Rodríguez-Sánchez, B; Sánchez-Carrillo, C; Ruiz, A; Marín, M; Cercenado, E; Rodríguez-Créixems, M; Bouza, E
2014-07-01
In recent years, matrix-assisted laser desorption-ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has proved a rapid and reliable method for the identification of bacteria and yeasts that have already been isolated. The objective of this study was to evaluate this technology as a routine method for the identification of microorganisms directly from blood culture bottles (BCBs), before isolation, in a large collection of samples. For this purpose, 1000 positive BCBs containing 1085 microorganisms have been analysed by conventional phenotypic methods and by MALDI-TOF MS. Discrepancies have been resolved using molecular methods: the amplification and sequencing of the 16S rRNA gene or the Superoxide Dismutase gene (sodA) for streptococcal isolates. MALDI-TOF predicted a species- or genus-level identification of 81.4% of the analysed microorganisms. The analysis by episode yielded a complete identification of 814 out of 1000 analysed episodes (81.4%). MALDI-TOF identification is available for clinicians within hours of a working shift, as oppose to 18 h later when conventional identification methods are performed. Moreover, although further improvement of sample preparation for polymicrobial BCBs is required, the identification of more than one pathogen in the same BCB provides a valuable indication of unexpected pathogens when their presence may remain undetected in Gram staining. Implementation of MALDI-TOF identification directly from the BCB provides a rapid and reliable identification of the causal pathogen within hours. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria.
Mishra, Prashant K; Fox, Roland T V; Culham, Alastair
2003-01-28
Identification of Fusarium species has always been difficult due to confusing phenotypic classification systems. We have developed a fluorescent-based polymerase chain reaction assay that allows for rapid and reliable identification of five toxigenic and pathogenic Fusarium species. The species includes Fusarium avenaceum, F. culmorum, F. equiseti, F. oxysporum and F. sambucinum. The method is based on the PCR amplification of species-specific DNA fragments using fluorescent oligonucleotide primers, which were designed based on sequence divergence within the internal transcribed spacer region of nuclear ribosomal DNA. Besides providing an accurate, reliable, and quick diagnosis of these Fusaria, another advantage with this method is that it reduces the potential for exposure to carcinogenic chemicals as it substitutes the use of fluorescent dyes in place of ethidium bromide. Apart from its multidisciplinary importance and usefulness, it also obviates the need for gel electrophoresis.
Turfgrass diagnostics and new, advanced technologies
USDA-ARS?s Scientific Manuscript database
Strategies for sustainable, integrated disease management start with reliable pathogen identification. Conventional identification methods such as disease symptomology, host association, morphology and biochemical tests are still key diagnostic indicators for many phytopathogens; however, nucleic ac...
Irinyi, Laszlo; Serena, Carolina; Garcia-Hermoso, Dea; Arabatzis, Michael; Desnos-Ollivier, Marie; Vu, Duong; Cardinali, Gianluigi; Arthur, Ian; Normand, Anne-Cécile; Giraldo, Alejandra; da Cunha, Keith Cassia; Sandoval-Denis, Marcelo; Hendrickx, Marijke; Nishikaku, Angela Satie; de Azevedo Melo, Analy Salles; Merseguel, Karina Bellinghausen; Khan, Aziza; Parente Rocha, Juliana Alves; Sampaio, Paula; da Silva Briones, Marcelo Ribeiro; e Ferreira, Renata Carmona; de Medeiros Muniz, Mauro; Castañón-Olivares, Laura Rosio; Estrada-Barcenas, Daniel; Cassagne, Carole; Mary, Charles; Duan, Shu Yao; Kong, Fanrong; Sun, Annie Ying; Zeng, Xianyu; Zhao, Zuotao; Gantois, Nausicaa; Botterel, Françoise; Robbertse, Barbara; Schoch, Conrad; Gams, Walter; Ellis, David; Halliday, Catriona; Chen, Sharon; Sorrell, Tania C; Piarroux, Renaud; Colombo, Arnaldo L; Pais, Célia; de Hoog, Sybren; Zancopé-Oliveira, Rosely Maria; Taylor, Maria Lucia; Toriello, Conchita; de Almeida Soares, Célia Maria; Delhaes, Laurence; Stubbe, Dirk; Dromer, Françoise; Ranque, Stéphane; Guarro, Josep; Cano-Lira, Jose F; Robert, Vincent; Velegraki, Aristea; Meyer, Wieland
2015-05-01
Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
MALDI-TOF-mass spectrometry applications in clinical microbiology.
Seng, Piseth; Rolain, Jean-Marc; Fournier, Pierre Edouard; La Scola, Bernard; Drancourt, Michel; Raoult, Didier
2010-11-01
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost-effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
GyrB sequence analysis and MALDI-TOF MS as identification tools for plant pathogenic Clavibacter.
Zaluga, Joanna; Heylen, Kim; Van Hoorde, Koenraad; Hoste, Bart; Van Vaerenbergh, Johan; Maes, Martine; De Vos, Paul
2011-09-01
The bacterial genus Clavibacter has only one species, Clavibacter michiganensis, containing five subspecies. All five are plant pathogens, among which three are recognized as quarantine pests (mentioned on the EPPO A2 list). Prevention of their introduction and epidemic outbreaks requires a reliable and accurate identification. Currently, identification of these bacteria is time consuming and often problematic, mainly because of cross-reactions with other plant-associated bacteria in immunological tests and false-negative results in PCR detection methods. Furthermore, distinguishing closely related subspecies is not straightforward. This study aimed at evaluating the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and a fragment of the gyrB sequence for the reliable and fast identification of the Clavibacter subspecies. Amplification and sequencing of gyrB using a single primer set had sufficient resolution and specificity to identify each subspecies based on both sequence similarities in cluster analyses and specific signatures within the sequences. All five subspecies also generated distinct and reproducible MALDI-TOF MS profiles, with unique and specific ion peaks for each subspecies, which could be used as biomarkers for identification. Results from both methods were in agreement and were able to distinguish the five Clavibacter subspecies from each other and from representatives of closely related Rathayibacter, Leifsonia or Curtobacterium species. Our study suggests that proteomic analysis using MALDI-TOF MS and gyrB sequence are powerful diagnostic tools for the accurate identification of Clavibacter plant pathogens. Copyright © 2011 Elsevier GmbH. All rights reserved.
Padliya, Neerav D; Garrett, Wesley M; Campbell, Kimberly B; Tabb, David L; Cooper, Bret
2007-11-01
LC-MS/MS has demonstrated potential for detecting plant pathogens. Unlike PCR or ELISA, LC-MS/MS does not require pathogen-specific reagents for the detection of pathogen-specific proteins and peptides. However, the MS/MS approach we and others have explored does require a protein sequence reference database and database-search software to interpret tandem mass spectra. To evaluate the limitations of database composition on pathogen identification, we analyzed proteins from cultured Ustilago maydis, Phytophthora sojae, Fusarium graminearum, and Rhizoctonia solani by LC-MS/MS. When the search database did not contain sequences for a target pathogen, or contained sequences to related pathogens, target pathogen spectra were reliably matched to protein sequences from nontarget organisms, giving an illusion that proteins from nontarget organisms were identified. Our analysis demonstrates that when database-search software is used as part of the identification process, a paradox exists whereby additional sequences needed to detect a wide variety of possible organisms may lead to more cross-species protein matches and misidentification of pathogens.
USDA-ARS?s Scientific Manuscript database
Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are haematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens and the ...
Rapid diagnostic tests apply for pediatric infections at outpatient clinic setting.
Ushijima, Hiroshi; Thongprachum, Aksara; Tran, Dinh Nguyen; Fujimoto, Tsuguto; Hanaoka, Nozomu; Okitsu, Shoko; Takanashi, Sayaka; Mizuguchi, Masashi; Hayakawa, Satoshi
2015-01-01
Early identification of the etiology of infection is beneficial. Most infections are treated as outpatients. However, facilities for rapid diagnosis are not available in clinic settings. We applied Immunochromatography (IC) and Loop-mediated Isothermal Amplification (LAMP) methods to rapidly diagnose pathogens among 31 children with respiratory infection and 12 with gastroenteritis at a clinic in Saitama prefecture, Japan. Pathogens were then screened by multiplex conventional and real-time PCRs and bacterial culture. Respiratory pathogens were found in 64.5%. Despite the narrow spectrum, rapid tests identified pathogens in 28.6% of cases with a high agreement rate of 89.3% with PCR. Gastroenteritis pathogens were found in 66.7%. E. coli was positive in 3 cases and all were negative for verotoxin by LAMP. The agreement rate of IC and PCR assay was high, 100%. IC and LAMP are reliable and suitable methods in limited-resource settings for early pathogenic identification, which will help appropriate management, avoid unnecessary intervention, and cost saving.
Loonen, A J M; Jansz, A R; Stalpers, J; Wolffs, P F G; van den Brule, A J C
2012-07-01
Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) is a fast and reliable method for the identification of bacteria from agar media. Direct identification from positive blood cultures should decrease the time to obtaining the result. In this study, three different processing methods for the rapid direct identification of bacteria from positive blood culture bottles were compared. In total, 101 positive aerobe BacT/ALERT bottles were included in this study. Aliquots from all bottles were used for three bacterial processing methods, i.e. the commercially available Bruker's MALDI Sepsityper kit, the commercially available Molzym's MolYsis Basic5 kit and a centrifugation/washing method. In addition, the best method was used to evaluate the possibility of MALDI application after a reduced incubation time of 7 h of Staphylococcus aureus- and Escherichia coli-spiked (1,000, 100 and 10 colony-forming units [CFU]) aerobe BacT/ALERT blood cultures. Sixty-six (65%), 51 (50.5%) and 79 (78%) bottles were identified correctly at the species level when the centrifugation/washing method, MolYsis Basic 5 and Sepsityper were used, respectively. Incorrect identification was obtained in 35 (35%), 50 (49.5%) and 22 (22%) bottles, respectively. Gram-positive cocci were correctly identified in 33/52 (64%) of the cases. However, Gram-negative rods showed a correct identification in 45/47 (96%) of all bottles when the Sepsityper kit was used. Seven hours of pre-incubation of S. aureus- and E. coli-spiked aerobe BacT/ALERT blood cultures never resulted in reliable identification with MALDI-TOF MS. Sepsityper is superior for the direct identification of microorganisms from aerobe BacT/ALERT bottles. Gram-negative pathogens show better results compared to Gram-positive bacteria. Reduced incubation followed by MALDI-TOF MS did not result in faster reliable identification.
[Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].
Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina
2015-01-01
The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
Technological advances in bovine mastitis diagnosis: an overview.
Duarte, Carla M; Freitas, Paulo P; Bexiga, Ricardo
2015-11-01
Bovine mastitis is an economic burden for dairy farmers and preventive control measures are crucial for the sustainability of any dairy business. The identification of etiological agents is necessary in controlling the disease, reducing risk of chronic infections and targeting antimicrobial therapy. The suitability of a detection method for routine diagnosis depends on several factors, including specificity, sensitivity, cost, time in producing results, and suitability for large-scale sampling of milk. This article focuses on current methodologies for identification of mastitis pathogens and for detection of inflammation, as well as the advantages and disadvantages of different methods. Emerging technologies, such as transcriptome and proteome analyses and nano- and microfabrication of portable devices, offer promising, sensitive methods for advanced detection of mastitis pathogens and biomarkers of inflammation. The demand for alternative, fast, and reliable diagnostic procedures is rising as farms become bigger. Several examples of technological and scientific advances are summarized which have given rise to more sensitive, reliable and faster diagnostic results. © 2015 The Author(s).
Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.
Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark
2016-01-01
Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.
Christner, Martin; Rohde, Holger; Wolters, Manuel; Sobottka, Ingo; Wegscheider, Karl; Aepfelbacher, Martin
2010-05-01
Early and adequate antimicrobial therapy has been shown to improve the clinical outcome in bloodstream infections (BSI). To provide rapid pathogen identification for targeted treatment, we applied matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry fingerprinting to bacteria directly recovered from blood culture bottles. A total of 304 aerobic and anaerobic blood cultures, reported positive by a Bactec 9240 system, were subjected in parallel to differential centrifugation with subsequent mass spectrometry fingerprinting and reference identification using established microbiological methods. A representative spectrum of bloodstream pathogens was recovered from 277 samples that grew a single bacterial isolate. Species identification by direct mass spectrometry fingerprinting matched reference identification in 95% of these samples and worked equally well for aerobic and anaerobic culture bottles. Application of commonly used score cutoffs to classify the fingerprinting results led to an identification rate of 87%. Mismatching mostly resulted from insufficient bacterial numbers and preferentially occurred with Gram-positive samples. The respective spectra showed low concordance to database references and were effectively rejected by score thresholds. Spiking experiments and examination of the respective study samples even suggested applicability of the method to mixed cultures. With turnaround times around 100 min, the approach allowed for reliable pathogen identification at the day of blood culture positivity, providing treatment-relevant information within the critical phase of septic illness.
The diagnosis of plant pathogenic bacteria: a state of art.
Scala, Valeria; Pucci, Nicoletta; Loreti, Stefania
2018-03-01
Plant protection plays an important role in agriculture for the food quality and quantity. The diagnosis of plant diseases and the identification of the pathogens are essential prerequisites for their understanding and control. Among the plant pests, the bacterial pathogens have devastating effects on plant productivity and yield. Different techniques (microscopy, serology, biochemical, physiological, molecular tools and culture propagation) are currently used to detect and identify bacterial pathogens. Detection and identification are critical steps for the appropriate application of phytosanitary measures. The "harmonization of phytosanitary regulations and all other areas of official plant protection action" mean the good practices for plant protection and plant material certification. The prevention of diseases progression and spread by early detection are a valuable strategy for proper pest management and disease control. For this purpose, innovative methods aim achieving results within a shorter time and higher performance, to provide rapidly, accurately and reliably diagnosis. In this review, we focus on the techniques for plant bacterial diagnosis and on the regulations for harmonizing plant protection issue.
Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali
Diarra, Adama Zan; Almeras, Lionel; Berenger, Jean-Michel; Koné, Abdoulaye K.; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-01-01
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali. PMID:28742123
Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali.
Diarra, Adama Zan; Almeras, Lionel; Laroche, Maureen; Berenger, Jean-Michel; Koné, Abdoulaye K; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-07-01
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
[Do Multiplex PCR techniques displace classical cultures in microbiology?].
Auckenthaler, Raymond; Risch, Martin
2015-02-01
Multiplex PCR technologies progressively find their way in clinical microbiology. This technique allows the simultaneous amplification of multiple DNA targets in a single test run for the identification of pathogens up to the species level. Various pathogens of infectious diseases can be detected by a symptom-oriented approach clearly and quickly with high reliability. Essentially multiplex PCR panels are available for clarification of gastrointestinal, respiratory, sexually transmitted infections and meningitis. Today's offer from industry, university hospitals and large private laboratories of Switzerland is tabulated and commented.
False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing
2014-01-01
Background Identification of historic pathogens is challenging since false positives and negatives are a serious risk. Environmental non-pathogenic contaminants are ubiquitous. Furthermore, public genetic databases contain limited information regarding these species. High-throughput sequencing may help reliably detect and identify historic pathogens. Results We shotgun-sequenced 8 16th-century Mixtec individuals from the site of Teposcolula Yucundaa (Oaxaca, Mexico) who are reported to have died from the huey cocoliztli (‘Great Pestilence’ in Nahautl), an unknown disease that decimated native Mexican populations during the Spanish colonial period, in order to identify the pathogen. Comparison of these sequences with those deriving from the surrounding soil and from 4 precontact individuals from the site found a wide variety of contaminant organisms that confounded analyses. Without the comparative sequence data from the precontact individuals and soil, false positives for Yersinia pestis and rickettsiosis could have been reported. Conclusions False positives and negatives remain problematic in ancient DNA analyses despite the application of high-throughput sequencing. Our results suggest that several studies claiming the discovery of ancient pathogens may need further verification. Additionally, true single molecule sequencing’s short read lengths, inability to sequence through DNA lesions, and limited ancient-DNA-specific technical development hinder its application to palaeopathology. PMID:24568097
Li, Wenbin; Teixeira, Diva C; Hartung, John S; Huang, Qi; Duan, Yongping; Zhou, Lijuan; Chen, Jianchi; Lin, Hong; Lopes, Silvio; Ayres, A Juliano; Levy, Laurene
2013-01-01
The xylem-limited, Gram-negative, fastidious plant bacterium Xylella fastidiosa is the causal agent of citrus variegated chlorosis (CVC), a destructive disease affecting approximately half of the citrus plantations in the State of São Paulo, Brazil. The disease was recently found in Central America and is threatening the multi-billion U.S. citrus industry. Many strains of X. fastidiosa are pathogens or endophytes in various plants growing in the U.S., and some strains cross infect several host plants. In this study, a TaqMan-based assay targeting the 16S rDNA signature region was developed for the identification of X. fastidiosa at the species level. Another TaqMan-based assay was developed for the specific identification of the CVC strains. Both new assays have been systematically validated in comparison with the primer/probe sets from four previously published assays on one platform and under similar PCR conditions, and shown to be superior. The species specific assay detected all X. fastidiosa strains and did not amplify any other citrus pathogen or endophyte tested. The CVC-specific assay detected all CVC strains but did not amplify any non-CVC X. fastidiosa nor any other citrus pathogen or endophyte evaluated. Both sets were multiplexed with a reliable internal control assay targeting host plant DNA, and their diagnostic specificity and sensitivity remained unchanged. This internal control provides quality assurance for DNA extraction, performance of PCR reagents, platforms and operators. The limit of detection for both assays was equivalent to 2 to 10 cells of X. fastidiosa per reaction for field citrus samples. Petioles and midribs of symptomatic leaves of sweet orange harbored the highest populations of X. fastidiosa, providing the best materials for detection of the pathogen. These new species specific assay will be invaluable for molecular identification of X. fastidiosa at the species level, and the CVC specific assay will be very powerful for the specific identification of X. fastidiosa strains that cause citrus variegated chlorosis. Published by Elsevier B.V.
Kazmi, Mahmooda; Khan, Adnan; Kazmi, Shahana Urooj
2013-06-01
Rapid and accurate identification of bacterial pathogens is a fundamental goal of clinical microbiology. The diagnosis and surveillance of diseases is dependent, to a great extent, on laboratory services, which cannot function without effective reliable reagents and diagnostics. Despite the advancement in microbiology diagnosis globally, resourcelimited countries still struggle to provide an acceptable diagnosis quality which helps in clinical disease management and improve their mortality and morbidity data. During this study an indigenous product, Quick Test Strip (QTS) NE, was developed for the rapid identification of biochemically slower group of Gram-negative oxidase-positive bacilli that covers 19 different bacterial genera. Some of the members belonging to these groups are well-established human pathogens, e.g. various species of Vibrio, Pseudomonas, Burkholderia, Aeromonas, Achromobacter and Stenotrophomonas. This study also evaluates the performance of QTS-NE by comparing with genotypic characterization methods. A total of 232 clinical and reference bacterial isolates were tested by three different methods. QTSNE provides 100 percent concordant results with other rapid identification and molecular characterization methods and confirms the potential to be used in clinical diagnosis.
Barreiro, J R; Ferreira, C R; Sanvido, G B; Kostrzewa, M; Maier, T; Wegemann, B; Böttcher, V; Eberlin, M N; dos Santos, M V
2010-12-01
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhao, Yanan; Lockhart, Shawn R.; Berrio, Indira
2017-01-01
ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii, Candida haemulonii, and Candida lusitaniae. Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. PMID:28539346
Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S
2017-08-01
Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.
Kohlmann, Rebekka; Hoffmann, Alexander; Geis, Gabriele; Gatermann, Sören
2015-01-01
Rapid identification of the causative microorganism is a key element in appropriate antimicrobial therapy of bloodstream infections. Whereas traditional analysis of positive blood cultures requires subculture over at least 16-24h prior to pathogen identification by, e.g. matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), sample preparation procedures enabling direct MALDI-TOF MS, i.e. without preceding subculture, are associated with additional effort and costs. Hence, we integrated an alternative MALDI-TOF MS approach in diagnostic routine using a short incubation on a solid medium. Positive blood cultures were routinely plated on chocolate agar plates and incubated for 4h (37 °C, 5% CO2). Subsequently, MALDI-TOF MS using a Microflex LT instrument (Bruker Daltonics) and direct smear method was performed once per sample. For successful identification of bacteria at species level, score cut-off values were used as proposed by the manufacturer (≥ 2.0) and in a modified form (≥ 1.5 for MALDI-TOF MS results referring to Gram-positive cocci and ≥ 1.7 for MALDI-TOF MS results referring to bacteria other than Gram-positive cocci). Further data analysis also included an assessment of the clinical impact of the MALDI-TOF MS result. Applying the modified score cut-off values, our approach led to an overall correct species identification in 69.5% with misidentification in 3.4% (original cut-offs: 49.2% and 1.8%, respectively); for Gram-positive cocci, correct identification in 68.4% (100% for Staphylococcus aureus and enterococci, 80% for beta-hemolytic streptococci), for Gram-negative bacteria, correct identification in 97.6%. In polymicrobial blood cultures, in 72.7% one of the pathogens was correctly identified. Results were not reliable for Gram-positive rods and yeasts. The approach was easy to implement in diagnostic routine. In cases with available clinical data and successful pathogen identification, in 51.1% our approach allowed an optimized treatment recommendation. MALDI-TOF MS following 4h pre-culture is a valuable tool for rapid pathogen identification from positive blood cultures, allowing easy integration in diagnostic routine and the opportunity of considerably earlier treatment adaptation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Marschal, Matthias; Bachmaier, Johanna; Autenrieth, Ingo; Oberhettinger, Philipp; Willmann, Matthias; Peter, Silke
2017-07-01
Bloodstream infections (BSI) are an important cause of morbidity and mortality. Increasing rates of antimicrobial-resistant pathogens limit treatment options, prompting an empirical use of broad-range antibiotics. Fast and reliable diagnostic tools are needed to provide adequate therapy in a timely manner and to enable a de-escalation of treatment. The Accelerate Pheno system (Accelerate Diagnostics, USA) is a fully automated test system that performs both identification and antimicrobial susceptibility testing (AST) directly from positive blood cultures within approximately 7 h. In total, 115 episodes of BSI with Gram-negative bacteria were included in our study and compared to conventional culture-based methods. The Accelerate Pheno system correctly identified 88.7% (102 of 115) of all BSI episodes and 97.1% (102 of 105) of isolates that are covered by the system's identification panel. The Accelerate Pheno system generated an AST result for 91.3% (95 of 104) samples in which the Accelerate Pheno system identified a Gram-negative pathogen. The overall category agreement between the Accelerate Pheno system and culture-based AST was 96.4%, the rates for minor discrepancies 1.4%, major discrepancies 2.3%, and very major discrepancies 1.0%. Of note, ceftriaxone, piperacillin-tazobactam, and carbapenem resistance was correctly detected in blood culture specimens with extended-spectrum beta-lactamase-producing Escherichia coli ( n = 7) and multidrug-resistant Pseudomonas aeruginosa ( n = 3) strains. The utilization of the Accelerate Pheno system reduced the time to result for identification by 27.49 h ( P < 0.0001) and for AST by 40.39 h ( P < 0.0001) compared to culture-based methods in our laboratory setting. In conclusion, the Accelerate Pheno system provided fast, reliable results while significantly improving turnaround time in blood culture diagnostics of Gram-negative BSI. Copyright © 2017 American Society for Microbiology.
Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha
2016-12-01
The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.
Ferreira, Adriano Martison; Bonesso, Mariana Fávero; Mondelli, Alessandro Lia; da Cunha, Maria de Lourdes Ribeiro de Souza
2012-12-01
The emergence of Staphylococcus spp. not only as human pathogens, but also as reservoirs of antibiotic resistance determinants, requires the development of methods for their rapid and reliable identification in medically important samples. The aim of this study was to compare three phenotypic methods for the identification of Staphylococcus spp. isolated from patients with urinary tract infection using the PCR of the 16S-23S interspace region generating molecular weight patterns (ITR-PCR) as reference. All 57 S. saprophyticus studied were correctly identified using only the novobiocin disk. A rate of agreement of 98.0% was obtained for the simplified battery of biochemical tests in relation to ITR-PCR, whereas the Vitek I system and novobiocin disk showed 81.2% and 89.1% agreement, respectively. No other novobiocin-resistant non-S. saprophyticus strain was identified. Thus, the novobiocin disk is a feasible alternative for the identification of S. saprophyticus in urine samples in laboratories with limited resources. ITR-PCR and the simplified battery of biochemical tests were more reliable than the commercial systems currently available. This study confirms that automated systems are still unable to correctly differentiate CoNS species and that simple, reliable and inexpensive methods can be used for routine identification. Copyright © 2012 Elsevier B.V. All rights reserved.
Application of MALDI-TOF mass spectrometry in clinical diagnostic microbiology.
De Carolis, Elena; Vella, Antonietta; Vaccaro, Luisa; Torelli, Riccardo; Spanu, Teresa; Fiori, Barbara; Posteraro, Brunella; Sanguinetti, Maurizio
2014-09-12
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently emerged as a powerful technique for identification of microorganisms, changing the workflow of well-established laboratories so that its impact on microbiological diagnostics has been unparalleled. In comparison with conventional identification methods that rely on biochemical tests and require long incubation procedures, MALDI-TOF MS has the advantage of identifying bacteria and fungi directly from colonies grown on culture plates in a few minutes and with simple procedures. Numerous studies on different systems available demonstrate the reliability and accuracy of the method, and new frontiers have been explored besides microbial species level identification, such as direct identification of pathogens from positive blood cultures, subtyping, and drug susceptibility detection.
Identification of host response signatures of infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branda, Steven S.; Sinha, Anupama; Bent, Zachary
2013-02-01
Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to themore » pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for large-scale, highly-efficient efforts to identify and verify infection-specific host NA signatures in human populations.« less
Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors.
Ray, Monalisa; Ray, Asit; Dash, Swagatika; Mishra, Abtar; Achary, K Gopinath; Nayak, Sanghamitra; Singh, Shikha
2017-01-15
Fungal diseases in commercially important plants results in a significant reduction in both quality and yield, often leading to the loss of an entire plant. In order to minimize the losses, it is essential to detect and identify the pathogens at an early stage. Early detection and accurate identification of pathogens can control the spread of infection. The present article provides a comprehensive overview of conventional methods, current trends and advances in fungal pathogen detection with an emphasis on biosensors. Traditional techniques are the "gold standard" in fungal detection which relies on symptoms, culture-based, morphological observation and biochemical identifications. In recent times, with the advancement of biotechnology, molecular and immunological approaches have revolutionized fungal disease detection. But the drawback lies in the fact that these methods require specific and expensive equipments. Thus, there is an urgent need for rapid, reliable, sensitive, cost effective and easy to use diagnostic methods for fungal pathogen detection. Biosensors would become a promising and attractive alternative, but they still have to be subjected to some modifications, improvements and proper validation for on-field use. Copyright © 2016 Elsevier B.V. All rights reserved.
Karger, Axel; Stock, Rüdiger; Ziller, Mario; Elschner, Mandy C; Bettin, Barbara; Melzer, Falk; Maier, Thomas; Kostrzewa, Markus; Scholz, Holger C; Neubauer, Heinrich; Tomaso, Herbert
2012-10-10
Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed.
2012-01-01
Background Burkholderia (B.) pseudomallei and B. mallei are genetically closely related species. B. pseudomallei causes melioidosis in humans and animals, whereas B. mallei is the causative agent of glanders in equines and rarely also in humans. Both agents have been classified by the CDC as priority category B biological agents. Rapid identification is crucial, because both agents are intrinsically resistant to many antibiotics. Matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS) has the potential of rapid and reliable identification of pathogens, but is limited by the availability of a database containing validated reference spectra. The aim of this study was to evaluate the use of MALDI-TOF MS for the rapid and reliable identification and differentiation of B. pseudomallei and B. mallei and to build up a reliable reference database for both organisms. Results A collection of ten B. pseudomallei and seventeen B. mallei strains was used to generate a library of reference spectra. Samples of both species could be identified by MALDI-TOF MS, if a dedicated subset of the reference spectra library was used. In comparison with samples representing B. mallei, higher genetic diversity among B. pseudomallei was reflected in the higher average Eucledian distances between the mass spectra and a broader range of identification score values obtained with commercial software for the identification of microorganisms. The type strain of B. pseudomallei (ATCC 23343) was isolated decades ago and is outstanding in the spectrum-based dendrograms probably due to massive methylations as indicated by two intensive series of mass increments of 14 Da specifically and reproducibly found in the spectra of this strain. Conclusions Handling of pathogens under BSL 3 conditions is dangerous and cumbersome but can be minimized by inactivation of bacteria with ethanol, subsequent protein extraction under BSL 1 conditions and MALDI-TOF MS analysis being faster than nucleic amplification methods. Our spectra demonstrated a higher homogeneity in B. mallei than in B. pseudomallei isolates. As expected for closely related species, the identification process with MALDI Biotyper software (Bruker Daltonik GmbH, Bremen, Germany) requires the careful selection of spectra from reference strains. When a dedicated reference set is used and spectra of high quality are acquired, it is possible to distinguish both species unambiguously. The need for a careful curation of reference spectra databases is stressed. PMID:23046611
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson
In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguishmore » infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.« less
Intra, J; Sala, M R; Falbo, R; Cappellini, F; Brambilla, P
2016-12-01
Rapid and early identification of micro-organisms in blood has a key role in the diagnosis of a febrile patient, in particular, in guiding the clinician to define the correct antibiotic therapy. This study presents a simple and very fast method with high performances for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) after only 4 h of incubation. We used early bacterial growth on PolyViteX chocolate agar plates inoculated with five drops of blood-broth medium deposited in the same point and spread with a sterile loop, followed by a direct transfer procedure on MALDI-TOF MS target slides without additional modification. Ninety-nine percentage of aerobic bacteria were correctly identified from 600 monomicrobial-positive blood cultures. This procedure allowed obtaining the correct identification of fastidious pathogens, such as Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae that need complex nutritional and environmental requirements in order to grow. Compared to the traditional pathogen identification from blood cultures that takes over 24 h, the reliability of results, rapid performance and suitability of this protocol allowed a more rapid administration of optimal antimicrobial treatment in the patients. Bloodstream infections are serious conditions with a high mortality and morbidity rate. Rapid identification of pathogens and appropriate antimicrobial therapy have a key role for successful patient outcome. In this work, we developed a rapid, simplified, accurate, and efficient method, reaching 99 % identification of aerobic bacteria from monomicrobial-positive blood cultures by using early growth on enriched medium, direct transfer to target plate without additional procedures, matrix-assisted laser desorption ionization-time of flight mass spectrometry and SARAMIS database. The application of this protocol allows to anticipate appropriate antibiotic therapy. © 2016 The Society for Applied Microbiology.
Bulane, Atang; Hoosen, Anwar
2017-01-01
Rapid and accurate identification of pathogens is of utmost importance for management of patients. Current identification relies on conventional phenotypic methods which are time consuming. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) is based on proteomic profiling and allows for rapid identification of pathogens. We compared MALDI-TOF MS against two commercial systems, MicroScan Walkaway and VITEK 2 MS. Over a three-month period from July 2013 to September 2013, a total of 227 bacteria and yeasts were collected from an academic microbiology laboratory ( N = 121; 87 Gram-negatives, seven Gram-positives, 27 yeasts) and other laboratories ( N = 106; 35 Gram-negatives, 34 Gram-positives, 37 yeasts). Sixty-five positive blood cultures were initially processed with Bruker Sepsityper kit for direct identification. From the 65 blood culture bottles, four grew more than one bacterial pathogen and MALDI-TOF MS identified only one isolate. The blood cultures yielded 21 Gram-negatives, 43 Gram-positives and one Candida . There were 21 Escherirchia coli isolates which were reported by the MALDI-TOF MS as E. coli / Shigella . Of the total 292 isolates, discrepant results were found for one bacterial and three yeast isolates. Discrepant results were resolved by testing with the API system with MALDI-TOF MS showing 100% correlation. The MALDI-TOF MS proved to be very useful for rapid and reliable identification of bacteria and yeasts directly from blood cultures and after culture of other specimens. The difference in time to identification was significant for all isolates. However, for positive blood cultures with minimal sample preparation time there was a massive difference in turn-around time with great appreciation by clinicians.
Genome-wide essential gene identification in Streptococcus sanguinis
Xu, Ping; Ge, Xiuchun; Chen, Lei; Wang, Xiaojing; Dou, Yuetan; Xu, Jerry Z.; Patel, Jenishkumar R.; Stone, Victoria; Trinh, My; Evans, Karra; Kitten, Todd; Bonchev, Danail; Buck, Gregory A.
2011-01-01
A clear perception of gene essentiality in bacterial pathogens is pivotal for identifying drug targets to combat emergence of new pathogens and antibiotic-resistant bacteria, for synthetic biology, and for understanding the origins of life. We have constructed a comprehensive set of deletion mutants and systematically identified a clearly defined set of essential genes for Streptococcus sanguinis. Our results were confirmed by growing S. sanguinis in minimal medium and by double-knockout of paralogous or isozyme genes. Careful examination revealed that these essential genes were associated with only three basic categories of biological functions: maintenance of the cell envelope, energy production, and processing of genetic information. Our finding was subsequently validated in two other pathogenic streptococcal species, Streptococcus pneumoniae and Streptococcus mutans and in two other gram-positive pathogens, Bacillus subtilis and Staphylococcus aureus. Our analysis has thus led to a simplified model that permits reliable prediction of gene essentiality. PMID:22355642
Lu, Weiping; Gu, Dayong; Chen, Xingyun; Xiong, Renping; Liu, Ping; Yang, Nan; Zhou, Yuanguo
2010-10-01
The traditional techniques for diagnosis of invasive fungal infections in the clinical microbiology laboratory need improvement. These techniques are prone to delay results due to their time-consuming process, or result in misidentification of the fungus due to low sensitivity or low specificity. The aim of this study was to develop a method for the rapid detection and identification of fungal pathogens. The internal transcribed spacer two fragments of fungal ribosomal DNA were amplified using a polymerase chain reaction for all samples. Next, the products were hybridized with the probes immobilized on the surface of a microarray. These species-specific probes were designed to detect nine different clinical pathogenic fungi including Candida albicans, Candida tropocalis, Candida glabrata, Candida parapsilosis, Candida krusei, Candida lusitaniae, Candida guilliermondii, Candida keyfr, and Cryptococcus neoformans. The hybridizing signals were enhanced with gold nanoparticles and silver deposition, and detected using a flatbed scanner or visually. Fifty-nine strains of fungal pathogens, including standard and clinically isolated strains, were correctly identified by this method. The sensitivity of the assay for Candida albicans was 10 cells/mL. Ten cultures from clinical specimens and 12 clinical samples spiked with fungi were also identified correctly. This technique offers a reliable alternative to conventional methods for the detection and identification of fungal pathogens. It has higher efficiency, specificity and sensitivity compared with other methods commonly used in the clinical laboratory.
Microfluidics-Based Lab-on-Chip Systems in DNA-Based Biosensing: An Overview
Dutse, Sabo Wada; Yusof, Nor Azah
2011-01-01
Microfluidics-based lab-on-chip (LOC) systems are an active research area that is revolutionising high-throughput sequencing for the fast, sensitive and accurate detection of a variety of pathogens. LOCs also serve as portable diagnostic tools. The devices provide optimum control of nanolitre volumes of fluids and integrate various bioassay operations that allow the devices to rapidly sense pathogenic threat agents for environmental monitoring. LOC systems, such as microfluidic biochips, offer advantages compared to conventional identification procedures that are tedious, expensive and time consuming. This paper aims to provide a broad overview of the need for devices that are easy to operate, sensitive, fast, portable and sufficiently reliable to be used as complementary tools for the control of pathogenic agents that damage the environment. PMID:22163925
Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding.
Versteirt, V; Nagy, Z T; Roelants, P; Denis, L; Breman, F C; Damiens, D; Dekoninck, W; Backeljau, T; Coosemans, M; Van Bortel, W
2015-03-01
Since its introduction in 2003, DNA barcoding has proven to be a promising method for the identification of many taxa, including mosquitoes (Diptera: Culicidae). Many mosquito species are potential vectors of pathogens, and correct identification in all life stages is essential for effective mosquito monitoring and control. To use DNA barcoding for species identification, a reliable and comprehensive reference database of verified DNA sequences is required. Hence, DNA sequence diversity of mosquitoes in Belgium was assessed using a 658 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene, and a reference data set was established. Most species appeared as well-supported clusters. Intraspecific Kimura 2-parameter (K2P) distances averaged 0.7%, and the maximum observed K2P distance was 6.2% for Aedes koreicus. A small overlap between intra- and interspecific K2P distances for congeneric sequences was observed. Overall, the identification success using best match and the best close match criteria were high, that is above 98%. No clear genetic division was found between the closely related species Aedes annulipes and Aedes cantans, which can be confused using morphological identification only. The members of the Anopheles maculipennis complex, that is Anopheles maculipennis s.s. and An. messeae, were weakly supported as monophyletic taxa. This study showed that DNA barcoding offers a reliable framework for mosquito species identification in Belgium except for some closely related species. © 2014 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Roman, Monserrate C.; Jones, Kathy U.; Oubre, Cherie M.; Castro, Victoria; Ott, Mark C.; Birmele, Michele; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.
2013-01-01
Current methods for microbial detection: a) Labor & time intensive cultivation-based approaches that can fail to detect or characterize all cells present. b) Requires collection of samples on orbit and transportation back to ground for analysis. Disadvantages to current detection methods: a) Unable to perform quick and reliable detection on orbit. b) Lengthy sampling intervals. c) No microbe identification.
Rapid Identification of Legionella Pathogenicity by Surface-Enhanced Raman Spectroscopy.
Li, Jing; Qin, Tian; Jia, Xiao Xiao; Deng, Ai Hua; Zhang, Xu; Fan, Wen Hui; Huo, Shuai Dong; Wen, Ting Yi; Liu, Wen Jun
2015-06-01
To establish Surface-enhanced Raman Spectroscopy (SERS) can be used as a rapid and reliable method to distinguish virulent strain and mild strain of L. pneumophila. Mortality data were collected from company departments through administrative documents, death certificates, etc. Trend analyses of cancer mortality were performed on the basis of 925 cancer deaths between 2001 and 2010. Our results indicated that the peaks of high virulence strains reached ⋝4000. This criterion was verified by subsequent cell experiments. In addition, we also conducted SERS rapid identification on the virulence of several collected clinical strains and obtained accurate results. The present study indicates that the established SERS protocol can be used as a rapid and reliable method to distinguish virulent and mildly virulent strains of L. pneumophila, which can be further used in clinical samples. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Ferreira, Laura; Sánchez-Juanes, Fernando; García-Fraile, Paula; Rivas, Raúl; Mateos, Pedro F.; Martínez-Molina, Eustoquio; González-Buitrago, José Manuel; Velázquez, Encarna
2011-01-01
Family Rhizobiaceae includes fast growing bacteria currently arranged into three genera, Rhizobium, Ensifer and Shinella, that contain pathogenic, symbiotic and saprophytic species. The identification of these species is not possible on the basis of physiological or biochemical traits and should be based on sequencing of several genes. Therefore alternative methods are necessary for rapid and reliable identification of members from family Rhizobiaceae. In this work we evaluated the suitability of Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) for this purpose. Firstly, we evaluated the capability of this methodology to differentiate among species of family Rhizobiaceae including those closely related and then we extended the database of MALDI Biotyper 2.0 including the type strains of 56 species from genera Rhizobium, Ensifer and Shinella. Secondly, we evaluated the identification potential of this methodology by using several strains isolated from different sources previously identified on the basis of their rrs, recA and atpD gene sequences. The 100% of these strains were correctly identified showing that MALDI-TOF MS is an excellent tool for identification of fast growing rhizobia applicable to large populations of isolates in ecological and taxonomic studies. PMID:21655291
Heinrichs, Guido; de Hoog, G. Sybren
2012-01-01
Herpotrichiellaceous black yeasts and relatives comprise severe pathogens flanked by nonpathogenic environmental siblings. Reliable identification by conventional methods is notoriously difficult. Molecular identification is hampered by the sequence variability in the internal transcribed spacer (ITS) domain caused by difficult-to-sequence homopolymeric regions and by poor taxonomic attribution of sequences deposited in GenBank. Here, we present a potential solution using short barcode identifiers (27 to 50 bp) based on ITS2 ribosomal DNA (rDNA), which allows unambiguous definition of species-specific fragments. Starting from proven sequences of ex-type and authentic strains, we were able to describe 103 identifiers. Multiple BLAST searches of these proposed barcode identifiers in GenBank revealed uniqueness for 100 taxonomic entities, whereas the three remaining identifiers each matched with two entities, but the species of these identifiers could easily be discriminated by differences in the remaining ITS regions. Using the proposed barcode identifiers, a 4.1-fold increase of 100% matches in GenBank was achieved in comparison to the classical approach using the complete ITS sequences. The proposed barcode identifiers will be made accessible for the diagnostic laboratory in a permanently updated online database, thereby providing a highly practical, reliable, and cost-effective tool for identification of clinically important black yeasts and relatives. PMID:22785187
Comparison of Sample and Detection Quantification Methods for Salmonella Enterica from Produce
NASA Technical Reports Server (NTRS)
Hummerick, M. P.; Khodadad, C.; Richards, J. T.; Dixit, A.; Spencer, L. M.; Larson, B.; Parrish, C., II; Birmele, M.; Wheeler, Raymond
2014-01-01
The purpose of this study was to identify and optimize fast and reliable sampling and detection methods for the identification of pathogens that may be present on produce grown in small vegetable production units on the International Space Station (ISS), thus a field setting. Microbiological testing is necessary before astronauts are allowed to consume produce grown on ISS where currently there are two vegetable production units deployed, Lada and Veggie.
Chutrakul, Chanikul; Khaokhajorn, Pratoomporn; Auncharoen, Patchanee; Boonruengprapa, Tanapong; Mongkolporn, Orarat
2013-01-01
Severe chili anthracnose disease in Thailand is caused by Colletotrichum gloeosporioides and C. capsici. To discover anti-anthracnose substances we developed an efficient dual-fluorescent labeling bioassay based on a microdilution approach. Indicator strains used in the assay were constructed by integrating synthetic green fluorescent protein (sGFP) and Discosoma sp. red fluorescent protein (DsRedExp) genes into the genomes of C. gloeosporioides or C. capsici respectively. Survival of co-spore cultures in the presence of inhibitors was determined by the expression levels of these fluorescent proteins. This developed assay has high potential for utilization in the investigation of selective inhibition activity to either one of the pathogens as well as the broad-range inhibitory effect against both pathogens. The value of using the dual-fluorescent assay is rapid, reliable, and consistent identification of anti-anthracnose agents. Most of all, the assay enables the identification of specific inhibitors under the co-cultivation condition.
Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.
2007-01-01
Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397
Myjak, P; Majewska, A C; Bajer, A; Siński, E; Wedrychowicz, H; Gołab, E; Budak, A; Stańczak, J
2001-01-01
After a long period of using basic microscopic, immunological and biochemical methods for diagnosis, rapid development of nucleic acids investigation enabled introduction of specific and sensitive methods of detection of pathogenic agents on the molecular level. Among others, polymerase chain reaction (PCR), discovered in mid of 80'ies and then automatized, offered an attractive alternative to conventional testing systems. In this paper we describe reliable diagnostic tests widely used in the world, including Poland, and capable of detecting different disease agents as parasites and fungi in clinical specimens and pathogens of emerging zoonotic diseases in ticks. The possibilities of using molecular methods for determination of Plasmodium falciparum drug resistance is also discussed. Moreover, the report offers information concerning kinds of molecular tests and institutions in which there are executed.
Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo
2016-10-01
An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.
Miyajima, Yoshiharu; Satoh, Kazuo; Uchida, Takao; Yamada, Tsuyoshi; Abe, Michiko; Watanabe, Shin-ichi; Makimura, Miho; Makimura, Koichi
2013-03-01
Trichophyton rubrum and Trichophyton mentagrophytes human-type (synonym, Trichophyton interdigitale (anthropophilic)) are major causative pathogens of tinea unguium. For suitable diagnosis and treatment, rapid and accurate identification of etiologic agents in clinical samples using reliable molecular based method is required. For identification of organisms causing tinea unguium, we developed a new real-time polymerase chain reaction (PCR) with a pan-fungal primer set and probe, as well as specific primer sets and probes for T. rubrum and T. mentagrophytes human-type. We designed two sets of primers from the internal transcribed spacer 1 (ITS1) region of fungal ribosomal DNA (rDNA) and three quadruple fluorescent probes, one for detection wide range pathogenic fungi and two for classification of T. rubrum and T. mentagrophytes by specific binding to different sites in the ITS1 region. We investigated the specificity of these primer sets and probes using fungal genomic DNA, and also examined 42 clinical specimens with our real-time PCR. The primers and probes specifically detected T. rubrum, T. mentagrophytes, and a wide range of pathogenic fungi. The causative pathogens were identified in 42 nail and skin samples from 32 patients. The total time required for identification of fungal species in each clinical specimen was about 3h. The copy number of each fungal DNA in the clinical specimens was estimated from the intensity of fluorescence simultaneously. This PCR system is one of the most rapid and sensitive methods available for diagnosing dermatophytosis, including tinea unguium and tinea pedis. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Kocher, Arthur; Gantier, Jean-Charles; Gaborit, Pascal; Zinger, Lucie; Holota, Helene; Valiere, Sophie; Dusfour, Isabelle; Girod, Romain; Bañuls, Anne-Laure; Murienne, Jerome
2017-03-01
Phlebotomine sand flies are haematophagous dipterans of primary medical importance. They represent the only proven vectors of leishmaniasis worldwide and are involved in the transmission of various other pathogens. Studying the ecology of sand flies is crucial to understand the epidemiology of leishmaniasis and further control this disease. A major limitation in this regard is that traditional morphological-based methods for sand fly species identifications are time-consuming and require taxonomic expertise. DNA metabarcoding holds great promise in overcoming this issue by allowing the identification of multiple species from a single bulk sample. Here, we assessed the reliability of a short insect metabarcode located in the mitochondrial 16S rRNA for the identification of Neotropical sand flies, and constructed a reference database for 40 species found in French Guiana. Then, we conducted a metabarcoding experiment on sand flies mixtures of known content and showed that the method allows an accurate identification of specimens in pools. Finally, we applied metabarcoding to field samples caught in a 1-ha forest plot in French Guiana. Besides providing reliable molecular data for species-level assignations of phlebotomine sand flies, our study proves the efficiency of metabarcoding based on the mitochondrial 16S rRNA for studying sand fly diversity from bulk samples. The application of this high-throughput identification procedure to field samples can provide great opportunities for vector monitoring and eco-epidemiological studies. © 2016 John Wiley & Sons Ltd.
Marques, S; Huss, V A R; Pfisterer, K; Grosse, C; Thompson, G
2015-05-01
The increasing incidence of rare mastitis-causing pathogens has urged the implementation of fast and efficient diagnostic and control measures. Prototheca algae are known to be associated with diseases in humans and animals. In the latter, the most prevalent form of protothecosis is bovine mastitis with Prototheca zopfii and Prototheca blaschkeae representing the most common pathogenic species. These nonphotosynthetic and colorless green algae are ubiquitous in different environments and are widely resistant against harmful conditions and antimicrobials. Hence, the association of Prototheca with bovine mastitis represents a herd problem, requiring fast and easy identification of the infectious agent. The purpose of this study was to develop a reliable and rapid method, based on the internal transcribed spacer (ITS) sequences of ribosomal DNA, for molecular identification and discrimination between P. zopfii and P. blaschkeae in bovine mastitic milk. The complete ITS sequences of 32 Prototheca isolates showed substantial interspecies but moderate intraspecies variability facilitating the design of species-specific PCR amplification primers. The species-specific PCR was successfully applied to the identification of P. zopfii and P. blaschkeae directly from milk samples. The intraspecific ITS phylogeny was compared for each species with the geographical distribution of the respective Prototheca isolates, but no significant correlation was found. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jadhav, Snehal; Gulati, Vandana; Fox, Edward M; Karpe, Avinash; Beale, David J; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A
2015-06-02
Listeria monocytogenes is an important foodborne pathogen responsible for the sometimes fatal disease listeriosis. Public health concerns and stringent regulations associated with the presence of this pathogen in food and food processing environments underline the need for rapid and reliable detection and subtyping techniques. In the current study, the application of matrix assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) as a single identification and source-tracking tool for a collection of L. monocytogenes isolates, obtained predominantly from dairy sources within Australia, was explored. The isolates were cultured on different growth media and analysed using MALDI-TOF MS at two incubation times (24 and 48 h). Whilst reliable genus-level identification was achieved from most media, identification at the species level was found to be dependent on culture conditions. Successful speciation was highest for isolates cultured on the chromogenic Agar Listeria Ottaviani Agosti agar (ALOA, 91% of isolates) and non-selective horse blood agar (HBA, 89%) for 24h. Chemometric statistical analysis of the MALDI-TOF MS data enabled source-tracking of L. monocytogenes isolates obtained from four different dairy sources. Strain-level discrimination was also observed to be influenced by culture conditions. In addition, t-test/analysis of variance (ANOVA) was used to identify potential biomarker peaks that differentiated the isolates according to their source of isolation. Source-tracking using MALDI-TOF MS was compared and correlated with the gold standard pulsed-field gel electrophoresis (PFGE) technique. The discriminatory index and the congruence between both techniques were compared using the Simpsons Diversity Index and adjusted Rand and Wallace coefficients. Overall, MALDI-TOF MS based source-tracking (using data obtained by culturing the isolates on HBA) and PFGE demonstrated good congruence with a Wallace coefficient of 0.71 and comparable discriminatory indices of 0.89 and 0.86, respectively. MALDI-TOF MS thus represents a rapid and cost-effective source-tracking technique for L. monocytogenes. Copyright © 2015 Elsevier B.V. All rights reserved.
Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati
Frisvad, Jens C.; Larsen, Thomas O.
2016-01-01
Aspergillus fumigatus is an important opportunistic human pathogen known for its production of a large array of extrolites. Up to 63 species have been described in Aspergillus section Fumigati, some of which have also been reliably reported to be pathogenic, including A. felis, A. fischeri, A. fumigatiaffinis, A. fumisynnematus, A. hiratsukae, A. laciniosus, A. lentulus, A. novofumigatus, A. parafelis, A. pseudofelis, A. pseudoviridinutans, A. spinosus, A. thermomutatus, and A. udagawae. These species share the production of hydrophobins, melanins, and siderophores and ability to grow well at 37°C, but they only share some small molecule extrolites, that could be important factors in pathogenicity. According to the literature gliotoxin and other exometabolites can be contributing factors to pathogenicity, but these exometabolites are apparently not produced by all pathogenic species. It is our hypothesis that species unable to produce some of these metabolites can produce proxy-exometabolites that may serve the same function. We tabulate all exometabolites reported from species in Aspergillus section Fumigati and by comparing the profile of those extrolites, suggest that those producing many different kinds of exometabolites are potential opportunistic pathogens. The exometabolite data also suggest that the profile of exometabolites are highly specific and can be used for identification of these closely related species. PMID:26779142
Ponce-Alonso, M; Rodríguez-Rojas, L; Del Campo, R; Cantón, R; Morosini, M-I
2016-03-01
The genus Raoultella was excised from Klebsiella in 2001, but difficulties in its identification may have led to an underestimation of its incidence and uncertainty on its pathogenic role. Recently, clinical reports involving Raoultella have increased, probably through the introduction of mass-spectrometry in clinical microbiology laboratories and the development of accurate molecular techniques. We performed a retrospective analysis using our blood culture collection (2011-14) to identify Raoultella isolates that could have been erroneously reported as Klebsiella. PCR and gene sequencing of highly specific chromosomal class A β-lactamase genes was established as the reference method, and compared with 16S rRNA and rpoβ sequencing, as well as matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS), MicroScan Walkaway system and API20E biochemical identification. MALDI-TOF and rpoβ correctly identified all Raoultella isolates, whereas 16S rRNA provided inconclusive results, and MicroScan and API20E failed to detect this genus. The analysis of the clinical characteristics of all Raoultella bacteraemia cases reported in the literature supports the role of Raoultella as an opportunistic pathogen that causes biliary tract infections in elderly patients who suffer from some kind of malignancy or have undergone an invasive procedure. Two salient conclusions are that Raoultella shows tropism for the biliary tract and so its identification could help clinicians to suspect underlying biliary tract disease when bacteraemia occurs. Concomitantly, as most phenotypic identification systems are not optimized for the identification of Raoultella, the use of MALDI-TOF or additional phenotypic tests is recommended for the reliable identification of this genus. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques
Baldi, Paolo; La Porta, Nicola
2017-01-01
In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field. PMID:28642764
2014-01-01
SUMMARY The aim of this review is to provide a comprehensive update on the current classification and identification of Haemophilus and Aggregatibacter species with exclusive or predominant host specificity for humans. Haemophilus influenzae and some of the other Haemophilus species are commonly encountered in the clinical microbiology laboratory and demonstrate a wide range of pathogenicity, from life-threatening invasive disease to respiratory infections to a nonpathogenic, commensal lifestyle. New species of Haemophilus have been described (Haemophilus pittmaniae and Haemophilus sputorum), and the new genus Aggregatibacter was created to accommodate some former Haemophilus and Actinobacillus species (Aggregatibacter aphrophilus, Aggregatibacter segnis, and Aggregatibacter actinomycetemcomitans). Aggregatibacter species are now a dominant etiology of infective endocarditis caused by fastidious organisms (HACEK endocarditis), and A. aphrophilus has emerged as an important cause of brain abscesses. Correct identification of Haemophilus and Aggregatibacter species based on phenotypic characterization can be challenging. It has become clear that 15 to 20% of presumptive H. influenzae isolates from the respiratory tracts of healthy individuals do not belong to this species but represent nonhemolytic variants of Haemophilus haemolyticus. Due to the limited pathogenicity of H. haemolyticus, the proportion of misidentified strains may be lower in clinical samples, but even among invasive strains, a misidentification rate of 0.5 to 2% can be found. Several methods have been investigated for differentiation of H. influenzae from its less pathogenic relatives, but a simple method for reliable discrimination is not available. With the implementation of identification by matrix-assisted laser desorption ionization–time of flight mass spectrometry, the more rarely encountered species of Haemophilus and Aggregatibacter will increasingly be identified in clinical microbiology practice. However, identification of some strains will still be problematic, necessitating DNA sequencing of multiple housekeeping gene fragments or full-length 16S rRNA genes. PMID:24696434
Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.
Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby
2016-10-01
Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.
Franciosa, Giovanna; Pourshaban, Manoocheher; De Luca, Alessandro; Buccino, Anna; Dallapiccola, Bruno; Aureli, Paolo
2004-01-01
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism. PMID:15240298
NASA Astrophysics Data System (ADS)
Rajwa, Bartek; Bayraktar, Bulent; Banada, Padmapriya P.; Huff, Karleigh; Bae, Euiwon; Hirleman, E. Daniel; Bhunia, Arun K.; Robinson, J. Paul
2006-10-01
Bacterial contamination by Listeria monocytogenes puts the public at risk and is also costly for the food-processing industry. Traditional methods for pathogen identification require complicated sample preparation for reliable results. Previously, we have reported development of a noninvasive optical forward-scattering system for rapid identification of Listeria colonies grown on solid surfaces. The presented system included application of computer-vision and patternrecognition techniques to classify scatter pattern formed by bacterial colonies irradiated with laser light. This report shows an extension of the proposed method. A new scatterometer equipped with a high-resolution CCD chip and application of two additional sets of image features for classification allow for higher accuracy and lower error rates. Features based on Zernike moments are supplemented by Tchebichef moments, and Haralick texture descriptors in the new version of the algorithm. Fisher's criterion has been used for feature selection to decrease the training time of machine learning systems. An algorithm based on support vector machines was used for classification of patterns. Low error rates determined by cross-validation, reproducibility of the measurements, and robustness of the system prove that the proposed technology can be implemented in automated devices for detection and classification of pathogenic bacteria.
Mikshis, N I; Kashtanova, T N; Kutyrev, V V
2015-01-01
Nucleotide sequence analysis of several genes responsible for the anthrax pathogen definitive properties--motility and penicillinase activity--determined a chromosomal locus promising for interspecies differentiation. We demonstrated that the gene fliC encoding flagellin synthesis contains extended region, distinguishing B. anthracis strains from the majority of non-pathogenic and opportunistic bacilli. A novel method for the anthrax pathogen indication and identification based on determination of the differences in the chromosomal genes fliC and hom2 structure was suggested. A total of 60 strains of different Bacillus spp. (B. anthracis, B. cereus, B. thuringiensis, B. mycoides, B. megaterium, B. subtilis, etc.) were tested using two chromosomal DNA targets. The algorithm developed in this work permits to detect the pathogenic microorganism and reliably differentiate it from other Bacillus spp. representatives. The introduction of primers complementary to specific sequences of pXO1 and pXQ2 plasmids into the multiplex PCR makes it possible to receive additional information on proposed virulence of the isolate.
Janse, Ingmar; Hamidjaja, Raditijo A; Hendriks, Amber C A; van Rotterdam, Bart J
2013-02-14
Burkholderia mallei and B. pseudomallei are two closely related species of highly virulent bacteria that can be difficult to detect. Pathogenic Burkholderia are endemic in many regions worldwide and cases of infection, sometimes brought by travelers from unsuspected regions, also occur elsewhere. Rapid, sensitive methods for identification of B. mallei and B. pseudomallei are urgently needed in the interests of patient treatment and epidemiological surveillance. Signature sequences for sensitive, specific detection of pathogenic Burkholderia based on published genomes were identified and a qPCR assay was designed and validated. A single-reaction quadruplex qPCR assay for the detection of pathogenic Burkholderia, which includes a marker for internal control of DNA extraction and amplification, was developed. The assay permits differentiation of B. mallei and B. pseudomallei strains, and probit analysis showed a very low detection limit. Use of a multicopy signature sequence permits detection of less than 1 genome equivalent per reaction. The new assay permits rapid detection of pathogenic Burkholderia and combines enhanced sensitivity, species differentiation, and inclusion of an internal control for both DNA extraction and PCR amplification.
Museums and disease: using tissue archive and museum samples to study pathogens.
Tsangaras, Kyriakos; Greenwood, Alex D
2012-01-20
Molecular studies of archival and fossil samples have traditionally focused on the nucleic acids derived from the host species. However, there has recently been an increase in ancient DNA research on the identification and characterization of infectious agents within the hosts. The study of pathogens from the past provides great opportunities for discovering the causes of historical infection events, characterizing host-microorganism co-evolution and directly investigating the evolution of specific pathogens. Several research teams have been able to isolate and characterize a variety of different bacterial, parasite and viral microorganisms. However, this emerging field is not without obstacles. The diagenetic processes that make ancient DNA research generally difficult are also impediments to ancient pathogen research and perhaps more so given that their DNA may represent an even rarer proportion of the remaining nucleic acids in a fossil sample than host DNA. However, studies performed under controlled conditions and following stringent ancient DNA protocols can and have yielded reliable and often surprising results. This article reviews the advantages, problems, and failures of ancient microbiological research. Copyright © 2011 Elsevier GmbH. All rights reserved.
Wang, Qi; Zhao, Xiao-Juan; Wang, Zi-Wei; Liu, Li; Wei, Yong-Xin; Han, Xiao; Zeng, Jing; Liao, Wan-Jin
2017-08-01
Rapid and precise identification of Cronobacter species is important for foodborne pathogen detection, however, commercial biochemical methods can only identify Cronobacter strains to genus level in most cases. To evaluate the power of mass spectrometry based on matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF MS) for Cronobacter species identification, 51 Cronobacter strains (eight reference and 43 wild strains) were identified by both MALDI-TOF MS and 16S rRNA gene sequencing. Biotyper RTC provided by Bruker identified all eight reference and 43 wild strains as Cronobacter species, which demonstrated the power of MALDI-TOF MS to identify Cronobacter strains to genus level. However, using the Bruker's database (6903 main spectra products) and Biotyper software, the MALDI-TOF MS analysis could not identify the investigated strains to species level. When MALDI-TOF MS analysis was performed using the combined in-house Cronobacter database and Bruker's database, bin setting, and unweighted pair group method with arithmetic mean (UPGMA) clustering, all the 51 strains were clearly identified into six Cronobacter species and the identification accuracy increased from 60% to 100%. We demonstrated that MALDI-TOF MS was reliable and easy-to-use for Cronobacter species identification and highlighted the importance of establishing a reliable database and improving the current data analysis methods by integrating the bin setting and UPGMA clustering. Copyright © 2017. Published by Elsevier B.V.
Tian, Qian; Zhao, Wenjun; Lu, Songyu; Zhu, Shuifang; Li, Shidong
2016-01-01
Genus Xanthomonas comprises many economically important plant pathogens that affect a wide range of hosts. Indeed, fourteen Xanthomonas species/pathovars have been regarded as official quarantine bacteria for imports in China. To date, however, a rapid and accurate method capable of identifying all of the quarantine species/pathovars has yet to be developed. In this study, we therefore evaluated the capacity of DNA barcoding as a digital identification method for discriminating quarantine species/pathovars of Xanthomonas. For these analyses, 327 isolates, representing 45 Xanthomonas species/pathovars, as well as five additional species/pathovars from GenBank (50 species/pathovars total), were utilized to test the efficacy of four DNA barcode candidate genes (16S rRNA gene, cpn60, gyrB, and avrBs2). Of these candidate genes, cpn60 displayed the highest rate of PCR amplification and sequencing success. The tree-building (Neighbor-joining), ‘best close match’, and barcode gap methods were subsequently employed to assess the species- and pathovar-level resolution of each gene. Notably, all isolates of each quarantine species/pathovars formed a monophyletic group in the neighbor-joining tree constructed using the cpn60 sequences. Moreover, cpn60 also demonstrated the most satisfactory results in both barcoding gap analysis and the ‘best close match’ test. Thus, compared with the other markers tested, cpn60 proved to be a powerful DNA barcode, providing a reliable and effective means for the species- and pathovar-level identification of the quarantine plant pathogen Xanthomonas. PMID:27861494
Karatuna, Onur; Celebi, Bekir; Can, Simge; Akyar, Isin; Kilic, Selcuk
2016-01-15
Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institute of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica due to RD1 subspecies-specific PCR result. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories.
Karatuna, Onur; Çelebi, Bekir; Can, Simge; Akyar, Işın; Kiliç, Selçuk
2016-01-01
Francisella tularensis is the cause of the zoonotic disease tularemia and is classified among highly pathogenic bacteria (HPB) due to its low infection dose and potential for airborne transmission. In the case of HBP, there is a pressing need for rapid, accurate and reliable identification. Phenotypic identification of Francisella species is inappropriate for clinical microbiology laboratories because it is time-consuming, hazardous and subject to variable interpretation. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was recently evaluated as a useful tool for the rapid identification of a variety of microorganisms. In this study, we evaluated the use of MALDI-TOF MS for the rapid identification of Francisella tularensis and differentiation of its subspecies. Using national collection of Francisella isolates from the National Tularemia Reference Laboratory (Public Health Institution of Turkey, Ankara), a total of 75 clinical isolates were investigated by species and subspecies-specific polymerase chain reaction (PCR) test and MALDI-TOF MS. All isolates were originally identified as F. tularensis subsp. holarctica according to region of difference 1 (RD1) subspecies-specific PCR results. For all isolates MALDI-TOF MS provided results in concordance with subspecies-specific PCR analysis. Although PCR-based methods are effective in identifying Francisella species, they are labor-intensive and take longer periods of time to obtain the results when compared with MALDI-TOF MS. MALDI-TOF MS appeared to be a rapid, reliable and cost-effective identification technique for Francisella spp. Shorter analysis time and low cost make this an appealing new option in microbiology laboratories. PMID:26773181
Identification of species with DNA-based technology: current progress and challenges.
Pereira, Filipe; Carneiro, João; Amorim, António
2008-01-01
One of the grand challenges of modern biology is to develop accurate and reliable technologies for a rapid screening of DNA sequence variation. This topic of research is of prime importance for the detection and identification of species in numerous fields of investigation, such as taxonomy, epidemiology, forensics, archaeology or ecology. Molecular identification is also central for the diagnosis, treatment and control of infections caused by different pathogens. In recent years, a variety of DNA-based approaches have been developed for the identification of individuals in a myriad of taxonomic groups. Here, we provide an overview of most commonly used assays, with emphasis on those based on DNA hybridizations, restriction enzymes, random PCR amplifications, species-specific PCR primers and DNA sequencing. A critical evaluation of all methods is presented focusing on their discriminatory power, reproducibility and user-friendliness. Having in mind that the current trend is to develop small-scale devices with a high-throughput capacity, we briefly review recent technological achievements for DNA analysis that offer great potentials for the identification of species.
Bizzini, A; Greub, G
2010-11-01
Until recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) techniques for the identification of microorganisms remained confined to research laboratories. In the last 2 years, the availability of relatively simple to use MALDI-TOF MS devices, which can be utilized in clinical microbiology laboratories, has changed the laboratory workflows for the identification of pathogens. Recently, the first prospective studies regarding the performance in routine bacterial identification showed that MALDI-TOF MS is a fast, reliable and cost-effective technique that has the potential to replace and/or complement conventional phenotypic identification for most bacterial strains isolated in clinical microbiology laboratories. For routine bacterial isolates, correct identification by MALDI-TOF MS at the species level was obtained in 84.1-93.6% of instances. In one of these studies, a protein extraction step clearly improved the overall valid identification yield, from 70.3% to 93.2%. This review focuses on the current state of use of MALDI-TOF MS for the identification of routine bacterial isolates and on the main difficulties that may lead to erroneous or doubtful identifications. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
Potential of DNA barcoding for detecting quarantine fungi.
Gao, Ruifang; Zhang, Guiming
2013-11-01
The detection of live quarantine pathogenic fungi plays an important role in guaranteeing regional biological safety. DNA barcoding, an emerging species identification technology, holds promise for the reliable, quick, and accurate detection of quarantine fungi. International standards for phytosanitary guidelines are urgently needed. The varieties of quarantine fungi listed for seven countries/regions, the currently applied detection methods, and the status of DNA barcoding for detecting quarantine fungi are summarized in this study. Two approaches have been proposed to apply DNA barcoding to fungal quarantine procedures: (i) to verify the reliability of known internal transcribed spacer (ITS)/cytochrome c oxidase subunit I (COI) data for use as barcodes, and (ii) to determine other barcodes for species that cannot be identified by ITS/COI. As a unique, standardizable, and universal species identification tool, DNA barcoding offers great potential for integrating detection methods used in various countries/regions and establishing international detection standards based on accepted DNA barcodes. Through international collaboration, interstate disputes can be eased and many problems related to routine quarantine detection methods can be solved for global trade.
Identification of secreted bacterial proteins by noncanonical amino acid tagging
Mahdavi, Alborz; Szychowski, Janek; Ngo, John T.; Sweredoski, Michael J.; Graham, Robert L. J.; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K.; Tirrell, David A.
2014-01-01
Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy. PMID:24347637
Ford, Bradley A
2016-04-01
Vancomycin-intermediateStaphylococcus aureus(VISA) and heteroresistant VISA (hVISA) are pathogens for which accurate antimicrobial susceptibility testing (AST) would rule out standard treatment with vancomycin. Unfortunately, AST for vancomycin is relatively slow and standard methods are unable to reliably detect VISA and hVISA. An article in this issue (C. A. Mather, B. J. Werth, S. Sivagnanam, D. J. SenGupta, and S. M. Butler-Wu, J Clin Microbiol 54:883-890, 2016, doi:http://dx.doi.org/10.1128/JCM.02428-15) describes a rapid whole-cell matrix-assisted laser desorption ionization-time of flight proxy susceptibility method that highlights current innovations and challenges with rapid AST, VISA/hVISA identification, and clinical bioinformatics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Identification of Campylobacter infection in chickens from volatile faecal emissions.
Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S
2008-06-01
Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.
Rothen, Julian; Githaka, Naftaly; Kanduma, Esther G; Olds, Cassandra; Pflüger, Valentin; Mwaura, Stephen; Bishop, Richard P; Daubenberger, Claudia
2016-03-15
The tick population of Africa includes several important genera belonging to the family Ixodidae. Many of these ticks are vectors of protozoan and rickettsial pathogens including Theileria parva that causes East Coast fever, a debilitating cattle disease endemic to eastern, central and southern Africa. Effective surveillance of tick-borne pathogens depends on accurate identification and mapping of their tick vectors. A simple and reproducible technique for rapid and reliable differentiation of large numbers of closely related field-collected ticks, which are often difficult and tedious to discriminate purely by morphology, will be an essential component of this strategy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is increasingly becoming a useful tool in arthropod identification and has the potential to overcome the limitations of classical morphology-based species identification. In this study, we applied MALDI-TOF MS to a collection of laboratory and field ticks found in Eastern Africa. The objective was to determine the utility of this proteomic tool for reliable species identification of closely related afrotropical ticks. A total of 398 ixodid ticks from laboratory maintained colonies, extracted from the hides of animals or systematically collected from vegetation in Kenya, Sudan and Zimbabwe were analyzed in the present investigation. The cytochrome c oxidase I (COI) genes from 33 specimens were sequenced to confirm the tentatively assigned specimen taxa identity on the basis of morphological analyses. Subsequently, the legs of ticks were homogenized and analyzed by MALDI-TOF MS. A collection of reference mass spectra, based on the mass profiles of four individual ticks per species, was developed and deposited in the spectral database SARAMIS™. The ability of these superspectra (SSp.) to identify and reliably validate a set of ticks was demonstrated using the remaining individual 333 ticks. Ultimately, ten different tick species within the genera Amblyomma, Hyalomma, Rhipicephalus and Rhipicephalus (Boophilus) based on molecular COI typing and morphology were included into the study analysis. The robustness of the 12 distinct SSp. developed here proved to be very high, with 319 out of 333 ticks used for validation identified correctly at species level. Moreover, these novel SSp. allowed for diagnostic specificity of 99.7 %. The failure of species identification for 14 ticks was directly linked to low quality mass spectra, most likely due to poor specimen quality that was received in the laboratory before sample preparation. Our results are consistent with earlier studies demonstrating the potential of MALDI-TOF MS as a reliable tool for differentiating ticks originating from the field, especially females that are difficult to identify after blood feeding. This work provides further evidence of the utility of MALDI-TOF MS to identify morphologically and genetically highly similar tick species and indicates the potential of this tool for large-scale monitoring of tick populations, species distributions and host preferences.
NASA Astrophysics Data System (ADS)
Ghosh, S. B.; Bhattacharya, K.; Nayak, S.; Mukherjee, P.; Salaskar, D.; Kale, S. P.
2015-09-01
Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples.
Method for genetic identification of unknown organisms
Colston, Jr., Billy W.; Fitch, Joseph P.; Hindson, Benjamin J.; Carter, Chance J.; Beer, Neil Reginald
2016-08-23
A method of rapid, genome and proteome based identification of unknown pathogenic or non-pathogenic organisms in a complex sample. The entire sample is analyzed by creating millions of emulsion encapsulated microdroplets, each containing a single pathogenic or non-pathogenic organism sized particle and appropriate reagents for amplification. Following amplification, the amplified product is analyzed.
NASA Astrophysics Data System (ADS)
Liu, Hongxing; Xing, Da; Zhou, Xiaoming
2014-09-01
Food-borne pathogens such as Listeria monocytogenes have been recognized as a major cause of human infections worldwide, leading to substantial health problems. Food-borne pathogen identification needs to be simpler, cheaper and more reliable than the current traditional methods. Here, we have constructed a low-cost paper biosensor for the detection of viable pathogenic bacteria with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper biosensor to perform a visual test, in which endpoint detection was performed using sandwich hybridization assays. When the RNA products migrated along the paper biosensor by capillary action, the gold nanoparticles accumulated at the designated Test line and Control line. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from Listeria monocytogenes could be detected. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. The developed method is suitable for point-of-care applications to detect food-borne pathogens, as it can effectively overcome the false-positive results caused by amplifying nonviable Listeria monocytogenes.
Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus
2016-11-01
Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.
Miller, Manuel; Ritter, Bärbel; Zorn, Julia; Brielmeier, Markus
2016-01-01
Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice. PMID:27931316
Raman spectroscopy as a new tool for early detection of bacteria in patients with cystic fibrosis
NASA Astrophysics Data System (ADS)
Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Abete, Pasquale; Carnovale, Vincenzo; Sasso, Antonio
2013-07-01
Respiratory infections represent a major threat for people affected by cystic fibrosis, leading to pulmonary deterioration and lung transplantation as a therapeutic option for end-stage patients. A fast and correct identification of pathogens in airway fluid of these patients is crucial to establish appropriate therapies, to prevent cross-infections and, ultimately, to preserve lung function. In this study, we used Raman spectroscopy to reveal bacteria in the sputa of patients such as Pseudomonas aeruginosa and Staphylococcus aureus, which are among the earliest and the most frequent bacteria affecting cystic fibrosis patients. We found that Raman analysis, combined with principal component analysis, is able to provide a correct identification of these bacteria, with a global accuracy higher than 95%. Interestingly, bacterial identification is performed by analysing patients’ sputa as a whole, avoiding, therefore, time-consuming procedures involving bacterial isolation or even bacterial cultures. This study suggests that Raman spectroscopy could be a suitable candidate for the development of innovative and non-invasive procedures for a fast and reliable identification of respiratory infections in cystic fibrosis patients.
Wang, Ming-Cheng; Lin, Wei-Hung; Yan, Jing-Jou; Fang, Hsin-Yi; Kuo, Te-Hui; Tseng, Chin-Chung; Wu, Jiunn-Jong
2015-08-01
Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) is a valuable method for rapid identification of blood stream infection (BSI) pathogens. Integration of MALDI-TOF MS and blood culture system can speed the identification of causative BSI microorganisms. We investigated the minimal microorganism concentrations of common BSI pathogens required for positive blood culture using BACTEC FX and for positive identification using MALDI-TOF MS. The time to detection with positive BACTEC FX and minimal incubation time with positive MALDI-TOF MS identification were determined for earlier identification of common BSI pathogens. The minimal microorganism concentrations required for positive blood culture using BACTEC FX were >10(7)-10(8) colony forming units/mL for most of the BSI pathogens. The minimal microorganism concentrations required for identification using MALDI-TOF MS were > 10(7) colony forming units/mL. Using simulated BSI models, one can obtain enough bacterial concentration from blood culture bottles for successful identification of five common Gram-positive and Gram-negative bacteria using MALDI-TOF MS 1.7-2.3 hours earlier than the usual time to detection in blood culture systems. This study provides an approach to earlier identification of BSI pathogens prior to the detection of a positive signal in the blood culture system using MALDI-TOF MS, compared to current methods. It can speed the time for identification of BSI pathogens and may have benefits of earlier therapy choice and on patient outcome. Copyright © 2013. Published by Elsevier B.V.
Lasch, Peter; Wahab, Tara; Weil, Sandra; Pályi, Bernadett; Tomaso, Herbert; Zange, Sabine; Kiland Granerud, Beathe; Drevinek, Michal; Kokotovic, Branko; Wittwer, Matthias; Pflüger, Valentin; Di Caro, Antonino; Stämmler, Maren; Grunow, Roland
2015-01-01
In the case of a release of highly pathogenic bacteria (HPB), there is an urgent need for rapid, accurate, and reliable diagnostics. MALDI-TOF mass spectrometry is a rapid, accurate, and relatively inexpensive technique that is becoming increasingly important in microbiological diagnostics to complement classical microbiology, PCR, and genotyping of HPB. In the present study, the results of a joint exercise with 11 partner institutions from nine European countries are presented. In this exercise, 10 distinct microbial samples, among them five HPB, Bacillus anthracis, Brucella canis, Burkholderia mallei, Burkholderia pseudomallei, and Yersinia pestis, were characterized under blinded conditions. Microbial strains were inactivated by high-dose gamma irradiation before shipment. Preparatory investigations ensured that this type of inactivation induced only subtle spectral changes with negligible influence on the quality of the diagnosis. Furthermore, pilot tests on nonpathogenic strains were systematically conducted to ensure the suitability of sample preparation and to optimize and standardize the workflow for microbial identification. The analysis of the microbial mass spectra was carried out by the individual laboratories on the basis of spectral libraries available on site. All mass spectra were also tested against an in-house HPB library at the Robert Koch Institute (RKI). The averaged identification accuracy was 77% in the first case and improved to >93% when the spectral diagnoses were obtained on the basis of the RKI library. The compilation of complete and comprehensive databases with spectra from a broad strain collection is therefore considered of paramount importance for accurate microbial identification. PMID:26063856
NASA Astrophysics Data System (ADS)
Tibbetts, Clark; Lichanska, Agnieszka M.; Borsuk, Lisa A.; Weslowski, Brian; Morris, Leah M.; Lorence, Matthew C.; Schafer, Klaus O.; Campos, Joseph; Sene, Mohamadou; Myers, Christopher A.; Faix, Dennis; Blair, Patrick J.; Brown, Jason; Metzgar, David
2010-04-01
High-density resequencing microarrays support simultaneous detection and identification of multiple viral and bacterial pathogens. Because detection and identification using RPM is based upon multiple specimen-specific target pathogen gene sequences generated in the individual test, the test results enable both a differential diagnostic analysis and epidemiological tracking of detected pathogen strains and variants from one specimen to the next. The RPM assay enables detection and identification of pathogen sequences that share as little as 80% sequence similarity to prototype target gene sequences represented as detector tiles on the array. This capability enables the RPM to detect and identify previously unknown strains and variants of a detected pathogen, as in sentinel cases associated with an infectious disease outbreak. We illustrate this capability using assay results from testing influenza A virus vaccines configured with strains that were first defined years after the design of the RPM microarray. Results are also presented from RPM-Flu testing of three specimens independently confirmed to the positive for the 2009 Novel H1N1 outbreak strain of influenza virus.
rpoB Gene Sequencing for Identification of Corynebacterium Species
Khamis, Atieh; Raoult, Didier; La Scola, Bernard
2004-01-01
The genus Corynebacterium is a heterogeneous group of species comprising human and animal pathogens and environmental bacteria. It is defined on the basis of several phenotypic characters and the results of DNA-DNA relatedness and, more recently, 16S rRNA gene sequencing. However, the 16S rRNA gene is not polymorphic enough to ensure reliable phylogenetic studies and needs to be completely sequenced for accurate identification. The almost complete rpoB sequences of 56 Corynebacterium species were determined by both PCR and genome walking methods. In all cases the percent similarities between different species were lower than those observed by 16S rRNA gene sequencing, even for those species with degrees of high similarity. Several clusters supported by high bootstrap values were identified. In order to propose a method for strain identification which does not require sequencing of the complete rpoB sequence (approximately 3,500 bp), we identified an area with a high degree of polymorphism, bordered by conserved sequences that can be used as universal primers for PCR amplification and sequencing. The sequence of this fragment (434 to 452 bp) allows accurate species identification and may be used in the future for routine sequence-based identification of Corynebacterium species. PMID:15364970
Leung, Lisa M; Fondrie, William E; Doi, Yohei; Johnson, J Kristie; Strickland, Dudley K; Ernst, Robert K; Goodlett, David R
2017-07-25
Rapid diagnostics that enable identification of infectious agents improve patient outcomes, antimicrobial stewardship, and length of hospital stay. Current methods for pathogen detection in the clinical laboratory include biological culture, nucleic acid amplification, ribosomal protein characterization, and genome sequencing. Pathogen identification from single colonies by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of high abundance proteins is gaining popularity in clinical laboratories. Here, we present a novel and complementary approach that utilizes essential microbial glycolipids as chemical fingerprints for identification of individual bacterial species. Gram-positive and negative bacterial glycolipids were extracted using a single optimized protocol. Extracts of the clinically significant ESKAPE pathogens: E nterococcus faecium, S taphylococcus aureus, K lebsiella pneumoniae, A cinetobacter baumannii, P seudomonas aeruginosa, and E nterobacter spp. were analyzed by MALDI-TOF-MS in negative ion mode to obtain glycolipid mass spectra. A library of glycolipid mass spectra from 50 microbial entries was developed that allowed bacterial speciation of the ESKAPE pathogens, as well as identification of pathogens directly from blood bottles without culture on solid medium and determination of antimicrobial peptide resistance. These results demonstrate that bacterial glycolipid mass spectra represent chemical barcodes that identify pathogens, potentially providing a useful alternative to existing diagnostics.
Infection caused by thymidine-requiring, trimethoprim-resistant bacteria.
King, C H; Shlaes, D M; Dul, M J
1983-01-01
We first noted the appearance of thymidine-requiring, gram-negative bacilli in clinical specimens 2 years ago. Since then we have seen 10 patients colonized or infected with these organisms. These strains do not grow on Mueller-Hinton media, growth on MacConkey agar is variable, and growth in API 20E (Analytab Products) and Enterobacteriaceae-Plus Cards (AutoMicrobic system; Vitek Systems Inc.) is inadequate for reliable identifications. Thymidine-requiring organisms are routinely resistant to sulfonamides and trimethoprim. Infection or colonization is associated with previous sulfamethoxazole-trimethoprim therapy in most cases. Of 10 patients, 1 had septicemia of urinary tract origin, 5 had urinary tract colonization or infection, 2 had wound colonization, and two had colonization of respiratory secretions. Thymidine-requiring, gram-negative bacilli can be pathogens and present potential problems in diagnosis, identification, and susceptibility testing. PMID:6604070
Coryneform bacteria in infectious diseases: clinical and laboratory aspects.
Coyle, M B; Lipsky, B A
1990-01-01
Coryneform isolates from clinical specimens frequently cannot be identified by either reference laboratories or research laboratories. Many of these organisms are skin flora that belong to a large number of taxonomic groups, only 40% of which are in the genus Corynebacterium. This review provides an update on clinical presentations, microbiological features, and pathogenic mechanisms of infections with nondiphtheria Corynebacterium species and other pleomorphic gram-positive rods. The early literature is also reviewed for a few coryneforms, especially those whose roles as pathogens are controversial. Recognition of newly emerging opportunistic coryneforms is dependent on sound identification schemes which cannot be developed until cell wall analyses and nucleic acid studies have defined the taxonomic groups and all of the reference strains within each taxon have been shown by molecular methods to be authentic members. Only then can reliable batteries of biochemical tests be selected for distinguishing each taxon. PMID:2116939
Iván, Kristóf; Maráz, Anna
2015-12-20
Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.
Hou, X-L; Cao, Q-Y; Jia, H-Y; Chen, Z
2008-07-01
Pathogens causing acute diarrhea include a large variety of species from Enterobacteriaceae and Vibrionaceae. A method based on pyrosequencing was used here to differentiate bacteria commonly associated with diarrhea in China; the method is targeted to a partial amplicon of the gyrB gene, which encodes the B subunit of DNA gyrase. Twenty-eight specific polymorphic positions were identified from sequence alignment of a large sequence dataset and targeted using 17 sequencing primers. Of 95 isolates tested, belonging to 13 species within 7 genera, most could be identified to the species level; O157 type could be differentiated from other E. coli types; Salmonella enterica subsp. enterica could be identified at the serotype level; the genus Shigella, except for S. boydii and S. dysenteriae, could also be identified. All these isolates were also subjected to conventional sequencing of a relatively long ( approximately1.2 kb) region of gyrB DNA; these results confirmed those with pyrosequencing. Twenty-two fecal samples were surveyed, the results of which were concordant with culture-based bacterial identification, and the pathogen detection limit with simulated stool specimens was 10(4) CFU/ml. DNA from different pathogens was also mixed to simulate a case of multibacterial infection, and the generated signals correlated well with the mix ratio. In summary, the gyrB-based pyrosequencing approach proved to have significant reliability and discriminatory power for enteropathogenic bacterial identification and provided a fast and effective method for clinical diagnosis.
AUTOMATED BIOCHEMICAL IDENTIFICATION OF BACTERIAL FISH PATHOGENS USING THE ABBOTT QUANTUM II
The Quantum II, originally designed by Abbott Diagnostics for automated rapid identification of members of Enterobacteriaceae, was adapted for the identification of bacterial fish pathogens. he instrument operates as a spectrophotometer at a wavelength of 492.600 nm. ample cartri...
Real time detection of ESKAPE pathogens by a nitroreductase-triggered fluorescence turn-on probe.
Xu, Shengnan; Wang, Qinghua; Zhang, Qingyang; Zhang, Leilei; Zuo, Limin; Jiang, Jian-Dong; Hu, Hai-Yu
2017-10-18
The identification of bacterial pathogens is the critical first step in conquering infection diseases. A novel turn-on fluorescent probe for the selective sensing of nitroreductase (NTR) activity and its initial applications in rapid, real-time detection and identification of ESKAPE pathogens have been reported.
Peltroche-Llacsahuanga, H; Schmidt, S; Lütticken, R; Haase, G
2000-12-01
Candida (Torulopsis) glabrata is frequently isolated in cases of fungal infection and commonly shows acquired or innate fluconazole resistance. Saccharomyces cerevisiae, an emerging opportunistic yeast pathogen, causes serious systemic infections in immunocompromised, and vaginitis and superficial infections in immunocompetent patients. For both species reliable identification in the routine laboratory is mandatory, but species identification of strains, e.g. trehalose-negative C. glabrata, may be difficult. Therefore, gas-liquid chromatography (GLC) of whole cell fatty acid methyl ester (FAME) profiles, that is independent of assimilation profiles of strains and suitable for reliable and rapid identification of clinically important yeasts, was applied. However, frequent misidentification of C. glabrata as S. cerevisiae has been reported when using the Yeast Clinical Database of MIS. Accuracy of MIS identification may be strongly influenced by the amounts of cell mass analyzed. Therefore, the present study compared the MIS results of these two yeasts achieved with different cell masses. Primarily we optimized, especially with respect to cost-effectiveness, the recommended streaking technique yielding a maximal recovery of 90-130 mg of cell mass from one plate, enabling testing of poor growing strains of C. glabrata. For all C. glabrata strains tested (n = 10) the highest identification scores (SI [Similarity Index] range 0.525-0.963, median 0.832) were achieved with 30 to 45 mg of cell mass. Only 5 of 10 S. cerevisiae strains revealed good library comparisons (SI > or = 0.5) when using 30 mg of cell mass, whereas with 45 mg all strains but two revealed this SI-level. For S. cerevisiae a higher amount of cell mass processed (up to 90 mg) was correlated with better identification scores (SI range using 90 mg: 0.464-0.870, median, 0.737). Several passages prior to FAME analysis of C. glabrata strains on recommended media revealed narrowing of SI ranges, but differences in SI values were not statistically significant.
Vlach, Jiří; Junková, Petra; Karamonová, Ludmila; Blažková, Martina; Fukal, Ladislav
2017-01-01
ABSTRACT In the last decade, strains of the genera Franconibacter and Siccibacter have been misclassified as first Enterobacter and later Cronobacter. Because Cronobacter is a serious foodborne pathogen that affects premature neonates and elderly individuals, such misidentification may not only falsify epidemiological statistics but also lead to tests of powdered infant formula or other foods giving false results. Currently, the main ways of identifying Franconibacter and Siccibacter strains are by biochemical testing or by sequencing of the fusA gene as part of Cronobacter multilocus sequence typing (MLST), but in relation to these strains the former is generally highly difficult and unreliable while the latter remains expensive. To address this, we developed a fast, simple, and most importantly, reliable method for Franconibacter and Siccibacter identification based on intact-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Our method integrates the following steps: data preprocessing using mMass software; principal-component analysis (PCA) for the selection of mass spectrum fingerprints of Franconibacter and Siccibacter strains; optimization of the Biotyper database settings for the creation of main spectrum projections (MSPs). This methodology enabled us to create an in-house MALDI MS database that extends the current MALDI Biotyper database by including Franconibacter and Siccibacter strains. Finally, we verified our approach using seven previously unclassified strains, all of which were correctly identified, thereby validating our method. IMPORTANCE We show that the majority of methods currently used for the identification of Franconibacter and Siccibacter bacteria are not able to properly distinguish these strains from those of Cronobacter. While sequencing of the fusA gene as part of Cronobacter MLST remains the most reliable such method, it is highly expensive and time-consuming. Here, we demonstrate a cost-effective and reliable alternative that correctly distinguishes between Franconibacter, Siccibacter, and Cronobacter bacteria and identifies Franconibacter and Siccibacter at the species level. Using intact-cell MALDI-TOF MS, we extend the current MALDI Biotyper database with 11 Franconibacter and Siccibacter MSPs. In addition, the use of our approach is likely to lead to a more reliable identification scheme for Franconibacter and Siccibacter strains and, consequently, a more trustworthy epidemiological picture of their involvement in disease. PMID:28455327
Ghosh, S B; Bhattacharya, K; Nayak, S; Mukherjee, P; Salaskar, D; Kale, S P
2015-09-05
Definitive identification of microorganisms, including pathogenic and non-pathogenic bacteria, is extremely important for a wide variety of applications including food safety, environmental studies, bio-terrorism threats, microbial forensics, criminal investigations and above all disease diagnosis. Although extremely powerful techniques such as those based on PCR and microarrays exist, they require sophisticated laboratory facilities along with elaborate sample preparation by trained researchers. Among different spectroscopic techniques, FTIR was used in the 1980s and 90s for bacterial identification. In the present study five species of Bacillus were isolated from the aerobic predigester chamber of Nisargruna Biogas Plant (NBP) and were identified to the species level by biochemical and molecular biological (16S ribosomal DNA sequence) methods. Those organisms were further checked by solid state spectroscopic absorbance measurements using a wide range of electromagnetic radiation (wavelength 200 nm to 25,000 nm) encompassing UV, visible, near Infrared and Infrared regions. UV-Vis and NIR spectroscopy was performed on dried bacterial cell suspension on silicon wafer in specular mode while FTIR was performed on KBr pellets containing the bacterial cells. Consistent and reproducible species specific spectra were obtained and sensitivity up to a level of 1000 cells was observed in FTIR with a DTGS detector. This clearly shows the potential of solid state spectroscopic techniques for simple, easy to implement, reliable and sensitive detection of bacteria from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali
2016-04-01
To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.
Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S
2015-01-16
Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.
Lang, Jillian M.; Langlois, Paul; Nguyen, Marian Hanna R.; Triplett, Lindsay R.; Purdie, Laura; Holton, Timothy A.; Djikeng, Appolinaire; Vera Cruz, Casiana M.; Verdier, Valérie
2014-01-01
Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 104 to 105 CFU ml−1, while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens. PMID:24837384
Blaschke, Anne J.; Heyrend, Caroline; Byington, Carrie L.; Fisher, Mark A.; Barker, Elizabeth; Garrone, Nicholas F.; Thatcher, Stephanie A.; Pavia, Andrew T.; Barney, Trenda; Alger, Garrison D.; Daly, Judy A.; Ririe, Kirk M.; Ota, Irene; Poritz, Mark A.
2012-01-01
Sepsis is a leading cause of death. Rapid and accurate identification of pathogens and antimicrobial resistance directly from blood culture could improve patient outcomes. The FilmArray® (FA; Idaho Technology, Inc., Salt Lake City, UT) Blood Culture (BC) panel can identify > 25 pathogens and 4 antibiotic resistance genes from positive blood cultures in 1 hour. We compared a development version of the panel to conventional culture and susceptibility testing on 102 archived blood cultures from adults and children with bacteremia. Of 109 pathogens identified by culture, 95% were identified by FA. Among 111 prospectively collected blood cultures, the FA identified 84 of 92 pathogens (91%) covered by the panel. Among 25 Staphylococcus aureus and 21 Enterococcus species detected, FA identified all culture-proven MRSA and VRE. The FA BC panel is an accurate method for the rapid identification of pathogens and resistance genes from blood culture. PMID:22999332
Gasc, Cyrielle; Constantin, Antony; Jaziri, Faouzi; Peyret, Pierre
2017-01-01
The detection and identification of bacterial pathogens involved in acts of bio- and agroterrorism are essential to avoid pathogen dispersal in the environment and propagation within the population. Conventional molecular methods, such as PCR amplification, DNA microarrays or shotgun sequencing, are subject to various limitations when assessing environmental samples, which can lead to inaccurate findings. We developed a hybridization capture strategy that uses a set of oligonucleotide probes to target and enrich biomarkers of interest in environmental samples. Here, we present Oligonucleotide Capture Probes for Pathogen Identification Database (OCaPPI-Db), an online capture probe database containing a set of 1,685 oligonucleotide probes allowing for the detection and identification of 30 biothreat agents up to the species level. This probe set can be used in its entirety as a comprehensive diagnostic tool or can be restricted to a set of probes targeting a specific pathogen or virulence factor according to the user's needs. : http://ocappidb.uca.works. © The Author(s) 2017. Published by Oxford University Press.
Massire, Christian; Buelow, Daelynn R.; Zhang, Sean X.; Lovari, Robert; Matthews, Heather E.; Toleno, Donna M.; Ranken, Raymond R.; Hall, Thomas A.; Metzgar, David; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.; Gu, Zhengming; Walsh, Thomas J.
2013-01-01
Invasive fungal infections are a significant cause of morbidity and mortality among immunocompromised patients. Early and accurate identification of these pathogens is central to direct therapy and to improve overall outcome. PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was evaluated as a novel means for identification of fungal pathogens. Using a database grounded by 60 ATCC reference strains, a total of 394 clinical fungal isolates (264 molds and 130 yeasts) were analyzed by PCR/ESI-MS; results were compared to phenotypic identification, and discrepant results were sequence confirmed. PCR/ESI-MS identified 81.4% of molds to either the genus or species level, with concordance rates of 89.7% and 87.4%, respectively, to phenotypic identification. Likewise, PCR/ESI-MS was able to identify 98.4% of yeasts to either the genus or species level, agreeing with 100% of phenotypic results at both the genus and species level. PCR/ESI-MS performed best with Aspergillus and Candida isolates, generating species-level identification in 94.4% and 99.2% of isolates, respectively. PCR/ESI-MS is a promising new technology for broad-range detection and identification of medically important fungal pathogens that cause invasive mycoses. PMID:23303501
de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.
2017-01-01
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499
Giantsis, Ioannis A; Chaskopoulou, Alexandra; Claude Bon, Marie
2017-02-01
Sand flies (Diptera: Psychodidae, subfamily Phlebotominae) are hematophagous insects that are known to transmit several anthroponotic and zoonotic diseases. Reliable identification of sand flies at species level is crucial for their surveillance, the detection and spread of their pathogens, and the implementation of targeted pest control strategies. Here, we designed a novel, time-saving, cost-effective and easy-to-apply molecular methodology, which avoids sequencing, for the identification of the following six Eastern Mediterranean sand fly species: Phebotomus perfiliewi Parrot, Phebotomus simici Theodor, Phebotomus tobbi Adler and Theodor, Phebotomus papatasi Scopoli, Sergentomyia dentata Sinton, and Sergentomyia minuta Theodor. This methodology, which is a multiplex PCR assay using one common and six diagnostic primers, is based on species-specific single-nucleotide polymorphisms of the nuclear 18S rRNA gene. Amplification products were easily and reliably separated in agarose gel yielding one single clear band of diagnostic size for each species. Further, we verified its successful application on tissue samples that were immersed directly to the PCR mix, skipping DNA extraction. The direct multiplex PCR can be completed in < 3 h, including all operating procedures, and costing no more than a simple PCR. The applicability of this methodology in the detection of hybrids is an additional considerable benefit. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peel, Trisha N; Cole, Nicolynn C; Dylla, Brenda L; Patel, Robin
2015-03-01
Identification of pathogen(s) associated with prosthetic joint infection (PJI) is critical for patient management. Historically, many laboratories have not routinely identified organisms such as coagulase-negative staphylococci to the species level. The advent of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) has enhanced clinical laboratory capacity for accurate species-level identification. The aim of this study was to describe the species-level identification of microorganisms isolated from periprosthetic tissue and fluid specimens using MALDI-TOF MS alongside other rapid identification tests in a clinical microbiology laboratory. Results of rapid identification of bacteria isolated from periprosthetic joint fluid and/or tissue specimens were correlated with clinical findings at Mayo Clinic, Rochester, Minnesota, between May 2012 and May 2013. There were 178 PJI and 82 aseptic failure (AF) cases analyzed, yielding 770 organisms (median, 3/subject; range, 1-19/subject). MALDI-TOF MS was employed for the identification of 455 organisms (59%) in 197 subjects (123 PJIs and 74 AFs), with 89% identified to the species level using this technique. Gram-positive bacteria accounted for 68% and 93% of isolates in PJI and AF, respectively. However, the profile of species associated with infection compared to specimen contamination differed. Staphylococcus aureus and Staphylococcus caprae were always associated with infection, Staphylococcus epidermidis and Staphylococcus lugdunensis were equally likely to be a pathogen or a contaminant, whereas the other coagulase-negative staphylococci were more frequently contaminants. Most streptococcal and Corynebacterium isolates were pathogens. The likelihood that an organism was a pathogen or contaminant differed with the prosthetic joint location, particularly in the case of Propionibacterium acnes. MALDI-TOF MS is a valuable tool for the identification of bacteria isolated from patients with prosthetic joints, providing species-level identification that may inform culture interpretation of pathogens versus contaminants. Copyright © 2015 Elsevier Inc. All rights reserved.
Ranjbar, Reza; Behzadi, Payam; Najafi, Ali; Roudi, Raheleh
2017-01-01
A rapid, accurate, flexible and reliable diagnostic method may significantly decrease the costs of diagnosis and treatment. Designing an appropriate microarray chip reduces noises and probable biases in the final result. The aim of this study was to design and construct a DNA Microarray Chip for a rapid detection and identification of 10 important bacterial agents. In the present survey, 10 unique genomic regions relating to 10 pathogenic bacterial agents including Escherichia coli (E.coli), Shigella boydii, Sh.dysenteriae, Sh.flexneri, Sh.sonnei, Salmonella typhi, S.typhimurium, Brucella sp., Legionella pneumophila, and Vibrio cholera were selected for designing specific long oligo microarray probes. For this reason, the in-silico operations including utilization of the NCBI RefSeq database, Servers of PanSeq and Gview, AlleleID 7.7 and Oligo Analyzer 3.1 was done. On the other hand, the in-vitro part of the study comprised stages of robotic microarray chip probe spotting, bacterial DNAs extraction and DNA labeling, hybridization and microarray chip scanning. In wet lab section, different tools and apparatus such as Nexterion® Slide E, Qarray mini spotter, NimbleGen kit, TrayMix TM S4, and Innoscan 710 were used. A DNA microarray chip including 10 long oligo microarray probes was designed and constructed for detection and identification of 10 pathogenic bacteria. The DNA microarray chip was capable to identify all 10 bacterial agents tested simultaneously. The presence of a professional bioinformatician as a probe designer is needed to design appropriate multifunctional microarray probes to increase the accuracy of the outcomes.
DNA-mounted self-assembly: new approaches for genomic analysis and SNP detection.
Bichenkova, Elena V; Lang, Zhaolei; Yu, Xuan; Rogert, Candelaria; Douglas, Kenneth T
2011-01-01
This article presents an overview of new emerging approaches for nucleic acid detection via hybridization techniques that can potentially be applied to genomic analysis and SNP identification in clinical diagnostics. Despite the availability of a diverse variety of SNP genotyping technologies on the diagnostic market, none has truly succeeded in dominating its competitors thus far. Having been designed for specific diagnostic purposes or clinical applications, each of the existing bio-assay systems (briefly outlined here) is usually limited to a relatively narrow aspect or format of nucleic acid detection, and thus cannot entirely satisfy all the varieties of commercial requirements and clinical demands. This drives the diagnostic sector to pursue novel, cost-effective approaches to ensure rapid and reliable identification of pathogenic or hereditary human diseases. Hence, the purpose of this review is to highlight some new strategic directions in DNA detection technologies in order to inspire development of novel molecular diagnostic tools and bio-assay systems with superior reliability, reproducibility, robustness, accuracy and sensitivity at lower assay cost. One approach to improving the sensitivity of an assay to confidently discriminate between single point mutations is based on the use of target assembled, split-probe systems, which constitutes the main focus of this review. Copyright © 2010 Elsevier B.V. All rights reserved.
Increased detection of mastitis pathogens by real-time PCR compared to bacterial culture.
Keane, O M; Budd, K E; Flynn, J; McCoy, F
2013-09-21
Rapid and accurate identification of mastitis pathogens is important for disease control. Bacterial culture and isolate identification is considered the gold standard in mastitis diagnosis but is time consuming and results in many culture-negative samples. Identification of mastitis pathogens by PCR has been proposed as a fast and sensitive alternative to bacterial culture. The results of bacterial culture and PCR for the identification of the aetiological agent of clinical mastitis were compared. The pathogen identified by traditional culture methods was also detected by PCR in 98 per cent of cases indicating good agreement between the positive results of bacterial culture and PCR. A mastitis pathogen could not be recovered from approximately 30 per cent of samples by bacterial culture, however, an aetiological agent was identified by PCR in 79 per cent of these samples. Therefore, a mastitis pathogen was detected in significantly more milk samples by PCR than by bacterial culture (92 per cent and 70 per cent, respectively) although the clinical relevance of PCR-positive culture-negative results remains controversial. A mixed infection of two or more mastitis pathogens was also detected more commonly by PCR. Culture-negative samples due to undetected Staphylococcus aureus infections were rare. The use of PCR technology may assist in rapid mastitis diagnosis, however, accurate interpretation of PCR results in the absence of bacterial culture remains problematic.
NASA Astrophysics Data System (ADS)
Bridge, J. W.; Oliver, D.; Heathwaite, A.; Banwart, S.; Going Underground: Human Pathogens in The Soil-Water Environment Working Group
2010-12-01
We present the findings and recommendations of a recent UK working group convened to identify research priorities in environmental science and epidemiology of waterborne pathogens. Robust waterborne disease surveillance in the developed world remains a critical need, despite broad success of regulation and water treatment. Recent estimates suggest waterborne pathogens result in between 12 million and 19.5 million cases of illness per year in the US alone. Across the developed world, the value of preventing acute waterborne disease in 150 million people using small community or single-user supplies is estimated at above US$ 4,671 million. The lack of a high quality, reliable environmental knowledge base for waterborne pathogens is a key obstacle. Substantial improvements in understanding of pathogen survival and transport in soils, sediments and water are required both to aid identification of environmental aetiologies for organisms isolated in disease cases and to support novel mitigation responses directed towards specific exposure risks. However, the focus in monitoring and regulation on non-pathogenic faecal indicator organisms (easier and cheaper to detect in water samples) creates a lack of motivation to conduct detailed environmental studies of the actual pathogens likely to be encountered in disease surveillance. Robust disease surveillance may be regarded as an essential objective in epidemiology; but it constitutes a significant shift in perspective for the water industry. The health sector can play a vital role in changing attitudes by explicitly placing value on environmental water research which looks beyond compliance with water quality standards towards informing disease surveillance and influencing health outcomes. The summary of critical research priorities we outline provides a focus for developing and strengthening dialogue between health and water sectors to achieve a common goal - sophisticated management of waterborne diseases through sophisticated understanding of their environmental sources and dynamics.
Lagacé-Wiens, Philippe R S; Adam, Heather J; Karlowsky, James A; Nichol, Kimberly A; Pang, Paulette F; Guenther, Jodi; Webb, Amanda A; Miller, Crystal; Alfa, Michelle J
2012-10-01
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsityper) for use with the Bruker MALDI BioTyper has facilitated the processing required for identification of pathogens directly from positive from blood cultures. We report the results of an evaluation of the accuracy, cost, and turnaround time of this method for 61 positive monomicrobial and 2 polymicrobial cultures representing 26 species. The Bruker MALDI BioTyper with the Sepsityper gave a valid (score, >1.7) identification for 85.2% of positive blood cultures with no misidentifications. The mean reduction in turnaround time to identification was 34.3 h (P < 0.0001) in the ideal situation where MALDI-TOF was used for all blood cultures and 26.5 h in a more practical setting where conventional identification or identification from subcultures was required for isolates that could not be directly identified by MALDI-TOF. Implementation of a MALDI-TOF-based identification system for direct identification of pathogens from blood cultures is expected to be associated with a marginal increase in operating costs for most laboratories. However, the use of MALDI-TOF for direct identification is accurate and should result in reduced turnaround time to identification.
Rivera-Posada, J A; Pratchett, M; Cano-Gomez, A; Arango-Gomez, J D; Owens, L
2011-09-09
We used a polyphasic approach for precise identification of bacterial flora (Vibrionaceae) isolated from crown-of-thorns starfish (COTS) from Lizard Island (Great Barrier Reef, Australia) and Guam (U.S.A., Western Pacific Ocean). Previous 16S rRNA gene phylogenetic analysis was useful to allocate and identify isolates within the Photobacterium, Splendidus and Harveyi clades but failed in the identification of Vibrio harveyi-like isolates. Species of the V harveyi group have almost indistinguishable phenotypes and genotypes, and thus, identification by standard biochemical tests and 16S rRNA gene analysis is commonly inaccurate. Biochemical profiling and sequence analysis of additional topA and mreB housekeeping genes were carried out for definitive identification of 19 bacterial isolates recovered from sick and wild COTS. For 8 isolates, biochemical profiles and topA and mreB gene sequence alignments with the closest relatives (GenBank) confirmed previous 16S rRNA-based identification: V. fortis and Photobacterium eurosenbergii species (from wild COTS), and V natriegens (from diseased COTS). Further phylogenetic analysis based on topA and mreB concatenated sequences served to identify the remaining 11 V harveyi-like isolates: V. owensii and V. rotiferianus (from wild COTS), and V. owensii, V. rotiferianus, and V. harveyi (from diseased COTS). This study further confirms the reliability of topA-mreB gene sequence analysis for identification of these close species, and it reveals a wider distribution range of the potentially pathogenic V. harveyi group.
