustment to physician-level performance data is relatively new. As others have noted previously, it's important to keep in mind that reliability adjustment adds significant complexity to the production, interpretation and utilization of results. Furthermore, the methods explored in this case study only scratch the surface of the range of available Bayesian methods that can be used for reliability adjustment; further study is needed to test and compare these methods in practice and to examine important extensions for handling specialty-specific concerns (e.g., average case volumes, which have been shown to be important in cardiac surgery outcomes). Moreover, it's important to note that the provider group average as a basis for shrinkage is one of several possible choices that could be employed in practice and deserves further exploration in future research. With these caveats, our results demonstrate that incorporating reliability adjustment into physician performance measurements is feasible and can notably reduce the incidence of "real" signals relative to what one would expect to see using more traditional approaches. A physician leader who is interested in catalyzing performance improvement through focused, effective physician performance improvement is well advised to consider the value of incorporating reliability adjustments into their performance measurement system.
Morin, Mélanie; Gravel, Denis; Bourbonnais, Daniel; Dumoulin, Chantale; Ouellet, Stéphane
2008-01-01
The passive properties of the pelvic floor muscles (PFM) might play a role in stress urinary incontinence (SUI) pathophysiology. To investigate the test-retest reliability of the dynamometric passive properties of the PFM in postmenopausal SUI women. Thirty-two SUI postmenopausal women were convened to two sessions 2 weeks apart. In each session, the measurements were repeated twice. The pelvic floor musculature was evaluated in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) five lengthening and shortening cycles (Forces and passive elastic stiffness (PES) were evaluated at different vaginal apertures. Hysteresis was also calculated.); (4) Percentage of passive resistance loss after 1 min of sustained stretching was computed. The generalizability theory was used to calculate two reliability estimates, the dependability indices (Phi) and the standard error of measurement (SEM), for one session involving one measurement or the mean of two measurements. Overall, the reliability of the passive properties was good with indices of dependability of 0.75-0.93. The SEMs for forces and PES were 0.24-0.67 N and 0.03-0.10 N/mm, respectively, for mean, maximal and 20-mm apertures, representing an error between 13% and 23%. Passive forces at minimal aperture showed lower reliability (Phi = 0.51-0.57) compared with other vaginal openings. The aperture at a common force of 0.5 N was the only parameter demonstrating a poor reliability (Phi = 0.35). This new approach for assessing PFM passive properties showed enough reliability for highly recommending its inclusion in the PFM assessment of SUI postmenopausal women. (c) 2008 Wiley-Liss, Inc.
LAMOST DR1: Stellar Parameters and Chemical Abundances with SP_Ace
NASA Astrophysics Data System (ADS)
Boeche, C.; Smith, M. C.; Grebel, E. K.; Zhong, J.; Hou, J. L.; Chen, L.; Stello, D.
2018-04-01
We present a new analysis of the LAMOST DR1 survey spectral database performed with the code SP_Ace, which provides the derived stellar parameters {T}{{eff}}, {log}g, [Fe/H], and [α/H] for 1,097,231 stellar objects. We tested the reliability of our results by comparing them to reference results from high spectral resolution surveys. The expected errors can be summarized as ∼120 K in {T}{{eff}}, ∼0.2 in {log}g, ∼0.15 dex in [Fe/H], and ∼0.1 dex in [α/Fe] for spectra with S/N > 40, with some differences between dwarf and giant stars. SP_Ace provides error estimations consistent with the discrepancies observed between derived and reference parameters. Some systematic errors are identified and discussed. The resulting catalog is publicly available at the LAMOST and CDS websites.
Hill, Mary C.
1985-01-01
The purpose of this study was to develop a methodology to be used to investigate the aquifer characteristics and water supply potential of an aquifer system. In particular, the geohydrology of northern Long Valley, New Jersey, was investigated. Geohydrologic data were collected and analyzed to characterize the site. Analysis was accomplished by interpreting the available data and by using a numerical simulation of the watertable aquifer. Special attention was given to the estimation of hydraulic conductivity values and hydraulic conductivity structure which together define the hydraulic conductivity of the modeled aquifer. Hydraulic conductivity and all other aspects of the system were first estimated using the trial-and-error method of calibration. The estimation of hydraulic conductivity was improved using a least squares method to estimate hydraulic conductivity values and by improvements in the parameter structure. These efforts improved the calibration of the model far more than a preceding period of similar effort using the trial-and-error method of calibration. In addition, the proposed method provides statistical information on the reliability of estimated hydraulic conductivity values, calculated heads, and calculated flows. The methodology developed and applied in this work proved to be of substantial value in the evaluation of the aquifer considered.
Dual energy approach for cone beam artifacts correction
NASA Astrophysics Data System (ADS)
Han, Chulhee; Choi, Shinkook; Lee, Changwoo; Baek, Jongduk
2017-03-01
Cone beam computed tomography systems generate 3D volumetric images, which provide further morphological information compared to radiography and tomosynthesis systems. However, reconstructed images by FDK algorithm contain cone beam artifacts when a cone angle is large. To reduce the cone beam artifacts, two-pass algorithm has been proposed. The two-pass algorithm considers the cone beam artifacts are mainly caused by high density materials, and proposes an effective method to estimate error images (i.e., cone beam artifacts images) by the high density materials. While this approach is simple and effective with a small cone angle (i.e., 5 - 7 degree), the correction performance is degraded as the cone angle increases. In this work, we propose a new method to reduce the cone beam artifacts using a dual energy technique. The basic idea of the proposed method is to estimate the error images generated by the high density materials more reliably. To do this, projection data of the high density materials are extracted from dual energy CT projection data using a material decomposition technique, and then reconstructed by iterative reconstruction using total-variation regularization. The reconstructed high density materials are used to estimate the error images from the original FDK images. The performance of the proposed method is compared with the two-pass algorithm using root mean square errors. The results show that the proposed method reduces the cone beam artifacts more effectively, especially with a large cone angle.
Sun, Xiyang; Miao, Jiacheng; Wang, You; Luo, Zhiyuan; Li, Guang
2017-01-01
An estimate on the reliability of prediction in the applications of electronic nose is essential, which has not been paid enough attention. An algorithm framework called conformal prediction is introduced in this work for discriminating different kinds of ginsengs with a home-made electronic nose instrument. Nonconformity measure based on k-nearest neighbors (KNN) is implemented separately as underlying algorithm of conformal prediction. In offline mode, the conformal predictor achieves a classification rate of 84.44% based on 1NN and 80.63% based on 3NN, which is better than that of simple KNN. In addition, it provides an estimate of reliability for each prediction. In online mode, the validity of predictions is guaranteed, which means that the error rate of region predictions never exceeds the significance level set by a user. The potential of this framework for detecting borderline examples and outliers in the application of E-nose is also investigated. The result shows that conformal prediction is a promising framework for the application of electronic nose to make predictions with reliability and validity. PMID:28805721
Foster, J D; Miskovic, D; Allison, A S; Conti, J A; Ockrim, J; Cooper, E J; Hanna, G B; Francis, N K
2016-06-01
Laparoscopic rectal resection is technically challenging, with outcomes dependent upon technical performance. No robust objective assessment tool exists for laparoscopic rectal resection surgery. This study aimed to investigate the application of the objective clinical human reliability analysis (OCHRA) technique for assessing technical performance of laparoscopic rectal surgery and explore the validity and reliability of this technique. Laparoscopic rectal cancer resection operations were described in the format of a hierarchical task analysis. Potential technical errors were defined. The OCHRA technique was used to identify technical errors enacted in videos of twenty consecutive laparoscopic rectal cancer resection operations from a single site. The procedural task, spatial location, and circumstances of all identified errors were logged. Clinical validity was assessed through correlation with clinical outcomes; reliability was assessed by test-retest. A total of 335 execution errors identified, with a median 15 per operation. More errors were observed during pelvic tasks compared with abdominal tasks (p < 0.001). Within the pelvis, more errors were observed during dissection on the right side than the left (p = 0.03). Test-retest confirmed reliability (r = 0.97, p < 0.001). A significant correlation was observed between error frequency and mesorectal specimen quality (r s = 0.52, p = 0.02) and with blood loss (r s = 0.609, p = 0.004). OCHRA offers a valid and reliable method for evaluating technical performance of laparoscopic rectal surgery.
Baumgart, Christian; Polglaze, Ted; Freiwald, Jürgen
2018-01-01
This study aimed to investigate the validity and reliability of global (GPS) and local (LPS) positioning systems for measuring distances covered and sprint mechanical properties in team sports. Here, we evaluated two recently released 18 Hz GPS and 20 Hz LPS technologies together with one established 10 Hz GPS technology. Six male athletes (age: 27±2 years; VO2max: 48.8±4.7 ml/min/kg) performed outdoors on 10 trials of a team sport-specific circuit that was equipped with double-light timing gates. The circuit included various walking, jogging, and sprinting sections that were performed either in straight-lines or with changes of direction. During the circuit, athletes wore two devices of each positioning system. From the reported and filtered velocity data, the distances covered and sprint mechanical properties (i.e., the theoretical maximal horizontal velocity, force, and power output) were computed. The sprint mechanical properties were modeled via an inverse dynamic approach applied to the center of mass. The validity was determined by comparing the measured and criterion data via the typical error of estimate (TEE), whereas the reliability was examined by comparing the two devices of each technology (i.e., the between-device reliability) via the coefficient of variation (CV). Outliers due to measurement errors were statistically identified and excluded from validity and reliability analyses. The 18 Hz GPS showed better validity and reliability for determining the distances covered (TEE: 1.6–8.0%; CV: 1.1–5.1%) and sprint mechanical properties (TEE: 4.5–14.3%; CV: 3.1–7.5%) than the 10 Hz GPS (TEE: 3.0–12.9%; CV: 2.5–13.0% and TEE: 4.1–23.1%; CV: 3.3–20.0%). However, the 20 Hz LPS demonstrated superior validity and reliability overall (TEE: 1.0–6.0%; CV: 0.7–5.0% and TEE: 2.1–9.2%; CV: 1.6–7.3%). For the 10 Hz GPS, 18 Hz GPS, and 20 Hz LPS, the relative loss of data sets due to measurement errors was 10.0%, 20.0%, and 15.8%, respectively. This study shows that 18 Hz GPS has enhanced validity and reliability for determining movement patterns in team sports compared to 10 Hz GPS, whereas 20 Hz LPS had superior validity and reliability overall. However, compared to 10 Hz GPS, 18 Hz GPS and 20 Hz LPS technologies had more outliers due to measurement errors, which limits their practical applications at this time. PMID:29420620
Implementing the undergraduate mini-CEX: a tailored approach at Southampton University.
Hill, Faith; Kendall, Kathleen; Galbraith, Kevin; Crossley, Jim
2009-04-01
The mini-clinical evaluation exercise (mini-CEX) is widely used in the UK to assess clinical competence, but there is little evidence regarding its implementation in the undergraduate setting. This study aimed to estimate the validity and reliability of the undergraduate mini-CEX and discuss the challenges involved in its implementation. A total of 3499 mini-CEX forms were completed. Validity was assessed by estimating associations between mini-CEX score and a number of external variables, examining the internal structure of the instrument, checking competency domain response rates and profiles against expectations, and by qualitative evaluation of stakeholder interviews. Reliability was evaluated by overall reliability coefficient (R), estimation of the standard error of measurement (SEM), and from stakeholders' perceptions. Variance component analysis examined the contribution of relevant factors to students' scores. Validity was threatened by various confounding variables, including: examiner status; case complexity; attachment specialty; patient gender, and case focus. Factor analysis suggested that competency domains reflect a single latent variable. Maximum reliability can be achieved by aggregating scores over 15 encounters (R = 0.73; 95% confidence interval [CI] +/- 0.28 based on a 6-point assessment scale). Examiner stringency contributed 29% of score variation and student attachment aptitude 13%. Stakeholder interviews revealed staff development needs but the majority perceived the mini-CEX as more reliable and valid than the previous long case. The mini-CEX has good overall utility for assessing aspects of the clinical encounter in an undergraduate setting. Strengths include fidelity, wide sampling, perceived validity, and formative observation and feedback. Reliability is limited by variable examiner stringency, and validity by confounding variables, but these should be viewed within the context of overall assessment strategies.
Validity and reliability of Optojump photoelectric cells for estimating vertical jump height.
Glatthorn, Julia F; Gouge, Sylvain; Nussbaumer, Silvio; Stauffacher, Simone; Impellizzeri, Franco M; Maffiuletti, Nicola A
2011-02-01
Vertical jump is one of the most prevalent acts performed in several sport activities. It is therefore important to ensure that the measurements of vertical jump height made as a part of research or athlete support work have adequate validity and reliability. The aim of this study was to evaluate concurrent validity and reliability of the Optojump photocell system (Microgate, Bolzano, Italy) with force plate measurements for estimating vertical jump height. Twenty subjects were asked to perform maximal squat jumps and countermovement jumps, and flight time-derived jump heights obtained by the force plate were compared with those provided by Optojump, to examine its concurrent (criterion-related) validity (study 1). Twenty other subjects completed the same jump series on 2 different occasions (separated by 1 week), and jump heights of session 1 were compared with session 2, to investigate test-retest reliability of the Optojump system (study 2). Intraclass correlation coefficients (ICCs) for validity were very high (0.997-0.998), even if a systematic difference was consistently observed between force plate and Optojump (-1.06 cm; p < 0.001). Test-retest reliability of the Optojump system was excellent, with ICCs ranging from 0.982 to 0.989, low coefficients of variation (2.7%), and low random errors (±2.81 cm). The Optojump photocell system demonstrated strong concurrent validity and excellent test-retest reliability for the estimation of vertical jump height. We propose the following equation that allows force plate and Optojump results to be used interchangeably: force plate jump height (cm) = 1.02 × Optojump jump height + 0.29. In conclusion, the use of Optojump photoelectric cells is legitimate for field-based assessments of vertical jump height.
NASA Astrophysics Data System (ADS)
Gourdji, S.; Yadav, V.; Karion, A.; Mueller, K. L.; Kort, E. A.; Conley, S.; Ryerson, T. B.; Nehrkorn, T.
2017-12-01
The ability of atmospheric inverse models to detect, spatially locate and quantify emissions from large point sources in urban domains needs improvement before inversions can be used reliably as carbon monitoring tools. In this study, we use the Aliso Canyon natural gas leak from October 2015 to February 2016 (near Los Angeles, CA) as a natural tracer experiment to assess inversion quality by comparison with published estimates of leak rates calculated using a mass balance approach (Conley et al., 2016). Fourteen dedicated flights were flown in horizontal transects downwind and throughout the duration of the leak to sample CH4 mole fractions and collect meteorological information for use in the mass-balance estimates. The same CH4 observational data were then used here in geostatistical inverse models with no prior assumptions about the leak location or emission rate and flux sensitivity matrices generated using the WRF-STILT atmospheric transport model. Transport model errors were assessed by comparing WRF-STILT wind speeds, wind direction and planetary boundary layer (PBL) height to those observed on the plane; the impact of these errors in the inversions, and the optimal inversion setup for reducing their influence was also explored. WRF-STILT provides a reasonable simulation of true atmospheric conditions on most flight dates, given the complex terrain and known difficulties in simulating atmospheric transport under such conditions. Moreover, even large (>120°) errors in wind direction were found to be tolerable in terms of spatially locating the leak rate within a 5-km radius of the actual site. Errors in the WRF-STILT wind speed (>50%) and PBL height have more negative impacts on the inversions, with too high wind speeds (typically corresponding with too low PBL heights) resulting in overestimated leak rates, and vice-versa. Coarser data averaging intervals and the use of observed wind speed errors in the model-data mismatch covariance matrix are shown to help reduce the influence of transport model errors, by averaging out compensating errors and de-weighting the influence of problematic observations. This study helps to enable the integration of aircraft measurements with other tower-based data in larger inverse models that can reliably detect, locate and quantify point source emissions in urban areas.
