Sample records for reliably detect small

  1. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  2. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  3. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  4. An empirical study of flight control software reliability

    NASA Technical Reports Server (NTRS)

    Dunham, J. R.; Pierce, J. L.

    1986-01-01

    The results of a laboratory experiment in flight control software reliability are reported. The experiment tests a small sample of implementations of a pitch axis control law for a PA28 aircraft with over 14 million pitch commands with varying levels of additive input and feedback noise. The testing which uses the method of n-version programming for error detection surfaced four software faults in one implementation of the control law. The small number of detected faults precluded the conduct of the error burst analyses. The pitch axis problem provides data for use in constructing a model in the prediction of the reliability of software in systems with feedback. The study is undertaken to find means to perform reliability evaluations of flight control software.

  5. Fluorescent tag is not a reliable marker for small RNA transfection in the presence of serum.

    PubMed

    Han, Jing; Wang, Qi-Wei; Wang, Shi-Qiang

    2013-09-01

    Chemically synthetic siRNA and miRNA have become powerful tools to study gene function in the past decade. Fluorescent dyes covalently attached to the 5' or 3' ends of synthetic small RNAs are widely used for fluorescently imaging and detection of these RNAs. However, the reliability of fluorescent tags as small RNA markers in different conditions has not attracted enough attention. We used Cy3-labelled small RNAs to explore the reliability of fluorescent tags as small RNA markers in cell cultures involving serum. A strong Cy3-fluorescence signal was observed in the cytoplasm of the cells transfected with Cy3-miR24 in the culture medium containing fetal bovine serum (FBS), but qRT-PCR results showed that little miR24 were detected in these cells. Further study demonstrated that small RNAs were degraded in the presence of FBS, suggesting that it was Cy3-RNA fragments, rather than the original Cy3-miR24, diffused into cells. These phenomena disappeared when FBS was replaced by boiled-FBS, further supporting that the Cy3-fluorescence we observed in cells in the presence of FBS could not represent the presence of intact small RNAs. These findings addressed that fluorescent tags are not reliable for small RNA transfection in the presence of serum in culture.

  6. Prospects for small cryocoolers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, R.

    1982-01-01

    Small cryocoolers are commonly used in the areas of infrared detection, satellite communication, and cryopumps. Some emerging application areas deal with SQUID and Josephson junction devices, which require temperatures of about 8 K or below. The need for high reliability in these small cryocoolers has dictated the use of regenerative-cycle machines, but such machines are presently limited to temperatures above about 8 K. This paper discusses some of the research being done to improve reliability, decrease noise, and reduce the low-temperature limit of small cryocoolers.

  7. Radar waveform requirements for reliable detection of an aircraft-launched missile

    NASA Astrophysics Data System (ADS)

    Blair, W. Dale; Brandt-Pearce, Maite

    1996-06-01

    When tracking a manned aircraft with a phase array radar, detecting a missile launch (i.e., a target split) is particularly important because the missile can have a very small radar cross section (RCS) and drop below the horizon of the radar shortly after launch. Reliable detection of the launch is made difficult because the RCS of the missile is very small compared to that of the manned aircraft and the radar typically revisits a manned aircraft every few seconds. Furthermore, any measurements of the aircraft and missile taken shortly after the launch will be merged until the two targets are resolved in range, frequency, or space. In this paper, detection of the launched missile is addressed through the detection of the presence of target multiplicity with the in-phase and quadrature monopulse measurements. The probability of detecting the launch using monopulse processing will be studied with regard to the tracking signal-to-noise ratio and the number of pulses n the radar waveform.

  8. Reliable motion detection of small targets in video with low signal-to-clutter ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, S.A.; Naylor, R.B.

    1995-07-01

    Studies show that vigilance decreases rapidly after several minutes when human operators are required to search live video for infrequent intrusion detections. Therefore, there is a need for systems which can automatically detect targets in live video and reserve the operator`s attention for assessment only. Thus far, automated systems have not simultaneously provided adequate detection sensitivity, false alarm suppression, and ease of setup when used in external, unconstrained environments. This unsatisfactory performance can be exacerbated by poor video imagery with low contrast, high noise, dynamic clutter, image misregistration, and/or the presence of small, slow, or erratically moving targets. This papermore » describes a highly adaptive video motion detection and tracking algorithm which has been developed as part of Sandia`s Advanced Exterior Sensor (AES) program. The AES is a wide-area detection and assessment system for use in unconstrained exterior security applications. The AES detection and tracking algorithm provides good performance under stressing data and environmental conditions. Features of the algorithm include: reliable detection with negligible false alarm rate of variable velocity targets having low signal-to-clutter ratios; reliable tracking of targets that exhibit motion that is non-inertial, i.e., varies in direction and velocity; automatic adaptation to both infrared and visible imagery with variable quality; and suppression of false alarms caused by sensor flaws and/or cutouts.« less

  9. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  10. FLT-PET/CT as a Biomarker of Therapeutic Response in Pemetrexed Therapy for Non-Small Cell Lung Cancer

    DTIC Science & Technology

    2016-12-01

    transient burst of metabolism through the salvage pathway, an effect detected as a “flare” of activity by 18F-thymidine (FLT)- PET. FLT is a reliable...the salvage pathway, an effect detected as a “flare” of activity by 18F-thymidine (FLT)-PET. FLT is a reliable biomarker of proliferation, and post...What was accomplished under these goals? 1) Major activities : During

  11. Microphone Detects Boiler-Tube Leaks

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.

    1985-01-01

    Unit simple, sensitive, rugged, and reliable. Diaphragmless microphone detects leaks from small boiler tubes. Porous plug retains carbon granules in tube while allowing pressure changes to penetrate to granules. Has greater life expectancy than previous controllers and used in variety of hot corrosive atmospheres.

  12. [The application of wavelet analysis of remote detection of pollution clouds].

    PubMed

    Zhang, J; Jiang, F

    2001-08-01

    The discrete wavelet transform (DWT) is used to analyse the spectra of pollution clouds in complicated environment and extract the small-features. The DWT is a time-frequency analysis technology, which detects the subtle small changes in the target spectrum. The results show that the DWT is a quite effective method to extract features of target-cloud and improve the reliability of monitoring alarm system.

  13. Advances in developing rapid, reliable and portable detection systems for alcohol.

    PubMed

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Sensitive, Reliable Inexpensive Touch Detector

    ERIC Educational Resources Information Center

    Anger, Douglas; Schachtman, Todd R.

    2007-01-01

    Research in a laboratory required a sensitive, reliable, inexpensive touch detector for use with rats to test the reinforcement of inhibition. A small touch detector was also desirable so that the detector could be mounted on the rat's cage close to the object being touched by the rat, whose touches in turn were being detected by current passing…

  15. Application of dual-energy x-ray techniques for automated food container inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  16. Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method.

    PubMed

    Zhang, Kai; Wang, Ke; Zhu, Xue; Zhang, Jue; Xu, Lan; Huang, Biao; Xie, Minhao

    2014-01-07

    A general and reliable strategy for the detection of cocaine was proposed utilizing DNA-templated silver nanoclusters as signal indicators and the nicking endonuclease-assisted signal amplification method. This strategy can detect cocaine specifically with a detection limit as low as 2 nM by using a small volume of 5 μL.

  17. The reliability and stability of visual working memory capacity.

    PubMed

    Xu, Z; Adam, K C S; Fang, X; Vogel, E K

    2018-04-01

    Because of the central role of working memory capacity in cognition, many studies have used short measures of working memory capacity to examine its relationship to other domains. Here, we measured the reliability and stability of visual working memory capacity, measured using a single-probe change detection task. In Experiment 1, the participants (N = 135) completed a large number of trials of a change detection task (540 in total, 180 each of set sizes 4, 6, and 8). With large numbers of both trials and participants, reliability estimates were high (α > .9). We then used an iterative down-sampling procedure to create a look-up table for expected reliability in experiments with small sample sizes. In Experiment 2, the participants (N = 79) completed 31 sessions of single-probe change detection. The first 30 sessions took place over 30 consecutive days, and the last session took place 30 days later. This unprecedented number of sessions allowed us to examine the effects of practice on stability and internal reliability. Even after much practice, individual differences were stable over time (average between-session r = .76).

  18. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  19. Automatic detection of oesophageal intubation based on ventilation pressure waveforms shows high sensitivity and specificity in patients with pulmonary disease.

    PubMed

    Kalmar, Alain F; Absalom, Anthony; Rombouts, Pieter; Roets, Jelle; Dewaele, Frank; Verdonck, Pascal; Stemerdink, Arjanne; Zijlstra, Jan G; Monsieurs, Koenraad G

    2016-08-01

    Unrecognised endotracheal tube misplacement in emergency intubations has a reported incidence of up to 17%. Current detection methods have many limitations restricting their reliability and availability in these circumstances. There is therefore a clinical need for a device that is small enough to be practical in emergency situations and that can detect oesophageal intubation within seconds. In a first reported evaluation, we demonstrated an algorithm based on pressure waveform analysis, able to determine tube location with high reliability in healthy patients. The aim of this study was to validate the specificity of the algorithm in patients with abnormal pulmonary compliance, and to demonstrate the reliability of a newly developed small device that incorporates the technology. Intubated patients with mild to moderate lung injury, admitted to intensive care were included in the study. The device was connected to the endotracheal tube, and three test ventilations were performed in each patient. All diagnostic data were recorded on PC for subsequent specificity/sensitivity analysis. A total of 105 ventilations in 35 patients with lung injury were analysed. With the threshold D-value of 0.1, the system showed a 100% sensitivity and specificity to diagnose tube location. The algorithm retained its specificity in patients with decreased pulmonary compliance. We also demonstrated the feasibility to integrate sensors and diagnostic hardware in a small, portable hand-held device for convenient use in emergency situations. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  20. Optimizing Probability of Detection Point Estimate Demonstration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-18231and associated mh18232POD software gives most common methods of POD analysis. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. The paper provides discussion on optimizing probability of detection (POD) demonstration experiments using Point Estimate Method. POD Point estimate method is used by NASA for qualifying special NDE procedures. The point estimate method uses binomial distribution for probability density. Normally, a set of 29 flaws of same size within some tolerance are used in the demonstration. The optimization is performed to provide acceptable value for probability of passing demonstration (PPD) and achieving acceptable value for probability of false (POF) calls while keeping the flaw sizes in the set as small as possible.

  1. Detecting Psychopathy from Thin Slices of Behavior

    ERIC Educational Resources Information Center

    Fowler, Katherine A.; Lilienfeld, Scott O.; Patrick, Christopher J.

    2009-01-01

    This study is the first to demonstrate that features of psychopathy can be reliably and validly detected by lay raters from "thin slices" (i.e., small samples) of behavior. Brief excerpts (5 s, 10 s, and 20 s) from interviews with 96 maximum-security inmates were presented in video or audio form or in both modalities combined. Forty raters used…

  2. Director, Operational Test and Evaluation FY 2004 Annual Report

    DTIC Science & Technology

    2004-01-01

    HIGH) Space Based Radar (SBR) Sensor Fuzed Weapon (SFW) P3I (CBU-97/B) Small Diameter Bomb (SDB) Secure Mobile Anti-Jam Reliable Tactical Terminal...detection, identification, and sampling capability for both fixed-site and mobile operations. The system must automatically detect and identify up to ten...staffing within the Services. SYSTEM DESCRIPTION AND MISSION The Services envision JCAD as a hand-held device that automatically detects, identifies, and

  3. The two errors of using the within-subject standard deviation (WSD) as the standard error of a reliable change index.

    PubMed

    Maassen, Gerard H

    2010-08-01

    In this Journal, Lewis and colleagues introduced a new Reliable Change Index (RCI(WSD)), which incorporated the within-subject standard deviation (WSD) of a repeated measurement design as the standard error. In this note, two opposite errors in using WSD this way are demonstrated. First, being the standard error of measurement of only a single assessment makes WSD too small when practice effects are absent. Then, too many individuals will be designated reliably changed. Second, WSD can grow unlimitedly to the extent that differential practice effects occur. This can even make RCI(WSD) unable to detect any reliable change.

  4. Structural Damage Detection Using Virtual Passive Controllers

    NASA Technical Reports Server (NTRS)

    Lew, Jiann-Shiun; Juang, Jer-Nan

    2001-01-01

    This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.

  5. Small conductive particle sensor. [microfiber size determination

    NASA Technical Reports Server (NTRS)

    Taback, I. (Inventor)

    1981-01-01

    An electrostatic conductive fiber detector is disclosed for use in detecting, counting and measuring the length of fibers down to 0.1 mm and below with increased accuracy and reliability over prior art devices. It can be used for detection of fibers suspending in a flowing gas, in a nonflowing gas, or in a vacuum and its accumulated counts over a period of time is essentially unaffected by velocity of the fibers being detected.

  6. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, Ganapatic R.

    1994-01-01

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1.times.10.sup.-18 atm cc sec.sup.-1.

  7. High sensitivity leak detection method and apparatus

    DOEpatents

    Myneni, G.R.

    1994-09-06

    An improved leak detection method is provided that utilizes the cyclic adsorption and desorption of accumulated helium on a non-porous metallic surface. The method provides reliable leak detection at superfluid helium temperatures. The zero drift that is associated with residual gas analyzers in common leak detectors is virtually eliminated by utilizing a time integration technique. The sensitivity of the apparatus of this disclosure is capable of detecting leaks as small as 1 [times] 10[sup [minus]18] atm cc sec[sup [minus]1]. 2 figs.

  8. Kepler's Final Survey Catalog

    NASA Astrophysics Data System (ADS)

    Mullally, S. E.

    2017-12-01

    The Kepler mission was designed to detect transiting exoplanets and has succeeded in finding over 4000 candidates. These candidates include approximately 50 terrestrial-sized worlds near to the habitable zone of their GKM dwarf stars (shown in figure against the stellar temperature). However not all transit detections are created equal. False positives, such as background eclipsing binaries, can mimic the signal of a transiting planet. Additionally, at Kepler's detection limit noise, either from the star or from the detector, can create signals that also mimic a transiting planet. For the data release 25 Kepler catalog we simulated these false alarms and determined how often known false alarms are called candidates. When this reliability information is combined with our studies of catalog completeness, this catalog can be used to understand the occurrence rate of exoplanets, even for the small, temperate planet candidates found by Kepler. I will discuss the automated methods we used to create and characterize this latest catalog, highlighting how we balanced the completeness and reliability of the long period candidates. While Kepler has been very successful at detecting transiting terrestrial-sized exoplanets, many of these detections are around stars that are too dim for successful follow-up work. Future missions will pick up where Kepler left off and find small planets around some of the brightest and smallest stars.

  9. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional andmore » phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.« less

  10. Comparison of the Multidetector-row Computed Tomographic Angiography Axial and Coronal Planes' Usefulness for Detecting Thoracodorsal Artery Perforators

    PubMed Central

    Kim, Jong Gyu

    2012-01-01

    Background During the planning of a thoracodorsal artery perforator (TDAP) free flap, preoperative multidetector-row computed tomographic (MDCT) angiography is valuable for predicting the locations of perforators. However, CT-based perforator mapping of the thoracodorsal artery is not easy because of its small diameter. Thus, we evaluated 1-mm-thick MDCT images in multiple planes to search for reliable perforators accurately. Methods Between July 2010 and October 2011, 19 consecutive patients (13 males, 6 females) who underwent MDCT prior to TDAP free flap operations were enrolled in this study. Patients ranged in age from 10 to 75 years (mean, 39.3 years). MDCT images were acquired at a thickness of 1 mm in the axial, coronal, and sagittal planes. Results The thoracodorsal artery perforators were detected in all 19 cases. The reliable perforators originating from the descending branch were found in 14 cases, of which 6 had transverse branches. The former were well identified in the coronal view, and the latter in the axial view. The location of the most reliable perforators on MDCT images corresponded well with the surgical findings. Conclusions Though MDCT has been widely used in performing the abdominal perforator free flap for detecting reliable perforating vessels, it is not popular in the TDAP free flap. The results of this study suggest that multiple planes of MDCT may increase the probability of detecting the most reliable perforators, along with decreasing the probability of missing available vessels. PMID:22872839

  11. Data-Driven Risk Assessment from Small Scale Epidemics: Estimation and Model Choice for Spatio-Temporal Data with Application to a Classical Swine Fever Outbreak

    PubMed Central

    Gamado, Kokouvi; Marion, Glenn; Porphyre, Thibaud

    2017-01-01

    Livestock epidemics have the potential to give rise to significant economic, welfare, and social costs. Incursions of emerging and re-emerging pathogens may lead to small and repeated outbreaks. Analysis of the resulting data is statistically challenging but can inform disease preparedness reducing potential future losses. We present a framework for spatial risk assessment of disease incursions based on data from small localized historic outbreaks. We focus on between-farm spread of livestock pathogens and illustrate our methods by application to data on the small outbreak of Classical Swine Fever (CSF) that occurred in 2000 in East Anglia, UK. We apply models based on continuous time semi-Markov processes, using data-augmentation Markov Chain Monte Carlo techniques within a Bayesian framework to infer disease dynamics and detection from incompletely observed outbreaks. The spatial transmission kernel describing pathogen spread between farms, and the distribution of times between infection and detection, is estimated alongside unobserved exposure times. Our results demonstrate inference is reliable even for relatively small outbreaks when the data-generating model is known. However, associated risk assessments depend strongly on the form of the fitted transmission kernel. Therefore, for real applications, methods are needed to select the most appropriate model in light of the data. We assess standard Deviance Information Criteria (DIC) model selection tools and recently introduced latent residual methods of model assessment, in selecting the functional form of the spatial transmission kernel. These methods are applied to the CSF data, and tested in simulated scenarios which represent field data, but assume the data generation mechanism is known. Analysis of simulated scenarios shows that latent residual methods enable reliable selection of the transmission kernel even for small outbreaks whereas the DIC is less reliable. Moreover, compared with DIC, model choice based on latent residual assessment correlated better with predicted risk. PMID:28293559

  12. Bayesian least squares deconvolution

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Petit, P.

    2015-11-01

    Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.

  13. Rapid and simultaneous detection of ricin, staphylococcal enterotoxin B and saxitoxin by chemiluminescence-based microarray immunoassay.

    PubMed

    Szkola, A; Linares, E M; Worbs, S; Dorner, B G; Dietrich, R; Märtlbauer, E; Niessner, R; Seidel, M

    2014-11-21

    Simultaneous detection of small and large molecules on microarray immunoassays is a challenge that limits some applications in multiplex analysis. This is the case for biosecurity, where fast, cheap and reliable simultaneous detection of proteotoxins and small toxins is needed. Two highly relevant proteotoxins, ricin (60 kDa) and bacterial toxin staphylococcal enterotoxin B (SEB, 30 kDa) and the small phycotoxin saxitoxin (STX, 0.3 kDa) are potential biological warfare agents and require an analytical tool for simultaneous detection. Proteotoxins are successfully detected by sandwich immunoassays, whereas competitive immunoassays are more suitable for small toxins (<1 kDa). Based on this need, this work provides a novel and efficient solution based on anti-idiotypic antibodies for small molecules to combine both assay principles on one microarray. The biotoxin measurements are performed on a flow-through chemiluminescence microarray platform MCR3 in 18 minutes. The chemiluminescence signal was amplified by using a poly-horseradish peroxidase complex (polyHRP), resulting in low detection limits: 2.9 ± 3.1 μg L(-1) for ricin, 0.1 ± 0.1 μg L(-1) for SEB and 2.3 ± 1.7 μg L(-1) for STX. The developed multiplex system for the three biotoxins is completely novel, relevant in the context of biosecurity and establishes the basis for research on anti-idiotypic antibodies for microarray immunoassays.

  14. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A. (Principal Investigator); Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    The author has identified the following significant results. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. The post classification comparison technique reliably identified areas of change and was used as the standard for qualitatively evaluating the other three techniques. The layered spectral/temporal change classification and the delta data change detection results generally agreed with the post classification comparison technique results; however, many small areas of change were not identified. Major discrepancies existed between the post classification comparison and spectral/temporal change detection results.

  15. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data.

    PubMed

    Uppal, Karan; Soltow, Quinlyn A; Strobel, Frederick H; Pittard, W Stephen; Gernert, Kim M; Yu, Tianwei; Jones, Dean P

    2013-01-16

    Detection of low abundance metabolites is important for de novo mapping of metabolic pathways related to diet, microbiome or environmental exposures. Multiple algorithms are available to extract m/z features from liquid chromatography-mass spectral data in a conservative manner, which tends to preclude detection of low abundance chemicals and chemicals found in small subsets of samples. The present study provides software to enhance such algorithms for feature detection, quality assessment, and annotation. xMSanalyzer is a set of utilities for automated processing of metabolomics data. The utilites can be classified into four main modules to: 1) improve feature detection for replicate analyses by systematic re-extraction with multiple parameter settings and data merger to optimize the balance between sensitivity and reliability, 2) evaluate sample quality and feature consistency, 3) detect feature overlap between datasets, and 4) characterize high-resolution m/z matches to small molecule metabolites and biological pathways using multiple chemical databases. The package was tested with plasma samples and shown to more than double the number of features extracted while improving quantitative reliability of detection. MS/MS analysis of a random subset of peaks that were exclusively detected using xMSanalyzer confirmed that the optimization scheme improves detection of real metabolites. xMSanalyzer is a package of utilities for data extraction, quality control assessment, detection of overlapping and unique metabolites in multiple datasets, and batch annotation of metabolites. The program was designed to integrate with existing packages such as apLCMS and XCMS, but the framework can also be used to enhance data extraction for other LC/MS data software.

  16. Comparison of Sample and Detection Quantification Methods for Salmonella Enterica from Produce

    NASA Technical Reports Server (NTRS)

    Hummerick, M. P.; Khodadad, C.; Richards, J. T.; Dixit, A.; Spencer, L. M.; Larson, B.; Parrish, C., II; Birmele, M.; Wheeler, Raymond

    2014-01-01

    The purpose of this study was to identify and optimize fast and reliable sampling and detection methods for the identification of pathogens that may be present on produce grown in small vegetable production units on the International Space Station (ISS), thus a field setting. Microbiological testing is necessary before astronauts are allowed to consume produce grown on ISS where currently there are two vegetable production units deployed, Lada and Veggie.

  17. The reliability of running economy expressed as oxygen cost and energy cost in trained distance runners.

    PubMed

    Shaw, Andrew J; Ingham, Stephen A; Fudge, Barry W; Folland, Jonathan P

    2013-12-01

    This study assessed the between-test reliability of oxygen cost (OC) and energy cost (EC) in distance runners, and contrasted it with the smallest worthwhile change (SWC) of these measures. OC and EC displayed similar levels of within-subject variation (typical error < 3.85%). However, the typical error (2.75% vs 2.74%) was greater than the SWC (1.38% vs 1.71%) for both OC and EC, respectively, indicating insufficient sensitivity to confidently detect small, but meaningful, changes in OC and EC.

  18. Reliability Assurance of Detection of EML4-ALK Rearrangement in Non-Small Cell Lung Cancer: The Results of Proficiency Testing in China.

    PubMed

    Li, Yulong; Zhang, Rui; Peng, Rongxue; Ding, Jiansheng; Han, Yanxi; Wang, Guojing; Zhang, Kuo; Lin, Guigao; Li, Jinming

    2016-06-01

    Currently, several approaches are being used to detect echinoderm microtubule associated protein like 4 gene (EML4)-anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangement, but the performance of laboratories in China is unknown. To evaluate the proficiency of different laboratories in detecting EML4-ALK rearrangement, we organized a proficiency test (PT). We prepared formalin-fixed, paraffin-embedded samples derived from the xenograft tumor tissue of three non-small cell lung cancer cell lines with different EML4-ALK rearrangements and used PTs to evaluate the detection performance of laboratories in China. We received results from 94 laboratories that used different methods. Of the participants, 75.53% correctly identified all samples in the PT panel. Among the errors made by participants, false-negative errors were likely to occur. According to the methodology applied, 82.86%, 76.67%, 77.78%, and 66.67% of laboratories using reverse transcriptase polymerase chain reaction, fluorescence in situ hybridization, next-generation sequencing, and immunohistochemical analysis, respectively, could analyze all the samples correctly. Moreover, we have found that the laboratories' genotyping capacity is high, especially for variant 3. Our PT survey revealed that the performance and methodological problems of laboratories must be addressed to further increase the reproducibility and accuracy of detection of EML4-ALK rearrangement to ensure reliable results for selection of appropriate patients. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  19. Estimating forestland area change from inventory data

    Treesearch

    Paul Van Deusen; Francis Roesch; Thomas Wigley

    2013-01-01

    Simple methods for estimating the proportion of land changing from forest to nonforest are developed. Variance estimators are derived to facilitate significance tests. A power analysis indicates that 400 inventory plots are required to reliably detect small changes in net or gross forest loss. This is an important result because forest certification programs may...

  20. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2012-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.

  1. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  2. Validity and reliability of the activPAL3 for measuring posture and stepping in adults and young people.

    PubMed

    Sellers, Ceri; Dall, Philippa; Grant, Margaret; Stansfield, Ben

    2016-01-01

    Characterisation of free-living physical activity requires the use of validated and reliable monitors. This study reports an evaluation of the validity and reliability of the activPAL3 monitor for the detection of posture and stepping in both adults and young people. Twenty adults (median 27.6y; IQR22.6y) and 8 young people (12.0y; IQR4.1y) performed standardised activities and activities of daily living (ADL) incorporating sedentary, upright and stepping activity. Agreement, specificity and positive predictive value were calculated between activPAL3 outcomes and the gold-standard of video observation. Inter-device reliability was calculated between 4 monitors. Sedentary and upright times for standardised activities were within ±5% of video observation as was step count (excluding jogging) for both adults and young people. Jogging step detection accuracy reduced with increasing cadence >150stepsmin(-1). For ADLs, sensitivity to stepping was very low for adults (40.4%) but higher for young people (76.1%). Inter-device reliability was either good (ICC(1,1)>0.75) or excellent (ICC(1,1)>0.90) for all outcomes. An excellent level of detection of standardised postures was demonstrated by the activPAL3. Postures such as seat-perching, kneeling and crouching were misclassified when compared to video observation. The activPAL3 appeared to accurately detect 'purposeful' stepping during ADL, but detection of smaller stepping movements was poor. Small variations in outcomes between monitors indicated that differences in monitor placement or hardware may affect outcomes. In general, the detection of posture and purposeful stepping with the activPAL3 was excellent indicating that it is a suitable monitor for characterising free-living posture and purposeful stepping activity in healthy adults and young people. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An experiment in software reliability

    NASA Technical Reports Server (NTRS)

    Dunham, J. R.; Pierce, J. L.

    1986-01-01

    The results of a software reliability experiment conducted in a controlled laboratory setting are reported. The experiment was undertaken to gather data on software failures and is one in a series of experiments being pursued by the Fault Tolerant Systems Branch of NASA Langley Research Center to find a means of credibly performing reliability evaluations of flight control software. The experiment tests a small sample of implementations of radar tracking software having ultra-reliability requirements and uses n-version programming for error detection, and repetitive run modeling for failure and fault rate estimation. The experiment results agree with those of Nagel and Skrivan in that the program error rates suggest an approximate log-linear pattern and the individual faults occurred with significantly different error rates. Additional analysis of the experimental data raises new questions concerning the phenomenon of interacting faults. This phenomenon may provide one explanation for software reliability decay.

  4. Detection of small-size solder ball defects through heat conduction analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xiuyun; Chen, Yaqiu; Lu, Xiaochuan

    2018-02-01

    Aiming to solve the defect detection problem of a small-size solder ball in the high density chip, heat conduction analysis based on eddy current pulsed thermography is put forward to differentiate various defects. With establishing the 3D finite element model about induction heating, defects such as cracks and void can be distinguished by temperature difference resulting from heat conduction. Furthermore, the experiment of 0.4 mm-diameter solder balls with different defects is carried out to prove that crack and void solder can be distinguished. Three kinds of crack length on a gull-wing pin are selected, including 0.24 mm, 1.2 mm, and 2.16 mm, to verify that the small defect can be discriminated. Both the simulation study and experiment result show that the heat conduction analysis method is reliable and convenient.

  5. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry

    PubMed Central

    Bonar, Micha M.; Tilton, John C.

    2017-01-01

    Detection of viruses by flow cytometry is complicated by their small size. Here, we characterized the ability of a standard (FACSAria II) and a sub-micron flow cytometer (A50 Micro) to resolve HIV-1 viruses. The A50 was superior at resolving small particles but did not reliably distinguish HIV-1, extracellular vesicles, and laser noise by light scatter properties alone. However, single fluorescent HIV-1 particles could readily be detected by both cytometers. Fluorescent particles were sorted and retained infectivity, permitting further exploration of the functional consequences of HIV-1 heterogeneity. Finally, flow cytometry had a limit of detection of 80 viruses/ml, nearly equal to PCR assays. These studies demonstrate the power of flow cytometry to detect and sort viral particles and provide a critical toolkit to validate methods to label wild-type HIV-1; quantitatively assess integrity and aggregation of viruses and virus-based therapeutics; and efficiently screen drugs inhibiting viral assembly and release. PMID:28235684

  6. High sensitivity detection and sorting of infectious human immunodeficiency virus (HIV-1) particles by flow virometry.

    PubMed

    Bonar, Michał M; Tilton, John C

    2017-05-01

    Detection of viruses by flow cytometry is complicated by their small size. Here, we characterized the ability of a standard (FACSAria II) and a sub-micron flow cytometer (A50 Micro) to resolve HIV-1 viruses. The A50 was superior at resolving small particles but did not reliably distinguish HIV-1, extracellular vesicles, and laser noise by light scatter properties alone. However, single fluorescent HIV-1 particles could readily be detected by both cytometers. Fluorescent particles were sorted and retained infectivity, permitting further exploration of the functional consequences of HIV-1 heterogeneity. Finally, flow cytometry had a limit of detection of 80 viruses/ml, nearly equal to PCR assays. These studies demonstrate the power of flow cytometry to detect and sort viral particles and provide a critical toolkit to validate methods to label wild-type HIV-1; quantitatively assess integrity and aggregation of viruses and virus-based therapeutics; and efficiently screen drugs inhibiting viral assembly and release. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A comparison of force and acoustic emission sensors in monitoring precision cylindrical grinding; Technical Digest

    NASA Astrophysics Data System (ADS)

    Marsh, Eric R.; Couey, Jeremiah A.; Knapp, Byron R.; Vallance, R. R.

    2005-05-01

    Aerostatic spindles are used in precision grinding applications requiring high stiffness and very low error motions (5 to 25 nm). Forces generated during precision grinding are small and present challenges for accurate and reliable process monitoring. These challenges are met by incorporating non-contact displacement sensors into an aerostatic spindle that are calibrated to measure grinding forces from rotor motion. Four experiments compare this force-sensing approach to acoustic emission (AE) in detecting workpiece contact, process monitoring with small depths of cut, detecting workpiece defects, and evaluating abrasive wheel wear/loading. Results indicate that force measurements are preferable to acoustic emission in precision grinding since the force sensor offers improved contact sensitivity, higher resolution, and is capable of detecting events occurring within a single revolution of the grinding wheel.

  8. Test-retest reliability and minimal detectable change of two simplified 3-point balance measures in patients with stroke.

    PubMed

    Chen, Yi-Miau; Huang, Yi-Jing; Huang, Chien-Yu; Lin, Gong-Hong; Liaw, Lih-Jiun; Lee, Shih-Chieh; Hsieh, Ching-Lin

    2017-10-01

    The 3-point Berg Balance Scale (BBS-3P) and 3-point Postural Assessment Scale for Stroke Patients (PASS-3P) were simplified from the BBS and PASS to overcome the complex scoring systems. The BBS-3P and PASS-3P were more feasible in busy clinical practice and showed similarly sound validity and responsiveness to the original measures. However, the reliability of the BBS-3P and PASS-3P is unknown limiting their utility and the interpretability of scores. We aimed to examine the test-retest reliability and minimal detectable change (MDC) of the BBS-3P and PASS-3P in patients with stroke. Cross-sectional study. The rehabilitation departments of a medical center and a community hospital. A total of 51 chronic stroke patients (64.7% male). Both balance measures were administered twice 7 days apart. The test-retest reliability of both the BBS-3P and PASS-3P were examined by intraclass correlation coefficients (ICC). The MDC and its percentage over the total score (MDC%) of each measure was calculated for examining the random measurement errors. The ICC values of the BBS-3P and PASS-3P were 0.99 and 0.97, respectively. The MDC% (MDC) of the BBS-3P and PASS-3P were 9.1% (5.1 points) and 8.4% (3.0 points), respectively, indicating that both measures had small and acceptable random measurement errors. Our results showed that both the BBS-3P and the PASS-3P had good test-retest reliability, with small and acceptable random measurement error. These two simplified 3-level balance measures can provide reliable results over time. Our findings support the repeated administration of the BBS-3P and PASS-3P to monitor the balance of patients with stroke. The MDC values can help clinicians and researchers interpret the change scores more precisely.

  9. Using Self-Assessments to Detect Workshop Success: Do They Work?

    ERIC Educational Resources Information Center

    D'Eon, Marcel; Sadownik, Leslie; Harrison, Alexandra; Nation, Jill

    2008-01-01

    An accepted gold standard for measuring change in participant behavior is third-party observation. This method is highly resource intensive, and many small-scale evaluations may not be in a position to use this approach. This study was designed to assess the validity and reliably of aggregated group self-assessments as one way to measure workshop…

  10. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm.

    PubMed

    Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin

    2016-10-01

    Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.

  11. Towards Real-Time Detection of Gait Events on Different Terrains Using Time-Frequency Analysis and Peak Heuristics Algorithm

    PubMed Central

    Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin

    2016-01-01

    Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses. PMID:27706086

  12. An Analysis of Failure Handling in Chameleon, A Framework for Supporting Cost-Effective Fault Tolerant Services

    NASA Technical Reports Server (NTRS)

    Haakensen, Erik Edward

    1998-01-01

    The desire for low-cost reliable computing is increasing. Most current fault tolerant computing solutions are not very flexible, i.e., they cannot adapt to reliability requirements of newly emerging applications in business, commerce, and manufacturing. It is important that users have a flexible, reliable platform to support both critical and noncritical applications. Chameleon, under development at the Center for Reliable and High-Performance Computing at the University of Illinois, is a software framework. for supporting cost-effective adaptable networked fault tolerant service. This thesis details a simulation of fault injection, detection, and recovery in Chameleon. The simulation was written in C++ using the DEPEND simulation library. The results obtained from the simulation included the amount of overhead incurred by the fault detection and recovery mechanisms supported by Chameleon. In addition, information about fault scenarios from which Chameleon cannot recover was gained. The results of the simulation showed that both critical and noncritical applications can be executed in the Chameleon environment with a fairly small amount of overhead. No single point of failure from which Chameleon could not recover was found. Chameleon was also found to be capable of recovering from several multiple failure scenarios.

  13. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  14. Reliability and minimal detectable change of physical performance measures in individuals with pre-manifest and manifest Huntington disease.

    PubMed

    Quinn, Lori; Khalil, Hanan; Dawes, Helen; Fritz, Nora E; Kegelmeyer, Deb; Kloos, Anne D; Gillard, Jonathan W; Busse, Monica

    2013-07-01

    Clinical intervention trials in people with Huntington disease (HD) have been limited by a lack of reliable and appropriate outcome measures. The purpose of this study was to determine the reliability and minimal detectable change (MDC) of various outcome measures that are potentially suitable for evaluating physical functioning in individuals with HD. This was a multicenter, prospective, observational study. Participants with pre-manifest and manifest HD (early, middle, and late stages) were recruited from 8 international sites to complete a battery of physical performance and functional measures at 2 assessments, separated by 1 week. Test-retest reliability (using intraclass correlation coefficients) and MDC values were calculated for all measures. Seventy-five individuals with HD (mean age=52.12 years, SD=11.82) participated in the study. Test-retest reliability was very high (>.90) for participants with manifest HD for the Six-Minute Walk Test (6MWT), 10-Meter Walk Test, Timed "Up & Go" Test (TUG), Berg Balance Scale (BBS), Physical Performance Test (PPT), Barthel Index, Rivermead Mobility Index, and Tinetti Mobility Test (TMT). Many MDC values suggested a relatively high degree of inherent variability, particularly in the middle stage of HD. Minimum detectable change values for participants with manifest HD that were relatively low across disease stages were found for the BBS (5), PPT (5), and TUG (2.98). For individuals with pre-manifest HD (n=11), the 6MWT and Four Square Step Test had high reliability and low MDC values. The sample size for the pre-manifest HD group was small. The BBS, PPT, and TUG appear most appropriate for clinical trials aimed at improving physical functioning in people with manifest HD. Further research in people with pre-manifest HD is necessary.

  15. Nanoparticle Enhancement Cascade for Sensitive Multiplex Measurements of Biomarkers in Complex Fluids with Surface Plasmon Resonance Imaging.

    PubMed

    Hendriks, Jan; Stojanovic, Ivan; Schasfoort, Richard B M; Saris, Daniël B F; Karperien, Marcel

    2018-06-05

    There is a large unmet need for reliable biomarker measurement systems for clinical application. Such systems should meet challenging requirements for large scale use, including a large dynamic detection range, multiplexing capacity, and both high specificity and sensitivity. More importantly, these requirements need to apply to complex biological samples, which require extensive quality control. In this paper, we present the development of an enhancement detection cascade for surface plasmon resonance imaging (SPRi). The cascade applies an antibody sandwich assay, followed by neutravidin and a gold nanoparticle enhancement for quantitative biomarker measurements in small volumes of complex fluids. We present a feasibility study both in simple buffers and in spiked equine synovial fluid with four cytokines, IL-1β, IL-6, IFN-γ, and TNF-α. Our enhancement cascade leads to an antibody dependent improvement in sensitivity up to 40 000 times, resulting in a limit of detection as low as 50 fg/mL and a dynamic detection range of more than 7 logs. Additionally, measurements at these low concentrations are highly reliable with intra- and interassay CVs between 2% and 20%. We subsequently showed this assay is suitable for multiplex measurements with good specificity and limited cross-reactivity. Moreover, we demonstrated robust detection of IL-6 and IL-1β in spiked undiluted equine synovial fluid with small variation compared to buffer controls. In addition, the availability of real time measurements provides extensive quality control opportunities, essential for clinical applications. Therefore, we consider this method is suitable for broad application in SPRi for multiplex biomarker detection in both research and clinical settings.

  16. Design and analysis of x-ray vision systems for high-speed detection of foreign body contamination in food

    NASA Astrophysics Data System (ADS)

    Graves, Mark; Smith, Alexander; Batchelor, Bruce G.; Palmer, Stephen C.

    1994-10-01

    In the food industry there is an ever increasing need to control and monitor food quality. In recent years fully automated x-ray inspection systems have been used to detect food on-line for foreign body contamination. These systems involve a complex integration of x- ray imaging components with state of the art high speed image processing. The quality of the x-ray image obtained by such systems is very poor compared with images obtained from other inspection processes, this makes reliable detection of very small, low contrast defects extremely difficult. It is therefore extremely important to optimize the x-ray imaging components to give the very best image possible. In this paper we present a method of analyzing the x-ray imaging system in order to consider the contrast obtained when viewing small defects.

  17. Detection of Gene Rearrangements in Circulating Tumor Cells: Examples of ALK-, ROS1-, RET-Rearrangements in Non-Small-Cell Lung Cancer and ERG-Rearrangements in Prostate Cancer.

