Sample records for reliable quantum computation

  1. A new software-based architecture for quantum computer

    NASA Astrophysics Data System (ADS)

    Wu, Nan; Song, FangMin; Li, Xiangdong

    2010-04-01

    In this paper, we study a reliable architecture of a quantum computer and a new instruction set and machine language for the architecture, which can improve the performance and reduce the cost of the quantum computing. We also try to address some key issues in detail in the software-driven universal quantum computers.

  2. Programming languages and compiler design for realistic quantum hardware.

    PubMed

    Chong, Frederic T; Franklin, Diana; Martonosi, Margaret

    2017-09-13

    Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.

  3. Programming languages and compiler design for realistic quantum hardware

    NASA Astrophysics Data System (ADS)

    Chong, Frederic T.; Franklin, Diana; Martonosi, Margaret

    2017-09-01

    Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.

  4. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  5. Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Goswami, Ashutosh K.; Bao, Wan-Su; Panigrahi, Prasanta K.

    2018-06-01

    Quantum algorithms can be used to efficiently solve certain classically intractable problems by exploiting quantum parallelism. However, the effectiveness of quantum entanglement in quantum computing remains a question of debate. This study presents a new quantum algorithm that shows entanglement could provide advantages over both classical algorithms and quantum algo- rithms without entanglement. Experiments are implemented to demonstrate the proposed algorithm using superconducting qubits. Results show the viability of the algorithm and suggest that entanglement is essential in obtaining quantum speedup for certain problems in quantum computing. The study provides reliable and clear guidance for developing useful quantum algorithms.

  6. Can one trust quantum simulators?

    PubMed

    Hauke, Philipp; Cucchietti, Fernando M; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-T(c) superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by 'simulation' with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a 'quantum simulator,' would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question 'Can we trust quantum simulators?' is … to some extent.

  7. Can one trust quantum simulators?

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Cucchietti, Fernando M.; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-Tc superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by ‘simulation’ with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a ‘quantum simulator,’ would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question ‘Can we trust quantum simulators?’ is … to some extent.

  8. Research on Quantum Authentication Methods for the Secure Access Control Among Three Elements of Cloud Computing

    NASA Astrophysics Data System (ADS)

    Dong, Yumin; Xiao, Shufen; Ma, Hongyang; Chen, Libo

    2016-12-01

    Cloud computing and big data have become the developing engine of current information technology (IT) as a result of the rapid development of IT. However, security protection has become increasingly important for cloud computing and big data, and has become a problem that must be solved to develop cloud computing. The theft of identity authentication information remains a serious threat to the security of cloud computing. In this process, attackers intrude into cloud computing services through identity authentication information, thereby threatening the security of data from multiple perspectives. Therefore, this study proposes a model for cloud computing protection and management based on quantum authentication, introduces the principle of quantum authentication, and deduces the quantum authentication process. In theory, quantum authentication technology can be applied in cloud computing for security protection. This technology cannot be cloned; thus, it is more secure and reliable than classical methods.

  9. Experimental magic state distillation for fault-tolerant quantum computing.

    PubMed

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  10. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  11. Characterizing quantum supremacy in near-term devices

    NASA Astrophysics Data System (ADS)

    Boixo, Sergio; Isakov, Sergei V.; Smelyanskiy, Vadim N.; Babbush, Ryan; Ding, Nan; Jiang, Zhang; Bremner, Michael J.; Martinis, John M.; Neven, Hartmut

    2018-06-01

    A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.

  12. Reliable computation from contextual correlations

    NASA Astrophysics Data System (ADS)

    Oestereich, André L.; Galvão, Ernesto F.

    2017-12-01

    An operational approach to the study of computation based on correlations considers black boxes with one-bit inputs and outputs, controlled by a limited classical computer capable only of performing sums modulo-two. In this setting, it was shown that noncontextual correlations do not provide any extra computational power, while contextual correlations were found to be necessary for the deterministic evaluation of nonlinear Boolean functions. Here we investigate the requirements for reliable computation in this setting; that is, the evaluation of any Boolean function with success probability bounded away from 1 /2 . We show that bipartite CHSH quantum correlations suffice for reliable computation. We also prove that an arbitrarily small violation of a multipartite Greenberger-Horne-Zeilinger noncontextuality inequality also suffices for reliable computation.

  13. Experimental demonstration of graph-state quantum secret sharing.

    PubMed

    Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S

    2014-11-21

    Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.

  14. Parameters Free Computational Characterization of Defects in Transition Metal Oxides with Diffusion Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R.; Reboredo, Fernando

    Materials based on transition metal oxides (TMO's) are among the most challenging systems for computational characterization. Reliable and practical computations are possible by directly solving the many-body problem for TMO's with quantum Monte Carlo (QMC) methods. These methods are very computationally intensive, but recent developments in algorithms and computational infrastructures have enabled their application to real materials. We will show our efforts on the application of the diffusion quantum Monte Carlo (DMC) method to study the formation of defects in binary and ternary TMO and heterostructures of TMO. We will also outline current limitations in hardware and algorithms. This work is supported by the Materials Sciences & Engineering Division of the Office of Basic Energy Sciences, U.S. Department of Energy (DOE).

  15. A computational workflow for designing silicon donor qubits

    DOE PAGES

    Humble, Travis S.; Ericson, M. Nance; Jakowski, Jacek; ...

    2016-09-19

    Developing devices that can reliably and accurately demonstrate the principles of superposition and entanglement is an on-going challenge for the quantum computing community. Modeling and simulation offer attractive means of testing early device designs and establishing expectations for operational performance. However, the complex integrated material systems required by quantum device designs are not captured by any single existing computational modeling method. We examine the development and analysis of a multi-staged computational workflow that can be used to design and characterize silicon donor qubit systems with modeling and simulation. Our approach integrates quantum chemistry calculations with electrostatic field solvers to performmore » detailed simulations of a phosphorus dopant in silicon. We show how atomistic details can be synthesized into an operational model for the logical gates that define quantum computation in this particular technology. In conclusion, the resulting computational workflow realizes a design tool for silicon donor qubits that can help verify and validate current and near-term experimental devices.« less

  16. Combining dynamical decoupling with fault-tolerant quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Hui Khoon; Preskill, John; Lidar, Daniel A.

    2011-07-15

    We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise and have a lower overhead cost than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer and can be expressed either in terms of the operator norm of the bath's Hamiltonian or in terms of themore » power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.« less

  17. Architecture Framework for Trapped-Ion Quantum Computer based on Performance Simulation Tool

    NASA Astrophysics Data System (ADS)

    Ahsan, Muhammad

    The challenge of building scalable quantum computer lies in striking appropriate balance between designing a reliable system architecture from large number of faulty computational resources and improving the physical quality of system components. The detailed investigation of performance variation with physics of the components and the system architecture requires adequate performance simulation tool. In this thesis we demonstrate a software tool capable of (1) mapping and scheduling the quantum circuit on a realistic quantum hardware architecture with physical resource constraints, (2) evaluating the performance metrics such as the execution time and the success probability of the algorithm execution, and (3) analyzing the constituents of these metrics and visualizing resource utilization to identify system components which crucially define the overall performance. Using this versatile tool, we explore vast design space for modular quantum computer architecture based on trapped ions. We find that while success probability is uniformly determined by the fidelity of physical quantum operation, the execution time is a function of system resources invested at various layers of design hierarchy. At physical level, the number of lasers performing quantum gates, impact the latency of the fault-tolerant circuit blocks execution. When these blocks are used to construct meaningful arithmetic circuit such as quantum adders, the number of ancilla qubits for complicated non-clifford gates and entanglement resources to establish long-distance communication channels, become major performance limiting factors. Next, in order to factorize large integers, these adders are assembled into modular exponentiation circuit comprising bulk of Shor's algorithm. At this stage, the overall scaling of resource-constraint performance with the size of problem, describes the effectiveness of chosen design. By matching the resource investment with the pace of advancement in hardware technology, we find optimal designs for different types of quantum adders. Conclusively, we show that 2,048-bit Shor's algorithm can be reliably executed within the resource budget of 1.5 million qubits.

  18. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  19. Reliable quantum certification of photonic state preparations

    PubMed Central

    Aolita, Leandro; Gogolin, Christian; Kliesch, Martin; Eisert, Jens

    2015-01-01

    Quantum technologies promise a variety of exciting applications. Even though impressive progress has been achieved recently, a major bottleneck currently is the lack of practical certification techniques. The challenge consists of ensuring that classically intractable quantum devices perform as expected. Here we present an experimentally friendly and reliable certification tool for photonic quantum technologies: an efficient certification test for experimental preparations of multimode pure Gaussian states, pure non-Gaussian states generated by linear-optical circuits with Fock-basis states of constant boson number as inputs, and pure states generated from the latter class by post-selecting with Fock-basis measurements on ancillary modes. Only classical computing capabilities and homodyne or hetorodyne detection are required. Minimal assumptions are made on the noise or experimental capabilities of the preparation. The method constitutes a step forward in many-body quantum certification, which is ultimately about testing quantum mechanics at large scales. PMID:26577800

  20. Low-cost autonomous perceptron neural network inspired by quantum computation

    NASA Astrophysics Data System (ADS)

    Zidan, Mohammed; Abdel-Aty, Abdel-Haleem; El-Sadek, Alaa; Zanaty, E. A.; Abdel-Aty, Mahmoud

    2017-11-01

    Achieving low cost learning with reliable accuracy is one of the important goals to achieve intelligent machines to save time, energy and perform learning process over limited computational resources machines. In this paper, we propose an efficient algorithm for a perceptron neural network inspired by quantum computing composite from a single neuron to classify inspirable linear applications after a single training iteration O(1). The algorithm is applied over a real world data set and the results are outer performs the other state-of-the art algorithms.

  1. Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance

    PubMed Central

    Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng

    2011-01-01

    Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607

  2. Neural-network quantum state tomography

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe

    2018-05-01

    The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.

  3. Universal non-adiabatic geometric manipulation of pseudo-spin charge qubits

    NASA Astrophysics Data System (ADS)

    Azimi Mousolou, Vahid

    2017-01-01

    Reliable quantum information processing requires high-fidelity universal manipulation of quantum systems within the characteristic coherence times. Non-adiabatic holonomic quantum computation offers a promising approach to implement fast, universal, and robust quantum logic gates particularly useful in nano-fabricated solid-state architectures, which typically have short coherence times. Here, we propose an experimentally feasible scheme to realize high-speed universal geometric quantum gates in nano-engineered pseudo-spin charge qubits. We use a system of three coupled quantum dots containing a single electron, where two computational states of a double quantum dot charge qubit interact through an intermediate quantum dot. The additional degree of freedom introduced into the qubit makes it possible to create a geometric model system, which allows robust and efficient single-qubit rotations through careful control of the inter-dot tunneling parameters. We demonstrate that a capacitive coupling between two charge qubits permits a family of non-adiabatic holonomic controlled two-qubit entangling gates, and thus provides a promising procedure to maintain entanglement in charge qubits and a pathway toward fault-tolerant universal quantum computation. We estimate the feasibility of the proposed structure by analyzing the gate fidelities to some extent.

  4. Redesigning the Quantum Mechanics Curriculum to Incorporate Problem Solving Using a Computer Algebra System

    NASA Astrophysics Data System (ADS)

    Roussel, Marc R.

    1999-10-01

    One of the traditional obstacles to learning quantum mechanics is the relatively high level of mathematical proficiency required to solve even routine problems. Modern computer algebra systems are now sufficiently reliable that they can be used as mathematical assistants to alleviate this difficulty. In the quantum mechanics course at the University of Lethbridge, the traditional three lecture hours per week have been replaced by two lecture hours and a one-hour computer-aided problem solving session using a computer algebra system (Maple). While this somewhat reduces the number of topics that can be tackled during the term, students have a better opportunity to familiarize themselves with the underlying theory with this course design. Maple is also available to students during examinations. The use of a computer algebra system expands the class of feasible problems during a time-limited exercise such as a midterm or final examination. A modern computer algebra system is a complex piece of software, so some time needs to be devoted to teaching the students its proper use. However, the advantages to the teaching of quantum mechanics appear to outweigh the disadvantages.

  5. Experimental test of single-system steering and application to quantum communication

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can

    2017-02-01

    Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.

  6. Nonclassical light sources for silicon photonics

    NASA Astrophysics Data System (ADS)

    Bajoni, Daniele; Galli, Matteo

    2017-09-01

    Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.

  7. First-principles engineering of charged defects for two-dimensional quantum technologies

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Galatas, Andrew; Sundararaman, Ravishankar; Rocca, Dario; Ping, Yuan

    2017-12-01

    Charged defects in two-dimensional (2D) materials have emerging applications in quantum technologies such as quantum emitters and quantum computation. The advancement of these technologies requires a rational design of ideal defect centers, demanding reliable computation methods for the quantitatively accurate prediction of defect properties. We present an accurate, parameter-free, and efficient procedure to evaluate the quasiparticle defect states and thermodynamic charge transition levels of defects in 2D materials. Importantly, we solve critical issues that stem from the strongly anisotropic screening in 2D materials, that have so far precluded the accurate prediction of charge transition levels in these materials. Using this procedure, we investigate various defects in monolayer hexagonal boron nitride (h -BN ) for their charge transition levels, stable spin states, and optical excitations. We identify CBVN (nitrogen vacancy adjacent to carbon substitution of boron) to be the most promising defect candidate for scalable quantum bit and emitter applications.

  8. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  9. beta-Aminoalcohols as Potential Reactivators of Aged Sarin-/Soman-Inhibited Acetylcholinesterase

    DTIC Science & Technology

    2017-02-08

    This approach includes high - quality quantum mechanical/molecular mechanical calcula- tions, providing reliable reactivation steps and energetics...I. V. Khavrutskii Department of Defense Biotechnology High Performance Computing Software Applications Institute Telemedicine and Advanced...b] Dr. A. Wallqvist Department of Defense Biotechnology High Performance Computing Software Applications Institute Telemedicine and Advanced

  10. Topics in linear optical quantum computation

    NASA Astrophysics Data System (ADS)

    Glancy, Scott Charles

    This thesis covers several topics in optical quantum computation. A quantum computer is a computational device which is able to manipulate information by performing unitary operations on some physical system whose state can be described as a vector (or mixture of vectors) in a Hilbert space. The basic unit of information, called the qubit, is considered to be a system with two orthogonal states, which are assigned logical values of 0 and 1. Photons make excellent candidates to serve as qubits. They have little interactions with the environment. Many operations can be performed using very simple linear optical devices such as beam splitters and phase shifters. Photons can easily be processed through circuit-like networks. Operations can be performed in very short times. Photons are ideally suited for the long-distance communication of quantum information. The great difficulty in constructing an optical quantum computer is that photons naturally interact weakly with one another. This thesis first gives a brief review of two early approaches to optical quantum computation. It will describe how any discrete unitary operation can be performed using a single photon and a network of beam splitters, and how the Kerr effect can be used to construct a two photon logic gate. Second, this work provides a thorough introduction to the linear optical quantum computer developed by Knill, Laflamme, and Milburn. It then presents this author's results on the reliability of this scheme when implemented using imperfect photon detectors. This author finds that quantum computers of this sort cannot be built using current technology. Third, this dissertation describes a method for constructing a linear optical quantum computer using nearly orthogonal coherent states of light as the qubits. It shows how a universal set of logic operations can be performed, including calculations of the fidelity with which these operations may be accomplished. It discusses methods for reducing and correcting errors and recovering from failed operations. Lastly it describes an analysis of the long distance transmission of the coherent state qubits and shows how transmission errors can be corrected.

  11. Protecting quantum information in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Devoret, Michel

    Can we prolong the coherence of a two-state manifold in a complex quantum system beyond the coherence of its longest-lived component? This question is the starting point in the construction of a scalable quantum computer. It translates in the search for processes that operate as some sort of Maxwell's demon and reliably correct the errors resulting from the coupling between qubits and their environment. The presentation will review recent experiments that test the dynamical protection by Josephson circuits of a logical qubit memory based on superpositions of particular coherent states of a superconducting resonator.

  12. In situ single-atom array synthesis using dynamic holographic optical tweezers

    PubMed Central

    Kim, Hyosub; Lee, Woojun; Lee, Han-gyeol; Jo, Hanlae; Song, Yunheung; Ahn, Jaewook

    2016-01-01

    Establishing a reliable method to form scalable neutral-atom platforms is an essential cornerstone for quantum computation, quantum simulation and quantum many-body physics. Here we demonstrate a real-time transport of single atoms using holographic microtraps controlled by a liquid-crystal spatial light modulator. For this, an analytical design approach to flicker-free microtrap movement is devised and cold rubidium atoms are simultaneously rearranged with 2N motional degrees of freedom, representing unprecedented space controllability. We also accomplish an in situ feedback control for single-atom rearrangements with the high success rate of 99% for up to 10 μm translation. We hope this proof-of-principle demonstration of high-fidelity atom-array preparations will be useful for deterministic loading of N single atoms, especially on arbitrary lattice locations, and also for real-time qubit shuttling in high-dimensional quantum computing architectures. PMID:27796372

  13. Towards scalable quantum communication and computation: Novel approaches and realizations

    NASA Astrophysics Data System (ADS)

    Jiang, Liang

    Quantum information science involves exploration of fundamental laws of quantum mechanics for information processing tasks. This thesis presents several new approaches towards scalable quantum information processing. First, we consider a hybrid approach to scalable quantum computation, based on an optically connected network of few-qubit quantum registers. Specifically, we develop a novel scheme for scalable quantum computation that is robust against various imperfections. To justify that nitrogen-vacancy (NV) color centers in diamond can be a promising realization of the few-qubit quantum register, we show how to isolate a few proximal nuclear spins from the rest of the environment and use them for the quantum register. We also demonstrate experimentally that the nuclear spin coherence is only weakly perturbed under optical illumination, which allows us to implement quantum logical operations that use the nuclear spins to assist the repetitive-readout of the electronic spin. Using this technique, we demonstrate more than two-fold improvement in signal-to-noise ratio. Apart from direct application to enhance the sensitivity of the NV-based nano-magnetometer, this experiment represents an important step towards the realization of robust quantum information processors using electronic and nuclear spin qubits. We then study realizations of quantum repeaters for long distance quantum communication. Specifically, we develop an efficient scheme for quantum repeaters based on atomic ensembles. We use dynamic programming to optimize various quantum repeater protocols. In addition, we propose a new protocol of quantum repeater with encoding, which efficiently uses local resources (about 100 qubits) to identify and correct errors, to achieve fast one-way quantum communication over long distances. Finally, we explore quantum systems with topological order. Such systems can exhibit remarkable phenomena such as quasiparticles with anyonic statistics and have been proposed as candidates for naturally error-free quantum computation. We propose a scheme to unambiguously detect the anyonic statistics in spin lattice realizations using ultra-cold atoms in an optical lattice. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit.

  14. Correlated Errors in the Surface Code

    NASA Astrophysics Data System (ADS)

    Lopez, Daniel; Mucciolo, E. R.; Novais, E.

    2012-02-01

    A milestone step into the development of quantum information technology would be the ability to design and operate a reliable quantum memory. The greatest obstacle to create such a device has been decoherence due to the unavoidable interaction between the quantum system and its environment. Quantum Error Correction is therefore an essential ingredient to any quantum computing information device. A great deal of attention has been given to surface codes, since it has very good scaling properties. In this seminar, we discuss the time evolution of a qubit encoded in the logical basis of a surface code. The system is interacting with a bosonic environment at zero temperature. Our results show how much spatial and time correlations can be detrimental to the efficiency of the code.

  15. Massive Photons: An Infrared Regularization Scheme for Lattice QCD+QED.

    PubMed

    Endres, Michael G; Shindler, Andrea; Tiburzi, Brian C; Walker-Loud, André

    2016-08-12

    Standard methods for including electromagnetic interactions in lattice quantum chromodynamics calculations result in power-law finite-volume corrections to physical quantities. Removing these by extrapolation requires costly computations at multiple volumes. We introduce a photon mass to alternatively regulate the infrared, and rely on effective field theory to remove its unphysical effects. Electromagnetic modifications to the hadron spectrum are reliably estimated with a precision and cost comparable to conventional approaches that utilize multiple larger volumes. A significant overall cost advantage emerges when accounting for ensemble generation. The proposed method may benefit lattice calculations involving multiple charged hadrons, as well as quantum many-body computations with long-range Coulomb interactions.

  16. Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.

    NASA Astrophysics Data System (ADS)

    Courtney, Michael

    1995-01-01

    Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  17. Thermal quantum time-correlation functions from classical-like dynamics

    NASA Astrophysics Data System (ADS)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  18. Quantum-secure covert communication on bosonic channels.

    PubMed

    Bash, Boulat A; Gheorghe, Andrei H; Patel, Monika; Habif, Jonathan L; Goeckel, Dennis; Towsley, Don; Guha, Saikat

    2015-10-19

    Computational encryption, information-theoretic secrecy and quantum cryptography offer progressively stronger security against unauthorized decoding of messages contained in communication transmissions. However, these approaches do not ensure stealth--that the mere presence of message-bearing transmissions be undetectable. We characterize the ultimate limit of how much data can be reliably and covertly communicated over the lossy thermal-noise bosonic channel (which models various practical communication channels). We show that whenever there is some channel noise that cannot in principle be controlled by an otherwise arbitrarily powerful adversary--for example, thermal noise from blackbody radiation--the number of reliably transmissible covert bits is at most proportional to the square root of the number of orthogonal modes (the time-bandwidth product) available in the transmission interval. We demonstrate this in a proof-of-principle experiment. Our result paves the way to realizing communications that are kept covert from an all-powerful quantum adversary.

  19. Quantum Monte Carlo: Faster, More Reliable, And More Accurate

    NASA Astrophysics Data System (ADS)

    Anderson, Amos Gerald

    2010-06-01

    The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our combination of Generalized Valence Bond wavefunctions, improved correlation functions, and stabilized weighting techniques for calculations run on graphics cards, represents a new way for using Quantum Monte Carlo to study arbitrarily sized molecules.

  20. Nuclear-relaxed elastic and piezoelectric constants of materials: Computational aspects of two quantum-mechanical approaches.

    PubMed

    Erba, Alessandro; Caglioti, Dominique; Zicovich-Wilson, Claudio Marcelo; Dovesi, Roberto

    2017-02-15

    Two alternative approaches for the quantum-mechanical calculation of the nuclear-relaxation term of elastic and piezoelectric tensors of crystalline materials are illustrated and their computational aspects discussed: (i) a numerical approach based on the geometry optimization of atomic positions at strained lattice configurations and (ii) a quasi-analytical approach based on the evaluation of the force- and displacement-response internal-strain tensors as combined with the interatomic force-constant matrix. The two schemes are compared both as regards their computational accuracy and performance. The latter approach, not being affected by the many numerical parameters and procedures of a typical quasi-Newton geometry optimizer, constitutes a more reliable and robust mean to the evaluation of such properties, at a reduced computational cost for most crystalline systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  2. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE PAGES

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; ...

    2017-02-15

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  3. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    PubMed Central

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik; Rudinger, Kenneth; Mizrahi, Jonathan; Fortier, Kevin; Maunz, Peter

    2017-01-01

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Here we use gate set tomography to completely characterize operations on a trapped-Yb+-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10−4). PMID:28198466

  4. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin; Gamble, John King; Nielsen, Erik

    Quantum information processors promise fast algorithms for problems inaccessible to classical computers. But since qubits are noisy and error-prone, they will depend on fault-tolerant quantum error correction (FTQEC) to compute reliably. Quantum error correction can protect against general noise if—and only if—the error in each physical qubit operation is smaller than a certain threshold. The threshold for general errors is quantified by their diamond norm. Until now, qubits have been assessed primarily by randomized benchmarking, which reports a different error rate that is not sensitive to all errors, and cannot be compared directly to diamond norm thresholds. Finally, we usemore » gate set tomography to completely characterize operations on a trapped-Yb +-ion qubit and demonstrate with greater than 95% confidence that they satisfy a rigorous threshold for FTQEC (diamond norm ≤6.7 × 10 -4).« less

  5. Quantum coding with finite resources.

    PubMed

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M

    2016-05-09

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances.

  6. Quantum-Inspired Multidirectional Associative Memory With a Self-Convergent Iterative Learning.

    PubMed

    Masuyama, Naoki; Loo, Chu Kiong; Seera, Manjeevan; Kubota, Naoyuki

    2018-04-01

    Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

  7. Experimental statistical signature of many-body quantum interference

    NASA Astrophysics Data System (ADS)

    Giordani, Taira; Flamini, Fulvio; Pompili, Matteo; Viggianiello, Niko; Spagnolo, Nicolò; Crespi, Andrea; Osellame, Roberto; Wiebe, Nathan; Walschaers, Mattia; Buchleitner, Andreas; Sciarrino, Fabio

    2018-03-01

    Multi-particle interference is an essential ingredient for fundamental quantum mechanics phenomena and for quantum information processing to provide a computational advantage, as recently emphasized by boson sampling experiments. Hence, developing a reliable and efficient technique to witness its presence is pivotal in achieving the practical implementation of quantum technologies. Here, we experimentally identify genuine many-body quantum interference via a recent efficient protocol, which exploits statistical signatures at the output of a multimode quantum device. We successfully apply the test to validate three-photon experiments in an integrated photonic circuit, providing an extensive analysis on the resources required to perform it. Moreover, drawing upon established techniques of machine learning, we show how such tools help to identify the—a priori unknown—optimal features to witness these signatures. Our results provide evidence on the efficacy and feasibility of the method, paving the way for its adoption in large-scale implementations.

  8. Quantum coding with finite resources

    PubMed Central

    Tomamichel, Marco; Berta, Mario; Renes, Joseph M.

    2016-01-01

    The quantum capacity of a memoryless channel determines the maximal rate at which we can communicate reliably over asymptotically many uses of the channel. Here we illustrate that this asymptotic characterization is insufficient in practical scenarios where decoherence severely limits our ability to manipulate large quantum systems in the encoder and decoder. In practical settings, we should instead focus on the optimal trade-off between three parameters: the rate of the code, the size of the quantum devices at the encoder and decoder, and the fidelity of the transmission. We find approximate and exact characterizations of this trade-off for various channels of interest, including dephasing, depolarizing and erasure channels. In each case, the trade-off is parameterized by the capacity and a second channel parameter, the quantum channel dispersion. In the process, we develop several bounds that are valid for general quantum channels and can be computed for small instances. PMID:27156995

  9. Ground-to-satellite quantum teleportation.

    PubMed

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-07

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale 'quantum internet' the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  10. Ground-to-satellite quantum teleportation

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Xu, Ping; Yong, Hai-Lin; Zhang, Liang; Liao, Sheng-Kai; Yin, Juan; Liu, Wei-Yue; Cai, Wen-Qi; Yang, Meng; Li, Li; Yang, Kui-Xing; Han, Xuan; Yao, Yong-Qiang; Li, Ji; Wu, Hai-Yan; Wan, Song; Liu, Lei; Liu, Ding-Quan; Kuang, Yao-Wu; He, Zhi-Ping; Shang, Peng; Guo, Cheng; Zheng, Ru-Hua; Tian, Kai; Zhu, Zhen-Cai; Liu, Nai-Le; Lu, Chao-Yang; Shu, Rong; Chen, Yu-Ao; Peng, Cheng-Zhi; Wang, Jian-Yu; Pan, Jian-Wei

    2017-09-01

    An arbitrary unknown quantum state cannot be measured precisely or replicated perfectly. However, quantum teleportation enables unknown quantum states to be transferred reliably from one object to another over long distances, without physical travelling of the object itself. Long-distance teleportation is a fundamental element of protocols such as large-scale quantum networks and distributed quantum computation. But the distances over which transmission was achieved in previous teleportation experiments, which used optical fibres and terrestrial free-space channels, were limited to about 100 kilometres, owing to the photon loss of these channels. To realize a global-scale ‘quantum internet’ the range of quantum teleportation needs to be greatly extended. A promising way of doing so involves using satellite platforms and space-based links, which can connect two remote points on Earth with greatly reduced channel loss because most of the propagation path of the photons is in empty space. Here we report quantum teleportation of independent single-photon qubits from a ground observatory to a low-Earth-orbit satellite, through an uplink channel, over distances of up to 1,400 kilometres. To optimize the efficiency of the link and to counter the atmospheric turbulence in the uplink, we use a compact ultra-bright source of entangled photons, a narrow beam divergence and high-bandwidth and high-accuracy acquiring, pointing and tracking. We demonstrate successful quantum teleportation of six input states in mutually unbiased bases with an average fidelity of 0.80 ± 0.01, well above the optimal state-estimation fidelity on a single copy of a qubit (the classical limit). Our demonstration of a ground-to-satellite uplink for reliable and ultra-long-distance quantum teleportation is an essential step towards a global-scale quantum internet.