NASA Astrophysics Data System (ADS)
Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng; Chao, Yi
1999-11-01
The feasibility of assimilating satellite altimetry data into a global ocean general circulation model is studied. Three years of TOPEX/Poseidon data are analyzed using a global, three-dimensional, nonlinear primitive equation model. The assimilation's success is examined by analyzing its consistency and reliability measured by formal error estimates with respect to independent measurements. Improvements in model solution are demonstrated, in particular, properties not directly measured. Comparisons are performed with sea level measured by tide gauges, subsurface temperatures and currents from moorings, and bottom pressure measurements. Model representation errors dictate what can and cannot be resolved by assimilation, and its identification is emphasized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, H; Chen, Z; Nath, R
Purpose: kV fluoroscopic imaging combined with MV treatment beam imaging has been investigated for intrafractional motion monitoring and correction. It is, however, subject to additional kV imaging dose to normal tissue. To balance tracking accuracy and imaging dose, we previously proposed an adaptive imaging strategy to dynamically decide future imaging type and moments based on motion tracking uncertainty. kV imaging may be used continuously for maximal accuracy or only when the position uncertainty (probability of out of threshold) is high if a preset imaging dose limit is considered. In this work, we propose more accurate methods to estimate tracking uncertaintymore » through analyzing acquired data in real-time. Methods: We simulated motion tracking process based on a previously developed imaging framework (MV + initial seconds of kV imaging) using real-time breathing data from 42 patients. Motion tracking errors for each time point were collected together with the time point’s corresponding features, such as tumor motion speed and 2D tracking error of previous time points, etc. We tested three methods for error uncertainty estimation based on the features: conditional probability distribution, logistic regression modeling, and support vector machine (SVM) classification to detect errors exceeding a threshold. Results: For conditional probability distribution, polynomial regressions on three features (previous tracking error, prediction quality, and cosine of the angle between the trajectory and the treatment beam) showed strong correlation with the variation (uncertainty) of the mean 3D tracking error and its standard deviation: R-square = 0.94 and 0.90, respectively. The logistic regression and SVM classification successfully identified about 95% of tracking errors exceeding 2.5mm threshold. Conclusion: The proposed methods can reliably estimate the motion tracking uncertainty in real-time, which can be used to guide adaptive additional imaging to confirm the tumor is within the margin or initialize motion compensation if it is out of the margin.« less
mBEEF-vdW: Robust fitting of error estimation density functionals
NASA Astrophysics Data System (ADS)
Lundgaard, Keld T.; Wellendorff, Jess; Voss, Johannes; Jacobsen, Karsten W.; Bligaard, Thomas
2016-06-01
We propose a general-purpose semilocal/nonlocal exchange-correlation functional approximation, named mBEEF-vdW. The exchange is a meta generalized gradient approximation, and the correlation is a semilocal and nonlocal mixture, with the Rutgers-Chalmers approximation for van der Waals (vdW) forces. The functional is fitted within the Bayesian error estimation functional (BEEF) framework [J. Wellendorff et al., Phys. Rev. B 85, 235149 (2012), 10.1103/PhysRevB.85.235149; J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014), 10.1063/1.4870397]. We improve the previously used fitting procedures by introducing a robust MM-estimator based loss function, reducing the sensitivity to outliers in the datasets. To more reliably determine the optimal model complexity, we furthermore introduce a generalization of the bootstrap 0.632 estimator with hierarchical bootstrap sampling and geometric mean estimator over the training datasets. Using this estimator, we show that the robust loss function leads to a 10 % improvement in the estimated prediction error over the previously used least-squares loss function. The mBEEF-vdW functional is benchmarked against popular density functional approximations over a wide range of datasets relevant for heterogeneous catalysis, including datasets that were not used for its training. Overall, we find that mBEEF-vdW has a higher general accuracy than competing popular functionals, and it is one of the best performing functionals on chemisorption systems, surface energies, lattice constants, and dispersion. We also show the potential-energy curve of graphene on the nickel(111) surface, where mBEEF-vdW matches the experimental binding length. mBEEF-vdW is currently available in gpaw and other density functional theory codes through Libxc, version 3.0.0.
McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.
2010-01-01
The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.
Cuba: Multidimensional numerical integration library
NASA Astrophysics Data System (ADS)
Hahn, Thomas
2016-08-01
The Cuba library offers four independent routines for multidimensional numerical integration: Vegas, Suave, Divonne, and Cuhre. The four algorithms work by very different methods, and can integrate vector integrands and have very similar Fortran, C/C++, and Mathematica interfaces. Their invocation is very similar, making it easy to cross-check by substituting one method by another. For further safeguarding, the output is supplemented by a chi-square probability which quantifies the reliability of the error estimate.
Culture Representation in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Gertman; Julie Marble; Steven Novack
Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991)more » cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.« less
Multi-Site λ-dynamics for simulated Structure-Activity Relationship studies
Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
Multi-Site λ-dynamics (MSλD) is a new free energy simulation method that is based on λ-dynamics. It has been developed to enable multiple substituents at multiple sites on a common ligand core to be modeled simultaneously and their free energies assessed. The efficacy of MSλD for estimating relative hydration free energies and relative binding affinties is demonstrated using three test systems. Model compounds representing multiple identical benzene, dihydroxybenzene and dimethoxybenzene molecules show total combined MSλD trajectory lengths of ~1.5 ns are sufficient to reliably achieve relative hydration free energy estimates within 0.2 kcal/mol and are less sensitive to the number of trajectories that are used to generate these estimates for hybrid ligands that contain up to ten substituents modeled at a single site or five substituents modeled at each of two sites. Relative hydration free energies among six benzene derivatives calculated from MSλD simulations are in very good agreement with those from alchemical free energy simulations (with average unsigned differences of 0.23 kcal/mol and R2=0.991) and experiment (with average unsigned errors of 1.8 kcal/mol and R2=0.959). Estimates of the relative binding affinities among 14 inhibitors of HIV-1 reverse transcriptase obtained from MSλD simulations are in reasonable agreement with those from traditional free energy simulations and experiment (average unsigned errors of 0.9 kcal/mol and R2=0.402). For the same level of accuracy and precision MSλD simulations are achieved ~20–50 times faster than traditional free energy simulations and thus with reliable force field parameters can be used effectively to screen tens to hundreds of compounds in structure-based drug design applications. PMID:22125476
NASA Astrophysics Data System (ADS)
Lange, Benjamin A.; Katlein, Christian; Nicolaus, Marcel; Peeken, Ilka; Flores, Hauke
2016-12-01
Multiscale sea ice algae observations are fundamentally important for projecting changes to sea ice ecosystems, as the physical environment continues to change. In this study, we developed upon previously established methodologies for deriving sea ice-algal chlorophyll a concentrations (chl a) from spectral radiation measurements, and applied these to larger-scale spectral surveys. We conducted four different under-ice spectral measurements: irradiance, radiance, transmittance, and transflectance, and applied three statistical approaches: Empirical Orthogonal Functions (EOF), Normalized Difference Indices (NDI), and multi-NDI. We developed models based on ice core chl a and coincident spectral irradiance/transmittance (N = 49) and radiance/transflectance (N = 50) measurements conducted during two cruises to the central Arctic Ocean in 2011 and 2012. These reference models were ranked based on two criteria: mean robustness R2 and true prediction error estimates. For estimating the biomass of a large-scale data set, the EOF approach performed better than the NDI, due to its ability to account for the high variability of environmental properties experienced over large areas. Based on robustness and true prediction error, the three most reliable models, EOF-transmittance, EOF-transflectance, and NDI-transmittance, were applied to two remotely operated vehicle (ROV) and two Surface and Under-Ice Trawl (SUIT) spectral radiation surveys. In these larger-scale chl a estimates, EOF-transmittance showed the best fit to ice core chl a. Application of our most reliable model, EOF-transmittance, to an 85 m horizontal ROV transect revealed large differences compared to published biomass estimates from the same site with important implications for projections of Arctic-wide ice-algal biomass and primary production.
Mandava, Pitchaiah; Krumpelman, Chase S; Shah, Jharna N; White, Donna L; Kent, Thomas A
2013-01-01
Clinical trial outcomes often involve an ordinal scale of subjective functional assessments but the optimal way to quantify results is not clear. In stroke, the most commonly used scale, the modified Rankin Score (mRS), a range of scores ("Shift") is proposed as superior to dichotomization because of greater information transfer. The influence of known uncertainties in mRS assessment has not been quantified. We hypothesized that errors caused by uncertainties could be quantified by applying information theory. Using Shannon's model, we quantified errors of the "Shift" compared to dichotomized outcomes using published distributions of mRS uncertainties and applied this model to clinical trials. We identified 35 randomized stroke trials that met inclusion criteria. Each trial's mRS distribution was multiplied with the noise distribution from published mRS inter-rater variability to generate an error percentage for "shift" and dichotomized cut-points. For the SAINT I neuroprotectant trial, considered positive by "shift" mRS while the larger follow-up SAINT II trial was negative, we recalculated sample size required if classification uncertainty was taken into account. Considering the full mRS range, error rate was 26.1%±5.31 (Mean±SD). Error rates were lower for all dichotomizations tested using cut-points (e.g. mRS 1; 6.8%±2.89; overall p<0.001). Taking errors into account, SAINT I would have required 24% more subjects than were randomized. We show when uncertainty in assessments is considered, the lowest error rates are with dichotomization. While using the full range of mRS is conceptually appealing, a gain of information is counter-balanced by a decrease in reliability. The resultant errors need to be considered since sample size may otherwise be underestimated. In principle, we have outlined an approach to error estimation for any condition in which there are uncertainties in outcome assessment. We provide the user with programs to calculate and incorporate errors into sample size estimation.
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Yuanshui, E-mail: yuanshui.zheng@okc.procure.com; Johnson, Randall; Larson, Gary
Purpose: Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. Methods: The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authorsmore » estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. Results: In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. Conclusions: The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.« less
Minimizing treatment planning errors in proton therapy using failure mode and effects analysis.
Zheng, Yuanshui; Johnson, Randall; Larson, Gary
2016-06-01
Failure mode and effects analysis (FMEA) is a widely used tool to evaluate safety or reliability in conventional photon radiation therapy. However, reports about FMEA application in proton therapy are scarce. The purpose of this study is to apply FMEA in safety improvement of proton treatment planning at their center. The authors performed an FMEA analysis of their proton therapy treatment planning process using uniform scanning proton beams. The authors identified possible failure modes in various planning processes, including image fusion, contouring, beam arrangement, dose calculation, plan export, documents, billing, and so on. For each error, the authors estimated the frequency of occurrence, the likelihood of being undetected, and the severity of the error if it went undetected and calculated the risk priority number (RPN). The FMEA results were used to design their quality management program. In addition, the authors created a database to track the identified dosimetric errors. Periodically, the authors reevaluated the risk of errors by reviewing the internal error database and improved their quality assurance program as needed. In total, the authors identified over 36 possible treatment planning related failure modes and estimated the associated occurrence, detectability, and severity to calculate the overall risk priority number. Based on the FMEA, the authors implemented various safety improvement procedures into their practice, such as education, peer review, and automatic check tools. The ongoing error tracking database provided realistic data on the frequency of occurrence with which to reevaluate the RPNs for various failure modes. The FMEA technique provides a systematic method for identifying and evaluating potential errors in proton treatment planning before they result in an error in patient dose delivery. The application of FMEA framework and the implementation of an ongoing error tracking system at their clinic have proven to be useful in error reduction in proton treatment planning, thus improving the effectiveness and safety of proton therapy.
Wang, Yao; Jing, Lei; Ke, Hong-Liang; Hao, Jian; Gao, Qun; Wang, Xiao-Xun; Sun, Qiang; Xu, Zhi-Jun
2016-09-20
The accelerated aging tests under electric stress for one type of LED lamp are conducted, and the differences between online and offline tests of the degradation of luminous flux are studied in this paper. The transformation of the two test modes is achieved with an adjustable AC voltage stabilized power source. Experimental results show that the exponential fitting of the luminous flux degradation in online tests possesses a higher fitting degree for most lamps, and the degradation rate of the luminous flux by online tests is always lower than that by offline tests. Bayes estimation and Weibull distribution are used to calculate the failure probabilities under the accelerated voltages, and then the reliability of the lamps under rated voltage of 220 V is estimated by use of the inverse power law model. Results show that the relative error of the lifetime estimation by offline tests increases as the failure probability decreases, and it cannot be neglected when the failure probability is less than 1%. The relative errors of lifetime estimation are 7.9%, 5.8%, 4.2%, and 3.5%, at the failure probabilities of 0.1%, 1%, 5%, and 10%, respectively.
Kumar, Praveen; Cruziah, Reynold; Bradley, Michael; Gray, Selena; Swinkels, Annette
2016-06-01
Glenohumeral subluxation (GHS) is reported in up to 81% of patients with stroke. Ultrasonographic measurements of GHS by measuring the acromion-greater tuberosity (AGT) have been found to be reliable for experienced raters. The primary aim was to assess the intra-rater reliability of measurements of AGT distance in people with stroke following a short course of rater training. A secondary aim was to compare the inter-rater reliability of these measurements between novice and experienced raters. Patients with stroke (n = 16; 5 men, 11 women; 74 ± 10 years) with 1-sided weakness who gave informed consent were recruited. Ultrasonographic measurements were recorded at the bedside by two physiotherapists with patients seated upright in a hospital chair. Reliability was assessed by intra-class correlation coefficients (ICCs) and the standard error of measurements (SEM). Minimum detectable change (MDC90) scores were used to estimate the magnitude of change that is likely to exceed measurement error. Mean ± SD AGT distances on the affected and unaffected sides for rater 1 were 2.2 ± 0.7 and 1.7 ± 0.4 cm, respectively. Corresponding values for rater 2 were 2.5 ± 0.6 and 2.0 ± 0.4 cm. Intra-class correlation coefficient values for the affected and unaffected shoulders for rater 1 were 0.96 and 0.91, respectively. Corresponding values for rater 2 were 0.95 and 0.90.SEM and MDC90 for both affected and unaffected shoulders were ≤ 0.2 cm. Inter-rater reliability coefficients were 0.86 (affected) and 0.76 (unaffected) shoulders. Ultrasonographic measurement of AGT distance demonstrates excellent intra-rater reliability for a novice rater. Inter-rater reliability of ultrasonographic measurement of AGT also demonstrates good reliability between novice and experienced raters.
Hu, Zhi-Jun; He, Jian; Zhao, Feng-Dong; Fang, Xiang-Qian; Zhou, Li-Na; Fan, Shun-Wu
2011-06-01
A reliability study was conducted. To estimate the intra- and intermeasurement errors in the measurements of functional cross-sectional area (FCSA), density, and T2 signal intensity of paraspinal muscles using computed tomography (CT) scan and magnetic resonance imaging (MRI). CT scan and MRI had been used widely to measure the cross-sectional area and degeneration of the back muscles in spine and muscle research. But there is still no systemic study to analyze the reliability of these measurements. This study measured the FCSA and fatty infiltration (density on CT scan and T2 signal intensity on MRI) of the paraspinal muscles at L3-L4, L4-L5, and L5-S1 in 29 patients with chronic low back pain. Two experienced musculoskeletal radiologists and one superior spine surgeon traced the region of interest twice within 3 weeks for measurement of the intra- and interobserver reliability. The intraclass correlation coefficients (ICCs) of the intra-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. The ICCs of the inter-reliability ranged from fair to excellent for FCSA, and good to excellent for fatty infiltration. There were no significant differences between CT scan and MRI in reliability results, except in the relative standard error of fatty infiltration measurement. The ICCs of the FCSA measurement between CT scan and MRI ranged from poor to good. The reliabilities of the CT scan and MRI for measuring the FCSA and fatty infiltration of the atrophied lumbar paraspinal muscles were acceptable. It was reliable for using uniform one image method for a single paraspinal muscle evaluation study. And the authors preferred to advise the MRI other than CT scan for paraspinal muscles measurements of FCSA and fatty infiltration.
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
Complete Bouguer gravity map of the Medicine Lake Quadrangle, California
Finn, C.
1981-01-01
A mathematical technique, called kriging, was programmed for a computer to interpolate hydrologic data based on a network of measured values in west-central Kansas. The computer program generated estimated values at the center of each 1-mile section in the Western Kansas Groundwater Management District No. 1 and facilitated contouring of selected values that are needed in the effective management of ground water for irrigation. The kriging technique produced objective and reproducible maps that illustrated hydrologic conditions in the Ogallala aquifer, the principal source of water in west-central Kansas. Maps of the aquifer, which use a 3-year average, included the 1978-80 water-table altitudes, which ranged from about 2,580 to 3,720 feet; the 1978-80 saturated thicknesses, which ranged from about 0 to 250 feet; and the percentage changes in saturated thickness from 1950 to 1978-80, which ranged from about a 50-percent increase to a 100-percent decrease. A map showing errors of estimate also was provided as a measure of reliability for the 1978-80 water-table altitudes. Errors of estimate ranged from 2 to 24 feet. (USGS)
Performance of IUCN proxies for generation length.