    PubMed

    Catelain, Cyril; Pailler, Emma; Oulhen, Marianne; Faugeroux, Vincent; Pommier, Anne-Laure; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) hold promise as biomarkers to aid in patient treatment stratification and disease monitoring. Because the number of cells is a critical parameter for exploiting CTCs for predictive biomarker's detection, we developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery. To increase the feasibility and reliability of the analyses, we combined fluorescent staining and FA-FISH and developed a semi-automated microscopy method for optimal FISH signal identification in filtration-enriched CTCs . Here we present these methods and their use for the detection and characterization of ALK-, ROS1-, RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-rearrangements in CTCs from prostate cancer patients.

  18. Magnetic plethysmograph transducers for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2014-01-01

    We present the design of magnetic plethysmograph (MPG) transducers for detection of blood pulse waveform and evaluation of local pulse wave velocity (PWV), for potential use in cuffless blood pressure (BP) monitoring. The sensors utilize a Hall effect magnetic field sensor to capture the blood pulse waveform. A strap based design is performed to enable reliable capture of large number of cardiac cycles with relative ease. The ability of the transducer to consistently detect the blood pulse is verified by in-vivo trials on few volunteers. A duality of such transducers is utilized to capture the local PWV at the carotid artery. The pulse transit time (PTT) between the two detected pulse waveforms, measured along a small section of the carotid artery, was evaluated using automated algorithms to ensure consistency of measurements. The correlation between the measured values of local PWV and BP was also investigated. The developed transducers provide a reliable, easy modality for detecting pulse waveform on superficial arteries. Such transducers, used for measurement of local PWV, could potentially be utilized for cuffless, continuous evaluation of BP at various superficial arterial sites.

  19. Physical limits of flow sensing in the left-right organizer

    PubMed Central

    Ferreira, Rita R; Vilfan, Andrej; Jülicher, Frank; Supatto, Willy; Vermot, Julien

    2017-01-01

    Fluid flows generated by motile cilia are guiding the establishment of the left-right asymmetry of the body in the vertebrate left-right organizer. Competing hypotheses have been proposed: the direction of flow is sensed either through mechanosensation, or via the detection of chemical signals transported in the flow. We investigated the physical limits of flow detection to clarify which mechanisms could be reliably used for symmetry breaking. We integrated parameters describing cilia distribution and orientation obtained in vivo in zebrafish into a multiscale physical study of flow generation and detection. Our results show that the number of immotile cilia is too small to ensure robust left and right determination by mechanosensing, given the large spatial variability of the flow. However, motile cilia could sense their own motion by a yet unknown mechanism. Finally, transport of chemical signals by the flow can provide a simple and reliable mechanism of asymmetry establishment. DOI: http://dx.doi.org/10.7554/eLife.25078.001 PMID:28613157

  20. Proof of Concept for an Ultrasensitive Technique to Detect and Localize Sources of Elastic Nonlinearity Using Phononic Crystals.

    PubMed

    Miniaci, M; Gliozzi, A S; Morvan, B; Krushynska, A; Bosia, F; Scalerandi, M; Pugno, N M

    2017-05-26

    The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage. However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques. Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection. The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection.

  1. Fault-tolerant building-block computer study

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation.

  2. Electronic drive and acquisition system for mass spectrometry

    NASA Technical Reports Server (NTRS)

    Schaefer, Rembrandt Thomas (Inventor); Chutjian, Ara (Inventor); Tran, Tuan (Inventor); Madzunkov, Stojan M. (Inventor); Thomas, John L. (Inventor); Mojarradi, Mohammad (Inventor); MacAskill, John (Inventor); Blaes, Brent R. (Inventor); Darrach, Murray R. (Inventor); Burke, Gary R. (Inventor)

    2010-01-01

    The present invention discloses a mixed signal RF drive electronics board that offers small, low power, reliable, and customizable method for driving and generating mass spectra from a mass spectrometer, and for control of other functions such as electron ionizer, ion focusing, single-ion detection, multi-channel data accumulation and, if desired, front-end interfaces such as pumps, valves, heaters, and columns.

  3. Automated asteroseismic peak detections

    NASA Astrophysics Data System (ADS)

    García Saravia Ortiz de Montellano, Andrés; Hekker, S.; Themeßl, N.

    2018-05-01

    Space observatories such as Kepler have provided data that can potentially revolutionize our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection that is time-consuming and has a degree of subjectivity. Here, we present a peak-detection algorithm especially suited for the detection of solar-like oscillations. It reliably characterizes the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterize the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  4. Strong Scaling and a Scarcity of Small Earthquakes Point to an Important Role for Thermal Runaway in Intermediate-Depth Earthquake Mechanics

    NASA Astrophysics Data System (ADS)

    Barrett, S. A.; Prieto, G. A.; Beroza, G. C.

    2015-12-01

    There is strong evidence that metamorphic reactions play a role in enabling the rupture of intermediate-depth earthquakes; however, recent studies of the Bucaramanga Nest at a depth of 135-165 km under Colombia indicate that intermediate-depth seismicity shows low radiation efficiency and strong scaling of stress drop with slip/size, which suggests a dramatic weakening process, as proposed in the thermal shear instability model. Decreasing stress drop with slip and low seismic efficiency could have a measurable effect on the magnitude-frequency distribution of small earthquakes by causing them to become undetectable at substantially larger seismic moment than would be the case if stress drop were constant. We explore the population of small earthquakes in the Bucaramanga Nest using an empirical subspace detector to push the detection limit to lower magnitude. Using this approach, we find ~30,000 small, previously uncatalogued earthquakes during a 6-month period in 2013. We calculate magnitudes for these events using their relative amplitudes. Despite the additional detections, we observe a sharp deviation from a Gutenberg-Richter magnitude frequency distribution with a marked deficiency of events at the smallest magnitudes. This scarcity of small earthquakes is not easily ascribed to the detectability threshold; tests of our ability to recover small-magnitude waveforms of Bucaramanga Nest earthquakes in the continuous data indicate that we should be able to detect events reliably at magnitudes that are nearly a full magnitude unit smaller than the smallest earthquakes we observe. The implication is that nearly 100,000 events expected for a Gutenberg-Richter MFD are "missing," and that this scarcity of small earthquakes may provide new support for the thermal runaway mechanism in intermediate-depth earthquake mechanics.

  5. High-throughput infrared spectrometer for standoff chemical detection

    NASA Astrophysics Data System (ADS)

    Chadha, Suneet; Stevenson, Chuck; Curtiss, Lawrence E.

    1999-01-01

    Advanced autonomous detection of chemical warfare agents and other organic materials has long been a major military concern. While significant advances have recently been accomplished in remote spectral sensing using rugged FTIRs with point detectors, efforts towards spatial chemical discrimination have been lacking. Foster-Miller, Inc. has developed a radically different mid-IR and long wave IR spectrometer for standoff detection of chemical warfare agents and other molecular species.This no moving parts device will eliminate the cost, complexity, reliability and bandwidth/resolution problems associated with either Fabry Perot or Michelson Interferometer based approaches currently under consideration. Given the small size and performance insensitivity to on-board vibration, high EMI, thermal variations, the proposed optic would easily adapt cryocooling and field deployable requirements for low radiance detection.

  6. A new method of small target detection based on neural network

    NASA Astrophysics Data System (ADS)

    Hu, Jing; Hu, Yongli; Lu, Xinxin

    2018-02-01

    The detection and tracking of moving dim target in infrared image have been an research hotspot for many years. The target in each frame of images only occupies several pixels without any shape and structure information. Moreover, infrared small target is often submerged in complicated background with low signal-to-clutter ratio, making the detection very difficult. Different backgrounds exhibit different statistical properties, making it becomes extremely complex to detect the target. If the threshold segmentation is not reasonable, there may be more noise points in the final detection, which is unfavorable for the detection of the trajectory of the target. Single-frame target detection may not be able to obtain the desired target and cause high false alarm rate. We believe the combination of suspicious target detection spatially in each frame and temporal association for target tracking will increase reliability of tracking dim target. The detection of dim target is mainly divided into two parts, In the first part, we adopt bilateral filtering method in background suppression, after the threshold segmentation, the suspicious target in each frame are extracted, then we use LSTM(long short term memory) neural network to predict coordinates of target of the next frame. It is a brand-new method base on the movement characteristic of the target in sequence images which could respond to the changes in the relationship between past and future values of the values. Simulation results demonstrate proposed algorithm can effectively predict the trajectory of the moving small target and work efficiently and robustly with low false alarm.

  7. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  8. Development and validation of a real-time PCR assay for the detection of Toxoplasma gondii DNA in animal and meat samples.

    PubMed

    Marino, Anna Maria Fausta; Percipalle, Maurizio; Giunta, Renato Paolo; Salvaggio, Antonio; Caracappa, Giulia; Alfonzetti, Tiziana; Aparo, Alessandra; Reale, Stefano

    2017-03-01

    We report a rapid and reliable method for the detection of Toxoplasma gondii in meat and animal tissues based on real-time polymerase chain reaction (PCR). Samples were collected from cattle, small ruminants, horses, and pigs raised or imported into Sicily, Italy. All DNA preparations were assayed by real-time PCR tests targeted to a 98-bp long fragment in the AF 529-bp repeat element and to the B1 gene using specific primers. Diagnostic sensitivity (100%), diagnostic specificity (100%), limit of detection (0.01 pg), efficiency (92-109%), and precision (mean coefficient of variation = 0.60%), repeatability (100%), reproducibility (100%), and robustness were evaluated using 240 DNA extracted samples (120 positives and 120 negative as per the OIE nested PCR method) from different matrices. Positive results were confirmed by the repetition of both real-time and nested PCR assays. Our study demonstrates the viability of a reliable, rapid, and specific real-time PCR on a large scale to monitor contamination with Toxoplasma cysts in meat and animal specimens. This validated method can be used for postmortem detection in domestic and wild animals and for food safety purposes.

  9. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    PubMed

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  10. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, S.; Harpold, M.A.; McCaffrey, T.M.; Morris, S.E.; Wojciechowski, M.; Zhao, J.; Henkens, R.W.; Naser, N.; O`Daly, J.P.

    1995-11-21

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 {micro}g/dL in blood samples as small as 10 {micro}L. 9 figs.

  11. Colloidal-gold electrosensor measuring device

    DOEpatents

    Wegner, Steven; Harpold, Michael A.; McCaffrey, Terence M.; Morris, Susan E.; Wojciechowski, Marek; Zhao, Junguo; Henkens, Robert W.; Naser, Najih; O'Daly, John P.

    1995-01-01

    The present invention provides a new device for use in measuring lead levels in biological and environmental samples. Using square wave coulometry and colloidal gold particles impregnated on carbon electrodes, the present invention provides a rapid, reliable, portable and inexpensive means of detecting low lead levels. The colloidal gold modified electrodes have microelectrode array characteristics and produce significantly higher stripping detection signals for lead than are produced at bulk gold electrode surfaces. The method is effective in determining levels of lead down to at least 5 .mu.g/dL in blood samples as small as 10 .mu.L.

  12. ORCHID - a computer simulation of the reliability of an NDE inspection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moles, M.D.C.

    1987-03-01

    CANDU pressurized heavy water reactors contain several hundred horizontally-mounted zirconium alloy pressure tubes. Following a pressure tube failure, a pressure tube inspection system called CIGARette was rapidly designed, manufactured and put in operation. Defects called hydride blisters were found to be the cause of the failure, and were detected using a combination of eddy current and ultrasonic scans. A number of improvements were made to CIGARette during the inspection period. The ORCHID computer program models the operation of the delivery system, eddy current and ultrasonic systems by imitating the on-reactor decision-making procedure. ORCHID predicts that during the early stage ofmore » development, less than one blistered tube in three would be detected, while less than one in two would be detected in the middle development stage. However, ORCHID predicts that during the late development stage, probability of detection will be over 90%, primarily due to the inclusion of axial ultrasonic scans (a procedural modification). Rotational and axial slip could severely reduce probability of detection. Comparison of CIGARette's inspection data with ORCHID's predictions indicate that the latter are compatible with the actual inspection results, through the numbers are small and data uncertain. It should be emphasized that the CIGARette system has been essentially replaced with the much more reliable CIGAR system.« less

  13. Efficient and robust analysis of complex scattering data under noise in microwave resonators.

    PubMed

    Probst, S; Song, F B; Bushev, P A; Ustinov, A V; Weides, M

    2015-02-01

    Superconducting microwave resonators are reliable circuits widely used for detection and as test devices for material research. A reliable determination of their external and internal quality factors is crucial for many modern applications, which either require fast measurements or operate in the single photon regime with small signal to noise ratios. Here, we use the circle fit technique with diameter correction and provide a step by step guide for implementing an algorithm for robust fitting and calibration of complex resonator scattering data in the presence of noise. The speedup and robustness of the analysis are achieved by employing an algebraic rather than an iterative fit technique for the resonance circle.

  14. Contributed review: quantum cascade laser based photoacoustic detection of explosives.

    PubMed

    Li, J S; Yu, B; Fischer, H; Chen, W; Yalin, A P

    2015-03-01

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacoustic spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.

  15. Contributed Review: Quantum cascade laser based photoacoustic detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. S., E-mail: jingsong-li@ahu.edu.cn; Yu, B.; Fischer, H.

    2015-03-15

    Detecting trace explosives and explosive-related compounds has recently become a topic of utmost importance for increasing public security around the world. A wide variety of detection methods and an even wider range of physical chemistry issues are involved in this very challenging area. Optical sensing methods, in particular mid-infrared spectrometry techniques, have a great potential to become a more desirable tools for the detection of explosives. The small size, simplicity, high output power, long-term reliability make external cavity quantum cascade lasers (EC-QCLs) the promising spectroscopic sources for developing analytical instrumentation. This work reviews the current technical progress in EC-QCL-based photoacousticmore » spectroscopy for explosives detection. The potential for both close-contact and standoff configurations using this technique is completely presented over the course of approximately the last one decade.« less

  16. Detection of the Agent of Heartwater, Cowdria ruminantium, in Amblyomma Ticks by PCR: Validation and Application of the Assay to Field Ticks

    PubMed Central

    Peter, Trevor F.; Barbet, Anthony F.; Alleman, Arthur R.; Simbi, Bigboy H.; Burridge, Michael J.; Mahan, Suman M.

    2000-01-01

    We have previously reported that the pCS20 PCR detection assay for Cowdria ruminantium, the causative agent of heartwater disease of ruminants, is more sensitive than xenodiagnosis and the pCS20 DNA probe for the detection of infection in the vector Amblyomma ticks. Here, we further assessed the reliability of the PCR assay and applied it to field ticks. The assay detected DNA of 37 isolates of C. ruminantium originating from sites throughout the distribution of heartwater and had a specificity of 98% when infected ticks were processed concurrently with uninfected ticks. The assay did not detect DNA of Ehrlichia chaffeensis, which is closely related to C. ruminantium. PCR sensitivity varied with tick infection intensity and was high (97 to 88%) with ticks bearing 107 to 104 organisms but dropped to 61 and 28%, respectively, with ticks bearing 103 and 102 organisms. The assay also detected C. ruminantium in collections of Amblyomma hebraeum and Amblyomma variegatum field ticks from 17 heartwater-endemic sites in four southern African countries. Attempts at tick transmission of infection to small ruminants failed with four of these collections. The pCS20 PCR assay is presently the most characterized and reliable test for C. ruminantium in ticks and thus is highly useful for field and laboratory epidemiological investigations of heartwater. PMID:10747140

  17. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    PubMed

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Reliability, Validity, and Minimal Detectable Change of Four-Step Stair Climb Power Test in Community-Dwelling Older Adults.

    PubMed

    Ni, Meng; Brown, Lorna G; Lawler, Danielle; Bean, Jonathan F

    2017-07-01

    Stair climb power is an important clinical measure of lower-extremity power. The stair climb power test (SCPT) was validated by requiring individuals to climb a full flight of stairs. A 4-step SCPT (4SCPT) would be more clinically feasible and easier to perform, yet its reliability and validity are unknown. To evaluate reliability, validity, and minimal detectable change of 4SCPT among community-dwelling older adults. This study is a cross-sectional analysis of baseline data from a clinical trial. Fifty older adults ≥65 years of age, at risk for mobility decline, consented to participate in this ancillary study. Test-retest reliability was derived from 2 measurements within each participant measured by a single assessor. Pearson correlation analyses among leg power measures (4SCPT, SCPT, single leg press power at 40% and 70% of the 1-repetition maximum [SLP40, SLP70]) were performed. Separate multivariate linear regressions were conducted evaluating the associations between each leg power measure and 2 mobility outcomes, the Short Physical Performance Battery (SPPB) and habitual gait speed (HGS). Minimal detectable change was based on a 90% confidence interval (MDC 90 ). The 4SCPT had excellent test-retest reliability (ICC(2,1) = 0.951), and strong correlation with SCPT, SLP40, and SLP70 ( r = 0.85-0.96). The 4SCPT explained a greater amount of variance in the SPPB (R 2 = 0.31) than other leg power measurements (R 2 = 0.23-0.25). The 4SCPT (R 2 = 0.41) and SCPT (R 2 = 0.42) described equivalent amounts of variance in HGS, and greater than that with SLP40 (R 2 = 0.28) and SLP70 (R 2 = 0.30). The MDC 90 for 4SCPT was 44.0 watts. This was a cross-sectional analysis within a small, nonrepresentative sample. Interrater reliability was not evaluated. The 4SCPT shows scientific promise as a valid and reliable leg power measurement among community-dwelling older adults. © 2017 American Physical Therapy Association

  19. Tunable nanoblock lasers and stretching sensors.

    PubMed

    Lu, T W; Wang, C; Hsiao, C F; Lee, P T

    2016-09-22

    Reconfigurable, reliable, and robust nanolasers with wavelengths tunable in the telecommunication bands are currently being sought after for use as flexible light sources in photonic integrated circuits. Here, we propose and demonstrate tunable nanolasers based on 1D nanoblocks embedded within stretchable polydimethylsiloxane. Our lasers show a large wavelength tunability of 7.65 nm per 1% elongation. Moreover, this tunability is reconfigurable and reliable under repeated stretching/relaxation tests. By applying excessive stretching, wide wavelength tuning over a range of 80 nm (spanning the S, C, and L telecommunication bands) is successfully demonstrated. Furthermore, as a stretching sensor, an enhanced wavelength response to elongation of 9.9 nm per % is obtained via the signal differential from two nanoblock lasers positioned perpendicular to each other. The minimum detectable elongation is as small as 0.056%. Nanoblock lasers can function as reliable tunable light sources in telecommunications and highly sensitive on-chip structural deformation sensors.

  20. Performance of species occurrence estimators when basic assumptions are not met: a test using field data where true occupancy status is known

    USGS Publications Warehouse

    Miller, David A. W.; Bailey, Larissa L.; Grant, Evan H. Campbell; McClintock, Brett T.; Weir, Linda A.; Simons, Theodore R.

    2015-01-01

    Our results demonstrate that even small probabilities of misidentification and among-site detection heterogeneity can have severe effects on estimator reliability if ignored. We challenge researchers to place greater attention on both heterogeneity and false positives when designing and analysing occupancy studies. We provide 9 specific recommendations for the design, implementation and analysis of occupancy studies to better meet this challenge.

  1. Direct and long-term detection of gene doping in conventional blood samples.

    PubMed

    Beiter, T; Zimmermann, M; Fragasso, A; Hudemann, J; Niess, A M; Bitzer, M; Lauer, U M; Simon, P

    2011-03-01

    The misuse of somatic gene therapy for the purpose of enhancing athletic performance is perceived as a coming threat to the world of sports and categorized as 'gene doping'. This article describes a direct detection approach for gene doping that gives a clear yes-or-no answer based on the presence or absence of transgenic DNA in peripheral blood samples. By exploiting a priming strategy to specifically amplify intronless DNA sequences, we developed PCR protocols allowing the detection of very small amounts of transgenic DNA in genomic DNA samples to screen for six prime candidate genes. Our detection strategy was verified in a mouse model, giving positive signals from minute amounts (20 μl) of blood samples for up to 56 days following intramuscular adeno-associated virus-mediated gene transfer, one of the most likely candidate vector systems to be misused for gene doping. To make our detection strategy amenable for routine testing, we implemented a robust sample preparation and processing protocol that allows cost-efficient analysis of small human blood volumes (200 μl) with high specificity and reproducibility. The practicability and reliability of our detection strategy was validated by a screening approach including 327 blood samples taken from professional and recreational athletes under field conditions.

  2. A novel transparent charged particle detector for the CPET upgrade at TITAN

    NASA Astrophysics Data System (ADS)

    Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.

    2017-10-01

    The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.

  3. Sensitive bistable magnetic sensors using twisted amorphous magnetostrictive ribbons due to Matteucci effect

    NASA Astrophysics Data System (ADS)

    Mohri, K.; Takeuchi, S.

    1982-11-01

    New sensitive magnetic-field sensors are presented using twisted amorphous magnetostrictive ribbons such as Fe80B20 and Fe81-xCrxB17Si2. Sharp voltage pulses are induced between ends of the ribbon of as short as 25 mm or at the terminals of the detecting coil against external fields of as low as 1 Oe and 0.01 Hz-6 kHz. The domain nucleation field at the bistable flux reversal is very constant for 130 °C, 600 h using Fe79Cr2B17Si2, and a possible maximum operating temperature is about 180 °C. Small sized magnetic sensors without any windings for detecting rotational speed, distance, and other mechanical quantities are realized using the twisted ribbons by combining with small magnets. These sensitive and reliable magnetic sensors with digital outputs are suitable for applications in industrial robots and automobiles controlled with microcomputers.

  4. Combining Microdialysis and Electrophysiology in Cerebral Cortex to Delineate Functional Implications of Acetylcholine Gradients

    NASA Astrophysics Data System (ADS)

    Nelson, Kari L.

    The neuronal network in cerebral cortex is a dynamic system that can undergo changes in collective neural activity as the organism changes its behavior. For example, during sleep and quiet restful awake state, many neurons tend to fire together in synchrony. In contrast, during alert awake states, firing patterns of neurons tend to be more asynchronous, firing more independently. These changes in population-level synchrony are defined as changes in cortical state. Response to sensory input is state-dependent, i.e., change in cortical state can impact the sensory information processing in cortex and introduce trial-to-trial variability in response to the same repeated stimuli. How the brain maintains reliable perception in spite of such trial-to-trial variability is a longstanding important question in neuroscience research. This dissertation is centered on two hypotheses. The first hypothesis is that different parts of the cortex can be in different states simultaneously. The second hypothesis is that inhomogeneity in cortical states can benefit the system by enabling the cortical network to maintain reliable sensory detection. If one part of the system is in a state that is not good for detection, then another part of the system could be in a different state that is good for detection, thus compensating and maintaining good detection for the system as a whole. These hypotheses were tested on anesthetized rats and awake mice. In anesthetized rats, cholinergic neuromodulation via microdialysis (muD) probes was used to induce cortical state changes in the somatosensory barrel cortex. Changes in cortical state and response to whisker stimulus was recorded with a microelectrode array (MEA). In awake mice, nucleus basalis was optogenetically stimulated by inserting an optic fiber in basal forebrain and response to visual stimulus was analyzed. The results demonstrated heterogeneity in cortical state across the spatial extent of cortical network. Changes in sensory response followed this heterogeneity and sensory detection was not reliable at the level of single neurons or small regions of cortex. The greater population of neurons, on the other hand, maintained reliable sensory detection, suggesting that heterogeneous state can be functionally beneficial for the cortical network.

  5. A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.

    PubMed

    Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S

    2016-09-28

    Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.

  6. Narrow Band Imaging Enhances the Detection Rate of Penetration and Aspiration in FEES.

    PubMed

    Nienstedt, Julie C; Müller, Frank; Nießen, Almut; Fleischer, Susanne; Koseki, Jana-Christiane; Flügel, Till; Pflug, Christina

    2017-06-01

    Narrow band imaging (NBI) is widely used in gastrointestinal, laryngeal, and urological endoscopy. Its original purpose was to visualize vessels and epithelial irregularities. Based on our observation that adding NBI to common white light (WL) improves the contrast of the test bolus in fiberoptic endoscopic evaluation of swallowing (FEES), we now investigated the potential value of NBI in swallowing disorders. 148 FEES images were analyzed from 74 consecutive patients with swallowing disorders, including 74 with and 74 without NBI. All images were evaluated by four dysphagia specialists. Findings were classified according to Rosenbek's penetration-aspiration scale modified for evaluating these FEES images. Intra- and inter-rater reliability was determined as well as observer confidence. A better visualization of the bolus is the main advantage of NBI in FEES. This generally leads to sharper optical contrasts and better detection of small bolus quantities. Accordingly, NBI enhances the detection rate of penetration and aspiration. On average, identification of laryngeal penetration increased from 40 to 73% and of aspiration from 13 to 24% (each p < 0.01) of patients. In contrast to WL alone, the use of NBI also markedly increased the inter- and intra-rater reliability (p < 0.01) and the rating confidence of all experts (p < 0.05). NBI is an easy and cost-effective tool simplifying dysphagia evaluation and shortening FEES evaluation time. It leads to a markedly higher detection rate of pathological findings. The significantly better intra- and inter-rater reliability argues further for a better overall reproducibly of FEES interpretation.

  7. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Technical Reports Server (NTRS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-01-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  8. GTEX: An expert system for diagnosing faults in satellite ground stations

    NASA Astrophysics Data System (ADS)

    Schlegelmilch, Richard F.; Durkin, John; Petrik, Edward J.

    1991-11-01

    A proof of concept expert system called Ground Terminal Expert (GTEX) was developed at The University of Akron in collaboration with NASA Lewis Research Center. The objective of GTEX is to aid in diagnosing data faults occurring with a digital ground terminal. This strategy can also be applied to the Very Small Aperture Terminal (VSAT) technology. An expert system which detects and diagnoses faults would enhance the performance of the VSAT by improving reliability and reducing maintenance time. GTEX is capable of detecting faults, isolating the cause and recommending appropriate actions. Isolation of faults is completed to board-level modules. A graphical user interface provides control and a medium where data can be requested and cryptic information logically displayed. Interaction with GTEX consists of user responses and input from data files. The use of data files provides a method of simulating dynamic interaction between the digital ground terminal and the expert system. GTEX as described is capable of both improving reliability and reducing the time required for necessary maintenance.

  9. RST-FIRES, an exportable algorithm for early/small fires detection: field validation and algorithm inter-comparison by using MSG-SEVIRI data over Italian Regions

    NASA Astrophysics Data System (ADS)

    Lisi, M.; Paciello, R.; Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V.

    2016-12-01

    Fire detection by sensors on-board polar orbiting platforms, due to their relatively low temporal resolution (hours), could results decidedly not adequate to detect short-living events or fires characterized by a strong diurnal cycle and rapid evolution times. The challenge is therefore to try to exploit the very high temporal resolution offered by the geostationary sensors (from 30 to 2,5 minutes) to guarantee a continuous monitoring. Over the last years, many algorithms have been adapted from polar to (or have been specifically designed for) geostationary sensors. Most of them are based on fixed thresholds tests which, to avoid false alarm proliferation, are generally set up in the most conservative way. The result is a low algorithm sensitivity (i.e. only large and/or extremely intense events are generally detected) which could drastically affect Global Fire Emission (GFE) estimate: small fires were recognized to contribute for more than 35% to the global biomass burning carbon emissions. This work describes the multi-temporal change-detection technique named RST-FIRES (Robust Satellite Techniques for FIRES detection and monitoring) which, try to overcome the above mentioned issues being, moreover, immediately exportable on different geographic area and sensors. Its performance in terms of reliability and sensitivity was verified by more than 20,000 SEVIRI images collected throughout the day during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions which provided about 950 near real-time ground and aerial checks of the RST-FIRES detections. This study fully demonstrates the added value of the RST-FIRES technique for the detection of early/small fires and a sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  10. Identification of Deep Earthquakes

    DTIC Science & Technology

    2010-09-01

    discriminants that will reliably separate small, crustal earthquakes (magnitudes less than about 4 and depths less than about 40 to 50 km) from small...characteristics on discrimination plots designed to separate nuclear explosions from crustal earthquakes. Thus, reliably flagging these small, deep events is...Further, reliably identifying subcrustal earthquakes will allow us to eliminate deep events (previously misidentified as crustal earthquakes) from

  11. Real-time detection of small and dim moving objects in IR video sequences using a robust background estimator and a noise-adaptive double thresholding

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2016-10-01

    We developed an algorithm for automatically detecting small and poorly contrasted (dim) moving objects in real-time, within video sequences acquired through a steady infrared camera. The algorithm is suitable for different situations since it is independent of the background characteristics and of changes in illumination. Unlike other solutions, small objects of any size (up to single-pixel), either hotter or colder than the background, can be successfully detected. The algorithm is based on accurately estimating the background at the pixel level and then rejecting it. A novel approach permits background estimation to be robust to changes in the scene illumination and to noise, and not to be biased by the transit of moving objects. Care was taken in avoiding computationally costly procedures, in order to ensure the real-time performance even using low-cost hardware. The algorithm was tested on a dataset of 12 video sequences acquired in different conditions, providing promising results in terms of detection rate and false alarm rate, independently of background and objects characteristics. In addition, the detection map was produced frame by frame in real-time, using cheap commercial hardware. The algorithm is particularly suitable for applications in the fields of video-surveillance and computer vision. Its reliability and speed permit it to be used also in critical situations, like in search and rescue, defence and disaster monitoring.

  12. Hypervelocity Impact (HVI). Volume 8; Tile Small Targets A-1, Ag-1, B-1, and Bg-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  13. Incomplete Detection of Nonclassical Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Bohmann, M.; Tiedau, J.; Bartley, T.; Sperling, J.; Silberhorn, C.; Vogel, W.

    2018-02-01

    We implement the direct sampling of negative phase-space functions via unbalanced homodyne measurement using click-counting detectors. The negativities significantly certify nonclassical light in the high-loss regime using a small number of detectors which cannot resolve individual photons. We apply our method to heralded single-photon states and experimentally demonstrate the most significant certification of nonclassicality for only two detection bins. By contrast, the frequently applied Wigner function fails to directly indicate such quantum characteristics for the quantum efficiencies present in our setup without applying additional reconstruction algorithms. Therefore, we realize a robust and reliable approach to characterize nonclassical light in phase space under realistic conditions.

  14. Hypervelocity Impact (HVI). Volume 2; WLE Small-Scale Fiberglass Panel Flat Multi-Layer Targets A-1, A-2, and B-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, A-2, and B-2 was to study hypervelocity impacts through multi-layered panels simulating Whipple shields on spacecraft. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  15. Hypervelocity Impact (HVI). Volume 4; WLE Small-Scale Fiberglass Panel Flat Target C-2

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-2 was to study impacts through the reinforced carboncarbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  16. Hypervelocity Impact (HVI). Volume 3; WLE Small-Scale Fiberglass Panel Flat Target C-1

    NASA Technical Reports Server (NTRS)

    Gorman, Michael R.; Ziola, Steven M.

    2007-01-01

    During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Target C-1 was to study hypervelocity impacts on the reinforced carbon-carbon (RCC) panels of the Wing Leading Edge. Fiberglass was used in place of RCC in the initial tests. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.

  17. An optical search for small comets

    NASA Astrophysics Data System (ADS)

    Mutel, R. L.; Fix, J. D.

    2000-11-01

    We have conducted an extensive optical search for small comets with the characteristics proposed by Frank et al. [1986] and Frank and Sigwarth [1993, 1997]. The observations were made using the 0.5-m reflector of the Iowa Robotic Observatory between September 1998 and June 1999. The search technique consisted of tracking a fixed point in the ecliptic plane at +/-9° geocentric solar phase angle. The telescope scan rate was chosen to track objects moving prograde at 10 km s-1 relative to the Earth at a distance of 55,000 km. The camera was multiply shuttered to discriminate against trails caused by cosmic rays and sensor imperfections. Of 6143 total images, we selected 2713 which were suitable for detection of objects with a magnitude 16.5 or brighter with 120 pixel trails. The sensitivity and reliability of the visual detection scheme were determined by extensive double-blind tests using synthetic trails added to over 500 search images. After careful visual inspection of all images, we found no trials consistent with small comets. This result strongly disagrees with previous optical searches of Yeates [1989] and Frank et al. [1990], whose detection rates and magnitudes, when converted to the present search, predict 65+/-22 detections. We conclude that at 99% confidence, the number density of any prograde objects in the ecliptic plane brighter than magnitude 16.5 with speeds near 10 km s-1 have a number density less than 5% of the small-comet density derived by Frank et al. [1990]. Any object fainter than this magnitude limit with a mass corresponding to the small-comet hypothesis (M>20,000kg) must have either an implausibly low geometric albedo (p<0.01) or a density larger than that of water.

  18. Applicability of a Crack-Detection System for Use in Rotor Disk Spin Test Experiments Being Evaluated

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Roth, Don J.

    2004-01-01

    Engine makers and aviation safety government institutions continue to have a strong interest in monitoring the health of rotating components in aircraft engines to improve safety and to lower maintenance costs. To prevent catastrophic failure (burst) of the engine, they use nondestructive evaluation (NDE) and major overhauls for periodic inspections to discover any cracks that might have formed. The lowest cost fluorescent penetrant inspection NDE technique can fail to disclose cracks that are tightly closed during rest or that are below the surface. The NDE eddy current system is more effective at detecting both crack types, but it requires careful setup and operation and only a small portion of the disk can be practically inspected. So that sensor systems can sustain normal function in a severe environment, health-monitoring systems require the sensor system to transmit a signal if a crack detected in the component is above a predetermined length (but below the length that would lead to failure) and lastly to act neutrally upon the overall performance of the engine system and not interfere with engine maintenance operations. Therefore, more reliable diagnostic tools and high-level techniques for detecting damage and monitoring the health of rotating components are very essential in maintaining engine safety and reliability and in assessing life.

  19. Structural health monitoring in composite materials using frequency response methods

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos

    2001-08-01

    Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.

  20. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    PubMed

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective detection of small molecules by means of FA in complex biological samples.

  1. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent.

    PubMed

    Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M

    2009-05-01

    A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.

  2. Measurement of patient safety: a systematic review of the reliability and validity of adverse event detection with record review

    PubMed Central

    Hanskamp-Sebregts, Mirelle; Zegers, Marieke; Vincent, Charles; van Gurp, Petra J; de Vet, Henrica C W; Wollersheim, Hub

    2016-01-01

    Objectives Record review is the most used method to quantify patient safety. We systematically reviewed the reliability and validity of adverse event detection with record review. Design A systematic review of the literature. Methods We searched PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Library and from their inception through February 2015. We included all studies that aimed to describe the reliability and/or validity of record review. Two reviewers conducted data extraction. We pooled κ values (κ) and analysed the differences in subgroups according to number of reviewers, reviewer experience and training level, adjusted for the prevalence of adverse events. Results In 25 studies, the psychometric data of the Global Trigger Tool (GTT) and the Harvard Medical Practice Study (HMPS) were reported and 24 studies were included for statistical pooling. The inter-rater reliability of the GTT and HMPS showed a pooled κ of 0.65 and 0.55, respectively. The inter-rater agreement was statistically significantly higher when the group of reviewers within a study consisted of a maximum five reviewers. We found no studies reporting on the validity of the GTT and HMPS. Conclusions The reliability of record review is moderate to substantial and improved when a small group of reviewers carried out record review. The validity of the record review method has never been evaluated, while clinical data registries, autopsy or direct observations of patient care are potential reference methods that can be used to test concurrent validity. PMID:27550650

  3. Convolutional neural network guided blue crab knuckle detection for autonomous crab meat picking machine

    NASA Astrophysics Data System (ADS)

    Wang, Dongyi; Vinson, Robert; Holmes, Maxwell; Seibel, Gary; Tao, Yang

    2018-04-01

    The Atlantic blue crab is among the highest-valued seafood found in the American Eastern Seaboard. Currently, the crab processing industry is highly dependent on manual labor. However, there is great potential for vision-guided intelligent machines to automate the meat picking process. Studies show that the back-fin knuckles are robust features containing information about a crab's size, orientation, and the position of the crab's meat compartments. Our studies also make it clear that detecting the knuckles reliably in images is challenging due to the knuckle's small size, anomalous shape, and similarity to joints in the legs and claws. An accurate and reliable computer vision algorithm was proposed to detect the crab's back-fin knuckles in digital images. Convolutional neural networks (CNNs) can localize rough knuckle positions with 97.67% accuracy, transforming a global detection problem into a local detection problem. Compared to the rough localization based on human experience or other machine learning classification methods, the CNN shows the best localization results. In the rough knuckle position, a k-means clustering method is able to further extract the exact knuckle positions based on the back-fin knuckle color features. The exact knuckle position can help us to generate a crab cutline in XY plane using a template matching method. This is a pioneering research project in crab image analysis and offers advanced machine intelligence for automated crab processing.

  4. Modeling the X-Ray Process, and X-Ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Khoshti, Ajay

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  5. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  6. Remote Oil Spill Detection and Monitoring Beneath Sea Ice

    NASA Astrophysics Data System (ADS)

    Polak, Adam; Marshall, Stephen; Ren, Jinchang; Hwang, Byongjun (Phil); Hagan, Bernard; Stothard, David J. M.

    2016-08-01

    The spillage of oil in Polar Regions is particularly serious due to the threat to the environment and the difficulties in detecting and tracking the full extent of the oil seepage beneath the sea ice. Development of fast and reliable sensing techniques is highly desirable. In this paper hyperspectral imaging combined with signal processing and classification techniques are proposed as a potential tool to detect the presence of oil beneath the sea ice. A small sample, lab based experiment, serving as a proof of concept, resulted in the successful identification of oil presence beneath the thin ice layer as opposed to the other sample with ice only. The paper demonstrates the results of this experiment that granted a financial support to execute full feasibility study of this technology for oil spill detection beneath the sea ice.

  7. Current trends in nanobiosensor technology

    PubMed Central

    Wu, Diana; Langer, Robert S

    2014-01-01

    The development of tools and processes used to fabricate, measure, and image nanoscale objects has lead to a wide range of work devoted to producing sensors that interact with extremely small numbers (or an extremely small concentration) of analyte molecules. These advances are particularly exciting in the context of biosensing, where the demands for low concentration detection and high specificity are great. Nanoscale biosensors, or nanobiosensors, provide researchers with an unprecedented level of sensitivity, often to the single molecule level. The use of biomolecule-functionalized surfaces can dramatically boost the specificity of the detection system, but can also yield reproducibility problems and increased complexity. Several nanobiosensor architectures based on mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been demonstrated in the lab. As nanobiosensor technology becomes more refined and reliable, it is likely it will eventually make its way from the lab to the clinic, where future lab-on-a-chip devices incorporating an array of nanobiosensors could be used for rapid screening of a wide variety of analytes at low cost using small samples of patient material. PMID:21391305

  8. The Anomalous Influence of Spectral Resolution on Pulsed THz Time Domain Spectroscopy under Real Conditions

    PubMed Central

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2017-01-01

    We have studied the spectral resolution influence on the accuracy of the substance detection and identification at using a broadband THz pulse measured under real conditions (at a distance of more than 3 m from a THz emitter in ambient air with a relative humidity of about 50%). We show that increasing spectral resolution leads to manifestation of small-scale perturbations (random fluctuations) in the signal spectrum caused by the influence of the environment or the sample structure. Decreasing the spectral resolution allows us to exclude from consideration this small-scale modulation of the signal as well as to detect the water vapor absorption frequencies. This fact is important in practice because it allows us to increase the signal processing rate. In order to increase the detection reliability, it is advisable to decrease the spectral resolution up to values of not more than 40% of the corresponding spectral line bandwidth. The method of spectral dynamics analysis together with the integral correlation criteria is used for the substance detection and identification. Neutral substances such as chocolate and cookies are used as the samples in the physical experiment. PMID:29231895

  9. Angular approach combined to mechanical model for tool breakage detection by eddy current sensors

    NASA Astrophysics Data System (ADS)

    Ritou, M.; Garnier, S.; Furet, B.; Hascoet, J. Y.