  11. GPU-accelerated algorithms for many-particle continuous-time quantum walks

    NASA Astrophysics Data System (ADS)

    Piccinini, Enrico; Benedetti, Claudia; Siloi, Ilaria; Paris, Matteo G. A.; Bordone, Paolo

    2017-06-01

    Many-particle continuous-time quantum walks (CTQWs) represent a resource for several tasks in quantum technology, including quantum search algorithms and universal quantum computation. In order to design and implement CTQWs in a realistic scenario, one needs effective simulation tools for Hamiltonians that take into account static noise and fluctuations in the lattice, i.e. Hamiltonians containing stochastic terms. To this aim, we suggest a parallel algorithm based on the Taylor series expansion of the evolution operator, and compare its performances with those of algorithms based on the exact diagonalization of the Hamiltonian or a 4th order Runge-Kutta integration. We prove that both Taylor-series expansion and Runge-Kutta algorithms are reliable and have a low computational cost, the Taylor-series expansion showing the additional advantage of a memory allocation not depending on the precision of calculation. Both algorithms are also highly parallelizable within the SIMT paradigm, and are thus suitable for GPGPU computing. In turn, we have benchmarked 4 NVIDIA GPUs and 3 quad-core Intel CPUs for a 2-particle system over lattices of increasing dimension, showing that the speedup provided by GPU computing, with respect to the OPENMP parallelization, lies in the range between 8x and (more than) 20x, depending on the frequency of post-processing. GPU-accelerated codes thus allow one to overcome concerns about the execution time, and make it possible simulations with many interacting particles on large lattices, with the only limit of the memory available on the device.

  12. Reliable quantum communication over a quantum relay channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu; Imre, Sandor

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  13. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    PubMed Central

    Putz, Mihai V.

    2009-01-01

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems. PMID:20087467

  14. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    PubMed

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  15. PREFACE: Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008) Proceedings of the 2nd International Conference on Quantum Simulators and Design (Tokyo, Japan, 31 May-3 June 2008)

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Tsuneyuki, Shinji

    2009-02-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the proceedings of the 2nd International Conference on Quantum Simulators and Design (QSD2008) held in Tokyo, Japan, between 31 May and 3 June 2008. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The conference focused on the development of first principles electronic structure calculations and their applications. The aim was to provide an opportunity for discussion on the progress in computational materials design and, in particular, the development of quantum simulators and quantum design. Computational materials design is a computational approach to the development of new materials. The essential ingredient is the use of quantum simulators to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulator should be very reliable and be applicable to systems of realistic size. During the conference, new methods of quantum simulation and quantum design were discussed including methods beyond the local density approximation of density functional theory, order-N methods, methods dealing with excitations and reactions, and the application of these methods to the design of novel materials, devices and systems. The conference provided an international forum for experimental and theoretical researchers to exchange ideas. A total of 220 delegates from eight countries participated in the conference. There were 13 invited talks, ten oral presentations and 120 posters. The 3rd International Conference on Quantum Simulators and Design will be held in Germany in the autumn of 2011.

  16. Photon extraction and conversion for scalable ion-trap quantum computing

    NASA Astrophysics Data System (ADS)

    Clark, Susan; Benito, Francisco; McGuinness, Hayden; Stick, Daniel

    2014-03-01

    Trapped ions represent one of the most mature and promising systems for quantum information processing. They have high-fidelity one- and two-qubit gates, long coherence times, and their qubit states can be reliably prepared and detected. Taking advantage of these inherent qualities in a system with many ions requires a means of entangling spatially separated ion qubits. One architecture achieves this entanglement through the use of emitted photons to distribute quantum information - a favorable strategy if photon extraction can be made efficient and reliable. Here I present results for photon extraction from an ion in a cavity formed by integrated optics on a surface trap, as well as results in frequency converting extracted photons for long distance transmission or interfering with photons from other types of optically active qubits. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Notch filtering the nuclear environment of a spin qubit.

    PubMed

    Malinowski, Filip K; Martins, Frederico; Nissen, Peter D; Barnes, Edwin; Cywiński, Łukasz; Rudner, Mark S; Fallahi, Saeed; Gardner, Geoffrey C; Manfra, Michael J; Marcus, Charles M; Kuemmeth, Ferdinand

    2017-01-01

    Electron spins in gate-defined quantum dots provide a promising platform for quantum computation. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots and accurate qubit operations. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence. Low-frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing, can be removed by echo techniques. High-frequency nuclear noise, recently studied via echo revivals, occurs in narrow-frequency bands related to differences in Larmor precession of the three isotopes 69 Ga, 71 Ga and 75 As (refs 15,16,17). Here, we show that both low- and high-frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T 2 ) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots.

  18. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device.

    PubMed

    Shen, Yangchao; Lu, Yao; Zhang, Kuan; Zhang, Junhua; Zhang, Shuaining; Huh, Joonsuk; Kim, Kihwan

    2018-01-28

    Molecules are one of the most demanding quantum systems to be simulated by quantum computers due to their complexity and the emergent role of quantum nature. The recent theoretical proposal of Huh et al. (Nature Photon., 9, 615 (2015)) showed that a multi-photon network with a Gaussian input state can simulate a molecular spectroscopic process. Here, we present the first quantum device that generates a molecular spectroscopic signal with the phonons in a trapped ion system, using SO 2 as an example. In order to perform reliable Gaussian sampling, we develop the essential experimental technology with phonons, which includes the phase-coherent manipulation of displacement, squeezing, and rotation operations with multiple modes in a single realization. The required quantum optical operations are implemented through Raman laser beams. The molecular spectroscopic signal is reconstructed from the collective projection measurements for the two-phonon-mode. Our experimental demonstration will pave the way to large-scale molecular quantum simulations, which are classically intractable, but would be easily verifiable by real molecular spectroscopy.

  19. User's guide to Monte Carlo methods for evaluating path integrals

    NASA Astrophysics Data System (ADS)

    Westbroek, Marise J. E.; King, Peter R.; Vvedensky, Dimitri D.; Dürr, Stephan

    2018-04-01

    We give an introduction to the calculation of path integrals on a lattice, with the quantum harmonic oscillator as an example. In addition to providing an explicit computational setup and corresponding pseudocode, we pay particular attention to the existence of autocorrelations and the calculation of reliable errors. The over-relaxation technique is presented as a way to counter strong autocorrelations. The simulation methods can be extended to compute observables for path integrals in other settings.

  20. Surface code quantum communication.

    PubMed

    Fowler, Austin G; Wang, David S; Hill, Charles D; Ladd, Thaddeus D; Van Meter, Rodney; Hollenberg, Lloyd C L

    2010-05-07

    Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate of existing protocols is low as two-way classical communication is used. By using a surface code across the repeater chain and generating Bell pairs between neighboring stations with probability of heralded success greater than 0.65 and fidelity greater than 0.96, we show that two-way communication can be avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. This is achieved by using the unreliable Bell pairs to measure nonlocal stabilizers and feeding heralded failure information into post-transmission error correction. Our scheme also applies when the probability of heralded success is arbitrarily low.

  1. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  2. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  3. On the reliability of computed chaotic solutions of non-linear differential equations

    NASA Astrophysics Data System (ADS)

    Liao, Shijun

    2009-08-01

    A new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely avoided. Using this concept, the famous conclusion `accurate long-term prediction of chaos is impossible' should be replaced by a more precise conclusion that `accurate prediction of chaos beyond the critical predictable time Tc is impossible'. So, this concept also provides us a timescale to determine whether or not a particular time is long enough for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 <= t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of the initial condition and the computed data at each time step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called `precision paradox of chaos', which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.

  4. Combining neural networks and signed particles to simulate quantum systems more efficiently

    NASA Astrophysics Data System (ADS)

    Sellier, Jean Michel

    2018-04-01

    Recently a new formulation of quantum mechanics has been suggested which describes systems by means of ensembles of classical particles provided with a sign. This novel approach mainly consists of two steps: the computation of the Wigner kernel, a multi-dimensional function describing the effects of the potential over the system, and the field-less evolution of the particles which eventually create new signed particles in the process. Although this method has proved to be extremely advantageous in terms of computational resources - as a matter of fact it is able to simulate in a time-dependent fashion many-body systems on relatively small machines - the Wigner kernel can represent the bottleneck of simulations of certain systems. Moreover, storing the kernel can be another issue as the amount of memory needed is cursed by the dimensionality of the system. In this work, we introduce a new technique which drastically reduces the computation time and memory requirement to simulate time-dependent quantum systems which is based on the use of an appropriately tailored neural network combined with the signed particle formalism. In particular, the suggested neural network is able to compute efficiently and reliably the Wigner kernel without any training as its entire set of weights and biases is specified by analytical formulas. As a consequence, the amount of memory for quantum simulations radically drops since the kernel does not need to be stored anymore as it is now computed by the neural network itself, only on the cells of the (discretized) phase-space which are occupied by particles. As its is clearly shown in the final part of this paper, not only this novel approach drastically reduces the computational time, it also remains accurate. The author believes this work opens the way towards effective design of quantum devices, with incredible practical implications.

  5. Reliable but Timesaving: In Search of an Efficient Quantum-chemical Method for the Description of Functional Fullerenes.

    PubMed

    Reis, H; Rasulev, B; Papadopoulos, M G; Leszczynski, J

    2015-01-01

    Fullerene and its derivatives are currently one of the most intensively investigated species in the area of nanomedicine and nanochemistry. Various unique properties of fullerenes are responsible for their wide range applications in industry, biology and medicine. A large pool of functionalized C60 and C70 fullerenes is investigated theoretically at different levels of quantum-mechanical theory. The semiempirial PM6 method, density functional theory with the B3LYP functional, and correlated ab initio MP2 method are employed to compute the optimized structures, and an array of properties for the considered species. In addition to the calculations for isolated molecules, the results of solution calculations are also reported at the DFT level, using the polarizable continuum model (PCM). Ionization potentials (IPs) and electron affinities (EAs) are computed by means of Koopmans' theorem as well as with the more accurate but computationally expensive ΔSCF method. Both procedures yield comparable values, while comparison of IPs and EAs computed with different quantum-mechanical methods shows surprisingly large differences. Harmonic vibrational frequencies are computed at the PM6 and B3LYP levels of theory and compared with each other. A possible application of the frequencies as 3D descriptors in the EVA (EigenVAlues) method is shown. All the computed data are made available, and may be used to replace experimental data in routine applications where large amounts of data are required, e.g. in structure-activity relationship studies of the toxicity of fullerene derivatives.

  6. Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas: Pairing gaps and dynamical response functions from ab initio computations

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.

  7. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    PubMed

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  8. Fabrication of Circuit QED Quantum Processors, Part 1: Extensible Footprint for a Superconducting Surface Code

    NASA Astrophysics Data System (ADS)

    Bruno, A.; Michalak, D. J.; Poletto, S.; Clarke, J. S.; Dicarlo, L.

    Large-scale quantum computation hinges on the ability to preserve and process quantum information with higher fidelity by increasing redundancy in a quantum error correction code. We present the realization of a scalable footprint for superconducting surface code based on planar circuit QED. We developed a tileable unit cell for surface code with all I/O routed vertically by means of superconducting through-silicon vias (TSVs). We address some of the challenges encountered during the fabrication and assembly of these chips, such as the quality of etch of the TSV, the uniformity of the ALD TiN coating conformal to the TSV, and the reliability of superconducting indium contact between the chips and PCB. We compare measured performance to a detailed list of specifications required for the realization of quantum fault tolerance. Our demonstration using centimeter-scale chips can accommodate the 50 qubits needed to target the experimental demonstration of small-distance logical qubits. Research funded by Intel Corporation and IARPA.

  9. Fundamental device design considerations in the development of disruptive nanoelectronics.

    PubMed

    Singh, R; Poole, J O; Poole, K F; Vaidya, S D

    2002-01-01

    In the last quarter of a century silicon-based integrated circuits (ICs) have played a major role in the growth of the economy throughout the world. A number of new technologies, such as quantum computing, molecular computing, DNA molecules for computing, etc., are currently being explored to create a product to replace semiconductor transistor technology. We have examined all of the currently explored options and found that none of these options are suitable as silicon IC's replacements. In this paper we provide fundamental device criteria that must be satisfied for the successful operation of a manufacturable, not yet invented, device. The two fundamental limits are the removal of heat and reliability. The switching speed of any practical man-made computing device will be in the range of 10(-15) to 10(-3) s. Heisenberg's uncertainty principle and the computer architecture set the heat generation limit. The thermal conductivity of the materials used in the fabrication of a nanodimensional device sets the heat removal limit. In current electronic products, redundancy plays a significant part in improving the reliability of parts with macroscopic defects. In the future, microscopic and even nanoscopic defects will play a critical role in the reliability of disruptive nanoelectronics. The lattice vibrations will set the intrinsic reliability of future computing systems. The two critical limits discussed in this paper provide criteria for the selection of materials used in the fabrication of future devices. Our work shows that diamond contains the clue to providing computing devices that will surpass the performance of silicon-based nanoelectronics.

  10. Magnetic gaps in organic tri-radicals: From a simple model to accurate estimates.

    PubMed

    Barone, Vincenzo; Cacelli, Ivo; Ferretti, Alessandro; Prampolini, Giacomo

    2017-03-14

    The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

  11. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  12. Interfacing External Quantum Devices to a Universal Quantum Computer

    PubMed Central

    Lagana, Antonio A.; Lohe, Max A.; von Smekal, Lorenz

    2011-01-01

    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. PMID:22216276

  13. Interfacing external quantum devices to a universal quantum computer.

    PubMed

    Lagana, Antonio A; Lohe, Max A; von Smekal, Lorenz

    2011-01-01

    We present a scheme to use external quantum devices using the universal quantum computer previously constructed. We thereby show how the universal quantum computer can utilize networked quantum information resources to carry out local computations. Such information may come from specialized quantum devices or even from remote universal quantum computers. We show how to accomplish this by devising universal quantum computer programs that implement well known oracle based quantum algorithms, namely the Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum oracle devices. In the process, we demonstrate a method to map existing quantum algorithms onto the universal quantum computer. © 2011 Lagana et al.

  14. Numerical simulation of electron scattering by nanotube junctions

    NASA Astrophysics Data System (ADS)

    Brüning, J.; Grikurov, V. E.

    2008-03-01

    We demonstrate the possibility of computing the intensity of electronic transport through various junctions of three-dimensional metallic nanotubes. In particular, we observe that the magnetic field can be used to control the switch of electron in Y-type junctions. Keeping in mind the asymptotic modeling of reliable nanostructures by quantum graphs, we conjecture that the scattering matrix of the graph should be the same as the scattering matrix of its nanosize-prototype. The numerical computation of the latter gives a method for determining the "gluing" conditions at a graph. Exploring this conjecture, we show that the Kirchhoff conditions (which are commonly used on graphs) cannot be applied to model reliable junctions. This work is a natural extension of the paper [1], but it is written in a self-consistent manner.

  15. Universal blind quantum computation for hybrid system

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Bao, Wan-Su; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Zhang, Hai-Long; Wang, Xiang

    2017-08-01

    As progress on the development of building quantum computer continues to advance, first-generation practical quantum computers will be available for ordinary users in the cloud style similar to IBM's Quantum Experience nowadays. Clients can remotely access the quantum servers using some simple devices. In such a situation, it is of prime importance to keep the security of the client's information. Blind quantum computation protocols enable a client with limited quantum technology to delegate her quantum computation to a quantum server without leaking any privacy. To date, blind quantum computation has been considered only for an individual quantum system. However, practical universal quantum computer is likely to be a hybrid system. Here, we take the first step to construct a framework of blind quantum computation for the hybrid system, which provides a more feasible way for scalable blind quantum computation.

  16. Accuracy of the adiabatic-impulse approximation for closed and open quantum systems

    NASA Astrophysics Data System (ADS)

    Tomka, Michael; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We study the adiabatic-impulse approximation (AIA) as a tool to approximate the time evolution of quantum states when driven through a region of small gap. Such small-gap regions are a common situation in adiabatic quantum computing and having reliable approximations is important in this context. The AIA originates from the Kibble-Zurek theory applied to continuous quantum phase transitions. The Kibble-Zurek mechanism was developed to predict the power-law scaling of the defect density across a continuous quantum phase transition. Instead, here we quantify the accuracy of the AIA via the trace norm distance with respect to the exact evolved state. As expected, we find that for short times or fast protocols, the AIA outperforms the simple adiabatic approximation. However, for large times or slow protocols, the situation is actually reversed and the AIA provides a worse approximation. Nevertheless, we found a variation of the AIA that can perform better than the adiabatic one. This counterintuitive modification consists in crossing the region of small gap twice. Our findings are illustrated by several examples of driven closed and open quantum systems.

  17. Systematic and Automated Development of Quantum Mechanically Derived Force Fields: The Challenging Case of Halogenated Hydrocarbons.

    PubMed

    Prampolini, Giacomo; Campetella, Marco; De Mitri, Nicola; Livotto, Paolo Roberto; Cacelli, Ivo

    2016-11-08

    A robust and automated protocol for the derivation of sound force field parameters, suitable for condensed-phase classical simulations, is here tested and validated on several halogenated hydrocarbons, a class of compounds for which standard force fields have often been reported to deliver rather inaccurate performances. The major strength of the proposed protocol is that all of the parameters are derived only from first principles because all of the information required is retrieved from quantum mechanical data, purposely computed for the investigated molecule. This a priori parametrization is carried out separately for the intra- and intermolecular contributions to the force fields, respectively exploiting the Joyce and Picky programs, previously developed in our group. To avoid high computational costs, all quantum mechanical calculations were performed exploiting the density functional theory. Because the choice of the functional is known to be crucial for the description of the intermolecular interactions, a specific procedure is proposed, which allows for a reliable benchmark of different functionals against higher-level data. The intramolecular and intermolecular contribution are eventually joined together, and the resulting quantum mechanically derived force field is thereafter employed in lengthy molecular dynamics simulations to compute several thermodynamic properties that characterize the resulting bulk phase. The accuracy of the proposed parametrization protocol is finally validated by comparing the computed macroscopic observables with the available experimental counterparts. It is found that, on average, the proposed approach is capable of yielding a consistent description of the investigated set, often outperforming the literature standard force fields, or at least delivering results of similar accuracy.

  18. Blind Quantum Signature with Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Li, Wei; Shi, Ronghua; Guo, Ying

    2017-04-01

    Blind quantum computation allows a client without quantum abilities to interact with a quantum server to perform a unconditional secure computing protocol, while protecting client's privacy. Motivated by confidentiality of blind quantum computation, a blind quantum signature scheme is designed with laconic structure. Different from the traditional signature schemes, the signing and verifying operations are performed through measurement-based quantum computation. Inputs of blind quantum computation are securely controlled with multi-qubit entangled states. The unique signature of the transmitted message is generated by the signer without leaking information in imperfect channels. Whereas, the receiver can verify the validity of the signature using the quantum matching algorithm. The security is guaranteed by entanglement of quantum system for blind quantum computation. It provides a potential practical application for e-commerce in the cloud computing and first-generation quantum computation.

  19. An adiabatic linearized path integral approach for quantum time-correlation functions II: a cumulant expansion method for improving convergence.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe

    2006-08-17

    Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.

  20. Measurement-only verifiable blind quantum computing with quantum input verification

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2016-10-01

    Verifiable blind quantum computing is a secure delegated quantum computing where a client with a limited quantum technology delegates her quantum computing to a server who has a universal quantum computer. The client's privacy is protected (blindness), and the correctness of the computation is verifiable by the client despite her limited quantum technology (verifiability). There are mainly two types of protocols for verifiable blind quantum computing: the protocol where the client has only to generate single-qubit states and the protocol where the client needs only the ability of single-qubit measurements. The latter is called the measurement-only verifiable blind quantum computing. If the input of the client's quantum computing is a quantum state, whose classical efficient description is not known to the client, there was no way for the measurement-only client to verify the correctness of the input. Here we introduce a protocol of measurement-only verifiable blind quantum computing where the correctness of the quantum input is also verifiable.

  1. Monte Carlo simulations of quantum dot solar concentrators: ray tracing based on fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Schuler, A.; Kostro, A.; Huriet, B.; Galande, C.; Scartezzini, J.-L.

    2008-08-01

    One promising application of semiconductor nanostructures in the field of photovoltaics might be quantum dot solar concentrators. Quantum dot containing nanocomposite thin films are synthesized at EPFL-LESO by a low cost sol-gel process. In order to study the potential of the novel planar photoluminescent concentrators, reliable computer simulations are needed. A computer code for ray tracing simulations of quantum dot solar concentrators has been developed at EPFL-LESO on the basis of Monte Carlo methods that are applied to polarization-dependent reflection/transmission at interfaces, photon absorption by the semiconductor nanocrystals and photoluminescent reemission. The software allows importing measured or theoretical absorption/reemission spectra describing the photoluminescent properties of the quantum dots. Hereby the properties of photoluminescent reemission are described by a set of emission spectra depending on the energy of the incoming photon, allowing to simulate the photoluminescent emission using the inverse function method. By our simulations, the importance of two main factors is revealed, an emission spectrum matched to the spectral efficiency curve of the photovoltaic cell, and a large Stokes shift, which is advantageous for the lateral energy transport. No significant energy losses are implied when the quantum dots are contained within a nanocomposite coating instead of being dispersed in the entire volume of the pane. Together with the knowledge on the optoelectronical properties of suitable photovoltaic cells, the simulations allow to predict the total efficiency of the envisaged concentrating PV systems, and to optimize photoluminescent emission frequencies, optical densities, and pane dimensions.

  2. Optimization of a solid-state electron spin qubit using Gate Set Tomography

    DOE PAGES

    Dehollain, Juan P.; Muhonen, Juha T.; Blume-Kohout, Robin J.; ...

    2016-10-13

    Here, state of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate Set Tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereasmore » GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of 99.942(8)%, an improvement on the previous value of 99.90(2)%. Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme.« less

  3. Programmable Quantum Photonic Processor Using Silicon Photonics

    DTIC Science & Technology

    2017-04-01

    quantum information processing and quantum sensing, ranging from linear optics quantum computing and quantum simulation to quantum ...transformers have driven experimental and theoretical advances in quantum simulation, cluster-state quantum computing , all-optical quantum repeaters...neuromorphic computing , and other applications. In addition, we developed new schemes for ballistic quantum computation , new methods for

  4. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  5. Triple-server blind quantum computation using entanglement swapping

    NASA Astrophysics Data System (ADS)

    Li, Qin; Chan, Wai Hong; Wu, Chunhui; Wen, Zhonghua

    2014-04-01

    Blind quantum computation allows a client who does not have enough quantum resources or technologies to achieve quantum computation on a remote quantum server such that the client's input, output, and algorithm remain unknown to the server. Up to now, single- and double-server blind quantum computation have been considered. In this work, we propose a triple-server blind computation protocol where the client can delegate quantum computation to three quantum servers by the use of entanglement swapping. Furthermore, the three quantum servers can communicate with each other and the client is almost classical since one does not require any quantum computational power, quantum memory, and the ability to prepare any quantum states and only needs to be capable of getting access to quantum channels.

  6. How to Build a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.

    2017-11-01

    Quantum computer technology is progressing rapidly with dozens of qubits and hundreds of quantum logic gates now possible. Although current quantum computer technology is distant from being able to solve computational problems beyond the reach of non-quantum computers, experiments have progressed well beyond simply demonstrating the requisite components. We can now operate small quantum logic processors with connected networks of qubits and quantum logic gates, which is a great stride towards functioning quantum computers. This book aims to be accessible to a broad audience with basic knowledge of computers, electronics and physics. The goal is to convey key notions relevant to building quantum computers and to present state-of-the-art quantum-computer research in various media such as trapped ions, superconducting circuits, photonics and beyond.

  7. Blind topological measurement-based quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  8. Blind topological measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-09-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3×10-3, which is comparable to that (7.5×10-3) of non-blind topological quantum computation. As the error per gate of the order 10-3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  9. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots.

    PubMed

    Kazemi, Masoud; Åqvist, Johan

    2015-06-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies.

  10. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots

    PubMed Central

    Kazemi, Masoud; Åqvist, Johan

    2015-01-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies. PMID:26028237

  11. Demonstration of blind quantum computing.

    PubMed

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joseph F; Zeilinger, Anton; Walther, Philip

    2012-01-20

    Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.

  12. Partial hyperbolicity and attracting regions in 3-dimensional manifolds

    NASA Astrophysics Data System (ADS)

    Potrie, Rafael

    The need for reliable, fiber-based sources of entangled and paired photons has intensified in recent years because of potential uses in optical quantum communication and computing. In particular, indistinguishable photon sources are an inherent part of several quantum communication protocols and are needed to establish the viability of quantum communication networks. This thesis is centered around the development of such sources at telecommunication-band wavelengths. In this thesis, we describe experiments on entangled photon generation and the creation of quantum logic gates in the C-band, and on photon indistinguishability in the O-band. These experiments utilize the four-wave mixing process in fiber which occurs as a result of the Kerr nonlinearity, to create paired photons. To begin, we report the development of a source of 1550-nm polarization entangled photons in fiber. We then interface this source with a quantum Controlled-NOT gate, which is a universal quantum logic gate. We set experimental bounds on the process fidelity of the Controlled-NOT gate. Next, we report a demonstration of quantum interference between 1310-nm photons produced in independent sources. We demonstrate high quantum interference visibility, a signature of quantum indistinguishability, while using distinguishable pump photons. Together, these efforts constitute preliminary steps toward establishing the viability of fiber-based quantum communication, which will allow us to utilize existing infrastructure for implementing quantum communication protocols.

  13. Quantum Computation: Entangling with the Future

    NASA Technical Reports Server (NTRS)

    Jiang, Zhang

    2017-01-01

    Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.

  14. Quantum Fragment Based ab Initio Molecular Dynamics for Proteins.

    PubMed

    Liu, Jinfeng; Zhu, Tong; Wang, Xianwei; He, Xiao; Zhang, John Z H

    2015-12-08

    Developing ab initio molecular dynamics (AIMD) methods for practical application in protein dynamics is of significant interest. Due to the large size of biomolecules, applying standard quantum chemical methods to compute energies for dynamic simulation is computationally prohibitive. In this work, a fragment based ab initio molecular dynamics approach is presented for practical application in protein dynamics study. In this approach, the energy and forces of the protein are calculated by a recently developed electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method. For simulation in explicit solvent, mechanical embedding is introduced to treat protein interaction with explicit water molecules. This AIMD approach has been applied to MD simulations of a small benchmark protein Trpcage (with 20 residues and 304 atoms) in both the gas phase and in solution. Comparison to the simulation result using the AMBER force field shows that the AIMD gives a more stable protein structure in the simulation, indicating that quantum chemical energy is more reliable. Importantly, the present fragment-based AIMD simulation captures quantum effects including electrostatic polarization and charge transfer that are missing in standard classical MD simulations. The current approach is linear-scaling, trivially parallel, and applicable to performing the AIMD simulation of proteins with a large size.

  15. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  16. Blind topological measurement-based quantum computation

    PubMed Central

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf–Harrington–Goyal scheme. The error threshold of our scheme is 4.3×10−3, which is comparable to that (7.5×10−3) of non-blind topological quantum computation. As the error per gate of the order 10−3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach. PMID:22948818

  17. Quantum computation for solving linear systems

    NASA Astrophysics Data System (ADS)

    Cao, Yudong

    Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.

  18. Abstract quantum computing machines and quantum computational logics

    NASA Astrophysics Data System (ADS)

    Chiara, Maria Luisa Dalla; Giuntini, Roberto; Sergioli, Giuseppe; Leporini, Roberto

    2016-06-01

    Classical and quantum parallelism are deeply different, although it is sometimes claimed that quantum Turing machines are nothing but special examples of classical probabilistic machines. We introduce the concepts of deterministic state machine, classical probabilistic state machine and quantum state machine. On this basis, we discuss the question: To what extent can quantum state machines be simulated by classical probabilistic state machines? Each state machine is devoted to a single task determined by its program. Real computers, however, behave differently, being able to solve different kinds of problems. This capacity can be modeled, in the quantum case, by the mathematical notion of abstract quantum computing machine, whose different programs determine different quantum state machines. The computations of abstract quantum computing machines can be linguistically described by the formulas of a particular form of quantum logic, termed quantum computational logic.