Tafelski, Sascha; Nachtigall, Irit; Adam, Thomas; Bereswill, Stefan; Faust, Jana; Tamarkin, Andrey; Trefzer, Tanja; Deja, Maria; Idelevich, Evgeny A; Wernecke, Klaus-Dieter; Becker, Karsten; Spies, Claudia
2015-06-01
To determine whether a multiplex polymerase chain reaction (PCR)-based test could reduce the time required for initial pathogen identification in patients in an intensive care unit (ICU) setting. This double-blind, parallel-group randomized controlled trial** enrolled adults with suspected pulmonary or abdominal sepsis caused by an unknown pathogen. Both the intervention and control groups underwent the standard blood culture (BC) testing, but additional pathogen identification, based on the results of a LightCycler® SeptiFast PCR test, were provided in the intervention group. The study enrolled 37 patients in the control group and 41 in the intervention group. Baseline clinical and demographic characteristics were similar in both groups. The PCR-based test identified a pathogen in 10 out of 41 (24.4%) patients in the intervention group, with a mean duration from sampling to providing the information to the ICU of 15.9 h. In the control group, BC results were available after a significantly longer period (38.1 h). The LightCycler® SeptiFast PCR test demonstrated a significant reduction in the time required for initial pathogen identification, compared with standard BC. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.
1998-01-01
It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992
Jadhav, Snehal; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A
2014-01-31
Conventional methods used for primary detection of Listeria monocytogenes from foods and subsequent confirmation of presumptive positive samples involve prolonged incubation and biochemical testing which generally require four to five days to obtain a result. In the current study, a simple and rapid proteomics-based MALDI-TOF MS approach was developed to detect L. monocytogenes directly from selective enrichment broths. Milk samples spiked with single species and multiple species cultures were incubated in a selective enrichment broth for 24h, followed by an additional 6h secondary enrichment. As few as 1 colony-forming unit (cfu) of L. monocytogenes per mL of initial selective broth culture could be detected within 30h. On applying the same approach to solid foods previously implicated in listeriosis, namely chicken pâté, cantaloupe and Camembert cheese, detection was achieved within the same time interval at inoculation levels of 10cfu/mL. Unlike the routine application of MALDI-TOF MS for identification of bacteria from solid media, this study proposes a cost-effective and time-saving detection scheme for direct identification of L. monocytogenes from broth cultures.This article is part of a Special Issue entitled: Trends in Microbial Proteomics. Globally, foodborne diseases are major causes of illness and fatalities in humans. Hence, there is a continual need for reliable and rapid means for pathogen detection from food samples. Recent applications of MALDI-TOF MS for diagnostic microbiology focused on detection of microbes from clinical specimens. However, the current study has emphasized its use as a tool for detecting the major foodborne pathogen, Listeria monocytogenes, directly from selective enrichment broths. This proof-of-concept study proposes a detection scheme that is more rapid and simple compared to conventional methods of Listeria detection. Very low levels of the pathogen could be identified from different food samples post-enrichment in selective enrichment broths. Use of this scheme will facilitate rapid and cost-effective testing for this important foodborne pathogen. © 2013.
Identification of pathogen avirulencegenes in the fusiform rust pathosystem
John M. Davis; Katherine E. Smith; Amanda Pendleton; Jason A. Smith; C. Dana Nelson
2012-01-01
The Cronartium quercuum f.sp. fusiforme (Cqf) whole genome sequencing project will enable identification of avirulence genes in the most devastating pine fungal pathogen in the southeastern United States. Amerson and colleagues (unpublished) have mapped nine fusiform rust resistance genes in loblolly pine,...
Customizable PCR-microplate array for differential identification of multiple pathogens
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2014-01-01
Customizable PCR-microplate arrays were developed for the rapid identification of Francisella tularensis subsp. tularensis, Salmonella Typhi, Shigella dysenteriae, Yersinia pestis, Vibrio cholerae Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Saintpaul, Francisella tularensis subsp. novicida, Vibrio parahaemolyticus, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of the pathogens above. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers. A mixed aliquot of genomic DNA from 38 different strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Results show specific amplifications on all the three custom plates. In a preliminary test to evaluate the sensitivity of these assays in laboratory-inoculated samples, detection limits as low as 9 cfu/g/ml S. Typhimurium were obtained from beef hot dog, and 78 cfu/ml from milk. Such microplate arrays could serve as valuable tools for initial identification or secondary confirmation of these pathogens. PMID:24215700
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Perlin
2005-08-14
Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleicmore » acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development and the Perlin lab in sample preparation and testing in animal models.« less
Broad spectrum microarray for fingerprint-based bacterial species identification
2010-01-01
Background Microarrays are powerful tools for DNA-based molecular diagnostics and identification of pathogens. Most target a limited range of organisms and are based on only one or a very few genes for specific identification. Such microarrays are limited to organisms for which specific probes are available, and often have difficulty discriminating closely related taxa. We have developed an alternative broad-spectrum microarray that employs hybridisation fingerprints generated by high-density anonymous markers distributed over the entire genome for identification based on comparison to a reference database. Results A high-density microarray carrying 95,000 unique 13-mer probes was designed. Optimized methods were developed to deliver reproducible hybridisation patterns that enabled confident discrimination of bacteria at the species, subspecies, and strain levels. High correlation coefficients were achieved between replicates. A sub-selection of 12,071 probes, determined by ANOVA and class prediction analysis, enabled the discrimination of all samples in our panel. Mismatch probe hybridisation was observed but was found to have no effect on the discriminatory capacity of our system. Conclusions These results indicate the potential of our genome chip for reliable identification of a wide range of bacterial taxa at the subspecies level without laborious prior sequencing and probe design. With its high resolution capacity, our proof-of-principle chip demonstrates great potential as a tool for molecular diagnostics of broad taxonomic groups. PMID:20163710
Christner, Martin; Trusch, Maria; Rohde, Holger; Kwiatkowski, Marcel; Schlüter, Hartmut; Wolters, Manuel; Aepfelbacher, Martin; Hentschke, Moritz
2014-01-01
In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification. Specific peaks in the outbreak strain's spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak. Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates. MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow.
Haiko, Johanna; Savolainen, Laura E; Hilla, Risto; Pätäri-Sampo, Anu
2016-10-01
Complicated urinary tract infections, such as pyelonephritis, may lead to sepsis. Rapid diagnosis is needed to identify the causative urinary pathogen and to verify the appropriate empirical antimicrobial therapy. We describe here a rapid identification method for urinary pathogens: urine is incubated on chocolate agar for 3h at 35°C with 5% CO2 and subjected to MALDI-TOF MS analysis by VITEK MS. Overall 207 screened clinical urine samples were tested in parallel with conventional urine culture. The method, called U-si-MALDI-TOF (urine short incubation MALDI-TOF), showed correct identification for 86% of Gram-negative urinary tract pathogens (Escherichia coli, Klebsiella pneumoniae, and other Enterobacteriaceae), when present at >10(5)cfu/ml in culture (n=107), compared with conventional culture method. However, Gram-positive bacteria (n=28) were not successfully identified by U-si-MALDI-TOF. This method is especially suitable for rapid identification of E. coli, the most common cause of urinary tract infections and urosepsis. Turnaround time for identification using U-si-MALDI-TOF compared with conventional urine culture was improved from 24h to 4-6h. Copyright © 2016 Elsevier B.V. All rights reserved.
Array CGH analysis of a cohort of Russian patients with intellectual disability.
Kashevarova, Anna A; Nazarenko, Lyudmila P; Skryabin, Nikolay A; Salyukova, Olga A; Chechetkina, Nataliya N; Tolmacheva, Ekaterina N; Sazhenova, Elena A; Magini, Pamela; Graziano, Claudio; Romeo, Giovanni; Kučinskas, Vaidutis; Lebedev, Igor N
2014-02-15
The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Meng-Rui; Tsai, Chia-Jung; Teng, Shih-Hua; Hsueh, Po-Ren
2015-01-01
Although some Weissella species play beneficial roles in food fermentation and in probiotic products, others such as Weissella confusa are emerging Gram-positive pathogens in immunocompromised hosts. Weissella species are difficult to identify by conventional biochemical methods and commercial automated systems and are easily misidentified as Lactobacillus and Leuconostoc species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly being used for bacterial identification. Little, however, is known about the effectiveness of MALDI-TOF MS in identifying clinical isolates of Weissella to the species level. In this study, we evaluated whether the MALDI-TOF MS Bruker Biotyper system could accurately identify a total of 20 W. confusa and 2 W. cibaria blood isolates that had been confirmed by 16s rRNA sequencing analysis. The MALDI-TOF Biotyper system yielded no reliable identification results based on the current reference spectra for the two species (all score values <1.7). New W. confusa spectra were created by randomly selecting 3 W. confusa isolates and external validation was performed by testing the remaining 17 W. confusa isolates using the new spectra. The new main spectra projection (MSP) yielded reliable score values of >2 for all isolates with the exception of one (score value, 1.963). Our results showed that the MSPs in the current database are not sufficient for correctly identifying W. confusa or W. cibaria. Further studies including more Weissella isolates are warranted to further validate the performance of MALDI-TOF in identifying Weissella species.
Freeman, S.; Rodriguez, R.J.
1995-01-01
A collection of 39 isolates of Colletotrichum acutatum, C. fragariae and C. gloeosporioides, which cause anthracnose on strawberry, was grouped into species based on the arbitrarily primed polymerase chain reaction (ap-PCR). All isolates used had previously been identified according to classical taxonomic morphology. Ap-PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of C. acutatum, C. fragariae and two genotypes of C. gloeosporioides. Fifteen of the 18 C. acutatum isolates were very similar, although three isolates which produced a red pigment had distinctly different banding patterns. Nearly identical banding patterns were observed for all nine isolates of C. fragariae. The 12 C. gloeosporioides isolates were more diverse and two separate genotypes, Cgl-1 (six isolates) and Cgl-2 (five isolates) were distinguished by ap-PCR. An additional isolate did not conform to either the Cgl-1 or Cgl-2 genotypes. The utility of ap-PCR compared with other molecular techniques for reliable identification of Colletotrichum isolates pathogenic on strawberry is discussed.
Compact Surface Plasmon Resonance Biosensor for Fieldwork Environmental Detection
NASA Astrophysics Data System (ADS)
Boyd, Margrethe; Drake, Madison; Stipe, Kristian; Serban, Monica; Turner, Ivana; Thomas, Aaron; Macaluso, David
2017-04-01
The ability to accurately and reliably detect biomolecular targets is important in innumerable applications, including the identification of food-borne parasites, viral pathogens in human tissue, and environmental pollutants. While detection methods do exist, they are typically slow, expensive, and restricted to laboratory use. The method of surface plasmon resonance based biosensing offers a unique opportunity to characterize molecular targets while avoiding these constraints. By incorporating a plasmon-supporting gold film within a prism/laser optical system, it is possible to reliably detect and quantify the presence of specific biomolecules of interest in real time. This detection is accomplished by observing shifts in plasmon formation energies corresponding to optical absorption due to changes in index of refraction near the gold-prism interface caused by the binding of target molecules. A compact, inexpensive, battery-powered surface plasmon resonance biosensor based on this method is being developed at the University of Montana to detect waterborne pollutants in field-based environmental research.
Koskinen, M T; Wellenberg, G J; Sampimon, O C; Holopainen, J; Rothkamp, A; Salmikivi, L; van Haeringen, W A; Lam, T J G M; Pyörälä, S
2010-12-01
Fast and reliable identification of the microorganisms causing mastitis is important for management of the disease and for targeting antimicrobial treatment. Methods based on PCR are being used increasingly in mastitis diagnostics. Comprehensive field comparisons of PCR and traditional milk bacteriology have not been available. The results of a PCR kit capable of detecting 11 important etiological agents of mastitis directly from milk in 4h were compared with those of conventional bacterial culture (48h). In total, 1,000 quarter milk samples were taken from cows with clinical or subclinical mastitis, or from clinically healthy quarters with low somatic cell count (SCC). Bacterial culture identified udder pathogens in 600/780 (77%) of the clinical samples, whereas PCR identified bacteria in 691/780 (89%) of the clinical samples. The PCR analysis detected major pathogens in a large number of clinical samples that were negative for the species in culture. These included 53 samples positive for Staphylococcus aureus by PCR, but negative by culture. A total of 137 samples from clinical mastitis, 5 samples from subclinical mastitis, and 1 sample from a healthy quarter were positive for 3 or more bacterial species in PCR, whereas culture identified 3 or more species in 60 samples from clinical mastitis. Culture identified a species not targeted by the PCR test in 44 samples from clinical mastitis and in 9 samples from subclinical mastitis. Low SCC samples provided a small number of positive results both in culture (4/93; 4.3%) and by PCR (7/93; 7.5%). In conclusion, the PCR kit provided several benefits over conventional culture, including speed, automated interpretation of results, and increased sensitivity. This kit holds much promise as a tool to complement traditional methods in identification of pathogens. In conventional mastitis bacteriology, a sample with 3 or more species is considered contaminated, and resampling of the cow is recommended. Further study is required to investigate how high sensitivity of PCR and its quantitative features can be applied to improve separation of relevant udder pathogens from likely contaminants in samples where multiple species are detected. Furthermore, increasing the number of species targeted by the PCR test would be advantageous. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Yu, Xiaobo; LaBaer, Joshua
2015-05-01
AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.
Wagner, K; Springer, B; Pires, V P; Keller, P M
2018-05-03
The rising incidence of invasive fungal infections and the expanding spectrum of fungal pathogens makes early and accurate identification of the causative pathogen a daunting task. Diagnostics using molecular markers enable rapid identification of fungi, offer new insights into infectious disease dynamics, and open new possibilities for infectious disease control and prevention. We performed a retrospective study using clinical specimens (N = 233) from patients with suspected fungal infection previously subjected to culture and/or internal transcribed spacer (ITS) PCR. We used these specimens to evaluate a high-throughput screening method for fungal detection using automated DNA extraction (QIASymphony), fungal ribosomal small subunit (18S) rDNA RT-PCR and amplicon sequencing. Fungal sequences were compared with sequences from the curated, commercially available SmartGene IDNS database for pathogen identification. Concordance between 18S rDNA RT-PCR and culture results was 91%, and congruence between 18S rDNA RT-PCR and ITS PCR results was 94%. In addition, 18S rDNA RT-PCR and Sanger sequencing detected fungal pathogens in culture negative (N = 13) and ITS PCR negative specimens (N = 12) from patients with a clinically confirmed fungal infection. Our results support the use of the 18S rDNA RT-PCR diagnostic workflow for rapid and accurate identification of fungal pathogens in clinical specimens.
Spathis, Jemima Grace; Connick, Mark James; Beckman, Emma Maree; Newcombe, Peter Anthony; Tweedy, Sean Michael
2015-01-01
Paralympic throwing events for athletes with physical impairments comprise seated and standing javelin, shot put, discus and seated club throwing. Identification of talented throwers would enable prediction of future success and promote participation; however, a valid and reliable talent identification battery for Paralympic throwing has not been reported. This study evaluates the reliability and validity of a talent identification battery for Paralympic throws. Participants were non-disabled so that impairment would not confound analyses, and results would provide an indication of normative performance. Twenty-eight non-disabled participants (13 M; 15 F) aged 23.6 years (±5.44) performed five kinematically distinct criterion throws (three seated, two standing) and nine talent identification tests (three anthropometric, six motor); 23 were tested a second time to evaluate test-retest reliability. Talent identification test-retest reliability was evaluated using Intra-class Correlation Coefficient (ICC) and Bland-Altman plots (Limits of Agreement). Spearman's correlation assessed strength of association between criterion throws and talent identification tests. Reliability was generally acceptable (mean ICC = 0.89), but two seated talent identification tests require more extensive familiarisation. Correlation strength (mean rs = 0.76) indicated that the talent identification tests can be used to validly identify individuals with competitively advantageous attributes for each of the five kinematically distinct throwing activities. Results facilitate further research in this understudied area.
Yamamoto, Mikachi; Umeda, Yoshiko; Yo, Ayaka; Yamaura, Mariko; Makimura, Koichi
2014-02-01
Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been utilized for identification of various microorganisms. Malassezia species, including Malassezia restricta, which is associated with seborrheic dermatitis, has been difficult to identify by traditional means. This study was performed to develop a system for identification of Malassezia species with MALDI-TOF-MS and to investigate the incidence and variety of cutaneous Malassezia microbiota of 1-month-old infants using this technique. A Malassezia species-specific MALDI-TOF-MS database was developed from eight standard strains, and the availability of this system was assessed using 54 clinical strains isolated from the skin of 1-month-old infants. Clinical isolates were cultured initially on CHROMagar Malassezia growth medium, and the 28S ribosomal DNA (D1/D2) sequence was analyzed for confirmatory identification. Using this database, we detected and analyzed Malassezia species in 68% and 44% of infants with and without infantile seborrheic dermatitis, respectively. The results of MALDI-TOF-MS analysis were consistent with those of rDNA sequencing identification (100% accuracy rate). To our knowledge, this is the first report of a MALDI-TOF-MS database for major skin pathogenic Malassezia species. This system is an easy, rapid and reliable method for identification of Malassezia. © 2014 Japanese Dermatological Association.
Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.
Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329
Christner, Martin; Dressler, Dirk; Andrian, Mark; Reule, Claudia; Petrini, Orlando
2017-01-01
The fast and reliable characterization of bacterial and fungal pathogens plays an important role in infectious disease control and tracking of outbreak agents. DNA based methods are the gold standard for epidemiological investigations, but they are still comparatively expensive and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a fast, reliable and cost-effective technique now routinely used to identify clinically relevant human pathogens. It has been used for subspecies differentiation and typing, but its use for epidemiological tasks, e. g. for outbreak investigations, is often hampered by the complexity of data analysis. We have analysed publicly available MALDI-TOF mass spectra from a large outbreak of Shiga-Toxigenic Escherichia coli in northern Germany using a general purpose software tool for the analysis of complex biological data. The software was challenged with depauperate spectra and reduced learning group sizes to mimic poor spectrum quality and scarcity of reference spectra at the onset of an outbreak. With high quality formic acid extraction spectra, the software's built in classifier accurately identified outbreak related strains using as few as 10 reference spectra (99.8% sensitivity, 98.0% specificity). Selective variation of processing parameters showed impaired marker peak detection and reduced classification accuracy in samples with high background noise or artificially reduced peak counts. However, the software consistently identified mass signals suitable for a highly reliable marker peak based classification approach (100% sensitivity, 99.5% specificity) even from low quality direct deposition spectra. The study demonstrates that general purpose data analysis tools can effectively be used for the analysis of bacterial mass spectra.
Reliability Generalization of the Alcohol Use Disorder Identification Test.
ERIC Educational Resources Information Center
Shields, Alan L.; Caruso, John C.
2002-01-01
Evaluated the reliability of scores from the Alcohol Use Disorders Identification Test (AUDIT; J. Sounders and others, 1993) in a reliability generalization study based on 17 empirical journal articles. Results show AUDIT scores to be generally reliable for basic assessment. (SLD)
Xu, Guangyu; Wen, Simin; Pan, Yuchen; Zhang, Nan; Wang, Yuanyi
2018-05-01
Recent studies have unraveled mutations which have led to changes in the original conformation of functional proteins targeted by frontline drugs against Mycobacterium tuberculosis. These mutations are likely responsible for the emergence of drug-resistant strains of M. tuberculosis. Identification of new therapeutic targets is fundamental to the development of novel anti-TB drugs. Boost evolution analysis of interactome data with use of high-throughput biological experimental technologies provides opportunities for identification of pathogenic genes and for screening out novel therapeutic targets. In this study, we identified 584 proven pathogenic genes of M. tuberculosis and new pathogenic genes via bibliometrics and relevant websites such as PubMed, KEGG, and DOOR websites. We identified 13 new genes that are most likely to be pathogenic. This study may contribute to the discovery of new pathogenic genes and help unravel new functions of known pathogenic genes of M. tuberculosis.
Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S
2012-08-01
Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.
Laser-induced breakdown spectroscopy (LIBS): An innovative tool for studying bacteria
NASA Astrophysics Data System (ADS)
Mohaidat, Qassem I.
Laser-induced breakdown spectroscopy (LIBS) has gained a reputation as a flexible and convenient technique for rapidly determining the elemental composition of samples with minimal or no sample preparation. In this dissertation, I will describe the benefits of using LIBS for the rapid discrimination and identification of bacteria (both pathogenic and non-pathogenic) based on the relative concentration of trace inorganic elements such as Mg, P, Ca, and Na. The speed, portability, and robustness of the technique suggest that LIBS may be applicable as a rapid point-of-care medical diagnostic technology. LIBS spectra of multiple genera of bacteria such as Escherichia, Streptococcus, Mycobacterium, and Staphylococcus were acquired and successfully analyzed using a computerized discriminant function analysis (DFA). It was shown that a LIBS-based bacterial identification might be insensitive to a wide range of biological changes that could occur in the bacterial cell due to a variety of environmental stresses that the cell may encounter. The effect of reducing the number of bacterial cells on the LIBS-based classification was also studied. These results showed that with 2500 bacteria, the identification of bacterial specimens was still possible. Importantly, it was shown that bacteria in mixed samples (more than one type of bacteria being present) were identifiable. The dominant or majority component of a two-component mixture was reliably identified as long as it comprised 70% of the mixture or more. Finally, to simulate a clinical specimen in a precursor to actual clinical tests, Staphylococcus epidermidis bacteria were collected from urine samples (to simulate a urinary tract infection specimen) and were tested via LIBS without washing. The analysis showed that these bacteria possessed exactly the same spectral fingerprint as control bacteria obtained from sterile deionized water, resulting in a 100% correct classification. This indicates that the presence of other trace background biochemicals from clinical fluids will not adversely disrupt a LIBS-based identification of bacteria.
Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J
2010-12-08
Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.
2010-01-01
Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837
NASA Astrophysics Data System (ADS)
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.
2016-02-01
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.
Nyazika, Tinashe K.; Robertson, Valerie J.; Nherera, Brenda; Mapondera, Prichard T.; Meis, Jacques F.; Hagen, Ferry
2015-01-01
Summary Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. Cryptococcus gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with amplified fragment length polymorphism genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. PMID:26661484
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R
2016-02-15
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.
Nyazika, Tinashe K; Robertson, Valerie J; Nherera, Brenda; Mapondera, Prichard T; Meis, Jacques F; Hagen, Ferry
2016-03-01
Cryptococcal meningitis is the leading fungal infection and AIDS defining opportunistic illness in patients with late stage HIV infection, particularly in South-East Asia and sub-Saharan Africa. Given the high mortality, clinical differences and the extensive ecological niche of Cryptococcus neoformans and Cryptococcus gattii species complexes, there is need for laboratories in sub-Sahara African countries to adopt new and alternative reliable diagnostic algorithms that rapidly identify and distinguish these species. We biotyped 74 and then amplified fragment length polymorphism (AFLP) genotyped 66 Cryptococcus isolates from a cohort of patients with HIV-associated cryptococcal meningitis. C. gattii sensu lato was isolated at a prevalence of 16.7% (n = 11/66) and C. neoformans sensu stricto was responsible for 83.3% (n = 55/66) of the infections. l-Canavanine glycine bromothymol blue, yeast-carbon-base-d-proline-d-tryptophan and creatinine dextrose bromothymol blue thymine were able to distinguish pathogenic C. gattii sensu lato from C. neoformans sensu stricto species when compared with AFLP genotyping. This study demonstrates high C. gattii sensu lato prevalence in Zimbabwe. In addition, biotyping methods can be used as alternative diagnostic tools to molecular typing in resource-limited areas for differentiating pathogenic Cryptococcus species. © 2015 Blackwell Verlag GmbH.
Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.
2016-01-01
Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979
Improving ITS sequence data for identification of plant pathogenic fungi
R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov
2014-01-01
Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...
USDA-ARS?s Scientific Manuscript database
Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the...
Customizable PCR-microplate array for differential identification of multiple pathogens.
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2013-11-01
Customizable PCR-microplate arrays were developed for the rapid identification of Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Typhi, Shigella dysenteriae, Escherichia coli O157:H7, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. novicida, Vibrio cholerae, Vibrio parahaemolyticus, Yersinia pestis, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of these pathogens. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers identified. A mixed aliquot of genomic DNA from 38 strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Specific amplifications were obtained on all three custom plates. In preliminary tests performed to evaluate the sensitivity of these assays in samples inoculated in the laboratory with Salmonella Typhimurium, amplifications were obtained from 1 g of beef hot dog inoculated at as low as 9 CFU/ml or from milk inoculated at as low as 78 CFU/ml. Such microplate arrays could be valuable tools for initial identification or secondary confirmation of contamination by these pathogens.
Qu, Xiangmeng; Li, Min; Zhang, Hongbo; Lin, Chenglie; Wang, Fei; Xiao, Mingshu; Zhou, Yi; Shi, Jiye; Aldalbahi, Ali; Pei, Hao; Chen, Hong; Li, Li
2017-09-20
The development of a real-time continuous analytical platform for the pathogen detection is of great scientific importance for achieving better disease control and prevention. In this work, we report a rapid and recyclable microfluidic bioassay system constructed from oligonucleotide arrays for selective and sensitive continuous identification of DNA targets of fungal pathogens. We employ the thermal denaturation method to effectively regenerate the oligonucleotide arrays for multiple sample detection, which could considerably reduce the screening effort and costs. The combination of thermal denaturation and laser-induced fluorescence detection technique enables real-time continuous identification of multiple samples (<10 min per sample). As a proof of concept, we have demonstrated that two DNA targets of fungal pathogens (Botrytis cinerea and Didymella bryoniae) can be sequentially analyzed using our rapid microfluidic bioassay system, which provides a new paradigm in the design of microfluidic bioassay system and will be valuable for chemical and biomedical analysis.
Jian, Jiahui; Beno, Sarah M.; Wiedmann, Martin
2018-01-01
ABSTRACT While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade. IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness. PMID:29330180
Microbiology: Detection of Bacterial Pathogens and Their Occurrence.
ERIC Educational Resources Information Center
Reasoner, Donald J.
1978-01-01
Presents a literature review of bacterial pathogens that are related to water pollution, covering publications from 1976-77. This review includes: (1) bacterial pathogens in animals; and (2) detection and identification of waterborne bacterial pathogens. A list of 129 references is also presented. (HM)
Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail
2015-08-27
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
Joseph, Susan; Forsythe, Stephen J.
2012-01-01
Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075
2009-02-17
Identification of Classified Information in Unclassified DoD Systems During the Audit of Internal Controls and Data Reliability in the Deployable...TITLE AND SUBTITLE Identification of Classified Information in Unclassified DoD Systems During the Audit of Internal Controls and Data Reliability...Systems During the Audit ofInternal Controls and Data Reliability in the Deployable Disbursing System (Report No. D-2009-054) Weare providing this
Oligopeptide M13 Phage Display in Pathogen Research
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-01-01
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline. PMID:24136040
Oligopeptide m13 phage display in pathogen research.
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-10-16
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.
A Review of Conventional PCR Assays for the Detection of Selected Phytopathogens of Wheat.
Kuzdraliński, Adam; Kot, Anna; Szczerba, Hubert; Nowak, Michał; Muszyńska, Marta
2017-01-01
Infection of phyllosphere (stems, leaves, husks, and grains) by pathogenic fungi reduces the wheat yield and grain quality. Detection of the main wheat pathogenic fungi provides information about species composition and allows effective and targeted plant treatment. Since conventional procedures for the detection of these organisms are unreliable and time consuming, diagnostic DNA-based methods are required. Nucleic acid amplification technologies are independent of the morphological and biochemical characteristics of fungi. Microorganisms do not need to be cultured. Therefore, a number of PCR-based methodologies have been developed for the identification of key pathogenic fungi, such as Fusarium spp., Puccinia spp., Zymoseptoria tritici, Parastagonospora nodorum, Blumeria graminis f. sp. tritici, and Pyrenophora tritici-repentis. This article reviews frequently used DNA regions for fungus identification and discusses already known PCR assays for detection of the aforementioned wheat pathogens. We demonstrate that PCR-based wheat pathogen identification assays require further research. In particular, the number of diagnostic tests for Fusarium graminearum, Puccinia spp., and P. tritici-repentis are insufficient. © 2017 S. Karger AG, Basel.
USDA-ARS?s Scientific Manuscript database
DNA sequencing and other DNA-based methods, such as PCR, are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, it is important to make taxonomic assignments to the species, or even subspecies level. Long-read ...
Lindstedt, Bjørn-Arne; Heir, Even; Gjernes, Elisabet; Vardund, Traute; Kapperud, Georg
2003-01-01
Background The ability to react early to possible outbreaks of Escherichia coli O157:H7 and to trace possible sources relies on the availability of highly discriminatory and reliable techniques. The development of methods that are fast and has the potential for complete automation is needed for this important pathogen. Methods In all 73 isolates of shiga-toxin producing E. coli O157 (STEC) were used in this study. The two available fully sequenced STEC genomes were scanned for tandem repeated stretches of DNA, which were evaluated as polymorphic markers for isolate identification. Results The 73 E. coli isolates displayed 47 distinct patterns and the MLVA assay was capable of high discrimination between the E. coli O157 strains. The assay was fast and all the steps can be automated. Conclusion The findings demonstrate a novel high discriminatory molecular typing method for the important pathogen E. coli O157 that is fast, robust and offers many advantages compared to current methods. PMID:14664722
Host-pathogen interactions: A cholera surveillance system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Aaron T.
2016-02-22
Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.
Dong, Tao; Zhao, Xinyan
2015-02-17
The incorporation of pathogen identification with antimicrobial susceptibility testing (AST) was implemented on a concept microfluidic simulator, which is well suited for personalizing antibiotic treatment of urinary tract infections (UTIs). The microfluidic device employs a fiberglass membrane sandwiched between two polypropylene components, with capture antibodies immobilized on the membrane. The chambers in the microfluidic device share the same geometric distribution as the wells in a standard 384-well microplate, resulting in compatibility with common microplate readers. Thirteen types of common uropathogenic microbes were selected as the analytes in this study. The microbes can be specifically captured by various capture antibodies and then quantified via an ATP bioluminescence assay (ATP-BLA) either directly or after a variety of follow-up tests, including urine culture, antibiotic treatment, and personalized antibiotic therapy simulation. Owing to the design of the microfluidic device, as well as the antibody specificity and the ATP-BLA sensitivity, the simulator was proven to be able to identify UTI pathogen species in artificial urine samples within 20 min and to reliably and simultaneously verify the antiseptic effects of eight antibiotic drugs within 3-6 h. The measurement range of the device spreads from 1 × 10(3) to 1 × 10(5) cells/mL in urine samples. We envision that the medical simulator might be broadly employed in UTI treatment and could serve as a model for the diagnosis and treatment of other diseases.
Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Kumar, Anil
2018-05-18
Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.
Xie, Yunxuan; Qiu, Ning; Wang, Guangyi
2017-05-15
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sergueev, Kirill V; He, Yunxiu; Borschel, Richard H; Nikolich, Mikeljon P; Filippov, Andrey A
2010-06-28
Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Reagent-free bacterial identification using multivariate analysis of transmission spectra
NASA Astrophysics Data System (ADS)
Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.
2012-10-01
The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.
USDA-ARS?s Scientific Manuscript database
Rapid detection and identification of pathogenic microorganisms naturally occurring during food processing are important in developing intervention and verification strategies. In the poultry industry, contamination of poultry meat with foodborne pathogens (especially, Salmonella and Campylobacter) ...
Molecular Identification of Human Fungal Pathogens
2007-03-01
in mycology . Unfortunately, individuals with this training are in short supply in both civilian and military hospitals. The objective of this study...is to enable laboratory technicians to make proper identifications without experience in mycology by using standardized techniques developed in...regardless of mycological expertise, to identify any human fungal pathogen faster and more accurately than is presently possible, using a single
Christner, Martin; Trusch, Maria; Rohde, Holger; Kwiatkowski, Marcel; Schlüter, Hartmut; Wolters, Manuel; Aepfelbacher, Martin; Hentschke, Moritz
2014-01-01
Background In 2011 northern Germany experienced a large outbreak of Shiga-Toxigenic Escherichia coli O104:H4. The large amount of samples sent to microbiology laboratories for epidemiological assessment highlighted the importance of fast and inexpensive typing procedures. We have therefore evaluated the applicability of a MALDI-TOF mass spectrometry based strategy for outbreak strain identification. Methods Specific peaks in the outbreak strain’s spectrum were identified by comparative analysis of archived pre-outbreak spectra that had been acquired for routine species-level identification. Proteins underlying these discriminatory peaks were identified by liquid chromatography tandem mass spectrometry and validated against publicly available databases. The resulting typing scheme was evaluated against PCR genotyping with 294 E. coli isolates from clinical samples collected during the outbreak. Results Comparative spectrum analysis revealed two characteristic peaks at m/z 6711 and m/z 10883. The underlying proteins were found to be of low prevalence among genome sequenced E. coli strains. Marker peak detection correctly classified 292 of 293 study isolates, including all 104 outbreak isolates. Conclusions MALDI-TOF mass spectrometry allowed for reliable outbreak strain identification during a large outbreak of Shiga-Toxigenic E. coli. The applied typing strategy could probably be adapted to other typing tasks and might facilitate epidemiological surveys as part of the routine pathogen identification workflow. PMID:25003758
Garmendia, Gabriela; Umpierrez-Failache, Mariana; Ward, Todd J; Vero, Silvana
2018-04-01
Fusarium head blight (FHB) is a destructive disease of cereals crops worldwide and a major food safety concern due to grain contamination with trichothecenes and other mycotoxins. Fusarium graminearum, a member of the Fusarium graminearum species complex (FGSC) is the dominant FHB pathogen in many parts of the world. However, a number of other Fusarium species, including other members of the FGSC, may also be present for example in Argentina, New Zealand, Ethiopia, Nepal, Unites States in cereals such as wheat and barley. Proper species identification is critical to research aimed at improving disease and mycotoxin control programs. Identification of Fusarium species is are often unreliable by traditional, as many species are morphologically cryptic. DNA sequence-based methods offer a reliable means of species identification, but can be expensive when applied to the analyses of population samples. To facilitate identification of the major causative agent of FHB, this work describes an easy and inexpensive method to differentiate F. graminearum from the remaining species within the FGSC and from the other common Fusarium species causing FHB in cereals. The developed method is based on a PCR-RFLP of the transcription elongation factor (TEF 1-α) gene using the restriction enzyme BsaHI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Marla, Soma; Kumar, Anil
2018-04-01
Tilletia indica is a smut fungus that incites Karnal bunt in wheat. It has been considered as quarantine pest in more than 70 countries. Despite its quarantine significance, there is meager knowledge regarding the molecular mechanisms of disease pathogenesis. Moreover, various disease management strategies have proven futile. Development of effective disease management strategy requires identification of pathogenicity/virulence factors. With this aim, the present study was conducted to compare the secretomes of T. indica isolates, that is, highly (TiK) and low (TiP) virulent isolates. About 120 and 95 protein spots were detected reproducibly in TiK and TiP secretome gel images. Nineteen protein spots, which were consistently observed as upregulated/differential in the secretome of TiK isolate, were selected for their identification by MALDI-TOF/TOF. Identified proteins exhibited homology with fungal proteins playing important role in fungal adhesion, penetration, invasion, protection against host-derived reactive oxygen species, production of virulence factors, cellular signaling, and degradation of host cell wall proteins and antifungal proteins. These results were complemented with T. indica genome sequence leading to identification of candidate pathogenicity/virulence factors homologs that were further subjected to sequence- and structure-based functional annotation. Thus, present study reports the first comparative secretome analysis of T. indica for identification of pathogenicity/virulence factors. This would provide insights into pathogenic mechanisms of T. indica and aid in devising effective disease management strategies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
β-lactam resistance in gram-negative pathogens isolated from animals.
Trott, Darren
2013-01-01
Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.
The Effects of Signal Erosion and Core Genome Reduction on the Identification of Diagnostic Markers
Sahl, Jason W.; Vazquez, Adam J.; Hall, Carina M.; Busch, Joseph D.; Tuanyok, Apichai; Mayo, Mark; Schupp, James M.; Lummis, Madeline; Pearson, Talima; Shippy, Kenzie; Allender, Christopher J.; Theobald, Vanessa; Hutcheson, Alex; Korlach, Jonas; LiPuma, John J.; Ladner, Jason; Lovett, Sean; Koroleva, Galina; Palacios, Gustavo; Limmathurotsakul, Direk; Wuthiekanun, Vanaporn; Wongsuwan, Gumphol; Currie, Bart J.
2016-01-01
ABSTRACT Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives. PMID:27651357
Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei
2017-02-02
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.
Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei
2017-01-01
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727
Phytophthora-ID.org: A sequence-based Phytophthora identification tool
N.J. Grünwald; F.N. Martin; M.M. Larsen; C.M. Sullivan; C.M. Press; M.D. Coffey; E.M. Hansen; J.L. Parke
2010-01-01
Contemporary species identification relies strongly on sequence-based identification, yet resources for identification of many fungal and oomycete pathogens are rare. We developed two web-based, searchable databases for rapid identification of Phytophthora spp. based on sequencing of the internal transcribed spacer (ITS) or the cytochrome oxidase...
Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard; Raoult, Didier
2013-07-01
During the past 5 years, matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories.
Seng, Piseth; Abat, Cedric; Rolain, Jean Marc; Colson, Philippe; Lagier, Jean-Christophe; Gouriet, Frédérique; Fournier, Pierre Edouard; Drancourt, Michel; La Scola, Bernard
2013-01-01
During the past 5 years, matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry (MS) has become a powerful tool for routine identification in many clinical laboratories. We analyzed our 11-year experience in routine identification of clinical isolates (40 months using MALDI-TOF MS and 91 months using conventional phenotypic identification [CPI]). Among the 286,842 clonal isolates, 284,899 isolates of 459 species were identified. The remaining 1,951 isolates were misidentified and required confirmation using a second phenotypic identification for 670 isolates and using a molecular technique for 1,273 isolates of 339 species. MALDI-TOF MS annually identified 112 species, i.e., 36 species/10,000 isolates, compared to 44 species, i.e., 19 species/10,000 isolates, for CPI. Only 50 isolates required second phenotypic identifications during the MALDI-TOF MS period (i.e., 4.5 reidentifications/10,000 isolates) compared with 620 isolates during the CPI period (i.e., 35.2/10,000 isolates). We identified 128 bacterial species rarely reported as human pathogens, including 48 using phenotypic techniques (22 using CPI and 37 using MALDI-TOF MS). Another 75 rare species were identified using molecular methods. MALDI-TOF MS reduced the time required for identification by 55-fold and 169-fold and the cost by 5-fold and 96-fold compared with CPI and gene sequencing, respectively. MALDI-TOF MS was a powerful tool not only for routine bacterial identification but also for identification of rare bacterial species implicated in human infectious diseases. The ability to rapidly identify bacterial species rarely described as pathogens in specific clinical specimens will help us to study the clinical burden resulting from the emergence of these species as human pathogens, and MALDI-TOF MS may be considered an alternative to molecular methods in clinical laboratories. PMID:23637301
Epigenetic regulation of development and pathogenesis in fungal plant pathogens.
Dubey, Akanksha; Jeon, Junhyun
2017-08-01
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M
2013-12-01
Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.
The biology, identification and management of Rhizoctonia pathogens
USDA-ARS?s Scientific Manuscript database
Rhizoctonia solani is an economically important soilborne pathogen causing economic losses to crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to diverse genera and species and are variously responsible for pre- or post-emergence damping off of seedlin...
MP3: a software tool for the prediction of pathogenic proteins in genomic and metagenomic data.
Gupta, Ankit; Kapil, Rohan; Dhakan, Darshan B; Sharma, Vineet K
2014-01-01
The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51-100 amino acids and Blind B: 30-50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100-150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php.
MP3: A Software Tool for the Prediction of Pathogenic Proteins in Genomic and Metagenomic Data
Gupta, Ankit; Kapil, Rohan; Dhakan, Darshan B.; Sharma, Vineet K.
2014-01-01
The identification of virulent proteins in any de-novo sequenced genome is useful in estimating its pathogenic ability and understanding the mechanism of pathogenesis. Similarly, the identification of such proteins could be valuable in comparing the metagenome of healthy and diseased individuals and estimating the proportion of pathogenic species. However, the common challenge in both the above tasks is the identification of virulent proteins since a significant proportion of genomic and metagenomic proteins are novel and yet unannotated. The currently available tools which carry out the identification of virulent proteins provide limited accuracy and cannot be used on large datasets. Therefore, we have developed an MP3 standalone tool and web server for the prediction of pathogenic proteins in both genomic and metagenomic datasets. MP3 is developed using an integrated Support Vector Machine (SVM) and Hidden Markov Model (HMM) approach to carry out highly fast, sensitive and accurate prediction of pathogenic proteins. It displayed Sensitivity, Specificity, MCC and accuracy values of 92%, 100%, 0.92 and 96%, respectively, on blind dataset constructed using complete proteins. On the two metagenomic blind datasets (Blind A: 51–100 amino acids and Blind B: 30–50 amino acids), it displayed Sensitivity, Specificity, MCC and accuracy values of 82.39%, 97.86%, 0.80 and 89.32% for Blind A and 71.60%, 94.48%, 0.67 and 81.86% for Blind B, respectively. In addition, the performance of MP3 was validated on selected bacterial genomic and real metagenomic datasets. To our knowledge, MP3 is the only program that specializes in fast and accurate identification of partial pathogenic proteins predicted from short (100–150 bp) metagenomic reads and also performs exceptionally well on complete protein sequences. MP3 is publicly available at http://metagenomics.iiserb.ac.in/mp3/index.php. PMID:24736651
Electrochemical genosensors in food safety assessment.
Martín-Fernández, Begoña; Manzanares-Palenzuela, C Lorena; Sánchez-Paniagua López, Marta; de-Los-Santos-Álvarez, Noemí; López-Ruiz, Beatriz
2017-09-02
The main goal of food safety assessment is to provide reliable information on the identity and composition of food and reduce the presence of harmful components. Nowadays, there are many countries where rather than the presence of pathogens, common public concerns are focused on the presence of hidden allergens, fraudulent practices, and genetic modifications in food. Accordingly, food regulations attempt to offer a high level of protection and to guarantee transparent information to the consumers. The availability of analytical methods is essential to comply these requirements. Protein-based strategies are usually employed for this purpose, but present some limitations. Because DNA is a more stable molecule, present in most tissues, and can be amplified, there has been an increasing interest in developing DNA-based approaches (polymerase chain reaction, microarrays, and genosensors). In this regard, electrochemical genosensors may play a major role in fulfilling the needs of food industry, such as reliable, portable, and affordable devices. This work reviews the achievements of this technology applied to allergen detection, species identification, and genetically modified organisms testing. We summarized the legislative framework, current design strategies in sensor development, their analytical characteristics, and future prospects.
Hamby, Stephen E; Joseph, Susan; Forsythe, Stephen J; Chuzhanova, Nadia
2011-09-20
Cronobacter, formerly known as Enterobacter sakazakii, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of Cronobacter do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between Cronobacter isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators. Here we report the use of Expectation Maximization clustering to categorise 98 strains of Cronobacter as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of Cronobacter sakazakii and C. turicensis revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of Cronobacter. We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of Cronobacter. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of Cronobacter species.
Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.
2014-01-01
Background Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This fully automated sample processing system, equipped with digital imaging technology, allows superior detection of microbial growth. Combining this approach with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) (Bruker Daltonik, Germany) is expected to enable more rapid identification of pathogens. Methods Early growth detection by digital imaging using Kiestra TLA combined with MS was compared to conventional methods (CM) of detection. Accuracy and time taken for microbial identification were evaluated for the two methods in 219 clinical blood culture isolates. The possible clinical impact of earlier microbial identification was assessed according to antibiotic treatment prescription. Results Pathogen identification using Kiestra TLA combined with MS resulted in a 30.6 hr time gain per isolate compared to CM. Pathogens were successfully identified in 98.4% (249/253) of all tested isolates. Early microbial identification without susceptibility testing led to an adjustment of antibiotic regimen in 12% (24/200) of patients. Conclusions The requisite 24 hr incubation time for microbial pathogens to reach sufficient growth for susceptibility testing and identification would be shortened by the implementation of Kiestra TLA in combination with MS, compared to the use of CM. Not only can this method optimize workflow and reduce costs, but it can allow potentially life-saving switches in antibiotic regimen to be initiated sooner. PMID:24624346
Application of Infrared and Raman Spectroscopy for the Identification of Disease Resistant Trees.
Conrad, Anna O; Bonello, Pierluigi
2015-01-01
New approaches for identifying disease resistant trees are needed as the incidence of diseases caused by non-native and invasive pathogens increases. These approaches must be rapid, reliable, cost-effective, and should have the potential to be adapted for high-throughput screening or phenotyping. Within the context of trees and tree diseases, we summarize vibrational spectroscopic and chemometric methods that have been used to distinguish between groups of trees which vary in disease susceptibility or other important characteristics based on chemical fingerprint data. We also provide specific examples from the literature of where these approaches have been used successfully. Finally, we discuss future application of these approaches for wide-scale screening and phenotyping efforts aimed at identifying disease resistant trees and managing forest diseases.
Recent advances in mass spectrometry-based proteomics of gastric cancer.
Kang, Changwon; Lee, Yejin; Lee, J Eugene
2016-10-07
The last decade has witnessed remarkable technological advances in mass spectrometry-based proteomics. The development of proteomics techniques has enabled the reliable analysis of complex proteomes, leading to the identification and quantification of thousands of proteins in gastric cancer cells, tissues, and sera. This quantitative information has been used to profile the anomalies in gastric cancer and provide insights into the pathogenic mechanism of the disease. In this review, we mainly focus on the advances in mass spectrometry and quantitative proteomics that were achieved in the last five years and how these up-and-coming technologies are employed to track biochemical changes in gastric cancer cells. We conclude by presenting a perspective on quantitative proteomics and its future applications in the clinic and translational gastric cancer research.
Katawa, G; Kpotsra, A; Karou, D S; Eklou, M; Tayi, K E; de Souza, C
2011-02-01
In Togo, as in many other developing countries, there is a lack of data on quality control and assurance of laboratories. The present study aimed to access for the quality management system in five medical bacteriology laboratories in Togo. The study was conducted from May to August 2006. Data were recorded by an audit on the reliability of results and the technical organization of laboratories. The standard ISO 15189:2003, the Togolese guide of good laboratory practices (GBEA-Togo) and the WHO medical bacteriology standards were used as references. The results of the audit showed a lack of culture media in laboratories, inappropriate choice of culture media, partial identification of some microorganisms, variability of identification procedures, a lack of diagnostic reagents and an inability to identify some potentially pathogenic bacteria. Concerning the technical organization of laboratories, compliance average ranging from 25.8 to 54.8 % was recorded. This indicates a limited organization of such laboratories. The issue of this study showed that laboratories must be equipped, their technical organization should be improved and they must establish a program of equipment maintenance.
Nölling, Jörk; Rapireddy, Srinivas; Amburg, Joel I; Crawford, Elizabeth M; Prakash, Ranjit A; Rabson, Arthur R; Tang, Yi-Wei; Singer, Alon
2016-04-19
Bloodstream infections are a leading cause of morbidity and mortality. Early and targeted antimicrobial intervention is lifesaving, yet current diagnostic approaches fail to provide actionable information within a clinically viable time frame due to their reliance on blood culturing. Here, we present a novel pathogen identification (PID) platform that features the use of duplex DNA-invading γ-modified peptide nucleic acids (γPNAs) for the rapid identification of bacterial and fungal pathogens directly from blood, without culturing. The PID platform provides species-level information in under 2.5 hours while reaching single-CFU-per-milliliter sensitivity across the entire 21-pathogen panel. The clinical utility of the PID platform was demonstrated through assessment of 61 clinical specimens, which showed >95% sensitivity and >90% overall correlation to blood culture findings. This rapid γPNA-based platform promises to improve patient care by enabling the administration of a targeted first-line antimicrobial intervention. Bloodstream infections continue to be a major cause of death for hospitalized patients, despite significant improvements in both the availability of treatment options as well their application. Since early and targeted antimicrobial intervention is one of the prime determinants of patient outcome, the rapid identification of the pathogen can be lifesaving. Unfortunately, current diagnostic approaches for identifying these infections all rely on time-consuming blood culture, which precludes immediate intervention with a targeted antimicrobial. To address this, we have developed and characterized a new and comprehensive methodology, from patient specimen to result, for the rapid identification of both bacterial and fungal pathogens without the need for culturing. We anticipate broad interest in our work, given the novelty of our technical approach combined with an immense unmet need. Copyright © 2016 Nölling et al.
The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs
Stewart, Jill R; Gast, Rebecca J; Fujioka, Roger S; Solo-Gabriele, Helena M; Meschke, J Scott; Amaral-Zettler, Linda A; del Castillo, Erika; Polz, Martin F; Collier, Tracy K; Strom, Mark S; Sinigalliano, Christopher D; Moeller, Peter DR; Holland, A Fredrick
2008-01-01
Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans. PMID:19025674
LAMP detection assays for boxwood blight pathogens: a comparative genomics approach
USDA-ARS?s Scientific Manuscript database
Rapid and accurate molecular diagnostic tools are critical to efforts to minimize the impact and spread of emergent pathogens. The identification of diagnostic markers for novel pathogens presents several challenges, especially in the absence of information about population diversity, and where gen...
Continuous-Flow Detector for Rapid Pathogen Identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Louise M.; Skulan, Andrew J.; Singh, Anup K.
2006-09-01
This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit frommore » the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).« less
Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F
2007-03-01
In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.
Li, Zhongshan; Liu, Zhenwei; Jiang, Yi; Chen, Denghui; Ran, Xia; Sun, Zhong Sheng; Wu, Jinyu
2017-01-01
Exome sequencing has been widely used to identify the genetic variants underlying human genetic disorders for clinical diagnoses, but the identification of pathogenic sequence variants among the huge amounts of benign ones is complicated and challenging. Here, we describe a new Web server named mirVAFC for pathogenic sequence variants prioritizations from clinical exome sequencing (CES) variant data of single individual or family. The mirVAFC is able to comprehensively annotate sequence variants, filter out most irrelevant variants using custom criteria, classify variants into different categories as for estimated pathogenicity, and lastly provide pathogenic variants prioritizations based on classifications and mutation effects. Case studies using different types of datasets for different diseases from publication and our in-house data have revealed that mirVAFC can efficiently identify the right pathogenic candidates as in original work in each case. Overall, the Web server mirVAFC is specifically developed for pathogenic sequence variant identifications from family-based CES variants using classification-based prioritizations. The mirVAFC Web server is freely accessible at https://www.wzgenomics.cn/mirVAFC/. © 2016 WILEY PERIODICALS, INC.
Forsythe, Stephen J; Dickins, Benjamin; Jolley, Keith A
2014-12-16
Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
Roisin, S; Huang, T-D; de Mendonça, R; Nonhoff, C; Bogaerts, P; Hites, M; Delaere, B; Hamels, S; de Longueville, F; Glupczynski, Y; Denis, O
2018-01-01
The purpose of this study was evaluation of the VAPChip assay based on the "Rapid-Array-PCR-technology" which targets 13 respiratory pathogens and 24 β-lactam resistance genes directly on respiratory clinical specimens. The first step included analysis of 45 respiratory specimens in order to calibrate and determine the threshold for target genes. The second prospective step involved 85 respiratory samples from patients suspected of nosocomial pneumonia collected in two academic hospitals over an 8-month period. Results of the VAPChip assay were compared to routine methods. The first step showed a large proportion of positive signals for H. influenzae and/or S. pneumoniae. For identification, discrepancies were observed in seven samples. Thresholds were adapted and two probes were re-designed to create a new version of the cartridge. In the second phase, sensitivity and specificity of the VAPchip for bacterial identification were 72.9% and 99.1%, respectively. Seventy (82%) pathogens were correctly identified by both methods. Nine pathogens detected by the VAPChip were culture negative and 26 pathogens identified by culture were VAPChip negative. For resistance mechanisms, 11 probes were positive without identification of pathogens with an antimicrobial-susceptibility testing compatible by culture. However, the patient's recent microbiological history was able to explain most of these positive signals. The VAPChip assay simultaneously detects different pathogens and resistance mechanisms directly from clinical samples. This system seems very promising but the extraction process needs to be automated for routine implementation. This kind of rapid point-of-care automated platform permitting a syndromic approach will be the future challenge in the management of infectious diseases.