    2014-02-01

    The paper presents a new complete approach for Tool Condition Monitoring (TCM) in milling. The aim is the early detection of small damages so that catastrophic tool failures are prevented. A versatile in-process monitoring system is introduced for reliability concerns. The tool condition is determined by estimates of the radial eccentricity of the teeth. An adequate criterion is proposed combining mechanical model of milling and angular approach.Then, a new solution is proposed for the estimate of cutting force using eddy current sensors implemented close to spindle nose. Signals are analysed in the angular domain, notably by synchronous averaging technique. Phase shifts induced by changes of machining direction are compensated. Results are compared with cutting forces measured with a dynamometer table.The proposed method is implemented in an industrial case of pocket machining operation. One of the cutting edges has been slightly damaged during the machining, as shown by a direct measurement of the tool. A control chart is established with the estimates of cutter eccentricity obtained during the machining from the eddy current sensors signals. Efficiency and reliability of the method is demonstrated by a successful detection of the damage.

  10. Performance testing of collision-avoidance system for power wheelchairs.

    PubMed

    Lopresti, Edmund F; Sharma, Vinod; Simpson, Richard C; Mostowy, L Casimir

    2011-01-01

    The Drive-Safe System (DSS) is a collision-avoidance system for power wheelchairs designed to support people with mobility impairments who also have visual, upper-limb, or cognitive impairments. The DSS uses a distributed approach to provide an add-on, shared-control, navigation-assistance solution. In this project, the DSS was tested for engineering goals such as sensor coverage, maximum safe speed, maximum detection distance, and power consumption while the wheelchair was stationary or driven by an investigator. Results indicate that the DSS provided uniform, reliable sensor coverage around the wheelchair; detected obstacles as small as 3.2 mm at distances of at least 1.6 m; and attained a maximum safe speed of 4.2 km/h. The DSS can drive reliably as close as 15.2 cm from a wall, traverse doorways as narrow as 81.3 cm without interrupting forward movement, and reduce wheelchair battery life by only 3%. These results have implications for a practical system to support safe, independent mobility for veterans who acquire multiple disabilities during Active Duty or later in life. These tests indicate that a system utilizing relatively low cost ultrasound, infrared, and force sensors can effectively detect obstacles in the vicinity of a wheelchair.

  11. Ultra-small dye-doped silica nanoparticles via modified sol-gel technique.

    PubMed

    Riccò, R; Nizzero, S; Penna, E; Meneghello, A; Cretaio, E; Enrichi, F

    2018-01-01

    In modern biosensing and imaging, fluorescence-based methods constitute the most diffused approach to achieve optimal detection of analytes, both in solution and on the single-particle level. Despite the huge progresses made in recent decades in the development of plasmonic biosensors and label-free sensing techniques, fluorescent molecules remain the most commonly used contrast agents to date for commercial imaging and detection methods. However, they exhibit low stability, can be difficult to functionalise, and often result in a low signal-to-noise ratio. Thus, embedding fluorescent probes into robust and bio-compatible materials, such as silica nanoparticles, can substantially enhance the detection limit and dramatically increase the sensitivity. In this work, ultra-small fluorescent silica nanoparticles (NPs) for optical biosensing applications were doped with a fluorescent dye, using simple water-based sol-gel approaches based on the classical Stöber procedure. By systematically modulating reaction parameters, controllable size tuning of particle diameters as low as 10 nm was achieved. Particles morphology and optical response were evaluated showing a possible single-molecule behaviour, without employing microemulsion methods to achieve similar results. Graphical abstractWe report a simple, cheap, reliable protocol for the synthesis and systematic tuning of ultra-small (< 10 nm) dye-doped luminescent silica nanoparticles.

  12. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  13. Sonography for diagnosis of benign and malignant tumors of the nose and paranasal sinuses.

    PubMed

    Liu, Jun-jie; Gao, Yong; Wu, Ya-Fei; Zhu, Shang-Yong

    2014-09-01

    The purpose of this study was to demonstrate the reliability of sonography for diagnosis of nose and paranasal sinus tumors. Ninety-six consecutive patients with tumors underwent sonography and computed tomography (CT) before surgical treatment. Tumor detectability and imaging findings were evaluated independently and then compared with pathologic findings. Of 96 tumors, 75 were detected by sonography, for a detectability rate of 78.1%; 93 tumors were detected by CT, for a detectability rate of 96.9%. By comparison, sonography showed a trend toward higher detectability of nasal vestibular tumors than CT (87.5% for sonography versus 50.0% for CT) and small lumps on the wing of the nose (78.8% for sonography versus 33.3% for CT). Among the sonographic features, boundary, shape, internal echo, calcification, bone invasion, vascular pattern, and cervical lymph node metastasis all had significantly positive correlations with malignancy (P < .05), but size did not (P = .324). In addition, the vascular resistive index for malignant tumors was significantly higher (mean ± SD, 0.66 ± 0.20) than the index for benign lesions (0.24 ± 0.30; P < .001). Moreover, the detection rate for grade 1-3 (small-large) blood flow in benign lesions was only 43.8%, whereas the rate for malignant tumors was 97.7% (P < .001). The vascular pattern may be a promising predictive indicator for distinguishing benign and malignant tumors of the nose and paranasal sinuses. Consequently, sonography has high value for diagnosis of benign and malignant tumors of the nose and paranasal sinuses, especially for nasal vestibular tumors and small lumps on the wing of the nose. © 2014 by the American Institute of Ultrasound in Medicine.

  14. Optical method and apparatus for detection of defects and microstructural changes in ceramics and ceramic coatings

    DOEpatents

    Ellingson, William A.; Todd, Judith A.; Sun, Jiangang

    2001-01-01

    Apparatus detects defects and microstructural changes in hard translucent materials such as ceramic bulk compositions and ceramic coatings such as after use under load conditions. The beam from a tunable laser is directed onto the sample under study and light reflected by the sample is directed to two detectors, with light scattered with a small scatter angle directed to a first detector and light scattered with a larger scatter angle directed to a second detector for monitoring the scattering surface. The sum and ratio of the two detector outputs respectively provide a gray-scale, or "sum" image, and an indication of the lateral spread of the subsurface scatter, or "ratio" image. This two detector system allows for very high speed crack detection for on-line, real-time inspection of damage in ceramic components. Statistical image processing using a digital image processing approach allows for the quantative discrimination of the presence and distribution of small flaws in a sample while improving detection reliability. The tunable laser allows for the penetration of the sample to detect defects from the sample's surface to the laser's maximum depth of penetration. A layered optical fiber directs the incoming laser beam to the sample and transmits each scattered signal to a respective one of the two detectors.

  15. Fetal head detection and measurement in ultrasound images by an iterative randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Tan, Jinglu; Floyd, Randall C.

    2004-05-01

    This paper describes an automatic method for measuring the biparietal diameter (BPD) and head circumference (HC) in ultrasound fetal images. A total of 217 ultrasound images were segmented by using a K-Mean classifier, and the head skull was detected in 214 of the 217 cases by an iterative randomized Hough transform developed for detection of incomplete curves in images with strong noise without user intervention. The automatic measurements were compared with conventional manual measurements by sonographers and a trained panel. The inter-run variations and differences between the automatic and conventional measurements were small compared with published inter-observer variations. The results showed that the automated measurements were as reliable as the expert measurements and more consistent. This method has great potential in clinical applications.

  16. Reliability of diabetic patients' gait parameters in a challenging environment.

    PubMed

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; de Bruin, E D

    2008-11-01

    Activities of daily life require us to move about in challenging environments and to walk on varied surfaces. Irregular terrain has been shown to influence gait parameters, especially in a population at risk for falling. A precise portable measurement system would permit objective gait analysis under such conditions. The aims of this study are to (a) investigate the reliability of gait parameters measured with the Physilog in diabetic patients walking on different surfaces (tar, grass, and stones); (b) identify the measurement error (precision); (c) identify the minimal clinical detectable change. 16 patients with Type 2 diabetes were measured twice within 8 days. After clinical examination patients walked, equipped with a Physilog, on the three aforementioned surfaces. ICC for each surface was excellent for within-visit analyses (>0.938). Inter-visit ICC's (0.753) were excellent except for the knee range parameter (>0.503). The coefficient of variation (CV) was lower than 5% for most of the parameters. Bland and Altman Plots, SEM and SDC showed precise values, distributed around zero for all surfaces. Good reliability of Physilog measurements on different surfaces suggests that Physilog could facilitate the study of diabetic patients' gait in conditions close to real-life situations. Gait parameters during complex locomotor activities (e.g. stair-climbing, curbs, slopes) have not yet been extensively investigated. Good reliability, small measurement error and values of minimal clinical detectable change recommend the utilization of Physilog for the evaluation of gait parameters in diabetic patients.

  17. Earthquake Damage Assessment Using Very High Resolution Satelliteimagery

    NASA Astrophysics Data System (ADS)

    Chiroiu, L.; André, G.; Bahoken, F.; Guillande, R.

    Various studies using satellite imagery were applied in the last years in order to assess natural hazard damages, most of them analyzing the case of floods, hurricanes or landslides. For the case of earthquakes, the medium or small spatial resolution data available in the recent past did not allow a reliable identification of damages, due to the size of the elements (e.g. buildings or other structures), too small compared with the pixel size. The recent progresses of remote sensing in terms of spatial resolution and data processing makes possible a reliable damage detection to the elements at risk. Remote sensing techniques applied to IKONOS (1 meter resolution) and IRS (5 meters resolution) imagery were used in order to evaluate seismic vulnerability and post earthquake damages. A fast estimation of losses was performed using a multidisciplinary approach based on earthquake engineering and geospatial analysis. The results, integrated into a GIS database, could be transferred via satellite networks to the rescue teams deployed on the affected zone, in order to better coordinate the emergency operations. The methodology was applied to the city of Bhuj and Anjar after the 2001 Gujarat (India) Earthquake.

  18. Device Performance and Reliability Improvements of AlGaN/GaN/Si MOSFET Using Defect-Free Gate Recess and Laser Annealing

    DTIC Science & Technology

    2012-07-18

    For AlGaN, it is found that Al2O3, Ga2O3 and N-O states were detected on native oxide and HF-treated surfaces. During the course of the ALD process...the N-O bonds are seen to decrease to a level near XPS detection limits, as well as a small decrease in the Ga2O3 concentration, consistent with a...and the other at 1118.2 eV, indicative of a Ga 3+ oxidation state, likely due to Ga2O3 , consistent with previous reports.22,23 There is no evidence

  19. A reliability evaluation methodology for memory chips for space applications when sample size is small

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Nguyen, D.; Guertin, S.; Berstein, J.; White, M.; Menke, R.; Kayali, S.

    2003-01-01

    This paper presents a reliability evaluation methodology to obtain the statistical reliability information of memory chips for space applications when the test sample size needs to be kept small because of the high cost of the radiation hardness memories.

  20. Reliability of ultrasound thickness measurement of the abdominal muscles during clinical isometric endurance tests.

    PubMed

    ShahAli, Shabnam; Arab, Amir Massoud; Talebian, Saeed; Ebrahimi, Esmaeil; Bahmani, Andia; Karimi, Noureddin; Nabavi, Hoda

    2015-07-01

    The study was designed to evaluate the intra-examiner reliability of ultrasound (US) thickness measurement of abdominal muscles activity when supine lying and during two isometric endurance tests in subjects with and without Low back pain (LBP). A total of 19 women (9 with LBP, 10 without LBP) participated in the study. Within-day reliability of the US thickness measurements at supine lying and the two isometric endurance tests were assessed in all subjects. The intra-class correlation coefficient (ICC) was used to assess the relative reliability of thickness measurement. The standard error of measurement (SEM), minimal detectable change (MDC) and the coefficient of variation (CV) were used to evaluate the absolute reliability. Results indicated high ICC scores (0.73-0.99) and also small SEM and MDC scores for within-day reliability assessment. The Bland-Altman plots of agreement in US measurement of the abdominal muscles during the two isometric endurance tests demonstrated that 95% of the observations fall between the limits of agreement for test and retest measurements. Together the results indicate high intra-tester reliability for the US measurement of the thickness of abdominal muscles in all the positions tested. According to the study's findings, US imaging can be used as a reliable method for assessment of abdominal muscles activity in supine lying and the two isometric endurance tests employed, in participants with and without LBP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Advanced Deployable Structural Systems for Small Satellites

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  2. a Novel Ship Detection Method for Large-Scale Optical Satellite Images Based on Visual Lbp Feature and Visual Attention Model

    NASA Astrophysics Data System (ADS)

    Haigang, Sui; Zhina, Song

    2016-06-01

    Reliably ship detection in optical satellite images has a wide application in both military and civil fields. However, this problem is very difficult in complex backgrounds, such as waves, clouds, and small islands. Aiming at these issues, this paper explores an automatic and robust model for ship detection in large-scale optical satellite images, which relies on detecting statistical signatures of ship targets, in terms of biologically-inspired visual features. This model first selects salient candidate regions across large-scale images by using a mechanism based on biologically-inspired visual features, combined with visual attention model with local binary pattern (CVLBP). Different from traditional studies, the proposed algorithm is high-speed and helpful to focus on the suspected ship areas avoiding the separation step of land and sea. Largearea images are cut into small image chips and analyzed in two complementary ways: Sparse saliency using visual attention model and detail signatures using LBP features, thus accordant with sparseness of ship distribution on images. Then these features are employed to classify each chip as containing ship targets or not, using a support vector machine (SVM). After getting the suspicious areas, there are still some false alarms such as microwaves and small ribbon clouds, thus simple shape and texture analysis are adopted to distinguish between ships and nonships in suspicious areas. Experimental results show the proposed method is insensitive to waves, clouds, illumination and ship size.

  3. Effectiveness of back-to-back testing

    NASA Technical Reports Server (NTRS)

    Vouk, Mladen A.; Mcallister, David F.; Eckhardt, David E.; Caglayan, Alper; Kelly, John P. J.

    1987-01-01

    Three models of back-to-back testing processes are described. Two models treat the case where there is no intercomponent failure dependence. The third model describes the more realistic case where there is correlation among the failure probabilities of the functionally equivalent components. The theory indicates that back-to-back testing can, under the right conditions, provide a considerable gain in software reliability. The models are used to analyze the data obtained in a fault-tolerant software experiment. It is shown that the expected gain is indeed achieved, and exceeded, provided the intercomponent failure dependence is sufficiently small. However, even with the relatively high correlation the use of several functionally equivalent components coupled with back-to-back testing may provide a considerable reliability gain. Implications of this finding are that the multiversion software development is a feasible and cost effective approach to providing highly reliable software components intended for fault-tolerant software systems, on condition that special attention is directed at early detection and elimination of correlated faults.

  4. Use of portable antennas to estimate abundance of PIT-tagged fish in small streams: Factors affecting detection probability

    USGS Publications Warehouse

    O'Donnell, Matthew J.; Horton, Gregg E.; Letcher, Benjamin H.

    2010-01-01

    Portable passive integrated transponder (PIT) tag antenna systems can be valuable in providing reliable estimates of the abundance of tagged Atlantic salmon Salmo salar in small streams under a wide range of conditions. We developed and employed PIT tag antenna wand techniques in two controlled experiments and an additional case study to examine the factors that influenced our ability to estimate population size. We used Pollock's robust-design capture–mark–recapture model to obtain estimates of the probability of first detection (p), the probability of redetection (c), and abundance (N) in the two controlled experiments. First, we conducted an experiment in which tags were hidden in fixed locations. Although p and c varied among the three observers and among the three passes that each observer conducted, the estimates of N were identical to the true values and did not vary among observers. In the second experiment using free-swimming tagged fish, p and c varied among passes and time of day. Additionally, estimates of N varied between day and night and among age-classes but were within 10% of the true population size. In the case study, we used the Cormack–Jolly–Seber model to examine the variation in p, and we compared counts of tagged fish found with the antenna wand with counts collected via electrofishing. In that study, we found that although p varied for age-classes, sample dates, and time of day, antenna and electrofishing estimates of N were similar, indicating that population size can be reliably estimated via PIT tag antenna wands. However, factors such as the observer, time of day, age of fish, and stream discharge can influence the initial and subsequent detection probabilities.

  5. Detection of Intermediate-Period Transiting Planets with a Network of Small Telescopes: transitsearch.org

    NASA Astrophysics Data System (ADS)

    Seagroves, Scott; Harker, Justin; Laughlin, Gregory; Lacy, Justin; Castellano, Tim

    2003-12-01

    We describe a project (transitsearch.org) currently attempting to discover transiting intermediate-period planets orbiting bright parent stars, and we simulate that project's performance. The discovery of such a transit would be an important astronomical advance, bridging the critical gap in understanding between HD 209458b and Jupiter. However, the task is made difficult by intrinsically low transit probabilities and small transit duty cycles. This project's efficient and economical strategy is to photometrically monitor stars that are known (from radial velocity surveys) to bear planets, using a network of widely spaced observers with small telescopes. These observers, each individually capable of precision (1%) differential photometry, monitor candidates during the time windows in which the radial velocity solution predicts a transit if the orbital inclination is close to 90°. We use Monte Carlo techniques to simulate the performance of this network, performing simulations with different configurations of observers in order to optimize coordination of an actual campaign. Our results indicate that transitsearch.org can reliably rule out or detect planetary transits within the current catalog of known planet-bearing stars. A distributed network of skilled amateur astronomers and small college observatories is a cost-effective method for discovering the small number of transiting planets with periods in the range 10 days

  6. APSTNG: neutron interrogation for detection of explosives, drugs, and nuclear and chemical warfare materials

    NASA Astrophysics Data System (ADS)

    Rhodes, Edgar A.; Peters, Charles W.

    1993-02-01

    A recently developed neutron diagnostic probe system has the potential to satisfy a significant number of van-mobile and fixed-portal requirements for nondestructive detection, including monitoring of contraband explosives, drugs, and weapon materials, and treaty verification of sealed munitions. The probe is based on a unique associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object of interest with a low-intensity beam of 14- MeV neutrons generated from the deuterium-tritium reaction and that detects the alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions identify nuclides associated with all major chemicals in explosives, drugs, and chemical warfare agents, as well as many pollutants and fissile and fertile special nuclear material. Flight times determined from detection times of the gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system that can be used along with or instead of the emission imaging system. Proof-of-concept experiments have been performed under laboratory conditions for simulated nuclear and chemical warfare munitions and for explosives and drugs. The small and relatively inexpensive APSTNG exhibits high reliability and can be quickly replaced. Surveillance systems based on APSTNG technology can avoid the large physical size, high capital and operating expenses, and reliability problems associated with complex accelerators.

  7. Development of a rapid DNA extraction method and one-step nested PCR for the detection of Naegleria fowleri from the environment.

    PubMed

    Ahmad, Arine Fadzlun; Lonnen, James; Andrew, Peter W; Kilvington, Simon

    2011-10-15

    Naegleria fowleri is a small free-living amoebo-flagellate found in natural and manmade thermal aquatic habitats worldwide. The organism is pathogenic to man causing fatal primary amoebic meningoencephalitis (PAM). Infection typically results from bathing in contaminated water and is usually fatal. It is, therefore, important to identify sites containing N. fowleri in the interests of preventive public health microbiology. Culture of environmental material is the conventional method for the isolation of N. fowleri but requires several days incubation and subsequent biochemical or molecular tests to confirm identification. Here, a nested one-step PCR test, in conjunction with a direct DNA extraction from water or sediment material, was developed for the rapid and reliable detection of N. fowleri from the environment. Here, the assay detected N, fowleri in 18/109 river water samples associated with a nuclear power plant in South West France and 0/10 from a similar site in the UK. Although culture of samples yielded numerous thermophilic free-living amoebae, none were N. fowleri or other thermophilic Naegleria spp. The availability of a rapid, reliable and sensitive one-step nested PCR method for the direct detection of N. fowleri from the environment may aid ecological studies and enable intervention to prevent PAM cases. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. Robot-based tele-echography: clinical evaluation of the TER system in abdominal aortic exploration.

    PubMed

    Martinelli, Thomas; Bosson, Jean-Luc; Bressollette, Luc; Pelissier, Franck; Boidard, Eric; Troccaz, Jocelyne; Cinquin, Philippe

    2007-11-01

    The TER system is a robot-based tele-echography system allowing remote ultrasound examination. The specialist moves a mock-up of the ultrasound probe at the master site, and the robot reproduces the movements of the real probe, which sends back ultrasound images and force feedback. This tool could be used to perform ultrasound examinations in small health care centers or from isolated sites. The objective of this study was to prove, under real conditions, the feasibility and reliability of the TER system in detecting abdominal aortic and iliac aneurysms. Fifty-eight patients were included in 2 centers in Brest and Grenoble, France. The remote examination was compared with the reference standard, the bedside examination, for aorta and iliac artery diameter measurement, detection and description of aneurysms, detection of atheromatosis, the duration of the examination, and acceptability. All aneurysms (8) were detected by both techniques as intramural thrombosis and extension to the iliac arteries. The interobserver correlation coefficient was 0.982 (P < .0001) for aortic diameters. The rate of concordance between 2 operators in evaluating atheromatosis was 84% +/- 11% (95% confidence interval). Our study on 58 patients suggests that the TER system could be a reliable, acceptable, and effective robot-based system for performing remote abdominal aortic ultrasound examinations. Research is continuing to improve the equipment for general abdominal use.

  9. Automatic detection of blurred images in UAV image sets

    NASA Astrophysics Data System (ADS)

    Sieberth, Till; Wackrow, Rene; Chandler, Jim H.

    2016-12-01

    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of additional images. However, the calculated blur value named SIEDS (saturation image edge difference standard-deviation) on its own does not provide an absolute number to judge if an image is blurred or not. To achieve a reliable judgement of image sharpness the SIEDS value has to be compared to other SIEDS values from the same dataset. The speed and reliability of the method was tested using a range of different UAV datasets. Two datasets will be presented in this paper to demonstrate the effectiveness of the algorithm. The algorithm proves to be fast and the returned values are optically correct, making the algorithm applicable for UAV datasets. Additionally, a close range dataset was processed to determine whether the method is also useful for close range applications. The results show that the method is also reliable for close range images, which significantly extends the field of application for the algorithm.

  10. Distortion in fingerprints: a statistical investigation using shape measurement tools.

    PubMed

    Sheets, H David; Torres, Anne; Langenburg, Glenn; Bush, Peter J; Bush, Mary A

    2014-07-01

    Friction ridge impression appearance can be affected due to the type of surface touched and pressure exerted during deposition. Understanding the magnitude of alterations, regions affected, and systematic/detectable changes occurring would provide useful information. Geometric morphometric techniques were used to statistically characterize these changes. One hundred and fourteen prints were obtained from a single volunteer and impressed with heavy, normal, and light pressure on computer paper, soft gloss paper, 10-print card stock, and retabs. Six hundred prints from 10 volunteers were rolled with heavy, normal, and light pressure on soft gloss paper and 10-print card stock. Results indicate that while different substrates/pressure levels produced small systematic changes in fingerprints, the changes were small in magnitude: roughly the width of one ridge. There were no detectable changes in the degree of random variability of prints associated with either pressure or substrate. In conclusion, the prints transferred reliably regardless of pressure or substrate. © 2014 American Academy of Forensic Sciences.

  11. Detection and Estimation of an Optical Image by Photon-Counting Techniques. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Lily Lee

    1973-01-01

    Statistical description of a photoelectric detector is given. The photosensitive surface of the detector is divided into many small areas, and the moment generating function of the photo-counting statistic is derived for large time-bandwidth product. The detection of a specified optical image in the presence of the background light by using the hypothesis test is discussed. The ideal detector based on the likelihood ratio from a set of numbers of photoelectrons ejected from many small areas of the photosensitive surface is studied and compared with the threshold detector and a simple detector which is based on the likelihood ratio by counting the total number of photoelectrons from a finite area of the surface. The intensity of the image is assumed to be Gaussian distributed spatially against the uniformly distributed background light. The numerical approximation by the method of steepest descent is used, and the calculations of the reliabilities for the detectors are carried out by a digital computer.

  12. Identification of I1171N resistance mutation in ALK-positive non-small-cell lung cancer tumor sample and circulating tumor DNA.

    PubMed

    Johnson, Alison C; Dô, Pascal; Richard, Nicolas; Dubos, Catherine; Michels, Jean Jacques; Bonneau, Jessica; Gervais, Radj

    2016-09-01

    Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is sensitive to ALK inhibitor therapy, but resistance invariably develops and can be mediated by certain secondary mutations. The detection of these mutations is useful to guide treatment decisions, but tumors are not always easily accessible to re-biopsy. We report the case of a patient with ALK-rearranged NSCLC who presented acquired resistance to crizotinib and then alectinib. Sequencing analyses of DNA from a liver metastasis biopsy sample and circulating tumor DNA both found the same I1171N ALK kinase domain mutation, known to confer resistance to certain ALK inhibitors. However, the patient then received ceritinib, a 2nd generation ALK inhibitor, and achieved another partial response. This case underlines how ALK resistance mutation detection in peripheral blood could be a reliable, safer, and less invasive alternative to tissue-based samples in NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cold-evoked potentials - Ready for clinical use?

    PubMed

    Hüllemann, P; Nerdal, A; Binder, A; Helfert, S; Reimer, M; Baron, R

    2016-11-01

    Cold-evoked potentials (CEPs) are known to assess the integrity of A-delta fibres and the spinothalamic tract. Nevertheless, the clinical value was not investigated previously. The aim of this study was to measure CEPs in 16 healthy subjects from the face, hand and foot sole and to investigate whether CEPs reliably detect A-delta fibre abnormalities. Swift cold stimuli were applied to the skin with a commercially available thermode, which cooled down from 30 to 25 °C in approximately 0.5 s. CEP latencies (N1, N2 and P2) and amplitudes (N1, N2/P2) were recorded with EEG. Reversible A-fibre function loss was induced by applying a selective A-fibre block at the superficial radial nerve. In all 16 subjects CEPs could be recorded from all locations; N2, P2 mean latencies were 276.4 ± 38.9 and 389.8 ± 52.5 (face), 318.6 ± 31.6 ms and 477.7 ± 43.6 (hand), and 627.6 ± 84.4 and 774.2 ± 94.0 (foot sole). N2/P2 amplitudes were 10.7 ± 4.1, 11.3 ± 4.1 and 7.5 ± 4.1 μV. During A-fibre block no CEPs were detectable in the grand average, which restored 10 min after block removal. CEPs were reliably recorded in healthy subjects at the hand, face and foot. Experimentally induced reversible A-delta fibre function loss was detected by CEPs. Functional recovery was assessed as well. This study is basis for further CEP evaluation studies and might be the first step for implementing CEPs in clinical routine for the early diagnosis of small-fibre disease. WHAT DOES THIS STUDY ADD?: Cold-evoked potentials are capable of reliably measuring A-delta fibre integrity, loss of function and functional recovery in healthy subjects, which is an essential prerequisite for diagnostic use in patients with small-fibre disease. © 2016 European Pain Federation - EFIC®.

  14. Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control.

    PubMed

    Chiu, Haw-Yen; Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chang, Jer-Hao; Su, Fong-Chin

    2009-08-01

    A precise magnitude and timing control of pinch performance is based on accurate feed-forward and feedback control mechanisms. Ratio of peak pinch force and maximum load force during a functional performance is a sensitive parameter to reflect the ability to scale pinch force output according to actual loads. A pinch apparatus was constructed to detect momentary pinch force modulation of 20 subjects with normal hand sensation. The results indicated high intra-class correlation coefficient and small coefficient of variation of the detected force ratio among three repeated tests, which represented that the stability test of the measured response confirmed the feasibility of this apparatus. The force ratio for a 480 g object with a steel surface ranged between 1.77 and 1.98. Normal subjects were able to scale and contribute pinch force precisely to a pinch-holding-up test. This study may provide clinicians a reliable apparatus and method to analyze the recovery of functional sensibility in patients with nerve injuries. Copyright 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Reliability and validity of two isometric squat tests.

    PubMed

    Blazevich, Anthony J; Gill, Nicholas; Newton, Robert U

    2002-05-01

    The purpose of the present study was first to examine the reliability of isometric squat (IS) and isometric forward hack squat (IFHS) tests to determine if repeated measures on the same subjects yielded reliable results. The second purpose was to examine the relation between isometric and dynamic measures of strength to assess validity. Fourteen male subjects performed maximal IS and IFHS tests on 2 occasions and 1 repetition maximum (1-RM) free-weight squat and forward hack squat (FHS) tests on 1 occasion. The 2 tests were found to be highly reliable (intraclass correlation coefficient [ICC](IS) = 0.97 and ICC(IFHS) = 1.00). There was a strong relation between average IS and 1-RM squat performance, and between IFHS and 1-RM FHS performance (r(squat) = 0.77, r(FHS) = 0.76; p < 0.01), but a weak relation between squat and FHS test performances (r < 0.55). There was also no difference between observed 1-RM values and those predicted by our regression equations. Errors in predicting 1-RM performance were in the order of 8.5% (standard error of the estimate [SEE] = 13.8 kg) and 7.3% (SEE = 19.4 kg) for IS and IFHS respectively. Correlations between isometric and 1-RM tests were not of sufficient size to indicate high validity of the isometric tests. Together the results suggest that IS and IFHS tests could detect small differences in multijoint isometric strength between subjects, or performance changes over time, and that the scores in the isometric tests are well related to 1-RM performance. However, there was a small error when predicting 1-RM performance from isometric performance, and these tests have not been shown to discriminate between small changes in dynamic strength. The weak relation between squat and FHS test performance can be attributed to differences in the movement patterns of the tests

  16. Evaluating the performance of the quick CSF method in detecting contrast sensitivity function changes

    PubMed Central

    Hou, Fang; Lesmes, Luis Andres; Kim, Woojae; Gu, Hairong; Pitt, Mark A.; Myung, Jay I.; Lu, Zhong-Lin

    2016-01-01

    The contrast sensitivity function (CSF) has shown promise as a functional vision endpoint for monitoring the changes in functional vision that accompany eye disease or its treatment. However, detecting CSF changes with precision and efficiency at both the individual and group levels is very challenging. By exploiting the Bayesian foundation of the quick CSF method (Lesmes, Lu, Baek, & Albright, 2010), we developed and evaluated metrics for detecting CSF changes at both the individual and group levels. A 10-letter identification task was used to assess the systematic changes in the CSF measured in three luminance conditions in 112 naïve normal observers. The data from the large sample allowed us to estimate the test–retest reliability of the quick CSF procedure and evaluate its performance in detecting CSF changes at both the individual and group levels. The test–retest reliability reached 0.974 with 50 trials. In 50 trials, the quick CSF method can detect a medium 0.30 log unit area under log CSF change with 94.0% accuracy at the individual observer level. At the group level, a power analysis based on the empirical distribution of CSF changes from the large sample showed that a very small area under log CSF change (0.025 log unit) could be detected by the quick CSF method with 112 observers and 50 trials. These results make it plausible to apply the method to monitor the progression of visual diseases or treatment effects on individual patients and greatly reduce the time, sample size, and costs in clinical trials at the group level. PMID:27120074

  17. Detection of Yarkovsky acceleration in the context of precovery observations and the future Gaia catalogue

    NASA Astrophysics Data System (ADS)

    Desmars, J.

    2015-03-01

    Context. The Yarkovsky effect is a weak non-gravitational force leading to a small variation of the semi-major axis of an asteroid. Using radar measurements and astrometric observations, it is possible to measure a drift in semi-major axis through orbit determination. Aims: This paper aims to detect a reliable drift in semi-major axis of near-Earth asteroids (NEAs) from ground-based observations and to investigate the impact of precovery observations and the future Gaia catalogue in the detection of a secular drift in semi-major axis. Methods: We have developed a precise dynamical model of an asteroid's motion taking the Yarkovsky acceleration into account and allowing the fitting of the drift in semi-major axis. Using statistical methods, we investigate the quality and the robustness of the detection. Results: By filtering spurious detections with an estimated maximum drift depending on the asteroid's size, we found 46 NEAs with a reliable drift in semi-major axis in good agreement with the previous studies. The measure of the drift leads to a better orbit determination and constrains some physical parameters of these objects. Our results are in good agreement with the 1 /D dependence of the drift and with the expected ratio of prograde and retrograde NEAs. We show that the uncertainty of the drift mainly depends on the length of orbital arc and in this way we highlight the importance of the precovery observations and data mining in the detection of consistent drift. Finally, we discuss the impact of Gaia catalogue in the determination of drift in semi-major axis.

  18. Identifying micro-inversions using high-throughput sequencing reads.

    PubMed

    He, Feifei; Li, Yang; Tang, Yu-Hang; Ma, Jian; Zhu, Huaiqiu

    2016-01-11

    The identification of inversions of DNA segments shorter than read length (e.g., 100 bp), defined as micro-inversions (MIs), remains challenging for next-generation sequencing reads. It is acknowledged that MIs are important genomic variation and may play roles in causing genetic disease. However, current alignment methods are generally insensitive to detect MIs. Here we develop a novel tool, MID (Micro-Inversion Detector), to identify MIs in human genomes using next-generation sequencing reads. The algorithm of MID is designed based on a dynamic programming path-finding approach. What makes MID different from other variant detection tools is that MID can handle small MIs and multiple breakpoints within an unmapped read. Moreover, MID improves reliability in low coverage data by integrating multiple samples. Our evaluation demonstrated that MID outperforms Gustaf, which can currently detect inversions from 30 bp to 500 bp. To our knowledge, MID is the first method that can efficiently and reliably identify MIs from unmapped short next-generation sequencing reads. MID is reliable on low coverage data, which is suitable for large-scale projects such as the 1000 Genomes Project (1KGP). MID identified previously unknown MIs from the 1KGP that overlap with genes and regulatory elements in the human genome. We also identified MIs in cancer cell lines from Cancer Cell Line Encyclopedia (CCLE). Therefore our tool is expected to be useful to improve the study of MIs as a type of genetic variant in the human genome. The source code can be downloaded from: http://cqb.pku.edu.cn/ZhuLab/MID .

  19. A Total Validation Approach for assessing the RST technique in forest fire detection and monitoring

    NASA Astrophysics Data System (ADS)

    Mazzeo, Giuseppe; Baldassarre, Giuseppe; Corrado, Rosita; Filizzola, Carolina; Genzano, Nicola; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Several studies have shown that high temporal resolution sensors such as AVHRR (Advanced Very High Resolution Radiometer) aboard NOAA (National Oceanic and Atmospheric Administration) satellites, MODIS (Moderate Resolution Imaging Spectroradiometer) aboard EOS (Earth Observing System) satellites and, more recently, SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard MSG (Meteosat Second Generation) platforms, are suitable for detecting and monitoring forest fires. At the same time, many satellite-based techniques have been proposed for fire detection, but most of them, based on single image fixed-thresholds, often generate false alarms mainly due to the contribution of the reflected solar radiation in daytime, atmospheric effects, etc., so that they result to have scarce reliability when applied in an operational scenario. Other algorithms, which are quite reliable thanks to their multitemporal and/or contextual nature, may turn out to be hardly applicable so that they cannot be inserted in whatever operative schemes. An innovative approach, named RST - Robust Satellite Technique, already applied for the monitoring of major natural and environmental risks has been recently used for fire detection and monitoring. The RST approach is based on local (in space and time) thresholds which are automatically computed on the basis of long temporal series of satellite data. It demonstrated already good performances in many cases of applications, but recently for the first time a total validation approach (TVA) was experimented in collaboration with administrators, decision makers and local agencies, in order to evaluate the actual reliability and sensitivity of RST in a pre-operational context. TVA, based on a systematic study of the origin of each hot spot identified by RST, allowed us to recognize most of them as actual thermal anomalies (associated to small fires, to variations of thermal emission in industrial plants, etc.) and not as false alarms simply because not associated to officially documented forest fires. Some results of recent campaigns both of winter and summer fire detection and monitoring in Italy will be shown and discussed.

  20. Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis.

    PubMed

    Zywicki, Marek; Bakowska-Zywicka, Kamilla; Polacek, Norbert

    2012-05-01

    The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manner.

  1. Adaptation of a military FTS to civilian air toxics measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J.R.; Dorval, R.K.

    1994-12-31

    In many ways, the military problem of chemical agent detection is similar to the civilian problem of toxic and related air pollutants detection. A recent program to design a next generation Fourier transform spectrometer (FTS) based chemical agent detection system has been funded by the US Army. This program has resulted in an FTS system that has a number of characteristics that make it suitable for applications to the civilian measurement problem. Low power, low weight, and small size lead to low installation, operating and maintenance costs. Innovative use of diode lasers in place of HeNe reference sources leads tomore » long lifetimes and high reliability. Absolute scan position servos allow for highly efficient offset scanning. This paper will relate the performance of this system to present air monitoring requirements.« less

  2. A whole-body dual-modality radionuclide optical strategy for preclinical imaging of metastasis and heterogeneous treatment response in different microenvironments.

    PubMed

    Fruhwirth, Gilbert O; Diocou, Seckou; Blower, Philip J; Ng, Tony; Mullen, Greg E D

    2014-04-01

    Imaging spontaneous cancer cell metastasis or heterogeneous tumor responses to drug treatment in vivo is difficult to achieve. The goal was to develop a new highly sensitive and reliable preclinical longitudinal in vivo imaging model for this purpose, thereby facilitating discovery and validation of anticancer therapies or molecular imaging agents. The strategy is based on breast cancer cells stably expressing the human sodium iodide symporter (NIS) fused to a red fluorescent protein, thereby permitting radionuclide and fluorescence imaging. Using whole-body nano-SPECT/CT with (99m)TcO4(-), we followed primary tumor growth and spontaneous metastasis in the presence or absence of etoposide treatment. NIS imaging was used to classify organs as small as individual lymph nodes (LNs) to be positive or negative for metastasis, and results were confirmed by confocal fluorescence microscopy. Etoposide treatment efficacy was proven by ex vivo anticaspase 3 staining and fluorescence microscopy. In this preclinical model, we found that the NIS imaging strategy outperformed state-of-the-art (18)F-FDG imaging in its ability to detect small tumors (18.5-fold-better tumor-to-blood ratio) and metastases (LN, 3.6-fold) because of improved contrast in organs close to metastatic sites (12- and 8.5-fold-lower standardized uptake value in the heart and kidney, respectively). We applied the model to assess the treatment response to the neoadjuvant etoposide and found a consistent and reliable improvement in spontaneous metastasis detection. Importantly, we also found that tumor cells in different microenvironments responded in a heterogeneous manner to etoposide treatment, which could be determined only by the NIS-based strategy and not by (18)F-FDG imaging. We developed a new strategy for preclinical longitudinal in vivo cancer cell tracking with greater sensitivity and reliability than (18)F-FDG PET and applied it to track spontaneous and distant metastasis in the presence or absence of genotoxic stress therapy. Importantly, the model provides sufficient sensitivity and dynamic range to permit the reliable assessment of heterogeneous treatment responses in various microenvironments.

  3. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  4. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  5. A line transect model for aerial surveys

    USGS Publications Warehouse

    Quang, Pham Xuan; Lanctot, Richard B.

    1991-01-01

    We employ a line transect method to estimate the density of the common and Pacific loon in the Yukon Flats National Wildlife Refuge from aerial survey data. Line transect methods have the advantage of automatically taking into account “visibility bias” due to detectability difference of animals at different distances from the transect line. However, line transect methods must overcome two difficulties when applied to inaccurate recording of sighting distances due to high travel speeds, so that in fact only a few reliable distance class counts are available. We propose a unimodal detection function that provides an estimate of the effective area lost due to the blind strip, under the assumption that a line of perfect detection exists parallel to the transect line. The unimodal detection function can also be applied when a blind strip is absent, and in certain instances when the maximum probability of detection is less than 100%. A simple bootstrap procedure to estimate standard error is illustrated. Finally, we present results from a small set of Monte Carlo experiments.