  19. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  20. Quantum computers: Definition and implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Delgado, Carlos A.; Kok, Pieter

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria:more » Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.« less

  1. Quantum simulator review

    NASA Astrophysics Data System (ADS)

    Bednar, Earl; Drager, Steven L.

    2007-04-01

    Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.

  2. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.

    PubMed

    Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele

    2016-06-16

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

  3. Qubits, qutrits, and ququads stored in single photons from an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Holleczek, Annemarie; Barter, Oliver; Langfahl-Klabes, Gunnar; Kuhn, Axel

    2015-03-01

    One of today's challenge to realize computing based on quantum mechanics is to reliably and scalably encode information in quantum systems. Here, we present a photon source to on-demand deliver photonic quantum bits of information based on a strongly coupled atom-cavity system. It operates intermittently for periods of up to 100μs, with a single-photon repetition rate of 1MHz, and an intra-cavity production e!ciency of up to 85%. Due to the photons inherent coherence time of 500ns and our ability to arbitrarily shape their amplitude and phase profile we time-bin encode information within one photon. To do so, the spatio-temporal envelope of a single photon is sub-divided in d time bins which allows for the delivery of arbitrary qu-d-its. The latter is done with a fidelity of > 95% for qubits, and 94% for qutrits verified using a newly developed time-resolved quantum-homodyne technique.

  4. Quantum walk computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kendon, Viv

    2014-12-04

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer.

  5. Capture approximations beyond a statistical quantum mechanical method for atom-diatom reactions

    NASA Astrophysics Data System (ADS)

    Barrios, Lizandra; Rubayo-Soneira, Jesús; González-Lezana, Tomás

    2016-03-01

    Statistical techniques constitute useful approaches to investigate atom-diatom reactions mediated by insertion dynamics which involves complex-forming mechanisms. Different capture schemes based on energy considerations regarding the specific diatom rovibrational states are suggested to evaluate the corresponding probabilities of formation of such collision species between reactants and products in an attempt to test reliable alternatives for computationally demanding processes. These approximations are tested in combination with a statistical quantum mechanical method for the S + H2(v = 0 ,j = 1) → SH + H and Si + O2(v = 0 ,j = 1) → SiO + O reactions, where this dynamical mechanism plays a significant role, in order to probe their validity.

  6. Quantum simulations with noisy quantum computers

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  7. Research on Novel Algorithms for Smart Grid Reliability Assessment and Economic Dispatch

    NASA Astrophysics Data System (ADS)

    Luo, Wenjin

    In this dissertation, several studies of electric power system reliability and economy assessment methods are presented. To be more precise, several algorithms in evaluating power system reliability and economy are studied. Furthermore, two novel algorithms are applied to this field and their simulation results are compared with conventional results. As the electrical power system develops towards extra high voltage, remote distance, large capacity and regional networking, the application of a number of new technique equipments and the electric market system have be gradually established, and the results caused by power cut has become more and more serious. The electrical power system needs the highest possible reliability due to its complication and security. In this dissertation the Boolean logic Driven Markov Process (BDMP) method is studied and applied to evaluate power system reliability. This approach has several benefits. It allows complex dynamic models to be defined, while maintaining its easy readability as conventional methods. This method has been applied to evaluate IEEE reliability test system. The simulation results obtained are close to IEEE experimental data which means that it could be used for future study of the system reliability. Besides reliability, modern power system is expected to be more economic. This dissertation presents a novel evolutionary algorithm named as quantum evolutionary membrane algorithm (QEPS), which combines the concept and theory of quantum-inspired evolutionary algorithm and membrane computation, to solve the economic dispatch problem in renewable power system with on land and offshore wind farms. The case derived from real data is used for simulation tests. Another conventional evolutionary algorithm is also used to solve the same problem for comparison. The experimental results show that the proposed method is quick and accurate to obtain the optimal solution which is the minimum cost for electricity supplied by wind farm system.

  8. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.

    PubMed

    Goto, Hayato

    2016-02-22

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  9. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    NASA Astrophysics Data System (ADS)

    Goto, Hayato

    2016-02-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.

  10. Computation and Dynamics: Classical and Quantum

    NASA Astrophysics Data System (ADS)

    Kisil, Vladimir V.

    2010-05-01

    We discuss classical and quantum computations in terms of corresponding Hamiltonian dynamics. This allows us to introduce quantum computations which involve parallel processing of both: the data and programme instructions. Using mixed quantum-classical dynamics we look for a full cost of computations on quantum computers with classical terminals.

  11. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  12. ASCR Workshop on Quantum Computing for Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aspuru-Guzik, Alan; Van Dam, Wim; Farhi, Edward

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms formore » linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.« less

  13. Flow Ambiguity: A Path Towards Classically Driven Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Mantri, Atul; Demarie, Tommaso F.; Menicucci, Nicolas C.; Fitzsimons, Joseph F.

    2017-07-01

    Blind quantum computation protocols allow a user to delegate a computation to a remote quantum computer in such a way that the privacy of their computation is preserved, even from the device implementing the computation. To date, such protocols are only known for settings involving at least two quantum devices: either a user with some quantum capabilities and a remote quantum server or two or more entangled but noncommunicating servers. In this work, we take the first step towards the construction of a blind quantum computing protocol with a completely classical client and single quantum server. Specifically, we show how a classical client can exploit the ambiguity in the flow of information in measurement-based quantum computing to construct a protocol for hiding critical aspects of a computation delegated to a remote quantum computer. This ambiguity arises due to the fact that, for a fixed graph, there exist multiple choices of the input and output vertex sets that result in deterministic measurement patterns consistent with the same fixed total ordering of vertices. This allows a classical user, computing only measurement angles, to drive a measurement-based computation performed on a remote device while hiding critical aspects of the computation.

  14. One-way quantum computing in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  15. State-of-the-art thermochemical and kinetic computations for astrochemical complex organic molecules: formamide formation in cold interstellar clouds as a case study

    PubMed Central

    Vazart, Fanny; Calderini, Danilo; Puzzarini, Cristina; Skouteris, Dimitrios

    2017-01-01

    We propose an integrated computational strategy aimed at providing reliable thermochemical and kinetic information on the formation processes of astrochemical complex organic molecules. The approach involves state-of-the-art quantum-mechanical computations, second-order vibrational perturbation theory, and kinetic models based on capture and transition state theory together with the master equation approach. Notably, tunneling, quantum reflection, and leading anharmonic contributions are accounted for in our model. Formamide has been selected as a case study in view of its interest as a precursor in the abiotic amino acid synthesis. After validation of the level of theory chosen for describing the potential energy surface, we have investigated several pathways of the OH+CH2NH and NH2+HCHO reaction channels. Our results indicate that both reaction channels are essentially barrier-less (in the sense that all relevant transition states lie below or only marginally above the reactants) and can, therefore, occur under the low temperature conditions of interstellar objects provided that tunneling is taken into the proper account. PMID:27689448

  16. Quantum Spin Glasses, Annealing and Computation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu

    2017-05-01

    List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.

  17. Quantum-Enhanced Cyber Security: Experimental Computation on Quantum-Encrypted Data

    DTIC Science & Technology

    2017-03-02

    AFRL-AFOSR-UK-TR-2017-0020 Quantum-Enhanced Cyber Security: Experimental Computation on Quantum-Encrypted Data Philip Walther UNIVERSITT WIEN Final...REPORT TYPE Final 3. DATES COVERED (From - To) 15 Oct 2015 to 31 Dec 2016 4. TITLE AND SUBTITLE Quantum-Enhanced Cyber Security: Experimental Computation...FORM SF 298 Final Report for FA9550-1-6-1-0004 Quantum-enhanced cyber security: Experimental quantum computation with quantum-encrypted data

  18. Computing quantum discord is NP-complete

    NASA Astrophysics Data System (ADS)

    Huang, Yichen

    2014-03-01

    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.

  19. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  20. Hybrid Circuit QED with Electrons on Helium

    NASA Astrophysics Data System (ADS)

    Yang, Ge

    Electrons on helium (eHe) is a 2-dimensional system that forms naturally at the interface between superfluid helium and vacuum. It has the highest measured electron mobility, and long predicted spin coherence time. In this talk, we will first review various quantum computer architecture proposals that take advantage of these exceptional properties. In particular, we describe how electrons on helium can be combined with superconducting microwave circuits to take advantage of the recent progress in the field of circuit quantum electrodynamics (cQED). We will then demonstrate how to reliably trap electrons on these devices hours at a time, at millikelvin temperatures inside a dilution refrigerator. The coupling between the electrons and the microwave resonator exceeds 1 MHz, and can be reproduced from the design geometry using our numerical simulation. Finally, we will present our progress on isolating individual electrons in such circuits, to build single-electron quantum dots with electrons on helium.

  1. Unbounded number of channel uses may be required to detect quantum capacity.

    PubMed

    Cubitt, Toby; Elkouss, David; Matthews, William; Ozols, Maris; Pérez-García, David; Strelchuk, Sergii

    2015-03-31

    Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.

  2. Quantum Computing: Selected Internet Resources for Librarians, Researchers, and the Casually Curious

    ERIC Educational Resources Information Center

    Cirasella, Jill

    2009-01-01

    This article presents an annotated selection of the most important and informative Internet resources for learning about quantum computing, finding quantum computing literature, and tracking quantum computing news. All of the quantum computing resources described in this article are freely available, English-language web sites that fall into one…

  3. Contextuality as a Resource for Models of Quantum Computation with Qubits

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Delfosse, Nicolas; Browne, Dan E.; Okay, Cihan; Raussendorf, Robert

    2017-09-01

    A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wave functions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.

  4. Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network

    PubMed Central

    Goto, Hayato

    2016-01-01

    The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997

  5. Architectures and Applications for Scalable Quantum Information Systems

    DTIC Science & Technology

    2007-01-01

    quantum computation models, such as adiabatic quantum computing , can be converted to quantum circuits. Therefore, in our design flow’s first phase...vol. 26, no. 5, pp. 1484–1509, 1997. [19] A. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation ,” Phys. Rev. A, vol. 65...magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic

  6. Hybrid quantum computing with ancillas

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Kendon, Viv

    2016-10-01

    In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.

  7. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  8. Verification for measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-06-01

    Blind quantum computing is a new secure quantum computing protocol where a client who does not have any sophisticated quantum technology can delegate her quantum computing to a server without leaking any privacy. It is known that a client who has only a measurement device can perform blind quantum computing [T. Morimae and K. Fujii, Phys. Rev. A 87, 050301(R) (2013), 10.1103/PhysRevA.87.050301]. It has been an open problem whether the protocol can enjoy the verification, i.e., the ability of the client to check the correctness of the computing. In this paper, we propose a protocol of verification for the measurement-only blind quantum computing.

  9. Pure sources and efficient detectors for optical quantum information processing

    NASA Astrophysics Data System (ADS)

    Zielnicki, Kevin

    Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.

  10. Experimental demonstration of blind quantum computing

    NASA Astrophysics Data System (ADS)

    Barz, Stefanie; Kashefi, Elham; Broadbent, Anne; Fitzsimons, Joe; Zeilinger, Anton; Walther, Philip

    2012-02-01

    Quantum computers are among the most promising applications of quantum-enhanced technologies. Quantum effects such as superposition and entanglement enable computational speed-ups that are unattainable using classical computers. The challenges in realising quantum computers suggest that in the near future, only a few facilities worldwide will be capable of operating such devices. In order to exploit these computers, users would seemingly have to give up their privacy. It was recently shown that this is not the case and that, via the universal blind quantum computation protocol, quantum mechanics provides a way to guarantee that the user's data remain private. Here, we demonstrate the first experimental version of this protocol using polarisation-entangled photonic qubits. We demonstrate various blind one- and two-qubit gate operations as well as blind versions of the Deutsch's and Grover's algorithms. When the technology to build quantum computers becomes available, this will become an important privacy-preserving feature of quantum information processing.

  11. Single-server blind quantum computation with quantum circuit model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  12. Contextuality supplies the 'magic' for quantum computation.

    PubMed

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  13. Exploiting Locality in Quantum Computation for Quantum Chemistry.

    PubMed

    McClean, Jarrod R; Babbush, Ryan; Love, Peter J; Aspuru-Guzik, Alán

    2014-12-18

    Accurate prediction of chemical and material properties from first-principles quantum chemistry is a challenging task on traditional computers. Recent developments in quantum computation offer a route toward highly accurate solutions with polynomial cost; however, this solution still carries a large overhead. In this Perspective, we aim to bring together known results about the locality of physical interactions from quantum chemistry with ideas from quantum computation. We show that the utilization of spatial locality combined with the Bravyi-Kitaev transformation offers an improvement in the scaling of known quantum algorithms for quantum chemistry and provides numerical examples to help illustrate this point. We combine these developments to improve the outlook for the future of quantum chemistry on quantum computers.

  14. Computational Multiqubit Tunnelling in Programmable Quantum Annealers

    DTIC Science & Technology

    2016-08-25

    ARTICLE Received 3 Jun 2015 | Accepted 26 Nov 2015 | Published 7 Jan 2016 Computational multiqubit tunnelling in programmable quantum annealers...state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational ...qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational

  15. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  16. Application of Blind Quantum Computation to Two-Party Quantum Computation

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Li, Qin; Yu, Fang; Chan, Wai Hong

    2018-06-01

    Blind quantum computation (BQC) allows a client who has only limited quantum power to achieve quantum computation with the help of a remote quantum server and still keep the client's input, output, and algorithm private. Recently, Kashefi and Wallden extended BQC to achieve two-party quantum computation which allows two parties Alice and Bob to perform a joint unitary transform upon their inputs. However, in their protocol Alice has to prepare rotated single qubits and perform Pauli operations, and Bob needs to have a powerful quantum computer. In this work, we also utilize the idea of BQC to put forward an improved two-party quantum computation protocol in which the operations of both Alice and Bob are simplified since Alice only needs to apply Pauli operations and Bob is just required to prepare and encrypt his input qubits.

  17. Application of Blind Quantum Computation to Two-Party Quantum Computation

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Li, Qin; Yu, Fang; Chan, Wai Hong

    2018-03-01

    Blind quantum computation (BQC) allows a client who has only limited quantum power to achieve quantum computation with the help of a remote quantum server and still keep the client's input, output, and algorithm private. Recently, Kashefi and Wallden extended BQC to achieve two-party quantum computation which allows two parties Alice and Bob to perform a joint unitary transform upon their inputs. However, in their protocol Alice has to prepare rotated single qubits and perform Pauli operations, and Bob needs to have a powerful quantum computer. In this work, we also utilize the idea of BQC to put forward an improved two-party quantum computation protocol in which the operations of both Alice and Bob are simplified since Alice only needs to apply Pauli operations and Bob is just required to prepare and encrypt his input qubits.

  18. Decoherence in adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  19. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  20. Elucidating reaction mechanisms on quantum computers.

    PubMed

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  1. Elucidating reaction mechanisms on quantum computers

    PubMed Central

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  2. Elucidating reaction mechanisms on quantum computers

    NASA Astrophysics Data System (ADS)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  3. Simulations of relativistic quantum plasmas using real-time lattice scalar QED

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.

  4. Software Systems for High-performance Quantum Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Britt, Keith A

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventionalmore » computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.« less

  5. Homomorphic encryption experiments on IBM's cloud quantum computing platform

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-02-01

    Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.

  6. A cross-disciplinary introduction to quantum annealing-based algorithms

    NASA Astrophysics Data System (ADS)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  7. Some Thoughts Regarding Practical Quantum Computing

    NASA Astrophysics Data System (ADS)

    Ghoshal, Debabrata; Gomez, Richard; Lanzagorta, Marco; Uhlmann, Jeffrey

    2006-03-01

    Quantum computing has become an important area of research in computer science because of its potential to provide more efficient algorithmic solutions to certain problems than are possible with classical computing. The ability of performing parallel operations over an exponentially large computational space has proved to be the main advantage of the quantum computing model. In this regard, we are particularly interested in the potential applications of quantum computers to enhance real software systems of interest to the defense, industrial, scientific and financial communities. However, while much has been written in popular and scientific literature about the benefits of the quantum computational model, several of the problems associated to the practical implementation of real-life complex software systems in quantum computers are often ignored. In this presentation we will argue that practical quantum computation is not as straightforward as commonly advertised, even if the technological problems associated to the manufacturing and engineering of large-scale quantum registers were solved overnight. We will discuss some of the frequently overlooked difficulties that plague quantum computing in the areas of memories, I/O, addressing schemes, compilers, oracles, approximate information copying, logical debugging, error correction and fault-tolerant computing protocols.

  8. Non-unitary probabilistic quantum computing circuit and method

    NASA Technical Reports Server (NTRS)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  9. Neutron scattering, solid state NMR and quantum chemistry studies of 11-keto-progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-07-01

    The molecule geometry, frequency and intensity of the IINS and IR vibrational bands of 11-ketoprogesterone have been obtained by the HF, PM3 and density functional theory (DFT) with the B3LYP functionals and 6-31G(d,p) basis set. The optimised bond lengths and bond angles of the steroid skeleton are in good agreement with the X-ray data. The IR and IINS spectra of ketoprogesterone, computed at the DFT level, well reproduce the vibrational wavenumbers and intensities to an accuracy allowing reliable vibrational assignments. The molecular dynamic study by 1H NMR has confirmed the sequence of onset of reorientations of subsequent methyl groups indicated by the results of quantum chemistry calculations and INS spectra.

  10. Building an adiabatic quantum computer simulation in the classroom

    NASA Astrophysics Data System (ADS)

    Rodríguez-Laguna, Javier; Santalla, Silvia N.

    2018-05-01

    We present a didactic introduction to adiabatic quantum computation (AQC) via the explicit construction of a classical simulator of quantum computers. This constitutes a suitable route to introduce several important concepts for advanced undergraduates in physics: quantum many-body systems, quantum phase transitions, disordered systems, spin-glasses, and computational complexity theory.

  11. Nontrivial Quantum Effects in Biology: A Skeptical Physicists' View

    NASA Astrophysics Data System (ADS)

    Wiseman, Howard; Eisert, Jens

    The following sections are included: * Introduction * A Quantum Life Principle * A quantum chemistry principle? * The anthropic principle * Quantum Computing in the Brain * Nature did everything first? * Decoherence as the make or break issue * Quantum error correction * Uselessness of quantum algorithms for organisms * Quantum Computing in Genetics * Quantum search * Teleological aspects and the fast-track to life * Quantum Consciousness * Computability and free will * Time scales * Quantum Free Will * Predictability and free will * Determinism and free will * Acknowledgements * References

  12. Algorithmic complexity of quantum capacity

    NASA Astrophysics Data System (ADS)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  13. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  14. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  15. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    PubMed

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  16. Private quantum computation: an introduction to blind quantum computing and related protocols

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

  17. OpenFlow Extensions for Programmable Quantum Networks

    DTIC Science & Technology

    2017-06-19

    Extensions for Programmable Quantum Networks by Venkat Dasari, Nikolai Snow, and Billy Geerhart Computational and Information Sciences Directorate...distribution is unlimited. 1 1. Introduction Quantum networks and quantum computing have been receiving a surge of interest recently.1–3 However, there has...communicate using entangled particles and perform calculations using quantum logic gates. Additionally, quantum computing uses a quantum bit (qubit

  18. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  19. Recent progress of quantum annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Sei

    2015-03-10

    We review the recent progress of quantum annealing. Quantum annealing was proposed as a method to solve generic optimization problems. Recently a Canadian company has drawn a great deal of attention, as it has commercialized a quantum computer based on quantum annealing. Although the performance of quantum annealing is not sufficiently understood, it is likely that quantum annealing will be a practical method both on a conventional computer and on a quantum computer.

  20. DOE pushes for useful quantum computing

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-01-01

    The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.

  1. Quantum chemistry in environmental pesticide risk assessment.

    PubMed

    Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar

    2017-11-01

    The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Geometric manipulation of trapped ions for quantum computation.

    PubMed

    Duan, L M; Cirac, J I; Zoller, P

    2001-06-01

    We propose an experimentally feasible scheme to achieve quantum computation based solely on geometric manipulations of a quantum system. The desired geometric operations are obtained by driving the quantum system to undergo appropriate adiabatic cyclic evolutions. Our implementation of the all-geometric quantum computation is based on laser manipulation of a set of trapped ions. An all-geometric approach, apart from its fundamental interest, offers a possible method for robust quantum computation.

  3. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    DTIC Science & Technology

    2016-09-13

    computation [1] provides a gen- eral framework for fundamental investigations into sub- jects such as entanglement, quantum measurement, and quantum ...information theory. Since quantum computation relies on entanglement between qubits, any implementa- tion of a quantum computer must offer isolation from the...for realiz- ing a quantum computer , which is scalable to an arbitrary number of qubits. Their scheme is based on a collection of trapped atomic ions

  4. Quantum computing on encrypted data

    NASA Astrophysics Data System (ADS)

    Fisher, K. A. G.; Broadbent, A.; Shalm, L. K.; Yan, Z.; Lavoie, J.; Prevedel, R.; Jennewein, T.; Resch, K. J.

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  5. Quantum computing on encrypted data.

    PubMed

    Fisher, K A G; Broadbent, A; Shalm, L K; Yan, Z; Lavoie, J; Prevedel, R; Jennewein, T; Resch, K J

    2014-01-01

    The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.

  6. Research progress on quantum informatics and quantum computation

    NASA Astrophysics Data System (ADS)

    Zhao, Yusheng

    2018-03-01

    Quantum informatics is an emerging interdisciplinary subject developed by the combination of quantum mechanics, information science, and computer science in the 1980s. The birth and development of quantum information science has far-reaching significance in science and technology. At present, the application of quantum information technology has become the direction of people’s efforts. The preparation, storage, purification and regulation, transmission, quantum coding and decoding of quantum state have become the hotspot of scientists and technicians, which have a profound impact on the national economy and the people’s livelihood, technology and defense technology. This paper first summarizes the background of quantum information science and quantum computer and the current situation of domestic and foreign research, and then introduces the basic knowledge and basic concepts of quantum computing. Finally, several quantum algorithms are introduced in detail, including Quantum Fourier transform, Deutsch-Jozsa algorithm, Shor’s quantum algorithm, quantum phase estimation.

  7. Elucidating Reaction Mechanisms on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias

    We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.

  8. Blueprint for a microwave trapped ion quantum computer.

    PubMed

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  9. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  10. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy

    DTIC Science & Technology

    2016-08-25

    life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2

  11. Quantum Accelerators for High-performance Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less

  12. Adiabatic topological quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  13. Adiabatic topological quantum computing

    DOE PAGES

    Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; ...

    2015-07-31

    Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev’s surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computationmore » size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.« less

  14. Quantum computing and probability.

    PubMed

    Ferry, David K

    2009-11-25

    Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.

  15. Fast non-Abelian geometric gates via transitionless quantum driving.

    PubMed

    Zhang, J; Kyaw, Thi Ha; Tong, D M; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-12-21

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer.

  16. Fast non-Abelian geometric gates via transitionless quantum driving

    PubMed Central

    Zhang, J.; Kyaw, Thi Ha; Tong, D. M.; Sjöqvist, Erik; Kwek, Leong-Chuan

    2015-01-01

    A practical quantum computer must be capable of performing high fidelity quantum gates on a set of quantum bits (qubits). In the presence of noise, the realization of such gates poses daunting challenges. Geometric phases, which possess intrinsic noise-tolerant features, hold the promise for performing robust quantum computation. In particular, quantum holonomies, i.e., non-Abelian geometric phases, naturally lead to universal quantum computation due to their non-commutativity. Although quantum gates based on adiabatic holonomies have already been proposed, the slow evolution eventually compromises qubit coherence and computational power. Here, we propose a general approach to speed up an implementation of adiabatic holonomic gates by using transitionless driving techniques and show how such a universal set of fast geometric quantum gates in a superconducting circuit architecture can be obtained in an all-geometric approach. Compared with standard non-adiabatic holonomic quantum computation, the holonomies obtained in our approach tends asymptotically to those of the adiabatic approach in the long run-time limit and thus might open up a new horizon for realizing a practical quantum computer. PMID:26687580

  17. Verifiable fault tolerance in measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Hayashi, Masahito

    2017-09-01

    Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.

  18. Embracing the quantum limit in silicon computing.

    PubMed

    Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A

    2011-11-16

    Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer. © 2011 Macmillan Publishers Limited. All rights reserved

  19. Compiling Planning into Quantum Optimization Problems: A Comparative Study

    DTIC Science & Technology

    2015-06-07

    and Sipser, M. 2000. Quantum computation by adiabatic evolution. arXiv:quant- ph/0001106. Fikes, R. E., and Nilsson, N. J. 1972. STRIPS: A new...become available: quantum annealing. Quantum annealing is one of the most accessible quantum algorithms for a computer sci- ence audience not versed...in quantum computing because of its close ties to classical optimization algorithms such as simulated annealing. While large-scale universal quantum

  20. Quantum Computer Science

    NASA Astrophysics Data System (ADS)

    Mermin, N. David

    2007-08-01

    Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.

  1. Visualizing a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  2. Quantum Statistical Mechanics on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Raedt, H. D.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  3. An approach to quantum-computational hydrologic inverse analysis

    DOE PAGES

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  4. An approach to quantum-computational hydrologic inverse analysis.

    PubMed

    O'Malley, Daniel

    2018-05-02

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealer to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.

  5. An approach to quantum-computational hydrologic inverse analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Malley, Daniel

    Making predictions about flow and transport in an aquifer requires knowledge of the heterogeneous properties of the aquifer such as permeability. Computational methods for inverse analysis are commonly used to infer these properties from quantities that are more readily observable such as hydraulic head. We present a method for computational inverse analysis that utilizes a type of quantum computer called a quantum annealer. While quantum computing is in an early stage compared to classical computing, we demonstrate that it is sufficiently developed that it can be used to solve certain subsurface flow problems. We utilize a D-Wave 2X quantum annealermore » to solve 1D and 2D hydrologic inverse problems that, while small by modern standards, are similar in size and sometimes larger than hydrologic inverse problems that were solved with early classical computers. Our results and the rapid progress being made with quantum computing hardware indicate that the era of quantum-computational hydrology may not be too far in the future.« less

  6. Superfast maximum-likelihood reconstruction for quantum tomography

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  7. A novel quantum scheme for secure two-party distance computation

    NASA Astrophysics Data System (ADS)

    Peng, Zhen-wan; Shi, Run-hua; Zhong, Hong; Cui, Jie; Zhang, Shun

    2017-12-01

    Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point's location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.

  8. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  9. High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Fukui, Kosuke; Tomita, Akihisa; Okamoto, Atsushi; Fujii, Keisuke

    2018-04-01

    To implement fault-tolerant quantum computation with continuous variables, the Gottesman-Kitaev-Preskill (GKP) qubit has been recognized as an important technological element. However, it is still challenging to experimentally generate the GKP qubit with the required squeezing level, 14.8 dB, of the existing fault-tolerant quantum computation. To reduce this requirement, we propose a high-threshold fault-tolerant quantum computation with GKP qubits using topologically protected measurement-based quantum computation with the surface code. By harnessing analog information contained in the GKP qubits, we apply analog quantum error correction to the surface code. Furthermore, we develop a method to prevent the squeezing level from decreasing during the construction of the large-scale cluster states for the topologically protected, measurement-based, quantum computation. We numerically show that the required squeezing level can be relaxed to less than 10 dB, which is within the reach of the current experimental technology. Hence, this work can considerably alleviate this experimental requirement and take a step closer to the realization of large-scale quantum computation.

  10. Quantum Gauss-Jordan Elimination and Simulation of Accounting Principles on Quantum Computers

    NASA Astrophysics Data System (ADS)

    Diep, Do Ngoc; Giang, Do Hoang; Van Minh, Nguyen

    2017-06-01

    The paper is devoted to a version of Quantum Gauss-Jordan Elimination and its applications. In the first part, we construct the Quantum Gauss-Jordan Elimination (QGJE) Algorithm and estimate the complexity of computation of Reduced Row Echelon Form (RREF) of N × N matrices. The main result asserts that QGJE has computation time is of order 2 N/2. The second part is devoted to a new idea of simulation of accounting by quantum computing. We first expose the actual accounting principles in a pure mathematics language. Then, we simulate the accounting principles on quantum computers. We show that, all accounting actions are exhousted by the described basic actions. The main problems of accounting are reduced to some system of linear equations in the economic model of Leontief. In this simulation, we use our constructed Quantum Gauss-Jordan Elimination to solve the problems and the complexity of quantum computing is a square root order faster than the complexity in classical computing.