Identification of entomopathogenic fungi
USDA-ARS?s Scientific Manuscript database
This chapter provides essential assistance for the identification of the most important genera (and main species) of fungal pathogens affecting insects, mites, and spiders. The key allows identifications regardless of which major spore types might be present with the specimen. The phylogenetic affi...
Benej, Martin; Bendlova, Bela; Vaclavikova, Eliska; Poturnajova, Martina
2011-10-06
Reliable and effective primary screening of mutation carriers is the key condition for common diagnostic use. The objective of this study is to validate the method high resolution melting (HRM) analysis for routine primary mutation screening and accomplish its optimization, evaluation and validation. Due to their heterozygous nature, germline point mutations of c-RET proto-oncogene, associated to multiple endocrine neoplasia type 2 (MEN2), are suitable for HRM analysis. Early identification of mutation carriers has a major impact on patients' survival due to early onset of medullary thyroid carcinoma (MTC) and resistance to conventional therapy. The authors performed a series of validation assays according to International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) guidelines for validation of analytical procedures, along with appropriate design and optimization experiments. After validated evaluation of HRM, the method was utilized for primary screening of 28 pathogenic c-RET mutations distributed among nine exons of c-RET gene. Validation experiments confirm the repeatability, robustness, accuracy and reproducibility of HRM. All c-RET gene pathogenic variants were detected with no occurrence of false-positive/false-negative results. The data provide basic information about design, establishment and validation of HRM for primary screening of genetic variants in order to distinguish heterozygous point mutation carriers among the wild-type sequence carriers. HRM analysis is a powerful and reliable tool for rapid and cost-effective primary screening, e.g., of c-RET gene germline and/or sporadic mutations and can be used as a first line potential diagnostic tool.
Evaluation of MALDI-TOF-MS for the Identification of Yeast Isolates Causing Bloodstream Infection.
Turhan, Ozge; Ozhak-Baysan, Betil; Zaragoza, Oscar; Er, Halil; Sarıtas, Zubeyde Eres; Ongut, Gozde; Ogunc, Dilara; Colak, Dilek; Cuenca-Estrella, Manuel
2017-04-01
Infections due to Candida species are major causes of morbidity and mortality in humans, causing a diverse spectrum of clinical disease ranging from superficial and mucosal infections to invasive disease. Several authors have demonstrated that mortality is closely linked to both timing of therapy and/or source control. The rapid identification of pathogenic species is helpful to start timely and effective antifungal therapy. The aim of this study was to assess the performance of the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the correct and rapid identification of yeast isolates causing bloodstream infection. Between January 2014 and January 2015, a total of 117 yeast like organisms isolated from blood culture samples of 117 episodes from 102 patients who had blood stream infections were included in the study. The isolates were identified by MALDI-TOF MS. The results were compared with those obtained by the standard mycological methods and/or sequence analysis. One hundred and seventeen yeast isolates including 115 Candida spp and two non-Candida yeasts were analysed. The Biotyper correctly identified 115 (98.3%) isolates to the genus level and 102 (87.2%) isolates to the species level using the manufacturer's recommended cutoff scores. The Bruker Biotyper is a rapid, easy, inexpensive, and highly reliable system for the identification of yeast isolates. Early identification with MALDI-TOF MS would save time for determination of antifungal susceptibility and proper treatment strategy. The expansion of the database of the library by addition of less common species will improve the performance of the system.
Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun
2018-04-01
Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.
Identification of harmless and pathogenic algae of the genus Prototheca by MALDI-MS.
von Bergen, Martin; Eidner, Angelika; Schmidt, Frank; Murugaiyan, Jayaseelan; Wirth, Henry; Binder, Hans; Maier, Thomas; Roesler, Uwe
2009-07-01
The only plants infectious for mammals, green algae from the genus Prototheca, are often overseen or mistaken for yeast in clinical diagnosis. To improve this diagnostical gap, a method was developed for fast and reliable identification of Prototheca. A collection of all currently recognized Prototheca species, most represented by several strains, were submitted to a simple extraction by 70% formic acid and ACN; the extracts were analyzed by means of MALDI-MS. Most of the peaks were found in the range from 4 to 20 kDa and showed a high reproducibility, not in absolute intensities, but in their peak pattern. The selection of measured peaks is mostly due to the technique of ionization in MALDI-MS, because proteins in the range up to 200 kDa were detected using gel electrophoresis. Some of the proteins were identified by peptide mass fingerprinting and MS(2) analysis and turned out to be ribosomal proteins or other highly abundant proteins such as ubiquitin. For the preparation of a heatmap, the intensities of the peaks were plotted and a cluster analysis was performed. From the peak-lists, a principal component analysis was conducted and a dendrogram was built. This dendrogram, based on MALDI spectra, was in fairly good agreement with a dendrogram based on sequence information from 18S DNA. As a result, pathogenic and nonpathogenic species from the genus Prototheca can be identified, with possible consequences for clinical diagnostics by MALDI-typing. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
Infection of plant pathogenic fungi by mycoviruses can attenuate their virulence on plants and vigor in culture. In this study, we described the viromes of 275 isolates of five widely dispersed plant pathogenic fungal species (Colletotrichum truncatum, Macrophomina phaseolina, Phomopsis longicolla, ...
USDA-ARS?s Scientific Manuscript database
R. solani is an economically important soilborne basidiomycetous pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may belong to multiple genera and speci...
Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael
2013-11-01
Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.
Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U; Hoffmann, Kerstin; Grosse-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D; de Hoog, G Sybren; Voigt, Kerstin
2012-02-01
Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species identification), and 25 of 34 isolates were identified to the species level with score values of >2.3 (highly probable species identification). The MALDI-TOF MS-based method reported here was found to be reproducible and accurate, with low consumable costs and minimal preparation time.
Pirc, Manca; Llop, Pablo; Ravnikar, Maja; Dreo, Tanja
2014-01-01
The increased globalization of crops production and processing industries also promotes the side-effects of more rapid and efficient spread of plant pathogens. To prevent the associated economic losses, and particularly those related to bacterial diseases where their management relies on removal of the infected material from production, simple, easy-to-perform, rapid and cost-effective tests are needed. Loop-mediated isothermal amplification (LAMP) assays that target 16S rRNA, fliC and egl genes were compared and evaluated as on-site applications. The assay with the best performance was that targeted to the egl gene, which shows high analytical specificity for diverse strains of the betaproteobacterium Ralstonia solanacearum, including its non-European and non-race 3 biovar 2 strains. The additional melting curve analysis provides confirmation of the test results. According to our extensive assessment, the egl LAMP assay requires minimum sample preparation (a few minutes of boiling) for the identification of pure cultures and ooze from symptomatic material, and it can also be used in a high-throughput format in the laboratory. This provides sensitive and reliable detection of R. solanacearum strains of different phylotypes. PMID:24763488
Bacterial meningitis in children under 15 years of age in Nepal.
Shrestha, Rajani Ghaju; Tandukar, Sarmila; Ansari, Shamshul; Subedi, Akriti; Shrestha, Anisha; Poudel, Rekha; Adhikari, Nabaraj; Basnyat, Shital Raj; Sherchand, Jeevan Bahadur
2015-08-19
Bacterial meningitis in children is a life-threatening problem resulting in severe morbidity and mortality. For the prompt initiation of antibacterial therapy, rapid and reliable diagnostic methods are of utmost importance. Therefore, this study was designed to find out the rate of bacterial pathogens of meningitis from suspected cases by performing conventional methods and latex agglutination. A descriptive type of study was carried out from May 2012 to April 2013. Cerebrospinal fluid (CSF) specimens from 252 suspected cases of meningitis were subjected for Gram staining, bacterial culture and latex agglutination test. The identification of growth of bacteria was done following standard microbiological methods recommended by American Society for Microbiology. Antibiotic sensitivity testing was done by modified Kirby-Bauer disk diffusion method. From the total 252 suspected cases, 7.2 % bacterial meningitis was revealed by Gram staining and culture methods whereas latex agglutination method detected 5.6 %. Gram-negative organisms contributed the majority of the cases (72.2 %) with Haemophilus influenzae as the leading pathogen for meningitis. Overall, 33.3 % mortality rate was found. In conclusion, a significant rate of bacterial meningitis was found in this study prompting concern for national wide surveillance.
Arrigoni, Simone; Turra, Giovanni; Signoroni, Alberto
2017-09-01
With the rapid diffusion of Full Laboratory Automation systems, Clinical Microbiology is currently experiencing a new digital revolution. The ability to capture and process large amounts of visual data from microbiological specimen processing enables the definition of completely new objectives. These include the direct identification of pathogens growing on culturing plates, with expected improvements in rapid definition of the right treatment for patients affected by bacterial infections. In this framework, the synergies between light spectroscopy and image analysis, offered by hyperspectral imaging, are of prominent interest. This leads us to assess the feasibility of a reliable and rapid discrimination of pathogens through the classification of their spectral signatures extracted from hyperspectral image acquisitions of bacteria colonies growing on blood agar plates. We designed and implemented the whole data acquisition and processing pipeline and performed a comprehensive comparison among 40 combinations of different data preprocessing and classification techniques. High discrimination performance has been achieved also thanks to improved colony segmentation and spectral signature extraction. Experimental results reveal the high accuracy and suitability of the proposed approach, driving the selection of most suitable and scalable classification pipelines and stimulating clinical validations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jordana-Lluch, Elena; Giménez, Montserrat; Quesada, M Dolores; Rivaya, Belén; Marcó, Clara; Domínguez, M Jesús; Arméstar, Fernando; Martró, Elisa; Ausina, Vicente
2015-01-01
Rapid identification of the etiological agent in bloodstream infections is of vital importance for the early administration of the most appropriate antibiotic therapy. Molecular methods may offer an advantage to current culture-based microbiological diagnosis. The goal of this study was to evaluate the performance of IRIDICA, a platform based on universal genetic amplification followed by mass spectrometry (PCR/ESI-MS) for the molecular diagnosis of sepsis-related pathogens directly from the patient's blood. A total of 410 whole blood specimens from patients admitted to Emergency Room (ER) and Intensive Care Unit (ICU) with clinical suspicion of sepsis were tested with the IRIDICA BAC BSI Assay (broad identification of bacteria and Candida spp.). Microorganisms grown in culture and detected by IRIDICA were compared considering blood culture as gold standard. When discrepancies were found, clinical records and results from other cultures were taken into consideration (clinical infection criterion). The overall positive and negative agreement of IRIDICA with blood culture in the analysis by specimen was 74.8% and 78.6%, respectively, rising to 76.9% and 87.2% respectively, when compared with the clinical infection criterion. Interestingly, IRIDICA detected 41 clinically significant microorganisms missed by culture, most of them from patients under antimicrobial treatment. Of special interest were the detections of one Mycoplasma hominis and two Mycobacterium simiae in immunocompromised patients. When ICU patients were analyzed separately, sensitivity, specificity, positive and negative predictive values compared with blood culture were 83.3%, 78.6%, 33.9% and 97.3% respectively, and 90.5%, 87.2%, 64.4% and 97.3% respectively, in comparison with the clinical infection criterion. IRIDICA is a promising technology that offers an early and reliable identification of a wide variety of pathogens directly from the patient's blood within 6h, which brings the opportunity to improve management of septic patients, especially for those critically ill admitted to the ICU.
Mohaidat, Qassem; Palchaudhuri, Sunil; Rehse, Steven J
2011-04-01
In this paper we investigate the effect that adverse environmental and metabolic stresses have on the laser-induced breakdown spectroscopy (LIBS) identification of bacterial specimens. Single-pulse LIBS spectra were acquired from a non-pathogenic strain of Escherichia coli cultured in two different nutrient media: a trypticase soy agar and a MacConkey agar with a 0.01% concentration of deoxycholate. A chemometric discriminant function analysis showed that the LIBS spectra acquired from bacteria grown in these two media were indistinguishable and easily discriminated from spectra acquired from two other non-pathogenic E. coli strains. LIBS spectra were obtained from specimens of a nonpathogenic E. coli strain and an avirulent derivative of the pathogen Streptococcus viridans in three different metabolic situations: live bacteria reproducing in the log-phase, bacteria inactivated on an abiotic surface by exposure to bactericidal ultraviolet irradiation, and bacteria killed via autoclaving. All bacteria were correctly identified regardless of their metabolic state. This successful identification suggests the possibility of testing specimens that have been rendered safe for handling prior to LIBS identification. This would greatly enhance personnel safety and lower the cost of a LIBS-based diagnostic test. LIBS spectra were obtained from pathogenic and non-pathogenic bacteria that were deprived of nutrition for a period of time ranging from one day to nine days by deposition on an abiotic surface at room temperature. All specimens were successfully classified by species regardless of the duration of nutrient deprivation. © 2011 Society for Applied Spectroscopy
PaPrBaG: A machine learning approach for the detection of novel pathogens from NGS data
NASA Astrophysics Data System (ADS)
Deneke, Carlus; Rentzsch, Robert; Renard, Bernhard Y.
2017-01-01
The reliable detection of novel bacterial pathogens from next-generation sequencing data is a key challenge for microbial diagnostics. Current computational tools usually rely on sequence similarity and often fail to detect novel species when closely related genomes are unavailable or missing from the reference database. Here we present the machine learning based approach PaPrBaG (Pathogenicity Prediction for Bacterial Genomes). PaPrBaG overcomes genetic divergence by training on a wide range of species with known pathogenicity phenotype. To that end we compiled a comprehensive list of pathogenic and non-pathogenic bacteria with human host, using various genome metadata in conjunction with a rule-based protocol. A detailed comparative study reveals that PaPrBaG has several advantages over sequence similarity approaches. Most importantly, it always provides a prediction whereas other approaches discard a large number of sequencing reads with low similarity to currently known reference genomes. Furthermore, PaPrBaG remains reliable even at very low genomic coverages. CombiningPaPrBaG with existing approaches further improves prediction results.
Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi
2002-01-01
Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346
Plant-bacterial pathogen interactions mediated by type III effectors.
Feng, Feng; Zhou, Jian-Min
2012-08-01
Effectors secreted by the bacterial type III system play a central role in the interaction between Gram-negative bacterial pathogens and their host plants. Recent advances in the effector studies have helped cementing several key concepts concerning bacterial pathogenesis, plant immunity, and plant-pathogen co-evolution. Type III effectors use a variety of biochemical mechanisms to target specific host proteins or DNA for pathogenesis. The identifications of their host targets led to the identification of novel components of plant innate immune system. Key modules of plant immune signaling pathways such as immune receptor complexes and MAPK cascades have emerged as a major battle ground for host-pathogen adaptation. These modules are attacked by multiple type III effectors, and some components of these modules have evolved to actively sense the effectors and trigger immunity. Copyright © 2012 Elsevier Ltd. All rights reserved.
Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young; Koo, Sun Hoe
2012-01-01
Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. The lower detection limits ranged from 10(1) copies/µL to 5×10(1) copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens.
Shin, So Youn; Kwon, Kye Chul; Park, Jong Woo; Kim, Ji Myung; Shin, So Young
2012-01-01
Background Bacterial meningitis is an infectious disease with high rates of mortality and high frequency of severe sequelae. Early identification of causative bacterial and viral pathogens is important for prompt and proper treatment of meningitis and for prevention of life-threatening clinical outcomes. In the present study, we evaluated the value of the Seeplex Meningitis ACE Detection kit (Seegene Inc., Korea), a newly developed multiplex PCR kit employing dual priming oligonucleotide methods, for diagnosing acute meningitis. Methods Analytical sensitivity of the kit was studied using reference strains for each pathogen targeted by the kit, while it's analytical specificity was studied using the human genome DNA and 58 clinically well-identified reference strains. For clinical validation experiment, we used 27 control cerebrospinal fluid (CSF) samples and 78 clinical CSF samples collected from patients at the time of diagnosis of acute meningitis. Results The lower detection limits ranged from 101 copies/µL to 5×101 copies/µL for the 12 viral and bacterial pathogens targeted. No cross-reaction was observed. In the validation study, high detection rate of 56.4% was obtained. None of the control samples tested positive, i.e., false-positive results were absent. Conclusions The Seeplex Meningitis ACE Detection kit showed high sensitivity, specificity, and detection rate for the identification of pathogens in clinical CSF samples. This kit may be useful for rapid identification of important acute meningitis-causing pathogens. PMID:22259778
USDA-ARS?s Scientific Manuscript database
Phytophthora infestans is a destructive plant pathogen best known for causing the disease that triggered the Irish potato famine and continues to be the most costly potato pathogen to manage worldwide. Identification of its elusive center of origin is critical to understanding the mechanisms of repe...
Uddin, Reaz; Sufian, Muhammad
2016-01-01
Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic pathways of the pathogens and mining the proteomic data of all completely sequenced strains of the pathogen, thus improving the quality and application of the results. We believe that the sharing of the knowledge from this study would eventually lead to bring about novel and unique therapeutic regimens against the infections caused by the S. enterica.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-02-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR.
Cagnoli, Claudia; Stevanin, Giovanni; Michielotto, Chiara; Gerbino Promis, Giovanni; Brussino, Alessandro; Pappi, Patrizia; Durr, Alexandra; Dragone, Elisa; Viemont, Michelle; Gellera, Cinzia; Brice, Alexis; Migone, Nicola; Brusco, Alfredo
2006-01-01
Large expansions in the SCA2 and SCA7 genes (>100 CAG repeats) have been associated with juvenile and infantile forms of cerebellar ataxias that cannot be detected using standard polymerase chain reaction (PCR). Here, we describe a successful application of the fluorescent short tandem repeat-primed PCR method for accurate identification of these expanded repeats. The test is robust, reliable, and inexpensive and can be used to screen large series of patients, although it cannot give a precise evaluation of the size of the expansion. This test may be of practical value in prenatal diagnoses offered to affected or pre-symptomatic at-risk parents, in which a very large expansion inherited from one of the parents can be missed in the fetus by standard PCR. PMID:16436644
Identifying sources of tick blood meals using unidentified tandem mass spectral libraries.
Önder, Özlem; Shao, Wenguang; Kemps, Brian D; Lam, Henry; Brisson, Dustin
2013-01-01
Rapid and reliable identification of the vertebrate species on which a disease vector previously parasitized is imperative to study ecological factors that affect pathogen distribution and can aid the development of public health programs. Here we describe a proteome profiling technique designed to identify the source of blood meals of haematophagous arthropods. This method employs direct spectral matching and thus does not require a priori knowledge of any genetic or protein sequence information. Using this technology, we detect remnants of blood in blacklegged ticks (Ixodes scapularis) and correctly determine the vertebrate species from which the blood was derived, even 6 months after the tick had fed. This biological fingerprinting methodology is sensitive, fast, cost-effective and can potentially be adapted for other biological and medical applications when existing genome-based methods are impractical or ineffective.
Pacheco, Luis G C; Mattos-Guaraldi, Ana L; Santos, Carolina S; Veras, Adonney A O; Guimarães, Luis C; Abreu, Vinícius; Pereira, Felipe L; Soares, Siomar C; Dorella, Fernanda A; Carvalho, Alex F; Leal, Carlos G; Figueiredo, Henrique C P; Ramos, Juliana N; Vieira, Veronica V; Farfour, Eric; Guiso, Nicole; Hirata, Raphael; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J
2015-01-01
Non-diphtheriae Corynebacterium species have been increasingly recognized as the causative agents of infections in humans. Differential identification of these bacteria in the clinical microbiology laboratory by the most commonly used biochemical tests is challenging, and normally requires additional molecular methods. Herein, we present the annotated draft genome sequences of two isolates of "difficult-to-identify" human-pathogenic corynebacterial species: C. xerosis and C. minutissimum. The genome sequences of ca. 2.7 Mbp, with a mean number of 2,580 protein encoding genes, were also compared with the publicly available genome sequences of strains of C. amycolatum and C. striatum. These results will aid the exploration of novel biochemical reactions to improve existing identification tests as well as the development of more accurate molecular identification methods through detection of species-specific target genes for isolate's identification or drug susceptibility profiling.
Extended version of the "Sniffin' Sticks" identification test: test-retest reliability and validity.
Sorokowska, A; Albrecht, E; Haehner, A; Hummel, T
2015-03-30
The extended, 32-item version of the Sniffin' Sticks identification test was developed in order to create a precise tool enabling repeated, longitudinal testing of individual olfactory subfunctions. Odors of the previous test version had to be changed for technical reasons, and the odor identification test needed re-investigation in terms of reliability, validity, and normative values. In our study we investigated olfactory abilities of a group of 100 patients with olfactory dysfunction and 100 controls. We reconfirmed the high test-retest reliability of the extended version of the Sniffin' Sticks identification test and high correlations between the new and the original part of this tool. In addition, we confirmed the validity of the test as it discriminated clearly between controls and patients with olfactory loss. The additional set of 16 odor identification sticks can be either included in the current olfactory test, thus creating a more detailed diagnosis tool, or it can be used separately, enabling to follow olfactory function over time. Additionally, the normative values presented in our paper might provide useful guidelines for interpretation of the extended identification test results. The revised version of the Sniffin' Sticks 32-item odor identification test is a reliable and valid tool for the assessment of olfactory function. Copyright © 2015 Elsevier B.V. All rights reserved.
Identification and Screening of Carcass Pretreatment ...
Technical Fact Sheet Managing the treatment and disposal of large numbers of animal carcasses following a foreign animal disease (FAD) outbreak is a challenging endeavor. Pretreatment of the infectious carcasses might facilitate the disposal of the carcasses by simplifying the transportation, reducing the pathogen load in the carcasses, or by isolating the pathogen from the environment to minimize spread of any pathogens.This brief summarizes information contained in U.S. Environmental Protection Agency (EPA) report (EPA/600/R-15/053) entitled Identification and Screening of Infectious Carcass Pretreatment Alternatives. This brief describes how each of eleven pretreatment methods can be used prior to, and in conjunction with, six commonly used large-scale carcass disposal options
JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
NASA Astrophysics Data System (ADS)
Agung, Muhammad Budi; Budiarsa, I. Made; Suwastika, I. Nengah
2017-02-01
Cocoa bean is one of the main commodities from Indonesia for the world, which still have problem regarding yield degradation due to pathogens and disease attack. Developing robust cacao plant that genetically resistant to pathogen and disease attack is an ideal solution in over taking on this problem. The aim of this study was to identify Theobroma cacao genes on database of cacao genome that homolog to response genes of pathogen and disease attack in other plant, through in silico analysis. Basic information survey and gene identification were performed in GenBank and The Arabidopsis Information Resource database. The In silico analysis contains protein BLAST, homology test of each gene's protein candidates, and identification of homologue gene in Cacao Genome Database using data source "Theobroma cacao cv. Matina 1-6 v1.1" genome. Identification found that Thecc1EG011959t1 (EDS1), Thecc1EG006803t1 (EDS5), Thecc1EG013842t1 (ICS1), and Thecc1EG015614t1 (BG_PPAP) gene of Cacao Genome Database were Theobroma cacao genes that homolog to plant's resistance genes which highly possible to have similar functions of each gene's homologue gene.
Spittel, Susanne; Hoedemaker, Martina
2012-01-01
In the following field study, the commercial PathoProof Mastitis PCR Assay, a real-time PCR for identifying eleven mastitis pathogens and the staphylococcal beta-lactamase gene, was compared with conventional bacterial culture. For this purpose, 681 udder quarter samples from 173 clinically healthy cows with varying somatic cell count from four dairy herds in the region of Osnabrück, Lower Saxony, Germany, were collected between July 2010 and February 2011 and subjected to PCR and bacterial culture. The frequency of positive pathogen signals was markedly higher with PCR compared with culture (70.6% vs. 32.2%). This was accompanied by a substantial higher percentage of multiple pathogen identifications and a lower percentage of single identifications in the PCR compared with bacterial culture. Using bacterial culture as gold standard, moderate to high sensitivities (76.9-100%) and specificities (63.3-98.7%) were calculated for six out of seven pathogens with sufficient detection numbers. For Enterococcus spp, the sensitivity was only 9.1%. When the PCR results of pooled udder quarter samples of the 173 cows were compared with the single udder quarter samples, in 72% of the cases, major pathogen DNA was either not found in both types of samples, or in the case of a positive pool sample, the respective pathogens were found in at least one udder quarter sample. With both methods, the most frequently detected mastitis pathogens were coryneform bacteria (PCR: Corynebacterium bovis), coagulase-negative staphylococci (CNS) and Staphylococcus (S.) aureus, followed by Arcanobacterium pyogenes/Peptoniphilus indolicus with PCR, and then with both methods, Streptococcus uberis. The staphylococcal beta-lactamase gene was found in 27.7% of the S. aureus and in 37.0% of the CNS identifications.
USDA-ARS?s Scientific Manuscript database
Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system has hindered research, and necessitated dependence on intermittently available wild-collected basidiospores. Here we describe a reliable, rep...
Kessels, J A; Cha, E; Johnson, S K; Welcome, F L; Kristensen, A R; Gröhn, Y T
2016-05-01
This study used an existing dynamic optimization model to compare costs of common treatment protocols and J5 vaccination for clinical mastitis in US dairy herds. Clinical mastitis is an infection of the mammary gland causing major economic losses in dairy herds due to reduced milk production, reduced conception, and increased risk of mortality and culling for infected cows. Treatment protocols were developed to reflect common practices in dairy herds. These included targeted therapy following pathogen identification, and therapy without pathogen identification using a broad-spectrum antimicrobial or treating with the cheapest treatment option. The cost-benefit of J5 vaccination was also estimated. Effects of treatment were accounted for as changes in treatment costs, milk loss due to mastitis, milk discarded due to treatment, and mortality. Following ineffective treatments, secondary decisions included extending the current treatment, alternative treatment, discontinuing treatment, and pathogen identification followed by recommended treatment. Average net returns for treatment protocols and vaccination were generated using an existing dynamic programming model. This model incorporates cow and pathogen characteristics to optimize management decisions to treat, inseminate, or cull cows. Of the treatment protocols where 100% of cows received recommended treatment, pathogen-specific identification followed by recommended therapy yielded the highest average net returns per cow per year. Out of all treatment scenarios, the highest net returns were achieved with selecting the cheapest treatment option and discontinuing treatment, or alternate treatment with a similar spectrum therapy; however, this may not account for the full consequences of giving nonrecommended therapies to cows with clinical mastitis. Vaccination increased average net returns in all scenarios. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Accurate mass measurements and their appropriate use for reliable analyte identification.
Godfrey, A Ruth; Brenton, A Gareth
2012-09-01
Accurate mass instrumentation is becoming increasingly available to non-expert users. This data can be mis-used, particularly for analyte identification. Current best practice in assigning potential elemental formula for reliable analyte identification has been described with modern informatic approaches to analyte elucidation, including chemometric characterisation, data processing and searching using facilities such as the Chemical Abstracts Service (CAS) Registry and Chemspider.
Barcoding and species recognition of opportunistic pathogens in Ochroconis and Verruconis.
Samerpitak, Kittipan; Gerrits van den Ende, Bert H G; Stielow, J Benjamin; Menken, Steph B J; de Hoog, G Sybren
2016-02-01
The genera Ochroconis and Verruconis (Sympoventuriaceae, Venturiales) have remarkably high molecular diversity despite relatively high degrees of phenotypic similarity. Tree topologies, inter-specific and intra-specific heterogeneities, barcoding gaps and reciprocal monophyly of all currently known species were analyzed. It was concluded that all currently used genes viz. SSU, ITS, LSU, ACT1, BT2, and TEF1 were unable to reach all 'gold standard' criteria of barcoding markers. They could nevertheless be used for reasonably reliable identification of species, because the markers, although variable, were associated with large inter-specific heterogeneity. Of the coding protein-genes, ACT1 revealed highest potentiality as barcoding marker in mostly all parts of the investigated sequence. SSU, LSU, ITS, and ACT1 yielded consistent monophyly in all investigated species, but only SSU and LSU generated clear barcoding gaps. For phylogeny, LSU was an informative marker, suitable to reconstruct gene-trees showing correct phylogenetic relationships. Cryptic species were revealed especially in complexes with very high intra-specific variability. When all these complexes will be taxonomically resolved, ACT1 will probably appear to be the most reliable barcoding gene for Ochroconis and Verruconis. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Dieckmann, Ralf; Hammerl, Jens Andre; Hahmann, Hartmut; Wicke, Amal; Kleta, Sylvia; Dabrowski, Piotr Wojciech; Nitsche, Andreas; Stämmler, Maren; Al Dahouk, Sascha; Lasch, Peter
2016-06-23
Microbiological monitoring of consumer products and the efficiency of early warning systems and outbreak investigations depend on the rapid identification and strain characterisation of pathogens posing risks to the health and safety of consumers. This study evaluates the potential of three rapid analytical techniques for identification and subtyping of bacterial isolates obtained from a liquid hand soap product, which has been recalled and reported through the EU RAPEX system due to its severe bacterial contamination. Ten isolates recovered from two bottles of the product were identified as Klebsiella oxytoca and subtyped using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI TOF MS), near-infrared Fourier transform (NIR FT) Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Comparison of the classification results obtained by these phenotype-based techniques with outcomes of the DNA-based methods pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) analysis of whole-genome sequencing (WGS) data revealed a high level of concordance. In conclusion, a set of analytical techniques might be useful for rapid, reliable and cost-effective microbial typing to ensure safe consumer products and allow source tracking.
Nölling, Jörk; Rapireddy, Srinivas; Amburg, Joel I.; Crawford, Elizabeth M.; Prakash, Ranjit A.; Rabson, Arthur R.
2016-01-01
ABSTRACT Bloodstream infections are a leading cause of morbidity and mortality. Early and targeted antimicrobial intervention is lifesaving, yet current diagnostic approaches fail to provide actionable information within a clinically viable time frame due to their reliance on blood culturing. Here, we present a novel pathogen identification (PID) platform that features the use of duplex DNA-invading γ-modified peptide nucleic acids (γPNAs) for the rapid identification of bacterial and fungal pathogens directly from blood, without culturing. The PID platform provides species-level information in under 2.5 hours while reaching single-CFU-per-milliliter sensitivity across the entire 21-pathogen panel. The clinical utility of the PID platform was demonstrated through assessment of 61 clinical specimens, which showed >95% sensitivity and >90% overall correlation to blood culture findings. This rapid γPNA-based platform promises to improve patient care by enabling the administration of a targeted first-line antimicrobial intervention. PMID:27094328
Chen, Y. C.; Eisner, J. D.; Kattar, M. M.; Rassoulian-Barrett, S. L.; LaFe, K.; Yarfitz, S. L.; Limaye, A. P.; Cookson, B. T.
2000-01-01
Identification of medically relevant yeasts can be time-consuming and inaccurate with current methods. We evaluated PCR-based detection of sequence polymorphisms in the internal transcribed spacer 2 (ITS2) region of the rRNA genes as a means of fungal identification. Clinical isolates (401), reference strains (6), and type strains (27), representing 34 species of yeasts were examined. The length of PCR-amplified ITS2 region DNA was determined with single-base precision in less than 30 min by using automated capillary electrophoresis. Unique, species-specific PCR products ranging from 237 to 429 bp were obtained from 92% of the clinical isolates. The remaining 8%, divided into groups with ITS2 regions which differed by ≤2 bp in mean length, all contained species-specific DNA sequences easily distinguishable by restriction enzyme analysis. These data, and the specificity of length polymorphisms for identifying yeasts, were confirmed by DNA sequence analysis of the ITS2 region from 93 isolates. Phenotypic and ITS2-based identification was concordant for 427 of 434 yeast isolates examined using sequence identity of ≥99%. Seven clinical isolates contained ITS2 sequences that did not agree with their phenotypic identification, and ITS2-based phylogenetic analyses indicate the possibility of new or clinically unusual species in the Rhodotorula and Candida genera. This work establishes an initial database, validated with over 400 clinical isolates, of ITS2 length and sequence polymorphisms for 34 species of yeasts. We conclude that size and restriction analysis of PCR-amplified ITS2 region DNA is a rapid and reliable method to identify clinically significant yeasts, including potentially new or emerging pathogenic species. PMID:10834993
Elbehiry, Ayman; Marzouk, Eman; Hamada, Mohamed; Al-Dubaib, Musaad; Alyamani, Essam; Moussa, Ihab M; AlRowaidhan, Anhar; Hemeg, Hassan A
2017-10-01
Foodborne pathogens can be associated with a wide variety of food products and it is very important to identify them to supply safe food and prevent foodborne infections. Since traditional techniques are timeconsuming and laborious, this study was designed for rapid identification and clustering of foodborne pathogens isolated from various restaurants in Al-Qassim region, Kingdom of Saudi Arabia (KSA) using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Sixty-nine bacterial and thirty-two fungal isolates isolated from 80 food samples were used in this study. Preliminary identification was carried out through culture and BD Phoenix™ methods. A confirmatory identification technique was then performed using MALDI-TOF MS. The BD Phoenix results revealed that 97% (67/69 isolates) of bacteria were correctly identified as 75% Enterobacter cloacae, 95.45% Campylobacter jejuni and 100% for Escherichia coli, Salmonella enterica, Staphylococcus aureus, Acinetobacter baumannii, and Klebsiella pneumoniae. While 94.44% (29/32 isolates) of fungi were correctly identified as 77.77% Alternaria alternate, 88.88% Aspergillus niger and 100% for Aspergillus flavus, Penicillium digitatum, Candida albicans and Debaryomyces hansenii. However, all bacterial and fungal isolates were 100% properly identified by MALDI-TOF MS fingerprinting with a score value ≥2.00. A gel view illustrated that the spectral peaks for the identified isolates fluctuate between 3,000 and 10,000 Da. The results of main spectra library (MSP) dendrogram showed that the bacterial and fungal isolates matched with 19 and 9 reference strains stored in the Bruker taxonomy, respectively. Our results indicated that MALDI-TOF MS is a promising technique for fast and accurate identification of foodborne pathogens.
Lynch, T; Gregson, D; Church, D L
2016-03-01
Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Gregson, D.; Church, D. L.
2016-01-01
Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization–time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized. PMID:26739153
Dufresne, Philippe J; Moonjely, Soumya S; Ozaki, Koyomi; Tremblay, Cécile; Laverdière, Michel; Dufresne, Simon F
2017-02-01
Nonsporulating moulds (NSM) represent an identification challenge for clinical laboratories. Data on the prevalence of pathogenic species among NSM are lacking. We prospectively investigated consecutive thermotolerant (36°C) clinical NSM isolates from respiratory tract samples. A total of 123 isolates were identified by DNA sequencing and phenotypically characterized. Of those, 13 (11%) were pathogenic species (Aspergillus fumigatus, n = 10; A. flavus, n = 1; A. hiratsukae, n = 1; Schizophyllum commune, n = 1). Presumptive identification of Aspergillus species among NSM can be achieved by simple phenotypic testing. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ivy, Reid A; Farber, Jeffrey M; Pagotto, Franco; Wiedmann, Martin
2013-01-01
Foodborne pathogen isolate collections are important for the development of detection methods, for validation of intervention strategies, and to develop an understanding of pathogenesis and virulence. We have assembled a publicly available Cronobacter (formerly Enterobacter sakazakii) isolate set that consists of (i) 25 Cronobacter sakazakii isolates, (ii) two Cronobacter malonaticus isolates, (iii) one Cronobacter muytjensii isolate, which displays some atypical phenotypic characteristics, biochemical profiles, and colony color on selected differential media, and (iv) two nonclinical Enterobacter asburiae isolates, which show some phenotypic characteristics similar to those of Cronobacter spp. The set consists of human (n = 10), food (n = 11), and environmental (n = 9) isolates. Analysis of partial 16S rDNA sequence and seven-gene multilocus sequence typing data allowed for reliable identification of these isolates to species and identification of 14 isolates as sequence type 4, which had previously been shown to be the most common C. sakazakii sequence type associated with neonatal meningitis. Phenotypic characterization was carried out with API 20E and API 32E test strips and streaking on two selective chromogenic agars; isolates were also assessed for sorbitol fermentation and growth at 45°C. Although these strategies typically produced the same classification as sequence-based strategies, based on a panel of four biochemical tests, one C. sakazakii isolate yielded inconclusive data and one was classified as C. malonaticus. EcoRI automated ribotyping and pulsed-field gel electrophoresis (PFGE) with XbaI separated the set into 23 unique ribotypes and 30 unique PFGE types, respectively, indicating subtype diversity within the set. Subtype and source data for the collection are publicly available in the PathogenTracker database (www. pathogentracker. net), which allows for continuous updating of information on the set, including links to publications that include information on isolates from this collection.
USDA-ARS?s Scientific Manuscript database
A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
Tamburro, M; Ripabelli, G
2017-01-01
Rapid, reliable and accurate molecular typing methods are essential for outbreaks detection and infectious diseases control, for monitoring the evolution and dynamics of microbial populations, and for effective epidemiological surveillance. The introduction of a novel method based on the analysis of melting temperature of amplified products, known as High Resolution Melting (HRM) since 2002, has found applications in epidemiological studies, either for identification of bacterial species or molecular typing, as well as an extensive and increasing use in many research fields. HRM method is based on the use of saturating third generation dyes, advanced real-time PCR platforms, and bioinformatics tools. To describe, by a comphrehensive review of the literature, the use, application and usefulness of HRM for the genotyping of bacterial pathogens in the context of epidemiological surveillance and public health. A literature search was carried out during July-August 2016, by consulting the biomedical databases PubMed/Medline, Scopus, EMBASE, and ISI Web of Science without limits. The search strategy was performed according to the following keywords: high resolution melting analysis and bacteria and genotyping or molecular typing. All the articles evaluating the application of HRM for bacterial pathogen genotyping were selected and reviewed, taking into account the objective of each study, the rationale explaining the use of this technology, and the main results obtained in comparison with gold standards and/or alternative methods, when available. HRM method was extensively used for molecular typing of both Gram-positive and Gram-negative bacterial pathogens, representing a versatile genetic tool: a) to evaluate genetic diversity and subtype at species/subspecies level, based also on allele discrimination/identification and mutation screening; b) to recognize phylogenetic groupings (lineage, sublineage, subgroups); c) to identify antimicrobial resistance; d) to detect and screen for mutations related to drug-resistance; e) to discriminate gene isoforms. HRM method showed, in almost all instances, excellent typeability and discriminatory power, with high concordance of typing results obtained with gold standards or comparable methods. Conversely, for the evaluation of genetic determinants associated to antibiotic-resistance or for screening of associated mutations in key gene fragments, the sensitivity and specificity was not optimal, because the targeted amplicons did not encompass all the crucial mutations. Despite the recent introduction of sequencing-based methods, the HRM method deserves consideration in research fields of infectious diseases, being characterized by low cost, rapidity, flexibility and versatility. However, there are some limitations to HRM assays development, which should be carefully considered. The most common application of HRM for bacterial typing is related to Single Nucleotide Polymorphism (SNP)-based genotyping with the analysis of gene fragments within the multilocus sequence typing (MLST) loci, following an approach termed mini-MLST or Minim typing. Although the resolving power is not totally correspondent to MLST, the Simpson's Index of Diversity provided by HRM method typically >0.95. Furthermore, the cost of this approach is less than MLST, enabling low cost surveillance and rapid response for outbreak control. Hence, the potential of HRM technology can strongly facilitate routine research and diagnostics in the epidemiological studies, as well as advance and streamline the genetic characterization of bacterial pathogens.
Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.
Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly
2016-11-01
Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.
Molecular determinants of resistance to Verticillium dahliae in potato
USDA-ARS?s Scientific Manuscript database
A constant evolutionary arms race between host resistance genes and pathogen effectors determine adaptive fitness. Therefore, identification of both host resistance genes and pathogen effectors is important in devising effective strategies to control disease. In tomato, resistance to Verticillium da...
Fully integrated multiplexed lab-on-a-card assay for enteric pathogens
NASA Astrophysics Data System (ADS)
Weigl, B. H.; Gerdes, J.; Tarr, P.; Yager, P.; Dillman, L.; Peck, R.; Ramachandran, S.; Lemba, M.; Kokoris, M.; Nabavi, M.; Battrell, F.; Hoekstra, D.; Klein, E. J.; Denno, D. M.
2006-01-01
Under this NIH-funded project, we are developing a lab-on-a-card platform to identify enteric bacterial pathogens in patients presenting with acute diarrhea, with special reference to infections that might be encountered in developing countries. Component functions that are integrated on this platform include on-chip immunocapture of live or whole pathogens, multiplexed nucleic acid amplification and on-chip detection, sample processing to support direct use of clinical specimens, and dry reagent storage and handling. All microfluidic functions are contained on the lab card. This new diagnostic test will be able to rapidly identify and differentiate Shigella dysenteriae serotype 1, Shigella toxin-producing Escherichia coli, E. coli 0157, Campylobacter jejuni, and Salmonella and Shigella species. This presentation will report on progress to date on sample and bacteria processing methodologies, identification and validation of capture antibodies and strategy for organism immunocapture, identification and validation of specific polymerase chain reaction (PCR) primer sequences for over 200 clinical isolates of enteric pathogens, and implementation of on-chip nucleic acid extraction for a subset of those pathogens.
Specific identification of Bacillus anthracis strains
NASA Astrophysics Data System (ADS)
Krishnamurthy, Thaiya; Deshpande, Samir; Hewel, Johannes; Liu, Hongbin; Wick, Charles H.; Yates, John R., III
2007-01-01
Accurate identification of human pathogens is the initial vital step in treating the civilian terrorism victims and military personnel afflicted in biological threat situations. We have applied a powerful multi-dimensional protein identification technology (MudPIT) along with newly generated software termed Profiler to identify the sequences of specific proteins observed for few strains of Bacillus anthracis, a human pathogen. Software termed Profiler was created to initially screen the MudPIT data of B. anthracis strains and establish the observed proteins specific for its strains. A database was also generated using Profiler containing marker proteins of B. anthracis and its strains, which in turn could be used for detecting the organism and its corresponding strains in samples. Analysis of the unknowns by our methodology, combining MudPIT and Profiler, led to the accurate identification of the anthracis strains present in samples. Thus, a new approach for the identification of B. anthracis strains in unknown samples, based on the molecular mass and sequences of marker proteins, has been ascertained.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent
2017-01-01
ABSTRACT The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. PMID:28179406
Kostić, Tanja; Sessitsch, Angela
2011-01-01
Reliable and sensitive pathogen detection in clinical and environmental (including food and water) samples is of greatest importance for public health. Standard microbiological methods have several limitations and improved alternatives are needed. Most important requirements for reliable analysis include: (i) specificity; (ii) sensitivity; (iii) multiplexing potential; (iv) robustness; (v) speed; (vi) automation potential; and (vii) low cost. Microarray technology can, through its very nature, fulfill many of these requirements directly and the remaining challenges have been tackled. In this review, we attempt to compare performance characteristics of the microbial diagnostic microarrays developed for the detection and typing of food and water pathogens, and discuss limitations, points still to be addressed and issues specific for the analysis of food, water and environmental samples. PMID:27605332
Buccal microbiology analyzed by infrared spectroscopy
NASA Astrophysics Data System (ADS)
de Abreu, Geraldo Magno Alves; da Silva, Gislene Rodrigues; Khouri, Sônia; Favero, Priscila Pereira; Raniero, Leandro; Martin, Airton Abrahão
2012-01-01
Rapid microbiological identification and characterization are very important in dentistry and medicine. In addition to dental diseases, pathogens are directly linked to cases of endocarditis, premature delivery, low birth weight, and loss of organ transplants. Fourier Transform Infrared Spectroscopy (FTIR) was used to analyze oral pathogens Aggregatibacter actinomycetemcomitans ATCC 29523, Aggregatibacter actinomycetemcomitans-JP2, and Aggregatibacter actinomycetemcomitans which was clinically isolated from the human blood-CI. Significant spectra differences were found among each organism allowing the identification and characterization of each bacterial species. Vibrational modes in the regions of 3500-2800 cm-1, the 1484-1420 cm-1, and 1000-750 cm-1 were used in this differentiation. The identification and classification of each strain were performed by cluster analysis achieving 100% separation of strains. This study demonstrated that FTIR can be used to decrease the identification time, compared to the traditional methods, of fastidious buccal microorganisms associated with the etiology of the manifestation of periodontitis.
Zhang, D F; Zhang, Q Q; Li, A H
2014-11-01
Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This mPCR assay provides a rapid, specific and sensitive tool for the detection or identification of common fish pathogenic bacteria in aquaculture practice. © 2014 The Society for Applied Microbiology.
Heinrich, Andreas; Güttler, Felix; Wendt, Sebastian; Schenkl, Sebastian; Hubig, Michael; Wagner, Rebecca; Mall, Gita; Teichgräber, Ulf
2018-06-18
In forensic odontology the comparison between antemortem and postmortem panoramic radiographs (PRs) is a reliable method for person identification. The purpose of this study was to improve and automate identification of unknown people by comparison between antemortem and postmortem PR using computer vision. The study includes 43 467 PRs from 24 545 patients (46 % females/54 % males). All PRs were filtered and evaluated with Matlab R2014b including the toolboxes image processing and computer vision system. The matching process used the SURF feature to find the corresponding points between two PRs (unknown person and database entry) out of the whole database. From 40 randomly selected persons, 34 persons (85 %) could be reliably identified by corresponding PR matching points between an already existing scan in the database and the most recent PR. The systematic matching yielded a maximum of 259 points for a successful identification between two different PRs of the same person and a maximum of 12 corresponding matching points for other non-identical persons in the database. Hence 12 matching points are the threshold for reliable assignment. Operating with an automatic PR system and computer vision could be a successful and reliable tool for identification purposes. The applied method distinguishes itself by virtue of its fast and reliable identification of persons by PR. This Identification method is suitable even if dental characteristics were removed or added in the past. The system seems to be robust for large amounts of data. · Computer vision allows an automated antemortem and postmortem comparison of panoramic radiographs (PRs) for person identification.. · The present method is able to find identical matching partners among huge datasets (big data) in a short computing time.. · The identification method is suitable even if dental characteristics were removed or added.. · Heinrich A, Güttler F, Wendt S et al. Forensic Odontology: Automatic Identification of Persons Comparing Antemortem and Postmortem Panoramic Radiographs Using Computer Vision. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0632-4744. © Georg Thieme Verlag KG Stuttgart · New York.
C. Villari; R.A. Sniezko; L.E. Rodriguez-Saona; P. Bonello
2017-01-01
A strong focus on tree germplasm that can resist threats such as non-native insects and pathogens, or a changing climate, is fundamental for successful genetic conservation efforts. However, the unavailability of tools for rapid screening of tree germplasm for resistance to critical pathogens and insect pests is becoming an increasingly serious bottleneck. Here we...
Bosch, J; Bosch, J; Kemp, W P
2002-02-01
The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.
Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin
2018-01-01
The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.
Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul
2018-01-01
Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are used for the docking studies of the known and new ligands (unpublished data). Our study will be an effective framework for drug target identifications of pathogenic microbial strains and development of new therapies against the infections they cause.
Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin
2017-03-01
Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.
Assavasilavasukul, Prapakorn; Lau, Boris L T; Harrington, Gregory W; Hoffman, Rebecca M; Borchardt, Mark A
2008-05-01
The presence of waterborne enteric pathogens in municipal water supplies contributes risk to public health. To evaluate the removal of these pathogens in drinking water treatment processes, previous researchers have spiked raw waters with up to 10(6) pathogens/L in order to reliably detect the pathogens in treated water. These spike doses are 6-8 orders of magnitude higher than pathogen concentrations routinely observed in practice. In the present study, experiments were conducted with different sampling methods (i.e., grab versus continuous sampling) and initial pathogen concentrations ranging from 10(1) to 10(6) pathogens/L. Results showed that Cryptosporidium oocyst and Giardia cyst removal across conventional treatment were dependent on initial pathogen concentrations, with lower pathogen removals observed when lower initial pathogen spike doses were used. In addition, higher raw water turbidity appeared to result in higher log removal for both Cryptosporidium oocysts and Giardia cysts.
Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.
Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A
2008-04-01
To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.
Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection
USDA-ARS?s Scientific Manuscript database
Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. Current gold standards are specific...
USDA-ARS?s Scientific Manuscript database
Despite the best efforts of industry and regulatory agencies to identify and implement good agricultural practices (GAPs) that eliminate pathogen contamination, significant produce associated outbreaks continue to occur. Identification of nonpathogenic surrogates for common produce-associated foodbo...
Identification of factors involved in foliar resistance to bacteria in potato
USDA-ARS?s Scientific Manuscript database
Foliar bacterial pathogens are a constant problem of many Solanaceous crops including tomato, pepper, and eggplant. However, cultivated potato has benefitted from low infection rates from most pathogenic Pseudomonas and Xanthomonas species. The purpose of this project is to understand the mechanisms...
USDA-ARS?s Scientific Manuscript database
This chapter provides an overview regarding the advantages of virulotyping over historic serology-based, PCR-based on genes that identify an organism, or enzymatic and biochemical-based analyses of foodborne pathogens in clinical diagnostics and food industry microbiology testing. Traditional ident...
Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael
2008-09-01
The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.
Zhou, Bangjun; Zeng, Lirong
2018-01-01
Plants have evolved a sophisticated innate immune system to contend with potential infection by various pathogens. Understanding and manipulation of key molecular mechanisms that plants use to defend against various pathogens are critical for developing novel strategies in plant disease control. In plants, resistance to attempted pathogen infection is often associated with hypersensitive response (HR), a form of rapid programmed cell death (PCD) at the site of attempted pathogen invasion. In this chapter, we describe a method for rapid identification of genes that are essential for plant innate immunity. It combines virus-induced gene silencing (VIGS), a tool that is suitable for studying gene function in high-throughput, with the utilization of immunity-associated PCD, particularly HR-linked PCD as the readout of changes in plant innate immunity. The chapter covers from the design of gene fragment for VIGS, the agroinfiltration of the Nicotiana benthamian plants, to the use of immunity-associated PCD induced by twelve elicitors as the indicator of activation of plant immunity.
Chai, Chunyue; Lin, Yanling; Shen, Danyu; Wu, Yuren; Li, Hongjuan; Dou, Daolong
2013-01-01
Identification of pathogen-inducible promoters largely lags behind cloning of the genes for disease resistance. Here, we cloned the soybean GmaPPO12 gene and found that it was rapidly and strongly induced by Phytophthorasojae infection. Computational analysis revealed that its promoter contained many known cis-elements, including several defense related transcriptional factor-binding boxes. We showed that the promoter could mediate induction of GUS expression upon infection in both transient expression assays in Nicotianabenthamiana and stable transgenic soybean hairy roots. Importantly, we demonstrated that pathogen-induced expression of the GmaPPO12 promoter was higher than that of the soybean GmaPR1a promoter. A progressive 5' and 3' deletion analysis revealed two fragments that were essential for promoter activity. Thus, the cloned promoter could be used in transgenic plants to enhance resistance to phytophthora pathogens, and the identified fragment could serve as a candidate to produce synthetic pathogen-induced promoters.