  6. Failure Detecting Method of Fault Current Limiter System with Rectifier

    NASA Astrophysics Data System (ADS)

    Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa

    A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.

  7. Highly sensitive detection of target molecules using a new fluorescence-based bead assay

    NASA Astrophysics Data System (ADS)

    Scheffler, Silvia; Strauß, Denis; Sauer, Markus

    2007-07-01

    Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.

  8. Use of remote sensing for land use policy formulation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in studies for using remotely sensed data for assessing crop stress and in crop estimation is reported. The estimation of acreage of small forested areas in the southern lower peninsula of Michigan using LANDSAT data is evaluated. Damage to small grains caused by the cereal leaf beetle was assessed through remote sensing. The remote detection of X-disease of peach and cherry trees and of fire blight of pear and apple trees was investigated. The reliability of improving on standard methods of crop production estimation was demonstrated. Areas of virus infestation in vineyards and blueberry fields in western and southwestern Michigan were identified. The installation and systems integration of a microcomputer system for processing and making available remotely sensed data are described.

  9. Shock temperature measurement of transparent materials under shock compression

    NASA Astrophysics Data System (ADS)

    Hu, Jinbiao

    1999-06-01

    Under shock compression, some materials have very small absorptance. So it's emissivity is very small too. For this kinds of materials, although they stand in high temperature state under shock compression, the temperature can not be detected easily by using optical radiation technique because of the low emissivity. In this paper, an optical radiation temperature measurement technique of measuring temperature of very low emissive material under shock compression was proposed. For making sure this technique, temperature of crystal NaCl at shock pressure 41 GPa was measured. The result agrees with the results of Kormer et al and Ahrens et al very well. This shows that this technique is reliable and can be used to measuring low emissive shock temperature.

  10. DHS S&T First Responders Group and NATO Counter UAS Proposal Interest Response.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salton, Jonathan R.

    The capability, speed, size, and widespread availability of small unmanned aerial systems (sUAS) makes them a serious security concern. The enabling technologies for sUAS are rapidly evolving and so too are the threats they pose to national security. Potential threat vehicles have a small cross-section, and are difficult to reliably detect using purely ground-based systems (e.g. radar or electro-optical) and challenging to target using conventional anti-aircraft defenses. Ground-based sensors are static and suffer from interference with the earth, vegetation and other man-made structures which obscure objects at low altitudes. Because of these challenges, sUAS pose a unique and rapidly evolvingmore » threat to national security.« less

  11. Multiplex PCR for diagnosis of Theileria uilenbergi, Theileria luwenshuni, and Theileria ovis in small ruminants.

    PubMed

    Zhang, Xiao; Liu, Zhijie; Yang, Jifei; Chen, Ze; Guan, Guiquan; Ren, Qiaoyun; Liu, Aihong; Luo, Jianxun; Yin, Hong; Li, Youquan

    2014-02-01

    Infections with Theileria sp. may cause significant economic losses to the sheep industry. Species identification based on microscopic examination is difficult, and more suitable methods are required for the rapid detection and identification of Theileria sp, in clinical specimens. In this study, a multiplex polymerase chain reaction (mPCR) assay was developed to simultaneously identify three individual Theileria species in small ruminants. Three pairs of specific, sensitive primers were designed on the basis of the 5.8S ribosomal RNA gene (Theileria luwenshuni and Theileria ovis) and the 18S ribosomal RNA gene (Theileria uilenbergi) to generate target products of 303, 884, and 530 bp, respectively. Standard DNA for each of the three species was extracted from blood recovered from infected sheep, and a preliminary study was conducted on 56 sheep to verify the reliability of the system. Optimal PCR conditions, including primer concentration, annealing time, and the number of amplification cycles, were established. The assay sensitivity under these conditions was 10(-3) % parasitemia, and its specificity was 100 %. The results of the study suggest that mPCR represents a simple, efficient test method as a practical alternative for the rapid detection and identification of Theileria species in small ruminants.

  12. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  13. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer.

    PubMed

    Hout, David R; Schweitzer, Brock L; Lawrence, Kasey; Morris, Stephan W; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly; Saltman, David L

    2017-08-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase ( ALK ) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off Δ C t of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK.

  14. Performance of a RT-PCR Assay in Comparison to FISH and Immunohistochemistry for the Detection of ALK in Non-Small Cell Lung Cancer

    PubMed Central

    Hout, David R.; Lawrence, Kasey; Morris, Stephan W.; Tucker, Tracy; Mazzola, Rosetta; Skelton, Rachel; McMahon, Frank; Handshoe, John; Lesperance, Mary; Karsan, Aly

    2017-01-01

    Patients with lung cancers harboring an activating anaplastic lymphoma kinase (ALK) rearrangement respond favorably to ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) are validated and widely used screening tests for ALK rearrangements but both methods have limitations. The ALK RGQ RT-PCR Kit (RT-PCR) is a single tube quantitative real-time PCR assay for high throughput and automated interpretation of ALK expression. In this study, we performed a direct comparison of formalin-fixed paraffin-embedded (FFPE) lung cancer specimens using all three ALK detection methods. The RT-PCR test (diagnostic cut-off ΔCt of ≤8) was shown to be highly sensitive (100%) when compared to FISH and IHC. Sequencing of RNA detected full-length ALK transcripts or EML4-ALK and KIF5B-ALK fusion variants in discordant cases in which ALK expression was detected by the ALK RT-PCR test but negative by FISH and IHC. The overall specificity of the RT-PCR test for the detection of ALK in cases without full-length ALK expression was 94% in comparison to FISH and sequencing. These data support the ALK RT-PCR test as a highly efficient and reliable diagnostic screening approach to identify patients with non-small cell lung cancer whose tumors are driven by oncogenic ALK. PMID:28763012

  15. Track-based event recognition in a realistic crowded environment

    NASA Astrophysics Data System (ADS)

    van Huis, Jasper R.; Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; den Hollander, Richard J. M.; Dijk, Judith; van Rest, Jeroen H.

    2014-10-01

    Automatic detection of abnormal behavior in CCTV cameras is important to improve the security in crowded environments, such as shopping malls, airports and railway stations. This behavior can be characterized at different time scales, e.g., by small-scale subtle and obvious actions or by large-scale walking patterns and interactions between people. For example, pickpocketing can be recognized by the actual snatch (small scale), when he follows the victim, or when he interacts with an accomplice before and after the incident (longer time scale). This paper focusses on event recognition by detecting large-scale track-based patterns. Our event recognition method consists of several steps: pedestrian detection, object tracking, track-based feature computation and rule-based event classification. In the experiment, we focused on single track actions (walk, run, loiter, stop, turn) and track interactions (pass, meet, merge, split). The experiment includes a controlled setup, where 10 actors perform these actions. The method is also applied to all tracks that are generated in a crowded shopping mall in a selected time frame. The results show that most of the actions can be detected reliably (on average 90%) at a low false positive rate (1.1%), and that the interactions obtain lower detection rates (70% at 0.3% FP). This method may become one of the components that assists operators to find threatening behavior and enrich the selection of videos that are to be observed.

  16. Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm

    NASA Astrophysics Data System (ADS)

    Neri, P.

    2017-05-01

    Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.

  17. Population size influences amphibian detection probability: implications for biodiversity monitoring programs.

    PubMed

    Tanadini, Lorenzo G; Schmidt, Benedikt R

    2011-01-01

    Monitoring is an integral part of species conservation. Monitoring programs must take imperfect detection of species into account in order to be reliable. Theory suggests that detection probability may be determined by population size but this relationship has not yet been assessed empirically. Population size is particularly important because it may induce heterogeneity in detection probability and thereby cause bias in estimates of biodiversity. We used a site occupancy model to analyse data from a volunteer-based amphibian monitoring program to assess how well different variables explain variation in detection probability. An index to population size best explained detection probabilities for four out of six species (to avoid circular reasoning, we used the count of individuals at a previous site visit as an index to current population size). The relationship between the population index and detection probability was positive. Commonly used weather variables best explained detection probabilities for two out of six species. Estimates of site occupancy probabilities differed depending on whether the population index was or was not used to model detection probability. The relationship between the population index and detectability has implications for the design of monitoring and species conservation. Most importantly, because many small populations are likely to be overlooked, monitoring programs should be designed in such a way that small populations are not overlooked. The results also imply that methods cannot be standardized in such a way that detection probabilities are constant. As we have shown here, one can easily account for variation in population size in the analysis of data from long-term monitoring programs by using counts of individuals from surveys at the same site in previous years. Accounting for variation in population size is important because it can affect the results of long-term monitoring programs and ultimately the conservation of imperiled species.

  18. Using passive integrated transponder (PIT) systems for terrestrial detection of blue-spotted salamanders (Ambystoma laterale) in situ

    USGS Publications Warehouse

    Ryan, Kevin J.; Zydlewski, Joseph D.; Calhoun, Aram J.K.

    2014-01-01

    Pure-diploid Blue-spotted Salamanders (Ambystoma laterale) are the smallest members of the family Ambystomatidae which makes tracking with radio-transmitters difficult because of small battery capacity. Passive integrated transponder (PIT) tags provide another tracking approach for small fossorial animals such as salamanders. We evaluated the use of portable PIT tag readers (PIT packs) to detect PIT tag-implanted pure-diploid Blue-spotted Salamanders in situ. We also examined the detection probability of salamanders with PIT tags held in enclosures in wetland and terrestrial habitats, as well as the underground detection range of PIT packs by scanning for buried tags not implanted into salamanders. Of the 532 PIT tagged salamanders, we detected 6.84% at least once during scanning surveys. We scanned systematically within a 13.37 ha area surrounding a salamander breeding pool on 34 occasions (~119 hours of survey time) and detected PIT tags 74 times. We detected 55% of PITs in tagged salamanders and 45%were expelled tags. We were able to reliably detect buried PIT tags from 1–22cm below the ground surface. Because nearly half the locations represented expelled tags, our data suggest this technique is inappropriate for future studies of pure-diploid Blue-spotted Salamanders, although it may be suitable for polyploid Blue-spotted Salamanders and other ambystomatid species, which are larger in size and may exhibit higher tag retention rates. It may also be prudent to conduct long-term tag retention studies in captivity before tagging and releasing salamanders for in situ study, and to double-mark individuals.

  19. A simple method to reconstruct the molar mass signal of respiratory gas to assess small airways with a double-tracer gas single-breath washout.

    PubMed

    Port, Johannes; Tao, Ziran; Junger, Annika; Joppek, Christoph; Tempel, Philipp; Husemann, Kim; Singer, Florian; Latzin, Philipp; Yammine, Sophie; Nagel, Joachim H; Kohlhäufl, Martin

    2017-11-01

    For the assessment of small airway diseases, a noninvasive double-tracer gas single-breath washout (DTG-SBW) with sulfur hexafluoride (SF 6 ) and helium (He) as tracer components has been proposed. It is assumed that small airway diseases may produce typical ventilation inhomogeneities which can be detected within one single tidal breath, when using two tracer components. Characteristic parameters calculated from a relative molar mass (MM) signal of the airflow during the washout expiration phase are analyzed. The DTG-SBW signal is acquired by subtracting a reconstructed MM signal without tracer gas from the signal measured with an ultrasonic sensor during in- and exhalation of the double-tracer gas for one tidal breath. In this paper, a simple method to determine the reconstructed MM signal is presented. Measurements on subjects with and without obstructive lung diseases including the small airways have shown high reliability and reproducibility of this method.

  20. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound.

    PubMed

    Gerling, Marco; Zhao, Ying; Nania, Salvatore; Norberg, K Jessica; Verbeke, Caroline S; Englert, Benjamin; Kuiper, Raoul V; Bergström, Asa; Hassan, Moustapha; Neesse, Albrecht; Löhr, J Matthias; Heuchel, Rainer L

    2014-01-01

    In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies.

  1. Clinical applications of correlational vestibular autorotation test.

    PubMed

    Hsieh, Li-Chun; Lin, Te-Ming; Chang, Yu-Min; Kuo, Terry B J; Lee, Gho-She

    2015-06-01

    The correlational vestibular autorotation test (VAT) system has the advantages of good test-retest reliability and calibrations of absolute degrees of eye movement are unnecessary when acquiring a cross correlation coefficient (CCC). The approach is able to efficiently detect peripheral vestibulopathies. A VAT has some drawbacks including poor test-retest reliability and slippage of sensor. This study aimed to develop a correlational VAT system and to evaluate the reliability and applicability of this system. Twenty healthy participants and 10 vertiginous patients were enrolled. Vertical and horizontal autorotations from 0 to 3 Hz with either closed or open eyes were performed. A small sensor and a wireless transmission technique were used to acquire the electro-ocular graph and head velocity signals. The two signals were analyzed using CCCs to assess the functioning of the vestibular ocular reflex (VOR). The results showed a significantly greater CCC for open-eye versus closed-eye of head autorotations. The CCCs also increased significantly with head rotational frequencies. Moreover, the CCCs significantly correlated with the VOR gains at autorotation frequencies ≥1.0 Hz. The test-retest reliability was good (intraclass correlation coefficients ≥0.85). The vertiginous participants had significantly lower individual CCCs and overall average CCC than age- and-gender matched controls.

  2. Reliability of semiquantitative assessment of osteophytes and subchondral cysts on tomosynthesis images by radiologists with different levels of expertise.

    PubMed

    Hayashi, Daichi; Xu, Li; Gusenburg, Jeffrey; Roemer, Frank W; Hunter, David J; Li, Ling; Guermazi, Ali

    2014-01-01

    We aimed to assess reliability of the evaluation of osteophytes and subchondral cysts on tomosynthesis images when read by radiologists with different levels of expertise. Forty subjects aged >40 years had both knees evaluated using tomosynthesis. Images were read by an "experienced" reader (musculoskeletal radiologist with prior experience) and an "inexperienced" reader (radiology resident with no prior experience). Readers graded osteophytes from 0 to 3 and noted the presence/absence of subchondral cysts in four locations of the tibiofemoral joint. Twenty knees were randomly selected and re-read. Inter- and intrareader reliabilities were calculated using overall exact percent agreement and weighted κ statistics. Diagnostic performance of the two readers was compared against magnetic resonance imaging readings by an expert reader (professor of musculoskeletal radiology). The experienced reader showed substantial intrareader reliability for graded reading of osteophytes (90%, κ=0.93), osteophyte detection (95%, κ=0.86) and cyst detection (95%, κ=0.83). The inexperienced reader showed perfect intrareader reliability for cyst detection (100%, κ=1.00) but intrareader reliability for graded reading (75%, κ=0.79) and detection (80%, κ=0.61) of osteophytes was lower than the experienced reader. Inter-reader reliability was 61% (κ=0.72) for graded osteophyte reading, 91% (κ=0.82) for osteophyte detection, and 88% (κ=0.66) for cyst detection. Diagnostic performance of the experienced reader was higher than the inexperienced reader regarding osteophyte detection (sensitivity range 0.74-0.95 vs. 0.54-0.75 for all locations) but diagnostic performance was similar for subchondral cysts. Tomosynthesis offers excellent intrareader reliability regardless of the reader experience, but experience is important for detection of osteophytes.

  3. Reliability of semiquantitative assessment of osteophytes and subchondral cysts on tomosynthesis images by radiologists with different levels of expertise

    PubMed Central

    Hayashi, Daichi; Xu, Li; Gusenburg, Jeffrey; Roemer, Frank W.; Hunter, David J.; Li, Ling; Guermazi, Ali

    2014-01-01

    PURPOSE We aimed to assess reliability of the evaluation of osteophytes and subchondral cysts on tomosynthesis images when read by radiologists with different levels of expertise. MATERIALS AND METHODS Forty subjects aged >40 years had both knees evaluated using tomosynthesis. Images were read by an “experienced” reader (musculoskeletal radiologist with prior experience) and an “inexperienced” reader (radiology resident with no prior experience). Readers graded osteophytes from 0 to 3 and noted the presence/absence of subchondral cysts in four locations of the tibiofemoral joint. Twenty knees were randomly selected and re-read. Inter- and intrareader reliabilities were calculated using overall exact percent agreement and weighted κ statistics. Diagnostic performance of the two readers was compared against magnetic resonance imaging readings by an expert reader (professor of musculoskeletal radiology). RESULTS The experienced reader showed substantial intrareader reliability for graded reading of osteophytes (90%, κ=0.93), osteophyte detection (95%, κ=0.86) and cyst detection (95%, κ=0.83). The inexperienced reader showed perfect intrareader reliability for cyst detection (100%, κ=1.00) but intrareader reliability for graded reading (75%, κ=0.79) and detection (80%, κ=0.61) of osteophytes was lower than the experienced reader. Inter-reader reliability was 61% (κ=0.72) for graded osteophyte reading, 91% (κ=0.82) for osteophyte detection, and 88% (κ=0.66) for cyst detection. Diagnostic performance of the experienced reader was higher than the inexperienced reader regarding osteophyte detection (sensitivity range 0.74–0.95 vs. 0.54–0.75 for all locations) but diagnostic performance was similar for subchondral cysts. CONCLUSION Tomosynthesis offers excellent intrareader reliability regardless of the reader experience, but experience is important for detection of osteophytes. PMID:24834489

  4. Objective assessment of leg edema using ultrasonography with a gel pad

    PubMed Central

    Iuchi, Terumi; Tsuchiya, Sayumi; Ohno, Naoki; Dai, Misako; Matsumoto, Masaru; Ogai, Kazuhiro; Sato, Aya; Sawazaki, Takuto; Miyati, Tosiaki; Tanaka, Shinobu; Sugama, Junko

    2017-01-01

    Ultrasonography (US) is useful for visual detection of edematous tissues to assess subcutaneous echogenicity. However, visualization of subcutaneous echogenicity is interpreted differently among operators because the evaluation is subjective and individual operators have unique knowledge. This study objectively assessed leg edema using US with a gel pad including fat for normalization of echogenicity in subcutaneous tissue. Five younger adults and four elderly people with leg edema were recruited. We compared assessments of US and limb circumference before and after the intervention of vibration to decrease edema in younger adults, and edema prior to going to sleep and reduced edema in the early morning in elderly people. These assessments were performed twice in elderly people by three operators and reliability, interrater differences, and bias were assessed. For US assessment, echogenicity in subcutaneous tissue was normalized to that of the gel pad by dividing the mean echogenicity of subcutaneous tissue by the mean echogenicity of the gel pad. In younger adults, the normalized subcutaneous echogenicity before the intervention was significantly higher than that after the intervention. In elderly people, echogenicity indicating edema was significantly higher than that after edema reduction. Edema was detected with accuracy rates of 76.9% in younger adults and 75.0% in elderly people. Meanwhile, limb circumference could be used to detect edema in 50.0% of healthy adults and 87.8% of elderly people. The intra-reliability was excellent (intraclass correlation coefficient > 0.9, p < 0.01), and the inter-reliability was good (intraclass correlation coefficient > 0.7, p < 0.01) for normalized subcutaneous echogenicity. Bland-Altman plots revealed that inter-rater differences and systematic bias were small. Normalized subcutaneous echogenicity with the pad can sensitively and objectively assess leg edema with high reliability. Therefore, this method has the potential to become a new gold standard for objective assessment of leg edema in clinical practice. PMID:28792959

  5. Reliably detectable flaw size for NDE methods that use calibration

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2017-04-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh18232 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  6. Reliably Detectable Flaw Size for NDE Methods that Use Calibration

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2017-01-01

    Probability of detection (POD) analysis is used in assessing reliably detectable flaw size in nondestructive evaluation (NDE). MIL-HDBK-1823 and associated mh1823 POD software gives most common methods of POD analysis. In this paper, POD analysis is applied to an NDE method, such as eddy current testing, where calibration is used. NDE calibration standards have known size artificial flaws such as electro-discharge machined (EDM) notches and flat bottom hole (FBH) reflectors which are used to set instrument sensitivity for detection of real flaws. Real flaws such as cracks and crack-like flaws are desired to be detected using these NDE methods. A reliably detectable crack size is required for safe life analysis of fracture critical parts. Therefore, it is important to correlate signal responses from real flaws with signal responses form artificial flaws used in calibration process to determine reliably detectable flaw size.

  7. Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites.

    PubMed

    Kergoat, Loïg; Piro, Benoît; Simon, Daniel T; Pham, Minh-Chau; Noël, Vincent; Berggren, Magnus

    2014-08-27

    The aim of the study is to open a new scope for organic electrochemical transistors based on PEDOT:PSS, a material blend known for its stability and reliability. These devices can leverage molecular electrocatalysis by incorporating small amounts of nano-catalyst during the transistor manufacturing (spin coating). This methodology is very simple to implement using the know-how of nanochemistry and results in efficient enzymatic activity transduction, in this case utilizing choline oxidase and glutamate oxidase. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel fluorescence-quenching immunochromatographic sensor for detection of the heavy metal chromium.

    PubMed

    Fu, QiangQiang; Tang, Yong; Shi, CongYing; Zhang, XiaoLi; Xiang, JunJian; Liu, Xi

    2013-11-15

    A novel fluorescence quenching immunochromatographic sensor (ICS) was developed for detecting chromium (Cr(3+)) within 15 min utilizing the fluorescence quenching function of gold nanoparticles (Au-NPs). The sensor performed with a positive readout. When the low concentrations of Cr(3+) samples were applied, detection signals of the test line (T line) were quenched, whereas when higher concentration Cr(3+) samples (1.56 ng/mL) were applied, the detection signal of the T line appeared. The detection signal intensity of the T line increased with increasing concentrations of Cr(3+). The low detection limit of developed fluorescence quenching ICS was 1.56 ng/mL. The fluorescence quenching ICS has a linear range of detection of Cr(3+) comprising between 6.25 ng/mL to 800 ng/mL. The recoveries of the fluorescence quenching ICS to detect Cr(3+) in tap water ranged from 94.7% to 101.7%. This result indicated that the developed sensor gave higher sensitivity and reliable reproducibility. It could provide a general detection method for small analyte in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. [Controlled evaluation of a high-resolution three-dimensional magnetic detector system (3D-MAGMA) as a proof of concept - examination of healthy volunteers before and after application of Metoclopramide (MCP)].

    PubMed

    Jacob, V Y P; Stallmach, A; Felber, J

    2016-06-01

    Changes in gastric and small bowel motility are a common clinical problem. Currently diagnostic options are limited because each method harbors certain disadvantages. It has been shown that the high-resolution three-dimensional magnetic detector system 3D-MAGMA is capable of reliably measuring gastric and small intestine motor activity. This system allows precise localization of a small magnetic marker and determination of its three-dimensional orientation inside a human body. The aim of the current study was to determine if 3D-MAGMA is reliably able to detect changes in gastric and small bowel motility under controlled conditions. MCP was used as a well known prokinetic agent to shorten the gastric and small bowel passage. 8 healthy volunteers (fasting) underwent motility testing of the stomach and small bowel by 3D-MAGMA with and without administration of MCP (10 mg orally). Among other data the time the capsule needed to pass through the stomach and the duodenum and the time the capsule needed to pass through the first 50 cm of the jejunum were recorded. The retention time of the capsule in the stomach under physiological conditions was 49.1 minutes (median; min. 18 min; max. 88.8 min). The median time the capsule needed to pass through the duodenum was 13.8 minutes (median; min. 1.7 min; max. 24.8 min). The time the capsule needed to pass through the first 50 cm of the jejunum under physiological conditions was 33.0 minutes (median; min. 20.2 min; max. 67.2 min). The retention time of the capsule in the stomach decreased significantly after administration of MCP to 20.9 minutes (median; min. 1.7 min; max. 62.8 min; p = 0.008). The time the capsule needed to pass through the duodenum was also reduced to 7.1 minutes (median; min. 3.1 min; max. 18.3 min; p = 0.055). The time the capsule needed to pass through the first 50 cm of the jejunum was also reduced to 21.7 minutes (median; min. 10.7 min; max. 31.2 min; p = 0.069). 3D-MAGMA is able to accurately detect changes in gastric and small bowel motility. Its clinical use appears conceivable especially in patients with diseases that have impact on gastric and small bowel motility. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Speech-evoked activation in adult temporal cortex measured using functional near-infrared spectroscopy (fNIRS): Are the measurements reliable?

    PubMed

    Wiggins, Ian M; Anderson, Carly A; Kitterick, Pádraig T; Hartley, Douglas E H

    2016-09-01

    Functional near-infrared spectroscopy (fNIRS) is a silent, non-invasive neuroimaging technique that is potentially well suited to auditory research. However, the reliability of auditory-evoked activation measured using fNIRS is largely unknown. The present study investigated the test-retest reliability of speech-evoked fNIRS responses in normally-hearing adults. Seventeen participants underwent fNIRS imaging in two sessions separated by three months. In a block design, participants were presented with auditory speech, visual speech (silent speechreading), and audiovisual speech conditions. Optode arrays were placed bilaterally over the temporal lobes, targeting auditory brain regions. A range of established metrics was used to quantify the reproducibility of cortical activation patterns, as well as the amplitude and time course of the haemodynamic response within predefined regions of interest. The use of a signal processing algorithm designed to reduce the influence of systemic physiological signals was found to be crucial to achieving reliable detection of significant activation at the group level. For auditory speech (with or without visual cues), reliability was good to excellent at the group level, but highly variable among individuals. Temporal-lobe activation in response to visual speech was less reliable, especially in the right hemisphere. Consistent with previous reports, fNIRS reliability was improved by averaging across a small number of channels overlying a cortical region of interest. Overall, the present results confirm that fNIRS can measure speech-evoked auditory responses in adults that are highly reliable at the group level, and indicate that signal processing to reduce physiological noise may substantially improve the reliability of fNIRS measurements. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark

    2002-07-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

  12. Associated-particle sealed-tube neutron probe for characterization of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhodes, E.; Dickerman, C.E.; Peters, C.W.

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband.more » Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.« less

  13. Reliability, validity and minimal detectable change of computerized respiratory sounds in patients with chronic obstructive pulmonary disease.

    PubMed

    Oliveira, Ana; Lage, Susan; Rodrigues, João; Marques, Alda

    2017-11-17

    Computerized respiratory sounds (CRS) are closely related to the movement of air within the tracheobronchial tree and are promising outcome measures in patients with chronic obstructive pulmonary disease (COPD). However, CRS measurement properties have been poorly tested. The aim of this study was to assess the reliability, validity and the minimal detectable changes (MDC) of CRS in patients with stable COPD. Fifty patients (36♂, 67.26 ± 9.31y, FEV 1 49.52 ± 19.67%predicted) were enrolled. CRS were recorded simultaneously at seven anatomic locations (trachea; right and left anterior, lateral and posterior chest). The number of crackles, wheeze occupation rate, median frequency (F50) and maximum intensity (Imax) were processed using validated algorithms. Within-day and between-days reliability, criterion and construct validity, validity to predict exacerbations and MDC were established. CRS presented moderate-to-excellent within-day reliability (ICC 1,3  ≥ 0.51; P < .05) and moderate-to-good between-days reliability (ICC 1,2  ≥ 0.47; P < .05) for most locations. Negligible-to-moderate correlations with FEV 1 %predicted were found (-0.53 < r s  < -0.28; P < .05), and the inspiratory number of crackles were the best discriminator between mild-to-moderate and severe-to-very severe airflow limitations (area under the curve >0.78). CRS correlated poorly with patient-reported outcomes (r s  < 0.48; P < .05) and did not predict exacerbations. Inspiratory number of crackles at posterior right chest, inspiratory F50 at trachea and anterior left chest and expiratory Imax at anterior right chest were simultaneously reliable and valid, and their MDC were 2.41, 55.27, 29.55 and 3.98, respectively. CRS are reliable and valid. Their use, integrated with other clinical and patient-reported measures, may fill the gap of assessing small airways and contribute toward a patient's comprehensive evaluation. © 2017 John Wiley & Sons Ltd.

  14. Dyes as bifunctional markers of DNA hybridization on surfaces and mutation detection.

    PubMed

    García-Mendiola, Tania; Cerro, María Ramos; López-Moreno, José María; Pariente, Félix; Lorenzo, Encarnación

    2016-10-01

    The interaction of small molecules with DNA has found diagnostic and therapeutic applications. In this work, we propose the use of two different dyes, in particular Azure A and Safranine, as bifunctional markers of on-surface DNA hybridization and potent tools for screening of specific gene mutations directly in real DNA PCR amplicons extracted from blood cells. By combining spectroscopic and electrochemical methods we demonstrate that both dyes can interact with single and double stranded DNA to a different extent, allowing reliable hybridization detection. From these data, we have also elucidated the nature of the interaction. We conclude that the binding mode is fundamentally intercalative with an electrostatic component. The dye fluorescence allows their use as nucleic acid stains for the detection of on-surfaces DNA hybridization. Its redox activity is exploited in the development of selective electrochemical DNA biosensors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Breath analysis using external cavity diode lasers: a review

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail

    2017-04-01

    Most techniques that are used for diagnosis and therapy of diseases are invasive. Reliable noninvasive methods are always needed for the comfort of patients. Owing to its noninvasiveness, ease of use, and easy repeatability, exhaled breath analysis is a very good candidate for this purpose. Breath analysis can be performed using different techniques, such as gas chromatography mass spectrometry (MS), proton transfer reaction-MS, and selected ion flow tube-MS. However, these devices are bulky and require complicated procedures for sample collection and preconcentration. Therefore, these are not practical for routine applications in hospitals. Laser-based techniques with small size, robustness, low cost, low response time, accuracy, precision, high sensitivity, selectivity, low detection limit, real-time, and point-of-care detection have a great potential for routine use in hospitals. In this review paper, the recent advances in the fields of external cavity lasers and breath analysis for detection of diseases are presented.

  16. Automatic Implementation of Prony Analysis for Electromechanical Mode Identification from Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.

    2010-07-31

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper developed a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detect ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis.« less

  17. Wearable vital parameters monitoring system

    NASA Astrophysics Data System (ADS)

    Caramaliu, Radu Vadim; Vasile, Alexandru; Bacis, Irina

    2015-02-01

    The system we propose monitors body temperature, heart rate and beside this, it tracks if the person who wears it suffers a faint. It uses a digital temperature sensor, a pulse sensor and a gravitational acceleration sensor to monitor the eventual faint or small heights free falls. The system continuously tracks the GPS position when available and stores the last valid data. So, when measuring abnormal vital parameters the module will send an SMS, using the GSM cellular network , with the person's social security number, the last valid GPS position for that person, the heart rate, the body temperature and, where applicable, a valid fall alert or non-valid fall alert. Even though such systems exist, they contain only faint detection or heart rate detection. Usually there is a strong correlation between low/high heart rate and an eventual faint. Combining both features into one system results in a more reliable detection device.

  18. 2004 EW95: A Phyllosilicate-bearing Carbonaceous Asteroid in the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Seccull, Tom; Fraser, Wesley C.; Puzia, Thomas H.; Brown, Michael E.; Schönebeck, Frederik

    2018-03-01

    Models of the Solar System’s dynamical evolution predict the dispersal of primitive planetesimals from their formative regions among the gas-giant planets due to the early phases of planetary migration. Consequently, carbonaceous objects were scattered both into the outer asteroid belt and out to the Kuiper Belt. These models predict that the Kuiper Belt should contain a small fraction of objects with carbonaceous surfaces, though to date, all reported visible reflectance spectra of small Kuiper Belt Objects (KBOs) are linear and featureless. We report the unusual reflectance spectrum of a small KBO, (120216) 2004 EW95, exhibiting a large drop in its near-UV reflectance and a broad shallow optical absorption feature centered at ∼700 nm, which is detected at greater than 4σ significance. These features, confirmed through multiple epochs of spectral photometry and spectroscopy, have respectively been associated with ferric oxides and phyllosilicates. The spectrum bears striking resemblance to those of some C-type asteroids, suggesting that 2004 EW95 may share a common origin with those objects. 2004 EW95 orbits the Sun in a stable mean motion resonance with Neptune, at relatively high eccentricity and inclination, suggesting it may have been emplaced there by some past dynamical instability. These results appear consistent with the aforementioned model predictions and are the first to show a reliably confirmed detection of silicate material on a small KBO.

  19. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  20. Biosensors for Non-Invasive Detection of Celiac Disease Biomarkers in Body Fluids.

    PubMed

    Pasinszki, Tibor; Krebsz, Melinda

    2018-06-16

    Celiac disease is a chronic gluten-initiated autoimmune disorder that predominantly damages the mucosa of the small intestine in genetically-susceptible individuals. It affects a large and increasing number of the world’s population. The diagnosis of this disease and monitoring the response of patients to the therapy, which is currently a life-long gluten-free diet, require the application of reliable, rapid, sensitive, selective, simple, and cost-effective analytical tools. Celiac disease biomarker detection in full blood, serum, or plasma offers a non-invasive way to do this and is well-suited to being the first step of diagnosis. Biosensors provide a novel and alternative way to perform conventional techniques in biomarker sensing, in which electrode material and architecture play important roles in achieving sensitive, selective, and stable detection. There are many opportunities to build and modify biosensor platforms using various materials and detection methods, and the aim of the present review is to summarize developments in this field.

  1. A Smart Capsule System for Automated Detection of Intestinal Bleeding Using HSL Color Recognition

    PubMed Central

    Liu, Hongying; Yan, Xueping; Jia, Ziru; Pi, Xitian

    2016-01-01

    There are no ideal means for the diagnosis of intestinal bleeding diseases as of now, particularly in the small intestine. This study investigated an intelligent intestinal bleeding detection capsule system based on color recognition. After the capsule is swallowed, the bleeding detection module (containing a color-sensitive adsorptive film that changes color when absorbing intestinal juice,) is used to identify intestinal bleeding features. A hue-saturation-light color space method can be applied to detect bleeding according to the range of H and S values of the film color. Once bleeding features are recognized, a wireless transmission module is activated immediately to send an alarm signal to the outside; an in vitro module receives the signal and sends an alarm. The average power consumption of the entire capsule system is estimated to be about 2.1mW. Owing to its simplicity, reliability, and effectiveness, this system represents a new approach to the clinical diagnosis of intestinal bleeding diseases. PMID:27902728

  2. Label-Free QCM Immunosensor for the Detection of Ochratoxin A

    PubMed Central

    Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma

    2018-01-01

    Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2–200 ng/mL detection range which can be used for on-site detection of feedstuffs. PMID:29641432

  3. Label-Free QCM Immunosensor for the Detection of Ochratoxin A.

    PubMed

    Pirinçci, Şerife Şeyda; Ertekin, Özlem; Laguna, Duygu Ercan; Özen, Fehime Şeyma; Öztürk, Zafer Ziya; Öztürk, Selma

    2018-04-11

    Ochratoxin A (OTA) is a potent mycotoxin that poses a risk in food and feed moieties and subject to worldwide regulation. Laboratory-based analytical methods are traditionally employed for reliable OTA quantification, but these methods cannot provide rapid and on-site analysis, where biosensors fill this gap. In this study a label-free quartz crystal microbalance (QCM)-based immunosensor for the detection of OTA, which is one of the most important small molecule contaminants, was developed by direct immobilization of OTA to amine-bearing sensor surfaces using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-Hydroxysuccinimide (NHS) chemistry. The protein-free sensor surface enabled regeneration of sensor surface with 50 mM NaOH and 1% SDS up to 13 times without loss of performance, which would disrupt a protein-containing sensor surface. We developed a QCM immunosensor using the developed sensor surface with a 17.2-200 ng/mL detection range which can be used for on-site detection of feedstuffs.

  4. Current microseismicity and generating faults in the Gyeongju area, southeastern Korea

    NASA Astrophysics Data System (ADS)

    Han, Minhui; Kim, Kwang-Hee; Son, Moon; Kang, Su Young

    2017-01-01

    A study of microseismicity in a 15 × 20 km2 subregion of Gyeongju, southeastern Korea, establishes a direct link between minor earthquakes and known fault structures. The study area has a complex history of tectonic deformation and has experienced large historic earthquakes, with small earthquakes recorded since the beginning of modern instrumental monitoring. From 5 years of continuously recorded local seismic data, 311 previously unidentified microearthquakes can be reliably located using the double-difference algorithm. These newly discovered events occur in linear streaks that can be spatially correlated with active faults, which could pose a serious hazard to nearby communities. At-risk infrastructure includes the largest industrial park in South Korea, nuclear power plants, and disposal facilities for radioactive waste. The current work suggests that the southern segment of the Yeonil Tectonic Line and segments of the Seokup and Waup Basin boundary faults are active. For areas with high rates of microseismic activity, reliably located hypocenters are spatially correlated with mapped faults; in less active areas, earthquake clusters tend to occur at fault intersections. Microearthquakes in stable continental regions are known to exist, but have been largely ignored in assessments of seismic hazard because their magnitudes are well below the detection thresholds of seismic networks. The total number of locatable microearthquakes could be dramatically increased by lowering the triggering thresholds of network detection algorithms. The present work offers an example of how microearthquakes can be reliably detected and located with advanced techniques. This could make it possible to create a new database to identify subsurface fault geometries and modes of fault movement, which could then be considered in the assessments of seismic hazard in regions where major earthquakes are rare.

  5. DNA and Protein Analyses to Confirm the Absence of Cross-Contamination and Support the Clinical Reliability of Extensively Hydrolysed Diets for Adverse Food Reaction-Pets.

    PubMed

    Lesponne, Isabelle; Naar, Jérôme; Planchon, Sébastien; Serchi, Tommaso; Montano, Mauricio

    2018-06-26

    Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.

  6. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly.

    PubMed

    Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz

    2015-03-01

    FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Dental hygiene faculty calibration in the evaluation of calculus detection.

    PubMed

    Garland, Kandis V; Newell, Kathleen J

    2009-03-01

    The purpose of this pilot study was to explore the impact of faculty calibration training on intra- and interrater reliability regarding calculus detection. After IRB approval, twelve dental hygiene faculty members were recruited from a pool of twenty-two for voluntary participation and randomized into two groups. All subjects provided two pre- and two posttest scorings of calculus deposits on each of three typodonts by recording yes or no indicating if they detected calculus. Accuracy and consistency of calculus detection were evaluated using an answer key. The experimental group received three two-hour training sessions to practice a prescribed exploring sequence and technique for calculus detection. Participants immediately corrected their answers, received feedback from the trainer, and reconciled missed areas. Intra- and interrater reliability (pre- and posttest) was determined using Cohen's Kappa and compared between groups using repeated measures (split-plot) ANOVA. The groups did not differ from pre- to posttraining (intrarater reliability p=0.64; interrater reliability p=0.20). Training had no effect on reliability levels for simulated calculus detection in this study. Recommendations for future studies of faculty calibration when evaluating students include using patients for assessing rater reliability, employing larger samples at multiple sites, and assessing the impact on students' attitudes and learning outcomes.

  8. Test-retest reliability at the item level and total score level of the Norwegian version of the Spinal Cord Injury Falls Concern Scale (SCI-FCS).