Fung, Han Chi; Waples, Robin S
2017-08-01
One of the criteria used by the International Union for Conservation of Nature (IUCN) to assess threat status is the rate of decline in abundance over 3 generations or 10 years, whichever is longer. The traditional method for calculating generation length (T) uses age-specific survival and fecundity, but these data are rarely available. Consequently, proxies that require less information are often used, which introduces potential biases. The IUCN recommends 2 proxies based on adult mortality rate, T̂d = α + 1/d, and reproductive life span, T̂z = α + z * RL, where α is age at first reproduction, d is adult mortality rate, RL is reproductive life span, and z is a coefficient derived from data for comparable species. We used published life tables for 78 animal and plant populations to evaluate precision and bias of these proxies by comparing T̂d and T̂z with true generation length. Mean error rates in estimating T were 31% for T̂d and 20% for T̂z, but error rates for T̂d were 16% when we subtracted 1 year ( T̂d( adj )=T̂d-1 ), as suggested by theory; T̂d( adj ) also provided largely unbiased estimates regardless of the true generation length. Performance of T̂z depends on compilation of detailed data for comparable species, but our results suggest taxonomy is not a reliable indicator of comparability. All 3 proxies depend heavily on a reliable estimate of age at first reproduction, as we illustrated with 2 test species. The relatively large mean errors for all proxies emphasized the importance of collecting the detailed life-history information necessary to calculate true generation length. Unfortunately, publication of such data is less common than it was decades ago. We identified generic patterns of age-specific change in vital rates that can be used to predict expected patterns of bias from applying T̂d( adj ). Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Heredia, Guillermo; Caballero, Fernando; Maza, Iván; Merino, Luis; Viguria, Antidio; Ollero, Aníbal
2009-01-01
This paper presents a method to increase the reliability of Unmanned Aerial Vehicle (UAV) sensor Fault Detection and Identification (FDI) in a multi-UAV context. Differential Global Positioning System (DGPS) and inertial sensors are used for sensor FDI in each UAV. The method uses additional position estimations that augment individual UAV FDI system. These additional estimations are obtained using images from the same planar scene taken from two different UAVs. Since accuracy and noise level of the estimation depends on several factors, dynamic replanning of the multi-UAV team can be used to obtain a better estimation in case of faults caused by slow growing errors of absolute position estimation that cannot be detected by using local FDI in the UAVs. Experimental results with data from two real UAVs are also presented.
NASA Astrophysics Data System (ADS)
Wani, Omar; Beckers, Joost V. L.; Weerts, Albrecht H.; Solomatine, Dimitri P.
2017-08-01
A non-parametric method is applied to quantify residual uncertainty in hydrologic streamflow forecasting. This method acts as a post-processor on deterministic model forecasts and generates a residual uncertainty distribution. Based on instance-based learning, it uses a k nearest-neighbour search for similar historical hydrometeorological conditions to determine uncertainty intervals from a set of historical errors, i.e. discrepancies between past forecast and observation. The performance of this method is assessed using test cases of hydrologic forecasting in two UK rivers: the Severn and Brue. Forecasts in retrospect were made and their uncertainties were estimated using kNN resampling and two alternative uncertainty estimators: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Results show that kNN uncertainty estimation produces accurate and narrow uncertainty intervals with good probability coverage. Analysis also shows that the performance of this technique depends on the choice of search space. Nevertheless, the accuracy and reliability of uncertainty intervals generated using kNN resampling are at least comparable to those produced by QR and UNEEC. It is concluded that kNN uncertainty estimation is an interesting alternative to other post-processors, like QR and UNEEC, for estimating forecast uncertainty. Apart from its concept being simple and well understood, an advantage of this method is that it is relatively easy to implement.
Chen, Mingshi; Senay, Gabriel B.; Singh, Ramesh K.; Verdin, James P.
2016-01-01
Evapotranspiration (ET) is an important component of the water cycle – ET from the land surface returns approximately 60% of the global precipitation back to the atmosphere. ET also plays an important role in energy transport among the biosphere, atmosphere, and hydrosphere. Current regional to global and daily to annual ET estimation relies mainly on surface energy balance (SEB) ET models or statistical and empirical methods driven by remote sensing data and various climatological databases. These models have uncertainties due to inevitable input errors, poorly defined parameters, and inadequate model structures. The eddy covariance measurements on water, energy, and carbon fluxes at the AmeriFlux tower sites provide an opportunity to assess the ET modeling uncertainties. In this study, we focused on uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model for ET estimation at multiple AmeriFlux tower sites with diverse land cover characteristics and climatic conditions. The 8-day composite 1-km MODerate resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) was used as input land surface temperature for the SSEBop algorithms. The other input data were taken from the AmeriFlux database. Results of statistical analysis indicated that the SSEBop model performed well in estimating ET with an R2 of 0.86 between estimated ET and eddy covariance measurements at 42 AmeriFlux tower sites during 2001–2007. It was encouraging to see that the best performance was observed for croplands, where R2 was 0.92 with a root mean square error of 13 mm/month. The uncertainties or random errors from input variables and parameters of the SSEBop model led to monthly ET estimates with relative errors less than 20% across multiple flux tower sites distributed across different biomes. This uncertainty of the SSEBop model lies within the error range of other SEB models, suggesting systematic error or bias of the SSEBop model is within the normal range. This finding implies that the simplified parameterization of the SSEBop model did not significantly affect the accuracy of the ET estimate while increasing the ease of model setup for operational applications. The sensitivity analysis indicated that the SSEBop model is most sensitive to input variables, land surface temperature (LST) and reference ET (ETo); and parameters, differential temperature (dT), and maximum ET scalar (Kmax), particularly during the non-growing season and in dry areas. In summary, the uncertainty assessment verifies that the SSEBop model is a reliable and robust method for large-area ET estimation. The SSEBop model estimates can be further improved by reducing errors in two input variables (ETo and LST) and two key parameters (Kmax and dT).
NASA Astrophysics Data System (ADS)
Vandergoes, Marcus J.; Howarth, Jamie D.; Dunbar, Gavin B.; Turnbull, Jocelyn C.; Roop, Heidi A.; Levy, Richard H.; Li, Xun; Prior, Christine; Norris, Margaret; Keller, Liz D.; Baisden, W. Troy; Ditchburn, Robert; Fitzsimons, Sean J.; Bronk Ramsey, Christopher
2018-05-01
Annually resolved (varved) lake sequences are important palaeoenvironmental archives as they offer a direct incremental dating technique for high-frequency reconstruction of environmental and climate change. Despite the importance of these records, establishing a robust chronology and quantifying its precision and accuracy (estimations of error) remains an essential but challenging component of their development. We outline an approach for building reliable independent chronologies, testing the accuracy of layer counts and integrating all chronological uncertainties to provide quantitative age and error estimates for varved lake sequences. The approach incorporates (1) layer counts and estimates of counting precision; (2) radiometric and biostratigrapic dating techniques to derive independent chronology; and (3) the application of Bayesian age modelling to produce an integrated age model. This approach is applied to a case study of an annually resolved sediment record from Lake Ohau, New Zealand. The most robust age model provides an average error of 72 years across the whole depth range. This represents a fractional uncertainty of ∼5%, higher than the <3% quoted for most published varve records. However, the age model and reported uncertainty represent the best fit between layer counts and independent chronology and the uncertainties account for both layer counting precision and the chronological accuracy of the layer counts. This integrated approach provides a more representative estimate of age uncertainty and therefore represents a statistically more robust chronology.
Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S
2014-09-01
Many papers have introduced adaptive clinical trial methods that allow modifications to the sample size based on interim estimates of treatment effect. There has been extensive commentary on type I error control and efficiency considerations, but little research on estimation after an adaptive hypothesis test. We evaluate the reliability and precision of different inferential procedures in the presence of an adaptive design with pre-specified rules for modifying the sampling plan. We extend group sequential orderings of the outcome space based on the stage at stopping, likelihood ratio statistic, and sample mean to the adaptive setting in order to compute median-unbiased point estimates, exact confidence intervals, and P-values uniformly distributed under the null hypothesis. The likelihood ratio ordering is found to average shorter confidence intervals and produce higher probabilities of P-values below important thresholds than alternative approaches. The bias adjusted mean demonstrates the lowest mean squared error among candidate point estimates. A conditional error-based approach in the literature has the benefit of being the only method that accommodates unplanned adaptations. We compare the performance of this and other methods in order to quantify the cost of failing to plan ahead in settings where adaptations could realistically be pre-specified at the design stage. We find the cost to be meaningful for all designs and treatment effects considered, and to be substantial for designs frequently proposed in the literature. © 2014, The International Biometric Society.
NASA Astrophysics Data System (ADS)
Doi, Masafumi; Tokutomi, Tsukasa; Hachiya, Shogo; Kobayashi, Atsuro; Tanakamaru, Shuhei; Ning, Sheyang; Ogura Iwasaki, Tomoko; Takeuchi, Ken
2016-08-01
NAND flash memory’s reliability degrades with increasing endurance, retention-time and/or temperature. After a comprehensive evaluation of 1X nm triple-level cell (TLC) NAND flash, two highly reliable techniques are proposed. The first proposal, quick low-density parity check (Quick-LDPC), requires only one cell read in order to accurately estimate a bit-error rate (BER) that includes the effects of temperature, write and erase (W/E) cycles and retention-time. As a result, 83% read latency reduction is achieved compared to conventional AEP-LDPC. Also, W/E cycling is extended by 100% compared with conventional Bose-Chaudhuri-Hocquenghem (BCH) error-correcting code (ECC). The second proposal, dynamic threshold voltage optimization (DVO) has two parts, adaptive V Ref shift (AVS) and V TH space control (VSC). AVS reduces read error and latency by adaptively optimizing the reference voltage (V Ref) based on temperature, W/E cycles and retention-time. AVS stores the optimal V Ref’s in a table in order to enable one cell read. VSC further improves AVS by optimizing the voltage margins between V TH states. DVO reduces BER by 80%.
Pant, Anup D; Dorairaj, Syril K; Amini, Rouzbeh
2018-07-01
Quantifying the mechanical properties of the iris is important, as it provides insight into the pathophysiology of glaucoma. Recent ex vivo studies have shown that the mechanical properties of the iris are different in glaucomatous eyes as compared to normal ones. Notwithstanding the importance of the ex vivo studies, such measurements are severely limited for diagnosis and preclude development of treatment strategies. With the advent of detailed imaging modalities, it is possible to determine the in vivo mechanical properties using inverse finite element (FE) modeling. An inverse modeling approach requires an appropriate objective function for reliable estimation of parameters. In the case of the iris, numerous measurements such as iris chord length (CL) and iris concavity (CV) are made routinely in clinical practice. In this study, we have evaluated five different objective functions chosen based on the iris biometrics (in the presence and absence of clinical measurement errors) to determine the appropriate criterion for inverse modeling. Our results showed that in the absence of experimental measurement error, a combination of iris CL and CV can be used as the objective function. However, with the addition of measurement errors, the objective functions that employ a large number of local displacement values provide more reliable outcomes.
NASA Astrophysics Data System (ADS)
Ragon, Théa; Sladen, Anthony; Simons, Mark
2018-05-01
The ill-posed nature of earthquake source estimation derives from several factors including the quality and quantity of available observations and the fidelity of our forward theory. Observational errors are usually accounted for in the inversion process. Epistemic errors, which stem from our simplified description of the forward problem, are rarely dealt with despite their potential to bias the estimate of a source model. In this study, we explore the impact of uncertainties related to the choice of a fault geometry in source inversion problems. The geometry of a fault structure is generally reduced to a set of parameters, such as position, strike and dip, for one or a few planar fault segments. While some of these parameters can be solved for, more often they are fixed to an uncertain value. We propose a practical framework to address this limitation by following a previously implemented method exploring the impact of uncertainties on the elastic properties of our models. We develop a sensitivity analysis to small perturbations of fault dip and position. The uncertainties in fault geometry are included in the inverse problem under the formulation of the misfit covariance matrix that combines both prediction and observation uncertainties. We validate this approach with the simplified case of a fault that extends infinitely along strike, using both Bayesian and optimization formulations of a static inversion. If epistemic errors are ignored, predictions are overconfident in the data and source parameters are not reliably estimated. In contrast, inclusion of uncertainties in fault geometry allows us to infer a robust posterior source model. Epistemic uncertainties can be many orders of magnitude larger than observational errors for great earthquakes (Mw > 8). Not accounting for uncertainties in fault geometry may partly explain observed shallow slip deficits for continental earthquakes. Similarly, ignoring the impact of epistemic errors can also bias estimates of near surface slip and predictions of tsunamis induced by megathrust earthquakes. (Mw > 8)
NASA Astrophysics Data System (ADS)
Chen, Y.; Xu, X.
2017-12-01
The broad band Lg 1/Q tomographic models in eastern Eurasia are inverted from source- and site-corrected path 1/Q data. The path 1/Q are measured between stations (or events) by the two-station (TS), reverse two-station (RTS) and reverse two-event (RTE) methods, respectively. Because path 1/Q are computed using logarithm of the product of observed spectral ratios and simplified 1D geometrical spreading correction, they are subject to "modeling errors" dominated by uncompensated 3D structural effects. We have found in Chen and Xie [2017] that these errors closely follow normal distribution after the long-tailed outliers are screened out (similar to teleseismic travel time residuals). We thus rigorously analyze the statistics of these errors collected from repeated samplings of station (and event) pairs from 1.0 to 10.0Hz and reject about 15% outliers at each frequency band. The resultant variance of Δ/Q decreases with frequency as 1/f2. The 1/Q tomography using screened data is now a stochastic inverse problem with solutions approximate the means of Gaussian random variables and the model covariance matrix is that of Gaussian variables with well-known statistical behavior. We adopt a new SVD based tomographic method to solve for 2D Q image together with its resolution and covariance matrices. The RTS and RTE yield the most reliable 1/Q data free of source and site effects, but the path coverage is rather sparse due to very strict recording geometry. The TS absorbs the effects of non-unit site response ratios into 1/Q data. The RTS also yields site responses, which can then be corrected from the path 1/Q of TS to make them also free of site effect. The site corrected TS data substantially improve path coverage, allowing able to solve for 1/Q tomography up to 6.0Hz. The model resolution and uncertainty are first quantitively accessed by spread functions (fulfilled by resolution matrix) and covariance matrix. The reliably retrieved Q models correlate well with the distinct tectonic blocks featured by the most recent major deformations and vary with frequencies. With the 1/Q tomographic model and its covariance matrix, we can formally estimate the uncertainty of any path-specific Lg 1/Q prediction. This new capability significantly benefits source estimation for which reliable uncertainty estimate is especially important.
A novel method for state of charge estimation of lithium-ion batteries using a nonlinear observer
NASA Astrophysics Data System (ADS)
Xia, Bizhong; Chen, Chaoren; Tian, Yong; Sun, Wei; Xu, Zhihui; Zheng, Weiwei
2014-12-01
The state of charge (SOC) is important for the safety and reliability of battery operation since it indicates the remaining capacity of a battery. However, as the internal state of each cell cannot be directly measured, the value of the SOC has to be estimated. In this paper, a novel method for SOC estimation in electric vehicles (EVs) using a nonlinear observer (NLO) is presented. One advantage of this method is that it does not need complicated matrix operations, so the computation cost can be reduced. As a key step in design of the nonlinear observer, the state-space equations based on the equivalent circuit model are derived. The Lyapunov stability theory is employed to prove the convergence of the nonlinear observer. Four experiments are carried out to evaluate the performance of the presented method. The results show that the SOC estimation error converges to 3% within 130 s while the initial SOC error reaches 20%, and does not exceed 4.5% while the measurement suffers both 2.5% voltage noise and 5% current noise. Besides, the presented method has advantages over the extended Kalman filter (EKF) and sliding mode observer (SMO) algorithms in terms of computation cost, estimation accuracy and convergence rate.
CT volumetry of the skeletal tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brindle, James M.; Alexandre Trindade, A.; Pichardo, Jose C.
2006-10-15
Computed tomography (CT) is an important and widely used modality in the diagnosis and treatment of various cancers. In the field of molecular radiotherapy, the use of spongiosa volume (combined tissues of the bone marrow and bone trabeculae) has been suggested as a means to improve the patient-specificity of bone marrow dose estimates. The noninvasive estimation of an organ volume comes with some degree of error or variation from the true organ volume. The present study explores the ability to obtain estimates of spongiosa volume or its surrogate via manual image segmentation. The variation among different segmentation raters was exploredmore » and found not to be statistically significant (p value >0.05). Accuracy was assessed by having several raters manually segment a polyvinyl chloride (PVC) pipe with known volumes. Segmentation of the outer region of the PVC pipe resulted in mean percent errors as great as 15% while segmentation of the pipe's inner region resulted in mean percent errors within {approx}5%. Differences between volumes estimated with the high-resolution CT data set (typical of ex vivo skeletal scans) and the low-resolution CT data set (typical of in vivo skeletal scans) were also explored using both patient CT images and a PVC pipe phantom. While a statistically significant difference (p value <0.002) between the high-resolution and low-resolution data sets was observed with excised femoral heads obtained following total hip arthroplasty, the mean difference between high-resolution and low-resolution data sets was found to be only 1.24 and 2.18 cm{sup 3} for spongiosa and cortical bone, respectively. With respect to differences observed with the PVC pipe, the variation between the high-resolution and low-resolution mean percent errors was a high as {approx}20% for the outer region volume estimates and only as high as {approx}6% for the inner region volume estimates. The findings from this study suggest that manual segmentation is a reasonably accurate and reliable means for the in vivo estimation of spongiosa volume. This work also provides a foundation for future studies where spongiosa volumes are estimated by various raters in more comprehensive CT data sets.« less
Time Domain Estimation of Arterial Parameters using the Windkessel Model and the Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gostuski, Vladimir; Pastore, Ignacio; Rodriguez Palacios, Gaspar; Vaca Diez, Gustavo; Moscoso-Vasquez, H. Marcela; Risk, Marcelo
2016-04-01
Numerous parameter estimation techniques exist for characterizing the arterial system using electrical circuit analogs. However, they are often limited by their requirements and usually high computational burdain. Therefore, a new method for estimating arterial parameters based on Monte Carlo simulation is proposed. A three element Windkessel model was used to represent the arterial system. The approach was to reduce the error between the calculated and physiological aortic pressure by randomly generating arterial parameter values, while keeping constant the arterial resistance. This last value was obtained for each subject using the arterial flow, and was a necessary consideration in order to obtain a unique set of values for the arterial compliance and peripheral resistance. The estimation technique was applied to in vivo data containing steady beats in mongrel dogs, and it reliably estimated Windkessel arterial parameters. Further, this method appears to be computationally efficient for on-line time-domain estimation of these parameters.