Erlandsson, Lena; Rosenstierne, Maiken W.; McLoughlin, Kevin; Jaing, Crystal; Fomsgaard, Anders
2011-01-01
A common technique used for sensitive and specific diagnostic virus detection in clinical samples is PCR that can identify one or several viruses in one assay. However, a diagnostic microarray containing probes for all human pathogens could replace hundreds of individual PCR-reactions and remove the need for a clear clinical hypothesis regarding a suspected pathogen. We have established such a diagnostic platform for random amplification and subsequent microarray identification of viral pathogens in clinical samples. We show that Phi29 polymerase-amplification of a diverse set of clinical samples generates enough viral material for successful identification by the Microbial Detection Array, demonstrating the potential of the microarray technique for broad-spectrum pathogen detection. We conclude that this method detects both DNA and RNA virus, present in the same sample, as well as differentiates between different virus subtypes. We propose this assay for diagnostic analysis of viruses in clinical samples. PMID:21853040
Schrödl, Wieland; Heydel, Tilo; Schwartze, Volker U.; Hoffmann, Kerstin; Große-Herrenthey, Anke; Walther, Grit; Alastruey-Izquierdo, Ana; Rodriguez-Tudela, Juan Luis; Olias, Philipp; Jacobsen, Ilse D.; de Hoog, G. Sybren
2012-01-01
Zygomycetes of the order Mucorales can cause life-threatening infections in humans. These mucormycoses are emerging and associated with a rapid tissue destruction and high mortality. The resistance of Mucorales to antimycotic substances varies between and within clinically important genera such as Mucor, Rhizopus, and Lichtheimia. Thus, an accurate diagnosis before onset of antimycotic therapy is recommended. Matrix-assisted laser desorption ionization (MALDI)–time of flight (TOF) mass spectrometry (MS) is a potentially powerful tool to rapidly identify infectious agents on the species level. We investigated the potential of MALDI-TOF MS to differentiate Lichtheimia species, one of the most important agents of mucormycoses. Using the Bruker Daltonics FlexAnalysis (version 3.0) software package, a spectral database library with m/z ratios of 2,000 to 20,000 Da was created for 19 type and reference strains of clinically relevant Zygomycetes of the order Mucorales (12 species in 7 genera). The database was tested for accuracy by use of 34 clinical and environmental isolates of Lichtheimia comprising a total of five species. Our data demonstrate that MALDI-TOF MS can be used to clearly discriminate Lichtheimia species from other pathogenic species of the Mucorales. Furthermore, the method is suitable to discriminate species within the genus. The reliability and robustness of the MALDI-TOF-based identification are evidenced by high score values (above 2.3) for the designation to a certain species and by moderate score values (below 2.0) for the discrimination between clinically relevant (Lichtheimia corymbifera, L. ramosa, and L. ornata) and irrelevant (L. hyalospora and L. sphaerocystis) species. In total, all 34 strains were unequivocally identified by MALDI-TOF MS with score values of >1.8 down to the generic level, 32 out of 34 of the Lichtheimia isolates (except CNM-CM 5399 and FSU 10566) were identified accurately with score values of >2 (probable species identification), and 25 of 34 isolates were identified to the species level with score values of >2.3 (highly probable species identification). The MALDI-TOF MS-based method reported here was found to be reproducible and accurate, with low consumable costs and minimal preparation time. PMID:22135259
Hypertonic Saline as a Useful Tool for Sputum Induction and Pathogen Detection in Cystic Fibrosis.
Ferreira, Adriana Carolina Marques; Marson, Fernando Augusto Lima; Cohen, Milena Antonelli; Bertuzzo, Carmen Silvia; Levy, Carlos Emilio; Ribeiro, Antonio Fernando; Ribeiro, Jose Dirceu
2017-08-01
The aim of this study was to compare the qualitative and semi-quantitative detection of pathogens in the airway secretions of patients with cystic fibrosis (CF) and the sputum induction capacity before and after inhalation of 7% hypertonic saline solution (HSS). The study enrolled 64 patients with CF. Airway secretions were collected from all enrolled patients with CF before and after inhalation of 7% HSS, and the samples were screened for pathogens. Inhalation of 7% HSS increased the probability of producing sputum from 36 to 52% (p = 0.002) in children with CF. The effect was most in children under 11 years. Inhalation of 7% HSS improved qualitative pathogen identification (p = 0.008). Inhalation of 7% HSS increased the mucoid Pseudomonas aeruginosa (p = 0.002) and non-mucoid P. aeruginosa in the semi-quantitative analysis (p = 0.035). Four new pathogens (Aspergillus fumigatus, Achromobacter xylosoxidans, Ochrobactrum anthropi, and Elizabethkingia meningoseptica) were identified in the sputum samples collected from the airways of patients with CF following 7% HSS. Inhalation of 7% HSS increased sputum production and pathogen identification in children with CF. The inhalation of 7% HSS was feasible and should be implemented for routine pathogen detection in the airways of patients with CF, particularly in those patients who do not produce sputum.
Spanu, Teresa; Posteraro, Brunella; Fiori, Barbara; D'Inzeo, Tiziana; Campoli, Serena; Ruggeri, Alberto; Tumbarello, Mario; Canu, Giulia; Trecarichi, Enrico Maria; Parisi, Gabriella; Tronci, Mirella; Sanguinetti, Maurizio; Fadda, Giovanni
2012-01-01
We evaluated the reliability of the Bruker Daltonik's MALDI Biotyper system in species-level identification of yeasts directly from blood culture bottles. Identification results were concordant with those of the conventional culture-based method for 95.9% of Candida albicans (187/195) and 86.5% of non-albicans Candida species (128/148). Results were available in 30 min (median), suggesting that this approach is a reliable, time-saving tool for routine identification of Candida species causing bloodstream infection.
Wang, Fang; Li, Ran; Shang, Ying; Wang, Can; Wang, Guo-Qing; Zhou, De-Xun; Yang, Dong-Hong; Xi, Wen; Wang, Ke-Qiang; Bao, Jing; Kang, Yu; Gao, Zhan-Cheng
2016-01-20
It is important to achieve the definitive pathogen identification in hospital-acquired pneumonia (HAP), but the traditional culture results always delay the target antibiotic therapy. We assessed the method called quantitative loop-mediated isothermal amplification (qLAMP) as a new implement for steering of the antibiotic decision-making in HAP. Totally, 76 respiratory tract aspiration samples were prospectively collected from 60 HAP patients. DNA was isolated from these samples. Specific DNA fragments for identifying 11 pneumonia-related bacteria were amplified by qLAMP assay. Culture results of these patients were compared with the qLAMP results. Clinical data and treatment strategies were analyzed to evaluate the effects of qLAMP results on clinical data. McNemar test and Fisher's exact test were used for statistical analysis. The detection of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Stenotrophomonas maltophilia, Streptococcus pneumonia, and Acinetobacter baumannii by qLAMP was consistent with sputum culture (P > 0.05). The qLAMP results of 4 samples for Haemophilus influenzae, Legionella pneumophila, or Mycoplasma pneumonia (MP) were inconsistent with culture results; however, clinical data revealed that the qLAMP results were all reliable except 1 MP positive sample due to the lack of specific species identified in the final diagnosis. The improvement of clinical condition was more significant (P < 0.001) in patients with pathogen target-driven therapy based on qLAMP results than those with empirical therapy. qLAMP is a more promising method for detection of pathogens in an early, rapid, sensitive, and specific manner than culture.
van Pelt, Cindy; Verduin, Cees M.; Goessens, Wil H. F.; Vos, Margreet C.; Tümmler, Burkhard; Segonds, Christine; Reubsaet, Frans; Verbrugh, Henri; van Belkum, Alex
1999-01-01
Cystic fibrosis (CF) predisposes patients to bacterial colonization and infection of the lower airways. Several species belonging to the genus Burkholderia are potential CF-related pathogens, but microbiological identification may be complicated. This situation is not in the least due to the poorly defined taxonomic status of these bacteria, and further validation of the available diagnostic assays is required. A total of 114 geographically diverse bacterial isolates, previously identified in reference laboratories as Burkholderia cepacia (n = 51), B. gladioli (n = 14), Ralstonia pickettii (n = 6), B. multivorans (n = 2), Stenotrophomonas maltophilia (n = 3), and Pseudomonas aeruginosa (n = 11), were collected from environmental, clinical, and reference sources. In addition, 27 clinical isolates putatively identified as Burkholderia spp. were recovered from the sputum of Dutch CF patients. All isolates were used to evaluate the accuracy of two selective growth media, four systems for biochemical identification (API 20NE, Vitek GNI, Vitek NFC, and MicroScan), and three different PCR-based assays. The PCR assays amplify different parts of the ribosomal DNA operon, either alone or in combination with cleavage by various restriction enzymes (PCR-restriction fragment length polymorphism [RFLP] analysis). The best system for the biochemical identification of B. cepacia appeared to be the API 20NE test. None of the biochemical assays successfully grouped the B. gladioli strains. The PCR-RFLP method appeared to be the optimal method for accurate nucleic acid-mediated identification of the different Burkholderia spp. With this method, B. gladioli was also reliably classified in a separate group. For the laboratory diagnosis of B. cepacia, we recommend parallel cultures on blood agar medium and selective agar plates. Further identification of colonies with a Burkholderia phenotype should be performed with the API 20NE test. For final confirmation of species identities, PCR amplification of the small-subunit rRNA gene followed by RFLP analysis with various enzymes is recommended. PMID:10364579
Williams, Angela H; Sharma, Mamta; Thatcher, Louise F; Azam, Sarwar; Hane, James K; Sperschneider, Jana; Kidd, Brendan N; Anderson, Jonathan P; Ghosh, Raju; Garg, Gagan; Lichtenzveig, Judith; Kistler, H Corby; Shea, Terrance; Young, Sarah; Buck, Sally-Anne G; Kamphuis, Lars G; Saxena, Rachit; Pande, Suresh; Ma, Li-Jun; Varshney, Rajeev K; Singh, Karam B
2016-03-05
Soil-borne fungi of the Fusarium oxysporum species complex cause devastating wilt disease on many crops including legumes that supply human dietary protein needs across many parts of the globe. We present and compare draft genome assemblies for three legume-infecting formae speciales (ff. spp.): F. oxysporum f. sp. ciceris (Foc-38-1) and f. sp. pisi (Fop-37622), significant pathogens of chickpea and pea respectively, the world's second and third most important grain legumes, and lastly f. sp. medicaginis (Fom-5190a) for which we developed a model legume pathosystem utilising Medicago truncatula. Focusing on the identification of pathogenicity gene content, we leveraged the reference genomes of Fusarium pathogens F. oxysporum f. sp. lycopersici (tomato-infecting) and F. solani (pea-infecting) and their well-characterised core and dispensable chromosomes to predict genomic organisation in the newly sequenced legume-infecting isolates. Dispensable chromosomes are not essential for growth and in Fusarium species are known to be enriched in host-specificity and pathogenicity-associated genes. Comparative genomics of the publicly available Fusarium species revealed differential patterns of sequence conservation across F. oxysporum formae speciales, with legume-pathogenic formae speciales not exhibiting greater sequence conservation between them relative to non-legume-infecting formae speciales, possibly indicating the lack of a common ancestral source for legume pathogenicity. Combining predicted dispensable gene content with in planta expression in the model legume-infecting isolate, we identified small conserved regions and candidate effectors, four of which shared greatest similarity to proteins from another legume-infecting ff. spp. We demonstrate that distinction of core and potential dispensable genomic regions of novel F. oxysporum genomes is an effective tool to facilitate effector discovery and the identification of gene content possibly linked to host specificity. While the legume-infecting isolates didn't share large genomic regions of pathogenicity-related content, smaller regions and candidate effector proteins were highly conserved, suggesting that they may play specific roles in inducing disease on legume hosts.
Bhardwaj, Tulika; Haque, Shafiul; Somvanshi, Pallavi
2018-05-12
Bacterial pathogens invade and disrupt the host defense system by means of protein sequences structurally similar at global and local level both. The sharing of homologous sequences between the host and the pathogenic bacteria mediates the infection and defines the concept of molecular mimicry. In this study, various computational approaches were employed to elucidate the pathogenicity of Clostridium botulinum ATCC 3502 at genome-wide level. Genome-wide study revealed that the pathogen mimics the host (Homo sapiens) and unraveled the complex pathogenic pathway of causing infection. The comparative 'omics' approaches helped in selective screening of 'molecular mimicry' candidates followed by the qualitative assessment of the virulence potential and functional enrichment. Overall, this study provides a deep insight into the emergence and surveillance of multidrug resistant C. botulinum ATCC 3502 caused infections. This is the very first report identifying C. botulinum ATCC 3502 proteome enriched similarities to the human host proteins and resulted in the identification of 20 potential mimicry candidates, which were further characterized qualitatively by sub-cellular organization prediction and functional annotation. This study will provide a variety of avenues for future studies related to infectious agents, host-pathogen interactions and the evolution of pathogenesis process. Copyright © 2018. Published by Elsevier Ltd.
Wu, Qing; Zhao, Xinhua; Yu, Qing; Li, Jun
2008-07-01
To understand the corrosion of different material water supply pipelines and bacterium in drinking water and biofilms. A pilot distribution network was built and water quality detection was made on popular pipelines of galvanized iron pipe, PPR and ABS plastic pipes by ESEM (environmental scanning electron microscopy). Bacterium in drinking water and biofilms were identified by API Bacteria Identification System 10s and 20E (Biomerieux, France), and pathogenicity of bacterium were estimated. Galvanized zinc pipes were seriously corroded; there were thin layers on inner face of PPR and ABS plastic pipes. 10 bacterium (got from water samples) were identified by API10S, in which 7 bacterium were opportunistic pathogens. 21 bacterium (got from water and biofilms samples) were identified by API20E, in which 5 bacterium were pathogens and 11 bacterium were opportunistic pathogens and 5 bacteria were not reported for their pathogenicities to human beings. The bacterial water quality of drinking water distribution networks were not good. Most bacterium in drinking water and biofilms on the inner face of pipeline of the drinking water distribution network were opportunistic pathogens, it could cause serious water supply accident, if bacteria spread in suitable conditions. In the aspect of pipe material, old pipelines should be changed by new material pipes.
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia
NASA Astrophysics Data System (ADS)
Harjanti, D. W.; Ciptaningtyas, R.; Wahyono, F.; Setiatin, ET
2018-01-01
Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 83% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis(6 isolates), Streptococcus dysgalactiaessp dysgalactiae(1 isolate) , Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogens (3 isolates). Contamination of raw milkwith pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that couldinhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.
[Microbiological point of care tests].
Book, Malte; Lehmann, Lutz Eric; Zhang, Xianghong; Stüber, Frank
2010-11-01
It is well known that the early initiation of a specific antiinfective therapy is crucial to reduce the mortality in severe infection. Procedures culturing pathogens are the diagnostic gold standard in such diseases. However, these methods yield results earliest between 24 to 48 hours. Therefore, severe infections such as sepsis need to be treated with an empirical antimicrobial therapy, which is ineffective in an unknown fraction of these patients. Today's microbiological point of care tests are pathogen specific and therefore not appropriate for an infection with a variety of possible pathogens. Molecular nucleic acid diagnostics such as polymerase chain reaction (PCR) allow the identification of pathogens and resistances. These methods are used routinely to speed up the analysis of positive blood cultures. The newest PCR based system allows the identification of the 25 most frequent sepsis pathogens by PCR in parallel without previous culture in less than 6 hours. Thereby, these systems might shorten the time of possibly insufficient antiinfective therapy. However, these extensive tools are not suitable as point of care diagnostics. Miniaturization and automating of the nucleic acid based method is pending, as well as an increase of detectable pathogens and resistance genes by these methods. It is assumed that molecular PCR techniques will have an increasing impact on microbiological diagnostics in the future. © Georg Thieme Verlag Stuttgart · New York.
Global food and fibre security threatened by current inefficiencies in fungal identification.
Crous, Pedro W; Groenewald, Johannes Z; Slippers, Bernard; Wingfield, Michael J
2016-12-05
Fungal pathogens severely impact global food and fibre crop security. Fungal species that cause plant diseases have mostly been recognized based on their morphology. In general, morphological descriptions remain disconnected from crucially important knowledge such as mating types, host specificity, life cycle stages and population structures. The majority of current fungal species descriptions lack even the most basic genetic data that could address at least some of these issues. Such information is essential for accurate fungal identifications, to link critical metadata and to understand the real and potential impact of fungal pathogens on production and natural ecosystems. Because international trade in plant products and introduction of pathogens to new areas is likely to continue, the manner in which fungal pathogens are identified should urgently be reconsidered. The technologies that would provide appropriate information for biosecurity and quarantine already exist, yet the scientific community and the regulatory authorities are slow to embrace them. International agreements are urgently needed to enforce new guidelines for describing plant pathogenic fungi (including key DNA information), to ensure availability of relevant data and to modernize the phytosanitary systems that must deal with the risks relating to trade-associated plant pathogens.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).
Gayibova, Ülkü; Dalyan Cılo, Burcu; Ağca, Harun; Ener, Beyza
2014-07-01
Opportunistic fungal pathogens are one of the important causes of nosocomial infections, and several different types of yeasts, especially Candida species are increasingly recovered from immunocompromised patients. Since many of the yeasts are resistant to the commonly used antifungal agents, the introduction of appropriate therapy depends on rapid and accurate identification. The aims of this study were to compare the commercial identification systems namely API® ID 32C (bioMerieux, France) and Phoenix™ Yeast ID Panel (Becton Dickinson Diagnostics, USA) for the identification of Candida species and to evaluate the effect of morphological findings in the identification process. A total of 211 yeast strains isolated from different clinical samples (111 urine, 34 blood/vascular catheter, 27 upper/lower respiratory tract, 16 abscess/pus, 13 throat/vagina swabs and 10 sterile body fluids) of 137 patients hospitalized in Uludag University Health and Research Center between October 2013 to January 2014, were included in the study. Samples were cultured on blood agar, chromogenic agar (CHROMagar Candida, BD, USA) and Saboraud's dextrose agar (SDA), and isolated yeast colonies were evaluated with germ tube test and morphological examination by microscopy on cornmeal/Tween-80 agar. The isolates were identified as well by two commercial systems according to the manufacturers' recommendations. Discrepant results between the systems were tried to be resolved by using morphological characteristics of the yeasts. Of the isolates 159 were identified identical by both of the systems, and the concordance between those systems were estimated as 75.4%. According to the concordant identification, the most frequently isolated species was C.albicans (44.1%) followed by C.tropicalis (9.9%), C.glabrata (9.5%), C.parapsilosis (8.5%) and C.kefyr (8.1%). The concordance rate was 81.7% in identification of frequently isolated species (C.albicans, C.tropicalis, C.parapsilosis, C.glabrata, C.kefyr), however it was 38.7% for the rarely isolated ones (C.krusei, C.lusitaniae, C.inconspicua/C.norvagensis, C.catenulata), representing statistical significance (p= 0.034; x2 test). Although not significant (p= 0.31; x2 test), the rate of concordance was increased (88.1%), when adding the morphological findings to the identification process. Of 211 isolates 37 (17.5%), 50 (23.7%) and 124 (58.8%) were identified according to their growth characteristics on chromogenic agar, blood agar and SDA, respectively, indicating no statistically significant difference between the media (p> 0.05). Although genotypic identification is essential, phenotypic methods are more commonly used in routine laboratories for the identification of yeast species. However, since genotypic identification could not be performed in this study, none of the systems were accepted as the standard method and therefore the sensitivity and specificity of the systems were not calculated. On the other hand, our data indicated that the two identification systems were comparable and careful observation of yeast morphology could add confidence to the identification. In conclusion, since the Phoenix™ Yeast ID system was found more practical with easier interpretation, and the results were obtained earlier than those of the API® ID 32C system (16 hours versus 48 hours), it was thought that Phoenix™ Yeast ID system may be used reliably in the routine laboratories. However, as none of the methods evaluated was completely reliable as a stand-alone, careful evaluation is necessary for species identification.
Sepsis and identification of reliable biomarkers for postoperative period prognosis.
Siloşi, Cristian Adrian; Siloşi, Isabela; Pădureanu, Vlad; Bogdan, Maria; Mogoantă, Stelian Ştefăniţă; Ciurea, Marius Eugen; Cojocaru, Manole; Boldeanu, Lidia; Avrămescu, Carmen Silvia; Boldeanu, Mihail Virgil; Popa, Dragoş George
2018-01-01
Sepsis is currently defined as the presence of organ dysfunction occurring as the result of a disturbed host response to a serious infection. Sepsis is one of the most common diseases, which cause mortality and a considerable absorber of healthcare resources. Despite progress in technology and improving knowledge of pathophysiology, the disease mechanism is still poorly understood. At present, diagnosis is based on non-specific physiological criteria and on the late identification of the pathogen. For these reasons, the diagnosis may be uncertain, treatment delayed or an immunomodulatory therapy cannot be established. An early and reliable diagnosis is essential to achieve better outcomes on disease progression. The host response to infection involves hundreds of many mediators of which have been proposed as biomarkers. There is a need for new diagnostic approaches for sepsis, new sepsis biomarkers that can aid in diagnosis, therapeutic decision and monitoring of the response to therapy. The differentiation of sepsis from non-infectious systemic inflammatory response syndrome is difficult, and the search for a highly accurate biomarker of sepsis has become one important objective of the medicine. The goal of our review is to summarize the recent advances on the most commonly studied serum biomarkers, evaluated in clinical and experimental studies, for early diagnosis of sepsis and their informative value in diagnosis, prognosis, or response to therapy. In this context, we have tracked the clinical utility of measuring serum biomarkers, such as procalcitonin, pro- and anti-inflammatory cytokines, C-reactive protein, leptin and their combinations. Currently, has not been identified an ideal biomarker to aid in the diagnosis of sepsis. It is hoped that the discovery of new serum markers, as well as their combinations, will serve for the diagnosis and prognosis of sepsis.
Chpater 11: Research Methods for Entomopathogenic Microsporidia and Other Protists
USDA-ARS?s Scientific Manuscript database
The focus in this chapter is on those groups of protists that are pathogenic to their insect hosts, although some basic data necessary for the identification of non-pathogenic taxa are provided. Protist-insect symbiotic relationships reflect the full range of possible interactions, from commensalis...
Sarcococca blight: Use of whole genome sequencing as a strategy for fungal disease diagnosis
USDA-ARS?s Scientific Manuscript database
Early and accurate diagnosis of new plant pathogens is vital for the rapid implementation of effective mitigation strategies and appropriate regulatory responses. Most commonly, pathogen identification relies on morphology and DNA marker analysis. However, for new diseases, these approaches may not...
Identification of highly variable supernumerary chromosome segments in an asexual pathogen
USDA-ARS?s Scientific Manuscript database
Supernumerary chromosome segments are known to harbor different transposons from their essential counterparts. The aim of this study was to investigate the role of transposons in the origin and evolution of supernumerary segments in the asexual fungal pathogen Fusariumvirguliforme. We compared the g...
USDA-ARS?s Scientific Manuscript database
An acousto-optic tunable filter-based hyperspectral microscope imaging method has potential for identification of foodborne pathogenic bacteria from microcolony rapidly with a single cell level. We have successfully developed the method to acquire quality hyperspectral microscopic images from variou...
USDA-ARS?s Scientific Manuscript database
Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...
Yang, Xiang; Noyes, Noelle R; Doster, Enrique; Martin, Jennifer N; Linke, Lyndsey M; Magnuson, Roberta J; Yang, Hua; Geornaras, Ifigenia; Woerner, Dale R; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina; Morley, Paul S; Belk, Keith E
2016-04-01
Foodborne illnesses associated with pathogenic bacteria are a global public health and economic challenge. The diversity of microorganisms (pathogenic and nonpathogenic) that exists within the food and meat industries complicates efforts to understand pathogen ecology. Further, little is known about the interaction of pathogens within the microbiome throughout the meat production chain. Here, a metagenomic approach and shotgun sequencing technology were used as tools to detect pathogenic bacteria in environmental samples collected from the same groups of cattle at different longitudinal processing steps of the beef production chain: cattle entry to feedlot, exit from feedlot, cattle transport trucks, abattoir holding pens, and the end of the fabrication system. The log read counts classified as pathogens per million reads for Salmonella enterica,Listeria monocytogenes,Escherichia coli,Staphylococcus aureus, Clostridium spp. (C. botulinum and C. perfringens), and Campylobacter spp. (C. jejuni,C. coli, and C. fetus) decreased over subsequential processing steps. Furthermore, the normalized read counts for S. enterica,E. coli, and C. botulinumwere greater in the final product than at the feedlots, indicating that the proportion of these bacteria increased (the effect on absolute numbers was unknown) within the remaining microbiome. From an ecological perspective, data indicated that shotgun metagenomics can be used to evaluate not only the microbiome but also shifts in pathogen populations during beef production. Nonetheless, there were several challenges in this analysis approach, one of the main ones being the identification of the specific pathogen from which the sequence reads originated, which makes this approach impractical for use in pathogen identification for regulatory and confirmation purposes. Copyright © 2016 Yang et al.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent; Meyer, Wieland
2017-04-01
The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. Copyright © 2017 American Society for Microbiology.
Muñoz, Irene; Henriques, Dora; Jara, Laura; Johnston, J Spencer; Chávez-Galarza, Julio; De La Rúa, Pilar; Pinto, M Alice
2017-07-01
The honeybee (Apis mellifera) has been threatened by multiple factors including pests and pathogens, pesticides and loss of locally adapted gene complexes due to replacement and introgression. In western Europe, the genetic integrity of the native A. m. mellifera (M-lineage) is endangered due to trading and intensive queen breeding with commercial subspecies of eastern European ancestry (C-lineage). Effective conservation actions require reliable molecular tools to identify pure-bred A. m. mellifera colonies. Microsatellites have been preferred for identification of A. m. mellifera stocks across conservation centres. However, owing to high throughput, easy transferability between laboratories and low genotyping error, SNPs promise to become popular. Here, we compared the resolving power of a widely utilized microsatellite set to detect structure and introgression with that of different sets that combine a variable number of SNPs selected for their information content and genomic proximity to the microsatellite loci. Contrary to every SNP data set, microsatellites did not discriminate between the two lineages in the PCA space. Mean introgression proportions were identical across the two marker types, although at the individual level, microsatellites' performance was relatively poor at the upper range of Q-values, a result reflected by their lower precision. Our results suggest that SNPs are more accurate and powerful than microsatellites for identification of A. m. mellifera colonies, especially when they are selected by information content. © 2016 John Wiley & Sons Ltd.
Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR.
Alberer, Martin; Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus
2017-01-01
Purpose . Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods . Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results . The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni , 100% for E . histolytica , 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion . Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens.
He, Qingwen; Chen, Weiyuan; Huang, Liya; Lin, Qili; Zhang, Jingling; Liu, Rui; Li, Bin
2016-06-21
Carbapenem-resistant Enterobacteriaceae (CRE) is prevalent around the world. Rapid and accurate detection of CRE is urgently needed to provide effective treatment. Automated identification systems have been widely used in clinical microbiology laboratories for rapid and high-efficient identification of pathogenic bacteria. However, critical evaluation and comparison are needed to determine the specificity and accuracy of different systems. The aim of this study was to evaluate the performance of three commonly used automated identification systems on the detection of CRE. A total of 81 non-repetitive clinical CRE isolates were collected from August 2011 to August 2012 in a Chinese university hospital, and all the isolates were confirmed to be resistant to carbapenems by the agar dilution method. The potential presence of carbapenemase genotypes of the 81 isolates was detected by PCR and sequencing. Using 81 clinical CRE isolates, we evaluated and compared the performance of three automated identification systems, MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, which are commonly used in China. To identify CRE, the comparator methodology was agar dilution method, while the PCR and sequencing was the comparator one to identify CPE. PCR and sequencing analysis showed that 48 of the 81 CRE isolates carried carbapenemase genes, including 23 (28.4 %) IMP-4, 14 (17.3 %) IMP-8, 5 (6.2 %) NDM-1, and 8 (9.9 %) KPC-2. Notably, one Klebsiella pneumoniae isolate produced both IMP-4 and NDM-1. One Klebsiella oxytoca isolate produced both KPC-2 and IMP-8. Of the 81 clinical CRE isolates, 56 (69.1 %), 33 (40.7 %) and 77 (95.1 %) were identified as CRE by MicroScan WalkAway 96 Plus, Phoenix 100, and Vitek 2 Compact, respectively. The sensitivities/specificities of MicroScan WalkAway, Phoenix 100 and Vitek 2 were 93.8/42.4 %, 54.2/66.7 %, and 75.0/36.4 %, respectively. The MicroScan WalkAway and Viteck2 systems are more reliable in clinical identification of CRE, whereas additional tests are required for the Pheonix 100 system. Our study provides a useful guideline for using automated identification systems for CRE identification.
How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry.
Alcaide, F; Amlerová, J; Bou, G; Ceyssens, P J; Coll, P; Corcoran, D; Fangous, M-S; González-Álvarez, I; Gorton, R; Greub, G; Hery-Arnaud, G; Hrábak, J; Ingebretsen, A; Lucey, B; Marekoviċ, I; Mediavilla-Gradolph, C; Monté, M R; O'Connor, J; O'Mahony, J; Opota, O; O'Reilly, B; Orth-Höller, D; Oviaño, M; Palacios, J J; Palop, B; Pranada, A B; Quiroga, L; Rodríguez-Temporal, D; Ruiz-Serrano, M J; Tudó, G; Van den Bossche, A; van Ingen, J; Rodriguez-Sanchez, B
2018-06-01
The implementation of MALDI-TOF MS for microorganism identification has changed the routine of the microbiology laboratories as we knew it. Most microorganisms can now be reliably identified within minutes using this inexpensive, user-friendly methodology. However, its application in the identification of mycobacteria isolates has been hampered by the structure of their cell wall. Improvements in the sample processing method and in the available database have proved key factors for the rapid and reliable identification of non-tuberculous mycobacteria isolates using MALDI-TOF MS. The main objective is to provide information about the proceedings for the identification of non-tuberculous isolates using MALDI-TOF MS and to review different sample processing methods, available databases, and the interpretation of the results. Results from relevant studies on the use of the available MALDI-TOF MS instruments, the implementation of innovative sample processing methods, or the implementation of improved databases are discussed. Insight about the methodology required for reliable identification of non-tuberculous mycobacteria and its implementation in the microbiology laboratory routine is provided. Microbiology laboratories where MALDI-TOF MS is available can benefit from its capacity to identify most clinically interesting non-tuberculous mycobacteria in a rapid, reliable, and inexpensive manner. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries
2010-01-01
Background Rodents are recognized as hosts for at least 60 zoonotic diseases and may represent a serious threat for human health. In the context of global environmental changes and increasing mobility of humans and animals, contacts between pathogens and potential animal hosts and vectors are modified, amplifying the risk of disease emergence. An accurate identification of each rodent at a specific level is needed in order to understand their implications in the transmission of diseases. Among the Muridae, the Rattini tribe encompasses 167 species inhabiting South East Asia, a hotspot of both biodiversity and emerging and re-emerging diseases. The region faces growing economical development that affects habitats, biodiversity and health. Rat species have been demonstrated as significant hosts of pathogens but are still difficult to recognize at a specific level using morphological criteria. DNA-barcoding methods appear as accurate tools for rat species identification but their use is hampered by the need of reliable identification of reference specimens. In this study, we explore and highlight the limits of the current taxonomy of the Rattini tribe. Results We used the DNA sequence information itself as the primary information source to establish group membership and estimate putative species boundaries. We sequenced two mitochondrial and one nuclear genes from 122 rat samples to perform phylogenetic reconstructions. The method of Pons and colleagues (2006) that determines, with no prior expectations, the locations of ancestral nodes defining putative species was then applied to our dataset. To give an appropriate name to each cluster recognized as a putative species, we reviewed information from the literature and obtained sequences from a museum holotype specimen following the ancient DNA criteria. Conclusions Using a recently developed methodology, this study succeeds in refining the taxonomy of one of the most difficult groups of mammals. Most of the species expected within the area were retrieved but new putative species limits were also indicated, in particular within Berylmys and Rattus genera, where future taxonomic studies should be directed. Our study lays the foundations to better investigate rodent-born diseases in South East Asia and illustrates the relevance of evolutionary studies for health and medical sciences. PMID:20565819
Morio, F; Valot, S; Laude, A; Desoubeaux, G; Argy, N; Nourrisson, C; Pomares, C; Machouart, M; Le Govic, Y; Dalle, F; Botterel, F; Bourgeois, N; Cateau, E; Leterrier, M; Jeddi, F; Gaboyard, M; Le Pape, P
2018-02-15
Besides the potential to identify a wide variety of gastrointestinal parasites, microscopy remains the reference standard in clinical microbiology for amoeba species identification and, especially when coupled with adhesin detection, to discriminate the pathogenic Entamoeba histolytica from its sister but non-pathogenic species Entamoeba dispar/Entamoeba moshkovskii. However, this approach is time-consuming, requires a high-level of expertise that can be jeopardized considering the low prevalence of gastrointestinal parasites in non-endemic countries. Here, we evaluated the CE-IVD-marked multiplex PCR (ParaGENIE G-Amoeba, Ademtech) targeting E. histolytica and E. dispar/E. moshkovskii and Giardia intestinalis. This evaluation was performed blindly on a reference panel of 172 clinical stool samples collected prospectively from 12 laboratories and analysed using a standardized protocol relying on microscopy (and adhesin detection by ELISA for the detection of E. histolytica) including G. intestinalis (n = 37), various amoeba species (n = 55) including E. dispar (n = 15), E. histolytica (n = 5), as well as 17 other gastrointestinal parasites (n = 80), and negative samples (n = 37). This new multiplex PCR assay offers fast and reliable results with appropriate sensitivity and specificity for the detection of G. intestinalis and E. dispar/E. moshkovskii from stools (89.7%/96.9% and 95%/100%, respectively). Detection rate and specificity were greatly improved by the PCR assay, highlighting several samples misidentified by microscopy, including false-negative and false-positive results for both E. dispar/E. moshkovskii and E. histolytica. Given the clinical relevance of amoeba species identification, microbiologists should be aware of the limitations of using an algorithm relying on microscopy coupled with adhesin detection by ELISA. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Revisiting the taxonomy of the Rattini tribe: a phylogeny-based delimitation of species boundaries.
Pagès, Marie; Chaval, Yannick; Herbreteau, Vincent; Waengsothorn, Surachit; Cosson, Jean-François; Hugot, Jean-Pierre; Morand, Serge; Michaux, Johan
2010-06-18
Rodents are recognized as hosts for at least 60 zoonotic diseases and may represent a serious threat for human health. In the context of global environmental changes and increasing mobility of humans and animals, contacts between pathogens and potential animal hosts and vectors are modified, amplifying the risk of disease emergence. An accurate identification of each rodent at a specific level is needed in order to understand their implications in the transmission of diseases. Among the Muridae, the Rattini tribe encompasses 167 species inhabiting South East Asia, a hotspot of both biodiversity and emerging and re-emerging diseases. The region faces growing economical development that affects habitats, biodiversity and health. Rat species have been demonstrated as significant hosts of pathogens but are still difficult to recognize at a specific level using morphological criteria. DNA-barcoding methods appear as accurate tools for rat species identification but their use is hampered by the need of reliable identification of reference specimens. In this study, we explore and highlight the limits of the current taxonomy of the Rattini tribe. We used the DNA sequence information itself as the primary information source to establish group membership and estimate putative species boundaries. We sequenced two mitochondrial and one nuclear genes from 122 rat samples to perform phylogenetic reconstructions. The method of Pons and colleagues (2006) that determines, with no prior expectations, the locations of ancestral nodes defining putative species was then applied to our dataset. To give an appropriate name to each cluster recognized as a putative species, we reviewed information from the literature and obtained sequences from a museum holotype specimen following the ancient DNA criteria. Using a recently developed methodology, this study succeeds in refining the taxonomy of one of the most difficult groups of mammals. Most of the species expected within the area were retrieved but new putative species limits were also indicated, in particular within Berylmys and Rattus genera, where future taxonomic studies should be directed. Our study lays the foundations to better investigate rodent-born diseases in South East Asia and illustrates the relevance of evolutionary studies for health and medical sciences.
NASA Astrophysics Data System (ADS)
Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.
2011-06-01
Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.
NASA Astrophysics Data System (ADS)
Singh, Gulshan; Manohar, Murli; Adegoke, Anthony Ayodeji; Stenström, Thor Axel; Shanker, Rishi
2017-01-01
The lack of microbiologically safe water in underdeveloped nations is the prime cause of infectious disease outbreaks. The need for the specific identification and detection of microorganisms encourages the development of advanced, rapid, sensitive and highly specific methods for the monitoring of pathogens and management of potential risk to human health. The rapid molecular assays based on detection of specific molecular signatures offer advantages over conventional methods in terms of specificity and sensitivity but require complex instrumentation and skilled personnel. Nanotechnology is an emerging area and provides a robust approach for the identification of pathogenic microorganism utilizing the peculiar properties of nanomaterials, i.e. small size (1-100 nm) and large surface area. This emerging technology promises to fulfill the urgent need of a novel strategy to enhance the bacterial identification and quantitation in the environment. In this context, the peculiar properties of gold nanoparticles, their plasmonic shifts, and changes in magnetic properties have been utilized for the simple and cost-effective detection of bacterial nucleic acids, antigens and toxins with quite improved sensitivity. One of the promising leads to develop an advance detection method might be the coupling of nucleic acid aptamers (capable of interacting specifically with bacteria, protozoa, and viruses) with nanomaterials. Such aptamer-nano conjugate can be used for the specific recognition of infectious agents in different environmental matrices. This review summarizes the application of nanotechnology in the area of pathogen detection and discusses the prospects of coupling nucleic acid aptamers with nanoparticles for the specific detection of targeted pathogens.
NASA Astrophysics Data System (ADS)
Fikri, Ahmad Syairazie Ibrahim; Rahman, Irman Abdul; Nor, Norefrina Shafinaz Md; Hamzah, Ainon
2018-04-01
Endophytes are organisms, often fungi and bacteria that live in living plant cells. These organisms reside in the living tissues of the host plant in a variety of relationships, ranging from symbiotic to slightly pathogenic. The endophytes may produce a plethora of substances that have potential to be used in modern medicine, agriculture and industry. The aims of this study are to isolate, identify and screening antimicrobial activity of bacterial endophytes. The endophytes were isolated using nutrient agar, incubated at 37°C for 48 hours. Identification of the isolates were done based on morphological characteristics, biochemical tests and 16S rDNA molecular analysis. Disk diffusion method was used to screen for antimicrobial activity of metabolites from endophytes against pathogenic bacteria. Screening for antifungal activity of selected endophytes was done using dual culture method againts pathogenic fungi followed by Kirby-Bauer method. Results showed endophytes designated as B2c and B7b have positive antimicrobial activity. The metabolites from isolate B2c showed antimicrobial activity against pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus and Staphylococcus epidermis, while isolate B7b have positive activities againts MRSA, S. aureus and Pseudomonas aeruginosa. Isolates B2c displayed antifungal activity against Fusarium oxysporum, Fusarium solani, Phytophthora palmivora and Colletotrichum gloeosporioides. Identification using biochemical tests and 16S rDNA sequences identified isolate B2c as Pseudomonas resinovorans with 97% homology and isolate B7b as Bacillus subtilis with 98% homology.
Impact of clinical history on chest radiograph interpretation.
Test, Matthew; Shah, Samir S; Monuteaux, Michael; Ambroggio, Lilliam; Lee, Edward Y; Markowitz, Richard I; Bixby, Sarah; Diperna, Stephanie; Servaes, Sabah; Hellinger, Jeffrey C; Neuman, Mark I
2013-07-01
The inclusion of clinical information may have unrecognized influence in the interpretation of diagnostic testing. The objective of the study was to determine the impact of clinical history on chest radiograph interpretation in the diagnosis of pneumonia. Prospective case-based study. Radiologists interpreted 110 radiographs of children evaluated for suspicion of pneumonia. Clinical information was withheld during the first interpretation. After 6 months the radiographs were reviewed with clinical information. Radiologists reported on pneumonia indicators described by the World Health Organization (ie, any infiltrate, alveolar infiltrate, interstitial infiltrate, air bronchograms, hilar adenopathy, pleural effusion). Children's Hospital of Philadelphia and Boston Children's Hospital. Six board-certified radiologists. Inter- and inter-rater reliability were assessed using the kappa statistic. The addition of clinical history did not have a substantial impact on the inter-rater reliability in the identification of any infiltrate, alveolar infiltrate, interstitial infiltrate, pleural effusion, or hilar adenopathy. Inter-rater reliability in the identification of air bronchograms improved from fair (k = 0.32) to moderate (k = 0.53). Intra-rater reliability for the identification of alveolar infiltrate remained substantial to almost perfect for all 6 raters with and without clinical information. One rater had a decrease in inter-rater reliability from almost perfect (k = 1.0) to fair (k = 0.21) in the identification of interstitial infiltrate with the addition of clinical history. Alveolar infiltrate and pleural effusion are findings with high intra- and inter-rater reliability in the diagnosis of bacterial pneumonia. The addition of clinical information did not have a substantial impact on the reliability of these findings. © 2012 Society of Hospital Medicine.
Curtoni, Antonio; Cipriani, Raffaella; Marra, Elisa Simona; Barbui, Anna Maria; Cavallo, Rossana; Costa, Cristina
2017-01-01
Matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a useful tool for rapid identification of microorganisms. Unfortunately, its direct application to positive blood culture is still lacking standardized procedures. In this study, we evaluated an easy- and rapid-to-perform protocol for MALDI-TOF MS direct identification of microorganisms from positive blood culture after a short-term incubation on solid medium. This protocol was used to evaluate direct identification of microorganisms from 162 positive monomicrobial blood cultures; at different incubation times (3, 5, 24 h), MALDI-TOF MS assay was performed from the growing microorganism patina. Overall, MALDI-TOF MS concordance with conventional methods at species level was 60.5, 80.2, and 93.8% at 3, 5, and 24 h, respectively. Considering only bacteria, the identification performances at species level were 64.1, 85.0, and 94.1% at 3, 5, and 24 h, respectively. This protocol applied to a commercially available MS typing system may represent, a fast and powerful diagnostic tool for pathogen direct identification and for a promptly and pathogen-driven antimicrobial therapy in selected cases.
Portable Raman instrument for rapid biological agent detection and identification
NASA Astrophysics Data System (ADS)
Lesaicherre, Marie L.; Paxon, Tracy L.; Mondello, Frank J.; Burrell, Michael C.; Linsebigler, Amy
2009-05-01
The rapid and sensitive identification of biological species is a critical need for the 1st responder and military communities. Raman spectroscopy is a powerful tool for substance identification that has gained popularity with the respective communities due to the increasing availability of portable Raman spectrometers. Attempts to use Raman spectroscopy for the direct identification of biological pathogens has been hindered by the complexity of the generated Raman spectrum. We report here the use of a sandwich immunoassay containing antibody modified magnetic beads to capture and concentrate target analytes in solution and Surface Enhanced Raman Spectroscopy (SERS) tags conjugated with these same antibodies for specific detection. Using this approach, the biological complexity of a microorganism can be translated into chemical simplicity and Raman can be used for the identification of biological pathogens. The developed assay has a low limit of detection due to the SERS effect, robust to commonly found white powders interferants, and stable at room temperature over extended period of time. This assay is being implemented into a user-friendly interface to be used in conjunction with the GE Homeland Protection StreetLab MobileTM Raman instrument for rapid, field deployable chemical and biological identification.
As the incidence of human fungal infection increases, the ability to detect and identify pathogenic fungi in potential environmental reservoirs becomes increasingly important for disease control. PCR based assays are widely used for diagnostic purposes, but may be inadequate for...
Identification and characterization of LysM effectors in Penicillium expansum
USDA-ARS?s Scientific Manuscript database
P. expansum is regarded as one of the most important postharvest rots of apple fruit and is also of great concern to fruit processing industries. Elucidating the pathogenicity mechanism of this pathogen is of utmost importance for the development of effective and safe management strategies. Althou...
Leveraging long sequencing reads to investigate R-gene clustering and variation in sugar beet
USDA-ARS?s Scientific Manuscript database
Host-pathogen interactions are of prime importance to modern agriculture. Plants utilize various types of resistance genes to mitigate pathogen damage. Identification of the specific gene responsible for a specific resistance can be difficult due to duplication and clustering within R-gene families....
Laser system for identification, tracking, and control of flying insects
USDA-ARS?s Scientific Manuscript database
Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...
USDA-ARS?s Scientific Manuscript database
While bleeding canker of European beech (Fagus sylvatica) has long been recognized as a problem, the cause in the northeastern United States has not been clear. To resolve this, we surveyed for disease prevalence, identified the pathogens involved, proved their pathogenicity, compared protocols for ...
USDA-ARS?s Scientific Manuscript database
Introduction: Detection of foodborne pathogens typically involves microbiological enrichment with subsequent isolation and identification of a pure culture. This is typically followed by strain typing, which provides information critical to outbreak and source investigations. In the early 1990’s pul...
NASA Astrophysics Data System (ADS)
Rehse, Steven J.; Miziolek, Andrzej W.
2012-06-01
Laser-induced breakdown spectroscopy (LIBS) has made tremendous progress in becoming a viable technology for rapid bacterial pathogen detection and identification. The significant advantages of LIBS include speed (< 1 sec analysis), portability, robustness, lack of consumables, little to no need for sample preparation, lack of genetic amplification, and the ability to identify all bacterial pathogens without bias (including spore-forms and viable but nonculturable specimens). In this manuscript, we present the latest advances achieved in LIBS-based bacterial sensing including the ability to uniquely identify species from more than five bacterial genera with high-sensitivity and specificity. Bacterial identifications are completely unaffected by environment, nutrition media, or state of growth and accurate diagnoses can be made on autoclaved or UV-irradiated specimens. Efficient discrimination of bacteria at the strain level has been demonstrated. A rapid urinary tract infection diagnosis has been simulated with no sample preparation and a one second diagnosis of a pathogen surrogate has been demonstrated using advanced chemometric analysis with a simple "stop-light" user interface. Stand-off bacterial identification at a 20-m distance has been demonstrated on a field-portable instrument. This technology could be implemented in doctors' offices, clinics, or hospital laboratories for point-of-care medical specimen analysis; mounted on military medical robotic platforms for in-the- field diagnostics; or used in stand-off configuration for remote sensing and detection.
Reliability of System Identification Techniques to Assess Standing Balance in Healthy Elderly
Maier, Andrea B.; Aarts, Ronald G. K. M.; van Gerven, Joop M. A.; Arendzen, J. Hans; Schouten, Alfred C.; Meskers, Carel G. M.; van der Kooij, Herman
2016-01-01
Objectives System identification techniques have the potential to assess the contribution of the underlying systems involved in standing balance by applying well-known disturbances. We investigated the reliability of standing balance parameters obtained with multivariate closed loop system identification techniques. Methods In twelve healthy elderly balance tests were performed twice a day during three days. Body sway was measured during two minutes of standing with eyes closed and the Balance test Room (BalRoom) was used to apply four disturbances simultaneously: two sensory disturbances, to the proprioceptive and the visual system, and two mechanical disturbances applied at the leg and trunk segment. Using system identification techniques, sensitivity functions of the sensory disturbances and the neuromuscular controller were estimated. Based on the generalizability theory (G theory), systematic errors and sources of variability were assessed using linear mixed models and reliability was assessed by computing indexes of dependability (ID), standard error of measurement (SEM) and minimal detectable change (MDC). Results A systematic error was found between the first and second trial in the sensitivity functions. No systematic error was found in the neuromuscular controller and body sway. The reliability of 15 of 25 parameters and body sway were moderate to excellent when the results of two trials on three days were averaged. To reach an excellent reliability on one day in 7 out of 25 parameters, it was predicted that at least seven trials must be averaged. Conclusion This study shows that system identification techniques are a promising method to assess the underlying systems involved in standing balance in elderly. However, most of the parameters do not appear to be reliable unless a large number of trials are collected across multiple days. To reach an excellent reliability in one third of the parameters, a training session for participants is needed and at least seven trials of two minutes must be performed on one day. PMID:26953694
Xu, R; Falardeau, J; Avis, T J; Tambong, J T
2016-02-01
The aim of this study was to develop and validate a HybProbes-based real-time PCR assay targeting the trpB gene for specific identification of Streptomyces scabies and Streptomyces europaeiscabiei. Four primer pairs and a fluorescent probe were designed and evaluated for specificity in identifying S. scabies and Streptomyces europaeiscabiei, the potato common scab pathogens. The specificity of the HybProbes-based real-time PCR assay was evaluated using 46 bacterial strains, 23 Streptomyces strains and 23 non-Streptomyces bacterial species. Specific and strong fluorescence signals were detected from all nine strains of S. scabies and Streptomyces europaeiscabiei. No fluorescence signal was detected from 14 strains of other Streptomyces species and all non-Streptomyces strains. The identification was corroborated by the melting curve analysis that was performed immediately after the amplification step. Eight of the nine S. scabies and S. europaeiscabiei strains exhibited a unique melting peak, at Tm of 69·1°C while one strain, Warba-6, had a melt peak at Tm of 65·4°C. This difference in Tm peaks could be attributed to a guanine to cytosine mutation in strain Warba-6 at the region spanning the donor HybProbe. The reported HybProbes assay provides a more specific tool for accurate identification of S. scabies and S. europaeiscabiei strains. This study reports a novel assay based on HybProbes chemistry for rapid and accurate identification of the potato common scab pathogens. Since the HybProbes chemistry requires two probes for positive identification, the assay is considered to be more specific than conventional PCR or TaqMan real-time PCR. The developed assay would be a useful tool with great potential in early diagnosis and detection of common scab pathogens of potatoes in infected plants or for surveillance of potatoes grown in soil environment. © 2015 Her Majesty the Queen in Right of Canada © 2015 The Society for Applied Microbiology.
Papavasileiou, Antonios; Madesis, Panagiotis B; Karaoglanidis, George S
2016-09-01
Brown rot is a devastating disease of stone fruit caused by Monilinia spp. Among these species, Monilinia fructicola is a quarantine pathogen in Europe but has recently been detected in several European countries. Identification of brown rot agents relies on morphological differences or use of molecular methods requiring fungal isolation. The current study was initiated to develop and validate a high-resolution melting (HRM) method for the identification of the Monilinia spp. and for the detection of M. fructicola among other brown rot pathogens. Based on the sequence of the cytb intron from M. laxa, M. fructicola, M. fructigena, M. mumecola, M. linhartiana, and M. yunnanensis isolates originating from several countries, a pair of universal primers for species identification and a pair of primers specific to M. fructicola were designed. The specificity of the primers was verified to ensure against cross-reaction with other fungal species. The melting curve analysis using the universal primers generated six different HRM curve profiles, each one specific for each species. Τhe HRM analysis primers specific to M. fructicola amplified a 120-bp region with a distinct melt profile corresponding to the presence of M. fructicola, regardless of the presence of other species. HRM analysis can be a useful tool for rapid identification and differentiation of the six Monilinia spp. using a single primer pair. This novel assay has the potential for simultaneous identification and differentiation of the closely related Monilinia spp. as well as for the differentiation of M. fructicola from other common pathogens or saprophytes that may occur on the diseased fruit.
Fagerquist, Clifton K
2017-01-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is increasingly utilized as a rapid technique to identify microorganisms including pathogenic bacteria. However, little attention has been paid to the significant proteomic information encoded in the MS peaks that collectively constitute the MS 'fingerprint'. This review/perspective is intended to explore this topic in greater detail in the hopes that it may spur interest and further research in this area. Areas covered: This paper examines the recent literature on utilizing MALDI-TOF for bacterial identification. Critical works highlighting protein biomarker identification of bacteria, arguments for and against protein biomarker identification, proteomic approaches to biomarker identification, emergence of MALDI-TOF-TOF platforms and their use for top-down proteomic identification of bacterial proteins, protein denaturation and its effect on protein ion fragmentation, collision cross-sections and energy deposition during desorption/ionization are also explored. Expert commentary: MALDI-TOF and TOF-TOF mass spectrometry platforms will continue to provide chemical analyses that are rapid, cost-effective and high throughput. These instruments have proven their utility in the taxonomic identification of pathogenic bacteria at the genus and species level and are poised to more fully characterize these microorganisms to the benefit of clinical microbiology, food safety and other fields.
Toli, E-A; Calboli, F C F; Shikano, T; Merilä, J
2016-11-01
In heterogametic species, biological differences between the two sexes are ubiquitous, and hence, errors in sex identification can be a significant source of noise and bias in studies where sex-related sources of variation are of interest or need to be controlled for. We developed and validated a universal multimarker assay for reliable sex identification of three-spined sticklebacks (Gasterosteus aculeatus). The assay makes use of genotype scores from three sex-linked loci and utilizes Bayesian probabilistic inference to identify sex of the genotyped individuals. The results, validated with 286 phenotypically sexed individuals from six populations of sticklebacks representing all major genetic lineages (cf. Pacific, Atlantic and Japan Sea), indicate that in contrast to commonly used single-marker-based sex identification assays, the developed multimarker assay should be 100% accurate. As the markers in the assay can be scored from agarose gels, it provides a quick and cost-efficient tool for universal sex identification of three-spined sticklebacks. The general principle of combining information from multiple markers to improve the reliability of sex identification is transferable and can be utilized to develop and validate similar assays for other species. © 2016 John Wiley & Sons Ltd.
Development of Multilocus Sequence Typing (MLST) for Mycoplasma synoviae.