  11. Blueprint for a microwave trapped ion quantum computer

    PubMed Central

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G.; Mølmer, Klaus; Devitt, Simon J.; Wunderlich, Christof; Hensinger, Winfried K.

    2017-01-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion–based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation–based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error–threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects. PMID:28164154

  12. Silicon CMOS architecture for a spin-based quantum computer.

    PubMed

    Veldhorst, M; Eenink, H G J; Yang, C H; Dzurak, A S

    2017-12-15

    Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.

  13. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.

    PubMed

    Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond

    2017-02-24

    Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.

  14. Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems.

    PubMed

    Li, Ying

    2016-09-16

    Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.

  15. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  16. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  17. Two-spectral Yang-Baxter operators in topological quantum computation

    NASA Astrophysics Data System (ADS)

    Sanchez, William F.

    2011-05-01

    One of the current trends in quantum computing is the application of algebraic topological methods in the design of new algorithms and quantum computers, giving rise to topological quantum computing. One of the tools used in it is the Yang-Baxter equation whose solutions are interpreted as universal quantum gates. Lately, more general Yang-Baxter equations have been investigated, making progress as two-spectral equations and Yang-Baxter systems. This paper intends to apply these new findings to the field of topological quantum computation, more specifically, the proposition of the two-spectral Yang-Baxter operators as universal quantum gates for 2 qubits and 2 qutrits systems, obtaining 4x4 and 9x9 matrices respectively, and further elaboration of the corresponding Hamiltonian by the use of computer algebra software Mathematica® and its Qucalc package. In addition, possible physical systems to which the Yang-Baxter operators obtained can be applied are considered. In the present work it is demonstrated the utility of the Yang-Baxter equation to generate universal quantum gates and the power of computer algebra to design them; it is expected that these mathematical studies contribute to the further development of quantum computers

  18. Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Dong, Ping; Zhou, Jian; Cao, Zhuo-Liang

    2017-05-01

    A scheme for implementing the non-adiabatic holonomic quantum computation in decoherence-free subspaces is proposed with the interactions between a microcavity and quantum dots. A universal set of quantum gates can be constructed on the encoded logical qubits with high fidelities. The current scheme can suppress both local and collective noises, which is very important for achieving universal quantum computation. Discussions about the gate fidelities with the experimental parameters show that our schemes can be implemented in current experimental technology. Therefore, our scenario offers a method for universal and robust solid-state quantum computation.

  19. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    PubMed

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  20. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  1. Estimating the Resources for Quantum Computation with the QuRE Toolbox

    DTIC Science & Technology

    2013-05-31

    quantum computing. Quantum Info. Comput., 9(7):666–682, July 2009. [13] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with rydberg atoms...109(5):735–750, 2011. [24] Aram Harrow , Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear systems of equations. Phys. Rev

  2. Entanglement in a Quantum Annealing Processor

    DTIC Science & Technology

    2016-09-07

    that QA is a viable technology for large- scale quantum computing . DOI: 10.1103/PhysRevX.4.021041 Subject Areas: Quantum Physics, Quantum Information...Superconductivity I. INTRODUCTION The past decade has been exciting for the field of quantum computation . A wide range of physical imple- mentations...measurements used in studying prototype universal quantum computers [9–14]. These constraints make it challenging to experimentally determine whether a scalable

  3. Quantum Optical Implementations of Current Quantum Computing Paradigms

    DTIC Science & Technology

    2005-05-01

    Conferences and Proceedings: The results were presented at several conferences. These include: 1. M. O. Scully, " Foundations of Quantum Mechanics ", in...applications have revealed a strong connection between the fundamental aspects of quantum mechanics that governs physical systems and the informational...could be solved in polynomial time using quantum computers. Another set of problems where quantum mechanics can carry out computations substantially

  4. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System.

    PubMed

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-31

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  5. Experimental Adiabatic Quantum Factorization under Ambient Conditions Based on a Solid-State Single Spin System

    NASA Astrophysics Data System (ADS)

    Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng

    2017-03-01

    The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.

  6. Compressed quantum computation using a remote five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Hebenstreit, M.; Alsina, D.; Latorre, J. I.; Kraus, B.

    2017-05-01

    The notion of compressed quantum computation is employed to simulate the Ising interaction of a one-dimensional chain consisting of n qubits using the universal IBM cloud quantum computer running on log2(n ) qubits. The external field parameter that controls the quantum phase transition of this model translates into particular settings of the quantum gates that generate the circuit. We measure the magnetization, which displays the quantum phase transition, on a two-qubit system, which simulates a four-qubit Ising chain, and show its agreement with the theoretical prediction within a certain error. We also discuss the relevant point of how to assess errors when using a cloud quantum computer with a limited amount of runs. As a solution, we propose to use validating circuits, that is, to run independent controlled quantum circuits of similar complexity to the circuit of interest.

  7. Experimental comparison of two quantum computing architectures.

    PubMed

    Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher

    2017-03-28

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

  8. Continuous-variable quantum Gaussian process regression and quantum singular value decomposition of nonsparse low-rank matrices

    NASA Astrophysics Data System (ADS)

    Das, Siddhartha; Siopsis, George; Weedbrook, Christian

    2018-02-01

    With the significant advancement in quantum computation during the past couple of decades, the exploration of machine-learning subroutines using quantum strategies has become increasingly popular. Gaussian process regression is a widely used technique in supervised classical machine learning. Here we introduce an algorithm for Gaussian process regression using continuous-variable quantum systems that can be realized with technology based on photonic quantum computers under certain assumptions regarding distribution of data and availability of efficient quantum access. Our algorithm shows that by using a continuous-variable quantum computer a dramatic speedup in computing Gaussian process regression can be achieved, i.e., the possibility of exponentially reducing the time to compute. Furthermore, our results also include a continuous-variable quantum-assisted singular value decomposition method of nonsparse low rank matrices and forms an important subroutine in our Gaussian process regression algorithm.

  9. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    DOEpatents

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  10. Experimental realization of universal geometric quantum gates with solid-state spins.

    PubMed

    Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M

    2014-10-02

    Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

  11. Universal quantum gates for Single Cooper Pair Box based quantum computing

    NASA Technical Reports Server (NTRS)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  12. Dissipative quantum computing with open quantum walks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinayskiy, Ilya; Petruccione, Francesco

    An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.

  13. Nonadiabatic holonomic quantum computation in decoherence-free subspaces.

    PubMed

    Xu, G F; Zhang, J; Tong, D M; Sjöqvist, Erik; Kwek, L C

    2012-10-26

    Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces and the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of adiabatic holonomic quantum computation in decoherence-free subspaces have been proposed in the past few years. However, nonadiabatic holonomic quantum computation in decoherence-free subspaces, which avoids a long run-time requirement but with all the robust advantages, remains an open problem. Here, we demonstrate how to realize nonadiabatic holonomic quantum computation in decoherence-free subspaces. By using only three neighboring physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal set of quantum gates.

  14. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  15. Simulating chemistry using quantum computers.

    PubMed

    Kassal, Ivan; Whitfield, James D; Perdomo-Ortiz, Alejandro; Yung, Man-Hong; Aspuru-Guzik, Alán

    2011-01-01

    The difficulty of simulating quantum systems, well known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.

  16. A software methodology for compiling quantum programs

    NASA Astrophysics Data System (ADS)

    Häner, Thomas; Steiger, Damian S.; Svore, Krysta; Troyer, Matthias

    2018-04-01

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. To achieve scalable quantum computation, optimizing compilers and a corresponding software design flow will be essential. We present a software architecture for compiling quantum programs from a high-level language program to hardware-specific instructions. We describe the necessary layers of abstraction and their differences and similarities to classical layers of a computer-aided design flow. For each layer of the stack, we discuss the underlying methods for compilation and optimization. Our software methodology facilitates more rapid innovation among quantum algorithm designers, quantum hardware engineers, and experimentalists. It enables scalable compilation of complex quantum algorithms and can be targeted to any specific quantum hardware implementation.

  17. Resonant transition-based quantum computation

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Fu; Hsieh, Chang-Yu

    2017-05-01

    In this article we assess a novel quantum computation paradigm based on the resonant transition (RT) phenomenon commonly associated with atomic and molecular systems. We thoroughly analyze the intimate connections between the RT-based quantum computation and the well-established adiabatic quantum computation (AQC). Both quantum computing frameworks encode solutions to computational problems in the spectral properties of a Hamiltonian and rely on the quantum dynamics to obtain the desired output state. We discuss how one can adapt any adiabatic quantum algorithm to a corresponding RT version and the two approaches are limited by different aspects of Hamiltonians' spectra. The RT approach provides a compelling alternative to the AQC under various circumstances. To better illustrate the usefulness of the novel framework, we analyze the time complexity of an algorithm for 3-SAT problems and discuss straightforward methods to fine tune its efficiency.

  18. Quantum computing without wavefunctions: time-dependent density functional theory for universal quantum computation.

    PubMed

    Tempel, David G; Aspuru-Guzik, Alán

    2012-01-01

    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms.

  19. Quantum Computing: Solving Complex Problems

    ScienceCinema

    DiVincenzo, David

    2018-05-22

    One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.

  20. Cloud Quantum Computing of an Atomic Nucleus

    NASA Astrophysics Data System (ADS)

    Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.

    2018-05-01

    We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  1. Cloud Quantum Computing of an Atomic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute

    Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  2. Cloud Quantum Computing of an Atomic Nucleus.

    PubMed

    Dumitrescu, E F; McCaskey, A J; Hagen, G; Jansen, G R; Morris, T D; Papenbrock, T; Pooser, R C; Dean, D J; Lougovski, P

    2018-05-25

    We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  3. Cloud Quantum Computing of an Atomic Nucleus

    DOE PAGES

    Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute; ...

    2018-05-23

    Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.

  4. PREFACE: International Conference on Quantum Simulators and Design, Hiroshima, Japan, 3 6 December 2006

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Oguchi, Tamio

    2007-09-01

    This special issue of Journal of Physics: Condensed Matter comprises selected papers from the 1st International Conference on Quantum Simulators and Design (QSD2006) held in Hiroshima, Japan, 3-6 December 2006. This conference was organized under the auspices of the Development of New Quantum Simulators and Quantum Design Grant-in-Aid for Scientific Research on Priority Areas, Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), and Hiroshima University Quantum design is a computational approach to the development of new materials with specified properties and functionalities. The basic ingredient is the use of quantum simulations to design a material that meets a given specification of properties and functionalities. For this to be successful, the quantum simulation should be highly reliable and be applicable to systems of realistic size. A central interest is, therefore, the development of new methods of quantum simulation and quantum design. This includes methods beyond the local density approximation of density functional theory (LDA), order-N methods, methods dealing with excitations and reactions, and so on, as well as the application of these methods to the design of new materials and devices. The field of quantum design has developed rapidly in the past few years and this conference provides an international forum for experimental and theoretical researchers to exchange ideas. A total of 183 delegates from 8 countries participated in the conference. There were 18 invited talks, 16 oral presentations and 100 posters. There were many new ideas and we foresee dramatic progress in the coming years. The 2nd International Conference on Quantum Simulators and Design will be held in Tokyo, Japan, 31 May-3 June 2008.

  5. Fast and Reliable Thermodynamic Approach for Determining the Protonation State of the Asp Dyad.

    PubMed

    Huang, Jinfeng; Sun, Bin; Yao, Yuan; Liu, Junjun

    2017-09-25

    The protonation state of the asp dyad is significantly important in revealing enzymatic mechanisms and developing drugs. However, it is hard to determine by calculating free energy changes between possible protonation states, because the free energy changes due to protein conformational flexibility are usually much larger than those originating from different locations of protons. Sophisticated and computationally expensive methods such as free energy perturbation, thermodynamic integration (TI), and quantum mechanics/molecular mechanics are therefore usually used for this purpose. In the present study, we have developed a simple thermodynamic approach to effectively eliminating the free energy changes arising from protein conformational flexibility and estimating the free energy changes only originated from the locations of protons, which provides a fast and reliable method for determining the protonation state of asp dyads. The test of this approach on a total of 15 asp dyad systems, including BACE-1 and HIV-1 protease, shows that the predictions from this approach are all consistent with experiments or with the computationally expensive TI calculations. It is clear that our thermodynamic approach could be used to rapidly and reliably determine the protonation state of the asp dyad.

  6. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  7. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  8. Step-by-step magic state encoding for efficient fault-tolerant quantum computation

    PubMed Central

    Goto, Hayato

    2014-01-01

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation. PMID:25511387

  9. Step-by-step magic state encoding for efficient fault-tolerant quantum computation.

    PubMed

    Goto, Hayato

    2014-12-16

    Quantum error correction allows one to make quantum computers fault-tolerant against unavoidable errors due to decoherence and imperfect physical gate operations. However, the fault-tolerant quantum computation requires impractically large computational resources for useful applications. This is a current major obstacle to the realization of a quantum computer. In particular, magic state distillation, which is a standard approach to universality, consumes the most resources in fault-tolerant quantum computation. For the resource problem, here we propose step-by-step magic state encoding for concatenated quantum codes, where magic states are encoded step by step from the physical level to the logical one. To manage errors during the encoding, we carefully use error detection. Since the sizes of intermediate codes are small, it is expected that the resource overheads will become lower than previous approaches based on the distillation at the logical level. Our simulation results suggest that the resource requirements for a logical magic state will become comparable to those for a single logical controlled-NOT gate. Thus, the present method opens a new possibility for efficient fault-tolerant quantum computation.

  10. Secure entanglement distillation for double-server blind quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  11. Efficient universal blind quantum computation.

    PubMed

    Giovannetti, Vittorio; Maccone, Lorenzo; Morimae, Tomoyuki; Rudolph, Terry G

    2013-12-06

    We give a cheat sensitive protocol for blind universal quantum computation that is efficient in terms of computational and communication resources: it allows one party to perform an arbitrary computation on a second party's quantum computer without revealing either which computation is performed, or its input and output. The first party's computational capabilities can be extremely limited: she must only be able to create and measure single-qubit superposition states. The second party is not required to use measurement-based quantum computation. The protocol requires the (optimal) exchange of O(Jlog2(N)) single-qubit states, where J is the computational depth and N is the number of qubits needed for the computation.

  12. High-speed linear optics quantum computing using active feed-forward.

    PubMed

    Prevedel, Robert; Walther, Philip; Tiefenbacher, Felix; Böhi, Pascal; Kaltenbaek, Rainer; Jennewein, Thomas; Zeilinger, Anton

    2007-01-04

    As information carriers in quantum computing, photonic qubits have the advantage of undergoing negligible decoherence. However, the absence of any significant photon-photon interaction is problematic for the realization of non-trivial two-qubit gates. One solution is to introduce an effective nonlinearity by measurements resulting in probabilistic gate operations. In one-way quantum computation, the random quantum measurement error can be overcome by applying a feed-forward technique, such that the future measurement basis depends on earlier measurement results. This technique is crucial for achieving deterministic quantum computation once a cluster state (the highly entangled multiparticle state on which one-way quantum computation is based) is prepared. Here we realize a concatenated scheme of measurement and active feed-forward in a one-way quantum computing experiment. We demonstrate that, for a perfect cluster state and no photon loss, our quantum computation scheme would operate with good fidelity and that our feed-forward components function with very high speed and low error for detected photons. With present technology, the individual computational step (in our case the individual feed-forward cycle) can be operated in less than 150 ns using electro-optical modulators. This is an important result for the future development of one-way quantum computers, whose large-scale implementation will depend on advances in the production and detection of the required highly entangled cluster states.

  13. A Decoherence-Free Quantum Memory Using Trapped Ions

    DTIC Science & Technology

    2016-09-22

    superpo- sitions. Robust quantum memories are there- fore essential to realizing the potential gains of quantum computing (3). However, inter- action of a...tolerant quantum logic (13, 14). These properties suggest that DFSs will be intrinsic to future quantum computing architectures. Logic gates on DFS...practi- cal quantum computing will in any case re- quire logic gates of a much higher fidelity than those used in this work. We therefore expect that, once

  14. Harnessing Disordered-Ensemble Quantum Dynamics for Machine Learning

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Nakajima, Kohei

    2017-08-01

    The quantum computer has an amazing potential of fast information processing. However, the realization of a digital quantum computer is still a challenging problem requiring highly accurate controls and key application strategies. Here we propose a platform, quantum reservoir computing, to solve these issues successfully by exploiting the natural quantum dynamics of ensemble systems, which are ubiquitous in laboratories nowadays, for machine learning. This framework enables ensemble quantum systems to universally emulate nonlinear dynamical systems including classical chaos. A number of numerical experiments show that quantum systems consisting of 5-7 qubits possess computational capabilities comparable to conventional recurrent neural networks of 100-500 nodes. This discovery opens up a paradigm for information processing with artificial intelligence powered by quantum physics.

  15. QCCM Center for Quantum Algorithms

    DTIC Science & Technology

    2008-10-17

    algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006

  16. Self-guaranteed measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Hajdušek, Michal

    2018-05-01

    In order to guarantee the output of a quantum computation, we usually assume that the component devices are trusted. However, when the total computation process is large, it is not easy to guarantee the whole system when we have scaling effects, unexpected noise, or unaccounted for correlations between several subsystems. If we do not trust the measurement basis or the prepared entangled state, we do need to be worried about such uncertainties. To this end, we propose a self-guaranteed protocol for verification of quantum computation under the scheme of measurement-based quantum computation where no prior-trusted devices (measurement basis or entangled state) are needed. The approach we present enables the implementation of verifiable quantum computation using the measurement-based model in the context of a particular instance of delegated quantum computation where the server prepares the initial computational resource and sends it to the client, who drives the computation by single-qubit measurements. Applying self-testing procedures, we are able to verify the initial resource as well as the operation of the quantum devices and hence the computation itself. The overhead of our protocol scales with the size of the initial resource state to the power of 4 times the natural logarithm of the initial state's size.

  17. Limits on efficient computation in the physical world

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott Joel

    More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In particular, any quantum algorithm that solves the collision problem---that of deciding whether a sequence of n integers is one-to-one or two-to-one---must query the sequence O (n1/5) times. This resolves a question that was open for years; previously no lower bound better than constant was known. A corollary is that there is no "black-box" quantum algorithm to break cryptographic hash functions or solve the Graph Isomorphism problem in polynomial time. I also show that relative to an oracle, quantum computers could not solve NP-complete problems in polynomial time, even with the help of nonuniform "quantum advice states"; and that any quantum algorithm needs O (2n/4/n) queries to find a local minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter result also leads to new classical lower bounds for the local search problem. Finally, I give new lower bounds on quantum one-way communication complexity, and on the quantum query complexity of total Boolean functions and recursive Fourier sampling. The second part of the thesis studies the relationship of the quantum computing model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wolfram, and others who believe quantum computing to be fundamentally impossible. I find their arguments unconvincing without a "Sure/Shor separator"---a criterion that separates the already-verified quantum states from those that appear in Shor's factoring algorithm. I argue that such a separator should be based on a complexity classification of quantum states, and go on to create such a classification. Next I ask what happens to the quantum computing model if we take into account that the speed of light is finite---and in particular, whether Grover's algorithm still yields a quadratic speedup for searching a database. Refuting a claim by Benioff, I show that the surprising answer is yes. Finally, I analyze hypothetical models of computation that go even beyond quantum computing. I show that many such models would be as powerful as the complexity class PP, and use this fact to give a simple, quantum computing based proof that PP is closed under intersection. On the other hand, I also present one model---wherein we could sample the entire history of a hidden variable---that appears to be more powerful than standard quantum computing, but only slightly so.

  18. Heat-bath algorithmic cooling with correlated qubit-environment interactions

    NASA Astrophysics Data System (ADS)

    Rodríguez-Briones, Nayeli A.; Li, Jun; Peng, Xinhua; Mor, Tal; Weinstein, Yossi; Laflamme, Raymond

    2017-11-01

    Cooling techniques are essential to understand fundamental thermodynamic questions of the low-energy states of physical systems, furthermore they are at the core of practical applications of quantum information science. In quantum computing, this controlled preparation of highly pure quantum states is required from the state initialization of most quantum algorithms to a reliable supply of ancilla qubits that satisfy the fault-tolerance threshold for quantum error correction. Heat-bath algorithmic cooling has been shown to purify qubits by controlled redistribution of entropy and multiple contact with a bath, not only for ensemble implementations but also for technologies with strong but imperfect measurements. In this paper, we show that correlated relaxation processes between the system and environment during rethermalization when we reset hot ancilla qubits, can be exploited to enhance purification. We show that a long standing upper bound on the limits of algorithmic cooling Schulman et al (2005 Phys. Rev. Lett. 94, 120501) can be broken by exploiting these correlations. We introduce a new tool for cooling algorithms, which we call ‘state-reset’, obtained when the coupling to the environment is generalized from individual-qubits relaxation to correlated-qubit relaxation. Furthermore, we present explicit improved cooling algorithms which lead to an increase of purity beyond all the previous work, and relate our results to the Nuclear Overhauser Effect.

  19. Architectures for Quantum Simulation Showing a Quantum Speedup

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens

    2018-04-01

    One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.

  20. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  1. Quantum machine learning.

    PubMed

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  2. Quantum machine learning

    NASA Astrophysics Data System (ADS)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-01

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  3. Experimental comparison of two quantum computing architectures

    PubMed Central

    Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher

    2017-01-01

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879

  4. Complex Instruction Set Quantum Computing

    NASA Astrophysics Data System (ADS)

    Sanders, G. D.; Kim, K. W.; Holton, W. C.

    1998-03-01

    In proposed quantum computers, electromagnetic pulses are used to implement logic gates on quantum bits (qubits). Gates are unitary transformations applied to coherent qubit wavefunctions and a universal computer can be created using a minimal set of gates. By applying many elementary gates in sequence, desired quantum computations can be performed. This reduced instruction set approach to quantum computing (RISC QC) is characterized by serial application of a few basic pulse shapes and a long coherence time. However, the unitary matrix of the overall computation is ultimately a unitary matrix of the same size as any of the elementary matrices. This suggests that we might replace a sequence of reduced instructions with a single complex instruction using an optimally taylored pulse. We refer to this approach as complex instruction set quantum computing (CISC QC). One trades the requirement for long coherence times for the ability to design and generate potentially more complex pulses. We consider a model system of coupled qubits interacting through nearest neighbor coupling and show that CISC QC can reduce the time required to perform quantum computations.

  5. Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Lidar, Daniel A.; Brun, Todd A.

    2013-09-01

    Prologue; Preface; Part I. Background: 1. Introduction to decoherence and noise in open quantum systems Daniel Lidar and Todd Brun; 2. Introduction to quantum error correction Dave Bacon; 3. Introduction to decoherence-free subspaces and noiseless subsystems Daniel Lidar; 4. Introduction to quantum dynamical decoupling Lorenza Viola; 5. Introduction to quantum fault tolerance Panos Aliferis; Part II. Generalized Approaches to Quantum Error Correction: 6. Operator quantum error correction David Kribs and David Poulin; 7. Entanglement-assisted quantum error-correcting codes Todd Brun and Min-Hsiu Hsieh; 8. Continuous-time quantum error correction Ognyan Oreshkov; Part III. Advanced Quantum Codes: 9. Quantum convolutional codes Mark Wilde; 10. Non-additive quantum codes Markus Grassl and Martin Rötteler; 11. Iterative quantum coding systems David Poulin; 12. Algebraic quantum coding theory Andreas Klappenecker; 13. Optimization-based quantum error correction Andrew Fletcher; Part IV. Advanced Dynamical Decoupling: 14. High order dynamical decoupling Zhen-Yu Wang and Ren-Bao Liu; 15. Combinatorial approaches to dynamical decoupling Martin Rötteler and Pawel Wocjan; Part V. Alternative Quantum Computation Approaches: 16. Holonomic quantum computation Paolo Zanardi; 17. Fault tolerance for holonomic quantum computation Ognyan Oreshkov, Todd Brun and Daniel Lidar; 18. Fault tolerant measurement-based quantum computing Debbie Leung; Part VI. Topological Methods: 19. Topological codes Héctor Bombín; 20. Fault tolerant topological cluster state quantum computing Austin Fowler and Kovid Goyal; Part VII. Applications and Implementations: 21. Experimental quantum error correction Dave Bacon; 22. Experimental dynamical decoupling Lorenza Viola; 23. Architectures Jacob Taylor; 24. Error correction in quantum communication Mark Wilde; Part VIII. Critical Evaluation of Fault Tolerance: 25. Hamiltonian methods in QEC and fault tolerance Eduardo Novais, Eduardo Mucciolo and Harold Baranger; 26. Critique of fault-tolerant quantum information processing Robert Alicki; References; Index.

  6. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications

    PubMed Central

    2016-01-01

    Semiempirical (SE) methods can be derived from either Hartree–Fock or density functional theory by applying systematic approximations, leading to efficient computational schemes that are several orders of magnitude faster than ab initio calculations. Such numerical efficiency, in combination with modern computational facilities and linear scaling algorithms, allows application of SE methods to very large molecular systems with extensive conformational sampling. To reliably model the structure, dynamics, and reactivity of biological and other soft matter systems, however, good accuracy for the description of noncovalent interactions is required. In this review, we analyze popular SE approaches in terms of their ability to model noncovalent interactions, especially in the context of describing biomolecules, water solution, and organic materials. We discuss the most significant errors and proposed correction schemes, and we review their performance using standard test sets of molecular systems for quantum chemical methods and several recent applications. The general goal is to highlight both the value and limitations of SE methods and stimulate further developments that allow them to effectively complement ab initio methods in the analysis of complex molecular systems. PMID:27074247

  7. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  8. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-08-08

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. Areas covered: In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. Expert opinion: QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  9. Simple proof of equivalence between adiabatic quantum computation and the circuit model.

    PubMed

    Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan

    2007-08-17

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  10. Layered Architectures for Quantum Computers and Quantum Repeaters

    NASA Astrophysics Data System (ADS)

    Jones, Nathan C.

    This chapter examines how to organize quantum computers and repeaters using a systematic framework known as layered architecture, where machine control is organized in layers associated with specialized tasks. The framework is flexible and could be used for analysis and comparison of quantum information systems. To demonstrate the design principles in practice, we develop architectures for quantum computers and quantum repeaters based on optically controlled quantum dots, showing how a myriad of technologies must operate synchronously to achieve fault-tolerance. Optical control makes information processing in this system very fast, scalable to large problem sizes, and extendable to quantum communication.

  11. Radio-frequency measurement in semiconductor quantum computation

    NASA Astrophysics Data System (ADS)

    Han, TianYi; Chen, MingBo; Cao, Gang; Li, HaiOu; Xiao, Ming; Guo, GuoPing

    2017-05-01

    Semiconductor quantum dots have attracted wide interest for the potential realization of quantum computation. To realize efficient quantum computation, fast manipulation and the corresponding readout are necessary. In the past few decades, considerable progress of quantum manipulation has been achieved experimentally. To meet the requirements of high-speed readout, radio-frequency (RF) measurement has been developed in recent years, such as RF-QPC (radio-frequency quantum point contact) and RF-DGS (radio-frequency dispersive gate sensor). Here we specifically demonstrate the principle of the radio-frequency reflectometry, then review the development and applications of RF measurement, which provides a feasible way to achieve high-bandwidth readout in quantum coherent control and also enriches the methods to study these artificial mesoscopic quantum systems. Finally, we prospect the future usage of radio-frequency reflectometry in scaling-up of the quantum computing models.

  12. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.

    PubMed

    Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I

    2001-03-26

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrianov, S N; Moiseev, S A

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  14. Beyond Moore's law: towards competitive quantum devices

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2015-05-01

    A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?

  15. Quantum simulation of quantum field theory using continuous variables

    DOE PAGES

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; ...

    2015-12-14

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less

  16. Quantum simulation of quantum field theory using continuous variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Kevin; Pooser, Raphael C.; Siopsis, George

    Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less

  17. Gate sequence for continuous variable one-way quantum computation

    PubMed Central

    Su, Xiaolong; Hao, Shuhong; Deng, Xiaowei; Ma, Lingyu; Wang, Meihong; Jia, Xiaojun; Xie, Changde; Peng, Kunchi

    2013-01-01

    Measurement-based one-way quantum computation using cluster states as resources provides an efficient model to perform computation and information processing of quantum codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long single-mode and two-mode gate sequences. However, continuous variable gate sequences have not been realized so far due to an absence of cluster states larger than four submodes. Here we present the first continuous variable gate sequence consisting of a single-mode squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The quantum property of this gate sequence is confirmed by the fidelities and the quantum entanglement of two output modes, which depend on both the squeezing and controlled-phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum computation by means of accessible gate sequences.