    PubMed

    Roaldsen, Kirsti Skavberg; Måøy, Åsa Blad; Jørgensen, Vivien; Stanghelle, Johan Kvalvik

    2016-05-01

    Translation of the Spinal Cord Injury Falls Concern Scale (SCI-FCS), and investigation of test-retest reliability on item-level and total-score-level. Translation, adaptation and test-retest study. A specialized rehabilitation setting in Norway. Fifty-four wheelchair users with a spinal cord injury. The median age of the cohort was 49 years, and the median number of years after injury was 13. Interventions/measurements: The SCI-FCS was translated and back-translated according to guidelines. Individuals answered the SCI-FCS twice over the course of one week. We investigated item-level test-retest reliability using Svensson's rank-based statistical method for disagreement analysis of paired ordinal data. For relative reliability, we analyzed the total-score-level test-retest reliability with intraclass correlation coefficients (ICC2.1), the standard error of measurement (SEM), and the smallest detectable change (SDC) for absolute reliability/measurement-error assessment and Cronbach's alpha for internal consistency. All items showed satisfactory percentage agreement (≥69%) between test and retest. There were small but non-negligible systematic disagreements among three items; we recovered an 11-13% higher chance for a lower second score. There was no disagreement due to random variance. The test-retest agreement (ICC2.1) was excellent (0.83). The SEM was 2.6 (12%), and the SDC was 7.1 (32%). The Cronbach's alpha was high (0.88). The Norwegian SCI-FCS is highly reliable for wheelchair users with chronic spinal cord injuries.

  9. Moving Object Detection in Heterogeneous Conditions in Embedded Systems.

    PubMed

    Garbo, Alessandro; Quer, Stefano

    2017-07-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates.

  10. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories.

    PubMed

    Chen, Xiaojian; Cui, Tingting; Fu, Jianhong; Peng, Jianwei; Shan, Jie

    2016-12-01

    Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a) it is able to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques.

  11. Moving Object Detection in Heterogeneous Conditions in Embedded Systems

    PubMed Central

    Garbo, Alessandro

    2017-01-01

    This paper presents a system for moving object exposure, focusing on pedestrian detection, in external, unfriendly, and heterogeneous environments. The system manipulates and accurately merges information coming from subsequent video frames, making small computational efforts in each single frame. Its main characterizing feature is to combine several well-known movement detection and tracking techniques, and to orchestrate them in a smart way to obtain good results in diversified scenarios. It uses dynamically adjusted thresholds to characterize different regions of interest, and it also adopts techniques to efficiently track movements, and detect and correct false positives. Accuracy and reliability mainly depend on the overall receipt, i.e., on how the software system is designed and implemented, on how the different algorithmic phases communicate information and collaborate with each other, and on how concurrency is organized. The application is specifically designed to work with inexpensive hardware devices, such as off-the-shelf video cameras and small embedded computational units, eventually forming an intelligent urban grid. As a matter of fact, the major contribution of the paper is the presentation of a tool for real-time applications in embedded devices with finite computational (time and memory) resources. We run experimental results on several video sequences (both home-made and publicly available), showing the robustness and accuracy of the overall detection strategy. Comparisons with state-of-the-art strategies show that our application has similar tracking accuracy but much higher frame-per-second rates. PMID:28671582

  12. Application of Probability of Crack Detection to Aircraft Systems Reliability.

    DOT National Transportation Integrated Search

    1993-08-31

    This report describes three tasks related to probability of crack detection (POD) and aircraft systems reliablity. All three consider previous work in which crack growth simulations and crack detection data in the Service Difficulty Report (SDR) data...

  13. [Detection of drugs in meconium].

    PubMed

    Dahlem, P; Bucher, H U; Ursprung, T; Mieth, D; Gautschi, K

    1992-06-01

    The number of newborn infants exposed to drugs in utero is on the increase in many European countries. As drug use reported by addicted pregnant women is unreliable there is a need for an accurate test to determine the drugs to which an infant has been exposed in utero. The purpose of this study was to evaluate the reliability of toxicology testing in meconium compared with traditional urine testing. From twenty newborn infants born to drug-dependent mothers, meconium and urine were collected as soon as possible after birth and tested for drugs with the same radioimmunoassay. Five neonates were premature (Gestational weeks less than 37), six were small and three microcephalic for gestational age. Meconium was positive for drugs in 19 infants (95%) (Methadone 9, Morphine 9, Cocaine 6, Cannabis 4). Urine testing revealed the presence of drugs in 13 babies (65%) (Methadone 9, Morphine 6, Cocaine 4, Cannabis 1, Barbiturates 1). Five infants did not have any drug withdrawal, five had mild and ten severe withdrawal symptoms necessitating treatment with chlorpromazine and in four instances additional pethidine. Meconium is not only easier to collect but also at least as reliable as urine for drug detection in neonates.

  14. Mapping of electrical potential distribution with charged particle beams. [using an X-ray source

    NASA Technical Reports Server (NTRS)

    Robinson, J. W.

    1979-01-01

    Potentials were measured using a beam of soft X-rays in air at 2 x 10 to the -5 power Torr. Ions were detected by a continuous-dynode electron multiplier after they passed through a retarding field. Ultimate resolution depends upon the diameter of the X-ray beam which was 3 mm. When the fields in the region of interest were such to disperse the ions, only a small fraction were detected and the method of measurement was not very reliable. Yet reasonable data could be collected if the ions traveled in parallel paths toward the detector. Development should concentrate on increasing the aperture of the detector from the pinhole which was used to something measured in centimeters. Also increasing the strength of the source would provide a stronger signal and more reliable data. Measurements were made at an estimated ion current to 10 to the -15 power A from a 10 cm length of the X-ray beam, this current being several orders of magnitude below what would have a perturbing effect on the region to be measured. Consequently, the source strength can be increased and prospects for this method of measurement are good.

  15. A dye-assisted paper-based point-of-care assay for fast and reliable blood grouping.

    PubMed

    Zhang, Hong; Qiu, Xiaopei; Zou, Yurui; Ye, Yanyao; Qi, Chao; Zou, Lingyun; Yang, Xiang; Yang, Ke; Zhu, Yuanfeng; Yang, Yongjun; Zhou, Yang; Luo, Yang

    2017-03-15

    Fast and simultaneous forward and reverse blood grouping has long remained elusive. Forward blood grouping detects antigens on red blood cells, whereas reverse grouping identifies specific antibodies present in plasma. We developed a paper-based assay using immobilized antibodies and bromocresol green dye for rapid and reliable blood grouping, where dye-assisted color changes corresponding to distinct blood components provide a visual readout. ABO antigens and five major Rhesus antigens could be detected within 30 s, and simultaneous forward and reverse ABO blood grouping using small volumes (100 μl) of whole blood was achieved within 2 min through on-chip plasma separation without centrifugation. A machine-learning method was developed to classify the spectral plots corresponding to dye-based color changes, which enabled reproducible automatic grouping. Using optimized operating parameters, the dye-assisted paper assay exhibited comparable accuracy and reproducibility to the classical gel-card assays in grouping 3550 human blood samples. When translated to the assembly line and low-cost manufacturing, the proposed approach may be developed into a cost-effective and robust universal blood-grouping platform. Copyright © 2017, American Association for the Advancement of Science.

  16. SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads.

    PubMed

    Guerrini, Luca; Arenal, Raul; Mannini, Benedetta; Chiti, Fabrizio; Pini, Roberto; Matteini, Paolo; Alvarez-Puebla, Ramon A

    2015-05-13

    Protein misfolded proteins are among the most toxic endogenous species of macromolecules. These chemical entities are responsible for neurodegenerative disorders such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's and different non-neurophatic amyloidosis. Notably, these oligomers show a combination of marked heterogeneity and low abundance in body fluids, which have prevented a reliable detection by immunological methods so far. Herein we exploit the selectivity of proteins to react with metallic ions and the sensitivity of surface-enhanced Raman spectroscopy (SERS) toward small electronic changes in coordination compounds to design and engineer a reliable optical sensor for protein misfolded oligomers. Our strategy relies on the functionalization of Au nanoparticle-decorated polystyrene beads with an effective metallorganic Raman chemoreceptor, composed by Al(3+) ions coordinated to 4-mercaptobenzoic acid (MBA) with high Raman cross-section, that selectively binds aberrant protein oligomers. The mechanical deformations of the MBA phenyl ring upon complexation with the oligomeric species are registered in its SERS spectrum and can be quantitatively correlated with the concentration of the target biomolecule. The SERS platform used here appears promising for future implementation of diagnostic tools of aberrant species associated with protein deposition diseases, including those with a strong social and economic impact, such as Alzheimer's and Parkinson's diseases.

  17. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, Christopher

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However, it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level accuracy at a range of two meters with a 1U target.

  18. Robust Targeting for the Smartphone Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Carter, C.

    2017-01-01

    The Smartphone Video Guidance Sensor (SVGS) is a miniature, self-contained autonomous rendezvous and docking sensor developed using a commercial off the shelf Android-based smartphone. It aims to provide a miniaturized solution for rendezvous and docking, enabling small satellites to conduct proximity operations and formation flying while minimizing interference with a primary payload. Previously, the sensor was limited by a slow (2 Hz) refresh rate and its use of retro-reflectors, both of which contributed to a limited operating environment. To advance the technology readiness level, a modified approach was developed, combining a multi-colored LED target with a focused target-detection algorithm. Alone, the use of an LED system was determined to be much more reliable, though slower, than the retro-reflector system. The focused target-detection system was developed in response to this problem to mitigate the speed reduction of using color. However it also improved the reliability. In combination these two methods have been demonstrated to dramatically increase sensor speed and allow the sensor to select the target even with significant noise interfering with the sensor, providing millimeter level precision at a range of two meters with a 1U target.

  19. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    NASA Astrophysics Data System (ADS)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r < 22.4 for 42 429 H-ATLAS sources (37.8 per cent), with an estimated completeness of 71.7 per cent and a false identification rate of 4.7 per cent. We also identified counterparts in the near-infrared using deeper K-band data which covers a smaller ˜25 deg2. We found reliable near-infrared counterparts to 61.8 per cent of the 250-μm-selected sources within that area. We assessed the performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  20. Relative and absolute reliability of the clinical version of the Narrow Path Walking Test (NPWT) under single and dual task conditions.

    PubMed

    Gimmon, Yoav; Jacob, Grinshpon; Lenoble-Hoskovec, Constanze; Büla, Christophe; Melzer, Itshak

    2013-01-01

    Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Visual acuity of the honey bee retina and the limits for feature detection.

    PubMed

    Rigosi, Elisa; Wiederman, Steven D; O'Carroll, David C

    2017-04-06

    Visual abilities of the honey bee have been studied for more than 100 years, recently revealing unexpectedly sophisticated cognitive skills rivalling those of vertebrates. However, the physiological limits of the honey bee eye have been largely unaddressed and only studied in an unnatural, dark state. Using a bright display and intracellular recordings, we here systematically investigated the angular sensitivity across the light adapted eye of honey bee foragers. Angular sensitivity is a measure of photoreceptor receptive field size and thus small values indicate higher visual acuity. Our recordings reveal a fronto-ventral acute zone in which angular sensitivity falls below 1.9°, some 30% smaller than previously reported. By measuring receptor noise and responses to moving dark objects, we also obtained direct measures of the smallest features detectable by the retina. In the frontal eye, single photoreceptors respond to objects as small as 0.6° × 0.6°, with >99% reliability. This indicates that honey bee foragers possess significantly better resolution than previously reported or estimated behaviourally, and commonly assumed in modelling of bee acuity.

  2. Eavesdropping on insects hidden in soil and interior structures of plants.

    PubMed

    Mankin, R W; Brandhorst-Hubbard, J; Flanders, K L; Zhang, M; Crocker, R L; Lapointe, S L; McCoy, C W; Fisher, J R; Weaver, D K

    2000-08-01

    Accelerometer, electret microphone, and piezoelectric disk acoustic systems were evaluated for their potential to detect hidden insect infestations in soil and interior structures of plants. Coleopteran grubs (the scarabaeids Phyllophaga spp. and Cyclocephala spp.) and the curculionids Diaprepes abbreviatus (L.) and Otiorhynchus sulcatus (F.) weighing 50-300 mg were detected easily in the laboratory and in the field except under extremely windy or noisy conditions. Cephus cinctus Norton (Hymenoptera: Cephidae) larvae weighing 1-12 mg could be detected in small pots of wheat in the laboratory by taking moderate precautions to eliminate background noise. Insect sounds could be distinguished from background noises by differences in frequency and temporal patterns, but insects of similarly sized species could not be distinguished easily from each other. Insect activity was highly variable among individuals and species, although D. abbreviatus grubs tended to be more active than those of O. sulcatus. Tests were done to compare acoustically predicted infestations with the contents of soil samples taken at recording sites. Under laboratory or ideal field conditions, active insects within approximately 30 cm were identified with nearly 100% reliability. In field tests under adverse conditions, the reliability decreased to approximately 75%. These results indicate that acoustic systems with vibration sensors have considerable potential as activity monitors in the laboratory and as field tools for rapid, nondestructive scouting and mapping of soil insect populations.

  3. Single-cell whole exome and targeted sequencing in NPM1/FLT3 positive pediatric acute myeloid leukemia.

    PubMed

    Walter, Christiane; Pozzorini, Christian; Reinhardt, Katarina; Geffers, Robert; Xu, Zhenyu; Reinhardt, Dirk; von Neuhoff, Nils; Hanenberg, Helmut

    2018-02-01

    The small portion of leukemic stem cells (LSCs) in acute myeloid leukemia (AML) present in children and adolescents is often masked by the high background of AML blasts and normal hematopoietic cells. The aim of the current study was to establish a simple workflow for reliable genetic analysis of single LSC-enriched blasts from pediatric patients. For three AMLs with mutations in nucleophosmin 1 and/or fms-like tyrosine kinase 3, we performed whole genome amplification on sorted single-cell DNA followed by whole exome sequencing (WES). The corresponding bulk bone marrow DNAs were also analyzed by WES and by targeted sequencing (TS) that included 54 genes associated with myeloid malignancies. Analysis revealed that read coverage statistics were comparable between single-cell and bulk WES data, indicating high-quality whole genome amplification. From 102 single-cell variants, 72 single nucleotide variants and insertions or deletions (70%) were consistently found in the two bulk DNA analyses. Variants reliably detected in single cells were also present in TS. However, initial screening by WES with read counts between 50-72× failed to detect rare AML subclones in the bulk DNAs. In summary, our study demonstrated that single-cell WES combined with bulk DNA TS is a promising tool set for detecting AML subclones and possibly LSCs. © 2017 Wiley Periodicals, Inc.

  4. Precision of coherence analysis to detect cerebral autoregulation by near-infrared spectroscopy in preterm infants

    NASA Astrophysics Data System (ADS)

    Hahn, Gitte Holst; Christensen, Karl Bang; Leung, Terence S.; Greisen, Gorm

    2010-05-01

    Coherence between spontaneous fluctuations in arterial blood pressure (ABP) and the cerebral near-infrared spectroscopy signal can detect cerebral autoregulation. Because reliable measurement depends on signals with high signal-to-noise ratio, we hypothesized that coherence is more precisely determined when fluctuations in ABP are large rather than small. Therefore, we investigated whether adjusting for variability in ABP (variabilityABP) improves precision. We examined the impact of variabilityABP within the power spectrum in each measurement and between repeated measurements in preterm infants. We also examined total monitoring time required to discriminate among infants with a simulation study. We studied 22 preterm infants (GA<30) yielding 215 10-min measurements. Surprisingly, adjusting for variabilityABP within the power spectrum did not improve the precision. However, adjusting for the variabilityABP among repeated measurements (i.e., weighting measurements with high variabilityABP in favor of those with low) improved the precision. The evidence of drift in individual infants was weak. Minimum monitoring time needed to discriminate among infants was 1.3-3.7 h. Coherence analysis in low frequencies (0.04-0.1 Hz) had higher precision and statistically more power than in very low frequencies (0.003-0.04 Hz). In conclusion, a reliable detection of cerebral autoregulation takes hours and the precision is improved by adjusting for variabilityABP between repeated measurements.

  5. Co-detection: ultra-reliable nanoparticle-based electrical detection of biomolecules in the presence of large background interference.

    PubMed

    Liu, Yang; Gu, Ming; Alocilja, Evangelyn C; Chakrabartty, Shantanu

    2010-11-15

    An ultra-reliable technique for detecting trace quantities of biomolecules is reported. The technique called "co-detection" exploits the non-linear redundancy amongst synthetically patterned biomolecular logic circuits for deciphering the presence or absence of target biomolecules in a sample. In this paper, we verify the "co-detection" principle on gold-nanoparticle-based conductimetric soft-logic circuits which use a silver-enhancement technique for signal amplification. Using co-detection, we have been able to demonstrate a great improvement in the reliability of detecting mouse IgG at concentration levels that are 10(5) lower than the concentration of rabbit IgG which serves as background interference. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Nanostructured Gas Sensors for Health Care: An Overview

    PubMed Central

    Kaushik, Ajeet; Kumar, Rajesh; Jayant, Rahul Dev; Nair, Madhavan

    2015-01-01

    Nanostructured platforms have been utilized for fabrication of small, sensitive and reliable gas sensing devices owing to high functionality, enhanced charge transport and electro-catalytic property. As a result of globalization, rapid, sensitive and selective detection of gases in environment is essential for health care and security. Nonmaterial such as metal, metal oxides, organic polymers, and organic-inorganic hybrid nanocomposites exhibit interesting optical, electrical, magnetic and molecular properties, and hence are found potential gas sensing materials. Morphological, electrical, and optical properties of such nanostructures can be tailored via controlling the precursor concentration and synthesis conditions resulting to achieve desired sensing. This review presents applications of nano-enabling gas sensors to detect gases for environment monitoring. The recent update, challenges, and future vision for commercial applications of such sensor are also described here. PMID:26491544

  7. Molecular Detection of EMT Markers in Circulating Tumor Cells from Metastatic Non-Small Cell Lung Cancer Patients: Potential Role in Clinical Practice

    PubMed Central

    Milano, Annalisa; Mazzetta, Francesca; Valente, Sabatino; Ranieri, Danilo; Leone, Laura; Botticelli, Andrea; Lauro, Salvatore; Torrisi, Maria Rosaria; Marchetti, Paolo

    2018-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related mortality; nevertheless, there are few data regarding detection of circulating tumor cells (CTCs) in NSCLC, compared to other kinds of cancers in which their prognostic roles have already been defined. This difference is likely due to detection methods based on the epithelial marker expression which ignore CTCs undergoing epithelial-mesenchymal transition (CTCsEMT). Methods After optimization of the test with spiking experiments of A549 cells undergoing TGF-β1-induced EMT (A549EMT), the CTCsEMT were enriched by immunomagnetic depletion of leukocytes and then characterized by a RT-PCR assay based on the retrieval of epithelial and EMT-related genes. Blood samples from ten metastatic NSCLC patients before starting treatment and during chemotherapy were used to test this approach by longitudinal monitoring. Ten age- and sex-matched healthy subjects were also enrolled as controls. Results Recovery experiments of spiked A549EMT cells showed that the RT-PCR assay is a reliable method for detection of CTCsEMT. CTCsEMT were detected in three patients at baseline and in six patients after four cycles of cysplatin-based chemotherapy. Longitudinal monitoring of three patients showed that the CTCsEMT detection is related to poor therapeutic response. Conclusions The RT-PCR-based approach for the evaluation of CTCsEMT phenotype could be a promising and inexpensive tool to predict the prognosis and the therapeutic response in NSCLC patients. PMID:29682444

  8. Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite

    NASA Astrophysics Data System (ADS)

    Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris

    2004-02-01

    Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.

  9. Validity and Reliability of New Agility Test among Elite and Subelite under 14-Soccer Players

    PubMed Central

    Hachana, Younés; Chaabène, Helmi; Ben Rajeb, Ghada; Khlifa, Riadh; Aouadi, Ridha; Chamari, Karim; Gabbett, Tim J.

    2014-01-01

    Background Agility is a determinant component in soccer performance. This study aimed to evaluate the reliability and sensitivity of a “Modified Illinois change of direction test” (MICODT) in ninety-five U-14 soccer players. Methods A total of 95 U-14 soccer players (mean ± SD: age: 13.61±1.04 years; body mass: 30.52±4.54 kg; height: 1.57±0.1 m) from a professional and semi-professional soccer academy, participated to this study. Sixty of them took part in reliability analysis and thirty-two in sensitivity analysis. Results The intraclass correlation coefficient (ICC) that aims to assess relative reliability of the MICODT was of 0.99, and its standard error of measurement (SEM) for absolute reliability was <5% (1.24%). The MICODT’s capacity to detect change is “good”, it’s SEM (0.10 s) was ≤ SWC (0.33 s). The MICODT is significantly correlated to the Illinois change of direction speed test (ICODT) (r = 0.77; p<0.0001). The ICODT’s MDC95 (0.64 s) was twice about the MICODT’s MDC95 (0.28 s), indicating that MICODT presents better ability to detect true changes than ICODT. The MICODT provided good sensitivity since elite U-14 soccer players were better than non-elite one on MICODT (p = 0.005; dz = 1.01 [large]). This was supported by an area under the ROC curve of 0.77 (CI 95%, 0.59 to 0.89, p<0.0008). The difference observed in these two groups in ICODT was not statistically significant (p = 0.14; dz = 0.51 [small]), showing poor discriminant ability. Conclusion MICODT can be considered as more suitable protocol for assessing agility performance level than ICODT in U-14 soccer players. PMID:24752193

  10. Black phosphorus-assisted laser desorption ionization mass spectrometry for the determination of low-molecular-weight compounds in biofluids.

    PubMed

    He, Xiao-Mei; Ding, Jun; Yu, Lei; Hussain, Dilshad; Feng, Yu-Qi

    2016-09-01

    Quantitative analysis of small molecules by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been a challenging task due to matrix-derived interferences in low m/z region and poor reproducibility of MS signal response. In this study, we developed an approach by applying black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix for the quantitative analysis of small molecules for the first time. Black phosphorus-assisted laser desorption/ionization mass spectrometry (BP/ALDI-MS) showed clear background and exhibited superior detection sensitivity toward quaternary ammonium compounds compared to carbon-based materials. By combining stable isotope labeling (SIL) strategy with BP/ALDI-MS (SIL-BP/ALDI-MS), a variety of analytes labeled with quaternary ammonium group were sensitively detected. Moreover, the isotope-labeled forms of analytes also served as internal standards, which broadened the analyte coverage of BP/ALDI-MS and improved the reproducibility of MS signals. Based on these advantages, a reliable method for quantitative analysis of aldehydes from complex biological samples (saliva, urine, and serum) was successfully established. Good linearities were obtained for five aldehydes in the range of 0.1-20.0 μM with correlation coefficients (R (2)) larger than 0.9928. The LODs were found to be 20 to 100 nM. Reproducibility of the method was obtained with intra-day and inter-day relative standard deviations (RSDs) less than 10.4 %, and the recoveries in saliva samples ranged from 91.4 to 117.1 %. Taken together, the proposed SIL-BP/ALDI-MS strategy has proved to be a reliable tool for quantitative analysis of aldehydes from complex samples. Graphical Abstract An approach for the determination of small molecules was developed by using black phosphorus (BP) as a matrix-assisted laser desorption ionization (MALDI) matrix.

  11. STIMULUS AND TRANSDUCER EFFECTS ON THRESHOLD

    PubMed Central

    Flamme, Gregory A.; Geda, Kyle; McGregor, Kara; Wyllys, Krista; Deiters, Kristy K.; Murphy, William J.; Stephenson, Mark R.

    2015-01-01

    Objective This study examined differences in thresholds obtained under Sennheiser HDA200 circumaural earphones using pure tone, equivalent rectangular noise bands, and 1/3 octave noise bands relative to thresholds obtained using Telephonics TDH-39P supra-aural earphones. Design Thresholds were obtained via each transducer and stimulus condition six times within a 10-day period. Study Sample Forty-nine adults were selected from a prior study to represent low, moderate, and high threshold reliability. Results The results suggested that (1) only small adjustments were needed to reach equivalent TDH-39P thresholds, (2) pure-tone thresholds obtained with HDA200 circumaural earphones had reliability equal to or better than those obtained using TDH-39P earphones, (3) the reliability of noise-band thresholds improved with broader stimulus bandwidth and was either equal to or better than pure-tone thresholds, and (4) frequency-specificity declined with stimulus bandwidths greater than one Equivalent Rectangular Band, which could complicate early detection of hearing changes that occur within a narrow frequency range. Conclusions These data suggest that circumaural earphones such as the HDA200 headphones provide better reliability for audiometric testing as compared to the TDH-39P earphones. These data support the use of noise bands, preferably ERB noises, as stimuli for audiometric monitoring. PMID:25549164

  12. Reliability Through Life of Internal Protection Devices in Small-Cell ABSL Batteries

    NASA Technical Reports Server (NTRS)

    Neubauer, Jeremy; Ng, Ka Lok; Bennetti, Andrea; Pearson, Chris; Rao, gopal

    2007-01-01

    This viewgraph presentation reviews a reliability analysis of small cell protection batteries. The contents include: 1) The s-p Topology; 2) Cell Level Protection Devices; 3) Battery Level Fault Protection; 4) Large Cell Comparison; and 5) Battery Level Testing and Results.

  13. Real time monitoring of induced seismicity in the Insheim and Landau deep geothermal reservoirs, Upper Rhine Graben, using the new SeisComP3 cross-correlation detector

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Wegler, Ulrich; Bruestle, Andrea; Becker, Jan

    2016-04-01

    Real time information on the locations and magnitudes of induced earthquakes is essential for response plans based on the magnitude frequency distribution. We developed and tested a real time cross-correlation detector focusing on induced microseismicity in deep geothermal reservoirs. The incoming seismological data are cross-correlated in real time with a set of known master events. We use the envelopes of the seismograms rather than the seismograms themselves to account for small changes in the source locations or in the focal mechanisms. Two different detection conditions are implemented: After first passing a single trace correlation condition, secondly a network correlation is calculated taking the amplitude information of the seismic network into account. The magnitude is estimated by using the respective ratio of the maximum amplitudes of the master event and the detected event. The detector is implemented as a real time tool and put into practice as a SeisComp3 module, an established open source software for seismological real time data handling and analysis. We validated the reliability and robustness of the detector by an offline playback test using four month of data from monitoring the power plant in Insheim (Upper Rhine Graben, SW Germany). Subsequently, in October 2013 the detector was installed as real time monitoring system within the project "MAGS2 - Microseismic Activity of Geothermal Systems". Master events from the two neighboring geothermal power plants in Insheim and Landau and two nearby quarries are defined. After detection, manual phase determination and event location are performed at the local seismological survey of the Geological Survey and Mining Authority of Rhineland-Palatinate. Until November 2015 the detector identified 454 events out of which 95% were assigned correctly to the respective source. 5% were misdetections caused by local tectonic events. To evaluate the completeness of the automatically obtained catalogue, it is compared to the event catalogue of the Seismological Service of Southwestern Germany and to the events reported by the company tasked with seismic monitoring of the Insheim power plant. Events missed by the cross-correlation detector are generally very small. They are registered at too few stations to meet the detection criteria. Most of these small events were not locatable. The automatic catalogue has a magnitude of completeness around 0.0 and is significantly more detailed than the catalogue from standard processing of the Seismological Service of Southwestern Germany for this region. For events in the magnitude range of the master event the magnitude estimated from the amplitude ratio reproduces the local magnitude well. For weaker events there tends to be a small offset. Altogether, the developed real time cross correlation detector provides robust detections with reliable association of the events to the respective sources and valid magnitude estimates. Thus, it provides input parameters for the mitigation of seismic hazard by using response plans in real time.

  14. Implicitly Coordinated Detect and Avoid Capability for Safe Autonomous Operation of Small UAS

    NASA Technical Reports Server (NTRS)

    Balachandran, Swee; Munoz, Cesar A.; Consiglio, Maria C.

    2017-01-01

    As the airspace becomes increasingly shared by autonomous small Unmanned Aerial Systems (UAS), there would be a pressing need for coordination strategies so that aircraft can safely and independently maneuver around obstacles, geofences, and traffic aircraft. Explicitly coordinating resolution strategies for small UAS would require additional components such as a reliable vehicle-to-vehicle communication infrastructure and standardized protocols for information exchange that could significantly increase the cost of deploying small UAS in a shared airspace. This paper explores a novel approach that enables multiple aircraft to implicitly coordinate their resolution maneuvers. By requiring all aircraft to execute the proposed approach deterministically, it is possible for all of them to implicitly agree on the region of airspace each will be occupying in a given time interval. The proposed approach lends itself to the construction of a suitable feedback mechanism that enables the real-time execution of an implicitly conflict-free path in a closed-loop manner dealing with uncertainties in aircraft speed. If a network infrastructure is available, the proposed approach can also exploit the benefits of explicit information.

  15. Radiation dosimetry with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Avino, S.; D'Avino, V.; Giorgini, A.; Pacelli, R.; Liuzzi, R.; Cella, L.; Gagliardi, G.; De Natale, P.

    2014-05-01

    The measurement and monitoring of radiation dose delivered in patient tissues is a critical aspect in radiation therapy. Various dosimeters have proven effective in measuring radiations at low doses. However, there is a growing demand for new dosimeters based on small, non-invasive and high resolution devices. Here we report on a miniature dosimeter based on an optical fiber cavity. We demonstrate an ultimate detection limit of 160 mGy with an effective interaction region of 6 x 10-4 mm3. Due to its reliability, compactness and biomedical dose level sensitivity, our system shows itself suitable for applications in radiation therapy dosimetry.

  16. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site

    PubMed Central

    Yang, Chunyan; Wang, Lin; Wang, Wenzhi; Zhao, Guigang; Geng, Yupeng; Yu, Douglas W.

    2017-01-01

    The Honghe-Hani landscape in China is a UNESCO World Natural Heritage site due to the beauty of its thousands of rice terraces, but these structures are in danger from the invasive crayfish Procambarus clarkii. Crayfish dig nest holes, which collapse terrace walls and destroy rice production. Under the current control strategy, farmers self-report crayfish and are issued pesticide, but this strategy is not expected to eradicate the crayfish nor to prevent their spread since farmers are not able to detect small numbers of crayfish. Thus, we tested whether environmental DNA (eDNA) from paddy-water samples could provide a sensitive detection method. In an aquarium experiment, Real-time Quantitative polymerase chain reaction (qPCR) successfully detected crayfish, even at a simulated density of one crayfish per average-sized paddy (with one false negative). In a field test, we tested eDNA and bottle traps against direct counts of crayfish. eDNA successfully detected crayfish in all 25 paddies where crayfish were observed and in none of the 7 paddies where crayfish were absent. Bottle-trapping was successful in only 68% of the crayfish-present paddies. eDNA concentrations also correlated positively with crayfish counts. In sum, these results suggest that single samples of eDNA are able to detect small crayfish populations, but not perfectly. Thus, we conclude that a program of repeated eDNA sampling is now feasible and likely reliable for measuring crayfish geographic range and for detecting new invasion fronts in the Honghe Hani landscape, which would inform regional control efforts and help to prevent the further spread of this invasive crayfish. PMID:28505200

  17. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site.

    PubMed

    Cai, Wang; Ma, Zhuxin; Yang, Chunyan; Wang, Lin; Wang, Wenzhi; Zhao, Guigang; Geng, Yupeng; Yu, Douglas W

    2017-01-01

    The Honghe-Hani landscape in China is a UNESCO World Natural Heritage site due to the beauty of its thousands of rice terraces, but these structures are in danger from the invasive crayfish Procambarus clarkii. Crayfish dig nest holes, which collapse terrace walls and destroy rice production. Under the current control strategy, farmers self-report crayfish and are issued pesticide, but this strategy is not expected to eradicate the crayfish nor to prevent their spread since farmers are not able to detect small numbers of crayfish. Thus, we tested whether environmental DNA (eDNA) from paddy-water samples could provide a sensitive detection method. In an aquarium experiment, Real-time Quantitative polymerase chain reaction (qPCR) successfully detected crayfish, even at a simulated density of one crayfish per average-sized paddy (with one false negative). In a field test, we tested eDNA and bottle traps against direct counts of crayfish. eDNA successfully detected crayfish in all 25 paddies where crayfish were observed and in none of the 7 paddies where crayfish were absent. Bottle-trapping was successful in only 68% of the crayfish-present paddies. eDNA concentrations also correlated positively with crayfish counts. In sum, these results suggest that single samples of eDNA are able to detect small crayfish populations, but not perfectly. Thus, we conclude that a program of repeated eDNA sampling is now feasible and likely reliable for measuring crayfish geographic range and for detecting new invasion fronts in the Honghe Hani landscape, which would inform regional control efforts and help to prevent the further spread of this invasive crayfish.

  18. Expanding shell and star formation in the infrared dust bubble N6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli

    2014-12-10

    We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to highermore » than 5000 M {sub ☉}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.« less

  19. The Mount Rainier Lahar Detection System

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; Murray, T. L.

    2003-12-01

    To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.

  20. Molecular scatology as a tool to study diet: analysis of prey DNA in scats from captive Steller sea lions.

    PubMed

    Deagle, B E; Tollit, D J; Jarman, S N; Hindell, M A; Trites, A W; Gales, N J

    2005-05-01

    The DNA of prey present in animal scats may provide a valuable source of information for dietary studies. We conducted a captive feeding trial to test whether prey DNA could be reliably detected in scat samples from Steller sea lions (Eumetopias jubatus). Two sea lions were fed a diet of fish (five species) and squid (one species), and DNA was extracted from the soft component of collected scats. Most of the DNA obtained came from the predator, but prey DNA could be amplified using prey-specific primers. The four prey species fed in consistent daily proportions throughout the trial were detected in more than 90% of the scat DNA extractions. Squid and sockeye salmon, which were fed as a relatively small percentage of the daily diet, were detected as reliably as the more abundant diet items. Prey detection was erratic in scats collected when the daily diet was fed in two meals that differed in prey composition, suggesting that prey DNA is passed in meal specific pulses. Prey items that were removed from the diet following one day of feeding were only detected in scats collected within 48 h of ingestion. Proportions of fish DNA present in eight scat samples (evaluated through the screening of clone libraries) were roughly proportional to the mass of prey items consumed, raising the possibility that DNA quantification methods could provide semi-quantitative diet composition data. This study should be of broad interest to researchers studying diet since it highlights an approach that can accurately identify prey species and is not dependent on prey hard parts surviving digestion.

  1. [Detection and evaluation of cartilage defects in the canine stifle joint - an ex vivo study using high-field magnetic resonance imaging].

    PubMed

    Flatz, K M; Glaser, C; Flatz, W H; Reiser, M F; Matis, U

    2014-01-01

    The aim of our study was to implement and test an imaging protocol for the detection and evaluation of standardised cartilage defects using high-field magnetic resonance imaging (MRI) and to determine its limitations. A total of 84 cartilage defects were created in the femoral condyles of euthanized dogs with a minimum body mass of 25 kg. The cartilage defects had a depth of 0.3 to 1.0 mm and a diameter of 1 to 5 mm. T1-FLASH-3D-WE-sequences with an isotropic voxel size of 0.5 x 0.5 x 0.5 mm and an anisotropic voxel size of 0.3 x 0.3 x 0.8 mm were used. In addition to quantitative evaluation of the cartilage defects, the sig- nal intensities, signal-to-noise ratios and contrast-to-noise ratios of the cartilage were determined. Of special interest were the limita- tions in identifying and delineating the standardised cartilage defects. With the anisotropic voxel size, more cartilage defects were detectable. Our results demonstrated that cartilage defects as small as 3.0 mm in diameter and 0.4 mm in depth were reliably detected using anisotropic settings. Cartilage defects below this size were not reliably detected. We found that for optimal delineation of the joint cartilage and associated defects, a higher in-plane resolution with a larger slice thickness should be used, corresponding to the anisotropic settings employed in this study. For the delineation of larger cartilage defects, both the anisotropic and isotropic imaging methods can be used.

  2. Optimal Sensor Location Design for Reliable Fault Detection in Presence of False Alarms

    PubMed Central

    Yang, Fan; Xiao, Deyun; Shah, Sirish L.

    2009-01-01

    To improve fault detection reliability, sensor location should be designed according to an optimization criterion with constraints imposed by issues of detectability and identifiability. Reliability requires the minimization of undetectability and false alarm probability due to random factors on sensor readings, which is not only related with sensor readings but also affected by fault propagation. This paper introduces the reliability criteria expression based on the missed/false alarm probability of each sensor and system topology or connectivity derived from the directed graph. The algorithm for the optimization problem is presented as a heuristic procedure. Finally, a boiler system is illustrated using the proposed method. PMID:22291524

  3. Relationships between craniocervical posture and pain-related disability in patients with cervico-craniofacial pain

    PubMed Central

    López-de-Uralde-Villanueva, Ibai; Beltran-Alacreu, Hector; Paris-Alemany, Alba; Angulo-Díaz-Parreño, Santiago; La Touche, Roy

    2015-01-01

    Objectives This cross-sectional correlation study explored the relationships between craniocervical posture and pain-related disability in patients with chronic cervico-craniofacial pain (CCFP). Moreover, we investigated the test–retest intrarater reliability of two craniocervical posture measurements: head posture (HP) and the sternomental distance (SMD). Methods Fifty-three asymptomatic subjects and 60 CCFP patients were recruited. One rater measured HP and the SMD using a cervical range of motion device and a digital caliper, respectively. The Spanish versions of the neck disability index and the craniofacial pain and disability inventory were used to assess pain-related disability (neck disability and craniofacial disability, respectively). Results We found no statistically significant correlations between craniocervical posture and pain-related disability variables (HP and neck disability [r=0.105; P>0.05]; HP and craniofacial disability [r=0.132; P>0.05]; SMD and neck disability [r=0.126; P>0.05]; SMD and craniofacial disability [r=0.195; P>0.05]). A moderate positive correlation was observed between HP and SMD for both groups (asymptomatic subjects, r=0.447; CCFP patients, r=0.52). Neck disability was strongly positively correlated with craniofacial disability (r=0.79; P<0.001). The test–retest intrarater reliability of the HP measurement was high for asymptomatic subjects and CCFP patients (intraclass correlation coefficients =0.93 and 0.81, respectively) and for SMD (intra-class correlation coefficient range between 0.76 and 0.99); the test–retest intrarater reliability remained high when evaluated 9 days later. The HP standard error of measurement range was 0.54–0.75 cm, and the minimal detectable change was 1.27–1.74 cm. The SMD standard error of measurement was 2.75–6.24 mm, and the minimal detectable change was 6.42–14.55 mm. Independent t-tests showed statistically significant differences between the asymptomatic individuals and CCFP patients for measures of craniocervical posture, but these differences were very small (mean difference =1.44 cm for HP; 6.24 mm for SMD). The effect sizes reached by these values were estimated to be small for SMD (d=0.38) and medium for HP (d=0.76). Conclusion The results showed no statistically significant correlations between craniocervical posture and variables of pain-related disability, but a strong correlation between the two variables of disability was found. Our findings suggest that small differences between CCFP patients and asymptomatic subjects exist with respect to the two measurements used to assess craniocervical posture (HP and SMD), and these measures demonstrated high test–retest intrarater reliability for both CCFP patients and asymptomatic subjects. PMID:26261425

  4. Advanced Augmented White Cane with obstacle height and distance feedback.

    PubMed

    Pyun, Rosali; Kim, Yeongmi; Wespe, Pascal; Gassert, Roger; Schneller, Stefan

    2013-06-01

    The white cane is a widely used mobility aid that helps visually impaired people navigate the surroundings. While it reliably and intuitively extends the detection range of ground-level obstacles and drop-offs to about 1.2 m, it lacks the ability to detect trunk and head-level obstacles. Electronic Travel Aids (ETAs) have been proposed to overcome these limitations, but have found minimal adoption due to limitations such as low information content and low reliability thereof. Although existing ETAs extend the sensing range beyond that of the conventional white cane, most of them do not detect head-level obstacles and drop-offs, nor can they identify the vertical extent of obstacles. Furthermore, some ETAs work independent of the white cane, and thus reliable detection of surface textures and drop-offs is not provided. This paper introduces a novel ETA, the Advanced Augmented White Cane, which detects obstacles at four vertical levels and provides multi-sensory feedback. We evaluated the device in five blindfolded subjects through reaction time measurements following the detection of an obstacle, as well as through the reliability of dropoff detection. The results showed that our aid could help the user successfully detect an obstacle and identify its height, with an average reaction time of 410 msec. Drop-offs were reliably detected with an intraclass correlation > 0.95. This work is a first step towards a low-cost ETA to complement the functionality of the conventional white cane.