Reliability of a Longitudinal Sequence of Scale Ratings
ERIC Educational Resources Information Center
Laenen, Annouschka; Alonso, Ariel; Molenberghs, Geert; Vangeneugden, Tony
2009-01-01
Reliability captures the influence of error on a measurement and, in the classical setting, is defined as one minus the ratio of the error variance to the total variance. Laenen, Alonso, and Molenberghs ("Psychometrika" 73:443-448, 2007) proposed an axiomatic definition of reliability and introduced the R[subscript T] coefficient, a measure of…
Waltemeyer, Scott D.
2006-01-01
Estimates of the magnitude and frequency of peak discharges are necessary for the reliable flood-hazard mapping in the Navajo Nation in Arizona, Utah, Colorado, and New Mexico. The Bureau of Indian Affairs, U.S. Army Corps of Engineers, and Navajo Nation requested that the U.S. Geological Survey update estimates of peak discharge magnitude for gaging stations in the region and update regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites using data collected through 1999 at 146 gaging stations, an additional 13 years of peak-discharge data since a 1997 investigation, which used gaging-station data through 1986. The equations for estimation of peak discharges at ungaged sites were developed for flood regions 8, 11, high elevation, and 6 and are delineated on the basis of the hydrologic codes from the 1997 investigation. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 82 of the 146 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge having a recurrence interval of less than 1.4 years in the probability-density function. Within each region, logarithms of the peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then was applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction for a peak discharge have a recurrence interval of 100-years for region 8 was 53 percent (average) for the 100-year flood. The average standard of prediction, which includes average sampling error and average standard error of regression, ranged from 45 to 83 percent for the 100-year flood. Estimated standard error of prediction for a hybrid method for region 11 was large in the 1997 investigation. No distinction of floods produced from a high-elevation region was presented in the 1997 investigation. Overall, the equations based on generalized least-squares regression techniques are considered to be more reliable than those in the 1997 report because of the increased length of record and improved GIS method. Techniques for transferring flood-frequency relations to ungaged sites on the same stream can be estimated at an ungaged site by a direct application of the regional regression equation or at an ungaged site on a stream that has a gaging station upstream or downstream by using the drainage-area ratio and the drainage-area exponent from the regional regression equation of the respective region.
Kedarisetty, Sunil Gupta; Rao, Guttikonda Venkateswara; Rayapudi, Naveen; Korlepara, Rajani
2015-01-01
To identify the most reliable method for age estimation among three variables, that is, condylar height, length of mandibular body and third molar calcification by Demirjian's method. Orthopantomograms and lateral cephalograms of 60 patients with equal gender ratio were included in the study, among each gender 15 subjects were below 18 years and 15 subjects were above 18 years. Lateral cephalograms were traced, height of condyle and mandibular body are measured manually on the tracing paper, OPG's were observed on radiographic illuminator and maturity score of third molar calcification was noted according to Demirjian's method. All the measurements were subjected to statistical analysis. The results obtained are of no significant difference between estimated age and actual age with all three parameters (P > 0.9780 condylar height, P > 0.9515 length of mandibular body, P > 0.8611 third molar calcification). Among these three, length of mandibular body shows least standard error test (i.e. 0.188). Although all three parameters can be used for age estimation, length of mandibular body is more reliable followed by height of condyle and third molar calcification.
Albin, Thomas J; Vink, Peter
2014-11-01
Designers and ergonomists may occasionally be limited to using tables of percentiles of anthropometric data to model users. Design models that add or subtract percentiles produce unreliable estimates of the proportion of users accommodated, in part because they assume a perfect correlation between variables. Percentile data do not allow the use of more reliable modeling methods such as Principle Component Analysis. A better method is needed. A new method for modeling with limited data is described. It uses measures of central tendency (median or mean) of the range of possible correlation values to estimate the combined variance is shown to reduce error compared to combining percentiles. Second, use of the Chebyshev inequality allows the designer to more reliably estimate the percent accommodation when the distributions of the underlying anthropometric data are unknown than does combining percentiles. This paper describes a modeling method that is more accurate than combining percentiles when only limited data are available. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1984-01-01
Advanced composite aircraft designs include fault-tolerant computer-based digital control systems with thigh reliability requirements for adverse as well as optimum operating environments. Since aircraft penetrate intense electromagnetic fields during thunderstorms, onboard computer systems maya be subjected to field-induced transient voltages and currents resulting in functional error modes which are collectively referred to as digital system upset. A methodology was developed for assessing the upset susceptibility of a computer system onboard an aircraft flying through a lightning environment. Upset error modes in a general-purpose microprocessor were studied via tests which involved the random input of analog transients which model lightning-induced signals onto interface lines of an 8080-based microcomputer from which upset error data were recorded. The application of Markov modeling to upset susceptibility estimation is discussed and a stochastic model development.
Prediction of the compression ratio for municipal solid waste using decision tree.
Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed
2014-01-01
The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
NASA Technical Reports Server (NTRS)
Platt, M. E.; Lewis, E. E.; Boehm, F.
1991-01-01
A Monte Carlo Fortran computer program was developed that uses two variance reduction techniques for computing system reliability applicable to solving very large highly reliable fault-tolerant systems. The program is consistent with the hybrid automated reliability predictor (HARP) code which employs behavioral decomposition and complex fault-error handling models. This new capability is called MC-HARP which efficiently solves reliability models with non-constant failures rates (Weibull). Common mode failure modeling is also a specialty.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
High-frequency signal and noise estimates of CSR GRACE RL04
NASA Astrophysics Data System (ADS)
Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.
2012-12-01
A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.
NASA Astrophysics Data System (ADS)
Sun, Ruochen; Yuan, Huiling; Liu, Xiaoli
2017-11-01
The heteroscedasticity treatment in residual error models directly impacts the model calibration and prediction uncertainty estimation. This study compares three methods to deal with the heteroscedasticity, including the explicit linear modeling (LM) method and nonlinear modeling (NL) method using hyperbolic tangent function, as well as the implicit Box-Cox transformation (BC). Then a combined approach (CA) combining the advantages of both LM and BC methods has been proposed. In conjunction with the first order autoregressive model and the skew exponential power (SEP) distribution, four residual error models are generated, namely LM-SEP, NL-SEP, BC-SEP and CA-SEP, and their corresponding likelihood functions are applied to the Variable Infiltration Capacity (VIC) hydrologic model over the Huaihe River basin, China. Results show that the LM-SEP yields the poorest streamflow predictions with the widest uncertainty band and unrealistic negative flows. The NL and BC methods can better deal with the heteroscedasticity and hence their corresponding predictive performances are improved, yet the negative flows cannot be avoided. The CA-SEP produces the most accurate predictions with the highest reliability and effectively avoids the negative flows, because the CA approach is capable of addressing the complicated heteroscedasticity over the study basin.
Geomagnetic matching navigation algorithm based on robust estimation
NASA Astrophysics Data System (ADS)
Xie, Weinan; Huang, Liping; Qu, Zhenshen; Wang, Zhenhuan
2017-08-01
The outliers in the geomagnetic survey data seriously affect the precision of the geomagnetic matching navigation and badly disrupt its reliability. A novel algorithm which can eliminate the outliers influence is investigated in this paper. First, the weight function is designed and its principle of the robust estimation is introduced. By combining the relation equation between the matching trajectory and the reference trajectory with the Taylor series expansion for geomagnetic information, a mathematical expression of the longitude, latitude and heading errors is acquired. The robust target function is obtained by the weight function and the mathematical expression. Then the geomagnetic matching problem is converted to the solutions of nonlinear equations. Finally, Newton iteration is applied to implement the novel algorithm. Simulation results show that the matching error of the novel algorithm is decreased to 7.75% compared to the conventional mean square difference (MSD) algorithm, and is decreased to 18.39% to the conventional iterative contour matching algorithm when the outlier is 40nT. Meanwhile, the position error of the novel algorithm is 0.017° while the other two algorithms fail to match when the outlier is 400nT.
Prediction of true test scores from observed item scores and ancillary data.
Haberman, Shelby J; Yao, Lili; Sinharay, Sandip
2015-05-01
In many educational tests which involve constructed responses, a traditional test score is obtained by adding together item scores obtained through holistic scoring by trained human raters. For example, this practice was used until 2008 in the case of GRE(®) General Analytical Writing and until 2009 in the case of TOEFL(®) iBT Writing. With use of natural language processing, it is possible to obtain additional information concerning item responses from computer programs such as e-rater(®). In addition, available information relevant to examinee performance may include scores on related tests. We suggest application of standard results from classical test theory to the available data to obtain best linear predictors of true traditional test scores. In performing such analysis, we require estimation of variances and covariances of measurement errors, a task which can be quite difficult in the case of tests with limited numbers of items and with multiple measurements per item. As a consequence, a new estimation method is suggested based on samples of examinees who have taken an assessment more than once. Such samples are typically not random samples of the general population of examinees, so that we apply statistical adjustment methods to obtain the needed estimated variances and covariances of measurement errors. To examine practical implications of the suggested methods of analysis, applications are made to GRE General Analytical Writing and TOEFL iBT Writing. Results obtained indicate that substantial improvements are possible both in terms of reliability of scoring and in terms of assessment reliability. © 2015 The British Psychological Society.
Nanidis, Theodore G; Ridha, Hyder; Jallali, Navid
2014-10-01
Estimation of the volume of abdominal tissue is desirable when planning autologous abdominal based breast reconstruction. However, this can be difficult clinically. The aim of this study was to develop a simple, yet reliable method of calculating the deep inferior epigastric artery perforator flap weight using the routine preoperative computed tomography angiogram (CTA) scan. Our mathematical formula is based on the shape of a DIEP flap resembling that of an isosceles triangular prism. Thus its volume can be calculated with a standard mathematical formula. Using bony landmarks three measurements were acquired from the CTA scan to calculate the flap weight. This was then compared to the actual flap weight harvested in both a retrospective feasibility and prospective study. In the retrospective group 17 DIEP flaps in 17 patients were analyzed. Average predicted flap weight was 667 g (range 293-1254). The average actual flap weight was 657 g (range 300-1290) giving an average percentage error of 6.8% (p-value for weight difference 0.53). In the prospective group 15 DIEP flaps in 15 patients were analyzed. Average predicted flap weight was 618 g (range 320-925). The average actual flap weight was 624 g (range 356-970) giving an average percentage error of 6.38% (p-value for weight difference 0.57). This formula is a quick, reliable and accurate way of estimating the volume of abdominal tissue using the preoperative CTA scan. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino
2017-01-01
Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error. PMID:28505201
Fantini, Marco; Pandolfini, Luca; Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Terrigno, Marco; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino
2017-01-01
Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error.
Oscillating-flow regenerator test rig: Woven screen and metal felt results
NASA Technical Reports Server (NTRS)
Gedeon, D.; Wood, J. G.
1992-01-01
We present correlating expressions, in terms of Reynolds or Peclet numbers, for friction factors, Nusselt numbers, enhanced axial conduction ratios, and overall heat flux ratios in four porous regenerator samples representative of stirling cycle regenerators: two woven screen samples and two random wire samples. Error estimates and comparison of data with others suggest our correlations are reliable, but we need to test more samples over a range of porosities before our results will become generally useful.
Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.
2010-01-01
In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273
Choosing the best index for the average score intraclass correlation coefficient.
Shieh, Gwowen
2016-09-01
The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.
Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Klauer, Christian; Gaffuri, Marina; Ferrigno, Giancarlo; Pedrocchi, Alessandra
2014-04-01
This work aimed at designing a myocontrolled arm neuroprosthesis for both assistive and rehabilitative purposes. The performance of an adaptive linear prediction filter and a high-pass filter to estimate the volitional EMG was evaluated on healthy subjects (N=10) and neurological patients (N=8) during dynamic hybrid biceps contractions. A significant effect of filter (p=0.017 for healthy; p<0.001 for patients) was obtained. The post hoc analysis revealed that for both groups only the adaptive filter was able to reliably detect the presence of a small volitional contribution. An on/off non-linear controller integrated with an exoskeleton for weight support was developed. The controller allowed the patient to activate/deactivate the stimulation intensity based on the residual EMG estimated by the adaptive filter. Two healthy subjects and 3 people with Spinal Cord Injury were asked to flex the elbow while tracking a trapezoidal target with and without myocontrolled-NMES support. Both healthy subjects and patients easily understood how to use the controller in a single session. Two patients reduced their tracking error by more than 60% with NMES support, while the last patient obtained a tracking error always comparable to the healthy subjects performance (<4°). This study proposes a reliable and feasible solution to combine NMES with voluntary effort. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry
2011-01-01
ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm.
The SACADA database for human reliability and human performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. James Chang; Dennis Bley; Lawrence Criscione
2014-05-01
Lack of appropriate and sufficient human performance data has been identified as a key factor affecting human reliability analysis (HRA) quality especially in the estimation of human error probability (HEP). The Scenario Authoring, Characterization, and Debriefing Application (SACADA) database was developed by the U.S. Nuclear Regulatory Commission (NRC) to address this data need. An agreement between NRC and the South Texas Project Nuclear Operating Company (STPNOC) was established to support the SACADA development with aims to make the SACADA tool suitable for implementation in the nuclear power plants' operator training program to collect operator performance information. The collected data wouldmore » support the STPNOC's operator training program and be shared with the NRC for improving HRA quality. This paper discusses the SACADA data taxonomy, the theoretical foundation, the prospective data to be generated from the SACADA raw data to inform human reliability and human performance, and the considerations on the use of simulator data for HRA. Each SACADA data point consists of two information segments: context and performance results. Context is a characterization of the performance challenges to task success. The performance results are the results of performing the task. The data taxonomy uses a macrocognitive functions model for the framework. At a high level, information is classified according to the macrocognitive functions of detecting the plant abnormality, understanding the abnormality, deciding the response plan, executing the response plan, and team related aspects (i.e., communication, teamwork, and supervision). The data are expected to be useful for analyzing the relations between context, error modes and error causes in human performance.« less
Flood loss model transfer: on the value of additional data
NASA Astrophysics Data System (ADS)
Schröter, Kai; Lüdtke, Stefan; Vogel, Kristin; Kreibich, Heidi; Thieken, Annegret; Merz, Bruno
2017-04-01
The transfer of models across geographical regions and flood events is a key challenge in flood loss estimation. Variations in local characteristics and continuous system changes require regional adjustments and continuous updating with current evidence. However, acquiring data on damage influencing factors is expensive and therefore assessing the value of additional data in terms of model reliability and performance improvement is of high relevance. The present study utilizes empirical flood loss data on direct damage to residential buildings available from computer aided telephone interviews that were carried out after the floods in 2002, 2005, 2006, 2010, 2011 and 2013 mainly in the Elbe and Danube catchments in Germany. Flood loss model performance is assessed for incrementally increased numbers of loss data which are differentiated according to region and flood event. Two flood loss modeling approaches are considered: (i) a multi-variable flood loss model approach using Random Forests and (ii) a uni-variable stage damage function. Both model approaches are embedded in a bootstrapping process which allows evaluating the uncertainty of model predictions. Predictive performance of both models is evaluated with regard to mean bias, mean absolute and mean squared errors, as well as hit rate and sharpness. Mean bias and mean absolute error give information about the accuracy of model predictions; mean squared error and sharpness about precision and hit rate is an indicator for model reliability. The results of incremental, regional and temporal updating demonstrate the usefulness of additional data to improve model predictive performance and increase model reliability, particularly in a spatial-temporal transfer setting.