  18. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  19. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    PubMed

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  20. Novel Image Encryption based on Quantum Walks

    PubMed Central

    Yang, Yu-Guang; Pan, Qing-Xiang; Sun, Si-Jia; Xu, Peng

    2015-01-01

    Quantum computation has achieved a tremendous success during the last decades. In this paper, we investigate the potential application of a famous quantum computation model, i.e., quantum walks (QW) in image encryption. It is found that QW can serve as an excellent key generator thanks to its inherent nonlinear chaotic dynamic behavior. Furthermore, we construct a novel QW-based image encryption algorithm. Simulations and performance comparisons show that the proposal is secure enough for image encryption and outperforms prior works. It also opens the door towards introducing quantum computation into image encryption and promotes the convergence between quantum computation and image processing. PMID:25586889

  1. STIC: Photonic Quantum Computation through Cavity Assisted Interaction

    DTIC Science & Technology

    2007-12-28

    PRA ; available as quant-ph/06060791. Report for the grant “Photonic Quantum Computation through Cavity Assisted Interaction” from DTO Luming Duan...cavity •B. Wang, L.-M. Duan, PRA 72 (in press, 2005) Single-photon source Photonic Quantum Computation through Cavity-Assisted Interaction H. Jeff Kimble...interaction [Duan, Wang, Kimble, PRA 05] • “Investigate more efficient methods for combating noise in photonic quantum computation ” • Partial progress

  2. Robust Quantum Computing using Molecules with Switchable Dipole

    DTIC Science & Technology

    2010-06-15

    REPORT Robust quantum computing using molecules with switchable dipole 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Of the many systems studied to...Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Ultracold polar molecules, quantum computing , phase gates...From - To) 30-Aug-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Aug-2009 Robust quantum computing using molecules with

  3. Trapped-Ion Quantum Logic with Global Radiation Fields.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  4. Quantum Computing and Second Quantization

    DOE PAGES

    Makaruk, Hanna Ewa

    2017-02-10

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  5. Quantum Computing and Second Quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaruk, Hanna Ewa

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  6. Numerical characteristics of quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.; Khamitov, K.; Teplov, A.; Voevodin, V.; Voevodin, Vl.

    2016-12-01

    The simulation of quantum circuits is significantly important for the implementation of quantum information technologies. The main difficulty of such modeling is the exponential growth of dimensionality, thus the usage of modern high-performance parallel computations is relevant. As it is well known, arbitrary quantum computation in circuit model can be done by only single- and two-qubit gates, and we analyze the computational structure and properties of the simulation of such gates. We investigate the fact that the unique properties of quantum nature lead to the computational properties of the considered algorithms: the quantum parallelism make the simulation of quantum gates highly parallel, and on the other hand, quantum entanglement leads to the problem of computational locality during simulation. We use the methodology of the AlgoWiki project (algowiki-project.org) to analyze the algorithm. This methodology consists of theoretical (sequential and parallel complexity, macro structure, and visual informational graph) and experimental (locality and memory access, scalability and more specific dynamic characteristics) parts. Experimental part was made by using the petascale Lomonosov supercomputer (Moscow State University, Russia). We show that the simulation of quantum gates is a good base for the research and testing of the development methods for data intense parallel software, and considered methodology of the analysis can be successfully used for the improvement of the algorithms in quantum information science.

  7. Experimental Blind Quantum Computing for a Classical Client.

    PubMed

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-04

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  8. Experimental Blind Quantum Computing for a Classical Client

    NASA Astrophysics Data System (ADS)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C.; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-01

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  9. Mathematical Theory of Generalized Duality Quantum Computers Acting on Vector-States

    NASA Astrophysics Data System (ADS)

    Cao, Huai-Xin; Long, Gui-Lu; Guo, Zhi-Hua; Chen, Zheng-Li

    2013-06-01

    Following the idea of duality quantum computation, a generalized duality quantum computer (GDQC) acting on vector-states is defined as a tuple consisting of a generalized quantum wave divider (GQWD) and a finite number of unitary operators as well as a generalized quantum wave combiner (GQWC). It is proved that the GQWD and GQWC of a GDQC are an isometry and a co-isometry, respectively, and mutually dual. It is also proved that every GDQC gives a contraction, called a generalized duality quantum gate (GDQG). A classification of GDQCs is given and the properties of GDQGs are discussed. Some applications are obtained, including two orthogonal duality quantum computer algorithms for unsorted database search and an understanding of the Mach-Zehnder interferometer.

  10. Semiquantum key distribution with secure delegated quantum computation

    PubMed Central

    Li, Qin; Chan, Wai Hong; Zhang, Shengyu

    2016-01-01

    Semiquantum key distribution allows a quantum party to share a random key with a “classical” party who only can prepare and measure qubits in the computational basis or reorder some qubits when he has access to a quantum channel. In this work, we present a protocol where a secret key can be established between a quantum user and an almost classical user who only needs the quantum ability to access quantum channels, by securely delegating quantum computation to a quantum server. We show the proposed protocol is robust even when the delegated quantum server is a powerful adversary, and is experimentally feasible with current technology. As one party of our protocol is the most quantum-resource efficient, it can be more practical and significantly widen the applicability scope of quantum key distribution. PMID:26813384

  11. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    PubMed Central

    Luo, Ming-Xing; Wang, Xiaojun

    2014-01-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm. PMID:25030424

  12. Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities.

    PubMed

    Luo, Ming-Xing; Wang, Xiaojun

    2014-07-17

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.

  13. Development of a Polarizable Force Field For Proteins via Ab Initio Quantum Chemistry: First Generation Model and Gas Phase Tests

    PubMed Central

    KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.

    2014-01-01

    We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421

  14. Acausal measurement-based quantum computing

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki

    2014-07-01

    In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.

  15. Performing quantum computing experiments in the cloud

    NASA Astrophysics Data System (ADS)

    Devitt, Simon J.

    2016-09-01

    Quantum computing technology has reached a second renaissance in the past five years. Increased interest from both the private and public sector combined with extraordinary theoretical and experimental progress has solidified this technology as a major advancement in the 21st century. As anticipated my many, some of the first realizations of quantum computing technology has occured over the cloud, with users logging onto dedicated hardware over the classical internet. Recently, IBM has released the Quantum Experience, which allows users to access a five-qubit quantum processor. In this paper we take advantage of this online availability of actual quantum hardware and present four quantum information experiments. We utilize the IBM chip to realize protocols in quantum error correction, quantum arithmetic, quantum graph theory, and fault-tolerant quantum computation by accessing the device remotely through the cloud. While the results are subject to significant noise, the correct results are returned from the chip. This demonstrates the power of experimental groups opening up their technology to a wider audience and will hopefully allow for the next stage of development in quantum information technology.

  16. Greenberger-Horne-Zeilinger states-based blind quantum computation with entanglement concentration.

    PubMed

    Zhang, Xiaoqian; Weng, Jian; Lu, Wei; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing

    2017-09-11

    In blind quantum computation (BQC) protocol, the quantum computability of servers are complicated and powerful, while the clients are not. It is still a challenge for clients to delegate quantum computation to servers and keep the clients' inputs, outputs and algorithms private. Unfortunately, quantum channel noise is unavoidable in the practical transmission. In this paper, a novel BQC protocol based on maximally entangled Greenberger-Horne-Zeilinger (GHZ) states is proposed which doesn't need a trusted center. The protocol includes a client and two servers, where the client only needs to own quantum channels with two servers who have full-advantage quantum computers. Two servers perform entanglement concentration used to remove the noise, where the success probability can almost reach 100% in theory. But they learn nothing in the process of concentration because of the no-signaling principle, so this BQC protocol is secure and feasible.

  17. From transistor to trapped-ion computers for quantum chemistry.

    PubMed

    Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E

    2014-01-07

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  18. From transistor to trapped-ion computers for quantum chemistry

    PubMed Central

    Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.

    2014-01-01

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054

  19. Protecting Information

    NASA Astrophysics Data System (ADS)

    Loepp, Susan; Wootters, William K.

    2006-09-01

    For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765

  20. First-principles modeling of quantum nuclear effects and atomic interactions in solid 4He at high pressure

    NASA Astrophysics Data System (ADS)

    Cazorla, Claudio; Boronat, Jordi

    2015-01-01

    We present a first-principles computational study of solid 4He at T =0 K and pressures up to ˜160 GPa. Our computational strategy consists in using van der Waals density functional theory (DFT-vdW) to describe the electronic degrees of freedom in this material, and the diffusion Monte Carlo (DMC) method to solve the Schrödinger equation describing the behavior of the quantum nuclei. For this, we construct an analytical interaction function based on the pairwise Aziz potential that closely matches the volume variation of the cohesive energy calculated with DFT-vdW in dense helium. Interestingly, we find that the kinetic energy of solid 4He does not increase appreciably with compression for P ≥85 GPa. Also, we show that the Lindemann ratio in dense solid 4He amounts to 0.10 almost independently of pressure. The reliability of customary quasiharmonic DFT (QH DFT) approaches in describing quantum nuclear effects in solids is also studied. We find that QH DFT simulations, although provide a reasonable equation of state in agreement with experiments, are not able to reproduce correctly these critical effects in compressed 4He. In particular, we disclose huge discrepancies of at least ˜50 % in the calculated 4He kinetic energies using both the QH DFT and present DFT-DMC methods.

  1. Universal measurement-based quantum computation in two-dimensional symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Huang, Ching-Yu

    2017-09-01

    Recent progress in the characterization of gapped quantum phases has also triggered the search for a universal resource for quantum computation in symmetric gapped phases. Prior works in one dimension suggest that it is a feature more common than previously thought, in that nontrivial one-dimensional symmetry-protected topological (SPT) phases provide quantum computational power characterized by the algebraic structure defining these phases. Progress in two and higher dimensions so far has been limited to special fixed points. Here we provide two families of two-dimensional Z2 symmetric wave functions such that there exists a finite region of the parameter in the SPT phases that supports universal quantum computation. The quantum computational power appears to lose its universality at the boundary between the SPT and the symmetry-breaking phases.

  2. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  3. Surface Segregation Energies of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy method. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameterization. Quantum approximate segregation energies are computed with and without atomistic relaxation. The ab initio calculations are performed without relaxation for the most part, but predicted relaxations from quantum approximate calculations are used in selected cases to compute approximate relaxed ab initio segregation energies. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with other quantum approximate and ab initio theoretical work, and available experimental results.

  4. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding.

    PubMed

    Lau, Hoi-Kwan; Plenio, Martin B

    2016-09-02

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  5. Universal Quantum Computing with Arbitrary Continuous-Variable Encoding

    NASA Astrophysics Data System (ADS)

    Lau, Hoi-Kwan; Plenio, Martin B.

    2016-09-01

    Implementing a qubit quantum computer in continuous-variable systems conventionally requires the engineering of specific interactions according to the encoding basis states. In this work, we present a unified formalism to conduct universal quantum computation with a fixed set of operations but arbitrary encoding. By storing a qubit in the parity of two or four qumodes, all computing processes can be implemented by basis state preparations, continuous-variable exponential-swap operations, and swap tests. Our formalism inherits the advantages that the quantum information is decoupled from collective noise, and logical qubits with different encodings can be brought to interact without decoding. We also propose a possible implementation of the required operations by using interactions that are available in a variety of continuous-variable systems. Our work separates the "hardware" problem of engineering quantum-computing-universal interactions, from the "software" problem of designing encodings for specific purposes. The development of quantum computer architecture could hence be simplified.

  6. Two-Dimensional Arrays of Neutral Atom Quantum Gates

    DTIC Science & Technology

    2012-10-20

    Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum computing , Rydberg atoms, entanglement Mark Saffman University of...Nature Physics, (01 2009): 0. doi: 10.1038/nphys1178 10/19/2012 9.00 K. Mølmer, M. Saffman. Scaling the neutral-atom Rydberg gate quantum computer by...Saffman, E. Brion, K. Mølmer. Error Correction in Ensemble Registers for Quantum Repeaters and Quantum Computers , Physical Review Letters, (3 2008): 0

  7. QUANTUM COMPUTING: Quantum Entangled Bits Step Closer to IT.

    PubMed

    Zeilinger, A

    2000-07-21

    In contrast to today's computers, quantum computers and information technologies may in future be able to store and transmit information not only in the state "0" or "1," but also in superpositions of the two; information will then be stored and transmitted in entangled quantum states. Zeilinger discusses recent advances toward using this principle for quantum cryptography and highlights studies into the entanglement (or controlled superposition) of several photons, atoms, or ions.

  8. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    DTIC Science & Technology

    2017-06-10

    necessarily reflect the views of the Department of Defense. Abstract- A scalable trapped-ion-based quantum - computing architecture requires the... Quantum Computing Dave Kharas, Cheryl Sorace-Agaskar, Suraj Bramhavar, William Loh, Jeremy M. Sage, Paul W. Juodawlkis, and John...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  9. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si

    NASA Astrophysics Data System (ADS)

    Jung, Daehwan; Herrick, Robert; Norman, Justin; Turnlund, Katherine; Jan, Catherine; Feng, Kaiyin; Gossard, Arthur C.; Bowers, John E.

    2018-04-01

    We investigate the impact of threading dislocation density on the reliability of 1.3 μm InAs quantum dot lasers epitaxially grown on Si. A reduction in the threading dislocation density from 2.8 × 108 cm-2 to 7.3 × 106 cm-2 has improved the laser lifetime by about five orders of magnitude when aged continuous-wave near room temperature (35 °C). We have achieved extrapolated lifetimes (time to double initial threshold) more than 10 × 106 h. An accelerated laser aging test at an elevated temperature (60 °C) reveals that p-modulation doped quantum dot lasers on Si retain superior reliability over unintentionally doped ones. These results suggest that epitaxially grown quantum dot lasers could be a viable approach to realize a reliable, scalable, and efficient light source on Si.

  10. Algorithms Bridging Quantum Computation and Chemistry

    NASA Astrophysics Data System (ADS)

    McClean, Jarrod Ryan

    The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.

  11. Exact Critical Exponents for the Antiferromagnetic Quantum Critical Metal in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Schlief, Andres; Lunts, Peter; Lee, Sung-Sik

    2017-04-01

    Unconventional metallic states which do not support well-defined single-particle excitations can arise near quantum phase transitions as strong quantum fluctuations of incipient order parameters prevent electrons from forming coherent quasiparticles. Although antiferromagnetic phase transitions occur commonly in correlated metals, understanding the nature of the strange metal realized at the critical point in layered systems has been hampered by a lack of reliable theoretical methods that take into account strong quantum fluctuations. We present a nonperturbative solution to the low-energy theory for the antiferromagnetic quantum critical metal in two spatial dimensions. Being a strongly coupled theory, it can still be solved reliably in the low-energy limit as quantum fluctuations are organized by a new control parameter that emerges dynamically. We predict the exact critical exponents that govern the universal scaling of physical observables at low temperatures.

  12. Models of optical quantum computing

    NASA Astrophysics Data System (ADS)

    Krovi, Hari

    2017-03-01

    I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  13. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  14. On the 'principle of the quantumness', the quantumness of Relativity, and the computational grand-unification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ariano, Giacomo Mauro

    2010-05-04

    I will argue that the proposal of establishing operational foundations of Quantum Theory should have top-priority, and that the Lucien Hardy's program on Quantum Gravity should be paralleled by an analogous program on Quantum Field Theory (QFT), which needs to be reformulated, notwithstanding its experimental success. In this paper, after reviewing recently suggested operational 'principles of the quantumness', I address the problem on whether Quantum Theory and Special Relativity are unrelated theories, or instead, if the one implies the other. I show how Special Relativity can be indeed derived from causality of Quantum Theory, within the computational paradigm 'the universemore » is a huge quantum computer', reformulating QFT as a Quantum-Computational Field Theory (QCFT). In QCFT Special Relativity emerges from the fabric of the computational network, which also naturally embeds gauge invariance. In this scheme even the quantization rule and the Planck constant can in principle be derived as emergent from the underlying causal tapestry of space-time. In this way Quantum Theory remains the only theory operating the huge computer of the universe.Is the computational paradigm only a speculative tautology (theory as simulation of reality), or does it have a scientific value? The answer will come from Occam's razor, depending on the mathematical simplicity of QCFT. Here I will just start scratching the surface of QCFT, analyzing simple field theories, including Dirac's. The number of problems and unmotivated recipes that plague QFT strongly motivates us to undertake the QCFT project, since QCFT makes all such problems manifest, and forces a re-foundation of QFT.« less

  15. Ancilla-driven quantum computation for qudits and continuous variables

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv

    2017-05-01

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.

  16. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  17. Digitized adiabatic quantum computing with a superconducting circuit.

    PubMed

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  18. Quantum market games: implementing tactics via measurements

    NASA Astrophysics Data System (ADS)

    Pakula, I.; Piotrowski, E. W.; Sladkowski, J.

    2006-02-01

    A major development in applying quantum mechanical formalism to various fields has been made during the last few years. Quantum counterparts of Game Theory, Economy, as well as diverse approaches to Quantum Information Theory have been found and currently are being explored. Using connections between Quantum Game Theory and Quantum Computations, an application of the universality of a measurement based computation in Quantum Market Theory is presented.

  19. Benchmarking gate-based quantum computers

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  20. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  1. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  2. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-29

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  3. Procedural Quantum Programming

    NASA Astrophysics Data System (ADS)

    Ömer, Bernhard

    2002-09-01

    While classical computing science has developed a variety of methods and programming languages around the concept of the universal computer, the typical description of quantum algorithms still uses a purely mathematical, non-constructive formalism which makes no difference between a hydrogen atom and a quantum computer. This paper investigates, how the concept of procedural programming languages, the most widely used classical formalism for describing and implementing algorithms, can be adopted to the field of quantum computing, and how non-classical features like the reversibility of unitary transformations, the non-observability of quantum states or the lack of copy and erase operations can be reflected semantically. It introduces the key concepts of procedural quantum programming (hybrid target architecture, operator hierarchy, quantum data types, memory management, etc.) and presents the experimental language QCL, which implements these principles.

  4. The Quantum Human Computer (QHC) Hypothesis

    ERIC Educational Resources Information Center

    Salmani-Nodoushan, Mohammad Ali

    2008-01-01

    This article attempts to suggest the existence of a human computer called Quantum Human Computer (QHC) on the basis of an analogy between human beings and computers. To date, there are two types of computers: Binary and Quantum. The former operates on the basis of binary logic where an object is said to exist in either of the two states of 1 and…

  5. Performance Models for Split-execution Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Schrock, Jonathan

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardwaremore » limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.« less

  6. QM Automata: A New Class of Restricted Quantum Membrane Automata.

    PubMed

    Giannakis, Konstantinos; Singh, Alexandros; Kastampolidou, Kalliopi; Papalitsas, Christos; Andronikos, Theodore

    2017-01-01

    The term "Unconventional Computing" describes the use of non-standard methods and models in computing. It is a recently established field, with many interesting and promising results. In this work we combine notions from quantum computing with aspects of membrane computing to define what we call QM automata. Specifically, we introduce a variant of quantum membrane automata that operate in accordance with the principles of quantum computing. We explore the functionality and capabilities of the QM automata through indicative examples. Finally we suggest future directions for research on QM automata.

  7. Secure Multiparty Quantum Computation for Summation and Multiplication.

    PubMed

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-21

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  8. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  9. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  10. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun

    2017-10-01

    A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.

  11. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  12. Enhanced fault-tolerant quantum computing in d-level systems.

    PubMed

    Campbell, Earl T

    2014-12-05

    Error-correcting codes protect quantum information and form the basis of fault-tolerant quantum computing. Leading proposals for fault-tolerant quantum computation require codes with an exceedingly rare property, a transversal non-Clifford gate. Codes with the desired property are presented for d-level qudit systems with prime d. The codes use n=d-1 qudits and can detect up to ∼d/3 errors. We quantify the performance of these codes for one approach to quantum computation known as magic-state distillation. Unlike prior work, we find performance is always enhanced by increasing d.

  13. Heats of Segregation of BCC Binaries from Ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2003-01-01

    We compare dilute-limit segregation energies for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation. Results are discussed within the context of segregation models driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  14. Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Ding, Wanting; Shi, Jinjing

    2018-03-01

    A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.

  15. Arbitrated Quantum Signature with Hamiltonian Algorithm Based on Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Shi, Ronghua; Ding, Wanting; Shi, Jinjing

    2018-07-01

    A novel arbitrated quantum signature (AQS) scheme is proposed motivated by the Hamiltonian algorithm (HA) and blind quantum computation (BQC). The generation and verification of signature algorithm is designed based on HA, which enables the scheme to rely less on computational complexity. It is unnecessary to recover original messages when verifying signatures since the blind quantum computation is applied, which can improve the simplicity and operability of our scheme. It is proved that the scheme can be deployed securely, and the extended AQS has some extensive applications in E-payment system, E-government, E-business, etc.

  16. An Integrated Development Environment for Adiabatic Quantum Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Bennink, Ryan S

    2014-01-01

    Adiabatic quantum computing is a promising route to the computational power afforded by quantum information processing. The recent availability of adiabatic hardware raises the question of how well quantum programs perform. Benchmarking behavior is challenging since the multiple steps to synthesize an adiabatic quantum program are highly tunable. We present an adiabatic quantum programming environment called JADE that provides control over all the steps taken during program development. JADE captures the workflow needed to rigorously benchmark performance while also allowing a variety of problem types, programming techniques, and processor configurations. We have also integrated JADE with a quantum simulation enginemore » that enables program profiling using numerical calculation. The computational engine supports plug-ins for simulation methodologies tailored to various metrics and computing resources. We present the design, integration, and deployment of JADE and discuss its use for benchmarking adiabatic quantum programs.« less

  17. Defects in Quantum Computers

    DOE PAGES

    Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.; ...

    2018-03-14

    The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less

  18. Exploiting Quantum Resonance to Solve Combinatorial Problems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Fijany, Amir

    2006-01-01

    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  19. Defects in Quantum Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.

    The shift of interest from general purpose quantum computers to adiabatic quantum computing or quantum annealing calls for a broadly applicable and easy to implement test to assess how quantum or adiabatic is a specific hardware. Here we propose such a test based on an exactly solvable many body system–the quantum Ising chain in transverse field–and implement it on the D-Wave machine. An ideal adiabatic quench of the quantum Ising chain should lead to an ordered broken symmetry ground state with all spins aligned in the same direction. An actual quench can be imperfect due to decoherence, noise, flaws inmore » the implemented Hamiltonian, or simply too fast to be adiabatic. Imperfections result in topological defects: Spins change orientation, kinks punctuating ordered sections of the chain. Therefore, the number of such defects quantifies the extent by which the quantum computer misses the ground state, and is imperfect.« less

  20. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  1. Quantum Computing since Democritus

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott

    2013-03-01

    1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.

  2. Quantum computing with incoherent resources and quantum jumps.

    PubMed

    Santos, M F; Cunha, M Terra; Chaves, R; Carvalho, A R R

    2012-04-27

    Spontaneous emission and the inelastic scattering of photons are two natural processes usually associated with decoherence and the reduction in the capacity to process quantum information. Here we show that, when suitably detected, these photons are sufficient to build all the fundamental blocks needed to perform quantum computation in the emitting qubits while protecting them from deleterious dissipative effects. We exemplify this by showing how to efficiently prepare graph states for the implementation of measurement-based quantum computation.

  3. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  4. Introduction to Quantum Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1996-01-01

    An impact of ideas associated with the concept of a hypothetical quantum computer upon classical computing is analyzed. Two fundamental properties of quantum computing: direct simulations of probabilities, and influence between different branches of probabilistic scenarios, as well as their classical versions, are discussed.

  5. Duality quantum algorithm efficiently simulates open quantum systems

    PubMed Central

    Wei, Shi-Jie; Ruan, Dong; Long, Gui-Lu

    2016-01-01

    Because of inevitable coupling with the environment, nearly all practical quantum systems are open system, where the evolution is not necessarily unitary. In this paper, we propose a duality quantum algorithm for simulating Hamiltonian evolution of an open quantum system. In contrast to unitary evolution in a usual quantum computer, the evolution operator in a duality quantum computer is a linear combination of unitary operators. In this duality quantum algorithm, the time evolution of the open quantum system is realized by using Kraus operators which is naturally implemented in duality quantum computer. This duality quantum algorithm has two distinct advantages compared to existing quantum simulation algorithms with unitary evolution operations. Firstly, the query complexity of the algorithm is O(d3) in contrast to O(d4) in existing unitary simulation algorithm, where d is the dimension of the open quantum system. Secondly, By using a truncated Taylor series of the evolution operators, this duality quantum algorithm provides an exponential improvement in precision compared with previous unitary simulation algorithm. PMID:27464855

  6. ProjectQ Software Framework

    NASA Astrophysics Data System (ADS)

    Steiger, Damian S.; Haener, Thomas; Troyer, Matthias

    Quantum computers promise to transform our notions of computation by offering a completely new paradigm. A high level quantum programming language and optimizing compilers are essential components to achieve scalable quantum computation. In order to address this, we introduce the ProjectQ software framework - an open source effort to support both theorists and experimentalists by providing intuitive tools to implement and run quantum algorithms. Here, we present our ProjectQ quantum compiler, which compiles a quantum algorithm from our high-level Python-embedded language down to low-level quantum gates available on the target system. We demonstrate how this compiler can be used to control actual hardware and to run high-performance simulations.

  7. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  8. Superadiabatic holonomic quantum computation in cavity QED

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding

    2017-06-01

    Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.

  9. Towards topological quantum computer

    NASA Astrophysics Data System (ADS)

    Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.

    2018-01-01

    Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  10. Quantum robots plus environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.

    1998-07-23

    A quantum robot is a mobile quantum system, including an on board quantum computer and needed ancillary systems, that interacts with an environment of quantum systems. Quantum robots carry out tasks whose goals include making specified changes in the state of the environment or carrying out measurements on the environment. The environments considered so far, oracles, data bases, and quantum registers, are seen to be special cases of environments considered here. It is also seen that a quantum robot should include a quantum computer and cannot be simply a multistate head. A model of quantum robots and their interactions ismore » discussed in which each task, as a sequence of alternating computation and action phases,is described by a unitary single time step operator T {approx} T{sub a} + T{sub c} (discrete space and time are assumed). The overall system dynamics is described as a sum over paths of completed computation (T{sub c}) and action (T{sub a}) phases. A simple example of a task, measuring the distance between the quantum robot and a particle on a 1D lattice with quantum phase path dispersion present, is analyzed. A decision diagram for the task is presented and analyzed.« less

  11. Control aspects of quantum computing using pure and mixed states.

    PubMed

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  12. Control aspects of quantum computing using pure and mixed states

    PubMed Central

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.

    2012-01-01

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034

  13. Quantum computer games: quantum minesweeper

    NASA Astrophysics Data System (ADS)

    Gordon, Michal; Gordon, Goren

    2010-07-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.

  14. Counterfactual quantum computation through quantum interrogation

    NASA Astrophysics Data System (ADS)

    Hosten, Onur; Rakher, Matthew T.; Barreiro, Julio T.; Peters, Nicholas A.; Kwiat, Paul G.

    2006-02-01

    The logic underlying the coherent nature of quantum information processing often deviates from intuitive reasoning, leading to surprising effects. Counterfactual computation constitutes a striking example: the potential outcome of a quantum computation can be inferred, even if the computer is not run. Relying on similar arguments to interaction-free measurements (or quantum interrogation), counterfactual computation is accomplished by putting the computer in a superposition of `running' and `not running' states, and then interfering the two histories. Conditional on the as-yet-unknown outcome of the computation, it is sometimes possible to counterfactually infer information about the solution. Here we demonstrate counterfactual computation, implementing Grover's search algorithm with an all-optical approach. It was believed that the overall probability of such counterfactual inference is intrinsically limited, so that it could not perform better on average than random guesses. However, using a novel `chained' version of the quantum Zeno effect, we show how to boost the counterfactual inference probability to unity, thereby beating the random guessing limit. Our methods are general and apply to any physical system, as illustrated by a discussion of trapped-ion systems. Finally, we briefly show that, in certain circumstances, counterfactual computation can eliminate errors induced by decoherence.