El-Gazzar, Mohamed; Ghanem, Mostafa; McDonald, Kristina; Ferguson-Noel, Naola; Raviv, Ziv; Slemons, Richard D
2017-03-01
Mycoplasma synoviae (MS) is a poultry pathogen that has had an increasing incidence and economic impact over the past few years. Strain identification is necessary for outbreak investigation, infection source identification, and facilitating prevention and control as well as eradication efforts. Currently, a segment of the variable lipoprotein hemagglutinin A (vlhA) gene (420 bp) is the only target that is used for MS strain identification. A major limitation of this assay is that colonality of typed samples can only be inferred if their vlhA sequences are identical; however, if their sequences are different, the degree of relatedness is uncertain. In this study we propose a multilocus sequence typing (MLST) assay to further refine MS strain identification. After initial screening of 24 housekeeping genes as potential targets, seven genes were selected for the MLST assay. An internal segment (450-711 bp) from each of the seven genes was successfully amplified and sequenced from 58 different MS strains and field isolates (n = 30) or positive clinical samples (n = 28). The collective sequence of all seven gene segments (3960 bp total) was used for MS sequence typing. The 58 tested MS samples were typed into 30 different sequence types using the MLST assay and, coincidentally, all the samples were typed into 30 sequence types using the vlhA assay. However, the phylogenetic tree generated using the MLST data was more congruent to the epidemiologic information than was the tree generated by the vlhA assay. We suggest that the newly developed MLST assay and the vlhA assay could be used in tandem for MS typing. The MLST assay will be a valuable and more reliable tool for MS sequence typing, providing better understanding of the epidemiology of MS infection. This in turn will aid disease prevention, control, and eradication efforts.
Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species.
Yücesoy, Mine; Marol, Serhat
2003-10-29
The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37 degrees C. The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.
A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.
Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V
2014-01-01
Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.
Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves
2012-06-01
The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.
Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves
2012-01-01
The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes. PMID:22802713
Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung
2018-02-01
Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gram-positive anaerobic cocci--commensals and opportunistic pathogens.
Murphy, Elizabeth Carmel; Frick, Inga-Maria
2013-07-01
Among the Gram-positive anaerobic bacteria associated with clinical infections, the Gram-positive anaerobic cocci (GPAC) are the most prominent and account for approximately 25-30% of all isolated anaerobic bacteria from clinical specimens. Still, routine culture and identification of these slowly growing anaerobes to the species level has been limited in the diagnostic laboratory, mainly due to the requirement of prolonged incubation times and time-consuming phenotypic identification. In addition, GPAC are mostly isolated from polymicrobial infections with known pathogens and therefore their relevance has often been overlooked. However, through improvements in diagnostic and in particular molecular techniques, the isolation and identification of individual genera and species of GPAC associated with specific infections have been enhanced. Furthermore, the taxonomy of GPAC has undergone considerable changes over the years, mainly due to the development of molecular identification methods. Existing species have been renamed and novel species have been added, resulting in changes of the nomenclature. As the abundance and significance of GPAC in clinical infections grow, knowledge of virulence factors and antibiotic resistance patterns of different species becomes more important. The present review describes recent advances of GPAC and what is known of the biology and pathogenic effects of Anaerococcus, Finegoldia, Parvimonas, Peptoniphilus and Peptostreptococcus, the most important GPAC genera isolated from human infections. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Development of a High Throughput Assay for Rapid and Accurate 10-Plex Detection of Citrus Pathogens
USDA-ARS?s Scientific Manuscript database
The need to reliably detect and identify multiple plant pathogens simultaneously, especially in woody perennial hosts, has led to development of new molecular diagnostic approaches. In this study, a Luminex-based system was developed that provided a robust and sensitive test for simultaneous detect...
77 FR 24594 - Version 4 Critical Infrastructure Protection Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-25
... framework for the identification and protection of ``Critical Cyber Assets'' to support the reliable... documentation of Critical Cyber Assets associated with ``Critical Assets'' that support the reliable operation... ``Critical Cyber Assets'' that are associated with ``Critical Assets'' to support the reliable operation of...
Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS.
Hsieh, Sen-Yung; Tseng, Chiao-Li; Lee, Yun-Shien; Kuo, An-Jing; Sun, Chien-Feng; Lin, Yen-Hsiu; Chen, Jen-Kun
2008-02-01
Accurate and rapid identification of pathogenic microorganisms is of critical importance in disease treatment and public health. Conventional work flows are time-consuming, and procedures are multifaceted. MS can be an alternative but is limited by low efficiency for amino acid sequencing as well as low reproducibility for spectrum fingerprinting. We systematically analyzed the feasibility of applying MS for rapid and accurate bacterial identification. Directly applying bacterial colonies without further protein extraction to MALDI-TOF MS analysis revealed rich peak contents and high reproducibility. The MS spectra derived from 57 isolates comprising six human pathogenic bacterial species were analyzed using both unsupervised hierarchical clustering and supervised model construction via the Genetic Algorithm. Hierarchical clustering analysis categorized the spectra into six groups precisely corresponding to the six bacterial species. Precise classification was also maintained in an independently prepared set of bacteria even when the numbers of m/z values were reduced to six. In parallel, classification models were constructed via Genetic Algorithm analysis. A model containing 18 m/z values accurately classified independently prepared bacteria and identified those species originally not used for model construction. Moreover bacteria fewer than 10(4) cells and different species in bacterial mixtures were identified using the classification model approach. In conclusion, the application of MALDI-TOF MS in combination with a suitable model construction provides a highly accurate method for bacterial classification and identification. The approach can identify bacteria with low abundance even in mixed flora, suggesting that a rapid and accurate bacterial identification using MS techniques even before culture can be attained in the near future.
USDA-ARS?s Scientific Manuscript database
The characterization of genes determining compatibility or incompatibility between plant pathogenic fungi and their hosts is important for the management of crop disease. The major focus of these interactions has typically been the identification and characterization of host genes, but it is equally...
Identification of control agents and factors affecting pathogenicity of Phytophthora ramorum
Marianne Elliott; Simon F. Shamoun; Grace Sumampong; Delano James; Stephan C. Briere; Saad Masri; Aniko Varga
2008-01-01
A collection of 67 isolates of Phytophthora ramorum from the United States (U.S.), European Union (EU), and Canada was screened using differences in phenotypic traits (pathogenicity, growth rate at several temperatures, and sensitivity/resistance to metalaxyl, dimethomorph, and streptomycin) and for presence of cytoplasmic elements (dsRNA and...
USDA-ARS?s Scientific Manuscript database
The significance of the identification of Mycobacterium bovis as a zoonotic pathogen in 1882 was not initially recognized. After years of research by veterinarians, and other scientists, the importance of M. bovis as a pathogen and the public health ramifications, were appreciated. Veterinarians pla...
Susceptibility of conifer shoots to infection by Phytophthora ramorum
G.A. Chastagner; E.M. Hansen; K.L. Riley; W. Sutton
2006-01-01
Phytophthora ramorum is the pathogen that causes sudden oak death, which was first detected on tanoak in Marin County, California in 1995. The identification of several conifers as hosts of P. ramorum and the increased spread of this pathogen via shipment of ornamental nursery stock has the potential to severely impact the...
Genetic anaylsis of a disease resistance gene from loblolly pine
Yinghua Huang; Nili Jin; Alex Diner; Chuck Tauer; Yan Zhang; John Damicone
2003-01-01
Rapid advances in molecular genetics provide great opportunities for studies of host defense mechanisms. Examination of plant responses to disease at the cellular and molecular level permits both discovery of changes in gene expression in the tissues attacked by pathogens, and identification of genetic components involved in the interaction between host and pathogens....
USDA-ARS?s Scientific Manuscript database
The basidiomycetous soilborne fungus Rhizoctonia (sensu lato) is an economically important pathogen of worldwide distribution and it is known to attack at least 188 species of higher plants, including agronomic crops, vegetables, ornamentals, forest trees and turfgrasses. The pathogenic isolates may...
Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Dunn, J.; Gao, S.
2008-10-31
Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing asmore » little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.« less
Wang, Deguo; Liu, Yanhong
2015-05-26
Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.
Butler, Amber D; Carlson, Meredith L; Nelson, Christina A
2017-02-01
Given the high incidence of tick bites and tick-borne diseases in the United States, it is important for primary care providers to recognize common ticks and the pathogens they may transmit. If a patient has removed and saved an attached tick, identifying the tick helps guide clinical management and determine whether antibiotic prophylaxis for Lyme disease is appropriate. To investigate providers' ability to recognize common ticks and the pathogens they may transmit, we asked 76 primary care providers from Lyme disease endemic areas to identify the common name or genus of preserved ticks found in their area. At baseline, 10.5%, 46.1%, and 57.9% of participants correctly identified an adult female blacklegged tick (engorged), dog tick, and lone star tick, respectively. Less than half of participants identified the three pathogens most frequently transmitted by blacklegged ticks. Use of a reference manual with tick photographs and drawings substantially improved identification of ticks and associated pathogens and therefore should be encouraged in clinical practice. Copyright © 2016 Elsevier GmbH. All rights reserved.
Labeda, David P
2016-03-01
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.
Lin, Huijiao; Jiang, Xiang; Yi, Jianping; Wang, Xinguo; Zuo, Ranling; Jiang, Zide; Wang, Weifang; Zhou, Erxun
2018-01-01
A rolling-circle amplification (RCA) method with padlock probes targeted on EF-1α regions was developed for rapid detection of apple bull's-eye rot pathogens, including Neofabraea malicorticis, N. perennans, N. kienholzii, and N. vagabunda (synonym: N. alba). Four padlock probes (PLP-Nm, PLP-Np, PLP-Nk, and PLP-Nv) were designed and tested against 28 samples, including 22 BER pathogen cultures, 4 closely related species, and 2 unrelated species that may cause serious apple decays. The assay successfully identified all the bull's-eye rot pathogenic fungi at the level of species, while no cross-reaction was observed in all target species and no false-positive reaction was observed with all strains used for reference. This study showed that the use of padlock probes and the combination of probe signal amplification by RCA provided an effective and sensitive method for the rapid identification of Neofabraea spp. The method could therefore be a useful tool for monitoring bull's-eye rot pathogens in port quarantine and orchard epidemiological studies.
Spencer, J.; Schwarzacher, W.
2016-01-01
ABSTRACT In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli. Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. IMPORTANCE Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. PMID:27060124
Correia Carreira, S; Spencer, J; Schwarzacher, W; Seddon, A M
2016-06-15
In order to identify pathogens rapidly and reliably, bacterial capture and concentration from large sample volumes into smaller ones are often required. Magnetic labeling and capture of bacteria using a magnetic field hold great promise for achieving this goal, but the current protocols have poor capture efficiency. Here, we present a rapid and highly efficient approach to magnetic labeling and capture of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria using cationized magnetoferritin (cat-MF). Magnetic labeling was achieved within a 1-min incubation period with cat-MF, and 99.97% of the labeled bacteria were immobilized in commercially available magnetic cell separation (MACS) columns. Longer incubation times led to more efficient capture, with S. aureus being immobilized to a greater extent than E. coli Finally, low numbers of magnetically labeled E. coli bacteria (<100 CFU per ml) were immobilized with 100% efficiency and concentrated 7-fold within 15 min. Therefore, our study provides a novel protocol for rapid and highly efficient magnetic labeling, capture, and concentration of both Gram-positive and Gram-negative bacteria. Antimicrobial resistance (AMR) is a significant global challenge. Rapid identification of pathogens will retard the spread of AMR by enabling targeted treatment with suitable agents and by reducing inappropriate antimicrobial use. Rapid detection methods based on microfluidic devices require that bacteria are concentrated from large volumes into much smaller ones. Concentration of bacteria is also important to detect low numbers of pathogens with confidence. Here, we demonstrate that magnetic separation columns capture small amounts of bacteria with 100% efficiency. Rapid magnetization was achieved by exposing bacteria to cationic magnetic nanoparticles, and magnetized bacteria were concentrated 7-fold inside the column. Thus, bacterial capture and concentration were achieved within 15 min. This approach could be extended to encompass the capture and concentration of specific pathogens, for example, by functionalizing magnetic nanoparticles with antibodies or small molecule probes. Copyright © 2016 Correia Carreira et al.
Hildebrand, Martin; Noteborn, Mirthe G C
2015-01-01
The use of brief, reliable, valid, and practical measures of substance use is critical for conducting individual (risk and need) assessments in probation practice. In this exploratory study, the basic psychometric properties of the Alcohol Use Disorders Identification Test (AUDIT) and the Drug Use Disorders Identification Test (DUDIT) are evaluated. The instruments were administered as an oral interview instead of a self-report questionnaire. The sample comprised 383 offenders (339 men, 44 women). A subset of 56 offenders (49 men, 7 women) participated in the interrater reliability study. Data collection took place between September 2011 and November 2012. Overall, both instruments have acceptable levels of interrater reliability for total scores and acceptable to good interrater reliabilities for most of the individual items. Confirmatory factor analyses (CFA) indicated that the a priori one-, two- and three-factor solutions for the AUDIT did not fit the observed data very well. Principal axis factoring (PAF) supported a two-factor solution for the AUDIT that included a level of alcohol consumption/consequences factor (Factor 1) and a dependence factor (Factor 2), with both factors explaining substantial variance in AUDIT scores. For the DUDIT, CFA and PAF suggest that a one-factor solution is the preferred model (accounting for 62.61% of total variance). The Dutch language versions of the AUDIT and the DUDIT are reliable screening instruments for use with probationers and both instruments can be reliably administered by probation officers in probation practice. However, future research on concurrent and predictive validity is warranted.
Aspergillus terreus has been difficult to identify in cases of aspergillosis, and clinical identification has been restricted to the broad identification of aspergillosis lesions in affected organs or the detection of fungal carbohydrates. As a result, there is a clinical need to...
Siggers, Keri A; Lesser, Cammie F
2008-07-17
Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.
Pathogen detection in milk samples by ligation detection reaction-mediated universal array method.
Cremonesi, P; Pisoni, G; Severgnini, M; Consolandi, C; Moroni, P; Raschetti, M; Castiglioni, B
2009-07-01
This paper describes a new DNA chip, based on the use of a ligation detection reaction coupled to a universal array, developed to detect and analyze, directly from milk samples, microbial pathogens known to cause bovine, ovine, and caprine mastitis or to be responsible for foodborne intoxication or infection, or both. Probes were designed for the identification of 15 different bacterial groups: Staphylococcus aureus, Streptococcus agalactiae, nonaureus staphylococci, Streptococcus bovis, Streptococcus equi, Streptococcus canis, Streptococcus dysgalactiae, Streptococcus parauberis, Streptococcus uberis, Streptococcus pyogenes, Mycoplasma spp., Salmonella spp., Bacillus spp., Campylobacter spp., and Escherichia coli and related species. These groups were identified based on the 16S rRNA gene. For microarray validation, 22 strains from the American Type Culture Collection or other culture collections and 50 milk samples were tested. The results demonstrated high specificity, with sensitivity as low as 6 fmol. Moreover, the ligation detection reaction-universal array assay allowed for the identification of Mycoplasma spp. in a few hours, avoiding the long incubation times of traditional microbiological identification methods. The universal array described here is a versatile tool able to identify milk pathogens efficiently and rapidly.
Biological agents database in the armed forces.
Niemcewicz, Marcin; Kocik, Janusz; Bielecka, Anna; Wierciński, Michał
2014-10-01
Rapid detection and identification of the biological agent during both, natural or deliberate outbreak is crucial for implementation of appropriate control measures and procedures in order to mitigate the spread of disease. Determination of pathogen etiology may not only support epidemiological investigation and safety of human beings, but also enhance forensic efforts in pathogen tracing, collection of evidences and correct inference. The article presents objectives of the Biological Agents Database, which was developed for the purpose of the Ministry of National Defense of the Republic of Poland under the European Defence Agency frame. The Biological Agents Database is an electronic catalogue of genetic markers of highly dangerous pathogens and biological agents of weapon of mass destruction concern, which provides full identification of biological threats emerging in Poland and in locations of activity of Polish troops. The Biological Agents Database is a supportive tool used for tracing biological agents' origin as well as rapid identification of agent causing the disease of unknown etiology. It also provides support in diagnosis, analysis, response and exchange of information between institutions that use information contained in it. Therefore, it can be used not only for military purposes, but also in a civilian environment.
Use of MALDI-TOF Mass Spectrometry for the Fast Identification of Gram-Positive Fish Pathogens
Assis, Gabriella B. N.; Pereira, Felipe L.; Zegarra, Alexandra U.; Tavares, Guilherme C.; Leal, Carlos A.; Figueiredo, Henrique C. P.
2017-01-01
Gram-positive cocci, such as Streptococcus agalactiae, Lactococcus garvieae, Streptococcus iniae, and Streptococcus dysgalactiae subsp. dysgalactiae, are found throughout the world, particularly in outbreaks in farmed fish, and are thus associated with high economic losses, especially in the cultivation of Nile Tilapia. The aim of this study was to evaluate the efficacy of matrix-assisted laser desorption ionization (MALDI)-time of flight (TOF) mass spectrometry (MS) as an alternative for the diagnosis of these pathogens. One hundred and thirty-one isolates from Brazilian outbreaks assisted by the national authority were identified using a MALDI Biotyper from Bruker Daltonics. The results showed an agreement with respect to identification (Kappa = 1) between this technique and 16S ribosomal RNA gene sequencing for S. agalactiae and L. garvieae. However, for S. iniae and S. dysgalactiae subsp. dysgalactiae, perfect agreement was only achieved after the creation of a custom main spectra profile, as well as further comparisons with 16S ribosomal RNA and multilocus sequence analysis. MALDI-TOF MS was shown to be an efficient technology for the identification of these Gram-positive pathogens, yielding a quick and precise diagnosis. PMID:28848512
Effective Chemical Inactivation of Ebola Virus
Haddock, Elaine; Feldmann, Friederike
2016-01-01
Reliable inactivation of specimens before removal from high-level biocontainment is crucial for safe operation. To evaluate efficacy of methods of chemical inactivation, we compared in vitro and in vivo approaches using Ebola virus as a surrogate pathogen. Consequently, we have established parameters and protocols leading to reliable and effective inactivation. PMID:27070504
Kim, H; Hwang, S-M; Lee, J H; Oh, M; Han, J W; Choi, G J
2017-08-01
Fusarium oxysporum, a causal agent of Fusarium wilt, is one of the most important fungal pathogens worldwide, and detection of F. oxysporum DNA at the forma specialis level is crucial for disease diagnosis and control. In this study, two novel F. oxysporum f. sp. raphani (For)-specific primer sets were designed, FOR1-F/FOR1-R and FOR2-F/FOR2-R, to target FOQG_17868 and FOQG_17869 ORFs, respectively, which were selected based on the genome comparison of other formae speciales of F. oxysporum including conglutinans, cubense, lycopersici, melonis, and pisi. The primer sets FOR1-F/FOR1-R and FOR2-F/FOR2-R that amplified a 610- and 425-bp DNA fragment, respectively, were specific to For isolates which was confirmed using a total of 40 F. oxysporum isolates. From infected plants, the FOR2-F/FOR2-R primer set directly detected the DNA fragment of For isolates even when the radish plants were collected in their early stage of disease development. Although the loci targeted by the For-specific primer sets were not likely involved in the pathogenesis, the primer set FOR2-F/FOR2-R is available for the determination of pathogenicity of radish-infecting F. oxysporum isolates. This study is the first report providing novel primer sets to detect F. oxysporum f. sp. raphani. Because plant pathogenic Fusarium oxysporum has been classified into special forms based on its host specificity, identification of F. oxysporum usually requires a pathogenicity assay as well as knowledge of the morphological characteristics. For rapid and reliable diagnosis, this study provides PCR primer sets that specifically detect Fusarium oxysporum f. sp. raphani (For) which is a devastating pathogen of radish plants. Because one of the primer sets directly detected the DNA fragment of For isolates from infected plants, the specific PCR method demonstrated in this study will provide a foundation for integrated disease management practices in commodity crops. © 2017 The Society for Applied Microbiology.
Inderbitzin, Patrik; Bostock, Richard M.; Davis, R. Michael; Usami, Toshiyuki; Platt, Harold W.; Subbarao, Krishna V.
2011-01-01
Knowledge of pathogen biology and genetic diversity is a cornerstone of effective disease management, and accurate identification of the pathogen is a foundation of pathogen biology. Species names provide an ideal framework for storage and retrieval of relevant information, a system that is contingent on a clear understanding of species boundaries and consistent species identification. Verticillium, a genus of ascomycete fungi, contains important plant pathogens whose species boundaries have been ill defined. Using phylogenetic analyses, morphological investigations and comparisons to herbarium material and the literature, we established a taxonomic framework for Verticillium comprising ten species, five of which are new to science. We used a collection of 74 isolates representing much of the diversity of Verticillium, and phylogenetic analyses based on the ribosomal internal transcribed spacer region (ITS), partial sequences of the protein coding genes actin (ACT), elongation factor 1-alpha (EF), glyceraldehyde-3-phosphate dehydrogenase (GPD) and tryptophan synthase (TS). Combined analyses of the ACT, EF, GPD and TS datasets recognized two major groups within Verticillium, Clade Flavexudans and Clade Flavnonexudans, reflecting the respective production and absence of yellow hyphal pigments. Clade Flavexudans comprised V. albo-atrum and V. tricorpus as well as the new species V. zaregamsianum, V. isaacii and V. klebahnii, of which the latter two were morphologically indistinguishable from V. tricorpus but may differ in pathogenicity. Clade Flavnonexudans comprised V. nubilum, V. dahliae and V. longisporum, as well as the two new species V. alfalfae and V. nonalfalfae, which resembled the distantly related V. albo-atrum in morphology. Apart from the diploid hybrid V. longisporum, each of the ten species corresponded to a single clade in the phylogenetic tree comprising just one ex-type strain, thereby establishing a direct link to a name tied to a herbarium specimen. A morphology-based key is provided for identification to species or species groups. PMID:22174791
Detection of Gastrointestinal Pathogens from Stool Samples on Hemoccult Cards by Multiplex PCR
Schlenker, Nicklas; Bauer, Malkin; Helfrich, Kerstin; Mengele, Carolin; Löscher, Thomas; Nothdurft, Hans Dieter; Bretzel, Gisela; Beissner, Marcus
2017-01-01
Purpose. Up to 30% of international travelers are affected by travelers' diarrhea (TD). Reliable data on the etiology of TD is lacking. Sufficient laboratory capacity at travel destinations is often unavailable and transporting conventional stool samples to the home country is inconvenient. We evaluated the use of Hemoccult cards for stool sampling combined with a multiplex PCR for the detection of model viral, bacterial, and protozoal TD pathogens. Methods. Following the creation of serial dilutions for each model pathogen, last positive dilution steps (LPDs) and thereof calculated last positive sample concentrations (LPCs) were compared between conventional stool samples and card samples. Furthermore, card samples were tested after a prolonged time interval simulating storage during a travel duration of up to 6 weeks. Results. The LPDs/LPCs were comparable to testing of conventional stool samples. After storage on Hemoccult cards, the recovery rate was 97.6% for C. jejuni, 100% for E. histolytica, 97.6% for norovirus GI, and 100% for GII. Detection of expected pathogens was possible at weekly intervals up to 42 days. Conclusion. Stool samples on Hemoccult cards stored at room temperature can be used in combination with a multiplex PCR as a reliable tool for testing of TD pathogens. PMID:28408937
Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.
Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina
2016-01-01
Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion. © 2015 American Academy of Forensic Sciences.
Liu, Zhijie; Li, Youquan; Salih, Dia Eldin A; Luo, Jianxun; Ahmed, Jabbar S; Seitzer, Ulrike; Yin, Hong
2014-08-29
An enzyme-linked immunosorbent assay (ELISA) based on a recombinant Theileria uilenbergi immunodominant protein (rTuIP) was validated for detection of antibodies in 188 positive and 198 negative reference serum samples, respectively. The cut-off value was determined at 32.7% with 95% and 90% accuracy levels by two-graphic receiver-operating characteristic (TG-ROC). The equal diagnostic sensitivity (Se) and specificity (Sp) were calculated to be 98.4%. Further validation of the repeatability with positive and negative reference samples indicated the reliable performance of the assay. Monitoring the antibody dynamics of sheep experimentally infected with Theileria luwenshuni showed the efficient detection of antibody response against the pathogen at the early infection stage and up until two months post infection. Application of this assay for detection of antibody in field sera from previous unknown Theileria endemic regions in Suizhou and Guiyang showed 17.8% and 11.6% seroprevalence, respectively, and presence of the pathogen was confirmed by identification of the 18S rRNA gene in the corresponding blood of the seropositive animals. These data support that the rTuIP ELISA could be a useful tool to study the epidemiology of theileriosis caused by T. uilenbergi and/or T. luwenshuni. Copyright © 2014 Elsevier B.V. All rights reserved.
Oligonucleotide Array for Identification and Detection of Pythium Species†
Tambong, J. T.; de Cock, A. W. A. M.; Tinker, N. A.; Lévesque, C. A.
2006-01-01
A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples. Simultaneous detection and identification of multiple species of soilborne pathogens such as Pythium species could be a major step forward for epidemiological and ecological studies. PMID:16597974
Identification of Bordetella bronchseptica in fatal pneumonia of dogs and cats
USDA-ARS?s Scientific Manuscript database
Infection with Bordetella bronchiseptica is a common cause of tracheobronchitis and upper respiratory disease in dogs and cats, but it can also lead to fatal pneumonia. Identification of this pathogen is important due the risk of transmission to other animals, availability of vaccines and potential...
USDA-ARS?s Scientific Manuscript database
Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that el...
USDA-ARS?s Scientific Manuscript database
Immunogenic, pathogen-specific proteins have excellent potential for development of novel management modalities. Here, we describe an innovative application of proteomics called Microbial protein-Antigenome Determination (MAD) Technology for rapid identification of native microbial proteins that eli...
USDA-ARS?s Scientific Manuscript database
The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on ...
T3SEdb: data warehousing of virulence effectors secreted by the bacterial Type III Secretion System.
Tay, Daniel Ming Ming; Govindarajan, Kunde Ramamoorthy; Khan, Asif M; Ong, Terenze Yao Rui; Samad, Hanif M; Soh, Wei Wei; Tong, Minyan; Zhang, Fan; Tan, Tin Wee
2010-10-15
Effectors of Type III Secretion System (T3SS) play a pivotal role in establishing and maintaining pathogenicity in the host and therefore the identification of these effectors is important in understanding virulence. However, the effectors display high level of sequence diversity, therefore making the identification a difficult process. There is a need to collate and annotate existing effector sequences in public databases to enable systematic analyses of these sequences for development of models for screening and selection of putative novel effectors from bacterial genomes that can be validated by a smaller number of key experiments. Herein, we present T3SEdb http://effectors.bic.nus.edu.sg/T3SEdb, a specialized database of annotated T3SS effector (T3SE) sequences containing 1089 records from 46 bacterial species compiled from the literature and public protein databases. Procedures have been defined for i) comprehensive annotation of experimental status of effectors, ii) submission and curation review of records by users of the database, and iii) the regular update of T3SEdb existing and new records. Keyword fielded and sequence searches (BLAST, regular expression) are supported for both experimentally verified and hypothetical T3SEs. More than 171 clusters of T3SEs were detected based on sequence identity comparisons (intra-cluster difference up to ~60%). Owing to this high level of sequence diversity of T3SEs, the T3SEdb provides a large number of experimentally known effector sequences with wide species representation for creation of effector predictors. We created a reliable effector prediction tool, integrated into the database, to demonstrate the application of the database for such endeavours. T3SEdb is the first specialised database reported for T3SS effectors, enriched with manual annotations that facilitated systematic construction of a reliable prediction model for identification of novel effectors. The T3SEdb represents a platform for inclusion of additional annotations of metadata for future developments of sophisticated effector prediction models for screening and selection of putative novel effectors from bacterial genomes/proteomes that can be validated by a small number of key experiments.
Raynal, José Tadeu; Bastos, Bruno Lopes; Vilas-Boas, Priscilla Carolinne Bagano; Sousa, Thiago de Jesus; Costa-Silva, Marcos; de Sá, Maria da Conceição Aquino; Portela, Ricardo Wagner; Moura-Costa, Lília Ferreira; Azevedo, Vasco; Meyer, Roberto
2018-01-25
Previous works defining antigens that might be used as vaccine targets against Corynebacterium pseudotuberculosis, which is the causative agent of sheep and goat caseous lymphadenitis, have focused on secreted proteins produced in a chemically defined culture media. Considering that such antigens might not reflect the repertoire of proteins expressed during infection conditions, this experiment aimed to investigate the membrane-associated proteins with pathogenic potential expressed by C. pseudotuberculosis grown directly in animal serum. Its membrane-associated proteins have been extracted using an organic solvent enrichment methodology, followed by LC-MS/MS and bioinformatics analysis for protein identification and classification. The results revealed 22 membrane-associated proteins characterized as potentially pathogenic. An interaction network analysis indicated that the four potentially pathogenic proteins ciuA, fagA, OppA4 and OppCD were biologically connected within two distinct network pathways, which were both associated with the ABC Transporters KEGG pathway. These results suggest that C. pseudotuberculosis pathogenesis might be associated with the transport and uptake of nutrients; other seven identified potentially pathogenic membrane proteins also suggest that pathogenesis might involve events of bacterial resistance and adhesion. The proteins herein reported potentially reflect part of the protein repertoire expressed during real infection conditions and might be tested as vaccine antigens.
Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu
2017-01-01
Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718
Protein Chips for Detection of Salmonella spp. from Enrichment Culture
Poltronieri, Palmiro; Cimaglia, Fabio; De Lorenzis, Enrico; Chiesa, Maurizio; Mezzolla, Valeria; Reca, Ida Barbara
2016-01-01
Food pathogens are the cause of foodborne epidemics, therefore there is a need to detect the pathogens in food productions rapidly. A pre-enrichment culture followed by selective agar plating are standard detection methods. Molecular methods such as qPCR have provided a first rapid protocol for detection of pathogens within 24 h of enrichment culture. Biosensors also may provide a rapid tool to individuate a source of Salmonella contamination at early times of pre-enrichment culture. Forty mL of Salmonella spp. enrichment culture were processed by immunoseparation using the Pathatrix, as in AFNOR validated qPCR protocols. The Salmonella biosensor combined with immunoseparation showed a limit of detection of 100 bacteria/40 mL, with a 400 fold increase to previous results. qPCR analysis requires processing of bead-bound bacteria with lysis buffer and DNA clean up, with a limit of detection of 2 cfu/50 μL. Finally, a protein chip was developed and tested in screening and identification of 5 common pathogen species, Salmonella spp., E. coli, S. aureus, Campylobacter spp. and Listeria spp. The protein chip, with high specificity in species identification, is proposed to be integrated into a Lab-on-Chip system, for rapid and reproducible screening of Salmonella spp. and other pathogen species contaminating food productions. PMID:27110786
Koko, Mahmoud; Abdallah, Mohammed O E; Amin, Mutaz; Ibrahim, Muntaser
2018-01-15
The conventional variant calling of pathogenic alleles in exome and genome sequencing requires the presence of the non-pathogenic alleles as genome references. This hinders the correct identification of variants with minor and/or pathogenic reference alleles warranting additional approaches for variant calling. More than 26,000 Exome Aggregation Consortium (ExAC) variants have a minor reference allele including variants with known ClinVar disease alleles. For instance, in a number of variants related to clotting disorders, the phenotype-associated allele is a human genome reference allele (rs6025, rs6003, rs1799983, and rs2227564 using the assembly hg19). We highlighted how the current variant calling standards miss homozygous reference disease variants in these sites and provided a bioinformatic panel that can be used to screen these variants using commonly available variant callers. We present exome sequencing results from an individual with venous thrombosis to emphasize how pathogenic alleles in clinically relevant variants escape variant calling while non-pathogenic alleles are detected. This article highlights the importance of specialized variant calling strategies in clinical variants with minor reference alleles especially in the context of personal genomes and exomes. We provide here a simple strategy to screen potential disease-causing variants when present in homozygous reference state.
Valdivia-Granda, Willy A
2013-01-01
To protect our civilians and warfighters against both known and unknown pathogens, biodefense stakeholders must be able to foresee possible technological trends that could affect their threat risk assessment. However, significant flaws in how we prioritize our countermeasure-needs continue to limit their development. As recombinant biotechnology becomes increasingly simplified and inexpensive, small groups, and even individuals, can now achieve the design, synthesis, and production of pathogenic organisms for offensive purposes. Under these daunting circumstances, a reliable biosurveillance approach that supports a diversity of users could better provide early warnings about the emergence of new pathogens (both natural and manmade), reverse engineer pathogens carrying traits to avoid available countermeasures, and suggest the most appropriate detection, prophylactic, and therapeutic solutions. While impressive in data mining capabilities, real-time content analysis of social media data misses much of the complexity in the factual reality. Quality issues within freeform user-provided hashtags and biased referencing can significantly undermine our confidence in the information obtained to make critical decisions about the natural vs. intentional emergence of a pathogen. At the same time, errors in pathogen genomic records, the narrow scope of most databases, and the lack of standards and interoperability across different detection and diagnostic devices, continue to restrict the multidimensional biothreat assessment. The fragmentation of our biosurveillance efforts into different approaches has stultified attempts to implement any new foundational enterprise that is more reliable, more realistic and that avoids the scenario of the warning that comes too late. This discussion focus on the development of genomic-based decentralized medical intelligence and laboratory system to track emerging and novel microbial health threats in both military and civilian settings and the use of virulence factors for risk assessment. Examples of the use of motif fingerprints for pathogen discrimination are provided. PMID:24152965
Pradeepkiran, Jangampalli Adi; Sainath, Sri Bhashyam; Kumar, Konidala Kranthi; Bhaskar, Matcha
2015-01-01
Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes) to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50%) to Silicibacter pomeroyi DUF1285 family protein (2RE3). A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the glycerol structural analogs from the PubChem database. We identified five best inhibitors with strong affinities, stable interactions, and also with reliable drug-like properties. Hence, these leads might be used as the most effective inhibitors of modeled protein. The outcome of the present work of virtual screening of putative gene targets might facilitate design of potential drugs for better treatment against brucellosis. PMID:25834405
Mediano, Pilar; Fernández, Leonides; Jiménez, Esther; Arroyo, Rebeca; Espinosa-Martos, Irene; Rodríguez, Juan M; Marín, María
2017-05-01
Lactational mastitis constitutes a significant cause of premature weaning. However, its etiology, linked to the presence of pathogenic microorganisms, has been scarcely reported. Research aim: The aim of this study was to describe the microbial diversity in milk samples from women suffering from lactational mastitis and to identify more accurately a collection of isolates belonging to coagulase-negative staphylococci, streptococci, and coryneform bacteria. This is a cross-sectional descriptive one-group study. A total of 5,009 isolates from 1,849 mastitis milk samples was identified by culture, biochemical, and/or molecular methods at the species or genus level. A more precise identification of a collection of 211 isolates was carried out by 16S rRNA gene sequencing. Mean total bacterial count in milk samples was 4.11 log 10 colony-forming units/ml, 95% confidence interval [4.08, 4.15]. Staphylococcus epidermidis was the most common species being isolated from 91.56% of the samples, whereas Staphylococcus aureus was detected in 29.74%. Streptococci and corynebacteria constituted the second (70.20%) and third (16.60%) most prevalent bacterial groups, respectively, found in this study. In contrast, Candida spp. was present in only 0.54% of the samples. Sequencing of the 16S rRNA gene revealed a high diversity of bacterial species among identified isolates. Many coagulase-negative staphylococci, viridans group streptococci, and corynebacteria, usually dismissed as contaminant bacteria, may play an important role as etiologic agents of mastitis. Proper diagnosis of mastitis should be established after performing microbiological testing of milk based on standardized procedures. A reliable analysis must identify the mastitis-causing pathogen(s) at the species level and its(their) concentration(s).
Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen.
Nordin, Noordiana; Yusof, Nor Azah; Radu, Son; Hushiarian, Roozbeh
2018-06-03
Vibrio parahaemolyticus (V. parahaemolyticus) is a common foodborne pathogen that contributes to a large proportion of public health problems globally, significantly affecting the rate of human mortality and morbidity. Conventional methods for the detection of V. parahaemolyticus such as culture-based methods, immunological assays, and molecular-based methods require complicated sample handling and are time-consuming, tedious, and costly. Recently, biosensors have proven to be a promising and comprehensive detection method with the advantages of fast detection, cost-effectiveness, and practicality. This research focuses on developing a rapid method of detecting V. parahaemolyticus with high selectivity and sensitivity using the principles of DNA hybridization. In the work, characterization of synthesized polylactic acid-stabilized gold nanoparticles (PLA-AuNPs) was achieved using X-ray Diffraction (XRD), Ultraviolet-visible Spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM), Field-emission Scanning Electron Microscopy (FESEM), and Cyclic Voltammetry (CV). We also carried out further testing of stability, sensitivity, and reproducibility of the PLA-AuNPs. We found that the PLA-AuNPs formed a sound structure of stabilized nanoparticles in aqueous solution. We also observed that the sensitivity improved as a result of the smaller charge transfer resistance (Rct) value and an increase of active surface area (0.41 cm 2 ). The development of our DNA biosensor was based on modification of a screen-printed carbon electrode (SPCE) with PLA-AuNPs and using methylene blue (MB) as the redox indicator. We assessed the immobilization and hybridization events by differential pulse voltammetry (DPV). We found that complementary, non-complementary, and mismatched oligonucleotides were specifically distinguished by the fabricated biosensor. It also showed reliably sensitive detection in cross-reactivity studies against various food-borne pathogens and in the identification of V. parahaemolyticus in fresh cockles.
2012-01-01
Background Resource-limited tropical countries are home to numerous infectious pathogens of both human and zoonotic origin. A capability for early detection to allow rapid outbreak containment and prevent spread to non-endemic regions is severely impaired by inadequate diagnostic laboratory capacity, the absence of a “cold chain” and the lack of highly trained personnel. Building up detection capacity in these countries by direct replication of the systems existing in developed countries is not a feasible approach and instead requires “leapfrogging” to the deployment of the newest diagnostic systems that do not have the infrastructure requirements of systems used in developed countries. Methods A laboratory for molecular diagnostics of infectious agents was established in Bo, Sierra Leone with a hybrid solar/diesel/battery system to ensure stable power supply and a satellite modem to enable efficient communication. An array of room temperature stabilization and refrigeration technologies for reliable transport and storage of reagents and biological samples were also tested to ensure sustainable laboratory supplies for diagnostic assays. Results The laboratory demonstrated its operational proficiency by conducting an investigation of a suspected avian influenza outbreak at a commercial poultry farm at Bo using broad range resequencing microarrays and real time RT-PCR. The results of the investigation excluded influenza viruses as a possible cause of the outbreak and indicated a link between the outbreak and the presence of Klebsiella pneumoniae. Conclusions This study demonstrated that by application of a carefully selected set of technologies and sufficient personnel training, it is feasible to deploy and effectively use a broad-range infectious pathogen detection technology in a severely resource-limited setting. PMID:22759725
Naccache, Samia N; Federman, Scot; Veeraraghavan, Narayanan; Zaharia, Matei; Lee, Deanna; Samayoa, Erik; Bouquet, Jerome; Greninger, Alexander L; Luk, Ka-Cheung; Enge, Barryett; Wadford, Debra A; Messenger, Sharon L; Genrich, Gillian L; Pellegrino, Kristen; Grard, Gilda; Leroy, Eric; Schneider, Bradley S; Fair, Joseph N; Martínez, Miguel A; Isa, Pavel; Crump, John A; DeRisi, Joseph L; Sittler, Taylor; Hackett, John; Miller, Steve; Chiu, Charles Y
2014-07-01
Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI ("sequence-based ultrarapid pathogen identification"), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7-500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times. © 2014 Naccache et al.; Published by Cold Spring Harbor Laboratory Press.
Comparative proteomics lends insight into genotype-specific pathogenicity.
Guarnieri, Michael T
2013-09-01
Comparative proteomic analyses have emerged as a powerful tool for the identification of unique biomarkers and mechanisms of pathogenesis. In this issue of Proteomics, Murugaiyan et al. utilize difference gel electrophoresis (DIGE) to examine differential protein expression between nonpathogenic and pathogenic genotypes of Prototheca zopfii, a causative agent in bovine enteritis and mastitis. Their findings provide insights into molecular mechanisms of infection and evolutionary adaptation of pathogenic genotypes, demonstrating the power of comparative proteomic analyses. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Emerging and Reemerging Neurologic Infections
Glaser, Carol A.
2014-01-01
The list of emerging and reemerging pathogens that cause neurologic disease is expanding. Various factors, including population growth and a rise in international travel, have contributed to the spread of pathogens to previously nonendemic regions. Recent advances in diagnostic methods have led to the identification of novel pathogens responsible for infections of the central nervous system. Furthermore, new issues have arisen surrounding established infections, particularly in an increasingly immunocompromised population due to advances in the treatment of rheumatologic disease and in transplant medicine. PMID:25360203
[Rapid identification of meningitis due to bacterial pathogens].
Ubukata, Kimiko
2013-01-01
We constructed a new real-time PCR method to detect causative pathogens in cerebrospinal fluid (CSF) from patient due to bacterial meningitis. The eight pathogens targeted in the PCR are Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aurues, Neisseria meningitides, Listeria monocytogenes, Esherichia coli, and Mycoplasma pneumoniae. The total time from DNA extraction from CSF to PCR analysis was 1.5 hour. The pathogens were detected in 72% of the CSF samples (n=115) by real-time PCR, but in only 48% by culture, although the microorganisms were completely concordant. The detection rate of pathogens with PCR was significantly better than that with cultures in patients with antibiotic administration.In conclusion, detection with real-time PCR is useful for rapidly identifying the causative pathogens of meningitis and for examining the clinical course of chemotherapy.
Chadwick, David R
2005-01-01
Viruses probably account for most cases of acute meningitis. Viral meningitis is often assumed to be a largely benign disease. For the commonest pathogens causing meningitis, enteroviruses, this is usually the case; however, for many of the other pathogens causing viral meningitis, and for common pathogens in the immunocompromised or infants, viral meningitis is frequently associated with substantial neurological complications and a significant mortality. Diagnostic methods for rapid and accurate identification of pathogens have improved over recent years, permitting more precise and earlier diagnoses. There have been fewer developments in therapies for viral meningitis, and there remain no effective therapies for most pathogens, emphasising the importance of prevention and early diagnosis. This review focuses on the presentation, diagnosis and management of viral meningitis and also covers the prevention of meningitis for pathogens where effective vaccines are available.
Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae.
Taylor, Andrew; Vágány, Viktória; Jackson, Alison C; Harrison, Richard J; Rainoni, Alessandro; Clarkson, John P
2016-09-01
Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non-pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non-pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. © 2015 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.
Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang
2016-06-01
Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.
MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis
Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K.; Virdi, Jugsharan S.
2015-01-01
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi. PMID:26300860
MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis.
Singhal, Neelja; Kumar, Manish; Kanaujia, Pawan K; Virdi, Jugsharan S
2015-01-01
Currently microorganisms are best identified using 16S rRNA and 18S rRNA gene sequencing. However, in recent years matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a potential tool for microbial identification and diagnosis. During the MALDI-TOF MS process, microbes are identified using either intact cells or cell extracts. The process is rapid, sensitive, and economical in terms of both labor and costs involved. The technology has been readily imbibed by microbiologists who have reported usage of MALDI-TOF MS for a number of purposes like, microbial identification and strain typing, epidemiological studies, detection of biological warfare agents, detection of water- and food-borne pathogens, detection of antibiotic resistance and detection of blood and urinary tract pathogens etc. The limitation of the technology is that identification of new isolates is possible only if the spectral database contains peptide mass fingerprints of the type strains of specific genera/species/subspecies/strains. This review provides an overview of the status and recent applications of mass spectrometry for microbial identification. It also explores the usefulness of this exciting new technology for diagnosis of diseases caused by bacteria, viruses, and fungi.
Rapid bacterial diagnostics via surface enhanced Raman microscopy.
Premasiri, W R; Sauer-Budge, A F; Lee, J C; Klapperich, C M; Ziegler, L D
2012-06-01
There is a continuing need to develop new techniques for the rapid and specific identification of bacterial pathogens in human body fluids especially given the increasing prevalence of drug resistant strains. Efforts to develop a surface enhanced Raman spectroscopy (SERS) based approach, which encompasses sample preparation, SERS substrates, portable Raman microscopy instrumentation and novel identification software, are described. The progress made in each of these areas in our laboratory is summarized and illustrated by a spiked infectious sample for urinary tract infection (UTI) diagnostics. SERS bacterial spectra exhibit both enhanced sensitivity and specificity allowing the development of an easy to use, portable, optical platform for pathogen detection and identification. SERS of bacterial cells is shown to offer not only reproducible molecular spectroscopic signatures for analytical applications in clinical diagnostics, but also is a new tool for studying biochemical activity in real time at the outer layers of these organisms.
Identification of potentially human-pathogenic Enterocytozoon bieneusi genotypes in various birds.
Lobo, Maria Luísa; Xiao, Lihua; Cama, Vitaliano; Magalhães, Nuno; Antunes, Francisco; Matos, Olga
2006-11-01
Enterocytozoon bieneusi was detected in 24 of 83 samples from birds of the orders Columbiformes, Passeriformes, and Psittaciformes. It was identical to or closely related to the Peru6 genotype, which was previously found in humans in Peru. Thus, various birds can be a significant source of environmental contamination by potentially human-pathogenic E. bieneusi.
O'Donovan, Dylan; Corcoran, Gerard D; Lucey, Brigid; Sleator, Roy D
2014-01-01
Herein, we provide a brief overview of the emerging bacterial pathogen Campylobacter ureolyticus. We describe the identification of the pathogen by molecular as opposed to classical culture based diagnostics and discuss candidate reservoirs of infection. We also review the available genomic data, outlining some of the major virulence factors, and discuss how these mechanisms likely contribute to pathogenesis of the organism. PMID:24717836
USDA-ARS?s Scientific Manuscript database
The three most common pathogenic species of Vibrio, V. cholerae, V. parahemolyticus and V. vulnificus, are of major concern as water- and food-borne pathogens because of an increasing incidence of water and seafood related outbreaks and illnesses worldwide. Current methods are time-consuming and req...
Joao A. N. Filipe; Richard C. Cobb; Ross K. Meentemeyer; Christopher A. Lee; Yana S. Valachovic; Alex R. Cook; David M. Rizzo; Christopher A. Gilligan
2012-01-01
Exotic pathogens and pests threaten ecosystem service, biodiversity, and crop security globally. If an invasive agent can disperse asymptomatically over long distances, multiple spatial and temporal scales interplay, making identification of effective strategies to regulate, monitor, and control disease extremely difficult. The management of outbreaks is also...
Identification of Rhizopus stolonifer as a Pre-emergence Seedling Disease Pathogen of Beta vulgaris
USDA-ARS?s Scientific Manuscript database
Rhizopus stolonifer, a common soil borne fungus in Michigan, is a known root rot pathogen on mature sugar beet. In 2008, Rs was isolated from a sugar beet seed lot showing consistently low germination rates in both the field and lab, and Rs was morphologically identified on malt extract agar. Much o...
Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare
Lim, Daniel V.; Simpson, Joyce M.; Kearns, Elizabeth A.; Kramer, Marianne F.
2005-01-01
Recent events have made public health officials acutely aware of the importance of rapidly and accurately detecting acts of bioterrorism. Because bioterrorism is difficult to predict or prevent, reliable platforms to rapidly detect and identify biothreat agents are important to minimize the spread of these agents and to protect the public health. These platforms must not only be sensitive and specific, but must also be able to accurately detect a variety of pathogens, including modified or previously uncharacterized agents, directly from complex sample matrices. Various commercial tests utilizing biochemical, immunological, nucleic acid, and bioluminescence procedures are currently available to identify biological threat agents. Newer tests have also been developed to identify such agents using aptamers, biochips, evanescent wave biosensors, cantilevers, living cells, and other innovative technologies. This review describes these current and developing technologies and considers challenges to rapid, accurate detection of biothreat agents. Although there is no ideal platform, many of these technologies have proved invaluable for the detection and identification of biothreat agents. PMID:16223949
Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus
Neik, Ting Xiang; Barbetti, Martin J.; Batley, Jacqueline
2017-01-01
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus. PMID:29163558
Saichek, Nicholas R; Cox, Christopher R; Kim, Seungki; Harrington, Peter B; Stambach, Nicholas R; Voorhees, Kent J
2016-04-23
The Staphylococcus genus is composed of 44 species, with S. aureus being the most pathogenic. Isolates of S. aureus are generally susceptible to β-lactam antibiotics, but extensive use of this class of drugs has led to increasing emergence of resistant strains. Increased occurrence of coagulase-negative staphylococci as well as S. aureus infections, some with resistance to multiple classes of antibiotics, has driven the necessity for innovative options for treatment and infection control. Despite these increasing needs, current methods still only possess species-level capabilities and require secondary testing to determine antibiotic resistance. This study describes the use of metal oxide laser ionization mass spectrometry fatty acid (FA) profiling as a rapid, simultaneous Staphylococcus identification and antibiotic resistance determination method. Principal component analysis was used to classify 50 Staphyloccocus isolates. Leave-one-spectrum-out cross-validation indicated 100 % correct assignment at the species and strain level. Fuzzy rule building expert system classification and self-optimizing partial least squares discriminant analysis, with more rigorous evaluations, also consistently achieved greater than 94 and 84 % accuracy, respectively. Preliminary analysis differentiating MRSA from MSSA demonstrated the feasibility of simultaneous determination of strain identification and antibiotic resistance. The utility of CeO2-MOLI MS FA profiling coupled with multivariate statistical analysis for performing strain-level differentiation of various Staphylococcus species proved to be a fast and reliable tool for identification. The simultaneous strain-level detection and antibiotic resistance determination achieved with this method should greatly improve outcomes and reduce clinical costs for therapeutic management and infection control.
The trans-kingdom identification of negative regulators of pathogen hypervirulence.
Brown, Neil A; Urban, Martin; Hammond-Kosack, Kim E
2016-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen-host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. © FEMS 2015.
Abramyan, John; Stajich, Jason E
2012-01-01
Batrachochytrium dendrobatidis is the causative agent of chytridiomycosis, which is considered one of the driving forces behind the worldwide decline in populations of amphibians. As a member of the phylum Chytridiomycota, B. dendrobatidis has diverged significantly to emerge as the only pathogen of adult vertebrates. Such shifts in lifestyle are generally accompanied by various degrees of genomic modifications, yet neither its mode of pathogenicity nor any factors associated with it have ever been identified. Presented here is the identification and characterization of a unique expansion of the carbohydrate-binding module family 18 (CBM18), specific to B. dendrobatidis. CBM (chitin-binding module) expansions have been likened to the evolution of pathogenicity in a variety of fungus species, making this expanded group a prime candidate for the identification of potential pathogenicity factors. Furthermore, the CBM18 expansions are confined to three categories of genes, each having been previously implicated in host-pathogen interactions. These correlations highlight this specific domain expansion as a potential key player in the mode of pathogenicity in this unique fungus. The expansion of CBM18 in B. dendrobatidis is exceptional in its size and diversity compared to other pathogenic species of fungi, making this genomic feature unique in an evolutionary context as well as in pathogenicity. Amphibian populations are declining worldwide at an unprecedented rate. Although various factors are thought to contribute to this phenomenon, chytridiomycosis has been identified as one of the leading causes. This deadly fungal disease is cause by Batrachochytrium dendrobatidis, a chytrid fungus species unique in its pathogenicity and, furthermore, its specificity to amphibians. Despite more than two decades of research, the biology of this fungus species and its deadly interaction with amphibians had been notoriously difficult to unravel. Due to the alarming rate of worldwide spread and associated decline in amphibian populations, it is imperative to incorporate novel genomic and genetic techniques into the study of this species. In this study, we present the first reported potential pathogenicity factors in B. dendrobatidis. In silico studies such as this allow us to identify putative targets for more specific molecular analyses, furthering our hope for the control of this pathogen.
Newly developed double neural network concept for reliable fast plasma position control
NASA Astrophysics Data System (ADS)
Jeon, Young-Mu; Na, Yong-Su; Kim, Myung-Rak; Hwang, Y. S.
2001-01-01
Neural network is considered as a parameter estimation tool in plasma controls for next generation tokamak such as ITER. The neural network has been reported to be so accurate and fast for plasma equilibrium identification that it may be applied to the control of complex tokamak plasmas. For this application, the reliability of the conventional neural network needs to be improved. In this study, a new idea of double neural network is developed to achieve this. The new idea has been applied to simple plasma position identification of KSTAR tokamak for feasibility test. Characteristics of the concept show higher reliability and fault tolerance even in severe faulty conditions, which may make neural network applicable to plasma control reliably and widely in future tokamaks.