  5. Multi-Source Sensor Fusion for Small Unmanned Aircraft Systems Using Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Cook, Brandon; Cohen, Kelly

    2017-01-01

    As the applications for using small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) continue to grow in the coming years, it is imperative that intelligent sensor fusion techniques be explored. In BVLOS scenarios the vehicle position must accurately be tracked over time to ensure no two vehicles collide with one another, no vehicle crashes into surrounding structures, and to identify off-nominal scenarios. Therefore, in this study an intelligent systems approach is used to estimate the position of sUAS given a variety of sensor platforms, including, GPS, radar, and on-board detection hardware. Common research challenges include, asynchronous sensor rates and sensor reliability. In an effort to realize these challenges, techniques such as a Maximum a Posteriori estimation and a Fuzzy Logic based sensor confidence determination are used.

  6. Small-scale variability of zooplankton pyruvate kinase activity in the Gironde Estuary plume (Atlantic French Coast): A case study under unusually low freshwater discharge

    NASA Astrophysics Data System (ADS)

    Bergeron, Jean-Pierre

    2006-09-01

    Pyruvate kinase (PK) activity measurements are used to assess the role of carbohydrates in global feeding of mesozooplankton communities inhabiting an estuary plume. As a consequence of a remarkably low freshwater discharge rate, the sea surface layers of the area under estuarine influence showed a very moderate salinity fall and a nearly total depletion in nitrates, whereas higher levels of these nutrients were found in deeper, more saline, layers. Small-scale PK activity variations in mesozooplankton appear to be closely correlated to nitrate integration values within the water column. The results were analysed in comparison with literature reports. The study produced a coherent overall interpretation, which strongly supports the reliability of this new biochemical tool in detecting assimilation of trace carbohydrates in the diet of mesozooplankton.

  7. Real-Time Microfluidic Blood-Counting System for PET and SPECT Preclinical Pharmacokinetic Studies.

    PubMed

    Convert, Laurence; Lebel, Réjean; Gascon, Suzanne; Fontaine, Réjean; Pratte, Jean-François; Charette, Paul; Aimez, Vincent; Lecomte, Roger

    2016-09-01

    Small-animal nuclear imaging modalities have become essential tools in the development process of new drugs, diagnostic procedures, and therapies. Quantification of metabolic or physiologic parameters is based on pharmacokinetic modeling of radiotracer biodistribution, which requires the blood input function in addition to tissue images. Such measurements are challenging in small animals because of their small blood volume. In this work, we propose a microfluidic counting system to monitor rodent blood radioactivity in real time, with high efficiency and small detection volume (∼1 μL). A microfluidic channel is built directly above unpackaged p-i-n photodiodes to detect β-particles with maximum efficiency. The device is embedded in a compact system comprising dedicated electronics, shielding, and pumping unit controlled by custom firmware to enable measurements next to small-animal scanners. Data corrections required to use the input function in pharmacokinetic models were established using calibrated solutions of the most common PET and SPECT radiotracers. Sensitivity, dead time, propagation delay, dispersion, background sensitivity, and the effect of sample temperature were characterized. The system was tested for pharmacokinetic studies in mice by quantifying myocardial perfusion and oxygen consumption with (11)C-acetate (PET) and by measuring the arterial input function using (99m)TcO4 (-) (SPECT). Sensitivity for PET isotopes reached 20%-47%, a 2- to 10-fold improvement relative to conventional catheter-based geometries. Furthermore, the system detected (99m)Tc-based SPECT tracers with an efficiency of 4%, an outcome not possible through a catheter. Correction for dead time was found to be unnecessary for small-animal experiments, whereas propagation delay and dispersion within the microfluidic channel were accurately corrected. Background activity and sample temperature were shown to have no influence on measurements. Finally, the system was successfully used in animal studies. A fully operational microfluidic blood-counting system for preclinical pharmacokinetic studies was developed. Microfluidics enabled reliable and high-efficiency measurement of the blood concentration of most common PET and SPECT radiotracers with high temporal resolution in small blood volume. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    DOT National Transportation Integrated Search

    2017-09-22

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  9. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    DOT National Transportation Integrated Search

    2017-09-01

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  10. Predicting Outcome and Therapy Response in mCRC Patients Using an Indirect Method for CTCs Detection by a Multigene Expression Panel: A Multicentric Prospective Validation Study

    PubMed Central

    Vidal Insua, Yolanda; De La Cámara, Juan; Brozos Vázquez, Elena; Fernández, Ana; Vázquez Rivera, Francisca; Villanueva Silva, Mª José; Barbazán, Jorge; Muinelo-Romay, Laura; Candamio Folgar, Sonia; Abalo, Alicia; López-López, Rafael; Abal, Miguel; Alonso-Alconada, Lorena

    2017-01-01

    Colorectal cancer (CRC) is one of the major causes of cancer-related deaths. Early detection of tumor relapse is crucial for determining the most appropriate therapeutic management. In clinical practice, computed tomography (CT) is routinely used, but small tumor changes are difficult to visualize, and reliable blood-based prognostic and monitoring biomarkers are urgently needed. The aim of this study was to prospectively validate a gene expression panel (composed of GAPDH, VIL1, CLU, TIMP1, TLN1, LOXL3 and ZEB2) for detecting circulating tumor cells (CTCs) as prognostic and predictive tool in blood samples from 94 metastatic CRC (mCRC) patients. Patients with higher gene panel expression before treatment had a reduced progression-free survival (PFS) and overall-survival (OS) rates compared with patients with low expression (p = 0.003 and p ≤ 0.001, respectively). Patients with increased expression of CTCs markers during treatment presented PFS and OS times of 8.95 and 11.74 months, respectively, compared with 14.41 and 24.7 for patients presenting decreased expression (PFS; p = 0.020; OS; p ≤ 0.001). Patients classified as non-responders by CTCs with treatment, but classified as responders by CT scan, showed significantly shorter survival times (PFS: 8.53 vs. 11.70; OS: 10.37 vs. 24.13; months). In conclusion, our CTCs detection panel demonstrated efficacy for early treatment response assessment in mCRC patients, and with increased reliability compared to CT scan. PMID:28608814

  11. New pediatric vision screener, part II: electronics, software, signal processing and validation.

    PubMed

    Gramatikov, Boris I; Irsch, Kristina; Wu, Yi-Kai; Guyton, David L

    2016-02-04

    We have developed an improved pediatric vision screener (PVS) that can reliably detect central fixation, eye alignment and focus. The instrument identifies risk factors for amblyopia, namely eye misalignment and defocus. The device uses the birefringence of the human fovea (the most sensitive part of the retina). The optics have been reported in more detail previously. The present article focuses on the electronics and the analysis algorithms used. The objective of this study was to optimize the analog design, data acquisition, noise suppression techniques, the classification algorithms and the decision making thresholds, as well as to validate the performance of the research instrument on an initial group of young test subjects-18 patients with known vision abnormalities (eight male and 10 female), ages 4-25 (only one above 18) and 19 controls with proven lack of vision issues. Four statistical methods were used to derive decision making thresholds that would best separate patients with abnormalities from controls. Sensitivity and specificity were calculated for each method, and the most suitable one was selected. Both the central fixation and the focus detection criteria worked robustly and allowed reliable separation between normal test subjects and symptomatic subjects. The sensitivity of the instrument was 100 % for both central fixation and focus detection. The specificity was 100 % for central fixation and 89.5 % for focus detection. The overall sensitivity was 100 % and the overall specificity was 94.7 %. Despite the relatively small initial sample size, we believe that the PVS instrument design, the analysis methods employed, and the device as a whole, will prove valuable for mass screening of children.

  12. Nano Sensors for Gas Detection in Space and Ground Support Applications

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.

    2006-01-01

    Personnel living in a space environment as well as technicians and engineers preparing spacecraft for launch can potentially be exposed to small amounts of hazardous gases. It is therefore important to be able to detect, identify and quantify the presence of a gas especially when its presence could lead to a fatal situation. The use of small and sensitive sensors can allow for the placement of these devices over a large area, thus allowing for a more precise and timely determination of a gas leak. ASRC Aerospace and its research partners are developing nano sensors for detection of various gases, including but not limited to: H2, NH3, N2O4, hydrazine and others. Initial laboratory testing has demonstrated the capability to detect the gases in concentrations lower than parts per million. Testing and development is continuing to improve the response and recovery times, to increase the sensitivity of the devices. Different coatings and electrodes are currently being evaluated to determine the optimum configuration of a variety of gases. The small footprint of the Nano sensors allows for several devices, each responsive in a different way to different gases, to be placed into a single substrate. Multiple devices embedded into a single substrate results in increased reliability and in a decrease for periodic calibrations. The use of different coatings will result in a small electronic nose capable of distinguishing between different gases. A multi-channel signal conditioner amplifier built on a small multi chip module is used to process the output of the sensors and to deliver a signal that can be remotely monitored. All the data is digitized and transmitted over the same cable pair used to power the amplifier. Multiple outputs can be connected to a single cable pair in order to minimize the added weight and expense associated with cabling in a spacecraft. The sensors will be run through a qualification process to evaluate their suitability for space applications we are expecting to have fully functional sensors available for initial field deployment and testing by the end of the year 2006.

  13. Continuous detection of weak sensory signals in afferent spike trains: the role of anti-correlated interspike intervals in detection performance.

    PubMed

    Goense, J B M; Ratnam, R

    2003-10-01

    An important problem in sensory processing is deciding whether fluctuating neural activity encodes a stimulus or is due to variability in baseline activity. Neurons that subserve detection must examine incoming spike trains continuously, and quickly and reliably differentiate signals from baseline activity. Here we demonstrate that a neural integrator can perform continuous signal detection, with performance exceeding that of trial-based procedures, where spike counts in signal- and baseline windows are compared. The procedure was applied to data from electrosensory afferents of weakly electric fish (Apteronotus leptorhynchus), where weak perturbations generated by small prey add approximately 1 spike to a baseline of approximately 300 spikes s(-1). The hypothetical postsynaptic neuron, modeling an electrosensory lateral line lobe cell, could detect an added spike within 10-15 ms, achieving near ideal detection performance (80-95%) at false alarm rates of 1-2 Hz, while trial-based testing resulted in only 30-35% correct detections at that false alarm rate. The performance improvement was due to anti-correlations in the afferent spike train, which reduced both the amplitude and duration of fluctuations in postsynaptic membrane activity, and so decreased the number of false alarms. Anti-correlations can be exploited to improve detection performance only if there is memory of prior decisions.

  14. Identification of possible genetic alterations in the breast cancer cell line MCF-7 using high-density SNP genotyping microarray

    PubMed Central

    Wang, Hui-Yun; Greenawalt, Danielle; Cui, Xiangfeng; Tereshchenko, Irina V; Luo, Minjie; Yang, Qifeng; Azaro, Marco A; Hu, Guohong; Chu, Yi; Li, James Y; Shen, Li; Lin, Yong; Zhang, Lianjun

    2009-01-01

    Context: Cancer cell lines are used extensively in various research. Knowledge of genetic alterations in these lines is important for understanding mechanisms underlying their biology. However, since paired normal tissues are usually unavailable for comparison, precisely determining genetic alterations in cancer cell lines is difficult. To address this issue, a highly efficient and reliable method is developed. Aims: Establishing a highly efficient and reliable experimental system for genetic profiling of cell lines. Materials and Methods: A widely used breast cancer cell line, MCF-7, was genetically profiled with 4,396 single nucleotide polymorphisms (SNPs) spanning 11 whole chromosomes and two other small regions using a newly developed high-throughput multiplex genotyping approach. Results: The fractions of homozygous SNPs in MCF-7 (13.3%) were significantly lower than those in the control cell line and in 24 normal human individuals (25.1% and 27.4%, respectively). Homozygous SNPs in MCF-7 were found in clusters. The sizes of these clusters were significantly larger than the expected based on random allelic combination. Fourteen such regions were found on chromosomes 1p, 1q, 2q, 6q, 13, 15q, 16q, 17q and 18p in MCF-7 and two in the small regions. Conclusions: These results are generally concordant with those obtained using different approaches but are better in defining their chromosomal positions. The used approach provides a reliable way to detecting possible genetic alterations in cancer cell lines without paired normal tissues. PMID:19439911

  15. Bidirectional QoS support for novelty detection applications based on hierarchical wireless sensor network model

    NASA Astrophysics Data System (ADS)

    Edwards, Mark; Hu, Fei; Kumar, Sunil

    2004-10-01

    The research on the Novelty Detection System (NDS) (called as VENUS) at the authors' universities has generated exciting results. For example, we can detect an abnormal behavior (such as cars thefts from the parking lot) from a series of video frames based on the cognitively motivated theory of habituation. In this paper, we would like to describe the implementation strategies of lower layer protocols for using large-scale Wireless Sensor Networks (WSN) to NDS with Quality-of-Service (QoS) support. Wireless data collection framework, consisting of small and low-power sensor nodes, provides an alternative mechanism to observe the physical world, by using various types of sensing capabilities that include images (and even videos using Panoptos), sound and basic physical measurements such as temperature. We do not want to lose any 'data query command' packets (in the downstream direction: sink-to-sensors) or have any bit-errors in them since they are so important to the whole sensor network. In the upstream direction (sensors-to-sink), we may tolerate the loss of some sensing data packets. But the 'interested' sensing flow should be assigned a higher priority in terms of multi-hop path choice, network bandwidth allocation, and sensing data packet generation frequency (we hope to generate more sensing data packet for that novel event in the specified network area). The focus of this paper is to investigate MAC-level Quality of Service (QoS) issue in Wireless Sensor Networks (WSN) for Novelty Detection applications. Although QoS has been widely studied in other types of networks including wired Internet, general ad hoc networks and mobile cellular networks, we argue that QoS in WSN has its own characteristics. In wired Internet, the main QoS parameters include delay, jitter and bandwidth. In mobile cellular networks, two most common QoS metrics are: handoff call dropping probability and new call blocking probability. Since the main task of WSN is to detect and report events, the most important QoS parameters should include sensing data packet transmission reliability, lifetime extension degree from sensor sleeping control, event detection latency, congestion reduction level through removal of redundant sensing data. In this paper, we will focus on the following bi-directional QoS topics: (1) Downstream (sink-to-sensor) QoS: Reliable data query command forwarding to particular sensor(s). In other words, we do not want to lose the query command packets; (2) Upstream (sensor-to-sink) QoS: transmission of sensed data with priority control. The more interested data that can help in novelty detection should be transmitted on an optimal path with higher reliability. We propose the use of Differentiated Data Collection. Due to the large-scale nature and resource constraints of typical wireless sensor networks, such as limited energy, small memory (typically RAM < 4K bytes) and short communication range, the above problems become even more challenging. Besides QoS support issue, we will also describe our low-energy Sensing Data Transmission network Architecture. Our research results show the scalability and energy-efficiency of our proposed WSN QoS schemes.

  16. SPR based hybrid electro-optic biosensor for β-lactam antibiotics determination in water

    NASA Astrophysics Data System (ADS)

    Galatus, Ramona; Feier, Bogdan; Cristea, Cecilia; Cennamo, Nunzio; Zeni, Luigi

    2017-09-01

    The present work aims to provide a hybrid platform capable of complementary and sensitive detection of β-lactam antibiotics, ampicillin in particular. The use of an aptamer specific to ampicillin assures good selectivity and sensitivity for the detection of ampicillin from different matrice. This new approach is dedicated for a portable, remote sensing platform based on low-cost, small size and low-power consumption solution. The simple experimental hybrid platform integrates the results from the D-shape surface plasmon resonance plastic optical fiber (SPR-POF) and from the electrochemical (bio)sensor, for the analysis of ampicillin, delivering sensitive and reliable results. The SPR-POF already used in many previous applications is embedded in a new experimental setup with fluorescent fibers emitters, for broadband wavelength analysis, low-power consumption and low-heating capabilities of the sensing platform.

  17. Reliability and Validity of the PAQ-C Questionnaire to Assess Physical Activity in Children.

    PubMed

    Benítez-Porres, Javier; López-Fernández, Iván; Raya, Juan Francisco; Álvarez Carnero, Sabrina; Alvero-Cruz, José Ramón; Álvarez Carnero, Elvis

    2016-09-01

    Physical activity (PA) assessment by questionnaire is a cornerstone in the field of sport epidemiology studies. The Physical Activity Questionnaire for Children (PAQ-C) has been used widely to assess PA in healthy school populations. The aim of this study was to evaluate the reliability and validity of the PAQ-C questionnaire in Spanish children using triaxial accelerometry as criterion. Eighty-three (N = 46 boys, N = 37 girls) healthy children (age 10.98 ± 1.17 years, body mass index 19.48 ± 3.51 kg/m(2) ) were volunteers and completed the PAQ-C twice and wore an accelerometer for 8 consecutive days. Reliability was analyzed by the intraclass correlation coefficient (ICC) and the internal consistency by the Cronbach's α coefficient. The PAQ-C was compared against total PA and moderate to vigorous PA (MVPA) obtained by accelerometry. Test-retest reliability showed an ICC = 0.96 for the final score of PAQ-C. Small differences between first and second questionnaire administration were detected. Few and low correlations (rho = 0.228-0.278, all ps < .05) were observed between PAQ-C and accelerometry. The highest correlation was observed for item 9 (rho = 0.311, p < .01). PAQ-C had a high reliability but a questionable validity for assessing total PA and MVPA in Spanish children. Therefore, PA measurement in children should not be limited only to self-report measurements. © 2016, American School Health Association.

  18. Electrochemical Quartz Crystal Nanobalance (EQCN) Based Biosensor for Sensitive Detection of Antibiotic Residues in Milk.

    PubMed

    Bhand, Sunil; Mishra, Geetesh K

    2017-01-01

    An electrochemical quartz crystal nanobalance (EQCN), which provides real-time analysis of dynamic surface events, is a valuable tool for analyzing biomolecular interactions. EQCN biosensors are based on mass-sensitive measurements that can detect small mass changes caused by chemical binding to small piezoelectric crystals. Among the various biosensors, the piezoelectric biosensor is considered one of the most sensitive analytical techniques, capable of detecting antigens at picogram levels. EQCN is an effective monitoring technique for regulation of the antibiotics below the maximum residual limit (MRL). The analysis of antibiotic residues requires high sensitivity, rapidity, reliability and cost effectiveness. For analytical purposes the general approach is to take advantage of the piezoelectric effect by immobilizing a biosensing layer on top of the piezoelectric crystal. The sensing layer usually comprises a biological material such as an antibody, enzymes, or aptamers having high specificity and selectivity for the target molecule to be detected. The biosensing layer is usually functionalized using surface chemistry modifications. When these bio-functionalized quartz crystals are exposed to a particular substance of interest (e.g., a substrate, inhibitor, antigen or protein), binding interaction occurs. This causes a frequency or mass change that can be used to determine the amount of material interacted or bound. EQCN biosensors can easily be automated by using a flow injection analysis (FIA) setup coupled through automated pumps and injection valves. Such FIA-EQCN biosensors have great potential for the detection of different analytes such as antibiotic residues in various matrices such as water, waste water, and milk.

  19. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories

    PubMed Central

    Chen, Xiaojian; Cui, Tingting; Fu, Jianhong; Peng, Jianwei; Shan, Jie

    2016-01-01

    Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a) it is able to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques. PMID:27916944

  20. Impacts of Intelligent Automated Quality Control on a Small Animal APD-Based Digital PET Scanner

    NASA Astrophysics Data System (ADS)

    Charest, Jonathan; Beaudoin, Jean-François; Bergeron, Mélanie; Cadorette, Jules; Arpin, Louis; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2016-10-01

    Stable system performance is mandatory to warrant the accuracy and reliability of biological results relying on small animal positron emission tomography (PET) imaging studies. This simple requirement sets the ground for imposing routine quality control (QC) procedures to keep PET scanners at a reliable optimal performance level. However, such procedures can become burdensome to implement for scanner operators, especially taking into account the increasing number of data acquisition channels in newer generation PET scanners. In systems using pixel detectors to achieve enhanced spatial resolution and contrast-to-noise ratio (CNR), the QC workload rapidly increases to unmanageable levels due to the number of independent channels involved. An artificial intelligence based QC system, referred to as Scanner Intelligent Diagnosis for Optimal Performance (SIDOP), was proposed to help reducing the QC workload by performing automatic channel fault detection and diagnosis. SIDOP consists of four high-level modules that employ machine learning methods to perform their tasks: Parameter Extraction, Channel Fault Detection, Fault Prioritization, and Fault Diagnosis. Ultimately, SIDOP submits a prioritized faulty channel list to the operator and proposes actions to correct them. To validate that SIDOP can perform QC procedures adequately, it was deployed on a LabPET™ scanner and multiple performance metrics were extracted. After multiple corrections on sub-optimal scanner settings, a 8.5% (with a 95% confidence interval (CI) of [7.6, 9.3]) improvement in the CNR, a 17.0% (CI: [15.3, 18.7]) decrease of the uniformity percentage standard deviation, and a 6.8% gain in global sensitivity were observed. These results confirm that SIDOP can indeed be of assistance in performing QC procedures and restore performance to optimal figures.

  1. A study of fault prediction and reliability assessment in the SEL environment

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Patnaik, Debabrata

    1986-01-01

    An empirical study on estimation and prediction of faults, prediction of fault detection and correction effort, and reliability assessment in the Software Engineering Laboratory environment (SEL) is presented. Fault estimation using empirical relationships and fault prediction using curve fitting method are investigated. Relationships between debugging efforts (fault detection and correction effort) in different test phases are provided, in order to make an early estimate of future debugging effort. This study concludes with the fault analysis, application of a reliability model, and analysis of a normalized metric for reliability assessment and reliability monitoring during development of software.

  2. Nanosensors for Evaluating Hazardous Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Personnel working in a confined environment can be exposed to hazardous gases, and certain gases can be extremely dangerous even in concentrations as low as a few parts per billion. Nanosensors can be placed in multiple locations over a large area, thus allowing for more precise and timely detection of gas leaks. ASRC Aerospace and its research partners are developing nanosensors to detect various gases, including hydrogen, ammonia, nitrogen tetroxide, and hydrazine. Initial laboratory testing demonstrated the capability to detect these gases in concentrations lower than parts per million, and current testing is evaluating sensitivity at concentration levels three orders of magnitude lower. Testing and development continue to improve the response and recovery times and to increase the sensitivity of the devices. The development team is evaluating different coatings and electrodes to determine the optimum configuration for detecting and identifying a variety of gases. The small footprint of the nanosensors allows several devices to be placed into a single substrate. Each sensor is responsive in a different way to different gases. Embedding multiple devices into a single substrate results in better reliability and less frequent calibrations. The use of different coatings for individual elements of a multichannel sensor allows different gases to be identified. The sensor system is implemented by the use of a custom multichannel signal conditioner amplifier built on a small multichip module. This device processes the output of the sensors and transmits a signal that can be monitored and analyzed remotely.

  3. Quantitative Detection of Small Molecule/DNA Complexes Employing a Force-Based and Label-Free DNA-Microarray

    PubMed Central

    Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.

    2009-01-01

    Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688

  4. Sensing sheets based on large area electronics for fatigue crack detection

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Glisic, Branko

    2015-03-01

    Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.

  5. Algorithm Summary and Evaluation: Automatic Implementation of Ringdown Analysis for Electromechanical Mode Identification from Phasor Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ning; Huang, Zhenyu; Tuffner, Francis K.

    2010-02-28

    Small signal stability problems are one of the major threats to grid stability and reliability. Prony analysis has been successfully applied on ringdown data to monitor electromechanical modes of a power system using phasor measurement unit (PMU) data. To facilitate an on-line application of mode estimation, this paper develops a recursive algorithm for implementing Prony analysis and proposed an oscillation detection method to detect ringdown data in real time. By automatically detecting ringdown data, the proposed method helps guarantee that Prony analysis is applied properly and timely on the ringdown data. Thus, the mode estimation results can be performed reliablymore » and timely. The proposed method is tested using Monte Carlo simulations based on a 17-machine model and is shown to be able to properly identify the oscillation data for on-line application of Prony analysis. In addition, the proposed method is applied to field measurement data from WECC to show the performance of the proposed algorithm.« less

  6. Measurement of curium in marine samples

    NASA Astrophysics Data System (ADS)

    Schneider, D. L.; Livingston, H. D.

    1984-06-01

    Measurement of environmentally small but detectable amounts of curium requires reliable, accureate, and sensitive analytical methods. The radiochemical separation developed at Woods Hole is briefly reviewed with specific reference to radiochemical interferences in the alpha spectrometric measurement of curium nuclides and to the relative amounts of interferences expected in different oceanic regimes and sample types. Detection limits for 242 Cm and 244 Cm are ultimately limited by their presence in the 243Am used as curium yield monitor. Environmental standard reference materials are evaluated with regard to curium. The marine literature is reviewed and curium measurements are discussed in relation to their source of introduction to the environment. Sources include ocean dumping of low-level radioactive wastes and discharges from nuclear fuel reporcessing activities, In particular, the question of a detectable presence of 244Cm in global fallout from nuclear weapons testing is addressed and shown to be essentially negligible. Analyses of Scottish coastal sedimantes show traces of 242Cm and 244Cm activity which are believed to originate from transport from sources in the Irish Sea.

  7. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers

    PubMed Central

    Ren, Ming; Song, Bo; Dong, Ming

    2017-01-01

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring. PMID:29125544

  8. Towards Optical Partial Discharge Detection with Micro Silicon Photomultipliers.

    PubMed

    Ren, Ming; Zhou, Jierui; Song, Bo; Zhang, Chongxing; Dong, Ming; Albarracín, Ricardo

    2017-11-10

    Optical detection is reliable in intrinsically characterizing partial discharges (PDs). Because of the great volume and high-level power supply of the optical devices that can satisfy the requirements in photosensitivity, optical PD detection can merely be used in laboratory studies. To promote the practical application of the optical approach in an actual power apparatus, a silicon photomultiplier (SiPM)-based PD sensor is introduced in this paper, and its basic properties, which include the sensitivity, pulse resolution, correlation with PD severity, and electromagnetic (EM) interference immunity, are experimentally evaluated. The stochastic phase-resolved PD pattern (PRPD) for three typical insulation defects are obtained by SiPM PD detector and are compared with those obtained using a high-frequency current transformer (HFCT) and a vacuum photomultiplier tube (PMT). Because of its good performances in the above aspects and its additional advantages, such as the small size, low power supply, and low cost, SiPM offers great potential in practical optical PD monitoring.

  9. Detection of nitrogen dioxide by CW cavity-enhanced spectroscopy

    NASA Astrophysics Data System (ADS)

    Jie, Guo; Han, Ye-Xing; Yu, Zhi-Wei; Tang, Huai-Wu

    2016-11-01

    In the paper, an accurate and sensitive system was used to monitor the ambient atmospheric NO2 concentrations. This system utilizes cavity attenuated phase shift spectroscopy(CAPS), a technology related to cavity ring down spectroscopy(CRDS). Advantages of the CAPS system include such as: (1) cheap and easy to control the light source, (2) high accuracy, and (3) low detection limit. The performance of the CAPS system was evaluated by measuring of the stability and response of the system. The minima ( 0.08 ppb NO2) in the Allan plots show the optimum average time( 100s) for optimum detection performance of the CAPS system. Over a 20-day-long period of the ambient atmospheric NO2 concentrations monitoring, a comparison of the CAPS system with an extremely accurate and precise chemiluminescence-based NOx analyzer showed that the CAPS system was able to reliably and quantitatively measure both large and small fluctuations in the ambient nitrogen dioxide concentration. The experimental results show that the measuring instrument results correlation is 0.95.

  10. Application of statistical process control to qualitative molecular diagnostic assays.

    PubMed

    O'Brien, Cathal P; Finn, Stephen P

    2014-01-01

    Modern pathology laboratories and in particular high throughput laboratories such as clinical chemistry have developed a reliable system for statistical process control (SPC). Such a system is absent from the majority of molecular laboratories and where present is confined to quantitative assays. As the inability to apply SPC to an assay is an obvious disadvantage this study aimed to solve this problem by using a frequency estimate coupled with a confidence interval calculation to detect deviations from an expected mutation frequency. The results of this study demonstrate the strengths and weaknesses of this approach and highlight minimum sample number requirements. Notably, assays with low mutation frequencies and detection of small deviations from an expected value require greater sample numbers to mitigate a protracted time to detection. Modeled laboratory data was also used to highlight how this approach might be applied in a routine molecular laboratory. This article is the first to describe the application of SPC to qualitative laboratory data.

  11. Steganalysis based on JPEG compatibility

    NASA Astrophysics Data System (ADS)

    Fridrich, Jessica; Goljan, Miroslav; Du, Rui

    2001-11-01

    In this paper, we introduce a new forensic tool that can reliably detect modifications in digital images, such as distortion due to steganography and watermarking, in images that were originally stored in the JPEG format. The JPEG compression leave unique fingerprints and serves as a fragile watermark enabling us to detect changes as small as modifying the LSB of one randomly chosen pixel. The detection of changes is based on investigating the compatibility of 8x8 blocks of pixels with JPEG compression with a given quantization matrix. The proposed steganalytic method is applicable to virtually all steganongraphic and watermarking algorithms with the exception of those that embed message bits into the quantized JPEG DCT coefficients. The method can also be used to estimate the size of the secret message and identify the pixels that carry message bits. As a consequence of our steganalysis, we strongly recommend avoiding using images that have been originally stored in the JPEG format as cover-images for spatial-domain steganography.

  12. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  13. Reliability analysis and fault-tolerant system development for a redundant strapdown inertial measurement unit. [inertial platforms

    NASA Technical Reports Server (NTRS)

    Motyka, P.

    1983-01-01

    A methodology is developed and applied for quantitatively analyzing the reliability of a dual, fail-operational redundant strapdown inertial measurement unit (RSDIMU). A Markov evaluation model is defined in terms of the operational states of the RSDIMU to predict system reliability. A 27 state model is defined based upon a candidate redundancy management system which can detect and isolate a spectrum of failure magnitudes. The results of parametric studies are presented which show the effect on reliability of the gyro failure rate, both the gyro and accelerometer failure rates together, false alarms, probability of failure detection, probability of failure isolation, and probability of damage effects and mission time. A technique is developed and evaluated for generating dynamic thresholds for detecting and isolating failures of the dual, separated IMU. Special emphasis is given to the detection of multiple, nonconcurrent failures. Digital simulation time histories are presented which show the thresholds obtained and their effectiveness in detecting and isolating sensor failures.

  14. Testing cognitive function in elderly populations: the PROSPER study. PROspective Study of Pravastatin in the Elderly at Risk.

    PubMed

    Houx, P J; Shepherd, J; Blauw, G-J; Murphy, M B; Ford, I; Bollen, E L; Buckley, B; Stott, D J; Jukema, W; Hyland, M; Gaw, A; Norrie, J; Kamper, A M; Perry, I J; MacFarlane, P W; Meinders, A Edo; Sweeney, B J; Packard, C J; Twomey, C; Cobbe, S M; Westendorp, R G

    2002-10-01

    For large scale follow up studies with non-demented patients in which cognition is an endpoint, there is a need for short, inexpensive, sensitive, and reliable neuropsychological tests that are suitable for repeated measurements. The commonly used Mini-Mental-State-Examination fulfils only the first two requirements. In the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), 5804 elderly subjects aged 70 to 82 years were examined using a learning test (memory), a coding test (general speed), and a short version of the Stroop test (attention). Data presented here were collected at dual baseline, before randomisation for active treatment. The tests proved to be reliable (with test/retest reliabilities ranging from acceptable (r=0.63) to high (r=0.88) and sensitive to detect small differences in subjects from different age categories. All tests showed significant practice effects: performance increased from the first measurement to the first follow up after two weeks. Normative data are provided that can be used for one time neuropsychological testing as well as for assessing individual and group change. Methods for analysing cognitive change are proposed.

  15. A rapid and sensitive fluorometric method for the quantitative analysis of snake venom metalloproteases and their inhibitors.

    PubMed

    Biardi, J E; Nguyen, K T; Lander, S; Whitley, M; Nambiar, K P

    2011-02-01

    Metalloproteases are responsible for the hemorrhagic effects of many snake venoms and contribute to other pathways that lead to local tissue damage. Methods that quantify snake venom metalloproteases (SVMP) are therefore valuable tools in research on the clinical, physiological, and biochemical effects of envenomation. Comparative analysis of individual, population, and species differences requires screening of large numbers of samples and treatments, and therefore require a method of quantifying SVMP activity that is simple, rapid, and sensitive. This paper demonstrates the properties of a new fluorometric assay of SVMP activity that can provide a measure of metalloprotease activity in 1 h. The assay is reliable, with variation among replicates sufficiently small to reliably detect differences in between species (F(19,60) = 2924, p < 0.001), even for those venoms with low overall activity. It is also sensitive enough to detect differences among venoms using <2 ng of whole venom protein. We provide an example use of this assay to detect the presence of natural SVMP inhibitors in minute samples of blood plasma from rock squirrels (S. variegatus), a natural prey species for North American rattlesnakes. We propose this assay is a useful addition to the set of tools used to characterize venoms, as well as high-throughput screening of natural or synthetic inhibitors, or other novel therapeutic agents against SVMP effects. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Detecting long-term growth trends using tree rings: a critical evaluation of methods.

    PubMed

    Peters, Richard L; Groenendijk, Peter; Vlam, Mart; Zuidema, Pieter A

    2015-05-01

    Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection methods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrending methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD) applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using average age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we evaluated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a tropical tree species from Thailand. Three GDMs yielded similar results - a growth decline over time - but the widely used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with different imposed trends: no trend, strong trends (-6% and +6% change per decade) and weak trends (-2%, +2%). All methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However, these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods showed highest reliability to detect long-term growth trends. © 2014 John Wiley & Sons Ltd.

  17. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  18. Spatial working memory for locations specified by vision and audition: testing the amodality hypothesis.

    PubMed

    Loomis, Jack M; Klatzky, Roberta L; McHugh, Brendan; Giudice, Nicholas A

    2012-08-01

    Spatial working memory can maintain representations from vision, hearing, and touch, representations referred to here as spatial images. The present experiment addressed whether spatial images from vision and hearing that are simultaneously present within working memory retain modality-specific tags or are amodal. Observers were presented with short sequences of targets varying in angular direction, with the targets in a given sequence being all auditory, all visual, or a sequential mixture of the two. On two thirds of the trials, one of the locations was repeated, and observers had to respond as quickly as possible when detecting this repetition. Ancillary detection and localization tasks confirmed that the visual and auditory targets were perceptually comparable. Response latencies in the working memory task showed small but reliable costs in performance on trials involving a sequential mixture of auditory and visual targets, as compared with trials of pure vision or pure audition. These deficits were statistically reliable only for trials on which the modalities of the matching location switched from the penultimate to the final target in the sequence, indicating a switching cost. The switching cost for the pair in immediate succession means that the spatial images representing the target locations retain features of the visual or auditory representations from which they were derived. However, there was no reliable evidence of a performance cost for mixed modalities in the matching pair when the second of the two did not immediately follow the first, suggesting that more enduring spatial images in working memory may be amodal.

  19. Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks.

    PubMed

    Miskell, Georgia; Salmond, Jennifer; Alavi-Shoshtari, Maryam; Bart, Mark; Ainslie, Bruce; Grange, Stuart; McKendry, Ian G; Henshaw, Geoff S; Williams, David E

    2016-01-19

    Aiming at minimizing the costs, both of capital expenditure and maintenance, of an extensive air-quality measurement network, we present simple statistical methods that do not require extensive training data sets for automated real-time verification of the reliability of data delivered by a spatially dense hybrid network of both low-cost and reference ozone measurement instruments. Ozone is a pollutant that has a relatively smooth spatial spread over a large scale although there can be significant small-scale variations. We take advantage of these characteristics and demonstrate detection of instrument calibration drift within a few days using a rolling 72 h comparison of hourly averaged data from the test instrument with that from suitably defined proxies. We define the required characteristics of the proxy measurements by working from a definition of the network purpose and specification, in this case reliable determination of the proportion of hourly averaged ozone measurements that are above a threshold in any given day, and detection of calibration drift of greater than ±30% in slope or ±5 parts-per-billion in offset. By analyzing results of a study of an extensive deployment of low-cost instruments in the Lower Fraser Valley, we demonstrate that proxies can be established using land-use criteria and that simple statistical comparisons can identify low-cost instruments that are not stable and therefore need replacing. We propose that a minimal set of compliant reference instruments can be used to verify the reliability of data from a much more extensive network of low-cost devices.

  20. Combined Bisulfite Restriction Analysis for brain tissue identification.

    PubMed

    Samsuwan, Jarunya; Muangsub, Tachapol; Yanatatsaneejit, Pattamawadee; Mutirangura, Apiwat; Kitkumthorn, Nakarin

    2018-05-01

    According to the tissue-specific methylation database (doi: 10.1016/j.gene.2014.09.060), methylation at CpG locus cg03096975 in EML2 has been preliminarily proven to be specific to brain tissue. In this study, we enlarged sample size and developed a technique for identifying brain tissue in aged samples. Combined Bisulfite Restriction Analysis-for EML2 (COBRA-EML2) technique was established and validated in various organ samples obtained from 108 autopsies. In addition, this technique was also tested for its reliability, minimal DNA concentration detected, and use in aged samples and in samples obtained from specific brain compartments and spinal cord. COBRA-EML2 displayed 100% sensitivity and specificity for distinguishing brain tissue from other tissues, showed high reliability, was capable of detecting minimal DNA concentration (0.015ng/μl), could be used for identifying brain tissue in aged samples. In summary, COBRA-EML2 is a technique to identify brain tissue. This analysis is useful in criminal cases since it can identify the vital organ tissues from small samples acquired from criminal scenes. The results from this analysis can be counted as a medical and forensic marker supporting criminal investigations, and as one of the evidences in court rulings. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Increasing Small Satellite Reliability- A Public-Private Initiative

    NASA Technical Reports Server (NTRS)

    Johnson, Michael A.; Beauchamp, Patricia; Schone, Harald; Sheldon, Doug; Fuhrman, Linda; Sullivan, Erica; Fairbanks, Tom; Moe, Miquel; Leitner, Jesse

    2017-01-01

    At present, CubeSat components and buses are generally not appropriate for missions where significant risk of failure, or the inability to quantify risk or confidence, is acceptable. However, in the future we anticipate that CubeSats will be used for missions requiring reliability of 1-3 years for Earth-observing missions and even longer for Planetary, Heliophysics, and Astrophysics missions. Their growing potential utility is driving an interagency effort to improve and quantify CubeSat reliability, and more generally, small satellite mission risk. The Small Satellite Reliability Initiative (SSRI)—an ongoing activity with broad collaborative participation from civil, DoD, and commercial space systems providers and stakeholders—targets this challenge. The Initiative seeks to define implementable and broadly-accepted approaches to achieve reliability and acceptable risk postures associated with several SmallSat mission risk classes—from “do no harm” missions, to those associated with missions whose failure would result in loss or delay of key national objectives. These approaches will maintain, to the extent practical, cost efficiencies associated with small satellite missions and consider constraints associated with supply chain elements, as appropriate. The SSRI addresses this challenge from two architectural levels—the mission- or system-level, and the component- or subsystem-level. The mission- or system-level scope targets assessment approaches that are efficient and effective, with mitigation strategies that facilitate resiliency to mission or system anomalies while the component- or subsystem-level scope addresses the challenge at lower architectural levels. The initiative does not limit strategies and approaches to proven and traditional methodologies, but is focused on fomenting thought on novel and innovative solutions. This paper discusses the genesis of and drivers for this initiative, how the public-private collaboration is being executed, findings and recommendations derived to date, and next steps towards broadening small satellite mission potential.