  15. Universal Blind Quantum Computation

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph; Kashefi, Elham

    2012-02-01

    Blind Quantum Computing (BQC) allows a client to have a server carry out a quantum computation for them such that the client's inputs, outputs and computation remain private. Recently we proposed a universal unconditionally secure BQC scheme, based on the conceptual framework of the measurement-based quantum computing model, where the client only needs to be able to prepare single qubits in separable states randomly chosen from a finite set and send them to the server, who has the balance of the required quantum computational resources. Here we present a refinement of the scheme which vastly expands the class of quantum circuits which can be directly implemented as a blind computation, by introducing a new class of resource states which we term dotted-complete graph states and expanding the set of single qubit states the client is required to prepare. These two modifications significantly simplify the overall protocol and remove the previously present restriction that only nearest-neighbor circuits could be implemented as blind computations directly. As an added benefit, the refined protocol admits a substantially more intuitive and simplified verification mechanism, allowing the correctness of a blind computation to be verified with arbitrarily small probability of error.

  16. Toward a superconducting quantum computer

    PubMed Central

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers. PMID:20431256

  17. A review on quantum search algorithms

    NASA Astrophysics Data System (ADS)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  18. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  19. Large-scale frequency- and time-domain quantum entanglement over the optical frequency comb (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pfister, Olivier

    2017-05-01

    When it comes to practical quantum computing, the two main challenges are circumventing decoherence (devastating quantum errors due to interactions with the environmental bath) and achieving scalability (as many qubits as needed for a real-life, game-changing computation). We show that using, in lieu of qubits, the "qumodes" represented by the resonant fields of the quantum optical frequency comb of an optical parametric oscillator allows one to create bona fide, large scale quantum computing processors, pre-entangled in a cluster state. We detail our recent demonstration of 60-qumode entanglement (out of an estimated 3000) and present an extension to combining this frequency-tagged with time-tagged entanglement, in order to generate an arbitrarily large, universal quantum computing processor.

  20. Ancilla-driven quantum computation for qudits and continuous variables

    DOE PAGES

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; ...

    2017-05-10

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  1. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids.

    PubMed

    Charpentier, Thibault

    2011-07-01

    In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The operations of quantum logic gates with pure and mixed initial states.

    PubMed

    Chen, Jun-Liang; Li, Che-Ming; Hwang, Chi-Chuan; Ho, Yi-Hui

    2011-04-07

    The implementations of quantum logic gates realized by the rovibrational states of a C(12)O(16) molecule in the X((1)Σ(+)) electronic ground state are investigated. Optimal laser fields are obtained by using the modified multitarget optimal theory (MTOCT) which combines the maxima of the cost functional and the fidelity for state and quantum process. The projection operator technique together with modified MTOCT is used to get optimal laser fields. If initial states of the quantum gate are pure states, states at target time approach well to ideal target states. However, if the initial states are mixed states, the target states do not approach well to ideal ones. The process fidelity is introduced to investigate the reliability of the quantum gate operation driven by the optimal laser field. We found that the quantum gates operate reliably whether the initial states are pure or mixed.

  3. Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Feng

    2018-05-01

    Universal quantum gates and quantum error correction (QEC) lie at the heart of quantum-information science. Large-scale quantum computing depends on a universal set of quantum gates, in which some gates may be easily carried out, while others are restricted to certain physical systems. There is a unique three-qubit quantum gate called the Deutsch gate [D (θ )], from which a circuit can be constructed so that any feasible quantum computing is attainable. We design an easily realizable D (θ ) by using the Rydberg blockade of neutral atoms, where θ can be tuned to any value in [0 ,π ] by adjusting the strengths of external control fields. Using similar protocols, we further show that both the Toffoli and controlled-not gates can be achieved with only three laser pulses. The Toffoli gate, being universal for classical reversible computing, is also useful for QEC, which plays an important role in quantum communication and fault-tolerant quantum computation. The possibility and speed of realizing these gates shed light on the study of quantum information with neutral atoms.

  4. Black hole based quantum computing in labs and in the sky

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Panchenko, Mischa

    2016-08-01

    Analyzing some well established facts, we give a model-independent parameterization of black hole quantum computing in terms of a set of macro and micro quantities and their relations. These include the relations between the extraordinarily-small energy gap of black hole qubits and important time-scales of information-processing, such as, scrambling time and Page's time. We then show, confirming and extending previous results, that other systems of nature with identical quantum informatics features are attractive Bose-Einstein systems at the critical point of quantum phase transition. Here we establish a complete isomorphy between the quantum computational properties of these two systems. In particular, we show that the quantum hair of a critical condensate is strikingly similar to the quantum hair of a black hole. Irrespectively whether one takes the similarity between the two systems as a remarkable coincidence or as a sign of a deeper underlying connection, the following is evident. Black holes are not unique in their way of quantum information processing and we can manufacture black hole based quantum computers in labs by taking advantage of quantum criticality.

  5. Measurement system of correlation functions of microwave single photon source in real time

    NASA Astrophysics Data System (ADS)

    Korenkov, A.; Dmitriev, A.; Astafiev, O.

    2018-02-01

    Several quantum setups, such as quantum key distribution networks[1] and quantum simulators (e.g. boson sampling), by their design rely on single photon sources (SPSs). These quantum setups were demonstrated to operate in optical frequency domain. However, following the steady advances in circuit quantum electrodynamics, a proposal has been made recently[2] to demonstrate boson sampling with microwave photons. This in turn requires the development of reliable microwave SPS. It's one of the most important characteristics are the first-order and the second-order correlation functions g1 and g2. The measurement technique of g1 and g2 is significantly different from that in the optical domain [3],[4] because of the current unavailability of microwave single-photon detectors. In particular, due to high levels of noise present in the system a substantial amount of statistics in needed to be acquired. This work presents a platform for measurement of g1 and g2 that processes the incoming data in real time, maximizing the efficiency of data acquisition. The use of field-programmable gate array (FPGA) electronics, common in similar experiments[3] but complex in programming, is avoided; instead, the calculations are performed on a standard desktop computer. The platform is used to perform the measurements of the first-order and the second-order correlation functions of the microwave SPS.

  6. Nonlinear optics quantum computing with circuit QED.

    PubMed

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  7. Complex systems and health behavior change: insights from cognitive science.

    PubMed

    Orr, Mark G; Plaut, David C

    2014-05-01

    To provide proof-of-concept that quantum health behavior can be instantiated as a computational model that is informed by cognitive science, the Theory of Reasoned Action, and quantum health behavior theory. We conducted a synthetic review of the intersection of quantum health behavior change and cognitive science. We conducted simulations, using a computational model of quantum health behavior (a constraint satisfaction artificial neural network) and tested whether the model exhibited quantum-like behavior. The model exhibited clear signs of quantum-like behavior. Quantum health behavior can be conceptualized as constraint satisfaction: a mitigation between current behavioral state and the social contexts in which it operates. We outlined implications for moving forward with computational models of both quantum health behavior and health behavior in general.

  8. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  9. Computational quantum-classical boundary of noisy commuting quantum circuits

    PubMed Central

    Fujii, Keisuke; Tamate, Shuhei

    2016-01-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region. PMID:27189039

  10. Computational quantum-classical boundary of noisy commuting quantum circuits.

    PubMed

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-18

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  11. Computational quantum-classical boundary of noisy commuting quantum circuits

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Tamate, Shuhei

    2016-05-01

    It is often said that the transition from quantum to classical worlds is caused by decoherence originated from an interaction between a system of interest and its surrounding environment. Here we establish a computational quantum-classical boundary from the viewpoint of classical simulatability of a quantum system under decoherence. Specifically, we consider commuting quantum circuits being subject to decoherence. Or equivalently, we can regard them as measurement-based quantum computation on decohered weighted graph states. To show intractability of classical simulation in the quantum side, we utilize the postselection argument and crucially strengthen it by taking noise effect into account. Classical simulatability in the classical side is also shown constructively by using both separable criteria in a projected-entangled-pair-state picture and the Gottesman-Knill theorem for mixed state Clifford circuits. We found that when each qubit is subject to a single-qubit complete-positive-trace-preserving noise, the computational quantum-classical boundary is sharply given by the noise rate required for the distillability of a magic state. The obtained quantum-classical boundary of noisy quantum dynamics reveals a complexity landscape of controlled quantum systems. This paves a way to an experimentally feasible verification of quantum mechanics in a high complexity limit beyond classically simulatable region.

  12. Quantum Information Theory - an Invitation

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.

  13. No-go theorem for passive single-rail linear optical quantum computing.

    PubMed

    Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A

    2013-01-01

    Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.

  14. Non-unitary probabilistic quantum computing

    NASA Technical Reports Server (NTRS)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  15. Quantum Analog Computing

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1998-01-01

    Quantum analog computing is based upon similarity between mathematical formalism of quantum mechanics and phenomena to be computed. It exploits a dynamical convergence of several competing phenomena to an attractor which can represent an externum of a function, an image, a solution to a system of ODE, or a stochastic process.

  16. Quantum phases with differing computational power.

    PubMed

    Cui, Jian; Gu, Mile; Kwek, Leong Chuan; Santos, Marcelo França; Fan, Heng; Vedral, Vlatko

    2012-05-01

    The observation that concepts from quantum information has generated many alternative indicators of quantum phase transitions hints that quantum phase transitions possess operational significance with respect to the processing of quantum information. Yet, studies on whether such transitions lead to quantum phases that differ in their capacity to process information remain limited. Here we show that there exist quantum phase transitions that cause a distinct qualitative change in our ability to simulate certain quantum systems under perturbation of an external field by local operations and classical communication. In particular, we show that in certain quantum phases of the XY model, adiabatic perturbations of the external magnetic field can be simulated by local spin operations, whereas the resulting effect within other phases results in coherent non-local interactions. We discuss the potential implications to adiabatic quantum computation, where a computational advantage exists only when adiabatic perturbation results in coherent multi-body interactions.

  17. Majorana-Based Fermionic Quantum Computation.

    PubMed

    O'Brien, T E; Rożek, P; Akhmerov, A R

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O(1) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  18. Majorana-Based Fermionic Quantum Computation

    NASA Astrophysics Data System (ADS)

    O'Brien, T. E.; RoŻek, P.; Akhmerov, A. R.

    2018-06-01

    Because Majorana zero modes store quantum information nonlocally, they are protected from noise, and have been proposed as a building block for a quantum computer. We show how to use the same protection from noise to implement universal fermionic quantum computation. Our architecture requires only two Majorana modes to encode a fermionic quantum degree of freedom, compared to alternative implementations which require a minimum of four Majorana modes for a spin quantum degree of freedom. The fermionic degrees of freedom support both unitary coupled cluster variational quantum eigensolver and quantum phase estimation algorithms, proposed for quantum chemistry simulations. Because we avoid the Jordan-Wigner transformation, our scheme has a lower overhead for implementing both of these algorithms, allowing for simulation of the Trotterized Hubbard Hamiltonian in O (1 ) time per unitary step. We finally demonstrate magic state distillation in our fermionic architecture, giving a universal set of topologically protected fermionic quantum gates.

  19. Iterated Gate Teleportation and Blind Quantum Computation.

    PubMed

    Pérez-Delgado, Carlos A; Fitzsimons, Joseph F

    2015-06-05

    Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.

  20. Entangling qubits by Heisenberg spin exchange and anyon braiding

    NASA Astrophysics Data System (ADS)

    Zeuch, Daniel

    As the discovery of quantum mechanics signified a revolution in the world of physics more than one century ago, the notion of a quantum computer in 1981 marked the beginning of a drastic change of our understanding of information and computability. In a quantum computer, information is stored using quantum bits, or qubits, which are described by a quantum-mechanical superposition of the quantum states 0 and 1. Computation then proceeds by acting with unitary operations on these qubits. These operations are referred to as quantum logic gates, in analogy to classical computation where bits are acted on by classical logic gates. In order to perform universal quantum computation it is, in principle, sufficient to carry out single-qubit gates and two-qubit gates, where the former act on individual qubits and the latter, acting on two qubits, are used to entangle qubits with each other. The present thesis is divided into two main parts. In the first, we are concerned with spin-based quantum computation. In a spin-based quantum computer, qubits are encoded into the Hilbert space spanned by spin-1/2 particles, such as electron spins trapped in semiconductor quantum dots. For a suitable qubit encoding, turning on-and-off, or "pulsing,'' the isotropic Heisenberg exchange Hamiltonian JSi · Sj allows for universal quantum computation and it is this scheme, known as exchange-only quantum computation, which we focus on. In the second part of this thesis, we consider a topological quantum computer in which qubits are encoded using so-called Fibonacci anyons, exotic quasiparticle excitations that obey non-Abelian statistics, and which may emerge in certain two-dimensional topological systems such as fractional quantum-Hall states. Quantum gates can then be carried out by moving these particles around one another, a process that can be viewed as braiding their 2+1 dimensional worldlines. The subject of the present thesis is the development and theoretical understanding of procedures used for entangling qubits. We begin by presenting analytical constructions of pulse sequences which can be used to carry out two-qubit gates that are locally equivalent to a controlled-PHASE gate. The corresponding phase can be arbitrarily chosen, and for one particular choice this gate is equivalent to controlled-NOT. While the constructions of these sequences are relatively lengthy and cumbersome, we further provide a straightforward and intuitive derivation of the shortest known two-qubit pulse sequence for carrying out a controlled-NOT gate. This derivation is carried out completely analytically through a novel "elevation'' of a simple three-spin pulse sequence to a more complicated five-spin pulse sequence. In the case of topological quantum computation with Fibonacci anyons, we present a new method for constructing entangling two-qubit braids. Our construction is based on an iterative procedure, established by Reichardt, which can be used to systematically generate braids whose corresponding operations quickly converge towards an operation that has a diagonal matrix representation in a particular natural basis. After describing this iteration procedure we show how the resulting braids can be used in two explicit constructions for two-qubit braids. Compared to two-qubit braids that can be found using other methods, the braids generated here are among the most efficient and can be obtained straightforwardly without computational overhead.

  1. Computation in generalised probabilisitic theories

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Barrett, Jonathan

    2015-08-01

    From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that {{BQP}}\\subseteq {{AWPP}}, where {{AWPP}} is a classical complexity class (known to be included in {{PP}}, hence {{PSPACE}}). This work investigates limits on computational power that are imposed by simple physical, or information theoretic, principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that multipartite states and transformations can be characterized by local measurements), efficient computations are contained in {{AWPP}}. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class, {{PostBQP}}, is equal to {{PP}}. Given only the assumption of tomographic locality, the inclusion in {{PP}} still holds for post-selected computation in general theories. Hence in a world with post-selection, quantum theory is optimal for computation in the space of all operational theories. We then consider whether one can obtain relativized complexity results for general theories. It is not obvious how to define a sensible notion of a computational oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption does not include {{NP}}.

  2. Ab Initio Computation of Dynamical Properties: Pressure Broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, Laurent; Drouin, Brian

    2014-06-01

    Rotational spectroscopy of polar molecules is the main observational tool in many areas of astrophysics, for gases of low densities (n ˜ 102 - 108 cm-3). Spectral line shapes in astrophysical media are largely dominated by turbulence-induced Doppler effects and natural line broadening are negligible. However line broadening remains an important tool for denser gases, like planetary high atmospheres. Understanding the excitation schemes of polar molecules requires the knowledge of excitation transfer rate due to collisional excitation, between the polar molecule and the ambient gas, usually H2. Transport properties in ionized media also require a precise knowledge of momentum transfer rates by elastic collisions. In order to assess the theoretically computed cross section and energy/momentum transfer rates, direct absolute experiments are scarce. The best way is to measure not individual scattering events but rather the global effect of the buffer gas, thanks to the pressure broadening cross sections, whose magnitude can be measured without any scaling parameters. At low temperatures, both elastic and inelastic scattering amplitudes are tested. At higher temperature, depending on the interaction strength, only inelastic scattering cross section are shown to play a significant role 1 ,2. Thanks to the advances of computer capabilities, it has become practical to compute spectral line parameters fromab initio quantum chemistry. In particular, the theory of rotational line broadening is readily incorporated into scattering quantum dynamical theory, like close-coupling schemes. The only approximations used in the computation are the isolated collision/isolated line approximations. We compute the non-binding interaction potential with high precision quantum chemistry and fit the resulting ab initio points onto a suitable functional. We have recently computed several such systems, for molecules in H2 buffer gas: H2O,3 H2CO,4 HCO+ .5 Detailed computations taking into account the ortho or para state of H2 were performed, at temperatures ranging from 10 K to 100K, typically. Reliable results are found, that compare favorably to experiments. In particular, the water-molecular hydrogen system has been thoroughly computed and successfully experimentally tested 6. New projects consider other simple molecules as well as heavier systems, relevant for cometary comae and planetary high atmospheres. as part of the GNU EPrints system , and is freely redistributable under the GPL .

  3. Experimental quantum computing without entanglement.

    PubMed

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  4. Materials Frontiers to Empower Quantum Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Antoinette Jane; Sarrao, John Louis; Richardson, Christopher

    This is an exciting time at the nexus of quantum computing and materials research. The materials frontiers described in this report represent a significant advance in electronic materials and our understanding of the interactions between the local material and a manufactured quantum state. Simultaneously, directed efforts to solve materials issues related to quantum computing provide an opportunity to control and probe the fundamental arrangement of matter that will impact all electronic materials. An opportunity exists to extend our understanding of materials functionality from electronic-grade to quantum-grade by achieving a predictive understanding of noise and decoherence in qubits and their originsmore » in materials defects and environmental coupling. Realizing this vision systematically and predictively will be transformative for quantum computing and will represent a qualitative step forward in materials prediction and control.« less

  5. A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits

    NASA Technical Reports Server (NTRS)

    Kechedzhi, Kostyantyn

    2018-01-01

    Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.

  6. Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2005-12-01

    During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible with 9.0 and 8.0, too) Memory and time required to execute with typical data:Storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex algebraic operations may require large amounts of memory even for small qubit numbers. However, most of the standard commands (see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor machine ( ⩾1GHz with 512 MB memory) and use less than 10 MB memory. No. of lines in distributed program, including test data, etc.: 8864 No. of bytes in distributed program, including test data, etc.: 493 182 Distribution format: tar.gz Nature of the physical problem:During the last decade, quantum computing has been found to provide a revolutionary new form of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. Grover, Phys. Rev. Lett. 79 (1997) 325. [2

  7. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy

    Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  8. Research on Electrically Driven Single Photon Emitter by Diamond for Quantum Cryptography

    DTIC Science & Technology

    2015-03-24

    by diamond for quantum cryptography 5a. CONTRACT NUMBER FA2386-14-1-4037 5b. GRANT NUMBE R Grant 14IOA093_144037 5c. PROGRAM ELEMENT...emerged as a highly competitive platform for applications in quantum cryptography , quantum computing, spintronics, and sensing or metrology...15. SUBJECT TERMS Diamond LED, Nitrogen Vacancy Complex, Quantum Computing, Quantum Cryptography , Single Spin Single Photon 16. SECURITY

  9. Teleportation-based realization of an optical quantum two-qubit entangling gate

    PubMed Central

    Gao, Wei-Bo; Goebel, Alexander M.; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-01-01

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390–393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme—a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing. PMID:21098305

  10. Teleportation-based realization of an optical quantum two-qubit entangling gate.

    PubMed

    Gao, Wei-Bo; Goebel, Alexander M; Lu, Chao-Yang; Dai, Han-Ning; Wagenknecht, Claudia; Zhang, Qiang; Zhao, Bo; Peng, Cheng-Zhi; Chen, Zeng-Bing; Chen, Yu-Ao; Pan, Jian-Wei

    2010-12-07

    In recent years, there has been heightened interest in quantum teleportation, which allows for the transfer of unknown quantum states over arbitrary distances. Quantum teleportation not only serves as an essential ingredient in long-distance quantum communication, but also provides enabling technologies for practical quantum computation. Of particular interest is the scheme proposed by D. Gottesman and I. L. Chuang [(1999) Nature 402:390-393], showing that quantum gates can be implemented by teleporting qubits with the help of some special entangled states. Therefore, the construction of a quantum computer can be simply based on some multiparticle entangled states, Bell-state measurements, and single-qubit operations. The feasibility of this scheme relaxes experimental constraints on realizing universal quantum computation. Using two different methods, we demonstrate the smallest nontrivial module in such a scheme--a teleportation-based quantum entangling gate for two different photonic qubits. One uses a high-fidelity six-photon interferometer to realize controlled-NOT gates, and the other uses four-photon hyperentanglement to realize controlled-Phase gates. The results clearly demonstrate the working principles and the entangling capability of the gates. Our experiment represents an important step toward the realization of practical quantum computers and could lead to many further applications in linear optics quantum information processing.

  11. Quasi-one-dimensional quantum anomalous Hall systems as new platforms for scalable topological quantum computation

    NASA Astrophysics Data System (ADS)

    Chen, Chui-Zhen; Xie, Ying-Ming; Liu, Jie; Lee, Patrick A.; Law, K. T.

    2018-03-01

    Quantum anomalous Hall insulator/superconductor heterostructures emerged as a competitive platform to realize topological superconductors with chiral Majorana edge states as shown in recent experiments [He et al. Science 357, 294 (2017), 10.1126/science.aag2792]. However, chiral Majorana modes, being extended, cannot be used for topological quantum computation. In this work, we show that quasi-one-dimensional quantum anomalous Hall structures exhibit a large topological regime (much larger than the two-dimensional case) which supports localized Majorana zero energy modes. The non-Abelian properties of a cross-shaped quantum anomalous Hall junction is shown explicitly by time-dependent calculations. We believe that the proposed quasi-one-dimensional quantum anomalous Hall structures can be easily fabricated for scalable topological quantum computation.

  12. The Brain Is both Neurocomputer and Quantum Computer

    ERIC Educational Resources Information Center

    Hameroff, Stuart R.

    2007-01-01

    In their article, "Is the Brain a Quantum Computer,?" Litt, Eliasmith, Kroon, Weinstein, and Thagard (2006) criticize the Penrose-Hameroff "Orch OR" quantum computational model of consciousness, arguing instead for neurocomputation as an explanation for mental phenomena. Here I clarify and defend Orch OR, show how Orch OR and neurocomputation are…

  13. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  14. Effect of local minima on adiabatic quantum optimization.

    PubMed

    Amin, M H S

    2008-04-04

    We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.

  15. Multi-server blind quantum computation over collective-noise channels

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Liu, Lin; Song, Xiuli

    2018-03-01

    Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

  16. Complexity of the Quantum Adiabatic Algorithm

    NASA Technical Reports Server (NTRS)

    Hen, Itay

    2013-01-01

    The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.

  17. Quantum computational complexity, Einstein's equations and accelerated expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Wang, Bin

    2018-02-01

    We study the relation between quantum computational complexity and general relativity. The quantum computational complexity is proposed to be quantified by the shortest length of geodesic quantum curves. We examine the complexity/volume duality in a geodesic causal ball in the framework of Fermi normal coordinates and derive the full non-linear Einstein equation. Using insights from the complexity/action duality, we argue that the accelerated expansion of the universe could be driven by the quantum complexity and free from coincidence and fine-tunning problems.

  18. Qubits and quantum Hamiltonian computing performances for operating a digital Boolean 1/2-adder

    NASA Astrophysics Data System (ADS)

    Dridi, Ghassen; Faizy Namarvar, Omid; Joachim, Christian

    2018-04-01

    Quantum Boolean (1 + 1) digits 1/2-adders are designed with 3 qubits for the quantum computing (Qubits) and 4 quantum states for the quantum Hamiltonian computing (QHC) approaches. Detailed analytical solutions are provided to analyse the time operation of those different 1/2-adder gates. QHC is more robust to noise than Qubits and requires about the same amount of energy for running its 1/2-adder logical operations. QHC is faster in time than Qubits but its logical output measurement takes longer.

  19. Hidden Statistics Approach to Quantum Simulations

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the transitional potential is to provide a jump from a deterministic state to a random state with prescribed probability density. This jump is triggered by blowup instability due to violation of Lipschitz condition generated by the quantum potential. As a result, the dynamics attains quantum properties on a classical scale. The model can be implemented physically as an analog VLSI-based (very-large-scale integration-based) computer, or numerically on a digital computer. This work opens a way of developing fundamentally new algorithms for quantum simulations of exponentially complex problems that expand NASA capabilities in conducting space activities. It has been illustrated that the complexity of simulations of particle interaction can be reduced from an exponential one to a polynomial one.

  20. An Efficient Statistical Method to Compute Molecular Collisional Rate Coefficients

    NASA Astrophysics Data System (ADS)

    Loreau, Jérôme; Lique, François; Faure, Alexandre

    2018-01-01

    Our knowledge about the “cold” universe often relies on molecular spectra. A general property of such spectra is that the energy level populations are rarely at local thermodynamic equilibrium. Solving the radiative transfer thus requires the availability of collisional rate coefficients with the main colliding partners over the temperature range ∼10–1000 K. These rate coefficients are notoriously difficult to measure and expensive to compute. In particular, very few reliable collisional data exist for inelastic collisions involving reactive radicals or ions. In this Letter, we explore the use of a fast quantum statistical method to determine molecular collisional excitation rate coefficients. The method is benchmarked against accurate (but costly) rigid-rotor close-coupling calculations. For collisions proceeding through the formation of a strongly bound complex, the method is found to be highly satisfactory up to room temperature. Its accuracy decreases with decreasing potential well depth and with increasing temperature, as expected. This new method opens the way to the determination of accurate inelastic collisional data involving key reactive species such as {{{H}}}3+, H2O+, and H3O+ for which exact quantum calculations are currently not feasible.

  1. Heats of Segregation of BCC Binaries from ab Initio and Quantum Approximate Calculations

    NASA Technical Reports Server (NTRS)

    Good, Brian S.

    2004-01-01

    We compare dilute-limit heats of segregation for selected BCC transition metal binaries computed using ab initio and quantum approximate energy methods. Ab initio calculations are carried out using the CASTEP plane-wave pseudopotential computer code, while quantum approximate results are computed using the Bozzolo-Ferrante-Smith (BFS) method with the most recent LMTO-based parameters. Quantum approximate segregation energies are computed with and without atomistic relaxation, while the ab initio calculations are performed without relaxation. Results are discussed within the context of a segregation model driven by strain and bond-breaking effects. We compare our results with full-potential quantum calculations and with available experimental results.

  2. Universal quantum computation with little entanglement.

    PubMed

    Van den Nest, Maarten

    2013-02-08

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  3. Quantum Algorithms and Protocols

    NASA Astrophysics Data System (ADS)

    Divincenzo, David

    2001-06-01

    Quantum Computing is better than classical computing, but not just because it speeds up some computations. Some of the best known quantum algorithms, like Grover's, may well have their most interesting applications in settings that involve the combination of computation and communication. Thus, Grover speeds up the appointment scheduling problem by reducing the amount of communication needed between two parties who want to find a common free slot on their calendars. I will review various other applications of this sort that are being explored. Other distributed computing protocols are required to have other attributes like obliviousness and privacy; I will discuss our recent applications involving quantum data hiding.

  4. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  5. Comprehensive Materials and Morphologies Study of Ion Traps (COMMIT) for Scalable Quantum Computation

    DTIC Science & Technology

    2012-04-21

    the photoelectric effect. The typical shortest wavelengths needed for ion traps range from 194 nm for Hg+ to 493 nm for Ba +, corresponding to 6.4-2.5...REPORT Comprehensive Materials and Morphologies Study of Ion Traps (COMMIT) for scalable Quantum Computation - Final Report 14. ABSTRACT 16. SECURITY...CLASSIFICATION OF: Trapped ion systems, are extremely promising for large-scale quantum computation, but face a vexing problem, with motional quantum

  6. Experimental realization of quantum cheque using a five-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Behera, Bikash K.; Banerjee, Anindita; Panigrahi, Prasanta K.

    2017-12-01

    Quantum cheques could be a forgery-free way to make transaction in a quantum networked banking system with perfect security against any no-signalling adversary. Here, we demonstrate the implementation of quantum cheque, proposed by Moulick and Panigrahi (Quantum Inf Process 15:2475-2486, 2016), using the five-qubit IBM quantum computer. Appropriate single qubit, CNOT and Fredkin gates are used in an optimized configuration. The accuracy of implementation is checked and verified through quantum state tomography by comparing results from the theoretical and experimental density matrices.