Jayaprakash, Paul T
2015-01-01
Establishing identification during skull-photo superimposition relies on correlating the salient morphological features of an unidentified skull with those of a face-image of a suspected dead individual using image overlay processes. Technical progression in the process of overlay has included the incorporation of video cameras, image-mixing devices and software that enables real-time vision-mixing. Conceptual transitions occur in the superimposition methods that involve 'life-size' images, that achieve orientation of the skull to the posture of the face in the photograph and that assess the extent of match. A recent report on the reliability of identification using the superimposition method adopted the currently prevalent methods and suggested an increased rate of failures when skulls were compared with related and unrelated face images. The reported reduction in the reliability of the superimposition method prompted a review of the transition in the concepts that are involved in skull-photo superimposition. The prevalent popular methods for visualizing the superimposed images at less than 'life-size', overlaying skull-face images by relying on the cranial and facial landmarks in the frontal plane when orienting the skull for matching and evaluating the match on a morphological basis by relying on mix-mode alone are the major departures in the methodology that may have reduced the identification reliability. The need to reassess the reliability of the method that incorporates the concepts which have been considered appropriate by the practitioners is stressed. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species
Oliveira, Alberto; Oliveira, Leticia C.; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B.; Silva, Arthur; Figueiredo, Henrique C. P.; Ghosh, Preetam; Portela, Ricardo W.; De Carvalho Azevedo, Vasco A.; Wattam, Alice R.
2017-01-01
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium, exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium. Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field. PMID:29075239
Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species.
Oliveira, Alberto; Oliveira, Leticia C; Aburjaile, Flavia; Benevides, Leandro; Tiwari, Sandeep; Jamal, Syed B; Silva, Arthur; Figueiredo, Henrique C P; Ghosh, Preetam; Portela, Ricardo W; De Carvalho Azevedo, Vasco A; Wattam, Alice R
2017-01-01
This review gathers recent information about genomic and transcriptomic studies in the Corynebacterium genus, exploring, for example, prediction of pathogenicity islands and stress response in different pathogenic and non-pathogenic species. In addition, is described several phylogeny studies to Corynebacterium , exploring since the identification of species until biological speciation in one species belonging to the genus Corynebacterium . Important concepts associated with virulence highlighting the role of Pld protein and Tox gene. The adhesion, characteristic of virulence factor, was described using the sortase mechanism that is associated to anchorage to the cell wall. In addition, survival inside the host cell and some diseases, were too addressed for pathogenic corynebacteria, while important biochemical pathways and biotechnological applications retain the focus of this review for non-pathogenic corynebacteria. Concluding, this review broadly explores characteristics in genus Corynebacterium showing to have strong relevance inside the medical, veterinary, and biotechnology field.
Sato, Mitsuharu; Watthanaworawit, Wanitda; Ling, Clare L.; Mauduit, Marjorie; Malleret, Benoît; Grüner, Anne-Charlotte; Tan, Rosemary; Nosten, François H.; Snounou, Georges; Rénia, Laurent; Ng, Lisa F. P.
2014-01-01
Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens. PMID:25078474
Molecular assessment of bacterial pathogens - a contribution to drinking water safety.
Brettar, Ingrid; Höfle, Manfred G
2008-06-01
Human bacterial pathogens are considered as an increasing threat to drinking water supplies worldwide because of the growing demand of high-quality drinking water and the decreasing quality and quantity of available raw water. Moreover, a negative impact of climate change on freshwater resources is expected. Recent advances in molecular detection technologies for bacterial pathogens in drinking water bear the promise in improving the safety of drinking water supplies by precise detection and identification of the pathogens. More importantly, the array of molecular approaches allows understanding details of infection routes of waterborne diseases, the effects of changes in drinking water treatment, and management of freshwater resources.
USDA-ARS?s Scientific Manuscript database
Several species and hyphal anastomosis groups (AG) of Rhizoctonia solani (sensu lato) cause brown patch diseases of turfgrasses. Conventional methods of identification of Rhizoctonia pathogens are time consuming and often inaccurate. A rapid identification assay for Waitea circinata (anamorph: Rhizo...
USDA-ARS?s Scientific Manuscript database
Repetitive sequence analysis has become an integral part of genome sequencing projects in addition to gene identification and annotation. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining th...
USDA-ARS?s Scientific Manuscript database
Fusarium spp. cause severe damage in many agricultural crops including sugar beet. Sugar beet needs to be protected from these soil borne pathogens to guarantee an optimal sugar yield in the field. The genetic control is the key to overcoming this disease. Identification of single nucleotide polymor...
USDA-ARS?s Scientific Manuscript database
The root-lesion nematode Pratylenchus penetrans is a major pathogen of potato world-wide. Yield losses may be exacerbated by interaction with the fungus Verticillium dahliae in the Potato early dying disease complex. Accurate identification and quantification of P. penetrans prior to planting are es...
The Ongoing Revolution of MALDI-TOF Mass Spectrometry for Microbiology Reaches Tropical Africa
Fall, Bécaye; Lo, Cheikh Ibrahima; Samb-Ba, Bissoume; Perrot, Nadine; Diawara, Silman; Gueye, Mamadou Wague; Sow, Kowry; Aubadie-Ladrix, Maxence; Mediannikov, Oleg; Sokhna, Cheikh; Diemé, Yaya; Chatellier, Sonia; Wade, Boubacar; Raoult, Didier; Fenollar, Florence
2015-01-01
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) represents a revolution in routine pathogen identification in clinical microbiology laboratories. A MALDI-TOF MS was introduced to tropical Africa in the clinical microbiology laboratory of the Hôpital Principal de Dakar (Senegal) and used for routine pathogen identification. Using MS, 2,429 bacteria and fungi isolated from patients were directly assayed, leading to the identification of 2,082 bacteria (85.7%) and 206 fungi (8.5%) at the species level, 109 bacteria (4.5%) at the genus level, and 16 bacteria (0.75%) at the family level. Sixteen isolates remained unidentified (0.75%). Escherichia coli was the most prevalent species (25.8%) followed by Klebsiella pneumoniae (14.8%), Streptococcus agalactiae (6.2%), Acinetobacter baumannii (6.1%), Pseudomonas aeruginosa (5.9%), and Staphylococcus aureus (5.9%). MALDI-TOF MS has also enabled the detection of rare bacteria and fungi. MALDI-TOF MS is a powerful tool for the identification of bacterial and fungal species involved in infectious diseases in tropical Africa. PMID:25601995
Ford, Simon; Dosani, Maryam; Robinson, Ashley J; Campbell, G Claire; Ansermino, J Mark; Lim, Joanne; Lauder, Gillian R
2009-12-01
The ilioinguinal (II)/iliohypogastric (IH) nerve block is a safe, frequently used block that has been improved in efficacy and safety by the use of ultrasound guidance. We assessed the frequency with which pediatric anesthesiologists with limited experience with ultrasound-guided regional anesthesia could correctly identify anatomical structures within the inguinal region. Our primary outcome was to compare the frequency of correct identification of the transversus abdominis (TA) muscle with the frequency of correct identification of the II/IH nerves. We used 2 ultrasound machines with different capabilities to assess a potential equipment effect on success of structure identification and time taken for structure identification. Seven pediatric anesthesiologists with <6 mo experience with ultrasound-guided regional anesthesia performed a total of 127 scans of the II region in anesthetized children. The muscle planes and the II and IH nerves were identified and labeled. The ultrasound images were reviewed by a blinded expert to mark accuracy of structure identification and time taken for identification. Two ultrasound machines (Sonosite C180plus and Micromaxx, both from Sonosite, Bothell, WA) were used. There was no difference in the frequency of correct identification of the TA muscle compared with the II/IH nerves (chi(2) test, TA versus II, P = 0.45; TA versus IH, P = 0.50). Ultrasound machine selection did show a nonsignificant trend in improving correct II/IH nerve identification (II nerve chi(2) test, P = 0.02; IH nerve chi(2) test, P = 0.04; Bonferroni corrected significance 0.17) but not for the muscle planes (chi(2) test, P = 0.83) or time taken (1-way analysis of variance, P = 0.07). A curve of improving accuracy with number of scans was plotted, with reliability of TA recognition occurring after 14-15 scans and II/IH identification after 18 scans. We have demonstrated that although there is no difference in the overall accuracy of muscle plane versus II/IH nerve identification, the muscle planes are reliably identified after fewer scans of the inguinal region. We suggest that a reliable end point for the inexperienced practitioner of ultrasound-guided II/IH nerve block may be the TA/internal oblique plane where the nerves are reported to be found in 100% of cases.
Soltau, J B; Einax, E; Klengel, K; Katholm, J; Failing, K; Wehrend, A; Donat, K
2017-10-01
The objective of the study was to assess the value of quantitative multiplex real-time PCR examination of bulk tank milk samples for bovine mastitis pathogens as a tool for herd level diagnosis. Using a logistic regression model, this study is aimed at calculating the threshold level of the apparent within-herd prevalence as determined by quarter milk sample cultivation of all lactating cows, thus allowing the detection of a herd positive for a specific pathogen within certain probability levels. A total of 6,335 quarter milk samples were collected and cultured from 1,615 cows on 51 farms in Germany. Bulk tank milk samples were taken from each farm and tested by bacterial culture as well as the commercial PCR assay Mastit 4A (DNA Diagnostic A/S, Risskov, Denmark) identifying Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus agalactiae, and Streptococcus uberis. In addition, PCR was performed on pooled herd milk samples containing milk aliquots from all lactating cows in each of the 51 herds. Only 1 out of the 51 herds was found PCR positive for Streptococcus agalactiae in bulk tank and pooled herd milk samples, and cultured quarter milk samples. Spearman's rank correlations between the cycle threshold value of bulk tank milk PCR and the apparent within-herd prevalence were calculated in regard to Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis. For these pathogens, significant correlations were found. If 1 bulk tank milk sample per herd was tested, the estimated within-herd prevalence thresholds for 90% probability of detection were 27.6% for Staphylococcus aureus, 9.2% for Streptococcus dysgalactiae, and 13.8% for Streptococcus uberis on the cow level. On the quarter level, the within-herd prevalence had to be at least 32.6% for Staphylococcus aureus, 1.7% for Streptococcus dysgalactiae, and 4.3% for Streptococcus uberis to detect a herd as positive using a single bulk milk sample. The results indicate that mastitis pathogens in bulk tank milk can be identified by the applied PCR assay. Bulk tank milk examination is not a reliable tool for the identification of the named pathogens by single testing, but might be a valuable monitoring tool when used frequently with repeated testing. Furthermore, this approach could be a useful monitoring tool for detecting new pathogen occurrence in the herd. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
76 FR 58730 - Version 4 Critical Infrastructure Protection Reliability Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
... provide a cybersecurity framework for the identification and protection of ``Critical Cyber Assets'' to... the identification and documentation of Critical Cyber Assets associated with Critical Assets that... Standards provide a cybersecurity framework for the identification and protection of ``Critical Cyber Assets...
NASA Astrophysics Data System (ADS)
Jabbour, Rabih E.; Wade, Mary; Deshpande, Samir V.; McCubbin, Patrick; Snyder, A. Peter; Bevilacqua, Vicky
2012-06-01
Mass spectrometry based proteomic approaches are showing promising capabilities in addressing various biological and biochemical issues. Outer membrane proteins (OMPs) are often associated with virulence in gram-negative pathogens and could prove to be excellent model biomarkers for strain level differentiation among bacteria. Whole cells and OMP extracts were isolated from pathogenic and non-pathogenic strains of Francisella tularensis, Burkholderia thailandensis, and Burkholderia mallei. OMP extracts were compared for their ability to differentiate and delineate the correct database organism to an experimental sample and for the degree of dissimilarity to the nearest-neighbor database strains. This study addresses the comparative experimental proteome analyses of OMPs vs. whole cell lysates on the strain-level discrimination among gram negative pathogenic and non-pathogenic strains.
USDA-ARS?s Scientific Manuscript database
Antibodies against ‘Candidatus Liberibacter asiaticus (CaLas) would be useful in inexpensive tissue print assays to detect the pathogen in infected plants. Such assays would provide low cost detection and a level of spatial and anatomical detail not possible with other methods like qPCR. We used S...
USDA-ARS?s Scientific Manuscript database
Since 2000, many of the previously effective wheat (Triticum aestivum L.) seedling stripe rust (pathogen Puccinia striiformis Westend. f.sp. tritici Eriks) resistance genes have become ineffective to the new more aggressive races of the pathogen. Because seedling resistance genes work on a gene for...
Henry Amerson; C. Dana Nelson; Thomas L. Kubisiak; E.George Kuhlman; Saul Garcia
2015-01-01
Nearly two decades of research on the host-pathogen interaction in fusiform rust of loblolly pine is detailed. Results clearly indicate that pathotype-specific genes in the host interacting with pathogen avirulence cause resistance as defined by the non-gall phenotype under favorable environmental conditions for disease development. In particular, nine fusiform rust...
USDA-ARS?s Scientific Manuscript database
Pathogenic races of Tilletia caries and T. foetida, which cause common bunt of wheat (Triticum aestivum), and T. contraversa, which causes dwarf bunt of wheat, have been identified previously by their reaction to ten monogenic differential wheat lines, each containing single bunt resistance genes Bt...
F.N. Martin; M.D. Coffey; K. Zeller; R.C. Hamelin; P. Tooley; M. Garbelotto; K.J.D. Hughes; T. Kubisiak; G.J. Bilodeau; L. Levy; C. Blomquist; P.H. Berger
2009-01-01
Given the importance of Phytophthora ramorum from a regulatory standpoint, it is imperative that molecular markers for pathogen detection are fully tested to evaluate their specificity in detection of the pathogen. In an effort to evaluate 11 reported diagnostic techniques, we assembled a standardized DNA library using accessions from the World...
USDA-ARS?s Scientific Manuscript database
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that often are not used by those who are diagn...
Iquitos Virus: A Novel Reassortant Orthobunyavirus Associated with Human Illness in Peru
Aguilar, Patricia V.; Barrett, Alan D.; Saeed, Mohammad F.; Watts, Douglas M.; Russell, Kevin; Guevara, Carolina; Ampuero, Julia S.; Suarez, Luis; Cespedes, Manuel; Montgomery, Joel M.; Halsey, Eric S.; Kochel, Tadeusz J.
2011-01-01
Oropouche (ORO) virus, a member of the Simbu serogroup, is one of the few human pathogens in the Orthobunyavirus genus in the family Bunyaviridae. Genetic analyses of ORO-like strains from Iquitos, Peru, identified a novel reassortant containing the S and L segments of ORO virus and the M segment of a novel Simbu serogroup virus. This new pathogen, which we named Iquitos (IQT) virus, was first isolated during 1999 from a febrile patient in Iquitos, an Amazonian city in Peru. Subsequently, the virus was identified as the cause of outbreaks of “Oropouche fever” during 2005 and 2006 in Iquitos. In addition to the identification of 17 isolates of IQT virus between 1999 and 2006, surveys for neutralizing antibody among Iquitos residents revealed prevalence rates of 14.9% for ORO virus and 15.4% for IQT virus. Limited studies indicate that prior infection with ORO virus does not seem to protect against disease caused with the IQT virus infection. Identification of a new Orthobunyavirus human pathogen in the Amazon region of Peru highlights the need for strengthening surveillance activities and laboratory capabilities, and investigating the emergence of new pathogens in tropical regions of South America. PMID:21949892
Li, Yingguo; Wang, Yu; Nie, Fuping; Xiao, Jinwen; Wang, Guoming; Yuan, Ling; Li, Zhengguo
2011-07-01
Porcine chlamydial infection is an enzootic infectious disease caused by multiple members of the family Chlamydiaceae (e.g. Chlamydophila abortus, Chlamydia suis, and Chlamydophila pneumoniae). Rapid and accurate differentiation of these pathogens is critical in the control and prevention of disease. The aim of the current study was to develop a nested multiplex polymerase chain reaction (nmPCR) assay to simultaneously detect the 3 chlamydial pathogens in clinical samples. In the first round of the nmPCR, 1 pair of family-specific primers were used to amplify the 1,100 base pair (bp) fragment of chlamydial ompA gene. In the second round of the nmPCR, 4 inner primers were designed for Ch. abortus, C. suis, and Ch. pneumoniae. Each pathogen produced a specific amplicon with a size of 340 bp, 526 bp, and 267 bp respectively. The assay was sensitive and specific for detecting target pathogens in both cell cultures and clinical specimens. The results, incorporated with the improved rapid DNA extraction protocol, suggest that the nmPCR could be a promising assay for differential identification of different chlamydial strains in pigs.
Identification of Saprolegnia Spp. Pathogenic in Chinook Salmon : Final Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whisler, Howard C.
1997-06-01
This project has developed procedures to assess the role of the fungal parasite, Saprolegnia in the biology of salmon, particularly adult Chinook, in the Columbia River Basin. Both morphological and DNA ``fingerprinting`` surveys reveal that Saprolegnia parasitica (=S. diclina, Type I) is the most common pathogen of these fish. In the first phase of this study 92% of 620 isolates, from salmon lesions, conformed to this taxa of Saprolegnia. In the current phase, the authors have developed variants of DNA fingerprinting (RAPD and SWAPP analysis) that permit examination of the sub-structure of the parasite population. These results confirm the predominancemore » of S. parasitica, and suggest that at least three different sub-groups of this fungus occur in the Pacific N.W., USA. The use of single and paired primers with PCR amplification permits identification of pathogenic types, and distinction from other species of the genus considered to be more saprophytic in character. A year`s survey of saprolegniaceous fungi from Lake Washington indicated that the fish-pathogen was not common in the water column. Where and how fish encounter this parasite can be approached with the molecular tags identified in this project.« less
Christiansen, K J; Ip, M; Ker, H B; Mendoza, M; Hsu, L; Kiratisin, P; Chongthaleong, A; Redjeki, I S; Quintana, A; Flamm, R; Garcia, J; Cassettari, M; Cooper, D; Okolo, P; Morrissey, I
2010-12-01
The Comparative Activity of Carbapenems Testing (COMPACT) Study was designed to determine the in vitro potency of doripenem compared with imipenem and meropenem against a large number of contemporary Gram-negative pathogens from more than 100 centres across Europe and the Asia-Pacific region and to assess the reliability of Etest methodology for doripenem minimum inhibitory concentration (MIC) determination against these pathogens. Data from eight countries within the Asia-Pacific region, which collected 1612 bacterial isolates, are presented here. Etest methodology was found to be a reliable method for MIC determination. Doripenem showed in vitro activity similar to or better than meropenem and at least four-fold better than imipenem against Enterobacteriaceae. Against Pseudomonas aeruginosa, doripenem was also the most active of the three carbapenems in vitro. However, in vitro results do not necessarily correlate with clinical outcome. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
[Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].
Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V
2014-01-01
Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettengill, Emily A.; Pettengill, James B.; Binet, Rachel
As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogenymore » are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.« less
Pettengill, Emily A.; Pettengill, James B.; Binet, Rachel
2016-01-19
As a leading cause of bacterial dysentery, Shigella represents a significant threat to public health and food safety. Related, but often overlooked, enteroinvasive Escherichia coli (EIEC) can also cause dysentery. Current typing methods have limited ability to identify and differentiate between these pathogens despite the need for rapid and accurate identification of pathogens for clinical treatment and outbreak response. We present a comprehensive phylogeny of Shigella and EIEC using whole genome sequencing of 169 samples, constituting unparalleled strain diversity, and observe a lack of monophyly between Shigella and EIEC and among Shigella taxonomic groups. The evolutionary relationships in the phylogenymore » are supported by analyses of population structure and hierarchical clustering patterns of translated gene homolog abundance. Lastly, we identified a panel of 404 single nucleotide polymorphism (SNP) markers specific to each phylogenetic cluster for more accurate identification of Shigella and EIEC. Our findings show that Shigella and EIEC are not distinct evolutionary groups within the E. coli genus and, thus, EIEC as a group is not the ancestor to Shigella. The multiple analyses presented provide evidence for reconsidering the taxonomic placement of Shigella. The SNP markers offer more discriminatory power to molecular epidemiological typing methods involving these bacterial pathogens.« less
Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E
2017-02-13
Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.
The trans-kingdom identification of negative regulators of pathogen hypervirulence
Brown, Neil A.; Urban, Martin; Hammond-Kosack, Kim E.
2015-01-01
Modern society and global ecosystems are increasingly under threat from pathogens, which cause a plethora of human, animal, invertebrate and plant diseases. Of increasing concern is the trans-kingdom tendency for increased pathogen virulence that is beginning to emerge in natural, clinical and agricultural settings. The study of pathogenicity has revealed multiple examples of convergently evolved virulence mechanisms. Originally described as rare, but increasingly common, are interactions where a single gene deletion in a pathogenic species causes hypervirulence. This review utilised the pathogen–host interaction database (www.PHI-base.org) to identify 112 hypervirulent mutations from 37 pathogen species, and subsequently interrogates the trans-kingdom, conserved, molecular, biochemical and cellular themes that cause hypervirulence. This study investigates 22 animal and 15 plant pathogens including 17 bacterial and 17 fungal species. Finally, the evolutionary significance and trans-kingdom requirement for negative regulators of hypervirulence and the implication of pathogen hypervirulence and emerging infectious diseases on society are discussed. PMID:26468211
The Challenge and Potential of Metagenomics in the Clinic
Mulcahy-O’Grady, Heidi; Workentine, Matthew L.
2016-01-01
The bacteria, fungi, and viruses that live on and in us have a tremendous impact on our day-to-day health and are often linked to many diseases, including autoimmune disorders and infections. Diagnosing and treating these disorders relies on accurate identification and characterization of the microbial community. Current sequencing technologies allow the sequencing of the entire nucleic acid complement of a sample providing an accurate snapshot of the community members present in addition to the full genetic potential of that microbial community. There are a number of clinical applications that stand to benefit from these data sets, such as the rapid identification of pathogens present in a sample. Other applications include the identification of antibiotic-resistance genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the physician to probe more complex phenotypes such as microbial dysbiosis with intestinal disorders and disruptions of the skin microbiome that may be associated with skin disorders. Many of these disorders are not associated with a single pathogen but emerge as a result of complex ecological interactions within microbiota. Currently, we understand very little about these complex phenotypes, yet clearly they are important and in some cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the microbiome of the patient is effective. Here, we give an overview of metagenomics and discuss a number of areas where metagenomics is applicable in the clinic, and progress being made in these areas. This includes (1) the identification of unknown pathogens, and those pathogens particularly hard to culture, (2) utilizing functional information and gene content to understand complex infections such as Clostridium difficile, and (3) predicting antimicrobial resistance of the community using genetic determinants of resistance identified from the sequencing data. All of these applications rely on sophisticated computational tools, and we also discuss the importance of skilled bioinformatic support for the implementation and use of metagenomics in the clinic. PMID:26870044
Huang, Bin; Zhang, Lei; Zhang, Weizheng; Liao, Kang; Zhang, Shihong; Zhang, Zhiquan; Ma, Xingyan; Chen, Jialong; Zhang, Xiuhong; Qu, Pinghua; Wu, Shangwei
2017-01-01
ABSTRACT Rapid and accurate detection and identification of microbial pathogens causing urinary tract infections allow prompt and specific treatment. We optimized specimen processing to maximize the limit of detection (LOD) by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) and evaluated the capacity of combination of MALDI-TOF MS and urine analysis (UA) for direct detection and identification of bacterial pathogens from urine samples. The optimal volumes of processed urine, formic acid/acetonitrile, and supernatant spotted onto the target plate were 15 ml, 3 μl, and 3 μl, respectively, yielding a LOD of 1.0 × 105 CFU/ml. Among a total of 1,167 urine specimens collected from three hospital centers, 612 (52.4%) and 351 (30.1%) were, respectively, positive by UA and urine culture. Compared with a reference method comprised of urine culture and 16S rRNA gene sequencing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MALDI-TOF MS alone and MALDI-TOF MS coupled with UA were 86.6% versus 93.4% (χ2 = 8.93; P < 0.01), 91.5% versus 96.3% (χ2 = 7.06; P < 0.01), 81.5% versus 96.4% (χ2 = 37.32; P < 0.01), and 94.1% versus 93.1% (χ2 = 0.40; P > 0.05), respectively. No significant performance differences were revealed among the three sites, while specificity and NPV of MALDI-TOF MS for males were significantly higher than those for females (specificity, 94.3% versus 77.3%, χ2 = 44.90, P < 0.01; NPV, 95.5% versus 86.1%, χ2 = 18.85, P < 0.01). Our results indicated that the optimization of specimen processing significantly enhanced analytical sensitivity and that the combination of UA and MALDI-TOF MS provided an accurate and rapid detection and identification of bacterial pathogens directly from urine. PMID:28249997
Huang, Bin; Zhang, Lei; Zhang, Weizheng; Liao, Kang; Zhang, Shihong; Zhang, Zhiquan; Ma, Xingyan; Chen, Jialong; Zhang, Xiuhong; Qu, Pinghua; Wu, Shangwei; Chen, Cha; Tang, Yi-Wei
2017-05-01
Rapid and accurate detection and identification of microbial pathogens causing urinary tract infections allow prompt and specific treatment. We optimized specimen processing to maximize the limit of detection (LOD) by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and evaluated the capacity of combination of MALDI-TOF MS and urine analysis (UA) for direct detection and identification of bacterial pathogens from urine samples. The optimal volumes of processed urine, formic acid/acetonitrile, and supernatant spotted onto the target plate were 15 ml, 3 μl, and 3 μl, respectively, yielding a LOD of 1.0 × 10 5 CFU/ml. Among a total of 1,167 urine specimens collected from three hospital centers, 612 (52.4%) and 351 (30.1%) were, respectively, positive by UA and urine culture. Compared with a reference method comprised of urine culture and 16S rRNA gene sequencing, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of MALDI-TOF MS alone and MALDI-TOF MS coupled with UA were 86.6% versus 93.4% (χ 2 = 8.93; P < 0.01), 91.5% versus 96.3% (χ 2 = 7.06; P < 0.01), 81.5% versus 96.4% (χ 2 = 37.32; P < 0.01), and 94.1% versus 93.1% (χ 2 = 0.40; P > 0.05), respectively. No significant performance differences were revealed among the three sites, while specificity and NPV of MALDI-TOF MS for males were significantly higher than those for females (specificity, 94.3% versus 77.3%, χ 2 = 44.90, P < 0.01; NPV, 95.5% versus 86.1%, χ 2 = 18.85, P < 0.01). Our results indicated that the optimization of specimen processing significantly enhanced analytical sensitivity and that the combination of UA and MALDI-TOF MS provided an accurate and rapid detection and identification of bacterial pathogens directly from urine. Copyright © 2017 American Society for Microbiology.
Wagner, Karoline; Springer, Burkard; Pires, Valeria P.
2017-01-01
ABSTRACT Acute bacterial meningitis is a medical emergency, and delays in initiating effective antimicrobial therapy result in increased morbidity and mortality. Culture-based methods, thus far considered the “gold standard” for identifying bacterial microorganisms, require 24 to 48 h to provide a diagnosis. In addition, antimicrobial therapy is often started prior to clinical sample collection, thereby decreasing the probability of confirming the bacterial pathogen by culture-based methods. To enable a fast and accurate detection of the most important bacterial pathogens causing meningitis, namely, Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Streptococcus agalactiae, and Listeria monocytogenes, we evaluated a commercially available multiplex LightMix real-time PCR (RT-PCR) in 220 cerebrospinal fluid (CSF) specimens. The majority of CSF samples were collected by lumbar puncture, but we also included some CSF samples from patients with symptoms of meningitis from the neurology department that were recovered from shunts. CSF samples were analyzed by multiplex RT-PCR enabling a first diagnosis within a few hours after sample arrival at our institute. In contrast, bacterial identification took between 24 and 48 h by culture. Overall, a high agreement of bacterial identification between culture and multiplex RT-PCR was observed (99%). Moreover, multiplex RT-PCR enabled the detection of pathogens, S. pneumoniae (n = 2), S. agalactiae (n = 1), and N. meningitidis (n = 1), in four culture-negative samples. As a complement to classical bacteriological CSF culture, the LightMix RT-PCR assay proved to be valuable by improving the rapidity and accuracy of the diagnosis of bacterial meningitis. PMID:29237781
Bacteriology of peritonsillar abscess: the changing trend and predisposing factors.
Tsai, Yi-Wen; Liu, Yu-Hsi; Su, Hsing-Hao
2017-07-17
Peritonsillar abscess is the most common deep neck infection. The infectious microorganism may be different according to clinical factors. To identify the major causative pathogen of peritonsillar abscess and investigate the relationship between the causative pathogen, host clinical factors, and hospitalization duration. This retrospective study included 415 hospitalized patients diagnosed with peritonsillar abscess who were admitted to a tertiary medical center from June 1990 to June 2013. We collected data by chart review and analyzed variables such as demographic characteristics, underlying systemic disease, smoking, alcoholism, betel nut chewing, bacteriology, and hospitalization duration. A total of 168 patients had positive results for pathogen isolation. Streptococcus viridans (28.57%) and Klebsiella pneumoniae (23.21%) were the most common microorganisms identified through pus culturing. The isolation rate of anaerobes increased to 49.35% in the recent 6 years (p=0.048). Common anaerobes were Prevotella and Fusobacterium spp. The identification of K. pneumoniae increased among elderly patients (age>65 years) with an odds ratio (OR) of 2.76 (p=0.03), and decreased in the hot season (mean temperature>26°C) (OR=0.49, p=0.04). No specific microorganism was associated with prolonged hospital stay. The most common pathogen identified through pus culturing was S. viridans, followed by K. pneumoniae. The identification of anaerobes was shown to increase in recent years. The antibiotics initially selected should be effective against both aerobes and anaerobes. Bacterial identification may be associated with host clinical factors and environmental factors. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Lange, Vinzenz; Malmström, Johan A; Didion, John; King, Nichole L; Johansson, Björn P; Schäfer, Juliane; Rameseder, Jonathan; Wong, Chee-Hong; Deutsch, Eric W; Brusniak, Mi-Youn; Bühlmann, Peter; Björck, Lars; Domon, Bruno; Aebersold, Ruedi
2008-08-01
In many studies, particularly in the field of systems biology, it is essential that identical protein sets are precisely quantified in multiple samples such as those representing differentially perturbed cell states. The high degree of reproducibility required for such experiments has not been achieved by classical mass spectrometry-based proteomics methods. In this study we describe the implementation of a targeted quantitative approach by which predetermined protein sets are first identified and subsequently quantified at high sensitivity reliably in multiple samples. This approach consists of three steps. First, the proteome is extensively mapped out by multidimensional fractionation and tandem mass spectrometry, and the data generated are assembled in the PeptideAtlas database. Second, based on this proteome map, peptides uniquely identifying the proteins of interest, proteotypic peptides, are selected, and multiple reaction monitoring (MRM) transitions are established and validated by MS2 spectrum acquisition. This process of peptide selection, transition selection, and validation is supported by a suite of software tools, TIQAM (Targeted Identification for Quantitative Analysis by MRM), described in this study. Third, the selected target protein set is quantified in multiple samples by MRM. Applying this approach we were able to reliably quantify low abundance virulence factors from cultures of the human pathogen Streptococcus pyogenes exposed to increasing amounts of plasma. The resulting quantitative protein patterns enabled us to clearly define the subset of virulence proteins that is regulated upon plasma exposure.
Jasalavich, Claudia A.; Ostrofsky, Andrea; Jellison, Jody
2000-01-01
We have developed a DNA-based assay to reliably detect brown rot and white rot fungi in wood at different stages of decay. DNA, isolated by a series of CTAB (cetyltrimethylammonium bromide) and organic extractions, was amplified by the PCR using published universal primers and basidiomycete-specific primers derived from ribosomal DNA sequences. We surveyed 14 species of wood-decaying basidiomycetes (brown-rot and white-rot fungi), as well as 25 species of wood-inhabiting ascomycetes (pathogens, endophytes, and saprophytes). DNA was isolated from pure cultures of these fungi and also from spruce wood blocks colonized by individual isolates of wood decay basidiomycetes or wood-inhabiting ascomycetes. The primer pair ITS1-F (specific for higher fungi) and ITS4 (universal primer) amplified the internal transcribed spacer region from both ascomycetes and basidiomycetes from both pure culture and wood, as expected. The primer pair ITS1-F (specific for higher fungi) and ITS4-B (specific for basidiomycetes) was shown to reliably detect the presence of wood decay basidiomycetes in both pure culture and wood; ascomycetes were not detected by this primer pair. We detected the presence of decay fungi in wood by PCR before measurable weight loss had occurred to the wood. Basidiomycetes were identified to the species level by restriction fragment length polymorphisms of the internal transcribed spacer region. PMID:11055916
Ahmad, Arine Fadzlun; Lonnen, James; Andrew, Peter W; Kilvington, Simon
2011-10-15
Naegleria fowleri is a small free-living amoebo-flagellate found in natural and manmade thermal aquatic habitats worldwide. The organism is pathogenic to man causing fatal primary amoebic meningoencephalitis (PAM). Infection typically results from bathing in contaminated water and is usually fatal. It is, therefore, important to identify sites containing N. fowleri in the interests of preventive public health microbiology. Culture of environmental material is the conventional method for the isolation of N. fowleri but requires several days incubation and subsequent biochemical or molecular tests to confirm identification. Here, a nested one-step PCR test, in conjunction with a direct DNA extraction from water or sediment material, was developed for the rapid and reliable detection of N. fowleri from the environment. Here, the assay detected N, fowleri in 18/109 river water samples associated with a nuclear power plant in South West France and 0/10 from a similar site in the UK. Although culture of samples yielded numerous thermophilic free-living amoebae, none were N. fowleri or other thermophilic Naegleria spp. The availability of a rapid, reliable and sensitive one-step nested PCR method for the direct detection of N. fowleri from the environment may aid ecological studies and enable intervention to prevent PAM cases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Nuclear processes associated with plant immunity and pathogen susceptibility
Motion, Graham B.; Amaro, Tiago M.M.M.; Kulagina, Natalja
2015-01-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant–microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. PMID:25846755
Nuclear processes associated with plant immunity and pathogen susceptibility.
Motion, Graham B; Amaro, Tiago M M M; Kulagina, Natalja; Huitema, Edgar
2015-07-01
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants. © The Author 2015. Published by Oxford University Press.
Goldman, Gustavo H.; dos Reis Marques, Everaldo; Custódio Duarte Ribeiro, Diógenes; Ângelo de Souza Bernardes, Luciano; Quiapin, Andréa Carla; Vitorelli, Patrícia Marostica; Savoldi, Marcela; Semighini, Camile P.; de Oliveira, Regina C.; Nunes, Luiz R.; Travassos, Luiz R.; Puccia, Rosana; Batista, Wagner L.; Ferreira, Leslie Ecker; Moreira, Júlio C.; Bogossian, Ana Paula; Tekaia, Fredj; Nobrega, Marina Pasetto; Nobrega, Francisco G.; Goldman, Maria Helena S.
2003-01-01
Paracoccidioides brasiliensis, a thermodimorphic fungus, is the causative agent of the prevalent systemic mycosis in Latin America, paracoccidioidomycosis. We present here a survey of expressed genes in the yeast pathogenic phase of P. brasiliensis. We obtained 13,490 expressed sequence tags from both 5′ and 3′ ends. Clustering analysis yielded the partial sequences of 4,692 expressed genes that were functionally classified by similarity to known genes. We have identified several Candida albicans virulence and pathogenicity homologues in P. brasiliensis. Furthermore, we have analyzed the expression of some of these genes during the dimorphic yeast-mycelium-yeast transition by real-time quantitative reverse transcription-PCR. Clustering analysis of the mycelium-yeast transition revealed three groups: (i) RBT, hydrophobin, and isocitrate lyase; (ii) malate dehydrogenase, contigs Pb1067 and Pb1145, GPI, and alternative oxidase; and (iii) ubiquitin, delta-9-desaturase, HSP70, HSP82, and HSP104. The first two groups displayed high mRNA expression in the mycelial phase, whereas the third group showed higher mRNA expression in the yeast phase. Our results suggest the possible conservation of pathogenicity and virulence mechanisms among fungi, expand considerably gene identification in P. brasiliensis, and provide a broader basis for further progress in understanding its biological peculiarities. PMID:12582121
Tanveer, Tania; Hameed, Abdul; Muazzam, Ambreen Gul; Jung, Suk-Yul; Gul, Asma; Matin, Abdul
2013-08-01
Acanthamoeba, an opportunistic protozoan pathogen, is ubiquitous in nature, and therefore plays a predatory role and helps control microbial communities in the ecosystem. These Acanthamoeba species are recognized as opportunistic human pathogens that may cause blinding keratitis and rare but fatal granulomatous encephalitis. To date, there is not a single report demonstrating Acanthamoeba isolation and identification from environmental sources in Pakistan, and that is the aim of this study. Acanthamoeba were identified by morphological characteristics of their cysts on non-nutrient agar plates seeded with Escherichia coli. Additionally, the polymerase chain reaction (PCR) was performed with genus-specific primers followed by direct sequencing of the PCR product for molecular identification. Furthermore, our PCR and sequencing results confirmed seven different pathogenic and nonpathogenic genotypes, including T2-T10, T4, T5, T7, T15, T16, and T17. To the best of our knowledge, we have identified and isolated Acanthamoeba sp., for the first time, from water resources of Khyber Pakhtunkhwa, Pakistan. There is an urgent need to address (1) the pathogenic potential of the identified genotypes and (2) explore other environmental sources from the country to examine the water quality and the current status of Acanthamoeba species in Pakistan, which may be a potential threat for public health across the country.
Rapid and field-deployable biological and chemical Raman-based identification
NASA Astrophysics Data System (ADS)
Botonjic-Sehic, Edita; Paxon, Tracy L.; Boudries, Hacene
2011-06-01
Pathogen detection using Raman spectroscopy is achieved through the use of a sandwich immunoassay. Antibody-modified magnetic beads are used to capture and concentrate target analytes in solution and surface-enhanced Raman spectroscopy (SERS) tags are conjugated with antibodies and act as labels to enable specific detection of biological pathogens. The rapid detection of biological pathogens is critical to first responders, thus assays to detect E.Coli and Anthrax have been developed and will be reported. The problems associated with pathogen detection resulting from the spectral complexity and variability of microorganisms are overcome through the use of SERS tags, which provide an intense, easily recognizable, and spectrally consistent Raman signal. The developed E. coli assay has been tested with 5 strains of E. coli and shows a low limit of detection, on the order of 10 and 100 c.f.u. per assay. Additionally, the SERS assay utilizes magnetic beads to collect the labeled pathogens into the focal point of the detection laser beam, making the assay robust to commonly encountered white powder interferants such as flour, baking powder, and corn starch. The reagents were also found to be stable at room temperature over extended periods of time with testing conducted over a one year period. Finally, through a specialized software algorithm, the assays are interfaced to the Raman instrument, StreetLab Mobile, for rapid-field-deployable biological identification.
Royle, Thomas C A; Sakhrani, Dionne; Speller, Camilla F; Butler, Virginia L; Devlin, Robert H; Cannon, Aubrey; Yang, Dongya Y
2018-01-01
Pacific salmonid (Oncorhynchus spp.) remains are routinely recovered from archaeological sites in northwestern North America but typically lack sexually dimorphic features, precluding the sex identification of these remains through morphological approaches. Consequently, little is known about the deep history of the sex-selective salmonid fishing strategies practiced by some of the region's Indigenous peoples. Here, we present a DNA-based method for the sex identification of archaeological Pacific salmonid remains that integrates two PCR assays that each co-amplify fragments of the sexually dimorphic on the Y chromosome (sdY) gene and an internal positive control (Clock1a or D-loop). The first assay co-amplifies a 95 bp fragment of sdY and a 108 bp fragment of the autosomal Clock1a gene, whereas the second assay co-amplifies the same sdY fragment and a 249 bp fragment of the mitochondrial D-loop region. This method's reliability, sensitivity, and efficiency, were evaluated by applying it to 72 modern Pacific salmonids from five species and 75 archaeological remains from six Pacific salmonids. The sex identities assigned to each of the modern samples were concordant with their known phenotypic sex, highlighting the method's reliability. Applications of the method to dilutions of modern DNA samples indicate it can correctly identify the sex of samples with as little as ~39 pg of total genomic DNA. The successful sex identification of 70 of the 75 (93%) archaeological samples further demonstrates the method's sensitivity. The method's reliance on two co-amplifications that preferentially amplify sdY helps validate the sex identities assigned to samples and reduce erroneous identifications caused by allelic dropout and contamination. Furthermore, by sequencing the D-loop fragment used as a positive control, species-level and sex identifications can be simultaneously assigned to samples. Overall, our results indicate the DNA-based method reported in this study is a sensitive and reliable sex identification method for ancient salmonid remains.
Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro
2018-06-01
Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Pasqualini, Leonella; Mencacci, Antonella; Leli, Christian; Montagna, Paolo; Cardaccia, Angela; Cenci, Elio; Montecarlo, Ines; Pirro, Matteo; di Filippo, Francesco; Cistaro, Emma; Schillaci, Giuseppe; Bistoni, Francesco; Mannarino, Elmo
2012-04-01
Early identification of causative pathogen in sepsis patients is pivotal to improve clinical outcome. SeptiFast (SF), a commercially available system for molecular diagnosis of sepsis based on PCR, has been mostly used in patients hospitalized in hematology and intensive care units. We evaluated the diagnostic accuracy and clinical usefulness of SF, compared to blood culture (BC), in 391 patients with suspected sepsis, hospitalized in a department of internal medicine. A causative pathogen was identified in 85 patients (22%). Sixty pathogens were detected by SF and 57 by BC. No significant differences were found between the two methods in the rates of pathogen detection (P = 0.74), even after excluding 9 pathogens which were isolated by BC and were not included in the SF master list (P = 0.096). The combination of SF and BC significantly improved the diagnostic yield in comparison to BC alone (P < 0.001). Compared to BC, SF showed a significantly lower contamination rate (0 versus 19 cases; P < 0.001) with a higher specificity for pathogen identification (1.00, 95% confidence interval [CI] of 0.99 to 1.00, versus 0.94, 95% CI of 0.90 to 0.96; P = 0.005) and a higher positive predictive value (1.00, 95% CI of 1.00 to 0.92%, versus 0.75, 95% CI of 0.63 to 0.83; P = 0.005). In the subgroup of patients (n = 191) who had been receiving antibiotic treatment for ≥24 h, SF identified more pathogens (16 versus 6; P = 0.049) compared to BC. These results suggest that, in patients with suspected sepsis, hospitalized in an internal medicine ward, SF could be a highly valuable adjunct to conventional BC, particularly in patients under antibiotic treatment.
Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae
Vágány, Viktória; Jackson, Alison C.; Harrison, Richard J.; Rainoni, Alessandro; Clarkson, John P.
2016-01-01
Summary Pathogenic isolates of Fusarium oxysporum, distinguished as formae speciales (f. spp.) on the basis of their host specificity, cause crown rots, root rots and vascular wilts on many important crops worldwide. Fusarium oxysporum f. sp. cepae (FOC) is particularly problematic to onion growers worldwide and is increasing in prevalence in the UK. We characterized 31 F. oxysporum isolates collected from UK onions using pathogenicity tests, sequencing of housekeeping genes and identification of effectors. In onion seedling and bulb tests, 21 isolates were pathogenic and 10 were non‐pathogenic. The molecular characterization of these isolates, and 21 additional isolates comprising other f. spp. and different Fusarium species, was carried out by sequencing three housekeeping genes. A concatenated tree separated the F. oxysporum isolates into six clades, but did not distinguish between pathogenic and non‐pathogenic isolates. Ten putative effectors were identified within FOC, including seven Secreted In Xylem (SIX) genes first reported in F. oxysporum f. sp. lycopersici. Two highly homologous proteins with signal peptides and RxLR motifs (CRX1/CRX2) and a gene with no previously characterized domains (C5) were also identified. The presence/absence of nine of these genes was strongly related to pathogenicity against onion and all were shown to be expressed in planta. Different SIX gene complements were identified in other f. spp., but none were identified in three other Fusarium species from onion. Although the FOC SIX genes had a high level of homology with other f. spp., there were clear differences in sequences which were unique to FOC, whereas CRX1 and C5 genes appear to be largely FOC specific. PMID:26609905
A. Dan Wilson; D.G. Lester; C.S. Oberle
2004-01-01
Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to...
Vise, Esther; Mawlong, Michael; Garg, Akshay; Sen, Arnab; Shakuntala, Ingudam; Das, Samir
2017-01-01
Initially diagnosed with cervical lymphadenitis, a 15-year-old boy was started with category I anti-tuberculosis (TB) drugs. Follow-up investigations led to isolation and identification of Mycobacterium lentiflavum by multiple diagnostic and identification approaches. Observation of this rare pathogen from human origin urges cautious diagnosis while attending TB cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Grabaskas, David; Brunett, Acacia
2015-04-26
Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less
ERIC Educational Resources Information Center
Wagner, A. Ben
2009-01-01
Many efforts are currently underway to disambiguate author names and assign unique identification numbers so that publications by a given scholar can be reliably grouped together. This paper reviews a number of operational and in-development services. Some systems like ResearcherId.Com depend on self-registration and self-identification of a…
Evaluating bacterial pathogen DNA preservation in museum osteological collections
Barnes, Ian; Thomas, Mark G
2005-01-01
Reports of bacterial pathogen DNA sequences obtained from archaeological bone specimens raise the possibility of greatly improving our understanding of the history of infectious diseases. However, the survival of pathogen DNA over long time periods is poorly characterized, and scepticism remains about the reliability of these data. In order to explore the survival of bacterial pathogen DNA in bone specimens, we analysed samples from 59 eighteenth and twentieth century individuals known to have been infected with either Mycobacterium tuberculosis or Treponema pallidum. No reproducible evidence of surviving pathogen DNA was obtained, despite the use of extraction and PCR-amplification methods determined to be highly sensitive. These data suggest that previous studies need to be interpreted with caution, and we propose that a much greater emphasis is placed on understanding how pathogen DNA survives in archaeological material, and how its presence can be properly verified and used. PMID:16608682
A field study of the accuracy and reliability of a biometric iris recognition system.
Latman, Neal S; Herb, Emily
2013-06-01
The iris of the eye appears to satisfy the criteria for a good anatomical characteristic for use in a biometric system. The purpose of this study was to evaluate a biometric iris recognition system: Mobile-Eyes™. The enrollment, verification, and identification applications were evaluated in a field study for accuracy and reliability using both irises of 277 subjects. Independent variables included a wide range of subject demographics, ambient light, and ambient temperature. A sub-set of 35 subjects had alcohol-induced nystagmus. There were 2710 identification and verification attempts, which resulted in 1,501,340 and 5540 iris comparisons respectively. In this study, the system successfully enrolled all subjects on the first attempt. All 277 subjects were successfully verified and identified on the first day of enrollment. None of the current or prior eye conditions prevented enrollment, verification, or identification. All 35 subjects with alcohol-induced nystagmus were successfully verified and identified. There were no false verifications or false identifications. Two conditions were identified that potentially could circumvent the use of iris recognitions systems in general. The Mobile-Eyes™ iris recognition system exhibited accurate and reliable enrollment, verification, and identification applications in this study. It may have special applications in subjects with nystagmus. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Li, Honglan; Joh, Yoon Sung; Kim, Hyunwoo; Paek, Eunok; Lee, Sang-Won; Hwang, Kyu-Baek
2016-12-22
Proteogenomics is a promising approach for various tasks ranging from gene annotation to cancer research. Databases for proteogenomic searches are often constructed by adding peptide sequences inferred from genomic or transcriptomic evidence to reference protein sequences. Such inflation of databases has potential of identifying novel peptides. However, it also raises concerns on sensitive and reliable peptide identification. Spurious peptides included in target databases may result in underestimated false discovery rate (FDR). On the other hand, inflation of decoy databases could decrease the sensitivity of peptide identification due to the increased number of high-scoring random hits. Although several studies have addressed these issues, widely applicable guidelines for sensitive and reliable proteogenomic search have hardly been available. To systematically evaluate the effect of database inflation in proteogenomic searches, we constructed a variety of real and simulated proteogenomic databases for yeast and human tandem mass spectrometry (MS/MS) data, respectively. Against these databases, we tested two popular database search tools with various approaches to search result validation: the target-decoy search strategy (with and without a refined scoring-metric) and a mixture model-based method. The effect of separate filtering of known and novel peptides was also examined. The results from real and simulated proteogenomic searches confirmed that separate filtering increases the sensitivity and reliability in proteogenomic search. However, no one method consistently identified the largest (or the smallest) number of novel peptides from real proteogenomic searches. We propose to use a set of search result validation methods with separate filtering, for sensitive and reliable identification of peptides in proteogenomic search.
Wang, Xiaojie; Tang, Chunlei; Zhang, Gang; Li, Yingchun; Wang, Chenfang; Liu, Bo; Qu, Zhipeng; Zhao, Jie; Han, Qingmei; Huang, Lili; Chen, Xianming; Kang, Zhensheng
2009-01-01
Background Puccinia striiformis f. sp. tritici is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and P. striiformis genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP. Results Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique. Conclusion The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin. PMID:19566949
USDA-ARS?s Scientific Manuscript database
The wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici, Pst) population in China has been reported to be a distinct genetic group with higher diversity than those in many other countries. Genetic recombination in the Pst population has been identified with molecular markers, but whethe...
USDA-ARS?s Scientific Manuscript database
Chitinases are thought to play a role in plant resistance to pathogens, but the extent of this role is unknown. The gene for a maize chitinase “chitinase 2” previously reported to be induced by two ear rot pathogens in one maize inbred, was cloned from mRNA isolated from milk stage kernels of severa...
First case of Roussoella percutanea bursitis.
Almagro-Molto, M; Haas, A; Melcher, C; Nam-Apostolopoulos, Y C; Schubert, S
2017-02-01
Roussoella percutanea is a novel opportunistic pathogen firstly identified in 2014. It is known to cause subcutaneous infection in immunosuppressed patients. We report on the first case of R. percutanea bursitis in a renal transplant patient. We provide new data about its identification, drug susceptibility, and treatment outcome. Here we demonstrate that R. percutanea is a potential human pathogen. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...
Identification of biological agents using surface enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Paxon, Tracy L.; Duthie, R. Scott; Renko, Casey; Burns, Andrew A.; Lesaicherre, Marie L.; Mondello, Frank J.
2011-05-01
GE Global Research Center, in collaboration with Morpho Detection, Inc. has developed an assay scheme for the identification of biological agents using Surface Enhanced Raman Scattering (SERS). Specifically, unique spectroscopic signatures are generated using SERS tags consisting of individual glass-encapsulated gold nanoparticles and surfacebound reporter molecules. These SERS tags are modified with a capture moiety specific to the antigen of interest, and serve as a spectroscopic label in a bead-based sandwich assay. Assays are being developed for a variety of pathogens and this paper will focus on aspects of assay development, optimization, stabilization and validation. Results on the development of an assay to detect Ricin toxin will be presented, and preliminary feasibility studies for the detection of additional pathogens will be discussed.
Nguyen, Thao Thi; Lee, Hyun-Hee; Park, Jungwook; Park, Inmyoung; Seo, Young-Su
2017-04-01
As a step towards discovering novel pathogenesis-related proteins, we performed a genome scale computational identification and characterization of secreted and transmembrane (TM) proteins, which are mainly responsible for bacteria-host interactions and interactions with other bacteria, in the genomes of six representative Burkholderia species. The species comprised plant pathogens ( B. glumae BGR1, B. gladioli BSR3), human pathogens ( B. pseudomallei K96243, B. cepacia LO6), and plant-growth promoting endophytes ( Burkholderia sp. KJ006, B. phytofirmans PsJN). The proportions of putative classically secreted proteins (CSPs) and TM proteins among the species were relatively high, up to approximately 20%. Lower proportions of putative type 3 non-classically secreted proteins (T3NCSPs) (~10%) and unclassified non-classically secreted proteins (NCSPs) (~5%) were observed. The numbers of TM proteins among the three clusters (plant pathogens, human pathogens, and endophytes) were different, while the distribution of these proteins according to the number of TM domains was conserved in which TM proteins possessing 1, 2, 4, or 12 TM domains were the dominant groups in all species. In addition, we observed conservation in the protein size distribution of the secreted protein groups among the species. There were species-specific differences in the functional characteristics of these proteins in the various groups of CSPs, T3NCSPs, and unclassified NCSPs. Furthermore, we assigned the complete sets of the conserved and unique NCSP candidates of the collected Burkholderia species using sequence similarity searching. This study could provide new insights into the relationship among plant-pathogenic, human-pathogenic, and endophytic bacteria.