Coding for reliable satellite communications
NASA Technical Reports Server (NTRS)
Gaarder, N. T.; Lin, S.
1986-01-01
This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.
Oh, Hyun Jun; Yang, Il-Hyung
2016-01-01
Objectives: To propose a novel method for determining the three-dimensional (3D) root apex position of maxillary teeth using a two-dimensional (2D) panoramic radiograph image and a 3D virtual maxillary cast model. Methods: The subjects were 10 adult orthodontic patients treated with non-extraction. The multiple camera matrices were used to define transformative relationships between tooth images of the 2D panoramic radiographs and the 3D virtual maxillary cast models. After construction of the root apex-specific projective (RASP) models, overdetermined equations were used to calculate the 3D root apex position with a direct linear transformation algorithm and the known 2D co-ordinates of the root apex in the panoramic radiograph. For verification of the estimated 3D root apex position, the RASP and 3D-CT models were superimposed using a best-fit method. Then, the values of estimation error (EE; mean, standard deviation, minimum error and maximum error) between the two models were calculated. Results: The intraclass correlation coefficient values exhibited good reliability for the landmark identification. The mean EE of all root apices of maxillary teeth was 1.88 mm. The EE values, in descending order, were as follows: canine, 2.30 mm; first premolar, 1.93 mm; second premolar, 1.91 mm; first molar, 1.83 mm; second molar, 1.82 mm; lateral incisor, 1.80 mm; and central incisor, 1.53 mm. Conclusions: Camera calibration technology allows reliable determination of the 3D root apex position of maxillary teeth without the need for 3D-CT scan or tooth templates. PMID:26317151
Senay, Gabriel; Gowda, Prasanna H.; Bohms, Stefanie; Howell, T.A.; Friedrichs, Mackenzie; Marek, T.H.; Verdin, James
2014-01-01
The operational Simplified Surface Energy Balance (SSEBop) approach was applied on 14 Landsat 5 thermal infrared images for mapping daily actual evapotranspiration (ETa) fluxes during the spring and summer seasons (March–October) in 2006 and 2007. Data from four large lysimeters, managed by the USDA-ARS Conservation and Production Research Laboratory were used for evaluating the SSEBop estimated ETa. Lysimeter fields are arranged in a 2 × 2 block pattern with two fields each managed under irrigated and dryland cropping systems. The modeled and observed daily ETa values were grouped as "irrigated" and "dryland" at four different aggregation periods (1-day, 2-day, 3 day and "seasonal") for evaluation. There was a strong linear relationship between observed and modeled ETa with R2 values ranging from 0.87 to 0.97. The root mean square error (RMSE), as percent of their respective mean values, were reduced progressively with 28, 24, 16 and 12% at 1-day, 2-day, 3-day, and seasonal aggregation periods, respectively. With a further correction of the underestimation bias (−11%), the seasonal RMSE reduced from 12 to 6%. The random error contribution to the total error was reduced from 86 to 20% while the bias' contribution increased from 14 to 80% when aggregated from daily to seasonal scale, respectively. This study shows the reliable performance of the SSEBop approach on the Landsat data stream with a transferable approach for use with the recently launched LDCM (Landsat Data Continuity Mission) Thermal InfraRed Sensor (TIRS) data. Thus, SSEBop can produce quick, reliable and useful ET estimations at various time scales with higher seasonal accuracy for use in regional water management decisions.
NASA Astrophysics Data System (ADS)
Barik, M. G.; Hogue, T. S.; Franz, K. J.; He, M.
2012-12-01
Snow water equivalent (SWE) estimation is a key factor in producing reliable streamflow simulations and forecasts in snow dominated areas. However, measuring or predicting SWE has significant uncertainty. Sequential data assimilation, which updates states using both observed and modeled data based on error estimation, has been shown to reduce streamflow simulation errors but has had limited testing for forecasting applications. In the current study, a snow data assimilation framework integrated with the National Weather System River Forecasting System (NWSRFS) is evaluated for use in ensemble streamflow prediction (ESP). Seasonal water supply ESP hindcasts are generated for the North Fork of the American River Basin (NFARB) in northern California. Parameter sets from the California Nevada River Forecast Center (CNRFC), the Differential Evolution Adaptive Metropolis (DREAM) algorithm and the Multistep Automated Calibration Scheme (MACS) are tested both with and without sequential data assimilation. The traditional ESP method considers uncertainty in future climate conditions using historical temperature and precipitation time series to generate future streamflow scenarios conditioned on the current basin state. We include data uncertainty analysis in the forecasting framework through the DREAM-based parameter set which is part of a recently developed Integrated Uncertainty and Ensemble-based data Assimilation framework (ICEA). Extensive verification of all tested approaches is undertaken using traditional forecast verification measures, including root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NSE), volumetric bias, joint distribution, rank probability score (RPS), and discrimination and reliability plots. In comparison to the RFC parameters, the DREAM and MACS sets show significant improvement in volumetric bias in flow. Use of assimilation improves hindcasts of higher flows but does not significantly improve performance in the mid flow and low flow categories.
Hanson, Lisa C; Taylor, Nicholas F; McBurney, Helen
2016-09-01
To determine the retest reliability of the 10m incremental shuttle walk test (ISWT) in a mixed cardiac rehabilitation population. Participants completed two 10m ISWTs in a single session in a repeated measures study. Ten participants completed a third 10m ISWT as part of a pilot study. Hospital physiotherapy department. 62 adults aged a mean of 68 years (SD 10) referred to a cardiac rehabilitation program. Retest reliability of the 10m ISWT expressed as relative reliability and measurement error. Relative reliability was expressed in a ratio in the form of an intraclass correlation coefficient (ICC) and measurement error in the form of the standard error of measurement (SEM) and 95% confidence intervals for the group and individual. There was a high level of relative reliability over the two walks with an ICC of .99. The SEMagreement was 17m, and a change of at least 23m for the group and 54m for the individual would be required to be 95% confident of exceeding measurement error. The 10m ISWT demonstrated good retest reliability and is sufficiently reliable to be applied in practice in this population without the use of a practice test. Copyright © 2015 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
García-Ramos, Amador; Haff, Guy Gregory; Pestaña-Melero, Francisco Luis; Pérez-Castilla, Alejandro; Rojas, Francisco Javier; Balsalobre-Fernández, Carlos; Jaric, Slobodan
2017-09-05
This study compared the concurrent validity and reliability of previously proposed generalized group equations for estimating the bench press (BP) one-repetition maximum (1RM) with the individualized load-velocity relationship modelled with a two-point method. Thirty men (BP 1RM relative to body mass: 1.08 0.18 kg·kg -1 ) performed two incremental loading tests in the concentric-only BP exercise and another two in the eccentric-concentric BP exercise to assess their actual 1RM and load-velocity relationships. A high velocity (≈ 1 m·s -1 ) and a low velocity (≈ 0.5 m·s -1 ) was selected from their load-velocity relationships to estimate the 1RM from generalized group equations and through an individual linear model obtained from the two velocities. The directly measured 1RM was highly correlated with all predicted 1RMs (r range: 0.847-0.977). The generalized group equations systematically underestimated the actual 1RM when predicted from the concentric-only BP (P <0.001; effect size [ES] range: 0.15-0.94), but overestimated it when predicted from the eccentric-concentric BP (P <0.001; ES range: 0.36-0.98). Conversely, a low systematic bias (range: -2.3-0.5 kg) and random errors (range: 3.0-3.8 kg), no heteroscedasticity of errors (r 2 range: 0.053-0.082), and trivial ES (range: -0.17-0.04) were observed when the prediction was based on the two-point method. Although all examined methods reported the 1RM with high reliability (CV≤5.1%; ICC≥0.89), the direct method was the most reliable (CV<2.0%; ICC≥0.98). The quick, fatigue-free, and practical two-point method was able to predict the BP 1RM with high reliability and practically perfect validity, and therefore we recommend its use over generalized group equations.
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Rahman, Rosnani
2016-02-01
Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.
Verifying reddening and extinction for Gaia DR1 TGAS giants
NASA Astrophysics Data System (ADS)
Gontcharov, George A.; Mosenkov, Aleksandr V.
2018-03-01
Gaia DR1 Tycho-Gaia Astrometric Solution parallaxes, Tycho-2 photometry, and reddening/extinction estimates from nine data sources for 38 074 giants within 415 pc from the Sun are used to compare their position in the Hertzsprung-Russell diagram with theoretical estimates, which are based on the PARSEC and MIST isochrones and the TRILEGAL model of the Galaxy with its parameters being widely varied. We conclude that (1) some systematic errors of the reddening/extinction estimates are the main uncertainty in this study; (2) any emission-based 2D reddening map cannot give reliable estimates of reddening within 415 pc due to a complex distribution of dust; (3) if a TRILEGAL's set of the parameters of the Galaxy is reliable and if the solar metallicity is Z < 0.021, then the reddening at high Galactic latitudes behind the dust layer is underestimated by all 2D reddening maps based on the dust emission observations of IRAS, COBE, and Planck and by their 3D followers (we also discuss some explanations of this underestimation); (4) the reddening/extinction estimates from recent 3D reddening map by Gontcharov, including the median reddening E(B - V) = 0.06 mag at |b| > 50°, give the best fit of the empirical and theoretical data with each other.
Correcting Coefficient Alpha for Correlated Errors: Is [alpha][K]a Lower Bound to Reliability?
ERIC Educational Resources Information Center
Rae, Gordon
2006-01-01
When errors of measurement are positively correlated, coefficient alpha may overestimate the "true" reliability of a composite. To reduce this inflation bias, Komaroff (1997) has proposed an adjusted alpha coefficient, ak. This article shows that ak is only guaranteed to be a lower bound to reliability if the latter does not include correlated…
Effect of the precipitation interpolation method on the performance of a snowmelt runoff model
NASA Astrophysics Data System (ADS)
Jacquin, Alexandra
2014-05-01
Uncertainties on the spatial distribution of precipitation seriously affect the reliability of the discharge estimates produced by watershed models. Although there is abundant research evaluating the goodness of fit of precipitation estimates obtained with different gauge interpolation methods, few studies have focused on the influence of the interpolation strategy on the response of watershed models. The relevance of this choice may be even greater in the case of mountain catchments, because of the influence of orography on precipitation. This study evaluates the effect of the precipitation interpolation method on the performance of conceptual type snowmelt runoff models. The HBV Light model version 4.0.0.2, operating at daily time steps, is used as a case study. The model is applied in Aconcagua at Chacabuquito catchment, located in the Andes Mountains of Central Chile. The catchment's area is 2110[Km2] and elevation ranges from 950[m.a.s.l.] to 5930[m.a.s.l.] The local meteorological network is sparse, with all precipitation gauges located below 3000[m.a.s.l.] Precipitation amounts corresponding to different elevation zones are estimated through areal averaging of precipitation fields interpolated from gauge data. Interpolation methods applied include kriging with external drift (KED), optimal interpolation method (OIM), Thiessen polygons (TP), multiquadratic functions fitting (MFF) and inverse distance weighting (IDW). Both KED and OIM are able to account for the existence of a spatial trend in the expectation of precipitation. By contrast, TP, MFF and IDW, traditional methods widely used in engineering hydrology, cannot explicitly incorporate this information. Preliminary analysis confirmed that these methods notably underestimate precipitation in the study catchment, while KED and OIM are able to reduce the bias; this analysis also revealed that OIM provides more reliable estimations than KED in this region. Using input precipitation obtained by each method, HBV parameters are calibrated with respect to Nash-Sutcliffe efficiency. The performance of HBV in the study catchment is not satisfactory. Although volumetric errors are modest, efficiency values are lower than 70%. Discharge estimates resulting from the application of TP, MFF and IDW obtain similar model efficiencies and volumetric errors. These error statistics moderately improve if KED or OIM are used instead. Even though the quality of precipitation estimates of distinct interpolation methods is dissimilar, the results of this study show that these differences do not necessarily produce noticeable changes in HBV's model performance statistics. This situation arises because the calibration of the model parameters allows some degree of compensation of deficient areal precipitation estimates, mainly through the adjustment of model simulated evaporation and glacier melt, as revealed by the analysis of water balances. In general, even if there is a good agreement between model estimated and observed discharge, this information is not sufficient to assert that the internal hydrological processes of the catchment are properly simulated by a watershed model. Other calibration criteria should be incorporated if a more reliable representation of these processes is desired. Acknowledgements: This research was funded by FONDECYT, Research Project 1110279. The HBV Light software used in this study was kindly provided by J. Seibert, Department of Geography, University of Zürich.
Statistical properties of Fourier-based time-lag estimates
NASA Astrophysics Data System (ADS)
Epitropakis, A.; Papadakis, I. E.
2016-06-01
Context. The study of X-ray time-lag spectra in active galactic nuclei (AGN) is currently an active research area, since it has the potential to illuminate the physics and geometry of the innermost region (I.e. close to the putative super-massive black hole) in these objects. To obtain reliable information from these studies, the statistical properties of time-lags estimated from data must be known as accurately as possible. Aims: We investigated the statistical properties of Fourier-based time-lag estimates (I.e. based on the cross-periodogram), using evenly sampled time series with no missing points. Our aim is to provide practical "guidelines" on estimating time-lags that are minimally biased (I.e. whose mean is close to their intrinsic value) and have known errors. Methods: Our investigation is based on both analytical work and extensive numerical simulations. The latter consisted of generating artificial time series with various signal-to-noise ratios and sampling patterns/durations similar to those offered by AGN observations with present and past X-ray satellites. We also considered a range of different model time-lag spectra commonly assumed in X-ray analyses of compact accreting systems. Results: Discrete sampling, binning and finite light curve duration cause the mean of the time-lag estimates to have a smaller magnitude than their intrinsic values. Smoothing (I.e. binning over consecutive frequencies) of the cross-periodogram can add extra bias at low frequencies. The use of light curves with low signal-to-noise ratio reduces the intrinsic coherence, and can introduce a bias to the sample coherence, time-lag estimates, and their predicted error. Conclusions: Our results have direct implications for X-ray time-lag studies in AGN, but can also be applied to similar studies in other research fields. We find that: a) time-lags should be estimated at frequencies lower than ≈ 1/2 the Nyquist frequency to minimise the effects of discrete binning of the observed time series; b) smoothing of the cross-periodogram should be avoided, as this may introduce significant bias to the time-lag estimates, which can be taken into account by assuming a model cross-spectrum (and not just a model time-lag spectrum); c) time-lags should be estimated by dividing observed time series into a number, say m, of shorter data segments and averaging the resulting cross-periodograms; d) if the data segments have a duration ≳ 20 ks, the time-lag bias is ≲15% of its intrinsic value for the model cross-spectra and power-spectra considered in this work. This bias should be estimated in practise (by considering possible intrinsic cross-spectra that may be applicable to the time-lag spectra at hand) to assess the reliability of any time-lag analysis; e) the effects of experimental noise can be minimised by only estimating time-lags in the frequency range where the sample coherence is larger than 1.2/(1 + 0.2m). In this range, the amplitude of noise variations caused by measurement errors is smaller than the amplitude of the signal's intrinsic variations. As long as m ≳ 20, time-lags estimated by averaging over individual data segments have analytical error estimates that are within 95% of the true scatter around their mean, and their distribution is similar, albeit not identical, to a Gaussian.
Lima, Luiz Rodrigo Augustemak de; Martins, Priscila Custódio; Junior, Carlos Alencar Souza Alves; Castro, João Antônio Chula de; Silva, Diego Augusto Santos; Petroski, Edio Luiz
The aim of this study was to assess the validity of traditional anthropometric equations and to develop predictive equations of total body and trunk fat for children and adolescents living with HIV based on anthropometric measurements. Forty-eight children and adolescents of both sexes (24 boys) aged 7-17 years, living in Santa Catarina, Brazil, participated in the study. Dual-energy X-ray absorptiometry was used as the reference method to evaluate total body and trunk fat. Height, body weight, circumferences and triceps, subscapular, abdominal and calf skinfolds were measured. The traditional equations of Lohman and Slaughter were used to estimate body fat. Multiple regression models were fitted to predict total body fat (Model 1) and trunk fat (Model 2) using a backward selection procedure. Model 1 had an R 2 =0.85 and a standard error of the estimate of 1.43. Model 2 had an R 2 =0.80 and standard error of the estimate=0.49. The traditional equations of Lohman and Slaughter showed poor performance in estimating body fat in children and adolescents living with HIV. The prediction models using anthropometry provided reliable estimates and can be used by clinicians and healthcare professionals to monitor total body and trunk fat in children and adolescents living with HIV. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.
Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike
2004-01-01
The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.
Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale.