  7. Geometry of Quantum Computation with Qudits

    PubMed Central

    Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710

  8. One-loop quantum gravity repulsion in the early Universe.

    PubMed

    Broda, Bogusław

    2011-03-11

    Perturbative quantum gravity formalism is applied to compute the lowest order corrections to the classical spatially flat cosmological Friedmann-Lemaître-Robertson-Walker solution (for the radiation). The presented approach is analogous to the approach applied to compute quantum corrections to the Coulomb potential in electrodynamics, or rather to the approach applied to compute quantum corrections to the Schwarzschild solution in gravity. In the framework of the standard perturbative quantum gravity, it is shown that the corrections to the classical deceleration, coming from the one-loop graviton vacuum polarization (self-energy), have (UV cutoff free) opposite to the classical repulsive properties which are not negligible in the very early Universe. The repulsive "quantum forces" resemble those known from loop quantum cosmology.

  9. Novel systems and methods for quantum communication, quantum computation, and quantum simulation

    NASA Astrophysics Data System (ADS)

    Gorshkov, Alexey Vyacheslavovich

    Precise control over quantum systems can enable the realization of fascinating applications such as powerful computers, secure communication devices, and simulators that can elucidate the physics of complex condensed matter systems. However, the fragility of quantum effects makes it very difficult to harness the power of quantum mechanics. In this thesis, we present novel systems and tools for gaining fundamental insights into the complex quantum world and for bringing practical applications of quantum mechanics closer to reality. We first optimize and show equivalence between a wide range of techniques for storage of photons in atomic ensembles. We describe experiments demonstrating the potential of our optimization algorithms for quantum communication and computation applications. Next, we combine the technique of photon storage with strong atom-atom interactions to propose a robust protocol for implementing the two-qubit photonic phase gate, which is an important ingredient in many quantum computation and communication tasks. In contrast to photon storage, many quantum computation and simulation applications require individual addressing of closely-spaced atoms, ions, quantum dots, or solid state defects. To meet this requirement, we propose a method for coherent optical far-field manipulation of quantum systems with a resolution that is not limited by the wavelength of radiation. While alkali atoms are currently the system of choice for photon storage and many other applications, we develop new methods for quantum information processing and quantum simulation with ultracold alkaline-earth atoms in optical lattices. We show how multiple qubits can be encoded in individual alkaline-earth atoms and harnessed for quantum computing and precision measurements applications. We also demonstrate that alkaline-earth atoms can be used to simulate highly symmetric systems exhibiting spin-orbital interactions and capable of providing valuable insights into strongly correlated physics of transition metal oxides, heavy fermion materials, and spin liquid phases. While ultracold atoms typically exhibit only short-range interactions, numerous exotic phenomena and practical applications require long-range interactions, which can be achieved with ultracold polar molecules. We demonstrate the possibility to engineer a repulsive interaction between polar molecules, which allows for the suppression of inelastic collisions, efficient evaporative cooling, and the creation of novel phases of polar molecules.

  10. Quantum Chess: Making Quantum Phenomena Accessible

    NASA Astrophysics Data System (ADS)

    Cantwell, Christopher

    Quantum phenomena have remained largely inaccessible to the general public. There tends to be a scare factor associated with the word ``Quantum''. This is in large part due to the alien nature of phenomena such as superposition and entanglement. However, Quantum Computing is a very active area of research and one day we will have games that run on those quantum computers. Quantum phenomena such as superposition and entanglement will seem as normal as gravity. Is it possible to create such games today? Can we make games that are built on top of a realistic quantum simulation and introduce players of any background to quantum concepts in a fun and mentally stimulating way? One of the difficulties with any quantum simulation run on a classical computer is that the Hilbert space grows exponentially, making simulations of an appreciable size physically impossible due largely to memory restrictions. Here we will discuss the conception and development of Quantum Chess, and how to overcome some of the difficulties faced. We can then ask the question, ``What's next?'' What are some of the difficulties Quantum Chess still faces, and what is the future of quantum games?

  11. An extrapolation scheme for solid-state NMR chemical shift calculations

    NASA Astrophysics Data System (ADS)

    Nakajima, Takahito

    2017-06-01

    Conventional quantum chemical and solid-state physical approaches include several problems to accurately calculate solid-state nuclear magnetic resonance (NMR) properties. We propose a reliable computational scheme for solid-state NMR chemical shifts using an extrapolation scheme that retains the advantages of these approaches but reduces their disadvantages. Our scheme can satisfactorily yield solid-state NMR magnetic shielding constants. The estimated values have only a small dependence on the low-level density functional theory calculation with the extrapolation scheme. Thus, our approach is efficient because the rough calculation can be performed in the extrapolation scheme.

  12. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan

    Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less

  13. Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

    NASA Astrophysics Data System (ADS)

    Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.

    2007-12-01

    In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.

  14. Regression relation for pure quantum states and its implications for efficient computing.

    PubMed

    Elsayed, Tarek A; Fine, Boris V

    2013-02-15

    We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.

  15. Practical experimental certification of computational quantum gates using a twirling procedure.

    PubMed

    Moussa, Osama; da Silva, Marcus P; Ryan, Colm A; Laflamme, Raymond

    2012-08-17

    Because of the technical difficulty of building large quantum computers, it is important to be able to estimate how faithful a given implementation is to an ideal quantum computer. The common approach of completely characterizing the computation process via quantum process tomography requires an exponential amount of resources, and thus is not practical even for relatively small devices. We solve this problem by demonstrating that twirling experiments previously used to characterize the average fidelity of quantum memories efficiently can be easily adapted to estimate the average fidelity of the experimental implementation of important quantum computation processes, such as unitaries in the Clifford group, in a practical and efficient manner with applicability in current quantum devices. Using this procedure, we demonstrate state-of-the-art coherent control of an ensemble of magnetic moments of nuclear spins in a single crystal solid by implementing the encoding operation for a 3-qubit code with only a 1% degradation in average fidelity discounting preparation and measurement errors. We also highlight one of the advances that was instrumental in achieving such high fidelity control.

  16. Assessment of electron propagator methods for the simulation of vibrationally-resolved valence and core photoionization spectra

    PubMed Central

    Baiardi, A.; Paoloni, L.; Barone, V.; Zakrzewski, V.G.; Ortiz, J.V.

    2017-01-01

    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Due to the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally-resolved electronic spectra has been generalized to support also photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate non-diagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies, but diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally-resolved bandshapes. PMID:28521087

  17. Quantum rendering

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Gomez, Richard B.; Uhlmann, Jeffrey K.

    2003-08-01

    In recent years, computer graphics has emerged as a critical component of the scientific and engineering process, and it is recognized as an important computer science research area. Computer graphics are extensively used for a variety of aerospace and defense training systems and by Hollywood's special effects companies. All these applications require the computer graphics systems to produce high quality renderings of extremely large data sets in short periods of time. Much research has been done in "classical computing" toward the development of efficient methods and techniques to reduce the rendering time required for large datasets. Quantum Computing's unique algorithmic features offer the possibility of speeding up some of the known rendering algorithms currently used in computer graphics. In this paper we discuss possible implementations of quantum rendering algorithms. In particular, we concentrate on the implementation of Grover's quantum search algorithm for Z-buffering, ray-tracing, radiosity, and scene management techniques. We also compare the theoretical performance between the classical and quantum versions of the algorithms.

  18. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  19. Increasing complexity with quantum physics.

    PubMed

    Anders, Janet; Wiesner, Karoline

    2011-09-01

    We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

  20. Quantum Computer Games: Schrodinger Cat and Hounds

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  1. Quo vadis: Hydrologic inverse analyses using high-performance computing and a D-Wave quantum annealer

    NASA Astrophysics Data System (ADS)

    O'Malley, D.; Vesselinov, V. V.

    2017-12-01

    Classical microprocessors have had a dramatic impact on hydrology for decades, due largely to the exponential growth in computing power predicted by Moore's law. However, this growth is not expected to continue indefinitely and has already begun to slow. Quantum computing is an emerging alternative to classical microprocessors. Here, we demonstrated cutting edge inverse model analyses utilizing some of the best available resources in both worlds: high-performance classical computing and a D-Wave quantum annealer. The classical high-performance computing resources are utilized to build an advanced numerical model that assimilates data from O(10^5) observations, including water levels, drawdowns, and contaminant concentrations. The developed model accurately reproduces the hydrologic conditions at a Los Alamos National Laboratory contamination site, and can be leveraged to inform decision-making about site remediation. We demonstrate the use of a D-Wave 2X quantum annealer to solve hydrologic inverse problems. This work can be seen as an early step in quantum-computational hydrology. We compare and contrast our results with an early inverse approach in classical-computational hydrology that is comparable to the approach we use with quantum annealing. Our results show that quantum annealing can be useful for identifying regions of high and low permeability within an aquifer. While the problems we consider are small-scale compared to the problems that can be solved with modern classical computers, they are large compared to the problems that could be solved with early classical CPUs. Further, the binary nature of the high/low permeability problem makes it well-suited to quantum annealing, but challenging for classical computers.

  2. Quantum computing: In the 'death zone'?

    NASA Astrophysics Data System (ADS)

    van Dam, Wim

    2007-04-01

    An event advertised as the first demonstration of a commercial quantum computer raises the question of how far one can go with a 'do not care' attitude towards imperfections, without losing the quantum advantage.

  3. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  5. Holonomic quantum computation in the presence of decoherence.

    PubMed

    Fuentes-Guridi, I; Girelli, F; Livine, E

    2005-01-21

    We present a scheme to study non-Abelian adiabatic holonomies for open Markovian systems. As an application of our framework, we analyze the robustness of holonomic quantum computation against decoherence. We pinpoint the sources of error that must be corrected to achieve a geometric implementation of quantum computation completely resilient to Markovian decoherence.

  6. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  7. Hybrid annealing: Coupling a quantum simulator to a classical computer

    NASA Astrophysics Data System (ADS)

    Graß, Tobias; Lewenstein, Maciej

    2017-05-01

    Finding the global minimum in a rugged potential landscape is a computationally hard task, often equivalent to relevant optimization problems. Annealing strategies, either classical or quantum, explore the configuration space by evolving the system under the influence of thermal or quantum fluctuations. The thermal annealing dynamics can rapidly freeze the system into a low-energy configuration, and it can be simulated well on a classical computer, but it easily gets stuck in local minima. Quantum annealing, on the other hand, can be guaranteed to find the true ground state and can be implemented in modern quantum simulators; however, quantum adiabatic schemes become prohibitively slow in the presence of quasidegeneracies. Here, we propose a strategy which combines ideas from simulated annealing and quantum annealing. In such a hybrid algorithm, the outcome of a quantum simulator is processed on a classical device. While the quantum simulator explores the configuration space by repeatedly applying quantum fluctuations and performing projective measurements, the classical computer evaluates each configuration and enforces a lowering of the energy. We have simulated this algorithm for small instances of the random energy model, showing that it potentially outperforms both simulated thermal annealing and adiabatic quantum annealing. It becomes most efficient for problems involving many quasidegenerate ground states.

  8. Emulation of complex open quantum systems using superconducting qubits

    NASA Astrophysics Data System (ADS)

    Mostame, Sarah; Huh, Joonsuk; Kreisbeck, Christoph; Kerman, Andrew J.; Fujita, Takatoshi; Eisfeld, Alexander; Aspuru-Guzik, Alán

    2017-02-01

    With quantum computers being out of reach for now, quantum simulators are alternative devices for efficient and accurate simulation of problems that are challenging to tackle using conventional computers. Quantum simulators are classified into analog and digital, with the possibility of constructing "hybrid" simulators by combining both techniques. Here we focus on analog quantum simulators of open quantum systems and address the limit that they can beat classical computers. In particular, as an example, we discuss simulation of the chlorosome light-harvesting antenna from green sulfur bacteria with over 250 phonon modes coupled to each electronic state. Furthermore, we propose physical setups that can be used to reproduce the quantum dynamics of a standard and multiple-mode Holstein model. The proposed scheme is based on currently available technology of superconducting circuits consist of flux qubits and quantum oscillators.

  9. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  10. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  11. Quantum Nash Equilibria and Quantum Computing

    NASA Astrophysics Data System (ADS)

    Fellman, Philip Vos; Post, Jonathan Vos

    In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234

  12. Quantum information, cognition, and music.

    PubMed

    Dalla Chiara, Maria L; Giuntini, Roberto; Leporini, Roberto; Negri, Eleonora; Sergioli, Giuseppe

    2015-01-01

    Parallelism represents an essential aspect of human mind/brain activities. One can recognize some common features between psychological parallelism and the characteristic parallel structures that arise in quantum theory and in quantum computation. The article is devoted to a discussion of the following questions: a comparison between classical probabilistic Turing machines and quantum Turing machines.possible applications of the quantum computational semantics to cognitive problems.parallelism in music.

  13. Quantum information, cognition, and music

    PubMed Central

    Dalla Chiara, Maria L.; Giuntini, Roberto; Leporini, Roberto; Negri, Eleonora; Sergioli, Giuseppe

    2015-01-01

    Parallelism represents an essential aspect of human mind/brain activities. One can recognize some common features between psychological parallelism and the characteristic parallel structures that arise in quantum theory and in quantum computation. The article is devoted to a discussion of the following questions: a comparison between classical probabilistic Turing machines and quantum Turing machines.possible applications of the quantum computational semantics to cognitive problems.parallelism in music. PMID:26539139

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alexander J.

    There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.

  15. A Comparison of Approaches for Solving Hard Graph-Theoretic Problems

    DTIC Science & Technology

    2015-05-01

    collaborative effort “ Adiabatic Quantum Computing Applications Research” (14-RI-CRADA-02) between the Information Directorate and Lock- 3 Algorithm 3...using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using satisfiability modulo theory (SMT) and corresponding SMT...methods are explored and consist of a parallel computing approach using Matlab, a quantum annealing approach using the D-Wave computer , and lastly using

  16. Automated error correction in IBM quantum computer and explicit generalization

    NASA Astrophysics Data System (ADS)

    Ghosh, Debjit; Agarwal, Pratik; Pandey, Pratyush; Behera, Bikash K.; Panigrahi, Prasanta K.

    2018-06-01

    Construction of a fault-tolerant quantum computer remains a challenging problem due to unavoidable noise and fragile quantum states. However, this goal can be achieved by introducing quantum error-correcting codes. Here, we experimentally realize an automated error correction code and demonstrate the nondestructive discrimination of GHZ states in IBM 5-qubit quantum computer. After performing quantum state tomography, we obtain the experimental results with a high fidelity. Finally, we generalize the investigated code for maximally entangled n-qudit case, which could both detect and automatically correct any arbitrary phase-change error, or any phase-flip error, or any bit-flip error, or combined error of all types of error.

  17. Fault-tolerant linear optical quantum computing with small-amplitude coherent States.

    PubMed

    Lund, A P; Ralph, T C; Haselgrove, H L

    2008-01-25

    Quantum computing using two coherent states as a qubit basis is a proposed alternative architecture with lower overheads but has been questioned as a practical way of performing quantum computing due to the fragility of diagonal states with large coherent amplitudes. We show that using error correction only small amplitudes (alpha>1.2) are required for fault-tolerant quantum computing. We study fault tolerance under the effects of small amplitudes and loss using a Monte Carlo simulation. The first encoding level resources are orders of magnitude lower than the best single photon scheme.

  18. Intermediate quantum maps for quantum computation

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Georgeot, B.

    2005-10-01

    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically and yields pseudorandom operators with original properties, enabling, for example, one to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.

  19. Quantum computing: Quantum advantage deferred

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.

    2017-12-01

    A type of optics experiment called a boson sampler could be among the easiest routes to demonstrating the power of quantum computers. But recent work shows that super-classical boson sampling may be a long way off.

  20. Function Package for Computing Quantum Resource Measures

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-05-01

    In this paper, we present a function package for to calculate quantum resource measures and dynamics of open systems. Our package includes common operators and operator lists, frequently-used functions for computing quantum entanglement, quantum correlation, quantum coherence, quantum Fisher information and dynamics in noisy environments. We briefly explain the functions of the package and illustrate how to use the package with several typical examples. We expect that this package is a useful tool for future research and education.

  1. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  2. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  3. Arthur L. Schawlow Prize in Laser Science Talk: Trapped Ion Quantum Networks with Light

    NASA Astrophysics Data System (ADS)

    Monroe, Christopher

    2015-05-01

    Laser-cooled atomic ions are standards for quantum information science, acting as qubit memories with unsurpassed levels of quantum coherence while also allowing near-perfect measurement. When qubit state-dependent optical dipole forces are applied to a collection of trapped ions, their Coulomb interaction is modulated in a way that allows the entanglement of the qubits through quantum gates that can form the basis of a quantum computer. Similar optical forces allow the simulation of quantum many-body physics, where recent experiments are approaching a level of complexity that cannot be modelled with conventional computers. Scaling to much larger numbers of qubits can be accomplished by coupling trapped ion qubits through optical photons, where entanglement over remote distances can be used for quantum communication and large-scale distributed quantum computers. Laser sources and quantum optical techniques are the workhorse for such quantum networks, and will continue to lead the way as future quantum hardware is developed. This work is supported by the ARO with funding from the IARPA MQCO program, the DARPA Quiness Program, the ARO MURI on Hybrid Quantum Circuits, the AFOSR MURIs on Quantum Transduction and Quantum Verification, and the NSF Physics Frontier Center at JQI.

  4. Software-defined network abstractions and configuration interfaces for building programmable quantum networks

    NASA Astrophysics Data System (ADS)

    Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.

    2017-05-01

    Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.

  5. Reversibility and stability of information processing systems

    NASA Technical Reports Server (NTRS)

    Zurek, W. H.

    1984-01-01

    Classical and quantum models of dynamically reversible computers are considered. Instabilities in the evolution of the classical 'billiard ball computer' are analyzed and shown to result in a one-bit increase of entropy per step of computation. 'Quantum spin computers', on the other hand, are not only microscopically, but also operationally reversible. Readoff of the output of quantum computation is shown not to interfere with this reversibility. Dissipation, while avoidable in principle, can be used in practice along with redundancy to prevent errors.

  6. Reliability of analog quantum simulation

    DOE PAGES

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    2017-01-03

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  7. FermiLib v0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCCLEAN, JARROD; HANER, THOMAS; STEIGER, DAMIAN

    FermiLib is an open source software package designed to facilitate the development and testing of algorithms for simulations of fermionic systems on quantum computers. Fermionic simulations represent an important application of early quantum devices with a lot of potential high value targets, such as quantum chemistry for the development of new catalysts. This software strives to provide a link between the required domain expertise in specific fermionic applications and quantum computing to enable more users to directly interface with, and develop for, these applications. It is an extensible Python library designed to interface with the high performance quantum simulator, ProjectQ,more » as well as application specific software such as PSI4 from the domain of quantum chemistry. Such software is key to enabling effective user facilities in quantum computation research.« less

  8. Quantum plug n’ play: modular computation in the quantum regime

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Modi, Kavan; Vedral, Vlatko; Gu, Mile

    2018-01-01

    Classical computation is modular. It exploits plug n’ play architectures which allow us to use pre-fabricated circuits without knowing their construction. This bestows advantages such as allowing parts of the computational process to be outsourced, and permitting individual circuit components to be exchanged and upgraded. Here, we introduce a formal framework to describe modularity in the quantum regime. We demonstrate a ‘no-go’ theorem, stipulating that it is not always possible to make use of quantum circuits without knowing their construction. This has significant consequences for quantum algorithms, forcing the circuit implementation of certain quantum algorithms to be rebuilt almost entirely from scratch after incremental changes in the problem—such as changing the number being factored in Shor’s algorithm. We develop a workaround capable of restoring modularity, and apply it to design a modular version of Shor’s algorithm that exhibits increased versatility and reduced complexity. In doing so we pave the way to a realistic framework whereby ‘quantum chips’ and remote servers can be invoked (or assembled) to implement various parts of a more complex quantum computation.

  9. Quantum machine learning: a classical perspective

    NASA Astrophysics Data System (ADS)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  10. Quantum machine learning: a classical perspective

    PubMed Central

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed. PMID:29434508

  11. Quantum machine learning: a classical perspective.

    PubMed

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  12. QUANTUM: The Exhibition - quantum at the museum

    NASA Astrophysics Data System (ADS)

    Laforest, Martin; Olano, Angela; Day-Hamilton, Tobi

    Distilling the essence of quantum phenomena, and how they are being harnessed to develop powerful quantum technologies, into a series of bite-sized, elementary-school-level pieces is what the scientific outreach team at the University of Waterloo's Institute for Quantum Computing was tasked with. QUANTUM: The Exhibition uses a series of informational panels, multimedia and interactive displays to introduce visitors to quantum phenomena and how they will revolutionize computing, information security and sensing. We'll discuss some of the approaches we took to convey the essence and impact of quantum mechanics and technologies to a lay audience while ensuring scientific accuracy.

  13. Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits

    NASA Astrophysics Data System (ADS)

    Dong, Lihong; Rong, Xing; Geng, Jianpei; Shi, Fazhan; Li, Zhaokai; Duan, Changkui; Du, Jiangfeng

    2017-11-01

    We propose a novel theoretical scheme of quantum computation. Nuclear spin pairs are utilized to encode decoherence-free (DF) qubits. A nitrogen-vacancy center serves as a quantum actuator to initialize, readout, and quantum control the DF qubits. The realization of CNOT gates between two DF qubits are also presented. Numerical simulations show high fidelities of all these processes. Additionally, we discuss the potential of scalability. Our scheme reduces the challenge of classical interfaces from controlling and observing complex quantum systems down to a simple quantum actuator. It also provides a novel way to handle complex quantum systems.

  14. Protecting software agents from malicious hosts using quantum computing

    NASA Astrophysics Data System (ADS)

    Reisner, John; Donkor, Eric

    2000-07-01

    We evaluate how quantum computing can be applied to security problems for software agents. Agent-based computing, which merges technological advances in artificial intelligence and mobile computing, is a rapidly growing domain, especially in applications such as electronic commerce, network management, information retrieval, and mission planning. System security is one of the more eminent research areas in agent-based computing, and the specific problem of protecting a mobile agent from a potentially hostile host is one of the most difficult of these challenges. In this work, we describe our agent model, and discuss the capabilities and limitations of classical solutions to the malicious host problem. Quantum computing may be extremely helpful in addressing the limitations of classical solutions to this problem. This paper highlights some of the areas where quantum computing could be applied to agent security.

  15. Impact of geometric, thermal and tunneling effects on nano-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Langhua; Chen, Duan, E-mail: dchen10@uncc.edu; Wei, Guo-Wei

    Electronic transistors are fundamental building blocks of large scale integrated circuits in modern advanced electronic equipments, and their sizes have been down-scaled to nanometers. Modeling and simulations in the framework of quantum dynamics have emerged as important tools to study functional characteristics of these nano-devices. This work explores the effects of geometric shapes of semiconductor–insulator interfaces, phonon–electron interactions, and quantum tunneling of three-dimensional (3D) nano-transistors. First, we propose a two-scale energy functional to describe the electron dynamics in a dielectric continuum of device material. Coupled governing equations, i.e., Poisson–Kohn–Sham (PKS) equations, are derived by the variational principle. Additionally, it ismore » found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section offers the largest channel current, which indicates that ultra-thin nanotransistors may not be very efficient in practical applications. Moreover, we introduce a new method to evaluate quantum tunneling effects in nanotransistors without invoking the comparison of classical and quantum predictions. It is found that at a given channel cross section area and gate voltage, the geometry that has the smallest perimeter of the channel cross section has the smallest quantum tunneling ratio, which indicates that geometric defects can lead to higher geometric confinement and larger quantum tunneling effect. Furthermore, although an increase in the phonon–electron interaction strength reduces channel current, it does not have much impact to the quantum tunneling ratio. Finally, advanced numerical techniques, including second order elliptic interface methods, have been applied to ensure computational accuracy and reliability of the present PKS simulation.« less

  16. Quantum Metropolis sampling.

    PubMed

    Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F

    2011-03-03

    The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.

  17. Building logical qubits in a superconducting quantum computing system

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay M.; Chow, Jerry M.; Steffen, Matthias

    2017-01-01

    The technological world is in the midst of a quantum computing and quantum information revolution. Since Richard Feynman's famous `plenty of room at the bottom' lecture (Feynman, Engineering and Science23, 22 (1960)), hinting at the notion of novel devices employing quantum mechanics, the quantum information community has taken gigantic strides in understanding the potential applications of a quantum computer and laid the foundational requirements for building one. We believe that the next significant step will be to demonstrate a quantum memory, in which a system of interacting qubits stores an encoded logical qubit state longer than the incorporated parts. Here, we describe the important route towards a logical memory with superconducting qubits, employing a rotated version of the surface code. The current status of technology with regards to interconnected superconducting-qubit networks will be described and near-term areas of focus to improve devices will be identified. Overall, the progress in this exciting field has been astounding, but we are at an important turning point, where it will be critical to incorporate engineering solutions with quantum architectural considerations, laying the foundation towards scalable fault-tolerant quantum computers in the near future.

  18. De-quantisation

    NASA Astrophysics Data System (ADS)

    Gruska, Jozef

    2012-06-01

    One of the most basic tasks in quantum information processing, communication and security (QIPCC) research, theoretically deep and practically important, is to find bounds on how really important are inherently quantum resources for speeding up computations. This area of research is bringing a variety of results that imply, often in a very unexpected and counter-intuitive way, that: (a) surprisingly large classes of quantum circuits and algorithms can be efficiently simulated on classical computers; (b) the border line between quantum processes that can and cannot be efficiently simulated on classical computers is often surprisingly thin; (c) the addition of a seemingly very simple resource or a tool often enormously increases the power of available quantum tools. These discoveries have put also a new light on our understanding of quantum phenomena and quantum physics and on the potential of its inherently quantum and often mysteriously looking phenomena. The paper motivates and surveys research and its outcomes in the area of de-quantisation, especially presents various approaches and their outcomes concerning efficient classical simulations of various families of quantum circuits and algorithms. To motivate this area of research some outcomes in the area of de-randomization of classical randomized computations.

  19. Improvement of reliability in multi-interferometer-based counterfactual deterministic communication with dissipation compensation.

    PubMed

    Liu, Chao; Liu, Jinhong; Zhang, Junxiang; Zhu, Shiyao

    2018-02-05

    The direct counterfactual quantum communication (DCQC) is a surprising phenomenon that quantum information can be transmitted without using any carriers of physical particles. The nested interferometers are promising devices for realizing DCQC as long as the number of interferometers goes to be infinity. Considering the inevitable loss or dissipation in practical experimental interferometers, we analyze the dependence of reliability on the number of interferometers, and show that the reliability of direct communication is being rapidly degraded with the large number of interferometers. Furthermore, we simulate and test this counterfactual deterministic communication protocol with a finite number of interferometers, and demonstrate the improvement of the reliability using dissipation compensation in interferometers.

  20. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register.

    PubMed

    Wang, Ya; Dolde, Florian; Biamonte, Jacob; Babbush, Ryan; Bergholm, Ville; Yang, Sen; Jakobi, Ingmar; Neumann, Philipp; Aspuru-Guzik, Alán; Whitfield, James D; Wrachtrup, Jörg

    2015-08-25

    Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.

  1. Quantum gates by periodic driving

    PubMed Central

    Shi, Z. C.; Wang, W.; Yi, X. X.

    2016-01-01

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions—it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation. PMID:26911900

  2. Quantum gates by periodic driving.

    PubMed

    Shi, Z C; Wang, W; Yi, X X

    2016-02-25

    Topological quantum computation has been extensively studied in the past decades due to its robustness against decoherence. One way to realize the topological quantum computation is by adiabatic evolutions-it requires relatively long time to complete a gate, so the speed of quantum computation slows down. In this work, we present a method to realize single qubit quantum gates by periodic driving. Compared to adiabatic evolution, the single qubit gates can be realized at a fixed time much shorter than that by adiabatic evolution. The driving fields can be sinusoidal or square-well field. With the sinusoidal driving field, we derive an expression for the total operation time in the high-frequency limit, and an exact analytical expression for the evolution operator without any approximations is given for the square well driving. This study suggests that the period driving could provide us with a new direction in regulations of the operation time in topological quantum computation.

  3. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  4. Superconducting quantum circuits at the surface code threshold for fault tolerance.

    PubMed

    Barends, R; Kelly, J; Megrant, A; Veitia, A; Sank, D; Jeffrey, E; White, T C; Mutus, J; Fowler, A G; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Neill, C; O'Malley, P; Roushan, P; Vainsencher, A; Wenner, J; Korotkov, A N; Cleland, A N; Martinis, John M

    2014-04-24

    A quantum computer can solve hard problems, such as prime factoring, database searching and quantum simulation, at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection by distributing a logical state among many physical quantum bits (qubits) by means of quantum entanglement. Superconductivity is a useful phenomenon in this regard, because it allows the construction of large quantum circuits and is compatible with microfabrication. For superconducting qubits, the surface code approach to quantum computing is a natural choice for error correction, because it uses only nearest-neighbour coupling and rapidly cycled entangling gates. The gate fidelity requirements are modest: the per-step fidelity threshold is only about 99 per cent. Here we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92 per cent and a two-qubit gate fidelity of up to 99.4 per cent. This places Josephson quantum computing at the fault-tolerance threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.