  2. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  3. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    NASA Astrophysics Data System (ADS)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  4. Ultrasound excited thermography: an efficient tool for the characterization of vertical cracks

    NASA Astrophysics Data System (ADS)

    Mendioroz, A.; Celorrio, R.; Salazar, A.

    2017-11-01

    Ultrasound excited thermography has gained a renewed interest in the last two decades as a nondestructive testing technique aimed at detecting and characterizing surface breaking and shallow subsurface discontinuities. It is based on measurement of the IR radiation emitted by the specimen surface to detect temperature rises produced by the heating of defects under high amplitude ultrasound excitation and is primarily addressed to flaws with contacting faces, such as kissing cracks or tight delaminations. The simplicity of application and the ability to detect small cracks in challenging media makes it an attractive emerging technology, which is still in a development stage. However, it has proven to provide an opportunity for the quantitative characterization of defects, mainly of vertical cracks. In this review, we present the principles of the technique and the different experimental implementations, we put it in context with other nondestructive tests and we summarize the work done in order to improve defect detectability and test reliability, with the final goal of determining the probability of detection. Then we review the contributions aimed at characterizing vertical cracks, i.e. retrieving the geometry and location of the crack from surface temperature data, generated by ultrasonic excitation.

  5. Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems.

    PubMed

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.

  6. Superconducting magnetic sensors for mine detection and classification

    NASA Astrophysics Data System (ADS)

    Clem, Ted R.; Koch, Roger H.; Keefe, George A.

    1995-06-01

    Sensors incorporating Superconducting Quantum Interference Devices (SQUIDs) provide the greatest sensitivity for magnetic anomaly detection available with current technology. During the 1980's, the Naval Surface Warfare Center Coastal Systems Station (CSS) developed a superconducting magnetic sensor capable of operation outside of the laboratory environment. This sensor demonstrated rugged, reliable performance even onboard undersea towed platforms. With this sensor, the CSS was able to demonstrate buried mine detection for the US Navy. Subsequently the sensor was incorporated into a multisensor suite onboard an underwater towed vehicle to provide a robust mine hunting capability for the Magnetic and Acoustic Detection of Mines (MADOM) project. This sensor technology utilized niobium superconducting componentry cooled by liquid helium to temperatures on the order of 4 degrees Kelvin (K). In the late 1980's a new class of superconductors was discovered with critical temperatures above the boiling point of liquid nitrogen (77K). This advance has opened up new opportunities, especially for mine reconnaissance and hunting from small unmanned underwater vehicles (UUVs). This paper describes the magnetic sensor detection and classification concept developed for MADOM. In addition, opportunities for UUV operations made possible with high Tc technology and the Navy's current efforts in this area will be addressed.

  7. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    PubMed Central

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  8. 18 CFR 292.308 - Standards for operating reliability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reliability. 292.308 Section 292.308 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... SMALL POWER PRODUCTION AND COGENERATION Arrangements Between Electric Utilities and Qualifying... may establish reasonable standards to ensure system safety and reliability of interconnected...

  9. Validity, reliability and Norwegian adaptation of the Stroke-Specific Quality of Life (SS-QOL) scale

    PubMed Central

    Pedersen, Synne Garder; Heiberg, Guri Anita; Nielsen, Jørgen Feldbæk; Friborg, Oddgeir; Stabel, Henriette Holm; Anke, Audny; Arntzen, Cathrine

    2018-01-01

    Background: There is a paucity of stroke-specific instruments to assess health-related quality of life in the Norwegian language. The objective was to examine the validity and reliability of a Norwegian version of the 12-domain Stroke-Specific Quality of Life scale. Methods: A total of 125 stroke survivors were prospectively recruited. Questionnaires were administered at 3 months; 36 test–retests were performed at 12 months post stroke. The translation was conducted according to guidelines. The internal consistency was assessed with Cronbach’s alpha; convergent validity, with item-to-subscale correlations; and test–retest, with Spearman’s correlations. Scaling validity was explored by calculating both floor and ceiling effects. A priori hypotheses regarding the associations between the Stroke-Specific Quality of Life domain scores and scores of established measures were tested. Standard error of measurement was assessed. Results: The Norwegian version revealed no major changes in back translations. The internal consistency values of the domains were Cronbach’s alpha = 0.79–0.93. Rates of missing items were small, and the item-to-subscale correlation coefficients supported convergent validity (0.48–0.87). The observed floor effects were generally small, whereas the ceiling effects had moderate or high values (16%–63%). Test–retest reliability indicated stability in most domains, with Spearman’s rho = 0.67–0.94 (all p < 0.001), whereas the rho was 0.35 (p < 0.05) for the ‘Vision’ domain. Hypothesis testing supported the construct validity of the scale. Standard error of measurement values for each domain were generated to indicate the required magnitudes of detectable change. Conclusions: The Norwegian version of the Stroke-Specific Quality of Life scale is a reliable and valid instrument with good psychometric properties. It is suited for use in health research as well as in individual assessments of persons with stroke. PMID:29344360

  10. Validity, reliability and Norwegian adaptation of the Stroke-Specific Quality of Life (SS-QOL) scale.

    PubMed

    Pedersen, Synne Garder; Heiberg, Guri Anita; Nielsen, Jørgen Feldbæk; Friborg, Oddgeir; Stabel, Henriette Holm; Anke, Audny; Arntzen, Cathrine

    2018-01-01

    There is a paucity of stroke-specific instruments to assess health-related quality of life in the Norwegian language. The objective was to examine the validity and reliability of a Norwegian version of the 12-domain Stroke-Specific Quality of Life scale. A total of 125 stroke survivors were prospectively recruited. Questionnaires were administered at 3 months; 36 test-retests were performed at 12 months post stroke. The translation was conducted according to guidelines. The internal consistency was assessed with Cronbach's alpha; convergent validity, with item-to-subscale correlations; and test-retest, with Spearman's correlations. Scaling validity was explored by calculating both floor and ceiling effects. A priori hypotheses regarding the associations between the Stroke-Specific Quality of Life domain scores and scores of established measures were tested. Standard error of measurement was assessed. The Norwegian version revealed no major changes in back translations. The internal consistency values of the domains were Cronbach's alpha = 0.79-0.93. Rates of missing items were small, and the item-to-subscale correlation coefficients supported convergent validity (0.48-0.87). The observed floor effects were generally small, whereas the ceiling effects had moderate or high values (16%-63%). Test-retest reliability indicated stability in most domains, with Spearman's rho = 0.67-0.94 (all p < 0.001), whereas the rho was 0.35 (p < 0.05) for the 'Vision' domain. Hypothesis testing supported the construct validity of the scale. Standard error of measurement values for each domain were generated to indicate the required magnitudes of detectable change. The Norwegian version of the Stroke-Specific Quality of Life scale is a reliable and valid instrument with good psychometric properties. It is suited for use in health research as well as in individual assessments of persons with stroke.

  11. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  12. Emergency response networks for disaster monitoring and detection from space

    NASA Astrophysics Data System (ADS)

    Vladimirova, Tanya; Sweeting, Martin N.; Vitanov, Ivan; Vitanov, Valentin I.

    2009-05-01

    Numerous man-made and natural disasters have stricken mankind since the beginning of the new millennium. The scale and impact of such disasters often prevent the collection of sufficient data for an objective assessment and coordination of timely rescue and relief missions on the ground. As a potential solution to this problem, in recent years constellations of Earth observation small satellites and in particular micro-satellites (<100 kg) in low Earth orbit have emerged as an efficient platform for reliable disaster monitoring. The main task of the Earth observation satellites is to capture images of the Earth surface using various techniques. For a large number of applications the resulting delay between image capture and delivery is not acceptable, in particular for rapid response remote sensing aiming at disaster monitoring and detection. In such cases almost instantaneous data availability is a strict requirement to enable an assessment of the situation and instigate an adequate response. Examples include earthquakes, volcanic eruptions, flooding, forest fires and oil spills. The proposed solution to this issue are low-cost networked distributed satellite systems in low Earth orbit capable of connecting to terrestrial networks and geostationary Earth orbit spacecraft in real time. This paper discusses enabling technologies for rapid response disaster monitoring and detection from space such as very small satellite design, intersatellite communication, intelligent on-board processing, distributed computing and bio-inspired routing techniques.

  13. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    PubMed

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  14. Detection of rearrangements and transcriptional up-regulation of ALK in FFPE lung cancer specimens using a novel, sensitive, quantitative reverse transcription polymerase chain reaction assay.

    PubMed

    Gruber, Kim; Horn, Heike; Kalla, Jörg; Fritz, Peter; Rosenwald, Andreas; Kohlhäufl, Martin; Friedel, Godehard; Schwab, Matthias; Ott, German; Kalla, Claudia

    2014-03-01

    The approved dual-color fluorescence in situ hybridization (FISH) test for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements in non-small-cell lung cancer (NSCLC) is complex and represents a low-throughput assay difficult to use in daily diagnostic practice. We devised a sensitive and robust routine diagnostic test for the detection of rearrangements and transcriptional up-regulation of ALK. We developed a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay adapted to RNA isolated from routine formalin-fixed, paraffin-embedded material and applied it to 652 NSCLC specimens. The reliability of this technique to detect ALK dysregulation was shown by comparison with FISH and immunohistochemistry. qRT-PCR analysis detected unbalanced ALK expression indicative of a gene rearrangement in 24 (4.6%) and full-length ALK transcript expression in six (1.1%) of 523 interpretable tumors. Among 182 tumors simultaneously analyzed by FISH and qRT-PCR, the latter accurately typed 97% of 19 rearranged and 158 nonrearranged tumors and identified ALK deregulation in two cases with insufficient FISH. Six tumors expressing full-length ALK transcripts did not show rearrangements of the gene. Immunohistochemistry detected ALK protein overexpression in tumors with gene fusions and transcriptional up-regulation, but did not distinguish between the two. One case with full-length ALK expression carried a heterozygous point mutation (S1220Y) within the kinase domain potentially interfering with kinase activity and/or inhibitor binding. Our qRT-PCR assay reliably identifies and distinguishes ALK rearrangements and full-length transcript expression in formalin-fixed, paraffin-embedded material. It is an easy-to-perform, cost-effective, and high-throughput tool for the diagnosis of ALK activation. The expression of full-length ALK transcripts may be relevant for ALK inhibitor therapy in NSCLC.

  15. Rapid Molecular Assays for the Detection of Yellow Fever Virus in Low-Resource Settings

    PubMed Central

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-01-01

    Background Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. Methodology The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. Conclusion/Significance The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings. PMID:24603874

  16. Mesoscale Gravity Wave Variances from AMSU-A Radiances

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2004-01-01

    A variance analysis technique is developed here to extract gravity wave (GW) induced temperature fluctuations from NOAA AMSU-A (Advanced Microwave Sounding Unit-A) radiance measurements. By carefully removing the instrument/measurement noise, the algorithm can produce reliable GW variances with the minimum detectable value as small as 0.1 K2. Preliminary analyses with AMSU-A data show GW variance maps in the stratosphere have very similar distributions to those found with the UARS MLS (Upper Atmosphere Research Satellite Microwave Limb Sounder). However, the AMSU-A offers better horizontal and temporal resolution for observing regional GW variability, such as activity over sub-Antarctic islands.

  17. Application of Collocated GPS and Seismic Sensors to Earthquake Monitoring and Early Warning

    PubMed Central

    Li, Xingxing; Zhang, Xiaohong; Guo, Bofeng

    2013-01-01

    We explore the use of collocated GPS and seismic sensors for earthquake monitoring and early warning. The GPS and seismic data collected during the 2011 Tohoku-Oki (Japan) and the 2010 El Mayor-Cucapah (Mexico) earthquakes are analyzed by using a tightly-coupled integration. The performance of the integrated results is validated by both time and frequency domain analysis. We detect the P-wave arrival and observe small-scale features of the movement from the integrated results and locate the epicenter. Meanwhile, permanent offsets are extracted from the integrated displacements highly accurately and used for reliable fault slip inversion and magnitude estimation. PMID:24284765

  18. Topological charge and cooling scales in pure SU(2) lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Berg, Bernd A.; Clarke, David A.

    2018-03-01

    Using Monte Carlo simulations with overrelaxation, we have equilibrated lattices up to β =2.928 , size 6 04, for pure SU(2) lattice gauge theory with the Wilson action. We calculate topological charges with the standard cooling method and find that they become more reliable with increasing β values and lattice sizes. Continuum limit estimates of the topological susceptibility χ are obtained of which we favor χ1 /4/Tc=0.643 (12 ) , where Tc is the SU(2) deconfinement temperature. Differences between cooling length scales in different topological sectors turn out to be too small to be detectable within our statistical errors.

  19. Computer-Aided Diagnosis of Splenic Enlargement Using Wave Pattern of Spleen in Abdominal CT Images: Initial Observations

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong-Won

    In general, the spleen accompanied by abnormal abdomen is hypertrophied. However, if the spleen size is originally small, it is hard to detect the splenic enlargement due to abnormal abdomen by simply measure the size. On the contrary, the spleen size of a person having a normal abdomen may be large by nature. Therefore, measuring the size of spleen is not a reliable diagnostic measure of its enlargement or the abdomen abnormality. This paper proposes an automatic method to diagnose the splenic enlargement due to abnormality, by examining the boundary pattern of spleen in abdominal CT images.

  20. An Intelligent Strain Gauge with Debond Detection and Temperature Compensation

    NASA Technical Reports Server (NTRS)

    Jensen, Scott L.

    2012-01-01

    The harsh rocket propulsion test environment will expose any inadequacies associated with preexisting instrumentation technologies, and the criticality for collecting reliable test data justifies investigating any encountered data anomalies. Novel concepts for improved systems are often conceived during the high scrutiny investigations by individuals with an in-depth knowledge from maintaining critical test operations. The Intelligent Strain Gauge concept was conceived while performing these kinds of activities. However, the novel concepts are often unexplored even if it has the potential for advancing the current state of the art. Maturing these kinds of concepts is often considered to be a tangential development or a research project which are both normally abandoned within the propulsion-oriented environment. It is also difficult to justify these kinds of projects as a facility enhancement because facility developments are only accepted for mature and proven technologies. Fortunately, the CIF program has provided an avenue for bringing the Intelligent Strain Gauge to fruition. Two types of fully functional smart strain gauges capable of performing reliable and sensitive debond detection have been successfully produced. Ordinary gauges are designed to provide test article data and they lack the ability to supply information concerning the gauge itself. A gauge is considered to be a smart gauge when it provides supplementary data relating other relevant attributes for performing diagnostic function or producing enhanced data. The developed strain gauges provide supplementary signals by measuring strain and temperature through embedded Karma and nickel chromium (NiCr) alloy elements. Intelligently interpreting the supplementary data into valuable information can be performed manually, however, integrating this functionality into an automatic system is considered to be an intelligent gauge. This was achieved while maintaining a very low mass. The low mass enables debond detection and temperature compensation to be performed when the gauge is utilized on small test articles. It was also found that the element's mass must be relatively small to avoid overbearing the desired thermal dissipation characteristics. Detecting the degradation of a gauge s bond was reliably achieved by correlating thermal dissipation with the bond s integrity. This was accomplished by precisely coupling a NiCr element with a Karma element for accurately interjecting and quantifying thermal energy. A finite amount of thermal energy is consistently placed in the gauge by electrically powering the NiCr element. The energy will only be temporarily stored before it begins to dissipate into the surrounding structure through the gauge bond. The ability to transmit the energy into the structure becomes greatly inhibited by any discontinuity in the bond s substrate. Therefore, the way the thermal dissipation occurs will reveal even the slightest change in the integrity of the bond.

  1. High reliability - low noise radionuclide signature identification algorithms for border security applications

    NASA Astrophysics Data System (ADS)

    Lee, Sangkyu

    Illicit trafficking and smuggling of radioactive materials and special nuclear materials (SNM) are considered as one of the most important recent global nuclear threats. Monitoring the transport and safety of radioisotopes and SNM are challenging due to their weak signals and easy shielding. Great efforts worldwide are focused at developing and improving the detection technologies and algorithms, for accurate and reliable detection of radioisotopes of interest in thus better securing the borders against nuclear threats. In general, radiation portal monitors enable detection of gamma and neutron emitting radioisotopes. Passive or active interrogation techniques, present and/or under the development, are all aimed at increasing accuracy, reliability, and in shortening the time of interrogation as well as the cost of the equipment. Equally important efforts are aimed at advancing algorithms to process the imaging data in an efficient manner providing reliable "readings" of the interiors of the examined volumes of various sizes, ranging from cargos to suitcases. The main objective of this thesis is to develop two synergistic algorithms with the goal to provide highly reliable - low noise identification of radioisotope signatures. These algorithms combine analysis of passive radioactive detection technique with active interrogation imaging techniques such as gamma radiography or muon tomography. One algorithm consists of gamma spectroscopy and cosmic muon tomography, and the other algorithm is based on gamma spectroscopy and gamma radiography. The purpose of fusing two detection methodologies per algorithm is to find both heavy-Z radioisotopes and shielding materials, since radionuclides can be identified with gamma spectroscopy, and shielding materials can be detected using muon tomography or gamma radiography. These combined algorithms are created and analyzed based on numerically generated images of various cargo sizes and materials. In summary, the three detection methodologies are fused into two algorithms with mathematical functions providing: reliable identification of radioisotopes in gamma spectroscopy; noise reduction and precision enhancement in muon tomography; and the atomic number and density estimation in gamma radiography. It is expected that these new algorithms maybe implemented at portal scanning systems with the goal to enhance the accuracy and reliability in detecting nuclear materials inside the cargo containers.

  2. Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.

    2007-01-01

    The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.

  3. Recent UAS Developments: VTOL HQ-series Shipboard Recovery and Autonomous Monitoring with MicroQuads

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Farber, A. M.; Douglas, J.

    2017-12-01

    Ocean research would benefit from reliable shipboard launch and recovery of small class UAS. The vertical take-off and landing (VTOL) system reduces equipment footprint without the need for launchers or recovery systems. The HQ-60 (Latitude Engineering) has demonstrated reliable ship take-off and recovery on a 10x10' area on the R/V Falkor (Schmidt Ocean Institute) and other research vessels. The HQ-60 recently set a record for longest time aloft for a VTOL aircraft, flying nearly 22.5 hours non-stop. To support close-range research, autonomous MicroQuads that "perch" in a protective box that also recharges the aircraft and transmits the data is in development. Recent MicroQuad work with developing high-resolution (<1cm) DEMs using on-board cameras has yielded promising results for the use of surface change detection. Recent USDA development targeted erosion monitoring with this system. The latest updates and testing results for both systems will be presented.

  4. ZyFISH: A Simple, Rapid and Reliable Zygosity Assay for Transgenic Mice

    PubMed Central

    McHugh, Donal; O’Connor, Tracy; Bremer, Juliane; Aguzzi, Adriano

    2012-01-01

    Microinjection of DNA constructs into fertilized mouse oocytes typically results in random transgene integration at a single genomic locus. The resulting transgenic founders can be used to establish hemizygous transgenic mouse lines. However, practical and experimental reasons often require that such lines be bred to homozygosity. Transgene zygosity can be determined by progeny testing assays which are expensive and time-consuming, by quantitative Southern blotting which is labor-intensive, or by quantitative PCR (qPCR) which requires transgene-specific design. Here, we describe a zygosity assessment procedure based on fluorescent in situ hybridization (zyFISH). The zyFISH protocol entails the detection of transgenic loci by FISH and the concomitant assignment of homozygosity using a concise and unbiased scoring system. The method requires small volumes of blood, is scalable to at least 40 determinations per assay, and produces results entirely consistent with the progeny testing assay. This combination of reliability, simplicity and cost-effectiveness makes zyFISH a method of choice for transgenic mouse zygosity determinations. PMID:22666404

  5. Time dependent 14 MeV neutrons measurement using a polycrystalline chemical vapor deposited diamond detector at the JET tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelone, M.; Pillon, M.; Bertalot, L.

    A polycrystalline chemical vapor deposited (CVD) diamond detector was installed on a JET tokamak in order to monitor the time dependent 14 MeV neutron emission produced by D-T plasma pulses during the Trace Tritium Experiment (TTE) performed in October 2003. This was the first tentative ever attempted to use a CVD diamond detector as neutron monitor in a tokamak environment. Despite its small active volume, the detector was able to detect the 14 MeV neutron emission (>1.0x10{sup 15} n/shot) with good reliability and stability during the experimental campaign that lasted five weeks. The comparison with standard silicon detectors presently usedmore » at JET as 14 MeV neutron monitors is reported, showing excellent correlation between the measurements. The results prove that CVD diamond detectors can be reliably used in a tokamak environment and therefore confirm the potential of this technology for next step machines like ITER.« less

  6. GNSS Spoofing Network Monitoring Based on Differential Pseudorange.

    PubMed

    Zhang, Zhenjun; Zhan, Xingqun

    2016-10-23

    Spoofing is becoming a serious threat to various Global Navigation Satellite System (GNSS) applications, especially for those that require high reliability and security such as power grid synchronization and applications related to first responders and aviation safety. Most current works on anti-spoofing focus on spoofing detection from the individual receiver side, which identifies spoofing when it is under an attack. This paper proposes a novel spoofing network monitoring (SNM) mechanism aiming to reveal the presence of spoofing within an area. Consisting of several receivers and one central processing component, it keeps detecting spoofing even when the network is not attacked. The mechanism is based on the different time difference of arrival (TDOA) properties between spoofing and authentic signals. Normally, TDOAs of spoofing signals from a common spoofer are identical while those of authentic signals from diverse directions are dispersed. The TDOA is measured as the differential pseudorange to carrier frequency ratio (DPF). In a spoofing case, the DPFs include those of both authentic and spoofing signals, among which the DPFs of authentic are dispersed while those of spoofing are almost overlapped. An algorithm is proposed to search for the DPFs that are within a pre-defined small range, and an alarm will be raised if several DPFs are found within such range. The proposed SNM methodology is validated by simulations and a partial field trial. Results show 99.99% detection and 0.01% false alarm probabilities are achieved. The SNM has the potential to be adopted in various applications such as (1) alerting dedicated users when spoofing is occurring, which could significantly shorten the receiver side spoofing cost; (2) in combination with GNSS performance monitoring systems, such as the Continuous Operating Reference System (CORS) and GNSS Availability, Accuracy, Reliability anD Integrity Assessment for Timing and Navigation (GAARDIAN) System, to provide more reliable monitoring services.

  7. Rapid Detection of Small Movements with GNSS Doppler Observables

    NASA Astrophysics Data System (ADS)

    Hohensinn, Roland; Geiger, Alain

    2017-04-01

    High-alpine terrain reacts very sensitively to varying environmental conditions. As an example, increasing temperatures cause thawing of permafrost areas. This, in turn causes an increasing threat by natural hazards like debris flow (e.g. rock glaciers) or rockfalls. The Institute of Geodesy and Photogrammetry is contributing to alpine mass-movement monitoring systems in different project areas in the Swiss Alps. A main focus lies on providing geodetic mass-movement information derived from GNSS static solutions on a daily and a sub-daily basis, obtained with low-cost and autonomous GNSS stations. Another focus is set on rapidly providing reliable geodetic information in real-time i.e. for an integration in early warning systems. One way to achieve this is the estimation of accurate station velocities from observations of range rates, which can be obtained as Doppler observables from time derivatives of carrier phase measurements. The key for this method lies in a precise modeling of prominent effects contributing to the observed range rates, which are satellite velocity, atmospheric delay rates and relativistic effects. A suitable observation model is then devised, which accounts for these predictions. The observation model, combined with a simple kinematic movement model forms the basis for the parameter estimation. Based on the estimated station velocities, movements are then detected using a statistical test. To improve the reliablity of the estimated parameters, another spotlight is set on an on-line quality control procedure. We will present the basic algorithms as well as results from first tests which were carried out with a low-cost GPS L1 phase receiver. With a u-blox module and a sampling rate of 5 Hz, accuracies on the mm/s level can be obtained and velocities down to 1 cm/s can be detected. Reliable and accurate station velocities and movement information can be provided within seconds.

  8. Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

    PubMed Central

    Hauschild, Anne-Christin; Kopczynski, Dominik; D’Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-01-01

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME). We manually generated a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors’ results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications. PMID:24957992

  9. Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.

    PubMed

    Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-04-16

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors' results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.

  10. Simultaneous extraction of propofol and propofol glucuronide from hair followed by validated LC-MS/MS analyses.

    PubMed

    Maas, Alexandra; Maier, Christoph; Iwersen-Bergmann, Stefanie; Madea, Burkhard; Hess, Cornelius

    2017-11-30

    Besides its clinical application, the anaesthetic agent propofol is being increasingly misused, mostly by healthcare professionals, and its abuse potential gained worldwide attention after the tragic death of Michael Jackson in 2009. Due to the short duration of its narcotic effects, propofol abuse is especially easy to hide compared with the use of other recreational drugs. However, propofol possesses a very narrow therapeutic window between the desired effect and potentially fatal toxicity, making abuse of the drug extremely dangerous even in experienced physicians. Consequently, it is important that forensic laboratories possess a sensitive and specific method for the detection of chronic propofol abuse. We present a simple, fast and reliable method to simultaneously extract propofol and its main metabolite propofol glucuronide from hair, followed by sensitive LC-MS/MS analyses, allowing to determine a chronic propofol abuse. Difficulties regarding the detection of propofol using LC-MS/MS were solved by using a derivatization reaction with 2-fluoro-1-methylpyridinium-p-toluene-sulfonate and triethylamine. Reliability of extraction method and subsequent LC-MS/MS analyses was confirmed under consideration of the validation parameters selectivity, linearity, accuracy and precision, analytical limits, processed sample stability, matrix effects and recovery. Appropriate quantification (LLOQ=10pg/mg hair) and detection limits (3.6pg/mg hair for propofol and 7.8 pg/mg hair for propofol glucuronide) could be achieved, enabling to detect even small amounts of both analytes. Applicability of the method was confirmed by analysis of three human hair samples from deceased with suspicion of chronic propofol abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of Small Exonic CNV from Whole-Exome Sequence Data and Application to Autism Spectrum Disorder

    PubMed Central

    Poultney, Christopher S.; Goldberg, Arthur P.; Drapeau, Elodie; Kou, Yan; Harony-Nicolas, Hala; Kajiwara, Yuji; De Rubeis, Silvia; Durand, Simon; Stevens, Christine; Rehnström, Karola; Palotie, Aarno; Daly, Mark J.; Ma’ayan, Avi; Fromer, Menachem; Buxbaum, Joseph D.

    2013-01-01

    Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1–30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1–30 kb CNV, 1–30 kb deletions, and 1–10 kb deletions in ASD. CNV in the 1–30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1–30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes. PMID:24094742

  12. Interformat reliability of digital psychiatric self-report questionnaires: a systematic review.

    PubMed

    Alfonsson, Sven; Maathz, Pernilla; Hursti, Timo

    2014-12-03

    Research on Internet-based interventions typically use digital versions of pen and paper self-report symptom scales. However, adaptation into the digital format could affect the psychometric properties of established self-report scales. Several studies have investigated differences between digital and pen and paper versions of instruments, but no systematic review of the results has yet been done. This review aims to assess the interformat reliability of self-report symptom scales used in digital or online psychotherapy research. Three databases (MEDLINE, Embase, and PsycINFO) were systematically reviewed for studies investigating the reliability between digital and pen and paper versions of psychiatric symptom scales. From a total of 1504 publications, 33 were included in the review, and interformat reliability of 40 different symptom scales was assessed. Significant differences in mean total scores between formats were found in 10 of 62 analyses. These differences were found in just a few studies, which indicates that the results were due to study effects and sample effects rather than unreliable instruments. The interformat reliability ranged from r=.35 to r=.99; however, the majority of instruments showed a strong correlation between format scores. The quality of the included studies varied, and several studies had insufficient power to detect small differences between formats. When digital versions of self-report symptom scales are compared to pen and paper versions, most scales show high interformat reliability. This supports the reliability of results obtained in psychotherapy research on the Internet and the comparability of the results to traditional psychotherapy research. There are, however, some instruments that consistently show low interformat reliability, suggesting that these conclusions cannot be generalized to all questionnaires. Most studies had at least some methodological issues with insufficient statistical power being the most common issue. Future studies should preferably provide information about the transformation of the instrument into digital format and the procedure for data collection in more detail.

  13. Enhancing malaria diagnosis through microfluidic cell enrichment and magnetic resonance relaxometry detection

    NASA Astrophysics Data System (ADS)

    Fook Kong, Tian; Ye, Weijian; Peng, Weng Kung; Wei Hou, Han; Marcos; Preiser, Peter Rainer; Nguyen, Nam-Trung; Han, Jongyoon

    2015-06-01

    Despite significant advancements over the years, there remains an urgent need for low cost diagnostic approaches that allow for rapid, reliable and sensitive detection of malaria parasites in clinical samples. Our previous work has shown that magnetic resonance relaxometry (MRR) is a potentially highly sensitive tool for malaria diagnosis. A key challenge for making MRR based malaria diagnostics suitable for clinical testing is the fact that MRR baseline fluctuation exists between individuals, making it difficult to detect low level parasitemia. To overcome this problem, it is important to establish the MRR baseline of each individual while having the ability to reliably determine any changes that are caused by the infection of malaria parasite. Here we show that an approach that combines the use of microfluidic cell enrichment with a saponin lysis before MRR detection can overcome these challenges and provide the basis for a highly sensitive and reliable diagnostic approach of malaria parasites. Importantly, as little as 0.0005% of ring stage parasites can be detected reliably, making this ideally suited for the detection of malaria parasites in peripheral blood obtained from patients. The approaches used here are envisaged to provide a new malaria diagnosis solution in the near future.

  14. Response time accuracy in Apple Macintosh computers.

    PubMed

    Neath, Ian; Earle, Avery; Hallett, Darcy; Surprenant, Aimée M

    2011-06-01

    The accuracy and variability of response times (RTs) collected on stock Apple Macintosh computers using USB keyboards was assessed. A photodiode detected a change in the screen's luminosity and triggered a solenoid that pressed a key on the keyboard. The RTs collected in this way were reliable, but could be as much as 100 ms too long. The standard deviation of the measured RTs varied between 2.5 and 10 ms, and the distributions approximated a normal distribution. Surprisingly, two recent Apple-branded USB keyboards differed in their accuracy by as much as 20 ms. The most accurate RTs were collected when an external CRT was used to display the stimuli and Psychtoolbox was able to synchronize presentation with the screen refresh. We conclude that RTs collected on stock iMacs can detect a difference as small as 5-10 ms under realistic conditions, and this dictates which types of research should or should not use these systems.

  15. Evaluation of analytical performance and reliability of direct nanoLC-nanoESI-high resolution mass spectrometry for profiling the (xeno)metabolome.

    PubMed

    Chetwynd, Andrew J; David, Arthur; Hill, Elizabeth M; Abdul-Sada, Alaa

    2014-10-01

    Mass spectrometry (MS) profiling techniques are used for analysing metabolites and xenobiotics in biofluids; however, detection of low abundance compounds using conventional MS techniques is poor. To counter this, nanoflow ultra-high-pressure liquid chromatography-nanoelectrospray ionization-time-of-flight MS (nUHPLC-nESI-TOFMS), which has been used primarily for proteomics, offers an innovative prospect for profiling small molecules. Compared to conventional UHPLC-ESI-TOFMS, nUHPLC-nESI-TOFMS enhanced detection limits of a variety of (xeno)metabolites by between 2 and 2000-fold. In addition, this study demonstrates for the first time excellent repeatability and reproducibility for analysis of urine and plasma samples using nUHPLC-nESI-TOFMS, supporting implementation of this platform as a novel approach for high-throughput (xeno)metabolomics. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Whole-body concentrations of elements in three fish species from offshore oil platforms and natural areas in the Southern California Bight, USA

    USGS Publications Warehouse

    Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.

    2013-01-01

    elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.

  17. A Distributed Wireless Camera System for the Management of Parking Spaces.

    PubMed

    Vítek, Stanislav; Melničuk, Petr

    2017-12-28

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces.

  18. Excimer PRK testing in the clinic

    NASA Astrophysics Data System (ADS)

    Forrest, Gary T.

    1994-06-01

    Testing of the excimer lasers used in PRK requires special considerations in terms of ease of use, day-to-day reliability, and high resolution to see details of beam interference effects. SensorPhysics employs a patented photochromic material on a polyester substrate to record permanent, instant records of the laser and laser system output. Since each SensorCard is used only once concerns about detection device deterioration are not an issue. The SensorCards have a demonstrated resolving power on the order of 0.1 micrometers . A small, portable reading device is used to convert the SensorCard optical density to a mJ/cm2 value. Special software also measures beam uniformity to +/- 1% to provide both qualitative and quantitative analysis. Results of use in clinic environments will be presented. In particular detection of exposure `islands' will be demonstrated. The techniques employed are similar to those we developed for UV laser micromachining and lithography four years ago.

  19. Concordance of IHC, FISH and RT-PCR for EML4-ALK rearrangements.

    PubMed

    Teixidó, Cristina; Karachaliou, Niki; Peg, Vicente; Gimenez-Capitan, Ana; Rosell, Rafael

    2014-04-01

    The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) has emerged as the second most important driver oncogene in lung cancer and the first targetable fusion oncokinase to be identified in 4-6% of lung adenocarcinomas. Crizotinib, along with a diagnostic test-the Vysis ALK Break Apart fluorescence in situ hybridization (FISH) Probe Kit-is approved for the treatment of ALK positive advanced non-small cell lung cancer (NSCLC). However, the success of a targeted drug is critically dependent on a sensitive and specific screening assay to detect the molecular drug target. In our experience, reverse transcription polymerase chain reaction (RT-PCR)-based detection of EML4-ALK is a more sensitive and reliable approach compared to FISH and immunohistochemistry (IHC). Although ALK FISH is clinically validated, the assay can be technically challenging and other diagnostic modalities, including IHC and RT-PCR should be further explored.

  20. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  1. Characterization of a pneumatic balloon actuator for use in refreshable Braille displays.

    PubMed

    Fan, Richard E; Feinman, Adam M; Wottawa, Christopher; King, Chih-Hung; Franco, Miguel L; Dutson, Erik P; Grundfest, Warren S; Culjat, Martin O

    2009-01-01

    Many existing refreshable Braille display technologies are costly or lack robust performance. A process has been developed to fabricate consistent and reliable pneumatic balloon actuators at low material cost, using a novel manufacturing process. This technique has been adapted for use in refreshable Braille displays that feature low power consumption, ease of manufacture and small form factor. A prototype refreshable cell, conforming to American Braille standards, was developed and tested. The cell was fabricated from molded PDMS to form balloon actuators with a spin-coated silicone film, and fast pneumatic driving elements and an electronic control system were developed to drive the Braille dots. Perceptual testing was performed to determine the feasibility of the approach using a single blind human subject. The subject was able to detect randomized Braille letters rapidly generated by the actuator with 100% character detection accuracy.

  2. An adaptive tracking observer for failure-detection systems

    NASA Technical Reports Server (NTRS)

    Sidar, M.

    1982-01-01

    The design problem of adaptive observers applied to linear, constant and variable parameters, multi-input, multi-output systems, is considered. It is shown that, in order to keep the observer's (or Kalman filter) false-alarm rate (FAR) under a certain specified value, it is necessary to have an acceptable proper matching between the observer (or KF) model and the system parameters. An adaptive observer algorithm is introduced in order to maintain desired system-observer model matching, despite initial mismatching and/or system parameter variations. Only a properly designed adaptive observer is able to detect abrupt changes in the system (actuator, sensor failures, etc.) with adequate reliability and FAR. Conditions for convergence for the adaptive process were obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors and accurate and fast parameter identification, in both deterministic and stochastic cases.

  3. Application of Time Series Insar Technique for Deformation Monitoring of Large-Scale Landslides in Mountainous Areas of Western China

    NASA Astrophysics Data System (ADS)

    Qu, T.; Lu, P.; Liu, C.; Wan, H.

    2016-06-01

    Western China is very susceptible to landslide hazards. As a result, landslide detection and early warning are of great importance. This work employs the SBAS (Small Baseline Subset) InSAR Technique for detection and monitoring of large-scale landslides that occurred in Li County, Sichuan Province, Western China. The time series INSAR is performed using descending scenes acquired from TerraSAR-X StripMap mode since 2014 to get the spatial distribution of surface displacements of this giant landslide. The time series results identify the distinct deformation zone on the landslide body with a rate of up to 150mm/yr. The deformation acquired by SBAS technique is validated by inclinometers from diverse boreholes of in-situ monitoring. The integration of InSAR time series displacements and ground-based monitoring data helps to provide reliable data support for the forecasting and monitoring of largescale landslide.

  4. Estimating glomerular filtration rate in oncology patients receiving Cisplatin chemotherapy: Predicted creatinine clearance against 99mTc-DTPA methods

    NASA Astrophysics Data System (ADS)

    Khaidah Syed Sahab, Sharifah; Manap, Mahayuddin; Hamzah, Fadzilah

    2017-05-01

    The therapeutic potential of cisplatin as the best anticancer treatment for solid tumor is limited by its potential nephrotoxicity. This study analyses the incidence of cisplatin induced nephrotoxicity in oncology patients through GFR estimation using 99mTc-DTPA plasma sampling (reference method) and to compare with predicted creatinine clearance and Tc-99m renal scintigraphy. A prospective study of 33 oncology patients referred for GFR estimation in Penang Hospital. The incidence of cisplatin induced nephrotoxicity was analysed via radionuclide and creatinine based method. Of 33 samples, only 21 selected for the study. The dose of cisplatin given was 75 mg/m2 for each cycle. The mean difference of GFR pre and post chemotherapy (PSC 2) was 13.38 (-4.60, 31.36) ml/min/1.73m2 (p 0.136). Of 21 patients, 3 developed severe nephrotoxicity (GFR < 50ml/min/1.73 m2) contributing 14.3% of incidence. Bland-Altman plot showed only PSC 1 is in agreement with PSC 2 technique. Intraclass Correlation Coefficients (ICC) also showed that PSC 1 has high degree of reliability in comparison to PSC 2 (p < 0.001). The other methods do not show reliability and agreement in comparison to PSC 2 (p < 0.05). 3 of 21 patients (14.3%) developed severe nephrotoxicity post cisplatin chemotherapy. This percentage is much less than the reported 20 - 25% of cases from other studies, probably due to small sample size and biased study population due to strict exclusion criteria. Radionuclide method for evaluating GFR is the most sensitive method for the detection of cisplatin induced nephrotoxicity by showing 3 of 21 patients developing severe nephrotoxicity. PSC 1 was found to be a reliable substitute of PSC 2. The other methods are not reliable for detection of early nephrotoxicity. We will recommend the use of single plasma sampling method (PSC 1) for GFR estimation in monitoring post cisplatin chemotherapy patients.

  5. The reliability and effectiveness of an electromagnetic animal detection and driver warning system.

    DOT National Transportation Integrated Search

    2012-03-01

    "This report contains data on the reliability and effectiveness of an animal detection system project along US Hwy 160 : between Durango and Bayfield, Colorado. The system that was first installed was a Perimitrax system from Senstar : Corporation....