Sommerlot, Andrew R; Nejadhashemi, A Pouyan; Woznicki, Sean A; Giri, Subhasis; Prohaska, Michael D
2013-09-30
Many watershed model interfaces have been developed in recent years for predicting field-scale sediment loads. They share the goal of providing data for decisions aimed at improving watershed health and the effectiveness of water quality conservation efforts. The objectives of this study were to: 1) compare three watershed-scale models (Soil and Water Assessment Tool (SWAT), Field_SWAT, and the High Impact Targeting (HIT) model) against calibrated field-scale model (RUSLE2) in estimating sediment yield from 41 randomly selected agricultural fields within the River Raisin watershed; 2) evaluate the statistical significance among models; 3) assess the watershed models' capabilities in identifying areas of concern at the field level; 4) evaluate the reliability of the watershed-scale models for field-scale analysis. The SWAT model produced the most similar estimates to RUSLE2 by providing the closest median and the lowest absolute error in sediment yield predictions, while the HIT model estimates were the worst. Concerning statistically significant differences between models, SWAT was the only model found to be not significantly different from the calibrated RUSLE2 at α = 0.05. Meanwhile, all models were incapable of identifying priorities areas similar to the RUSLE2 model. Overall, SWAT provided the most correct estimates (51%) within the uncertainty bounds of RUSLE2 and is the most reliable among the studied models, while HIT is the least reliable. The results of this study suggest caution should be exercised when using watershed-scale models for field level decision-making, while field specific data is of paramount importance. Copyright © 2013 Elsevier Ltd. All rights reserved.
URANS simulations of the tip-leakage cavitating flow with verification and validation procedures
NASA Astrophysics Data System (ADS)
Cheng, Huai-yu; Long, Xin-ping; Liang, Yun-zhi; Long, Yun; Ji, Bin
2018-04-01
In the present paper, the Vortex Identified Zwart-Gerber-Belamri (VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation (V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex (TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex (TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.
Optimizing Hybrid Metrology: Rigorous Implementation of Bayesian and Combined Regression
Henn, Mark-Alexander; Silver, Richard M.; Villarrubia, John S.; Zhang, Nien Fan; Zhou, Hui; Barnes, Bryan M.; Ming, Bin; Vladár, András E.
2015-01-01
Hybrid metrology, e.g., the combination of several measurement techniques to determine critical dimensions, is an increasingly important approach to meet the needs of the semiconductor industry. A proper use of hybrid metrology may yield not only more reliable estimates for the quantitative characterization of 3-D structures but also a more realistic estimation of the corresponding uncertainties. Recent developments at the National Institute of Standards and Technology (NIST) feature the combination of optical critical dimension (OCD) measurements and scanning electron microscope (SEM) results. The hybrid methodology offers the potential to make measurements of essential 3-D attributes that may not be otherwise feasible. However, combining techniques gives rise to essential challenges in error analysis and comparing results from different instrument models, especially the effect of systematic and highly correlated errors in the measurement on the χ2 function that is minimized. Both hypothetical examples and measurement data are used to illustrate solutions to these challenges. PMID:26681991
A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors.
Lorussi, Federico; Carbonaro, Nicola; De Rossi, Danilo; Tognetti, Alessandro
2016-04-23
Patient-specific performance assessment of arm movements in daily life activities is fundamental for neurological rehabilitation therapy. In most applications, the shoulder movement is simplified through a socket-ball joint, neglecting the movement of the scapular-thoracic complex. This may lead to significant errors. We propose an innovative bi-articular model of the human shoulder for estimating the position of the hand in relation to the sternum. The model takes into account both the scapular-toracic and gleno-humeral movements and their ratio governed by the scapular-humeral rhythm, fusing the information of inertial and textile-based strain sensors. To feed the reconstruction algorithm based on the bi-articular model, an ad-hoc sensing shirt was developed. The shirt was equipped with two inertial measurement units (IMUs) and an integrated textile strain sensor. We built the bi-articular model starting from the data obtained in two planar movements (arm abduction and flexion in the sagittal plane) and analysing the error between the reference data - measured through an optical reference system - and the socket-ball approximation of the shoulder. The 3D model was developed by extending the behaviour of the kinematic chain revealed in the planar trajectories through a parameter identification that takes into account the body structure of the subject. The bi-articular model was evaluated in five subjects in comparison with the optical reference system. The errors were computed in terms of distance between the reference position of the trochlea (end-effector) and the correspondent model estimation. The introduced method remarkably improved the estimation of the position of the trochlea (and consequently the estimation of the hand position during reaching activities) reducing position errors from 11.5 cm to 1.8 cm. Thanks to the developed bi-articular model, we demonstrated a reliable estimation of the upper arm kinematics with a minimal sensing system suitable for daily life monitoring of recovery.
Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
NASA Astrophysics Data System (ADS)
Morton, F. I.
1983-10-01
Reliable estimates of areal evapotranspiration are essential to significant improvements in the science and practice of hydrology. Direct measurements, such as those provided by lysimeters, eddy flux instrumentation or Bowen-ratio instrumentation, give point values, require constant attendance by skilled personnel and are based on unverified assumptions. A critical review of the methods used for estimating areal evapotranspiration indicates that the conventional conceptual techniques, such as those used in current watershed models, are based on assumptions that are completely divorced from reality; and that causal techniques based on processes and interactions in the soil-plant-atmosphere system are not likely to prove useful for another generation. However, the complementary relationship can do much to fill the gap until such time as causal techniques become practicable because it provides the basis for models that permit areal evapotranspiration to be estimated from its effects on the routine climatological observations needed to estimate potential evapotranspiration. Such models have a realistic conceptual and empirical basis, by-pass the complexity of the soil-plant system and require no local calibration of coefficients. Therefore, they are falsifiable (i.e. can be tested rigorously) so that errors in the associated assumptions and relationships can be detected and corrected by progressive testing over an ever-widening range of environments. Such a methodology uses the entire world as a laboratory and requires that a correction made to obtain agreement between model and river-basin water budget estimates in one environment must be applicable without modification in all other environment. The most recent version of the complementary relationship areal evapotranspiration (CRAE) models is formulated and documented. The reliability of the independent operational estimates of areal evapotranspiration is tested with comparable long-term water-budget estimates for 143 river basins in North America, Africa, Ireland, Australia and New Zealand. The practicality and potential impact of such estimates are demonstrated with examples which show how the availability of such estimates can revitalize the science and practice of hydrology by providing a reliable basis for detailed water-balance studies; for further research on the development of causal models; for hydrological, agricultural and fire hazard forecasts; for detecting the development of errors in hydrometeorological records; for detecting and monitoring the effects of land-use changes; for explaining hydrologic anomalies; and for other better known applications. It is suggested that the collection of the required climatological data by hydrometric agencies could be justified on the grounds that the agencies would gain a technique for quality control and the users would gain by a significant expansion in the information content of the hydrometric data, all at minimal additional expense.
A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3
NASA Technical Reports Server (NTRS)
Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.
1994-01-01
An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until this condition for the error calibration is satisfied. In addition, gravity field tests were performed on strong satellite data sets withheld from the solution (thereby ensuring their independence). In these tests, the performance of the subset models on the withheld observations is compared to error projections based on their calibrated error covariances. These results demonstrate that orbit accuracy projections are reliable for new satellites which were not included in GEM-T3.
A Closed-Form Error Model of Straight Lines for Improved Data Association and Sensor Fusing
2018-01-01
Linear regression is a basic tool in mobile robotics, since it enables accurate estimation of straight lines from range-bearing scans or in digital images, which is a prerequisite for reliable data association and sensor fusing in the context of feature-based SLAM. This paper discusses, extends and compares existing algorithms for line fitting applicable also in the case of strong covariances between the coordinates at each single data point, which must not be neglected if range-bearing sensors are used. Besides, in particular, the determination of the covariance matrix is considered, which is required for stochastic modeling. The main contribution is a new error model of straight lines in closed form for calculating quickly and reliably the covariance matrix dependent on just a few comprehensible and easily-obtainable parameters. The model can be applied widely in any case when a line is fitted from a number of distinct points also without a priori knowledge of the specific measurement noise. By means of extensive simulations, the performance and robustness of the new model in comparison to existing approaches is shown. PMID:29673205
Braun, Fabian; Proença, Martin; Adler, Andy; Riedel, Thomas; Thiran, Jean-Philippe; Solà, Josep
2018-01-01
Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of -1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations.
Proença, Martin; Adler, Andy; Riedel, Thomas; Thiran, Jean-Philippe; Solà, Josep
2018-01-01
Cardiac output (CO) and stroke volume (SV) are parameters of key clinical interest. Many techniques exist to measure CO and SV, but are either invasive or insufficiently accurate in clinical settings. Electrical impedance tomography (EIT) has been suggested as a noninvasive measure of SV, but inconsistent results have been reported. Our goal is to determine the accuracy and reliability of EIT-based SV measurements, and whether advanced image reconstruction approaches can help to improve the estimates. Data were collected on ten healthy volunteers undergoing postural changes and exercise. To overcome the sensitivity to heart displacement and thorax morphology reported in previous work, we used a 3D EIT configuration with 2 planes of 16 electrodes and subject-specific reconstruction models. Various EIT-derived SV estimates were compared to reference measurements derived from the oxygen uptake. Results revealed a dramatic impact of posture on the EIT images. Therefore, the analysis was restricted to measurements in supine position under controlled conditions (low noise and stable heart and lung regions). In these measurements, amplitudes of impedance changes in the heart and lung regions could successfully be derived from EIT using ECG gating. However, despite a subject-specific calibration the heart-related estimates showed an error of 0.0 ± 15.2 mL for absolute SV estimation. For trending of relative SV changes, a concordance rate of 80.9% and an angular error of −1.0 ± 23.0° were obtained. These performances are insufficient for most clinical uses. Similar conclusions were derived from lung-related estimates. Our findings indicate that the key difficulty in EIT-based SV monitoring is that purely amplitude-based features are strongly influenced by other factors (such as posture, electrode contact impedance and lung or heart conductivity). All the data of the present study are made publicly available for further investigations. PMID:29373611
An FEC Adaptive Multicast MAC Protocol for Providing Reliability in WLANs
NASA Astrophysics Data System (ADS)
Basalamah, Anas; Sato, Takuro
For wireless multicast applications like multimedia conferencing, voice over IP and video/audio streaming, a reliable transmission of packets within short delivery delay is needed. Moreover, reliability is crucial to the performance of error intolerant applications like file transfer, distributed computing, chat and whiteboard sharing. Forward Error Correction (FEC) is frequently used in wireless multicast to enhance Packet Error Rate (PER) performance, but cannot assure full reliability unless coupled with Automatic Repeat Request forming what is knows as Hybrid-ARQ. While reliable FEC can be deployed at different levels of the protocol stack, it cannot be deployed on the MAC layer of the unreliable IEEE802.11 WLAN due to its inability to exchange ACKs with multiple recipients. In this paper, we propose a Multicast MAC protocol that enhances WLAN reliability by using Adaptive FEC and study it's performance through mathematical analysis and simulation. Our results show that our protocol can deliver high reliability and throughput performance.
Montazeri, Zahra; Yanofsky, Corey M; Bickel, David R
2010-01-01
Research on analyzing microarray data has focused on the problem of identifying differentially expressed genes to the neglect of the problem of how to integrate evidence that a gene is differentially expressed with information on the extent of its differential expression. Consequently, researchers currently prioritize genes for further study either on the basis of volcano plots or, more commonly, according to simple estimates of the fold change after filtering the genes with an arbitrary statistical significance threshold. While the subjective and informal nature of the former practice precludes quantification of its reliability, the latter practice is equivalent to using a hard-threshold estimator of the expression ratio that is not known to perform well in terms of mean-squared error, the sum of estimator variance and squared estimator bias. On the basis of two distinct simulation studies and data from different microarray studies, we systematically compared the performance of several estimators representing both current practice and shrinkage. We find that the threshold-based estimators usually perform worse than the maximum-likelihood estimator (MLE) and they often perform far worse as quantified by estimated mean-squared risk. By contrast, the shrinkage estimators tend to perform as well as or better than the MLE and never much worse than the MLE, as expected from what is known about shrinkage. However, a Bayesian measure of performance based on the prior information that few genes are differentially expressed indicates that hard-threshold estimators perform about as well as the local false discovery rate (FDR), the best of the shrinkage estimators studied. Based on the ability of the latter to leverage information across genes, we conclude that the use of the local-FDR estimator of the fold change instead of informal or threshold-based combinations of statistical tests and non-shrinkage estimators can be expected to substantially improve the reliability of gene prioritization at very little risk of doing so less reliably. Since the proposed replacement of post-selection estimates with shrunken estimates applies as well to other types of high-dimensional data, it could also improve the analysis of SNP data from genome-wide association studies.
Non-Rigid Structure Estimation in Trajectory Space from Monocular Vision
Wang, Yaming; Tong, Lingling; Jiang, Mingfeng; Zheng, Junbao
2015-01-01
In this paper, the problem of non-rigid structure estimation in trajectory space from monocular vision is investigated. Similar to the Point Trajectory Approach (PTA), based on characteristic points’ trajectories described by a predefined Discrete Cosine Transform (DCT) basis, the structure matrix was also calculated by using a factorization method. To further optimize the non-rigid structure estimation from monocular vision, the rank minimization problem about structure matrix is proposed to implement the non-rigid structure estimation by introducing the basic low-rank condition. Moreover, the Accelerated Proximal Gradient (APG) algorithm is proposed to solve the rank minimization problem, and the initial structure matrix calculated by the PTA method is optimized. The APG algorithm can converge to efficient solutions quickly and lessen the reconstruction error obviously. The reconstruction results of real image sequences indicate that the proposed approach runs reliably, and effectively improves the accuracy of non-rigid structure estimation from monocular vision. PMID:26473863
NASA Astrophysics Data System (ADS)
Shariff, Nurul Sima Mohamad; Ferdaos, Nur Aqilah
2017-08-01
Multicollinearity often leads to inconsistent and unreliable parameter estimates in regression analysis. This situation will be more severe in the presence of outliers it will cause fatter tails in the error distributions than the normal distributions. The well-known procedure that is robust to multicollinearity problem is the ridge regression method. This method however is expected to be affected by the presence of outliers due to some assumptions imposed in the modeling procedure. Thus, the robust version of existing ridge method with some modification in the inverse matrix and the estimated response value is introduced. The performance of the proposed method is discussed and comparisons are made with several existing estimators namely, Ordinary Least Squares (OLS), ridge regression and robust ridge regression based on GM-estimates. The finding of this study is able to produce reliable parameter estimates in the presence of both multicollinearity and outliers in the data.
Reliable femoral frame construction based on MRI dedicated to muscles position follow-up.
Dubois, G; Bonneau, D; Lafage, V; Rouch, P; Skalli, W
2015-10-01
In vivo follow-up of muscle shape variation represents a challenge when evaluating muscle development due to disease or treatment. Recent developments in muscles reconstruction techniques indicate MRI as a clinical tool for the follow-up of the thigh muscles. The comparison of 3D muscles shape from two different sequences is not easy because there is no common frame. This study proposes an innovative method for the reconstruction of a reliable femoral frame based on the femoral head and both condyles centers. In order to robustify the definition of condylar spheres, an original method was developed to combine the estimation of diameters of both condyles from the lateral antero-posterior distance and the estimation of the spheres center from an optimization process. The influence of spacing between MR slices and of origin positions was studied. For all axes, the proposed method presented an angular error lower than 1° with spacing between slice of 10 mm and the optimal position of the origin was identified at 56 % of the distance between the femoral head center and the barycenter of both condyles. The high reliability of this method provides a robust frame for clinical follow-up based on MRI .
Rosenblum, Uri; Melzer, Itshak
2017-01-01
About 90% of people with multiple sclerosis (PwMS) have gait instability and 50% fall. Reliable and clinically feasible methods of gait instability assessment are needed. The study investigated the reliability and validity of the Narrow Path Walking Test (NPWT) under single-task (ST) and dual-task (DT) conditions for PwMS. Thirty PwMS performed the NPWT on 2 different occasions, a week apart. Number of Steps, Trial Time, Trial Velocity, Step Length, Number of Step Errors, Number of Cognitive Task Errors, and Number of Balance Losses were measured. Intraclass correlation coefficients (ICC2,1) were calculated from the average values of NPWT parameters. Absolute reliability was quantified from standard error of measurement (SEM) and smallest real difference (SRD). Concurrent validity of NPWT with Functional Reach Test, Four Square Step Test (FSST), 12-item Multiple Sclerosis Walking Scale (MSWS-12), and 2 Minute Walking Test (2MWT) was determined using partial correlations. Intraclass correlation coefficients (ICCs) for most NPWT parameters during ST and DT ranged from 0.46-0.94 and 0.55-0.95, respectively. The highest relative reliability was found for Number of Step Errors (ICC = 0.94 and 0.93, for ST and DT, respectively) and Trial Velocity (ICC = 0.83 and 0.86, for ST and DT, respectively). Absolute reliability was high for Number of Step Errors in ST (SEM % = 19.53%) and DT (SEM % = 18.14%) and low for Trial Velocity in ST (SEM % = 6.88%) and DT (SEM % = 7.29%). Significant correlations for Number of Step Errors and Trial Velocity were found with FSST, MSWS-12, and 2MWT. In persons with PwMS performing the NPWT, Number of Step Errors and Trial Velocity were highly reliable parameters. Based on correlations with other measures of gait instability, Number of Step Errors was the most valid parameter of dynamic balance under the conditions of our test.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A159).