Yeh, Ellen; Pinsky, Benjamin A; Banaei, Niaz; Baron, Ellen Jo
2009-07-03
Blood agar is used for the identification and antibiotic susceptibility testing of many bacterial pathogens. In the developing world, microbiologists use human blood agar because of the high cost and inhospitable conditions for raising wool sheep or horses to supply blood. Many pathogens either fail to grow entirely or exhibit morphologies and hemolytic patterns on human blood agar that confound colony recognition. Furthermore, human blood can be hazardous to handle due to HIV and hepatitis. This study investigated whether blood from hair sheep, a hardy, low-maintenance variety of sheep adapted for hot climates, was suitable for routine clinical microbiology studies. Hair sheep blood obtained by jugular venipuncture was anticoagulated by either manual defibrination or collection in human blood bank bags containing citrate-phosphate-dextrose. Trypticase soy 5% blood agar was made from both forms of hair sheep blood and commercial defibrinated wool sheep blood. Growth characteristics, colony morphologies, and hemolytic patterns of selected human pathogens, including several streptococcal species, were evaluated. Specialized identification tests, including CAMP test, reverse CAMP test, and satellite colony formation with Haemophilus influenzae and Abiotrophia defectiva were also performed. Mueller-Hinton blood agar plates prepared from the three blood types were compared in antibiotic susceptibility tests by disk diffusion and E-test. The results of all studies showed that blood agar prepared from citrated hair sheep blood is suitable for microbiological tests used in routine identification and susceptibility profiling of human pathogens. The validation of citrated hair sheep blood eliminates the labor-intensive and equipment-requiring process of manual defibrination. Use of hair sheep blood, in lieu of human blood currently used by many developing world laboratories and as an alternative to cost-prohibitive commercial sheep blood, offers the opportunity to dramatically improve the safety and accuracy of laboratory diagnosis of pathogenic bacteria in resource-poor countries.
Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun
2017-08-15
Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua
2017-01-01
ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310
Aerococcus urinae in urinary tract infections.
Zhang, Q; Kwoh, C; Attorri, S; Clarridge, J E
2000-04-01
Aerococcus urinae is a rarely reported pathogen, possibly due to difficulties in the identification of the organism. A. urinae is a gram-positive coccus that grows in pairs and clusters, produces alpha-hemolysis on blood agar, and is negative for catalase and pyrrolidonyl aminopeptidase. Some of these characteristics and its being absent from the databases of most commercial identification systems could allow A. urinae to be misidentified as a streptococcus, enterococcus, or staphylococcus. We report two cases of urinary tract infection (UTI) caused by A. urinae and characterize these isolates by morphology, biochemical testing, whole-cell fatty acid analysis, 16S rRNA gene sequencing, and antibiotic susceptibilities. Most patients infected with A. urinae are elderly males with predisposing conditions who present initially with UTI. Because A. urinae is resistant to sulfonamides, treatment could be inappropriate, with infections resulting in serious complications, including death. It is important for the clinician and the microbiologist to consider A. urinae a potential pathogen and proceed with thorough microbiological identification.
Hunter, Paul R; Zmirou-Navier, Denis; Hartemann, Philippe
2009-04-01
Recent evidence suggests that many improved drinking water supplies suffer from poor reliability. This study investigates what impact poor reliability may have on achieving health improvement targets. A Quantitative Microbiological Risk Assessment was conducted of the impact of interruptions in water supplies that forced people to revert to drinking raw water. Data from the literature were used to construct models on three waterborne pathogens common in Africa: Rotavirus, Cryptosporidium and Enterotoxigenic E. coli. Risk of infection by the target pathogens is substantially greater on days that people revert to raw water consumption. Over the course of a few days raw water consumption, the annual health benefits attributed to consumption of water from an improved supply will be almost all lost. Furthermore, risk of illness on days drinking raw water will fall substantially on very young children who have the highest risk of death following infection. Agencies responsible for implementing improved drinking water provision will not make meaningful contributions to public health targets if those systems are subject to poor reliability. Funders of water quality interventions in developing countries should put more effort into auditing whether interventions are sustainable and whether the health benefits are being achieved.
UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
Chanumolu, Sree Krishna; Rout, Chittaranjan; Chauhan, Rajinder S
2012-01-01
Targeting conserved proteins of bacteria through antibacterial medications has resulted in both the development of resistant strains and changes to human health by destroying beneficial microbes which eventually become breeding grounds for the evolution of resistances. Despite the availability of more than 800 genomes sequences, 430 pathways, 4743 enzymes, 9257 metabolic reactions and protein (three-dimensional) 3D structures in bacteria, no pathogen-specific computational drug target identification tool has been developed. A web server, UniDrug-Target, which combines bacterial biological information and computational methods to stringently identify pathogen-specific proteins as drug targets, has been designed. Besides predicting pathogen-specific proteins essentiality, chokepoint property, etc., three new algorithms were developed and implemented by using protein sequences, domains, structures, and metabolic reactions for construction of partial metabolic networks (PMNs), determination of conservation in critical residues, and variation analysis of residues forming similar cavities in proteins sequences. First, PMNs are constructed to determine the extent of disturbances in metabolite production by targeting a protein as drug target. Conservation of pathogen-specific protein's critical residues involved in cavity formation and biological function determined at domain-level with low-matching sequences. Last, variation analysis of residues forming similar cavities in proteins sequences from pathogenic versus non-pathogenic bacteria and humans is performed. The server is capable of predicting drug targets for any sequenced pathogenic bacteria having fasta sequences and annotated information. The utility of UniDrug-Target server was demonstrated for Mycobacterium tuberculosis (H37Rv). The UniDrug-Target identified 265 mycobacteria pathogen-specific proteins, including 17 essential proteins which can be potential drug targets. UniDrug-Target is expected to accelerate pathogen-specific drug targets identification which will increase their success and durability as drugs developed against them have less chance to develop resistances and adverse impact on environment. The server is freely available at http://117.211.115.67/UDT/main.html. The standalone application (source codes) is available at http://www.bioinformatics.org/ftp/pub/bioinfojuit/UDT.rar.
Derzelle, Sylviane; Thierry, Simon
2013-09-01
Bacillus anthracis, the etiological agent of anthrax, a zoonosis relatively common throughout the world, can be used as an agent of bioterrorism. In naturally occurring outbreaks and in criminal release of this pathogen, a fast and accurate diagnosis is crucial to an effective response. Microbiological forensics and epidemiologic investigations increasingly rely on molecular markers, such as polymorphisms in DNA sequence, to obtain reliable information regarding the identification or source of a suspicious strain. Over the past decade, significant research efforts have been undertaken to develop genotyping methods with increased power to differentiate B. anthracis strains. A growing number of DNA signatures have been identified and used to survey B. anthracis diversity in nature, leading to rapid advances in our understanding of the global population of this pathogen. This article provides an overview of the different phylogenetic subgroups distributed across the world, with a particular focus on Europe. Updated information on the anthrax situation in Europe is reported. A brief description of some of the work in progress in the work package 5.1 of the AniBioThreat project is also presented, including (1) the development of a robust typing tool based on a suspension array technology and multiplexed single nucleotide polymorphisms scoring and (2) the typing of a collection of DNA from European isolates exchanged between the partners of the project. The know-how acquired will contribute to improving the EU's ability to react rapidly when the identity and real origin of a strain need to be established.
Jordana-Lluch, Elena; Rivaya, Belén; Marcó, Clara; Giménez, Montserrat; Quesada, Mª Dolores; Escobedo, Agustín; Batlle, Montserrat; Martró, Elisa; Ausina, Vicente
2017-02-01
Onco-haematological patients are prone to develop infections, and antibiotic prophylaxis may lead to negative blood cultures. Thus, the microbiological diagnosis and subsequent administration of a targeted antimicrobial therapy is often difficult. The goal of this study was to evaluate the usefulness of IRIDICA (PCR/ESI-MS technology) for the molecular diagnosis of bloodstream infections in this patient group. A total of 463 whole blood specimens from different sepsis episodes in 429 patients were analysed using the PCR/ESI-MS platform, comparing the results with those of blood culture and other clinically relevant information. The sensitivity of PCR/ESI-MS by specimen (excluding polymicrobial infections, n = 25) in comparison with blood culture was 64.3% overall, 69.0% in oncological patients, and 59.3% in haematological patients. When comparing with a clinical infection criterion, overall sensitivity rose to 74.7%, being higher in oncological patients (80.0%) than in haematological patients (67.7%). Thirty-one microorganisms isolated by culture were not detected by IRIDICA, whereas 42 clinically relevant pathogens not isolated by culture were detected moleculary. PCR/ESI-MS offers a reliable identification of pathogens directly from whole blood. While additional studies are needed to confirm our findings, the system showed a lower sensitivity in onco-haematological patients in comparison with previously reported results in patients from the Intensive Care Unit. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Haller, Sebastian; Eckmanns, Tim; Benzler, Justus; Tolksdorf, Kristin; Claus, Hermann; Gilsdorf, Andreas; Sin, Muna Abu
2014-01-01
Background In August 2011, the German Protection against Infection Act was amended, mandating the reporting of healthcare associated infection (HAI) outbreak notifications by all healthcare workers in Germany via local public health authorities and federal states to the Robert Koch Institute (RKI). Objective To describe the reported HAI-outbreaks and the surveillance system’s structure and capabilities. Methods Information on each outbreak was collected using standard paper forms and notified to RKI. Notifications were screened daily and regularly analysed. Results Between November 2011 and November 2012, 1,326 paper forms notified 578 HAI-outbreaks, between 7 and 116 outbreaks per month. The main causative agent was norovirus (n = 414/578; 72%). Among the 108 outbreaks caused by bacteria, the most frequent pathogens were Clostridium difficile (25%) Klebsiella spp. (19%) and Staphylococcus spp. (19%). Multidrug-resistant bacteria were responsible for 54/108 (50%) bacterial outbreaks. Hospitals were affected most frequently (485/578; 84%). Hospital outbreaks due to bacteria were mostly reported from intensive care units (ICUs) (45%), followed by internal medicine wards (16%). Conclusion The mandatory HAI-outbreak surveillance system describes common outbreaks. Pathogens with a particular high potential to cause large or severe outbreaks may be identified, enabling us to further focus research and preventive measures. Increasing the sensitivity and reliability of the data collection further will facilitate identification of outbreaks able to increase in size and severity, and guide specific control measures to interrupt their propagation. PMID:24875674
Post-mortem cytogenomic investigations in patients with congenital malformations.
Dias, Alexandre Torchio; Zanardo, Évelin Aline; Dutra, Roberta Lelis; Piazzon, Flavia Balbo; Novo-Filho, Gil Monteiro; Montenegro, Marilia Moreira; Nascimento, Amom Mendes; Rocha, Mariana; Madia, Fabricia Andreia Rosa; Costa, Thais Virgínia Moura Machado; Milani, Cintia; Schultz, Regina; Gonçalves, Fernanda Toledo; Fridman, Cintia; Yamamoto, Guilherme Lopes; Bertola, Débora Romeo; Kim, Chong Ae; Kulikowski, Leslie Domenici
2016-08-01
Congenital anomalies are the second highest cause of infant deaths, and, in most cases, diagnosis is a challenge. In this study, we characterize patterns of DNA copy number aberrations in different samples of post-mortem tissues from patients with congenital malformations. Twenty-eight patients undergoing autopsy were cytogenomically evaluated using several methods, specifically, Multiplex Ligation-dependent Probe Amplification (MLPA), microsatellite marker analysis with a MiniFiler kit, FISH, a cytogenomic array technique and bidirectional Sanger sequencing, which were performed on samples of different tissues (brain, heart, liver, skin and diaphragm) preserved in RNAlater, in formaldehyde or by paraffin-embedding. The results identified 13 patients with pathogenic copy number variations (CNVs). Of these, eight presented aneuploidies involving chromosomes 13, 18, 21, X and Y (two presented inter- and intra-tissue mosaicism). In addition, other abnormalities were found, including duplication of the TYMS gene (18p11.32); deletion of the CHL1 gene (3p26.3); deletion of the HIC1 gene (17p13.3); and deletion of the TOM1L2 gene (17p11.2). One patient had a pathogenic missense mutation of g.8535C>G (c.746C>G) in exon 7 of the FGFR3 gene consistent with Thanatophoric Dysplasia type I. Cytogenomic techniques were reliable for the analysis of autopsy material and allowed the identification of inter- and intra-tissue mosaicism and a better understanding of the pathogenesis of congenital malformations. Copyright © 2016 Elsevier Inc. All rights reserved.
Detecting Staphylococcus aureus in milk from dairy cows using sniffer dogs.
Fischer-Tenhagen, C; Theby, V; Krömker, V; Heuwieser, W
2018-05-01
Fast and accurate identification of disease-causing pathogens is essential for specific antimicrobial therapy in human and veterinary medicine. In these experiments, dogs were trained to identify Staphylococcus aureus and differentiate it from other common mastitis-causing pathogens by smell. Headspaces from agar plates, inoculated raw milk samples, or field samples collected from cows with Staphylococcus aureus and other mastitis-causing pathogens were used for training and testing. The ability to learn the specific odor of Staphylococcus aureus in milk depended on the concentration of the pathogens in the training samples. Sensitivity and specificity for identifying Staphylococcus aureus were 91.3 and 97.9%, respectively, for pathogens grown on agar plates; 83.8 and 98.0% for pathogens inoculated in raw milk; and 59.0 and 93.2% for milk samples from mastitic cows. The results of these experiments underline the potential of odor detection as a diagnostic tool for pathogen diagnosis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Thatcher, Louise F; Williams, Angela H; Garg, Gagan; Buck, Sally-Anne G; Singh, Karam B
2016-11-03
Pathogenic members of the Fusarium oxysporum species complex are responsible for vascular wilt disease on many important crops including legumes, where they can be one of the most destructive disease causing necrotrophic fungi. We previously developed a model legume-infecting pathosystem based on the reference legume Medicago truncatula and a pathogenic F. oxysporum forma specialis (f. sp.) medicaginis (Fom). To dissect the molecular pathogenicity arsenal used by this root-infecting pathogen, we sequenced its transcriptome during infection of a susceptible and resistant host accession. High coverage RNA-Seq of Fom infected root samples harvested from susceptible (DZA315) or resistant (A17) M. truncatula seedlings at early or later stages of infection (2 or 7 days post infection (dpi)) and from vegetative (in vitro) samples facilitated the identification of unique and overlapping sets of in planta differentially expressed genes. This included enrichment, particularly in DZA315 in planta up-regulated datasets, for proteins associated with sugar, protein and plant cell wall metabolism, membrane transport, nutrient uptake and oxidative processes. Genes encoding effector-like proteins were identified, including homologues of the F. oxysporum f. sp. lycopersici Secreted In Xylem (SIX) proteins, and several novel candidate effectors based on predicted secretion, small protein size and high in-planta induced expression. The majority of the effector candidates contain no known protein domains but do share high similarity to predicted proteins predominantly from other F. oxysporum ff. spp. as well as other Fusaria (F. solani, F. fujikori, F. verticilloides, F. graminearum and F. pseudograminearum), and from another wilt pathogen of the same class, a Verticillium species. Overall, this suggests these novel effector candidates may play important roles in Fusaria and wilt pathogen virulence. Combining high coverage in planta RNA-Seq with knowledge of fungal pathogenicity protein features facilitated the identification of differentially expressed pathogenicity associated genes and novel effector candidates expressed during infection of a resistant or susceptible M. truncatula host. The knowledge from this first in depth in planta transcriptome sequencing of any F. oxysporum ff. spp. pathogenic on legumes will facilitate the dissection of Fusarium wilt pathogenicity mechanisms on many important legume crops.
77 FR 47831 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... to Reliability Standard CIP-002-4--Critical Cyber Asset Identification. Filed Date: 8/1/12. Accession... Corporation for Approval of an Interpretation to Reliability Standard CIP-004-4--Personnel and Training. Filed...
Antonov, Valery A; Tkachenko, Galina A; Altukhova, Viktoriya V; Savchenko, Sergey S; Zinchenko, Olga V; Viktorov, Dmitry V; Zamaraev, Valery S; Ilyukhin, Vladimir I; Alekseev, Vladimir V
2008-12-01
Burkholderia mallei and B. pseudomallei are highly pathogenic microorganisms for both humans and animals. Moreover, they are regarded as potential agents of bioterrorism. Thus, rapid and unequivocal detection and identification of these dangerous pathogens is critical. In the present study, we describe the use of an optimized protocol for the early diagnosis of experimental glanders and melioidosis and for the rapid differentiation and typing of Burkholderia strains. This experience with PCR-based identification methods indicates that single PCR targets (23S and 16S rRNA genes, 16S-23S intergenic region, fliC and type III secretion gene cluster) should be used with caution for identification of B. mallei and B. pseudomallei, and need to be used alongside molecular methods such as gene sequencing. Several molecular typing procedures have been used to identify genetically related B. pseudomallei and B. mallei isolates, including ribotyping, pulsed-field gel electrophoresis and multilocus sequence typing. However, these methods are time consuming and technically challenging for many laboratories. RAPD, variable amplicon typing scheme, Rep-PCR, BOX-PCR and multiple-locus variable-number tandem repeat analysis have been recommended by us for the rapid differentiation of B. mallei and B. pseudomallei strains.
Identification badges: a potential fomite?
Ota, Kaede; Profiti, Raffaela; Smaill, Fiona; Matlow, Anne G; Smieja, Marek
2007-01-01
Staff identification badges are mandatory in all hospitals. The purpose of this study was to assess microbial contamination of identification badges at a Canadian tertiary centre. Risk factors for badge contamination were also investigated. Badges were cultured from 118 subjects including secretaries, physicians, nurses, and allied health workers. Subjects also completed a demographic questionnaire. Badge contamination was analyzed according to profession, workplace, duration of badge use, presence of a plastic cover, how the badge was worn, and cleaning frequency. 13.6% of the badges were contaminated with significant pathogens. S. aureus was isolated in 6.8% of the badges, gram-negative bacilli in 5.9%. Contamination was highest in nurses (21.4% versus 9.4-14.3% in other professions) and in the ICU (22.6% versus 8.3%-14.3% at other locations). Neither association was statistically significant. Covered and non-covered badges had similar contamination rates (12% and 17.1%) as did badges worn around the neck compared with those worn clipped to clothing (13.0% versus 14.6%). Contamination of recently cleaned badges was not statistically different from those that had not. Identification badges do not appear to be a major reservoir for pathogenic organisms. Badges can, however, harbour disease-causing organisms and should be cleaned regularly.
Zhao, Zuotao; Li, Lili; Wan, Zhe; Chen, Wei; Liu, Honggang; Li, Ruoyu
2011-01-01
Rapid detection and differentiation of Aspergillus and Mucorales species in fungal rhinosinusitis diagnosis are desirable, since the clinical management and prognosis associated with the two taxa are fundamentally different. We describe an assay based on a combination of broad-range PCR amplification and reverse line blot hybridization (PCR/RLB) to detect and differentiate the pathogens causing fungal rhinosinusitis, which include five Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, and A. nidulans) and seven Mucorales species (Mucor heimalis, Mucor racemosus, Mucor cercinelloidea, Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, and Absidia corymbifera). The assay was validated with 98 well-characterized clinical isolates and 41 clinical tissue specimens. PCR/RLB showed high sensitivity and specificity, with 100% correct identifications of 98 clinical isolates and no cross-hybridization between the species-specific probes. Results for five control isolates, Candida albicans, Fusarium solani, Scedosporium apiospermum, Penicillium marneffei, and Exophiala verrucosa, were negative as judged by PCR/RLB. The analytical sensitivity of PCR/RLB was found to be 1.8 × 10−3 ng/μl by 10-fold serial dilution of Aspergillus genomic DNA. The assay identified 35 of 41 (85.4%) clinical specimens, exhibiting a higher sensitivity than fungal culture (22 of 41; 53.7%) and direct sequencing (18 of 41; 43.9%). PCR/RLB similarly showed high specificity, with correct identification 16 of 18 specimens detected by internal transcribed spacer (ITS) sequencing and 16 of 22 detected by fungal culture, but it also has the additional advantage of being able to detect mixed infection in a single clinical specimen. The PCR/RLB assay thus provides a rapid and reliable option for laboratory diagnosis of fungal rhinosinusitis. PMID:21325541
Zhao, Zuotao; Li, Lili; Wan, Zhe; Chen, Wei; Liu, Honggang; Li, Ruoyu
2011-04-01
Rapid detection and differentiation of Aspergillus and Mucorales species in fungal rhinosinusitis diagnosis are desirable, since the clinical management and prognosis associated with the two taxa are fundamentally different. We describe an assay based on a combination of broad-range PCR amplification and reverse line blot hybridization (PCR/RLB) to detect and differentiate the pathogens causing fungal rhinosinusitis, which include five Aspergillus species (A. fumigatus, A. flavus, A. niger, A. terreus, and A. nidulans) and seven Mucorales species (Mucor heimalis, Mucor racemosus, Mucor cercinelloidea, Rhizopus arrhizus, Rhizopus microsporus, Rhizomucor pusillus, and Absidia corymbifera). The assay was validated with 98 well-characterized clinical isolates and 41 clinical tissue specimens. PCR/RLB showed high sensitivity and specificity, with 100% correct identifications of 98 clinical isolates and no cross-hybridization between the species-specific probes. Results for five control isolates, Candida albicans, Fusarium solani, Scedosporium apiospermum, Penicillium marneffei, and Exophiala verrucosa, were negative as judged by PCR/RLB. The analytical sensitivity of PCR/RLB was found to be 1.8 × 10(-3) ng/μl by 10-fold serial dilution of Aspergillus genomic DNA. The assay identified 35 of 41 (85.4%) clinical specimens, exhibiting a higher sensitivity than fungal culture (22 of 41; 53.7%) and direct sequencing (18 of 41; 43.9%). PCR/RLB similarly showed high specificity, with correct identification 16 of 18 specimens detected by internal transcribed spacer (ITS) sequencing and 16 of 22 detected by fungal culture, but it also has the additional advantage of being able to detect mixed infection in a single clinical specimen. The PCR/RLB assay thus provides a rapid and reliable option for laboratory diagnosis of fungal rhinosinusitis.
Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field.
Al-Sheikh, Hashem
2010-10-01
During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions.
Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field
Al-Sheikh, Hashem
2010-01-01
During a survey of pathogenic and non-pathogenic Pythium spp. in different localities in Egypt, several isolates of Pythia were obtained and maintained on corn meal agar. Among these isolates, Pythium aphanidermatum and Pythium diclinum were obtained from rhizosphere of wheat plants grown in Dear Attia village, Minia, Egypt. Identification was made using morphological and molecular analyses. P. aphanidermatum and P. diclinum were able to cause reductions in emergence and adulating in wheat in laboratory scale. P. aphanidermatum appeared to be the most aggressive parasite under agar and pot experimental conditions. PMID:23961096
Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species
Yücesoy, Mine; Marol, Serhat
2003-01-01
Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37°C. Results The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. Conclusions It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar. PMID:14613587
Witkowska, Evelin; Korsak, Dorota; Kowalska, Aneta; Księżopolska-Gocalska, Monika; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa; Michałowicz, Weronika; Albrycht, Paweł; Podrażka, Marta; Hołyst, Robert; Waluk, Jacek; Kamińska, Agnieszka
2017-02-01
We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290-1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures. Graphical Abstract New approach of the SERS strategy for detection and identification of food-borne bacteria, namely S. enterica, L. monocytogenes, and C. sakazakii in selected food matrices.
Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016-17.
Fusaro, Alice; Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero
2017-09-01
In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.
Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena
2017-01-01
ABSTRACT We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. PMID:28642378
Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato
2017-06-22
We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. Copyright © 2017 Miceli et al.
Allovahlkampfia spelaea Causing Keratitis in Humans
Tolba, Mohammed Essa Marghany; Huseein, Enas Abdelhameed Mahmoud; Farrag, Haiam Mohamed Mahmoud; Mohamed, Hanan El Deek; Kobayashi, Seiki; Suzuki, Jun; Ali, Tarek Ahmed Mohamed; Sugano, Sumio
2016-01-01
Background Free-living amoebae are present worldwide. They can survive in different environment causing human diseases in some instances. Acanthamoeba sp. is known for causing sight-threatening keratitis in humans. Free-living amoeba keratitis is more common in developing countries. Amoebae of family Vahlkampfiidae are rarely reported to cause such affections. A new genus, Allovahlkampfia spelaea was recently identified from caves with no data about pathogenicity in humans. We tried to identify the causative free-living amoeba in a case of keratitis in an Egyptian patient using morphological and molecular techniques. Methods Pathogenic amoebae were culture using monoxenic culture system. Identification through morphological features and 18S ribosomal RNA subunit DNA amplification and sequencing was done. Pathogenicity to laboratory rabbits and ability to produce keratitis were assessed experimentally. Results Allovahlkampfia spelaea was identified as a cause of human keratitis. Whole sequence of 18S ribosomal subunit DNA was sequenced and assembled. The Egyptian strain was closely related to SK1 strain isolated in Slovenia. The ability to induce keratitis was confirmed using animal model. Conclusions This the first time to report Allovahlkampfia spelaea as a human pathogen. Combining both molecular and morphological identification is critical to correctly diagnose amoebae causing keratitis in humans. Use of different pairs of primers and sequencing amplified DNA is needed to prevent misdiagnosis. PMID:27415799
Jaureguiberry, María; Madoz, Laura Vanina; Giuliodori, Mauricio Javier; Wagener, Karen; Prunner, Isabella; Grunert, Tom; Ehling-Schulz, Monika; Drillich, Marc; de la Sota, Rodolfo Luzbel
2016-11-28
Uterine disorders are common postpartum diseases in dairy cows. In practice, uterine treatment is often based on systemic or locally applied antimicrobials with no previous identification of pathogens. Accurate on-farm diagnostics are not available, and routine testing is time-consuming and cost intensive. An accurate method that could simplify the identification of uterine pathogenic bacteria and improve pathogen-specific treatments could be an important advance to practitioners. The objective of the present study was to evaluate whether a database built with uterine bacteria from European dairy cows could be used to identify bacteria from Argentinean cows by Fourier transformed infrared (FTIR) spectroscopy. Uterine samples from 64 multiparous dairy cows with different types of vaginal discharge (VD) were collected between 5 and 60 days postpartum, analyzed by routine bacteriological testing methods and then re-evaluated by FTIR spectroscopy (n = 27). FTIR spectroscopy identified Escherichia coli in 12 out of 14 samples and Trueperella pyogenes in 8 out of 10 samples. The agreement between the two methods was good with a Kappa coefficient of 0.73. In addition, the likelihood for bacterial growth of common uterine pathogens such as E. coli and T. pyogenes tended to increase with VD score. The odds for a positive result to E. coli or T. pyogenes was 1.88 times higher in cows with fetid VD than in herdmates with clear normal VD. We conclude that the presence of E. coli and T. pyogenes in uterine samples from Argentinean dairy cows can be detected with FTIR with the use of a database built with uterine bacteria from European dairy cows. Future studies are needed to determine if FTIR can be used as an alternative to routine bacteriological testing methods.
Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers
Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel
2016-01-01
Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434
Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.
Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel
2016-01-01
Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.
2014-01-01
Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner. PMID:25077800
Pongor, Lőrinc S; Vera, Roberto; Ligeti, Balázs
2014-01-01
Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner.
Samgina, Tatyana Yu; Gorshkov, Vladimir A; Artemenko, Konstantin A; Vorontsov, Egor A; Klykov, Oleg V; Ogourtsov, Sergey V; Zubarev, Roman A; Lebedev, Albert T
2012-04-01
Identification of species constituting Rana esculenta complex represents a certain problem as two parental species Rana ridibunda and Rana lessonae form their hybrid R. esculenta, while external signs and sizes of the members of this complex are intersected. However the composition of skin secretion consisting mainly of peptides is different for the species of the complex. LC-MS/MS is an ideal analytical tool for the quantitative and qualitative analysis of these peptides. The results covering elemental composition of these peptides, their levels in the secretion, as well as their belonging to a certain family of peptides may be visualized by means of 2D mass maps. The proposed approach proved itself to be a perspective tool for the reliable identification of all 3 species constituting R. esculenta complex. Easy distinguishing between the species may be achieved using 2D maps as fingerprints. Besides this approach may be used to study hybridogenesis and mechanisms of hemiclonal transfer of genetic information, when rapid and reliable identification of species involved in the process is required. Copyright © 2012 Elsevier Inc. All rights reserved.
Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates
Celandroni, Francesco; Salvetti, Sara; Gueye, Sokhna Aissatou; Mazzantini, Diletta; Lupetti, Antonella; Senesi, Sonia; Ghelardi, Emilia
2016-01-01
The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption—ionization time of flight mass spectrometry (MALDI-TOF MS) in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance. PMID:27031639
Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz
2014-01-01
Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.
Passari, Ajit K; Mishra, Vineet K; Gupta, Vijai K; Saikia, Ratul; Singh, Bhim P
2016-08-26
The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.
ERIC Educational Resources Information Center
Miciak, Jeremy; Fletcher, Jack M.; Stuebing, Karla K.; Vaughn, Sharon; Tolar, Tammy D.
2014-01-01
Few empirical investigations have evaluated learning disabilities (LD) identification methods based on a pattern of cognitive strengths and weaknesses (PSW). This study investigated the reliability and validity of two proposed PSW methods: the concordance/discordance method (C/DM) and cross battery assessment (XBA) method. Cognitive assessment…
Automatic Car Identification - an Evaluation
DOT National Transportation Integrated Search
1972-03-01
In response to a Federal Railroad Administration request, the Transportation Systems Center evaluated the Automatic Car Identification System (ACI) used on the nation's railroads. The ACI scanner was found to be adequate for reliable data output whil...
The Reliability of Facial Recognition of Deceased Persons on Photographs.
Caplova, Zuzana; Obertova, Zuzana; Gibelli, Daniele M; Mazzarelli, Debora; Fracasso, Tony; Vanezis, Peter; Sforza, Chiarella; Cattaneo, Cristina
2017-09-01
In humanitarian emergencies, such as the current deceased migrants in the Mediterranean, antemortem documentation needed for identification may be limited. The use of visual identification has been previously reported in cases of mass disasters such as Thai tsunami. This pilot study explores the ability of observers to match unfamiliar faces of living and dead persons and whether facial morphology can be used for identification. A questionnaire was given to 41 students and five professionals in the field of forensic identification with the task to choose whether a facial photograph corresponds to one of the five photographs in a lineup and to identify the most useful features used for recognition. Although the overall recognition score did not significantly differ between professionals and students, the median scores of 78.1% and 80.0%, respectively, were too low to consider this method as a reliable identification method and thus needs to be supported by other means. © 2017 American Academy of Forensic Sciences.
Caplova, Zuzana; Obertova, Zuzana; Gibelli, Daniele M; De Angelis, Danilo; Mazzarelli, Debora; Sforza, Chiarella; Cattaneo, Cristina
2018-05-01
The use of the physical appearance of the deceased has become more important because the available antemortem information for comparisons may consist only of a physical description and photographs. Twenty-one articles dealing with the identification based on the physiognomic features of the human body were selected for review and were divided into four sections: (i) visual recognition, (ii) specific facial/body areas, (iii) biometrics, and (iv) dental superimposition. While opinions about the reliability of the visual recognition differ, the search showed that it has been used in mass disasters, even without testing its objectivity and reliability. Specific facial areas being explored for the identification of dead; however, their practical use is questioned, similarly to soft biometrics. The emerging dental superimposition seems to be the only standardized and successfully applied method for identification so far. More research is needed into a potential use of the individualizing features, considering that postmortem changes and technical difficulties may affect the identification. © 2017 American Academy of Forensic Sciences.
Trust and reliance on an automated combat identification system.
Wang, Lu; Jamieson, Greg A; Hollands, Justin G
2009-06-01
We examined the effects of aid reliability and reliability disclosure on human trust in and reliance on a combat identification (CID) aid. We tested whether trust acts as a mediating factor between belief in and reliance on a CID aid. Individual CID systems have been developed to reduce friendly fire incidents. However, these systems cannot positively identify a target that does not have a working transponder. Therefore, when the feedback is "unknown", the target could be hostile, neutral, or friendly. Soldiers have difficulty relying on this type of imperfect automation appropriately. In manual and aided conditions, 24 participants completed a simulated CID task. The reliability of the aid varied within participants, half of whom were told the aid reliability level. We used the difference in response bias values across conditions to measure automation reliance. Response bias varied more appropriately with the aid reliability level when it was disclosed than when not. Trust in aid feedback correlated with belief in aid reliability and reliance on aid feedback; however, belief was not correlated with reliance. To engender appropriate reliance on CID systems, users should be made aware of system reliability. The findings can be applied to the design of information displays for individual CID systems and soldier training.
Pritchard, Leighton; Birch, Paul
2011-04-01
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.
2017-01-01
We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.
Making a protein extract from plant pathogenic fungi for gel- and LC-based proteomics.
Fernández, Raquel González; Redondo, Inmaculada; Jorrin-Novo, Jesus V
2014-01-01
Proteomic technologies have become a successful tool to provide relevant information on fungal biology. In the case of plant pathogenic fungi, this approach would allow a deeper knowledge of the interaction and the biological cycle of the pathogen, as well as the identification of pathogenicity and virulence factors. These two elements open up new possibilities for crop disease diagnosis and environment-friendly crop protection. Phytopathogenic fungi, due to its particular cellular characteristics, can be considered as a recalcitrant biological material, which makes it difficult to obtain quality protein samples for proteomic analysis. This chapter focuses on protein extraction for gel- and LC-based proteomics with specific protocols of our current research with Botrytis cinerea.
Paolucci, M; Foschi, C; Tamburini, M V; Ambretti, S; Lazzarotto, T; Landini, M P
2014-09-01
In this study we evaluated MALDI-TOF MS and FilmArray methods for the rapid identification of yeast from positive blood cultures. FilmArray correctly identified 20/22 of yeast species, while MALDI-TOF MS identified 9/22. FilmArray is a reliable and rapid identification system for the direct identification of yeasts from positive blood cultures. Copyright © 2014 Elsevier B.V. All rights reserved.
Ferreira, L; Sánchez-Juanes, F; Porras-Guerra, I; García-García, M I; García-Sánchez, J E; González-Buitrago, J M; Muñoz-Bellido, J L
2011-04-01
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows a fast and reliable bacterial identification from culture plates. Direct analysis of clinical samples may increase its usefulness in samples in which a fast identification of microorganisms can guide empirical treatment, such as blood cultures (BC). Three hundred and thirty BC, reported as positive by the automated BC incubation device, were processed by conventional methods for BC processing, and by a fast method based on direct MALDI-TOF MS. Three hundred and eighteen of them yield growth on culture plates, and 12 were false positive. The MALDI-TOF MS-based method reported that no peaks were found, or the absence of a reliable identification profile, in all these false positive BC. No mixed cultures were found. Among these 318 BC, we isolated 61 Gram-negatives (GN), 239 Gram-positives (GP) and 18 fungi. Microorganism identifications in GN were coincident with conventional identification, at the species level, in 83.3% of BC and, at the genus level, in 96.6%. In GP, identifications were coincident with conventional identification in 31.8% of BC at the species level, and in 64.8% at the genus level. Fungaemia was not reliably detected by MALDI-TOF. In 18 BC positive for Candida species (eight C. albicans, nine C. parapsilosis and one C. tropicalis), no microorganisms were identified at the species level, and only one (5.6%) was detected at the genus level. The results of the present study show that this fast, MALDI-TOF MS-based method allows bacterial identification directly from presumptively positive BC in a short time (<30 min), with a high accuracy, especially when GN bacteria are involved. © 2010 The Authors. Clinical Microbiology and Infection © 2010 European Society of Clinical Microbiology and Infectious Diseases.
Ganda, Erika Korzune; Bisinotto, Rafael Sisconeto; Decter, Dean Harrison; Bicalho, Rodrigo Carvalho
2016-01-01
The present study aimed evaluate an on-farm culture system for identification of milk pathogens associated with clinical mastitis in dairy cows using two different gold standard approaches: standard laboratory culture in study 1 and 16S rRNA sequencing in study 2. In study 1, milk from mastitic quarters (i.e. presence of flakes, clots, or serous milk; n = 538) was cultured on-farm using a single plate containing three selective chromogenic media (Accumast-FERA Animal Health LCC, Ithaca, NY) and in a reference laboratory using standard culture methods, which was considered the gold standard. In study 2, mastitic milk was cultured on-farm and analyzed through 16S rRNA sequencing (n = 214). In both studies, plates were cultured aerobically at 37°C for 24 h and read by a single technician masked to gold standard results. Accuracy, sensitivity, specificity, positive (PPV) and negative predictive value (NPV) were calculated based on standard laboratory culture in study 1, and PPV was calculated based on sequencing results in study 2. Overall accuracy of Accumast was 84.9%. Likewise, accuracy for identification of Gram-negative bacteria, Staphylococcus sp., and Streptococcus sp. was 96.4%, 93.8%, and 91.5%, respectively. Sensitivity, specificity, PPV, and NPV were 75.0%, 97.9%, 79.6%, and 97.3% for identification of E. coli, 100.0%, 99.8%, 87.5%, and 100.0% for S. aureus, 70.0%, 95.0%, 45.7%, and 98.1% for other Staphylococcus sp., and 90.0%, 92.9%, 91.8%, and 91.2% for Streptococcus sp. In study 2, Accumast PPV was 96.7% for E. coli, 100.0% for Enterococcus sp., 100.0% for Other Gram-negatives, 88.2% for Staphylococcus sp., and 95.0% for Streptococcus sp., respectively. In conclusion, Accumast is a unique approach for on-farm identification pathogens associated with mastitis, presenting overall sensitivity and specificity of 82.3% and 89.9% respectively.
Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C
2018-05-11
Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy, using profile HMMs, we identified an enzyme with putative alpha-1,6-glycosidase activity only in some specific strains of C. diphtheriae and this may aid to understanding of the differential abilities to utilize glycogen and starch between the biovars.
Ganda, Erika Korzune; Bisinotto, Rafael Sisconeto; Decter, Dean Harrison; Bicalho, Rodrigo Carvalho
2016-01-01
The present study aimed evaluate an on-farm culture system for identification of milk pathogens associated with clinical mastitis in dairy cows using two different gold standard approaches: standard laboratory culture in study 1 and 16S rRNA sequencing in study 2. In study 1, milk from mastitic quarters (i.e. presence of flakes, clots, or serous milk; n = 538) was cultured on-farm using a single plate containing three selective chromogenic media (Accumast—FERA Animal Health LCC, Ithaca, NY) and in a reference laboratory using standard culture methods, which was considered the gold standard. In study 2, mastitic milk was cultured on-farm and analyzed through 16S rRNA sequencing (n = 214). In both studies, plates were cultured aerobically at 37°C for 24 h and read by a single technician masked to gold standard results. Accuracy, sensitivity, specificity, positive (PPV) and negative predictive value (NPV) were calculated based on standard laboratory culture in study 1, and PPV was calculated based on sequencing results in study 2. Overall accuracy of Accumast was 84.9%. Likewise, accuracy for identification of Gram-negative bacteria, Staphylococcus sp., and Streptococcus sp. was 96.4%, 93.8%, and 91.5%, respectively. Sensitivity, specificity, PPV, and NPV were 75.0%, 97.9%, 79.6%, and 97.3% for identification of E. coli, 100.0%, 99.8%, 87.5%, and 100.0% for S. aureus, 70.0%, 95.0%, 45.7%, and 98.1% for other Staphylococcus sp., and 90.0%, 92.9%, 91.8%, and 91.2% for Streptococcus sp. In study 2, Accumast PPV was 96.7% for E. coli, 100.0% for Enterococcus sp., 100.0% for Other Gram-negatives, 88.2% for Staphylococcus sp., and 95.0% for Streptococcus sp., respectively. In conclusion, Accumast is a unique approach for on-farm identification pathogens associated with mastitis, presenting overall sensitivity and specificity of 82.3% and 89.9% respectively. PMID:27176216
Perinetti, Giuseppe; Primozic, Jasmina; Sharma, Bhavna; Cioffi, Iacopo; Contardo, Luca
2018-03-28
The capability of the cervical vertebral maturation (CVM) method in the identification of the mandibular growth peak on an individual basis remains undetermined. The diagnostic reliability of the six-stage CVM method in the identification of the mandibular growth peak was thus investigated. From the files of the Oregon and Burlington Growth Studies (data obtained between early 1950s and middle 1970s), 50 subjects (26 females, 24 males) with at least seven annual lateral cephalograms taken from 9 to 16 years were identified. Cervical vertebral maturation was assessed according to the CVM code staging system, and mandibular growth was defined as annual increments in Co-Gn distance. A diagnostic reliability analysis was carried out to establish the capability of the circumpubertal CVM stages 2, 3, and 4 in the identification of the imminent mandibular growth peak. Variable durations of each of the CVM stages 2, 3, and 4 were seen. The overall diagnostic accuracy values for the CVM stages 2, 3, and 4 were 0.70, 0.76, and 0.77, respectively. These low values appeared to be due to false positive cases. Secular trends in conjunction with the use of a discrete staging system. In most of the Burlington Growth Study sample, the lateral head film at age 15 was missing. None of the CVM stages 2, 3, and 4 reached a satisfactorily diagnostic reliability in the identification of imminent mandibular growth peak.
Identification of genomic islands in six plant pathogens.
Chen, Ling-Ling
2006-06-07
Genomic islands (GIs) play important roles in microbial evolution, which are acquired by horizontal gene transfer. In this paper, the GIs of six completely sequenced plant pathogens are identified using a windowless method based on Z curve representation of DNA sequences. Consequently, four, eight, four, one, two and four GIs are recognized with the length greater than 20-Kb in plant pathogens Agrobacterium tumefaciens str. C58, Rolstonia solanacearum GMI1000, Xanthomonas axonopodis pv. citri str. 306 (Xac), Xanthomonas campestris pv. campestris str. ATCC33913 (Xcc), Xylella fastidiosa 9a5c and Pseudomonas syringae pv. tomato str. DC3000, respectively. Most of these regions share a set of conserved features of GIs, including an abrupt change in GC content compared with that of the rest of the genome, the existence of integrase genes at the junction, the use of tRNA as the integration sites, the presence of genetic mobility genes, the difference of codon usage, codon preference and amino acid usage, etc. The identification of these GIs will benefit the research for the six important phytopathogens.
CABALLERO, Moisés; RIVERA, Isabel; JARA, Luis M.; ULLOA-STANOJLOVIC, Francisco M.; SHIVA, Carlos
2015-01-01
SUMMARY Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coliwere isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents. PMID:26603225
Yang, Yu; Wang, Jing; Wen, Haiyan; Liu, Hengchuan
2012-01-01
We have developed novel Bio-Plex assays for simultaneous detection of Bacillus anthracis, Yersinia pestis, Brucella spp., Francisella tularensis, and Burkholderia pseudomallei. Universal primers were used to amplify highly conserved region located within the 16S rRNA amplicon, followed by hybridized to pathogen-specific probes for identification of these five organisms. The other assay is based on multiplex PCR to simultaneously amplify five species-specific pathogen identification-targeted regions unique to individual pathogen. Both of the two arrays are validated to be flexible and sensitive for simultaneous detection of bioterrorism bacteria. However, universal primer PCR-based array could not identify Bacillus anthracis, Yersinia pestis, and Brucella spp. at the species level because of the high conservation of 16S rDNA of the same genus. The two suspension arrays can be utilized to detect Bacillus anthracis sterne spore and Yersinia pestis EV76 from mimic "write powder" samples, they also proved that the suspension array system will be valuable tools for diagnosis of bacterial biothreat agents in environmental samples.
Semi-quantitative MALDI-TOF for antimicrobial susceptibility testing in Staphylococcus aureus.
Maxson, Tucker; Taylor-Howell, Cheryl L; Minogue, Timothy D
2017-01-01
Antibiotic resistant bacterial infections are a significant problem in the healthcare setting, in many cases requiring the rapid administration of appropriate and effective antibiotic therapy. Diagnostic assays capable of quickly and accurately determining the pathogen resistance profile are therefore crucial to initiate or modify care. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) is a standard method for species identification in many clinical microbiology laboratories and is well positioned to be applied towards antimicrobial susceptibility testing. One recently reported approach utilizes semi-quantitative MALDI-TOF MS for growth rate analysis to provide a resistance profile independent of resistance mechanism. This method was previously successfully applied to Gram-negative pathogens and mycobacteria; here, we evaluated this method with the Gram-positive pathogen Staphylococcus aureus. Specifically, we used 35 strains of S. aureus and four antibiotics to optimize and test the assay, resulting in an overall accuracy rate of 95%. Application of the optimized assay also successfully determined susceptibility from mock blood cultures, allowing both species identification and resistance determination for all four antibiotics within 3 hours of blood culture positivity.
Klein, Tobias; Henn, Claudia; de Jong, Johannes C; Zimmer, Christina; Kirsch, Benjamin; Maurer, Christine K; Pistorius, Dominik; Müller, Rolf; Steinbach, Anke; Hartmann, Rolf W
2012-09-21
The Gram-negative pathogen Pseudomonas aeruginosa produces an intercellular alkyl quinolone signaling molecule, the Pseudomonas quinolone signal. The pqs quorum sensing communication system that is characteristic for P. aeruginosa regulates the production of virulence factors. Therefore, we consider the pqs system a novel target to limit P. aeruginosa pathogenicity. Here, we present small molecules targeting a key player of the pqs system, PqsR. A rational design strategy in combination with surface plasmon resonance biosensor analysis led to the identification of PqsR binders. Determination of thermodynamic binding signatures and functional characterization in E. coli guided the hit optimization, resulting in the potent hydroxamic acid derived PqsR antagonist 11 (IC(50) = 12.5 μM). Remarkably it displayed a comparable potency in P. aeruginosa (IC(50) = 23.6 μM) and reduced the production of the virulence factor pyocyanin. Beyond this, site-directed mutagenesis together with thermodynamic analysis provided insights into the energetic characteristics of protein-ligand interactions. Thus the identified PqsR antagonists are promising scaffolds for further drug design efforts against this important pathogen.
Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-01-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this “framework” with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced. PMID:23001675
Pathogenomics: an updated European Research Agenda.
Demuth, Andreas; Aharonowitz, Yair; Bachmann, Till T; Blum-Oehler, Gabriele; Buchrieser, Carmen; Covacci, Antonello; Dobrindt, Ulrich; Emödy, Levente; van der Ende, Arie; Ewbank, Jonathan; Fernández, Luis Angel; Frosch, Matthias; García-Del Portillo, Francisco; Gilmore, Michael S; Glaser, Philippe; Goebel, Werner; Hasnain, Seyed E; Heesemann, Jürgen; Islam, Khalid; Korhonen, Timo; Maiden, Martin; Meyer, Thomas F; Montecucco, Cesare; Oswald, Eric; Parkhill, Julian; Pucciarelli, M Graciela; Ron, Eliora; Svanborg, Catharina; Uhlin, Bernt Eric; Wai, Sun Nyunt; Wehland, Jürgen; Hacker, Jörg
2008-05-01
The emerging genomic technologies and bioinformatics provide novel opportunities for studying life-threatening human pathogens and to develop new applications for the improvement of human and animal health and the prevention, treatment, and diagnosis of infections. Based on the ecology and population biology of pathogens and related organisms and their connection to epidemiology, more accurate typing technologies and approaches will lead to better means of disease control. The analysis of the genome plasticity and gene pools of pathogenic bacteria including antigenic diversity and antigenic variation results in more effective vaccines and vaccine implementation programs. The study of newly identified and uncultivated microorganisms enables the identification of new threats. The scrutiny of the metabolism of the pathogen in the host allows the identification of new targets for anti-infectives and therapeutic approaches. The development of modulators of host responses and mediators of host damage will be facilitated by the research on interactions of microbes and hosts, including mechanisms of host damage, acute and chronic relationships as well as commensalisms. The study of multiple pathogenic and non-pathogenic microbes interacting in the host will improve the management of multiple infections and will allow probiotic and prebiotic interventions. Needless to iterate, the application of the results of improved prevention and treatment of infections into clinical tests will have a positive impact on the management of human and animal disease. The Pathogenomics Research Agenda draws on discussions with experts of the Network of Excellence "EuroPathoGenomics" at the management board meeting of the project held during 18-21 April 2007, in the Villa Vigoni, Menaggio, Italy. Based on a proposed European Research Agenda in the field of pathogenomics by the ERA-NET PathoGenoMics the meeting's participants updated the established list of topics as the research agenda for the future.
Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Sun, Guochang
2012-01-01
Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium. PMID:23166741
Jacques, Marie-Agnès; Durand, Karine; Orgeur, Geoffrey; Balidas, Samuel; Fricot, Céline; Bonneau, Sophie; Quillévéré, Anne; Audusseau, Corinne; Olivier, Valérie; Grimault, Valérie; Mathis, René
2012-12-01
The genus Clavibacter comprises one species and five subspecies of plant-pathogenic bacteria, four of which are classified as quarantine organisms due to the high economic threat they pose. Clavibacter michiganensis subsp. michiganensis is one of the most important pathogens of tomato, but the recommended diagnostic tools are not satisfactory due to false-negative and/or -positive results. To provide a robust analysis of the genetic relatedness among a worldwide collection of C. michiganensis subsp. michiganensis strains, relatives (strains from the four other C. michiganensis subspecies), and nonpathogenic Clavibacter-like strains isolated from tomato, we performed multilocus sequence-based analysis and typing (MLSA and MLST) based on six housekeeping genes (atpD, dnaK, gyrB, ppK, recA, and rpoB). We compared this "framework" with phenotypic and genotypic characteristics such as pathogenicity on tomato, reaction to two antisera by immunofluorescence and to five PCR identification tests, and the presence of four genes encoding the main C. michiganensis subsp. michiganensis pathogenicity determinants. We showed that C. michiganensis subsp. michiganensis is monophyletic and is distinct from its closest taxonomic neighbors. The nonpathogenic Clavibacter-like strains were identified as C. michiganensis using 16S rRNA gene sequencing. These strains, while cross-reacting with C. michiganensis subsp. michiganensis identification tools, are phylogenetically distinct from the pathogenic strains but belong to the C. michiganensis clade. C. michiganensis subsp. michiganensis clonal complexes linked strains from highly diverse geographical origins and also strains isolated over long periods of time in the same location. This illustrates the importance of seed transmission in the worldwide dispersion of this pathogen and its survival and adaptation abilities in a new environment once introduced.
Borman, Andrew M.; Linton, Christopher J.; Oliver, Debra; Palmer, Michael D.; Szekely, Adrien; Johnson, Elizabeth M.
2010-01-01
Rapid identification of yeast species isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. Here, we have evaluated the utility of pyrosequencing analysis of a portion of the internal transcribed spacer 2 region (ITS2) for identification of pathogenic yeasts. A total of 477 clinical isolates encompassing 43 different fungal species were subjected to pyrosequencing analysis in a strictly blinded study. The molecular identifications produced by pyrosequencing were compared with those obtained using conventional biochemical tests (AUXACOLOR2) and following PCR amplification and sequencing of the D1-D2 portion of the nuclear 28S large rRNA gene. More than 98% (469/477) of isolates encompassing 40 of the 43 fungal species tested were correctly identified by pyrosequencing of only 35 bp of ITS2. Moreover, BLAST searches of the public synchronized databases with the ITS2 pyrosequencing signature sequences revealed that there was only minimal sequence redundancy in the ITS2 under analysis. In all cases, the pyrosequencing signature sequences were unique to the yeast species (or species complex) under investigation. Finally, when pyrosequencing was combined with the Whatman FTA paper technology for the rapid extraction of fungal genomic DNA, molecular identification could be accomplished within 6 h from the time of starting from pure cultures. PMID:20702674
Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen
2015-11-01
Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.
McTaggart, Lisa R.; Lei, Eric; Richardson, Susan E.; Hoang, Linda; Fothergill, Annette; Zhang, Sean X.
2011-01-01
Compared to DNA sequence analysis, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) correctly identified 100% of Cryptococcus species, distinguishing the notable pathogens Cryptococcus neoformans and C. gattii. Identification was greatly enhanced by supplementing a commercial spectral library with additional entries to account for subspecies variability. PMID:21653762
Estimating spatial travel times using automatic vehicle identification data
DOT National Transportation Integrated Search
2001-01-01
Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...
Assuring reliability program effectiveness.
NASA Technical Reports Server (NTRS)
Ball, L. W.
1973-01-01
An attempt is made to provide simple identification and description of techniques that have proved to be most useful either in developing a new product or in improving reliability of an established product. The first reliability task is obtaining and organizing parts failure rate data. Other tasks are parts screening, tabulation of general failure rates, preventive maintenance, prediction of new product reliability, and statistical demonstration of achieved reliability. Five principal tasks for improving reliability involve the physics of failure research, derating of internal stresses, control of external stresses, functional redundancy, and failure effects control. A final task is the training and motivation of reliability specialist engineers.
Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17
Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero
2017-01-01
In winter 2016–17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events. PMID:28661831