  5. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  6. Quantum simulation from the bottom up: the case of rebits

    NASA Astrophysics Data System (ADS)

    Enshan Koh, Dax; Yuezhen Niu, Murphy; Yoder, Theodore J.

    2018-05-01

    Typically, quantum mechanics is thought of as a linear theory with unitary evolution governed by the Schrödinger equation. While this is technically true and useful for a physicist, with regards to computation it is an unfortunately narrow point of view. Just as a classical computer can simulate highly nonlinear functions of classical states, so too can the more general quantum computer simulate nonlinear evolutions of quantum states. We detail one particular simulation of nonlinearity on a quantum computer, showing how the entire class of -unitary evolutions (on n qubits) can be simulated using a unitary, real-amplitude quantum computer (consisting of n  +  1 qubits in total). These operators can be represented as the sum of a linear and antilinear operator, and add an intriguing new set of nonlinear quantum gates to the toolbox of the quantum algorithm designer. Furthermore, a subgroup of these nonlinear evolutions, called the -Cliffords, can be efficiently classically simulated, by making use of the fact that Clifford operators can simulate non-Clifford (in fact, non-linear) operators. This perspective of using the physical operators that we have to simulate non-physical ones that we do not is what we call bottom-up simulation, and we give some examples of its broader implications.

  7. Efficient Strategy for the Calculation of Solvation Free Energies in Water and Chloroform at the Quantum Mechanical/Molecular Mechanical Level.

    PubMed

    Wang, Meiting; Li, Pengfei; Jia, Xiangyu; Liu, Wei; Shao, Yihan; Hu, Wenxin; Zheng, Jun; Brooks, Bernard R; Mei, Ye

    2017-10-23

    The partitioning of solute molecules between immiscible solvents with significantly different polarities is of great importance. The polarization between the solute and solvent molecules plays an essential role in determining the solubility of the solute, which makes computational studies utilizing molecular mechanics (MM) rather difficult. In contrast, quantum mechanics (QM) can provide more reliable predictions. In this work, the partition coefficients of the side chain analogs of some amino acids between water and chloroform were computed. The QM solvation free energies were calculated indirectly via a series of MM states using the multistate Bennett acceptance ratio (MBAR) and the MM-to-QM corrections were applied at the two endpoints using thermodynamic perturbation (TP). Previously, it has been shown (Jia et al. J. Chem. Theory Comput. 2016, 12, 499-511) that this method provides the minimal variance in the results without running QM simulations. However, if there is insufficient overlap in phase space between the MM and QM Hamiltonians, this method fails. In this work, we propose, for the first time, a quantity termed the reweighting entropy that serves as a metric for the reliability of the TP calculations. If the reweighting entropy is below a certain threshold (0.65 for the solvation free energy calculations in this work), this MM-to-QM correction should be avoided and two alternative methods can be employed by either introducing a semiempirical state or conducting nonequilibrium simulations. However, the results show that the QM methods are not guaranteed to yield better results than the MM methods. Further improvement of the QM methods are imperative, especially the treatment of the van der Waals and the electrostatic interactions between the QM region and the MM region in the first shell. We also propose a scheme for the calculation of the van der Waals parameters for the solute molecules in nonaqueous solvent, which improves the quality of the computed thermodynamic properties. Furthermore, the force field parameters for the sulfur-containing molecules are also optimized.

  8. Computations and interpretations: The growth of quantum chemistry, 1927-1967

    NASA Astrophysics Data System (ADS)

    Park, Buhm Soon

    1999-10-01

    This dissertation is a contribution to the historical study of scientific disciplines in the twentieth century. It seeks to examine the development of quantum chemistry during the four decades after its inception in 1927. This development was manifest in theories, tools, scientists, and institutions, all of which constituted the disciplinary identity of quantum chemistry. To characterize its identity, I deal with the origins of key ideas and concepts; the change of computational tools from desk calculators to digital computers; the formation of a network among research groups and individuals; and the institutionalization of annual meetings. The dissertation's thesis is three-fold. First, in the pre- World War II years, there were individual contributions to the development of theories in quantum chemistry, but the founding fathers worked in their disciplinary contexts of physics or chemistry with little interest in building a quantum chemistry community. Second, the introduction of electronic digital computers in the postwar years affected the resurgence of the ab initio approach-the attempt to solve the Schrödinger equation without recourse to empirical data-and also the emergence of a community of quantum chemists. But the use of computers did not give rise to a consensus over the aims, methods, or content of the discipline. Third, quantum chemistry exerted a significant influence upon the transformation of chemical education and research in general, thanks to ``chemical translators,'' who sought to explain the gist of quantum chemistry in a language that chemists could understand. In sum, quantum chemistry has been a discipline characterized by diverse traditions, and the whole of chemistry has been under the influence of computations and interpretations made by quantum chemists.

  9. Simulated quantum computation of molecular energies.

    PubMed

    Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin

    2005-09-09

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  10. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-09-12

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions.

  11. Experimental Comparison of Two Quantum Computing Architectures

    DTIC Science & Technology

    2017-03-28

    IN A U G U RA L A RT IC LE CO M PU TE R SC IE N CE S Experimental comparison of two quantum computing architectures Norbert M. Linkea,b,1, Dmitri...the vast computing power a universal quantumcomputer could offer, several candidate systems are being explored. They have allowed experimental ...existing systems and the role of architecture in quantum computer design . These will be crucial for the realization of more advanced future incarna

  12. A novel quantum solution to secure two-party distance computation

    NASA Astrophysics Data System (ADS)

    Peng, Zhen-wan; Shi, Run-hua; Wang, Pan-hong; Zhang, Shun

    2018-06-01

    Secure Two-Party Distance Computation is an important primitive of Secure Multiparty Computational Geometry that it involves two parties, where each party has a private point, and the two parties want to jointly compute the distance between their points without revealing anything about their respective private information. Secure Two-Party Distance Computation has very important and potential applications in settings of high secure requirements, such as privacy-preserving Determination of Spatial Location-Relation, Determination of Polygons Similarity, and so on. In this paper, we present a quantum protocol for Secure Two-Party Distance Computation by using QKD-based Quantum Private Query. The security of the protocol is based on the physical principles of quantum mechanics, instead of difficulty assumptions, and therefore, it can ensure higher security than the classical related protocols.

  13. Massively parallel quantum computer simulator

    NASA Astrophysics Data System (ADS)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.

  14. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    PubMed

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  15. Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

    DTIC Science & Technology

    2007-11-20

    4, 2005. ) 14. M. 0. Scully, "The EPR Paradox Revisted", AMO Physics Seminar, TAMU Jan. 18, 2005. 15. M. S. Zubairy, "Quantum computing: Cavity QED...the EPR dispersion relation and the average photon number. We have shown that atomic coherence is the key to the development of such a laser. In...PRISM-TAMU Symposium on Quantum Material Science, Princeton University, February 21-22, 2005. ) 21. M. 0. Scully, "From EPR to quantum eraser: The Role

  16. Experimental scattershot boson sampling

    PubMed Central

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J.; Galvão, Ernesto F.; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-01-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy. PMID:26601164

  17. Experimental scattershot boson sampling.

    PubMed

    Bentivegna, Marco; Spagnolo, Nicolò; Vitelli, Chiara; Flamini, Fulvio; Viggianiello, Niko; Latmiral, Ludovico; Mataloni, Paolo; Brod, Daniel J; Galvão, Ernesto F; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sciarrino, Fabio

    2015-04-01

    Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

  18. The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective

    NASA Astrophysics Data System (ADS)

    Srikanth, R.

    2006-11-01

    Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.

  19. Reversibility and measurement in quantum computing

    NASA Astrophysics Data System (ADS)

    Leãao, J. P.

    1998-03-01

    The relation between computation and measurement at a fundamental physical level is yet to be understood. Rolf Landauer was perhaps the first to stress the strong analogy between these two concepts. His early queries have regained pertinence with the recent efforts to developed realizable models of quantum computers. In this context the irreversibility of quantum measurement appears in conflict with the requirement of reversibility of the overall computation associated with the unitary dynamics of quantum evolution. The latter in turn is responsible for the features of superposition and entanglement which make some quantum algorithms superior to classical ones for the same task in speed and resource demand. In this article we advocate an approach to this question which relies on a model of computation designed to enforce the analogy between the two concepts instead of demarcating them as it has been the case so far. The model is introduced as a symmetrization of the classical Turing machine model and is then carried on to quantum mechanics, first as a an abstract local interaction scheme (symbolic measurement) and finally in a nonlocal noninteractive implementation based on Aharonov-Bohm potentials and modular variables. It is suggested that this implementation leads to the most ubiquitous of quantum algorithms: the Discrete Fourier Transform.

  20. An introduction to quantum machine learning

    NASA Astrophysics Data System (ADS)

    Schuld, Maria; Sinayskiy, Ilya; Petruccione, Francesco

    2015-04-01

    Machine learning algorithms learn a desired input-output relation from examples in order to interpret new inputs. This is important for tasks such as image and speech recognition or strategy optimisation, with growing applications in the IT industry. In the last couple of years, researchers investigated if quantum computing can help to improve classical machine learning algorithms. Ideas range from running computationally costly algorithms or their subroutines efficiently on a quantum computer to the translation of stochastic methods into the language of quantum theory. This contribution gives a systematic overview of the emerging field of quantum machine learning. It presents the approaches as well as technical details in an accessible way, and discusses the potential of a future theory of quantum learning.

  1. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  2. Interferometric Computation Beyond Quantum Theory

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  3. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

    PubMed

    Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2014-11-12

    Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

  4. Quantum proofs can be verified using only single-qubit measurements

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Nagaj, Daniel; Schuch, Norbert

    2016-02-01

    Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the verifier has only classical computational resources. In this paper, we study what happens when we restrict the quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with one-sided error.

  5. Blind quantum computation over a collective-noise channel

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yuki; Fujii, Keisuke; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki

    2016-05-01

    Blind quantum computation (BQC) allows a client (Alice), who only possesses relatively poor quantum devices, to delegate universal quantum computation to a server (Bob) in such a way that Bob cannot know Alice's inputs, algorithm, and outputs. The quantum channel between Alice and Bob is noisy, and the loss over the long-distance quantum communication should also be taken into account. Here we propose to use decoherence-free subspace (DFS) to overcome the collective noise in the quantum channel for BQC, which we call DFS-BQC. We propose three variations of DFS-BQC protocols. One of them, a coherent-light-assisted DFS-BQC protocol, allows Alice to faithfully send the signal photons with a probability proportional to a transmission rate of the quantum channel. In all cases, we combine the ideas based on DFS and the Broadbent-Fitzsimons-Kashefi protocol, which is one of the BQC protocols, without degrading unconditional security. The proposed DFS-based schemes are generic and hence can be applied to other BQC protocols where Alice sends quantum states to Bob.

  6. Braid group representation on quantum computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com; Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id

    2015-09-30

    There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.

  7. Possible 6-qubit NMR quantum computer device material; simulator of the NMR line width

    NASA Astrophysics Data System (ADS)

    Hashi, K.; Kitazawa, H.; Shimizu, T.; Goto, A.; Eguchi, S.; Ohki, S.

    2002-12-01

    For an NMR quantum computer, splitting of an NMR spectrum must be larger than a line width. In order to find a best device material for a solid-state NMR quantum computer, we have made a simulation program to calculate the NMR line width due to the nuclear dipole field by the 2nd moment method. The program utilizes the lattice information prepared by commercial software to draw a crystal structure. By applying this program, we can estimate the NMR line width due to the nuclear dipole field without measurements and find a candidate material for a 6-qubit solid-state NMR quantum computer device.

  8. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture.

    PubMed

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-22

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  9. Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    2017-09-01

    We propose a scalable scheme for optical quantum computing using measurement-induced continuous-variable quantum gates in a loop-based architecture. Here, time-bin-encoded quantum information in a single spatial mode is deterministically processed in a nested loop by an electrically programmable gate sequence. This architecture can process any input state and an arbitrary number of modes with almost minimum resources, and offers a universal gate set for both qubits and continuous variables. Furthermore, quantum computing can be performed fault tolerantly by a known scheme for encoding a qubit in an infinite-dimensional Hilbert space of a single light mode.

  10. Determining Individual Particle Magnetizations in Assemblages of Micrograins

    NASA Astrophysics Data System (ADS)

    de Groot, Lennart V.; Fabian, Karl; Béguin, Annemarieke; Reith, Pim; Barnhoorn, Auke; Hilgenkamp, Hans

    2018-04-01

    Obtaining reliable information from even the most challenging paleomagnetic recorders, such as the oldest igneous rocks and meteorites, is paramount to open new windows into Earth's history. Currently, such information is acquired by simultaneously sensing millions of particles in small samples or single crystals using superconducting quantum interference device magnetometers. The obtained rock-magnetic signal is a statistical ensemble of grains potentially differing in reliability as paleomagnetic recorder due to variations in physical dimensions, chemistry, and magnetic behavior. Here we go beyond bulk magnetic measurements and combine computed tomography and scanning magnetometry to uniquely invert for the magnetic moments of individual grains. This enables us to select and consider contributions of subsets of grains as a function of particle-specific selection criteria and avoid contributions that arise from particles that are altered or contain unreliable magnetic carriers. This new, nondestructive, method unlocks information from complex paleomagnetic recorders that until now goes obscured.

  11. Shor's factoring algorithm and modern cryptography. An illustration of the capabilities inherent in quantum computers

    NASA Astrophysics Data System (ADS)

    Gerjuoy, Edward

    2005-06-01

    The security of messages encoded via the widely used RSA public key encryption system rests on the enormous computational effort required to find the prime factors of a large number N using classical (conventional) computers. In 1994 Peter Shor showed that for sufficiently large N, a quantum computer could perform the factoring with much less computational effort. This paper endeavors to explain, in a fashion comprehensible to the nonexpert, the RSA encryption protocol; the various quantum computer manipulations constituting the Shor algorithm; how the Shor algorithm performs the factoring; and the precise sense in which a quantum computer employing Shor's algorithm can be said to accomplish the factoring of very large numbers with less computational effort than a classical computer. It is made apparent that factoring N generally requires many successive runs of the algorithm. Our analysis reveals that the probability of achieving a successful factorization on a single run is about twice as large as commonly quoted in the literature.

  12. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    NASA Astrophysics Data System (ADS)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  13. Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry

    NASA Astrophysics Data System (ADS)

    Stevens, Jonathan

    2017-07-01

    Continuing advances in computational chemistry has permitted quantum mechanical calculation to assist in research in green chemistry and to contribute to the greening of chemical practice. Presented here are recent examples illustrating the contribution of computational quantum chemistry to green chemistry, including the possibility of using computation as a green alternative to experiments, but also illustrating contributions to greener catalysis and the search for greener solvents. Examples of applications of computation to ambitious projects for green synthetic chemistry using carbon dioxide are also presented.

  14. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-10-01

    Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.

  15. Post-quantum cryptography.

    PubMed

    Bernstein, Daniel J; Lange, Tanja

    2017-09-13

    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.

  16. Post-quantum cryptography

    NASA Astrophysics Data System (ADS)

    Bernstein, Daniel J.; Lange, Tanja

    2017-09-01

    Cryptography is essential for the security of online communication, cars and implanted medical devices. However, many commonly used cryptosystems will be completely broken once large quantum computers exist. Post-quantum cryptography is cryptography under the assumption that the attacker has a large quantum computer; post-quantum cryptosystems strive to remain secure even in this scenario. This relatively young research area has seen some successes in identifying mathematical operations for which quantum algorithms offer little advantage in speed, and then building cryptographic systems around those. The central challenge in post-quantum cryptography is to meet demands for cryptographic usability and flexibility without sacrificing confidence.

  17. SCB Quantum Computers Using iSWAP and 1-Qubit Rotations

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Echtemach, Pierre

    2005-01-01

    Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally universal as is the CNOT operation.

  18. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

  19. Quantum Machine Learning

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  20. Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms

    NASA Astrophysics Data System (ADS)

    Johansson, Niklas; Larsson, Jan-Åke

    2017-09-01

    A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.

  1. Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Xu, X.; Nigmatullin, R.; O'Gorman, J.; Negnevitsky, V.; Schindler, P.; Monz, T.; Poschinger, U. G.; Hempel, C.; Home, J.; Schmidt-Kaler, F.; Biercuk, M.; Blatt, R.; Benjamin, S.; Müller, M.

    2017-10-01

    A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that will be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC and a physically motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realized in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements described here, this platform is a very promising candidate for fault-tolerant quantum computation.

  2. Scalable Quantum Networks for Distributed Computing and Sensing

    DTIC Science & Technology

    2016-04-01

    probabilistic measurement , so we developed quantum memories and guided-wave implementations of same, demonstrating controlled delay of a heralded single...Second, fundamental scalability requires a method to synchronize protocols based on quantum measurements , which are inherently probabilistic. To meet...AFRL-AFOSR-UK-TR-2016-0007 Scalable Quantum Networks for Distributed Computing and Sensing Ian Walmsley THE UNIVERSITY OF OXFORD Final Report 04/01

  3. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    PubMed

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  4. Quantum Computation of Fluid Dynamics

    DTIC Science & Technology

    1998-02-16

    state of the quantum computer’s "memory". With N qubits, the quantum state IT) resides in an exponentially large Hilbert space with 2 N dimensions. A new...size of the Hilbert space in which the entanglement occurs. And to make matters worse, even if a quantum computer was constructed with a large number of...number of qubits "* 2 N is the size of the full Hilbert space "* 2 B is the size of the on-site submanifold, denoted 71 "* B is the size of the

  5. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.

    PubMed

    Vandersypen, L M; Steffen, M; Breyta, G; Yannoni, C S; Sherwood, M H; Chuang, I L

    The number of steps any classical computer requires in order to find the prime factors of an l-digit integer N increases exponentially with l, at least using algorithms known at present. Factoring large integers is therefore conjectured to be intractable classically, an observation underlying the security of widely used cryptographic codes. Quantum computers, however, could factor integers in only polynomial time, using Shor's quantum factoring algorithm. Although important for the study of quantum computers, experimental demonstration of this algorithm has proved elusive. Here we report an implementation of the simplest instance of Shor's algorithm: factorization of N = 15 (whose prime factors are 3 and 5). We use seven spin-1/2 nuclei in a molecule as quantum bits, which can be manipulated with room temperature liquid-state nuclear magnetic resonance techniques. This method of using nuclei to store quantum information is in principle scalable to systems containing many quantum bits, but such scalability is not implied by the present work. The significance of our work lies in the demonstration of experimental and theoretical techniques for precise control and modelling of complex quantum computers. In particular, we present a simple, parameter-free but predictive model of decoherence effects in our system.

  6. Quantum error correction in crossbar architectures

    NASA Astrophysics Data System (ADS)

    Helsen, Jonas; Steudtner, Mark; Veldhorst, Menno; Wehner, Stephanie

    2018-07-01

    A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv:1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.

  7. Symmetry-protected topological phases with uniform computational power in one dimension

    NASA Astrophysics Data System (ADS)

    Raussendorf, Robert; Wang, Dong-Sheng; Prakash, Abhishodh; Wei, Tzu-Chieh; Stephen, David T.

    2017-07-01

    We investigate the usefulness of ground states of quantum spin chains with symmetry-protected topological order (SPTO) for measurement-based quantum computation. We show that, in spatial dimension 1, if an SPTO phase protects the identity gate, then, subject to an additional symmetry condition that is satisfied in all cases so far investigated, it can also be used for quantum computation.

  8. Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket

    NASA Astrophysics Data System (ADS)

    Béjanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Earnest, C. T.; McRae, C. R. H.; Shiri, D.; Bateman, J. D.; Rohanizadegan, Y.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.; Mariantoni, M.

    2016-10-01

    Quantum computing architectures are on the verge of scalability, a key requirement for the implementation of a universal quantum computer. The next stage in this quest is the realization of quantum error-correction codes, which will mitigate the impact of faulty quantum information on a quantum computer. Architectures with ten or more quantum bits (qubits) have been realized using trapped ions and superconducting circuits. While these implementations are potentially scalable, true scalability will require systems engineering to combine quantum and classical hardware. One technology demanding imminent efforts is the realization of a suitable wiring method for the control and the measurement of a large number of qubits. In this work, we introduce an interconnect solution for solid-state qubits: the quantum socket. The quantum socket fully exploits the third dimension to connect classical electronics to qubits with higher density and better performance than two-dimensional methods based on wire bonding. The quantum socket is based on spring-mounted microwires—the three-dimensional wires—that push directly on a microfabricated chip, making electrical contact. A small wire cross section (approximately 1 mm), nearly nonmagnetic components, and functionality at low temperatures make the quantum socket ideal for operating solid-state qubits. The wires have a coaxial geometry and operate over a frequency range from dc to 8 GHz, with a contact resistance of approximately 150 m Ω , an impedance mismatch of approximately 10 Ω , and minimal cross talk. As a proof of principle, we fabricate and use a quantum socket to measure high-quality superconducting resonators at a temperature of approximately 10 mK. Quantum error-correction codes such as the surface code will largely benefit from the quantum socket, which will make it possible to address qubits located on a two-dimensional lattice. The present implementation of the socket could be readily extended to accommodate a quantum processor with a (10 ×10 )-qubit lattice, which would allow for the realization of a simple quantum memory.

  9. Neural implementation of operations used in quantum cognition.

    PubMed

    Busemeyer, Jerome R; Fakhari, Pegah; Kvam, Peter

    2017-11-01

    Quantum probability theory has been successfully applied outside of physics to account for numerous findings from psychology regarding human judgement and decision making behavior. However, the researchers who have made these applications do not rely on the hypothesis that the brain is some type of quantum computer. This raises the question of how could the brain implement quantum algorithms other than quantum physical operations. This article outlines one way that a neural based system could perform the computations required by applications of quantum probability to human behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Blind quantum computation with identity authentication

    NASA Astrophysics Data System (ADS)

    Li, Qin; Li, Zhulin; Chan, Wai Hong; Zhang, Shengyu; Liu, Chengdong

    2018-04-01

    Blind quantum computation (BQC) allows a client with relatively few quantum resources or poor quantum technologies to delegate his computational problem to a quantum server such that the client's input, output, and algorithm are kept private. However, all existing BQC protocols focus on correctness verification of quantum computation but neglect authentication of participants' identity which probably leads to man-in-the-middle attacks or denial-of-service attacks. In this work, we use quantum identification to overcome such two kinds of attack for BQC, which will be called QI-BQC. We propose two QI-BQC protocols based on a typical single-server BQC protocol and a double-server BQC protocol. The two protocols can ensure both data integrity and mutual identification between participants with the help of a third trusted party (TTP). In addition, an unjammable public channel between a client and a server which is indispensable in previous BQC protocols is unnecessary, although it is required between TTP and each participant at some instant. Furthermore, the method to achieve identity verification in the presented protocols is general and it can be applied to other similar BQC protocols.

  11. The Applicability of Emerging Quantum Computing Capabilities to Exo-Planet Research

    NASA Astrophysics Data System (ADS)

    Correll, Randall; Worden, S.

    2014-01-01

    In conjunction with the Universities Space Research Association and Google, Inc. NASA Ames has acquired a quantum computing device built by DWAVE Systems with approximately 512 “qubits.” Quantum computers have the feature that their capabilities to find solutions to problems with large numbers of variables scale linearly with the number of variables rather than exponentially with that number. These devices may have significant applicability to detection of exoplanet signals in noisy data. We have therefore explored the application of quantum computing to analyse stellar transiting exoplanet data from NASA’s Kepler Mission. The analysis of the case studies was done using the DWAVE Systems’s BlackBox compiler software emulator, although one dataset was run successfully on the DWAVE Systems’s 512 qubit Vesuvius machine. The approach first extracts a list of candidate transits from the photometric lightcurve of a given Kepler target, and then applies a quantum annealing algorithm to find periodicity matches between subsets of the candidate transit list. We examined twelve case studies and were successful in reproducing the results of the Kepler science pipeline in finding validated exoplanets, and matched the results for a pair of candidate exoplanets. We conclude that the current implementation of the algorithm is not sufficiently challenging to require a quantum computer as opposed to a conventional computer. We are developing more robust algorithms better tailored to the quantum computer and do believe that our approach has the potential to extract exoplanet transits in some cases where a conventional approach would not in Kepler data. Additionally, we believe the new quantum capabilities may have even greater relevance for new exoplanet data sets such as that contemplated for NASA’s Transiting Exoplanet Survey Satellite (TESS) and other astrophysics data sets.

  12. Quantum information processing by a continuous Maxwell demon

    NASA Astrophysics Data System (ADS)

    Stevens, Josey; Deffner, Sebastian

    Quantum computing is believed to be fundamentally superior to classical computing; however quantifying the specific thermodynamic advantage has been elusive. Experimentally motivated, we generalize previous minimal models of discrete demons to continuous state space. Analyzing our model allows one to quantify the thermodynamic resources necessary to process quantum information. By further invoking the semi-classical limit we compare the quantum demon with its classical analogue. Finally, this model also serves as a starting point to study open quantum systems.

  13. Quantum Heterogeneous Computing for Satellite Positioning Optimization

    NASA Astrophysics Data System (ADS)

    Bass, G.; Kumar, V.; Dulny, J., III

    2016-12-01

    Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.

  14. Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits.

    PubMed

    Takita, Maika; Cross, Andrew W; Córcoles, A D; Chow, Jerry M; Gambetta, Jay M

    2017-11-03

    Robust quantum computation requires encoding delicate quantum information into degrees of freedom that are hard for the environment to change. Quantum encodings have been demonstrated in many physical systems by observing and correcting storage errors, but applications require not just storing information; we must accurately compute even with faulty operations. The theory of fault-tolerant quantum computing illuminates a way forward by providing a foundation and collection of techniques for limiting the spread of errors. Here we implement one of the smallest quantum codes in a five-qubit superconducting transmon device and demonstrate fault-tolerant state preparation. We characterize the resulting code words through quantum process tomography and study the free evolution of the logical observables. Our results are consistent with fault-tolerant state preparation in a protected qubit subspace.

  15. Quantum speedup of Monte Carlo methods.

    PubMed

    Montanaro, Ashley

    2015-09-08

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently.

  16. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  17. Quantum speedup of Monte Carlo methods

    PubMed Central

    Montanaro, Ashley

    2015-01-01

    Monte Carlo methods use random sampling to estimate numerical quantities which are hard to compute deterministically. One important example is the use in statistical physics of rapidly mixing Markov chains to approximately compute partition functions. In this work, we describe a quantum algorithm which can accelerate Monte Carlo methods in a very general setting. The algorithm estimates the expected output value of an arbitrary randomized or quantum subroutine with bounded variance, achieving a near-quadratic speedup over the best possible classical algorithm. Combining the algorithm with the use of quantum walks gives a quantum speedup of the fastest known classical algorithms with rigorous performance bounds for computing partition functions, which use multiple-stage Markov chain Monte Carlo techniques. The quantum algorithm can also be used to estimate the total variation distance between probability distributions efficiently. PMID:26528079

  18. Accurate reliability analysis method for quantum-dot cellular automata circuits

    NASA Astrophysics Data System (ADS)

    Cui, Huanqing; Cai, Li; Wang, Sen; Liu, Xiaoqiang; Yang, Xiaokuo

    2015-10-01

    Probabilistic transfer matrix (PTM) is a widely used model in the reliability research of circuits. However, PTM model cannot reflect the impact of input signals on reliability, so it does not completely conform to the mechanism of the novel field-coupled nanoelectronic device which is called quantum-dot cellular automata (QCA). It is difficult to get accurate results when PTM model is used to analyze the reliability of QCA circuits. To solve this problem, we present the fault tree models of QCA fundamental devices according to different input signals. After that, the binary decision diagram (BDD) is used to quantitatively investigate the reliability of two QCA XOR gates depending on the presented models. By employing the fault tree models, the impact of input signals on reliability can be identified clearly and the crucial components of a circuit can be found out precisely based on the importance values (IVs) of components. So this method is contributive to the construction of reliable QCA circuits.

  19. A variational eigenvalue solver on a photonic quantum processor

    PubMed Central

    Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.

    2014-01-01

    Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053

  20. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    PubMed

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

Top