A Fresh Start for Flood Estimation in Ungauged Basins
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?
Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid Waveform.
Tavallali, Peyman; Razavi, Marianne; Pahlevan, Niema M
2018-01-17
In this article, we offer an artificial intelligence method to estimate the carotid-femoral Pulse Wave Velocity (PWV) non-invasively from one uncalibrated carotid waveform measured by tonometry and few routine clinical variables. Since the signal processing inputs to this machine learning algorithm are sensor agnostic, the presented method can accompany any medical instrument that provides a calibrated or uncalibrated carotid pressure waveform. Our results show that, for an unseen hold back test set population in the age range of 20 to 69, our model can estimate PWV with a Root-Mean-Square Error (RMSE) of 1.12 m/sec compared to the reference method. The results convey the fact that this model is a reliable surrogate of PWV. Our study also showed that estimated PWV was significantly associated with an increased risk of CVDs.
Estimations of population density for selected periods between the Neolithic and AD 1800.
Zimmermann, Andreas; Hilpert, Johanna; Wendt, Karl Peter
2009-04-01
Abstract We describe a combination of methods applied to obtain reliable estimations of population density using archaeological data. The combination is based on a hierarchical model of scale levels. The necessary data and methods used to obtain the results are chosen so as to define transfer functions from one scale level to another. We apply our method to data sets from western Germany that cover early Neolithic, Iron Age, Roman, and Merovingian times as well as historical data from AD 1800. Error margins and natural and historical variability are discussed. Our results for nonstate societies are always lower than conventional estimations compiled from the literature, and we discuss the reasons for this finding. At the end, we compare the calculated local and global population densities with other estimations from different parts of the world.
Fitzgerald, John S; Johnson, LuAnn; Tomkinson, Grant; Stein, Jesse; Roemmich, James N
2018-05-01
Mechanography during the vertical jump may enhance screening and determining mechanistic causes underlying physical performance changes. Utility of jump mechanography for evaluation is limited by scant test-retest reliability data on force-time variables. This study examined the test-retest reliability of eight jump execution variables assessed from mechanography. Thirty-two women (mean±SD: age 20.8 ± 1.3 yr) and 16 men (age 22.1 ± 1.9 yr) attended a familiarization session and two testing sessions, all one week apart. Participants performed two variations of the squat jump with squat depth self-selected and controlled using a goniometer to 80º knee flexion. Test-retest reliability was quantified as the systematic error (using effect size between jumps), random error (using coefficients of variation), and test-retest correlations (using intra-class correlation coefficients). Overall, jump execution variables demonstrated acceptable reliability, evidenced by small systematic errors (mean±95%CI: 0.2 ± 0.07), moderate random errors (mean±95%CI: 17.8 ± 3.7%), and very strong test-retest correlations (range: 0.73-0.97). Differences in random errors between controlled and self-selected protocols were negligible (mean±95%CI: 1.3 ± 2.3%). Jump execution variables demonstrated acceptable reliability, with no meaningful differences between the controlled and self-selected jump protocols. To simplify testing, a self-selected jump protocol can be used to assess force-time variables with negligible impact on measurement error.
Kim, Sara; Brock, Doug; Prouty, Carolyn D; Odegard, Peggy Soule; Shannon, Sarah E; Robins, Lynne; Boggs, Jim G; Clark, Fiona J; Gallagher, Thomas
2011-01-01
Multiple-choice exams are not well suited for assessing communication skills. Standardized patient assessments are costly and patient and peer assessments are often biased. Web-based assessment using video content offers the possibility of reliable, valid, and cost-efficient means for measuring complex communication skills, including interprofessional communication. We report development of the Web-based Team-Oriented Medical Error Communication Assessment Tool, which uses videotaped cases for assessing skills in error disclosure and team communication. Steps in development included (a) defining communication behaviors, (b) creating scenarios, (c) developing scripts, (d) filming video with professional actors, and (e) writing assessment questions targeting team communication during planning and error disclosure. Using valid data from 78 participants in the intervention group, coefficient alpha estimates of internal consistency were calculated based on the Likert-scale questions and ranged from α=.79 to α=.89 for each set of 7 Likert-type discussion/planning items and from α=.70 to α=.86 for each set of 8 Likert-type disclosure items. The preliminary test-retest Pearson correlation based on the scores of the intervention group was r=.59 for discussion/planning and r=.25 for error disclosure sections, respectively. Content validity was established through reliance on empirically driven published principles of effective disclosure as well as integration of expert views across all aspects of the development process. In addition, data from 122 medicine and surgical physicians and nurses showed high ratings for video quality (4.3 of 5.0), acting (4.3), and case content (4.5). Web assessment of communication skills appears promising. Physicians and nurses across specialties respond favorably to the tool.
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.
1993-01-01
The protonation of N2O and the intramolecular proton transfer in N2OH(+) are studied using various basis sets and a variety of methods, including second-order many-body perturbation theory (MP2), singles and doubles coupled cluster (CCSD), the augmented coupled cluster (CCSD/T/), and complete active space self-consistent field (CASSCF) methods. For geometries, MP2 leads to serious errors even for HNNO(+); for the transition state, only CCSD/T/ produces a reliable geometry due to serious nondynamical correlation effects. The proton affinity at 298.15 K is estimated at 137.6 kcal/mol, in close agreement with recent experimental determinations of 137.3 +/- 1 kcal/mol.
Bourne, Richard S; Shulman, Rob; Tomlin, Mark; Borthwick, Mark; Berry, Will; Mills, Gary H
2017-04-01
To identify between and within profession-rater reliability of clinical impact grading for common critical care prescribing error and optimisation cases. To identify representative clinical impact grades for each individual case. Electronic questionnaire. 5 UK NHS Trusts. 30 Critical care healthcare professionals (doctors, pharmacists and nurses). Participants graded severity of clinical impact (5-point categorical scale) of 50 error and 55 optimisation cases. Case between and within profession-rater reliability and modal clinical impact grading. Between and within profession rater reliability analysis used linear mixed model and intraclass correlation, respectively. The majority of error and optimisation cases (both 76%) had a modal clinical severity grade of moderate or higher. Error cases: doctors graded clinical impact significantly lower than pharmacists (-0.25; P < 0.001) and nurses (-0.53; P < 0.001), with nurses significantly higher than pharmacists (0.28; P < 0.001). Optimisation cases: doctors graded clinical impact significantly lower than nurses and pharmacists (-0.39 and -0.5; P < 0.001, respectively). Within profession reliability grading was excellent for pharmacists (0.88 and 0.89; P < 0.001) and doctors (0.79 and 0.83; P < 0.001) but only fair to good for nurses (0.43 and 0.74; P < 0.001), for optimisation and error cases, respectively. Representative clinical impact grades for over 100 common prescribing error and optimisation cases are reported for potential clinical practice and research application. The between professional variability highlights the importance of multidisciplinary perspectives in assessment of medication error and optimisation cases in clinical practice and research. © The Author 2017. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Stochastic Models of Human Errors
NASA Technical Reports Server (NTRS)
Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)
2002-01-01
Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.
Context-Aided Sensor Fusion for Enhanced Urban Navigation
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-01-01
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080
Effects of practice on the Wechsler Adult Intelligence Scale-IV across 3- and 6-month intervals.
Estevis, Eduardo; Basso, Michael R; Combs, Dennis
2012-01-01
A total of 54 participants (age M = 20.9; education M = 14.9; initial Full Scale IQ M = 111.6) were administered the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) at baseline and again either 3 or 6 months later. Scores on the Full Scale IQ, Verbal Comprehension, Working Memory, Perceptual Reasoning, Processing Speed, and General Ability Indices improved approximately 7, 5, 4, 5, 9, and 6 points, respectively, and increases were similar regardless of whether the re-examination occurred over 3- or 6-month intervals. Reliable change indices (RCI) were computed using the simple difference and bivariate regression methods, providing estimated base rates of change across time. The regression method provided more accurate estimates of reliable change than did the simple difference between baseline and follow-up scores. These findings suggest that prior exposure to the WAIS-IV results in significant score increments. These gains reflect practice effects instead of genuine intellectual changes, which may lead to errors in clinical judgment.
Context-aided sensor fusion for enhanced urban navigation.
Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María
2012-12-06
The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.
Ionospheric propagation correction modeling for satellite altimeters
NASA Technical Reports Server (NTRS)
Nesterczuk, G.
1981-01-01
The theoretical basis and avaliable accuracy verifications were reviewed and compared for ionospheric correction procedures based on a global ionsopheric model driven by solar flux, and a technique in which measured electron content (using Faraday rotation measurements) for one path is mapped into corrections for a hemisphere. For these two techniques, RMS errors for correcting satellite altimeters data (at 14 GHz) are estimated to be 12 cm and 3 cm, respectively. On the basis of global accuracy and reliability after implementation, the solar flux model is recommended.
Models and metrics for software management and engineering
NASA Technical Reports Server (NTRS)
Basili, V. R.
1988-01-01
This paper attempts to characterize and present a state of the art view of several quantitative models and metrics of the software life cycle. These models and metrics can be used to aid in managing and engineering software projects. They deal with various aspects of the software process and product, including resources allocation and estimation, changes and errors, size, complexity and reliability. Some indication is given of the extent to which the various models have been used and the success they have achieved.
NASA Astrophysics Data System (ADS)
Forbes, Kevin F.; St. Cyr, O. C.
2017-10-01
This paper addresses whether geomagnetic activity challenged the reliability of the electric power system during part of the declining phase of solar cycle 23. Operations by National Grid in England and Wales are examined over the period of 11 March 2003 through 31 March 2005. This paper examines the relationship between measures of geomagnetic activity and a metric of challenged electric power reliability known as the net imbalance volume (NIV). Measured in megawatt hours, NIV represents the sum of all energy deployments initiated by the system operator to balance the electric power system. The relationship between geomagnetic activity and NIV is assessed using a multivariate econometric model. The model was estimated using half-hour settlement data over the period of 11 March 2003 through 31 December 2004. The results indicate that geomagnetic activity had a demonstrable effect on NIV over the sample period. Based on the parameter estimates, out-of-sample predictions of NIV were generated for each half hour over the period of 1 January to 31 March 2005. Consistent with the existence of a causal relationship between geomagnetic activity and the electricity market imbalance, the root-mean-square error of the out-of-sample predictions of NIV is smaller; that is, the predictions are more accurate, when the statistically significant estimated effects of geomagnetic activity are included as drivers in the predictions.
Learmonth, Yvonne C; Dlugonski, Deirdre D; Pilutti, Lara A; Sandroff, Brian M; Motl, Robert W
2013-11-01
Assessing walking impairment in those with multiple sclerosis (MS) is common, however little is known about the reliability, precision and clinically important change of walking outcomes. The purpose of this study was to determine the reliability, precision and clinically important change of the Timed 25-Foot Walk (T25FW), Six-Minute Walk (6MW), Multiple Sclerosis Walking Scale-12 (MSWS-12) and accelerometry. Data were collected from 82 persons with MS at two time points, six months apart. Analyses were undertaken for the whole sample and stratified based on disability level and usage of walking aids. Intraclass correlation coefficient (ICC) analyses established reliability: standard error of measurement (SEM) and coefficient of variation (CV) determined precision; and minimal detectable change (MDC) defined clinically important change. All outcome measures were reliable with precision and MDC varying between measures in the whole sample: T25FW: ICC=0.991; SEM=1 s; CV=6.2%; MDC=2.7 s (36%), 6MW: ICC=0.959; SEM=32 m; CV=6.2%; MDC=88 m (20%), MSWS-12: ICC=0.927; SEM=8; CV=27%; MDC=22 (53%), accelerometry counts/day: ICC=0.883; SEM=28450; CV=17%; MDC=78860 (52%), accelerometry steps/day: ICC=0.907; SEM=726; CV=16%; MDC=2011 (45%). Variation in these estimates was seen based on disability level and walking aid. The reliability of these outcomes is good and falls within acceptable ranges. Precision and clinically important change estimates provide guidelines for interpreting these outcomes in clinical and research settings.
Automated comprehensive Adolescent Idiopathic Scoliosis assessment using MVC-Net.
Wu, Hongbo; Bailey, Chris; Rasoulinejad, Parham; Li, Shuo
2018-05-18
Automated quantitative estimation of spinal curvature is an important task for the ongoing evaluation and treatment planning of Adolescent Idiopathic Scoliosis (AIS). It solves the widely accepted disadvantage of manual Cobb angle measurement (time-consuming and unreliable) which is currently the gold standard for AIS assessment. Attempts have been made to improve the reliability of automated Cobb angle estimation. However, it is very challenging to achieve accurate and robust estimation of Cobb angles due to the need for correctly identifying all the required vertebrae in both Anterior-posterior (AP) and Lateral (LAT) view x-rays. The challenge is especially evident in LAT x-ray where occlusion of vertebrae by the ribcage occurs. We therefore propose a novel Multi-View Correlation Network (MVC-Net) architecture that can provide a fully automated end-to-end framework for spinal curvature estimation in multi-view (both AP and LAT) x-rays. The proposed MVC-Net uses our newly designed multi-view convolution layers to incorporate joint features of multi-view x-rays, which allows the network to mitigate the occlusion problem by utilizing the structural dependencies of the two views. The MVC-Net consists of three closely-linked components: (1) a series of X-modules for joint representation of spinal structure (2) a Spinal Landmark Estimator network for robust spinal landmark estimation, and (3) a Cobb Angle Estimator network for accurate Cobb Angles estimation. By utilizing an iterative multi-task training algorithm to train the Spinal Landmark Estimator and Cobb Angle Estimator in tandem, the MVC-Net leverages the multi-task relationship between landmark and angle estimation to reliably detect all the required vertebrae for accurate Cobb angles estimation. Experimental results on 526 x-ray images from 154 patients show an impressive 4.04° Circular Mean Absolute Error (CMAE) in AP Cobb angle and 4.07° CMAE in LAT Cobb angle estimation, which demonstrates the MVC-Net's capability of robust and accurate estimation of Cobb angles in multi-view x-rays. Our method therefore provides clinicians with a framework for efficient, accurate, and reliable estimation of spinal curvature for comprehensive AIS assessment. Copyright © 2018. Published by Elsevier B.V.
Mehta, Shraddha; Bastero-Caballero, Rowena F; Sun, Yijun; Zhu, Ray; Murphy, Diane K; Hardas, Bhushan; Koch, Gary
2018-04-29
Many published scale validation studies determine inter-rater reliability using the intra-class correlation coefficient (ICC). However, the use of this statistic must consider its advantages, limitations, and applicability. This paper evaluates how interaction of subject distribution, sample size, and levels of rater disagreement affects ICC and provides an approach for obtaining relevant ICC estimates under suboptimal conditions. Simulation results suggest that for a fixed number of subjects, ICC from the convex distribution is smaller than ICC for the uniform distribution, which in turn is smaller than ICC for the concave distribution. The variance component estimates also show that the dissimilarity of ICC among distributions is attributed to the study design (ie, distribution of subjects) component of subject variability and not the scale quality component of rater error variability. The dependency of ICC on the distribution of subjects makes it difficult to compare results across reliability studies. Hence, it is proposed that reliability studies should be designed using a uniform distribution of subjects because of the standardization it provides for representing objective disagreement. In the absence of uniform distribution, a sampling method is proposed to reduce the non-uniformity. In addition, as expected, high levels of disagreement result in low ICC, and when the type of distribution is fixed, any increase in the number of subjects beyond a moderately large specification such as n = 80 does not have a major impact on ICC. Copyright © 2018 John Wiley & Sons, Ltd.
Allodji, Rodrigue S; Schwartz, Boris; Diallo, Ibrahima; Agbovon, Césaire; Laurier, Dominique; de Vathaire, Florent
2015-08-01
Analyses of the Life Span Study (LSS) of Japanese atomic bombing survivors have routinely incorporated corrections for additive classical measurement errors using regression calibration. Recently, several studies reported that the efficiency of the simulation-extrapolation method (SIMEX) is slightly more accurate than the simple regression calibration method (RCAL). In the present paper, the SIMEX and RCAL methods have been used to address errors in atomic bomb survivor dosimetry on solid cancer and leukaemia mortality risk estimates. For instance, it is shown that using the SIMEX method, the ERR/Gy is increased by an amount of about 29 % for all solid cancer deaths using a linear model compared to the RCAL method, and the corrected EAR 10(-4) person-years at 1 Gy (the linear terms) is decreased by about 8 %, while the corrected quadratic term (EAR 10(-4) person-years/Gy(2)) is increased by about 65 % for leukaemia deaths based on a linear-quadratic model. The results with SIMEX method are slightly higher than published values. The observed differences were probably due to the fact that with the RCAL method the dosimetric data were partially corrected, while all doses were considered with the SIMEX method. Therefore, one should be careful when comparing the estimated risks and it may be useful to use several correction techniques in order to obtain a range of corrected estimates, rather than to rely on a single technique. This work will enable to improve the risk estimates derived from LSS data, and help to make more reliable the development of radiation protection standards.
Self-calibration method without joint iteration for distributed small satellite SAR systems
NASA Astrophysics Data System (ADS)
Xu, Qing; Liao, Guisheng; Liu, Aifei; Zhang, Juan
2013-12-01
The performance of distributed small satellite synthetic aperture radar systems degrades significantly due to the unavoidable array errors, including gain, phase, and position errors, in real operating scenarios. In the conventional method proposed in (IEEE T Aero. Elec. Sys. 42:436-451, 2006), the spectrum components within one Doppler bin are considered as calibration sources. However, it is found in this article that the gain error estimation and the position error estimation in the conventional method can interact with each other. The conventional method may converge to suboptimal solutions in large position errors since it requires the joint iteration between gain-phase error estimation and position error estimation. In addition, it is also found that phase errors can be estimated well regardless of position errors when the zero Doppler bin is chosen. In this article, we propose a method obtained by modifying the conventional one, based on these two observations. In this modified method, gain errors are firstly estimated and compensated, which eliminates the interaction between gain error estimation and position error estimation. Then, by using the zero Doppler bin data, the phase error estimation can be performed well independent of position errors. Finally, position errors are estimated based on the Taylor-series expansion. Meanwhile, the joint iteration between gain-phase error estimation and position error estimation is not required. Therefore, the problem of suboptimal convergence, which occurs in the conventional method, can be avoided with low computational method. The modified method has merits of faster convergence and lower estimation error compared to the conventional one. Theoretical analysis and computer simulation results verified the effectiveness of the modified method.
ERIC Educational Resources Information Center
Sheehan, Dwayne P.; Lafave, Mark R.; Katz, Larry
2011-01-01
This study was designed to test the intra- and inter-rater reliability of the University of North Carolina's Balance Error Scoring System in 9- and 10-year-old children. Additionally, a modified version of the Balance Error Scoring System was tested to determine if it was more sensitive in this population ("raw scores"). Forty-six…
Seamon, Bryant A.; Teixeira, Carla; Ismail, Catheeja
2016-01-01
Background. Quantitative diagnostic ultrasound imaging has been proposed as a method of estimating muscle quality using measures of echogenicity. The Rectangular Marquee Tool (RMT) and the Free Hand Tool (FHT) are two types of editing features used in Photoshop and ImageJ for determining a region of interest (ROI) within an ultrasound image. The primary objective of this study is to determine the intrarater and interrater reliability of Photoshop and ImageJ for the estimate of muscle tissue echogenicity in older adults via grayscale histogram analysis. The secondary objective is to compare the mean grayscale values obtained using both the RMT and FHT methods across both image analysis platforms. Methods. This cross-sectional observational study features 18 community-dwelling men (age = 61.5 ± 2.32 years). Longitudinal views of the rectus femoris were captured using B-mode ultrasound. The ROI for each scan was selected by 2 examiners using the RMT and FHT methods from each software program. Their reliability is assessed using intraclass correlation coefficients (ICCs) and the standard error of the measurement (SEM). Measurement agreement for these values is depicted using Bland-Altman plots. A paired t-test is used to determine mean differences in echogenicity expressed as grayscale values using the RMT and FHT methods to select the post-image acquisition ROI. The degree of association among ROI selection methods and image analysis platforms is analyzed using the coefficient of determination (R2). Results. The raters demonstrated excellent intrarater and interrater reliability using the RMT and FHT methods across both platforms (lower bound 95% CI ICC = .97–.99, p < .001). Mean differences between the echogenicity estimates obtained with the RMT and FHT methods was .87 grayscale levels (95% CI [.54–1.21], p < .0001) using data obtained with both programs. The SEM for Photoshop was .97 and 1.05 grayscale levels when using the RMT and FHT ROI selection methods, respectively. Comparatively, the SEM values were .72 and .81 grayscale levels, respectively, when using the RMT and FHT ROI selection methods in ImageJ. Uniform coefficients of determination (R2 = .96–.99, p < .001) indicate strong positive associations among the grayscale histogram analysis measurement conditions independent of the ROI selection methods and imaging platform. Conclusion. Our method for evaluating muscle echogenicity demonstrated a high degree of intrarater and interrater reliability using both the RMT and FHT methods across 2 common image analysis platforms. The minimal measurement error exhibited by the examiners demonstrates that the ROI selection methods used with Photoshop and ImageJ are suitable for the post-acquisition image analysis of tissue echogenicity in older adults. PMID:26925339
NASA Astrophysics Data System (ADS)
Feng, S.; Lauvaux, T.; Keller, K.; Davis, K. J.
2016-12-01
Current estimates of biogenic carbon fluxes over North America based on top-down atmospheric inversions are subject to considerable uncertainty. This uncertainty stems to a large part from the uncertain prior fluxes estimates with the associated error covariances and approximations in the atmospheric transport models that link observed carbon dioxide mixing ratios with surface fluxes. Specifically, approximations in the representation of vertical mixing associated with atmospheric turbulence or convective transport and largely under-determined prior fluxes and their error structures significantly hamper our capacity to reliably estimate regional carbon fluxes. The Atmospheric Carbon and Transport - America (ACT-America) mission aims at reducing the uncertainties in inverse fluxes at the regional-scale by deploying airborne and ground-based platforms to characterize atmospheric GHG mixing ratios and the concurrent atmospheric dynamics. Two aircraft measure the 3-dimensional distribution of greenhouse gases at synoptic scales, focusing on the atmospheric boundary layer and the free troposphere during both fair and stormy weather conditions. Here we analyze two main questions: (i) What level of information can we expect from the currently planned observations? (ii) How might ACT-America reduce the hindcast and predictive uncertainty of carbon estimates over North America?
Visual judgements of steadiness in one-legged stance: reliability and validity.
Haupstein, T; Goldie, P
2000-01-01
There is a paucity of information about the validity and reliability of clinicians' visual judgements of steadiness in one-legged stance. Such judgements are used frequently in clinical practice to support decisions about treatment in the fields of neurology, sports medicine, paediatrics and orthopaedics. The aim of the present study was to address the validity and reliability of visual judgements of steadiness in one-legged stance in a group of physiotherapists. A videotape of 20 five-second performances was shown to 14 physiotherapists with median clinical experience of 6.75 years. Validity of visual judgement was established by correlating scores obtained from an 11-point rating scale with criterion scores obtained from a force platform. In addition, partial correlations were used to control for the potential influence of body weight on the relationship between the visual judgements and criterion scores. Inter-observer reliability was quantified between the physiotherapists; intra-observer reliability was quantified between two tests four weeks apart. Mean criterion-related validity was high, regardless of whether body weight was controlled for statistically (Pearson's r = 0.84, 0.83, respectively). The standard error of estimating the criterion score was 3.3 newtons. Inter-observer reliability was high (ICC (2,1) = 0.81 at Test 1 and 0.82 at Test 2). Intra-observer reliability was high (on average ICC (2,1) = 0.88; Pearson's r = 0.90). The standard error of measurement for the 11-point scale was one unit. The finding of higher accuracy of making visual judgements than previously reported may be due to several aspects of design: use of a criterion score derived from the variability of the force signal which is more discriminating than variability of centre of pressure; use of a discriminating visual rating scale; specificity and clear definition of the phenomenon to be rated.
Reliability and validity of two isometric squat tests.
Blazevich, Anthony J; Gill, Nicholas; Newton, Robert U
2002-05-01
The purpose of the present study was first to examine the reliability of isometric squat (IS) and isometric forward hack squat (IFHS) tests to determine if repeated measures on the same subjects yielded reliable results. The second purpose was to examine the relation between isometric and dynamic measures of strength to assess validity. Fourteen male subjects performed maximal IS and IFHS tests on 2 occasions and 1 repetition maximum (1-RM) free-weight squat and forward hack squat (FHS) tests on 1 occasion. The 2 tests were found to be highly reliable (intraclass correlation coefficient [ICC](IS) = 0.97 and ICC(IFHS) = 1.00). There was a strong relation between average IS and 1-RM squat performance, and between IFHS and 1-RM FHS performance (r(squat) = 0.77, r(FHS) = 0.76; p < 0.01), but a weak relation between squat and FHS test performances (r < 0.55). There was also no difference between observed 1-RM values and those predicted by our regression equations. Errors in predicting 1-RM performance were in the order of 8.5% (standard error of the estimate [SEE] = 13.8 kg) and 7.3% (SEE = 19.4 kg) for IS and IFHS respectively. Correlations between isometric and 1-RM tests were not of sufficient size to indicate high validity of the isometric tests. Together the results suggest that IS and IFHS tests could detect small differences in multijoint isometric strength between subjects, or performance changes over time, and that the scores in the isometric tests are well related to 1-RM performance. However, there was a small error when predicting 1-RM performance from isometric performance, and these tests have not been shown to discriminate between small changes in dynamic strength. The weak relation between squat and FHS test performance can be attributed to differences in the movement patterns of the tests
ERIC Educational Resources Information Center
Raykov, Tenko; Penev, Spiridon
2006-01-01
Unlike a substantial part of reliability literature in the past, this article is concerned with weighted combinations of a given set of congeneric measures with uncorrelated errors. The relationship between maximal coefficient alpha and maximal reliability for such composites is initially dealt with, and it is shown that the former is a lower…
ERIC Educational Resources Information Center
Schretlen, David; And Others
1994-01-01
Composite reliability and standard errors of measurement were computed for prorated Verbal, Performance, and Full-Scale intelligence quotient (IQ) scores from a seven-subtest short form of the Wechsler Adult Intelligence Scale-Revised. Results with 1,880 adults (standardization sample) indicate that this form is as reliable as the complete test.…
A cascaded coding scheme for error control and its performance analysis
NASA Technical Reports Server (NTRS)
Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo
1986-01-01
A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.
The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model
Fritz, Matthew S.; Kenny, David A.; MacKinnon, David P.
2016-01-01
Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator to outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined effect of measurement error and omitted confounders in the same model, the impact of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect. PMID:27739903
Xiaopeng, Q I; Liang, Wei; Barker, Laurie; Lekiachvili, Akaki; Xingyou, Zhang
Temperature changes are known to have significant impacts on human health. Accurate estimates of population-weighted average monthly air temperature for US counties are needed to evaluate temperature's association with health behaviours and disease, which are sampled or reported at the county level and measured on a monthly-or 30-day-basis. Most reported temperature estimates were calculated using ArcGIS, relatively few used SAS. We compared the performance of geostatistical models to estimate population-weighted average temperature in each month for counties in 48 states using ArcGIS v9.3 and SAS v 9.2 on a CITGO platform. Monthly average temperature for Jan-Dec 2007 and elevation from 5435 weather stations were used to estimate the temperature at county population centroids. County estimates were produced with elevation as a covariate. Performance of models was assessed by comparing adjusted R 2 , mean squared error, root mean squared error, and processing time. Prediction accuracy for split validation was above 90% for 11 months in ArcGIS and all 12 months in SAS. Cokriging in SAS achieved higher prediction accuracy and lower estimation bias as compared to cokriging in ArcGIS. County-level estimates produced by both packages were positively correlated (adjusted R 2 range=0.95 to 0.99); accuracy and precision improved with elevation as a covariate. Both methods from ArcGIS and SAS are reliable for U.S. county-level temperature estimates; However, ArcGIS's merits in spatial data pre-processing and processing time may be important considerations for software selection, especially for multi-year or multi-state projects.
Results and Error Estimates from GRACE Forward Modeling over Antarctica
NASA Astrophysics Data System (ADS)
Bonin, Jennifer; Chambers, Don
2013-04-01
Forward modeling using a weighted least squares technique allows GRACE information to be projected onto a pre-determined collection of local basins. This decreases the impact of spatial leakage, allowing estimates of mass change to be better localized. The technique is especially valuable where models of current-day mass change are poor, such as over Antarctica. However when tested previously, the least squares technique has required constraints in the form of added process noise in order to be reliable. Poor choice of local basin layout has also adversely affected results, as has the choice of spatial smoothing used with GRACE. To develop design parameters which will result in correct high-resolution mass detection and to estimate the systematic errors of the method over Antarctica, we use a "truth" simulation of the Antarctic signal. We apply the optimal parameters found from the simulation to RL05 GRACE data across Antarctica and the surrounding ocean. We particularly focus on separating the Antarctic peninsula's mass signal from that of the rest of western Antarctica. Additionally, we characterize how well the technique works for removing land leakage signal from the nearby ocean, particularly that near the Drake Passage.
Localization Based on Magnetic Markers for an All-Wheel Steering Vehicle
Byun, Yeun Sub; Kim, Young Chol
2016-01-01
Real-time continuous localization is a key technology in the development of intelligent transportation systems. In these systems, it is very important to have accurate information about the position and heading angle of the vehicle at all times. The most widely implemented methods for positioning are the global positioning system (GPS), vision-based system, and magnetic marker system. Among these methods, the magnetic marker system is less vulnerable to indoor and outdoor environment conditions; moreover, it requires minimal maintenance expenses. In this paper, we present a position estimation scheme based on magnetic markers and odometry sensors for an all-wheel-steering vehicle. The heading angle of the vehicle is determined by using the position coordinates of the last two detected magnetic markers and odometer data. The instant position and heading angle of the vehicle are integrated with an extended Kalman filter to estimate the continuous position. GPS data with the real-time kinematics mode was obtained to evaluate the performance of the proposed position estimation system. The test results show that the performance of the proposed localization algorithm is accurate (mean error: 3 cm; max error: 9 cm) and reliable under unexpected missing markers or incorrect markers. PMID:27916827
Simultaneous localization and calibration for electromagnetic tracking systems.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2016-06-01
In clinical environments, field distortion can cause significant electromagnetic tracking errors. Therefore, dynamic calibration of electromagnetic tracking systems is essential to compensate for measurement errors. It is proposed to integrate the motion model of the tracked instrument with redundant EM sensor observations and to apply a simultaneous localization and mapping algorithm in order to accurately estimate the pose of the instrument and create a map of the field distortion in real-time. Experiments were conducted in the presence of ferromagnetic and electrically-conductive field distorting objects and results compared with those of a conventional sensor fusion approach. The proposed method reduced the tracking error from 3.94±1.61 mm to 1.82±0.62 mm in the presence of steel, and from 0.31±0.22 mm to 0.11±0.14 mm in the presence of aluminum. With reduced tracking error and independence from external tracking devices or pre-operative calibrations, the approach is promising for reliable EM navigation in various clinical procedures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Strangman, Gary; Franceschini, Maria Angela; Boas, David A.; Sutton, J. P. (Principal Investigator)
2003-01-01
Near-infrared spectroscopy (NIRS) can be used to noninvasively measure changes in the concentrations of oxy- and deoxyhemoglobin in tissue. We have previously shown that while global changes can be reliably measured, focal changes can produce erroneous estimates of concentration changes (NeuroImage 13 (2001), 76). Here, we describe four separate sources for systematic error in the calculation of focal hemoglobin changes from NIRS data and use experimental methods and Monte Carlo simulations to examine the importance and mitigation methods of each. The sources of error are: (1). the absolute magnitudes and relative differences in pathlength factors as a function of wavelength, (2). the location and spatial extent of the absorption change with respect to the optical probe, (3). possible differences in the spatial distribution of hemoglobin species, and (4). the potential for simultaneous monitoring of multiple regions of activation. We found wavelength selection and optode placement to be important variables in minimizing such errors, and our findings indicate that appropriate experimental procedures could reduce each of these errors to a small fraction (<10%) of the observed concentration changes.
Estimating tree bole volume using artificial neural network models for four species in Turkey.
Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V
2010-01-01
Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.
Validity of mail survey data on bagged waterfowl
Atwood, E.L.
1956-01-01
Knowledge of the pattern of occurrence and characteristics of response errors obtained during an investigation of the validity of post-season surveys of hunters was used to advantage to devise a two-step method for removing the response-bias errors from the raw survey data. The method was tested on data with known errors and found to have a high efficiency in reducing the effect of response-bias errors. The development of this method for removing the effect of the response-bias errors, and its application to post-season hunter-take survey data, increased the reliability of the data from below the point of practical management significance up to the approximate reliability limits corresponding to the sampling errors.