  6. A rapid qualitative assay for detection of Clostridium perfringens in canned food products.

    PubMed

    Dave, Gayatri Ashwinkumar

    2017-01-01

    Clostridium perfringens (MTCC 1349) is a Gram-positive, anaerobic, endospore forming, and rod-shaped bacterium. This bacterium produces a variety of toxins under strict anaerobic environment. C. perfringens can grow at temperatures ranging between 20°C and 50°C. It is the major causetive agent for gas gangrene, cellulitis, septicemia, necrotic enteritis and food poisoning, which are common toxin induced conditions noted in human and animals. C. perfringens can produce produce four major types of toxins that are used for the classification of strains, classified under type A-E. Across the globe many countries, including the United States, are affected by C. perfringens food poisonings where it is ranked as one of the most common causes of food borne infections. To date, no direct one step assay for the detection of C. perfringens has been developed and only few methods are known for accurate detection of C. perfringens. Long detection and incubation time is the major consideration of these reporter assays. The prensent study proposes a rapid and reliable colorimetric assay for the detection of C. perfringens. In principale, this assay detects the para nitrophenyl (yellow colour end product) liberated due to the hydrolysis of paranitrophenyl phosphetidyl choline (PNPC) through phospholipase C (lecithinase). Constitutive secretion of phospholipase C is a charactristic feature of C. perfringens. This assay detects the presence of the extracellular lecithinse through the PNPC impragnated impregnated probe. The probe is impregnated with peranitrophenyl phosphotidyl choline ester, which is colourless substrate used by lecithinase. The designed assay is specific towards PNPC and detectes very small quantites of lecithinase under conditions used. The reaction is substrate specific, no cross reaction was observed upon incubation with other substrates. In addition, this assay gave negative results with other clostridium strains, no cross reactions were observed with other experimental strains like C. tetani, C. botulinum, C. acetobutyricum, Bacillus subtilis, and Escherichia coli. This assay is extramly rapid and provides reliable and reproducible results within one hour of incubation at 37°C.

  7. High-Density Dielectrophoretic Microwell Array for Detection, Capture, and Single-Cell Analysis of Rare Tumor Cells in Peripheral Blood.

    PubMed

    Morimoto, Atsushi; Mogami, Toshifumi; Watanabe, Masaru; Iijima, Kazuki; Akiyama, Yasuyuki; Katayama, Koji; Futami, Toru; Yamamoto, Nobuyuki; Sawada, Takeshi; Koizumi, Fumiaki; Koh, Yasuhiro

    2015-01-01

    Development of a reliable platform and workflow to detect and capture a small number of mutation-bearing circulating tumor cells (CTCs) from a blood sample is necessary for the development of noninvasive cancer diagnosis. In this preclinical study, we aimed to develop a capture system for molecular characterization of single CTCs based on high-density dielectrophoretic microwell array technology. Spike-in experiments using lung cancer cell lines were conducted. The microwell array was used to capture spiked cancer cells, and captured single cells were subjected to whole genome amplification followed by sequencing. A high detection rate (70.2%-90.0%) and excellent linear performance (R2 = 0.8189-0.9999) were noted between the observed and expected numbers of tumor cells. The detection rate was markedly higher than that obtained using the CellSearch system in a blinded manner, suggesting the superior sensitivity of our system in detecting EpCAM- tumor cells. Isolation of single captured tumor cells, followed by detection of EGFR mutations, was achieved using Sanger sequencing. Using a microwell array, we established an efficient and convenient platform for the capture and characterization of single CTCs. The results of a proof-of-principle preclinical study indicated that this platform has potential for the molecular characterization of captured CTCs from patients.

  8. Pediatric vision screening using binocular retinal birefringencr scanning

    NASA Astrophysics Data System (ADS)

    Nassif, Deborah S.; Gramatikov, Boris; Guyton, David L.; Hunter, David G.

    2003-07-01

    Amblyopia, a leading cause of vision loss in childhood, is responsive to treatment if detected early in life. Risk factors for amblyopia, such as refractive error and strabismus, may be difficult to identify clinically in young children. Our laboratory has developed retinal birefringence scanning (RBS), in which a small spot of polarized light is scanned in a circle on the retina, and the returning light is measured for changes in polarization caused by the pattern of birefringent fibers that comprise the fovea. Binocular RBS (BRBS) detects the fixation of both eyes simultaneously and thus screens for strabismus, one of the risk factors of amblyopia. We have also developed a technique to automatically detect when the eye is in focus without measuring refractive error. This focus detection system utilizes a bull's eye photodetector optically conjugate to a point fixation source. Reflected light is focused back to the point source by the optical system of the eye, and if the subject focuses on the fixation source, the returning light will be focused on the detector. We have constructed a hand-held prototype combining BRBS and focus detection measurements in one quick (< 0.5 second) and accurate (theoretically detecting +/-1 of misalignment) measurement. This approach has the potential to reliably identify children at risk for amblyopia.

  9. Sensitivity and specificity of human brain glutathione concentrations measured using short-TE (1)H MRS at 7 T.

    PubMed

    Deelchand, Dinesh K; Marjańska, Małgorzata; Hodges, James S; Terpstra, Melissa

    2016-05-01

    Although the MR editing techniques that have traditionally been used for the measurement of glutathione (GSH) concentrations in vivo address the problem of spectral overlap, they suffer detriments associated with inherently long TEs. The purpose of this study was to characterize the sensitivity and specificity for the quantification of GSH concentrations without editing at short TE. The approach was to measure synthetically generated changes in GSH concentrations from in vivo stimulated echo acquisition mode (STEAM) spectra after in vitro GSH spectra had been added to or subtracted from them. Spectra from five test subjects were synthetically altered to mimic changes in the GSH signal. To account for different background noise between measurements, retest spectra (from the same individuals as used to generate the altered data) and spectra from five other individuals were compared with the synthetically altered spectra to investigate the reliability of the quantification of GSH concentration. Using STEAM spectroscopy at 7 T, GSH concentration differences on the order of 20% were detected between test and retest studies, as well as between differing populations in a small sample (n = 5) with high accuracy (R(2) > 0.99) and certainty (p ≤ 0.01). Both increases and decreases in GSH concentration were reliably quantified with small impact on the quantification of ascorbate and γ-aminobutyric acid. These results show the feasibility of using short-TE (1)H MRS to measure biologically relevant changes and differences in human brain GSH concentration. Although these outcomes are specific to the experimental approach used and the spectral quality achieved, this study serves as a template for the analogous scrutiny of quantification reliability for other compounds, methodologies and spectral qualities. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Reyniers, M.; Seed, A.; Delobbe, L.

    2016-01-01

    The Short-Term Ensemble Prediction System (STEPS) is implemented in real-time at the Royal Meteorological Institute (RMI) of Belgium. The main idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic Lagrangian extrapolation of radar images. The stochastic perturbations are designed to account for the unpredictable precipitation growth and decay processes and to reproduce the dynamic scaling of precipitation fields, i.e., the observation that large-scale rainfall structures are more persistent and predictable than small-scale convective cells. This paper presents the development, adaptation and verification of the STEPS system for Belgium (STEPS-BE). STEPS-BE provides in real-time 20-member ensemble precipitation nowcasts at 1 km and 5 min resolutions up to 2 h lead time using a 4 C-band radar composite as input. In the context of the PLURISK project, STEPS forecasts were generated to be used as input in sewer system hydraulic models for nowcasting urban inundations in the cities of Ghent and Leuven. Comprehensive forecast verification was performed in order to detect systematic biases over the given urban areas and to analyze the reliability of probabilistic forecasts for a set of case studies in 2013 and 2014. The forecast biases over the cities of Leuven and Ghent were found to be small, which is encouraging for future integration of STEPS nowcasts into the hydraulic models. Probabilistic forecasts of exceeding 0.5 mm h-1 are reliable up to 60-90 min lead time, while the ones of exceeding 5.0 mm h-1 are only reliable up to 30 min. The STEPS ensembles are slightly under-dispersive and represent only 75-90 % of the forecast errors.

  11. Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Reyniers, M.; Seed, A.; Delobbe, L.

    2015-07-01

    The Short-Term Ensemble Prediction System (STEPS) is implemented in real-time at the Royal Meteorological Institute (RMI) of Belgium. The main idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic Lagrangian extrapolation of radar images. The stochastic perturbations are designed to account for the unpredictable precipitation growth and decay processes and to reproduce the dynamic scaling of precipitation fields, i.e. the observation that large scale rainfall structures are more persistent and predictable than small scale convective cells. This paper presents the development, adaptation and verification of the system STEPS for Belgium (STEPS-BE). STEPS-BE provides in real-time 20 member ensemble precipitation nowcasts at 1 km and 5 min resolution up to 2 h lead time using a 4 C-band radar composite as input. In the context of the PLURISK project, STEPS forecasts were generated to be used as input in sewer system hydraulic models for nowcasting urban inundations in the cities of Ghent and Leuven. Comprehensive forecast verification was performed in order to detect systematic biases over the given urban areas and to analyze the reliability of probabilistic forecasts for a set of case studies in 2013 and 2014. The forecast biases over the cities of Leuven and Ghent were found to be small, which is encouraging for future integration of STEPS nowcasts into the hydraulic models. Probabilistic forecasts of exceeding 0.5 mm h-1 are reliable up to 60-90 min lead time, while the ones of exceeding 5.0 mm h-1 are only reliable up to 30 min. The STEPS ensembles are slightly under-dispersive and represent only 80-90 % of the forecast errors.

  12. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  13. Development, test-retest reliability, and construct validity of the resistance training skills battery.

    PubMed

    Lubans, David R; Smith, Jordan J; Harries, Simon K; Barnett, Lisa M; Faigenbaum, Avery D

    2014-05-01

    The aim of this study was to describe the development and assess test-retest reliability and construct validity of the Resistance Training Skills Battery (RTSB) for adolescents. The RTSB provides an assessment of resistance training skill competency and includes 6 exercises (i.e., body weight squat, push-up, lunge, suspended row, standing overhead press, and front support with chest touches). Scoring for each skill is based on the number of performance criteria successfully demonstrated. An overall resistance training skill quotient (RTSQ) is created by adding participants' scores for the 6 skills. Participants (44 boys and 19 girls, mean age = 14.5 ± 1.2 years) completed the RTSB on 2 occasions separated by 7 days. Participants also completed the following fitness tests, which were used to create a muscular fitness score (MFS): handgrip strength, timed push-up, and standing long jump tests. Intraclass correlation (ICC), paired samples t-tests, and typical error were used to assess test-retest reliability. To assess construct validity, gender and RTSQ were entered into a regression model predicting MFS. The rank order repeatability of the RTSQ was high (ICC = 0.88). The model explained 39% of the variance in MFS (p ≤ 0.001) and RTSQ (r = 0.40, p ≤ 0.001) was a significant predictor. This study has demonstrated the construct validity and test-retest reliability of the RTSB in a sample of adolescents. The RTSB can reliably rank participants in regards to their resistance training competency and has the necessary sensitivity to detect small changes in resistance training skill proficiency.

  14. Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults.

    PubMed

    Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F

    2014-06-01

    Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.

  15. Which is the most useful patient-reported outcome in femoroacetabular impingement? Test-retest reliability of six questionnaires.

    PubMed

    Hinman, Rana S; Dobson, Fiona; Takla, Amir; O'Donnell, John; Bennell, Kim L

    2014-03-01

    The most reliable patient-reported outcomes (PROs) for people with femoroacetabular impingement (FAI) is unknown because there have been no direct comparisons of questionnaires. Thus, the aim was to evaluate the test-retest reliability of six existing PROs in a single cohort of young active people with hip/groin pain consistent with a clinical diagnosis of FAI. Young adults with clinical FAI completed six PRO questionnaires on two occasions, 1-2 weeks apart. The PROs were modified Harris Hip Score, Hip dysfunction and Osteoarthritis Score, Hip Outcome Score, Non-Arthritic Hip Score, International Hip Outcome Tool, Copenhagen Hip and Groin Outcome Score. 30 young adults (mean age 24 years, SD 4 years, range 18-30 years; 15 men) with stable symptoms participated. Intraclass correlation coefficient(3,1) values ranged from 0.73 to 0.93 (95% CI 0.38 to 0.98) indicating that most questionnaires reached minimal reliability benchmarks. Measurement error at the individual level was quite large for most questionnaires (minimal detectable change (MDC95) 12.4-35.6, 95% CI 8.7 to 54.0). In contrast, measurement error at the group level was quite small for most questionnaires (MDC95 2.2-7.3, 95% CI 1.6 to 11). The majority of the questionnaires were reliable and precise enough for use at the group level. Samples of only 23-30 individuals were required to achieve acceptable measurement variation at the group level. Further direct comparisons of these questionnaires are required to assess other measurement properties such as validity, responsiveness and meaningful change in young people with FAI.

  16. Calculus detection calibration among dental hygiene faculty members utilizing dental endoscopy: a pilot study.

    PubMed

    Partido, Brian B; Jones, Archie A; English, Dana L; Nguyen, Carol A; Jacks, Mary E

    2015-02-01

    Dental and dental hygiene faculty members often do not provide consistent instruction in the clinical environment, especially in tasks requiring clinical judgment. From previous efforts to calibrate faculty members in calculus detection using typodonts, researchers have suggested using human subjects and emerging technology to improve consistency in clinical instruction. The purpose of this pilot study was to determine if a dental endoscopy-assisted training program would improve intra- and interrater reliability of dental hygiene faculty members in calculus detection. Training included an ODU 11/12 explorer, typodonts, and dental endoscopy. A convenience sample of six participants was recruited from the dental hygiene faculty at a California community college, and a two-group randomized experimental design was utilized. Intra- and interrater reliability was measured before and after calibration training. Pretest and posttest Kappa averages of all participants were compared using repeated measures (split-plot) ANOVA to determine the effectiveness of the calibration training on intra- and interrater reliability. The results showed that both kinds of reliability significantly improved for all participants and the training group improved significantly in interrater reliability from pretest to posttest. Calibration training was beneficial to these dental hygiene faculty members, especially those beginning with less than full agreement. This study suggests that calculus detection calibration training utilizing dental endoscopy can effectively improve interrater reliability of dental and dental hygiene clinical educators. Future studies should include human subjects, involve more participants at multiple locations, and determine whether improved rater reliability can be sustained over time.

  17. Design, development, and initial operation of BabyScan: An in-vivo counter for children around Fukushima

    NASA Astrophysics Data System (ADS)

    Bronson, Frazier; Hayano, Ryugo; Oginni, Babatunde; Jaderstrom, Henrik; Ilie, Gabriela; Yamanaka, Shunji; Muramatsu, Isamu

    2015-06-01

    The Fukushima Dai-ichi accident has released large quantities of radionuclides, including 131I, 134Cs, and 137Cs. These radionuclides, when inhaled or ingested, cause internal dose to the individual. Whole Body Counting [WBC], also known as in-vivo counting is a common method to assess internal radioactivity as a tool to evaluate internal dose. The FastScan WBC system was widely used following the Chernobyl and the Fukushima accidents for in-vivo measurements of the population. Although the FastScan was designed for adults, it was successfully used for children by having them stand on a small stool. However small children and infants cannot stand, and have a much lower quantity of radioactive cesium. That required the development of a much more sensitive WBC system, called the BabyScan. A very important element of the project was to make the unit look esthetically pleasing, while not compromising performance. The steel shield was enclosed in a molded fiberglass exterior skin, whereas a carbon-fiber liner was used on the interior, to keep the background low. The system was calibrated using MCNP; on-site testing with phantoms confirmed the adequacy of the mathematical efficiency calibrations. The system has a Minimum Detectable Activity with a 4-min measurement of approximately 20 Bq for infants approximately 10 kg in weight, and 40 Bq for children approximately 30 kg in weight. The 40K that is naturally present is also reliably detected at the appropriate quantity for infants as small as 6 kg. Data from the first 365 subjects counted showed that 40K was detected in all of them, and that there was no 134Cs or 137Cs above the MDA levels.

  18. CoLIde: a bioinformatics tool for CO-expression-based small RNA Loci Identification using high-throughput sequencing data.

    PubMed

    Mohorianu, Irina; Stocks, Matthew Benedict; Wood, John; Dalmay, Tamas; Moulton, Vincent

    2013-07-01

    Small RNAs (sRNAs) are 20-25 nt non-coding RNAs that act as guides for the highly sequence-specific regulatory mechanism known as RNA silencing. Due to the recent increase in sequencing depth, a highly complex and diverse population of sRNAs in both plants and animals has been revealed. However, the exponential increase in sequencing data has also made the identification of individual sRNA transcripts corresponding to biological units (sRNA loci) more challenging when based exclusively on the genomic location of the constituent sRNAs, hindering existing approaches to identify sRNA loci. To infer the location of significant biological units, we propose an approach for sRNA loci detection called CoLIde (Co-expression based sRNA Loci Identification) that combines genomic location with the analysis of other information such as variation in expression levels (expression pattern) and size class distribution. For CoLIde, we define a locus as a union of regions sharing the same pattern and located in close proximity on the genome. Biological relevance, detected through the analysis of size class distribution, is also calculated for each locus. CoLIde can be applied on ordered (e.g., time-dependent) or un-ordered (e.g., organ, mutant) series of samples both with or without biological/technical replicates. The method reliably identifies known types of loci and shows improved performance on sequencing data from both plants (e.g., A. thaliana, S. lycopersicum) and animals (e.g., D. melanogaster) when compared with existing locus detection techniques. CoLIde is available for use within the UEA Small RNA Workbench which can be downloaded from: http://srna-workbench.cmp.uea.ac.uk.

  19. Investigation of reliability indicators of information analysis systems based on Markov’s absorbing chain model

    NASA Astrophysics Data System (ADS)

    Gilmanshin, I. R.; Kirpichnikov, A. P.

    2017-09-01

    In the result of study of the algorithm of the functioning of the early detection module of excessive losses, it is proven the ability to model it by using absorbing Markov chains. The particular interest is in the study of probability characteristics of early detection module functioning algorithm of losses in order to identify the relationship of indicators of reliability of individual elements, or the probability of occurrence of certain events and the likelihood of transmission of reliable information. The identified relations during the analysis allow to set thresholds reliability characteristics of the system components.

  20. Sensitivity Analysis of ProSEDS (Propulsive Small Expendable Deployer System) Data Communication System

    NASA Technical Reports Server (NTRS)

    Park, Nohpill; Reagan, Shawn; Franks, Greg; Jones, William G.

    1999-01-01

    This paper discusses analytical approaches to evaluating performance of Spacecraft On-Board Computing systems, thereby ultimately achieving a reliable spacecraft data communications systems. The sensitivity analysis approach of memory system on the ProSEDS (Propulsive Small Expendable Deployer System) as a part of its data communication system will be investigated. Also, general issues and possible approaches to reliable Spacecraft On-Board Interconnection Network and Processor Array will be shown. The performance issues of a spacecraft on-board computing systems such as sensitivity, throughput, delay and reliability will be introduced and discussed.

  1. Non-verbal IQ is correlated with visual field advantages for short duration coherent motion detection in deaf signers with varied ASL exposure and etiologies of deafness.

    PubMed

    Samar, Vincent J; Parasnis, Ila

    2007-12-01

    Studies have reported a right visual field (RVF) advantage for coherent motion detection by deaf and hearing signers but not non-signers. Yet two studies [Bosworth R. G., & Dobkins, K. R. (2002). Visual field asymmetries for motion processing in deaf and hearing signers. Brain and Cognition, 49, 170-181; Samar, V. J., & Parasnis, I. (2005). Dorsal stream deficits suggest hidden dyslexia among deaf poor readers: Correlated evidence from reduced perceptual speed and elevated coherent motion detection thresholds. Brain and Cognition, 58, 300-311.] reported a small, non-significant RVF advantage for deaf signers when short duration motion stimuli were used (200-250 ms). Samar and Parasnis (2005) reported that this small RVF advantage became significant when non-verbal IQ was statistically controlled. This paper presents extended analyses of the correlation between non-verbal IQ and visual field asymmetries in the data set of Samar and Parasnis (2005). We speculate that this correlation might plausibly be driven by individual differences either in age of acquisition of American Sign Language (ASL) or in the degree of neurodevelopmental insult associated with various etiologies of deafness. Limited additional analyses are presented that indicate a need for further research on the cause of this apparent IQ-laterality relationship. Some potential implications of this relationship for lateralization studies of deaf signers are discussed. Controlling non-verbal IQ may improve the reliability of short duration coherent motion tasks to detect adaptive dorsal stream lateralization due to exposure to ASL in deaf research participants.

  2. An Improved dem Construction Method for Mudflats Based on BJ-1 Small Satellite Images: a Case Study on Bohai Bay

    NASA Astrophysics Data System (ADS)

    Wu, D.; Du, Y.; Su, F.; Huang, W.; Zhang, L.

    2018-04-01

    The topographic measurement of muddy tidal flat is restricted by the difficulty of access to the complex, wide-range and dynamic tidal conditions. Then the waterline detection method (WDM) has the potential to investigate the morph-dynamics quantitatively by utilizing large archives of satellite images. The study explores the potential for using WDM with BJ-1 small satellite images to construct a digital elevation model (DEM) of a wide and grading mudflat. Three major conclusions of the study are as follows: (1) A new intelligent correlating model of waterline detection considering different tidal stages and local geographic conditions was explored. With this correlative algorithm waterline detection model, a series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of a year. The model proved to detect waterlines more efficiently and exactly. (2) The spatial structure of elevation superimposing on the points of waterlines was firstly constructed and a more accurate hydrodynamic ocean tide grid model was used. By the newly constructed abnormal hydrology evaluation model, a more reasonable and reliable set of waterline points was acquired to construct a smoother TIN and GRID DEM. (3) DEM maps of Bohai Bay, with a spatial resolution of about 30 m and height accuracy of about 0.35 m considering LiDAR and 0.19 m considering RTK surveying were constructed over an area of about 266 km2. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible and is an effective tool for monitoring the tidal flats.

  3. Reliability, Validity, and Minimal Detectable Change of Balance Evaluation Systems Test and Its Short Versions in Older Cancer Survivors: A Pilot Study.

    PubMed

    Huang, Min H; Miller, Kara; Smith, Kristin; Fredrickson, Kayle; Shilling, Tracy

    2016-01-01

    Cancer is primarily a disease of older adults. About 77% of all cancers are diagnosed in persons aged 55 years and older. Cancer and its treatment can cause diverse sequelae impacting body systems underlying balance control. No study has examined the psychometric properties of balance assessment tools in older cancer survivors, presenting a significant challenge in the selection of outcome measures for clinicians treating this fast-growing population. This study aimed to determine the reliability, validity, and minimal detectable change (MDC) of the Balance Evaluation System Test (BESTest), Mini-Balance Evaluation Systems Test (Mini-BESTest), and Brief-Balance Evaluation Systems Test (Brief-BESTest) in community-dwelling older cancer survivors. This study was a cross-sectional design. Twenty breast and 8 prostate cancer survivors participated [age (SD) = 68.4 (8.13) years]. The BESTest and Activity-specific Balance Confidence (ABC) Scale were administered during the first session. Scores of Mini-BESTest and Brief-BESTest were extracted on the basis of the scores of BESTest. The BESTest was repeated within 1 to 2 weeks by the same rater to determine the test-retest reliability. For the analysis of the inter-rater reliability, 21 participants were randomly selected to be evaluated by 2 raters. A primary rater administered the test. The 2 raters independently and concurrently scored the performance of the participants. Each rater recorded the ratings separately on the scoring sheet. No discussion among the raters was allowed throughout the testing. Intraclass correlation coefficients (ICCs), standard error of measurement, minimal detectable change (MDC), and Bland-Altman plots were calculated. Concurrent validity of these balance tests with the ABC Scale was examined using the Spearman correlation. The BESTest, Mini-BESTest, and Brief-BESTest had high test-retest (ICC = 0.90-0.94) and interrater reliability (ICC = 0.86-0.96), small standard error of measurement (0.86-2.47 points), and MDC (2.39-6.86 points). The Bland-Altman plot revealed no systematic errors. The scores of BESTest, Mini-BEST, and Brief-BEST were correlated significantly with those of ABC Scale (P < .01), supporting their concurrent validity. The BESTest, Mini-BESTest, and Brief-BESTest showed high interrater and test-retest reliability, and excellent concurrent validity with the ABC Scale for community-dwelling cancer survivors aged 55 years and older who had completed cancer treatments for at least 3 months. Future studies are necessary to determine the predictive values for determining fall risks using balance assessment tools in older cancer survivors. Clinicians can utilize the BESTest and its short versions to evaluate balance problems in community-dwelling older cancer survivors and apply the established MDC to assess the intervention outcomes.

  4. The statistical properties of vortex flows in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven; Kato, Yoshiaki; Steiner, Oskar

    2015-08-01

    Rotating magnetic field structures associated with vortex flows on the Sun, also known as “magnetic tornadoes”, may serve as waveguides for MHD waves and transport mass and energy upwards through the atmosphere. Magnetic tornadoes may therefore potentially contribute to the heating of the upper atmospheric layers in quiet Sun regions.Magnetic tornadoes are observed over a large range of spatial and temporal scales in different layers in quiet Sun regions. However, their statistical properties such as size, lifetime, and rotation speed are not well understood yet because observations of these small-scale events are technically challenging and limited by the spatial and temporal resolution of current instruments. Better statistics based on a combination of high-resolution observations and state-of-the-art numerical simulations is the key to a reliable estimate of the energy input in the lower layers and of the energy deposition in the upper layers. For this purpose, we have developed a fast and reliable tool for the determination and visualization of the flow field in (observed) image sequences. This technique, which combines local correlation tracking (LCT) and line integral convolution (LIC), facilitates the detection and study of dynamic events on small scales, such as propagating waves. Here, we present statistical properties of vortex flows in different layers of the solar atmosphere and try to give realistic estimates of the energy flux which is potentially available for heating of the upper solar atmosphere

  5. Psychometric properties of the painDETECT questionnaire in rheumatoid arthritis, psoriatic arthritis and spondyloarthritis: Rasch analysis and test-retest reliability.

    PubMed

    Rifbjerg-Madsen, Signe; Wæhrens, Eva Ejlersen; Danneskiold-Samsøe, Bente; Amris, Kirstine

    2017-05-22

    Pain is inherent in rheumatoid arthritis (RA), psoriatic arthritis (PsA) and spondyloarthritis (SpA) and traditionally considered to be of nociceptive origin. Emerging data suggest a potential role of augmented central pain mechanisms in subsets of patients, thus, valid instruments that can identify underlying pain mechanisms are needed. The painDETECT questionnaire (PDQ) was originally designed to differentiate between pain phenotypes. The objectives were to evaluate the psychometric properties of the PDQ in patients with inflammatory arthritis by applying Rasch analysis and to explore the reliability of pain classification by test-retest. For the Rasch analysis 900 questionnaires from patients with RA, PsA and SpA (300 per diagnosis) were extracted from 'the DANBIO painDETECT study'. The analysis was directed at the seven items assessing somatosensory symptoms and included: 1) the performance of the six-category Likert scale; 2) whether a unidimensional construct was defined; 3) the reliability and precision of estimates. Another group of 30 patients diagnosed with RA, PsA or SpA participated in a test-retest study. Intraclass Correlation Coefficients (ICC) and classification consistency were calculated. The Rasch analysis revealed: (1) Acceptable psychometric rating scale properties; the frequency distribution peaked in category 0 except for item 5, threshold calibration >10 observations per category, no disorder in the category measures for all items, scale category outfit Mnsq <2.0, small distances (<1.4 logits) between thresholds for category 1, 2 and 3 for all items. (2) The principal component analysis supported unidimensionality; the standardized residuals showed that 53.7% of total variance was explained by the measure and the magnitude of first contrast had an eigenvalue of 1.5, no misfitting items, clinical insignificant different item hierarchies across diagnoses (DIF < 0.5 logits). (3) A targeted item-person map, person and item separation indices of 1.88(reliability = 0.78), and 13.04 (reliability = 0.99). The test-retest revealed: ICC: RA 0.86(0.56-0.96), PsA 0.96(0.74-0.99), SpA 0.93(0.76-98), overall 0.94(0.84-0.98). Classification consistency was: RA 70%, PsA 80%, SpA 90%, overall 80%. The results support that the PDQ can be used as a classification instrument and assist identification of underlying pain-mechanisms in patients suffering from inflammatory arthritis.

  6. Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence.

    PubMed

    Doeller, Christian F; Opitz, Bertram; Mecklinger, Axel; Krick, Christoph; Reith, Wolfgang; Schröger, Erich

    2003-10-01

    Previous electrophysiological and neuroimaging studies suggest that the mismatch negativity (MMN) is generated by a temporofrontal network subserving preattentive auditory change detection. In two experiments we employed event-related brain potentials (ERP) and event-related functional magnetic resonance imaging (fMRI) to examine neural and hemodynamic activity related to deviance processing, using three types of deviant tones (small, medium, and large) in both a pitch and a space condition. In the pitch condition, hemodynamic activity in the right superior temporal gyrus (STG) increased as a function of deviance. Comparisons between small and medium and between small and large deviants revealed right prefrontal activation in the inferior frontal gyrus (IFG; BA 44/45) and middle frontal gyrus (MFG; BA 46), whereas large relative to medium deviants led to left and right IFG (BA 44/45) activation. In the ERP experiment the amplitude of the early MMN (90-120 ms) increased as a function of deviance, by this paralleling the right STG activation in the fMRI experiment. A U-shaped relationship between MMN amplitude and the degree of deviance was observed in a late time window (140-170 ms) resembling the right IFG activation pattern. In a subsequent source analysis constrained by fMRI activation foci, early and late MMN activity could be modeled by dipoles placed in the STG and IFG, respectively. In the spatial condition no reliable hemodynamic activation could be observed. The MMN amplitude was substantially smaller than in the pitch condition for all three spatial deviants in the ERP experiment. In contrast to the pitch condition it increased as a function of deviance in the early and in the late time window. We argue that the right IFG mediates auditory deviance detection in case of low discriminability between a sensory memory trace and auditory input. This prefrontal mechanism might be part of top-down modulation of the deviance detection system in the STG.

  7. A universal reference sample derived from clone vector for improved detection of differential gene expression

    PubMed Central

    Khan, Rishi L; Gonye, Gregory E; Gao, Guang; Schwaber, James S

    2006-01-01

    Background Using microarrays by co-hybridizing two samples labeled with different dyes enables differential gene expression measurements and comparisons across slides while controlling for within-slide variability. Typically one dye produces weaker signal intensities than the other often causing signals to be undetectable. In addition, undetectable spots represent a large problem for two-color microarray designs and most arrays contain at least 40% undetectable spots even when labeled with reference samples such as Stratagene's Universal Reference RNAs™. Results We introduce a novel universal reference sample that produces strong signal for all spots on the array, increasing the average fraction of detectable spots to 97%. Maximizing detectable spots on the reference image channel also decreases the variability of microarray data allowing for reliable detection of smaller differential gene expression changes. The reference sample is derived from sequence contained in the parental EST clone vector pT7T3D-Pac and is called vector RNA (vRNA). We show that vRNA can also be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This reference sample can be made inexpensively in large quantities as a renewable resource that is consistent across experiments. Conclusion Results of this study show that vRNA provides a useful universal reference that yields high signal for almost all spots on a microarray, reduces variation and allows for comparisons between experiments and laboratories. Further, it can be used for quality control of microarray printing and PCR product quality, detection of hybridization anomalies, and simplification of spot finding and segmentation tasks. This type of reference allows for detection of small changes in differential expression while reference designs in general allow for large-scale multivariate experimental designs. vRNA in combination with reference designs enable systems biology microarray experiments of small physiologically relevant changes. PMID:16677381

  8. Tsunami Detection Systems for International Requirements

    NASA Astrophysics Data System (ADS)

    Lawson, R. A.

    2007-12-01

    Results are presented regarding the first commercially available, fully operational, tsunami detection system to have passed stringent U.S. government testing requirements and to have successfully demonstrated its ability to detect an actual tsunami at sea. Spurred by the devastation of the December 26, 2004, Indian Ocean tsunami that killed more than 230,000 people, the private sector actively supported the Intergovernmental Oceanographic Commission's (IOC"s) efforts to develop a tsunami warning system and mitigation plan for the Indian Ocean region. As each country in the region developed its requirements, SAIC recognized that many of these underdeveloped countries would need significant technical assistance to fully execute their plans. With the original focus on data fusion, consequence assessment tools, and warning center architecture, it was quickly realized that the cornerstone of any tsunami warning system would be reliable tsunami detection buoys that could meet very stringent operational standards. Our goal was to leverage extensive experience in underwater surveillance and oceanographic sensing to produce an enhanced and reliable deep water sensor that could meet emerging international requirements. Like the NOAA Deep-ocean Assessment and Recording of Tsunamis (DART TM ) buoy, the SAIC Tsunami Buoy (STB) system consists of three subsystems: a surfaccommunications buoy subsystem, a bottom pressure recorder subsystem, and a buoy mooring subsystem. With the operational success that DART has demonstrated, SAIC decided to build and test to the same high standards. The tsunami detection buoy system measures small changes in the depth of the deep ocean caused by tsunami waves as they propagate past the sensor. This is accomplished by using an extremely sensitive bottom pressure sensor/recorder to measure very small changes in pressure as the waves move past the buoy system. The bottom pressure recorder component includes a processor with algorithms that recognize these characteristics, and then immediately alerts a tsunami warning center through the communications buoy when the processor senses one of these waves. In addition to the tsunami detection buoy system, an end-to-end tsunami warning system was developed that builds upon the country's existing disaster warning infrastructure. This warning system includes 1) components that receive, process, and analyze buoy, seismic and tide gauge data; 2) predictive tools and a consequence assessment tool set to provide decision support; 3) operation center design and implementation; and 4) tsunami buoy operations and maintenance support. The first buoy was deployed Oct. 25, 2006, approximately 200 nautical miles west of San Diego in 3,800 meters of water. Just three weeks later, it was put to the test during an actual tsunami event. On Nov. 15, 2006, an 8.3 magnitude earthquake rocked the Kuril Islands, located between Japan and the Kamchatka Peninsula of Russia. That quake generated a small tsunami. Waves from the tsunami propagated approximately 4,000 nautical miles across the Pacific Ocean in about nine hours-- a speed of about 445 nautical miles per hour when this commercial buoy first detected them. Throughout that event, the tsunami buoy system showed excellent correlation with data collected by a NOAA DART buoy located 28 nautical miles north of it. Subsequent analysis revealed that the STB matched DART operational capabilities and performed flawlessly. The buoy proved its capabilities again on Jan. 13, 2007, when an 8.1 magnitude earthquake occurred in the same region, and the STB detected the seismic event. As a result of the successes of this entire project, SAIC recently applied for and received a license from NOAA to build DART systems.

  9. Navy applications experience with small wind power systems

    NASA Astrophysics Data System (ADS)

    Pal, D.

    1985-05-01

    This report describes the experience gained and lesson learned from the ongoing field evaluations of seven small, 2-to 20-kW wind energy conversion systems (WECS) at Navy installations located in the Southern California desert, on San Nicolas Island, in California, and in Kaneohe Bay, Hawaii. The field tests show that the WECS's bearings and yaw slip-rings are prone to failure. The failures were attributed to the corrosive environment and poor design practices. Based upon the field tests, it is concluded that a reliable WECS must use a permanent magnet alternator without a gearbox and yaw slip-rings that are driven by a fixed pitch wind turbine rotor. The present state-of-the-art in small WECS technology, including environmental concerns, is reviewed. Also presented is how the technology is advancing to improve reliability and availability for effectively using wind power at Navy bases. The field evaluations are continuing on the small WECS in order to develop operation, maintenance, and reliability data.

  10. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-02-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  11. Small-Scale System for Evaluation of Stretch-Flangeability with Excellent Reliability

    NASA Astrophysics Data System (ADS)

    Yoon, Jae Ik; Jung, Jaimyun; Lee, Hak Hyeon; Kim, Hyoung Seop

    2018-06-01

    We propose a system for evaluating the stretch-flangeability of small-scale specimens based on the hole-expansion ratio (HER). The system has no size effect and shows excellent reproducibility, reliability, and economic efficiency. To verify the reliability and reproducibility of the proposed hole-expansion testing (HET) method, the deformation behavior of the conventional standard stretch-flangeability evaluation method was compared with the proposed method using finite-element method simulations. The distribution of shearing defects in the hole-edge region of the specimen, which has a significant influence on the HER, was investigated using scanning electron microscopy. The stretch-flangeability of several kinds of advanced high-strength steel determined using the conventional standard method was compared with that using the proposed small-scale HET method. It was verified that the deformation behavior, morphology and distribution of shearing defects, and stretch-flangeability results for the specimens were the same for the conventional standard method and the proposed small-scale stretch-flangeability evaluation system.

  12. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    PubMed

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a reliable, compact, flexible, and relatively safe marker for clinical use.

  13. Immunohistochemistry is a reliable screening tool for identification of ALK rearrangement in non-small-cell lung carcinoma and is antibody dependent.

    PubMed

    Conklin, Chris M J; Craddock, Kenneth J; Have, Cherry; Laskin, Janessa; Couture, Christian; Ionescu, Diana N

    2013-01-01

    Fluorescence in situ hybridization (FISH) is the standard procedure for the detection of anaplastic lymphoma receptor tyrosine kinase (ALK) rearrangement in non-small-cell lung carcinoma (NSCLC) but is expensive and time consuming. We tested three antibodies to ALK, using various detection systems, and hypothesized that ALK immunohistochemistry (IHC) may represent a cost-effective and efficient means of screening for ALK rearrangement in NSCLC. We screened 377 stage I or II NSCLC cases in a tissue microarray by FISH and IHC (5A4 [Leica Biosystems Newcastle Ltd, Newcastle upon Tyne, UYnited Kingdom] by Nichirei's N-Histofine ALK detection kit [Nichirei Biosciences inc., Tokyo, Japan], 5A4 by Novocastra with ADVANCE [Dako Canada inc., Burlington, Ontario, Canada], D5F3 by Cell Signaling Technology with ADVANCE [Cell Signalling Technologies inc., Danvers, MA], and DAKO clone ALK1 with FLEX [Dako Canada inc., Burlington, Ontario, Canada] and ADVANCE). IHC was scored as 0, 1+, 2+, or 3+. Possibly positive or positive cases were further analyzed by IHC and FISH on whole section. Tissue microarray results were available on 377 cases by IHC and 273 cases by FISH. Eleven cases were positive or possibly positive by either IHC or FISH, and three cases were positive or possibly positive by both methods. Three cases were ALK-positive by FISH on whole section validation. There was no correlation between semiquantitative IHC score (1+, 2+, 3+) and ALK rearrangement by FISH. D5F3 (Cell Signaling by ADVANCE) and 5A4 (Novocastra by ADVANCE) showed the greatest combination of sensitivity (100%) and specificity (87.5% for 5A4 by Novocastra and 75% for D5F3 by Cell Signaling), and produced no false-negative results. IHC is a reliable screening tool for identification of ALK rearrangement in NSCLC and is antibody dependent. D5F3 (Cell Signaling) and 5A4 (Novocastra) can be used with FISH for identification of IHC-positive cases to reduce screening costs.

  14. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less

  15. Assessing Reliability of Medical Record Reviews for the Detection of Hospital Adverse Events.

    PubMed

    Ock, Minsu; Lee, Sang-il; Jo, Min-Woo; Lee, Jin Yong; Kim, Seon-Ha

    2015-09-01

    The purpose of this study was to assess the inter-rater reliability and intra-rater reliability of medical record review for the detection of hospital adverse events. We conducted two stages retrospective medical records review of a random sample of 96 patients from one acute-care general hospital. The first stage was an explicit patient record review by two nurses to detect the presence of 41 screening criteria (SC). The second stage was an implicit structured review by two physicians to identify the occurrence of adverse events from the positive cases on the SC. The inter-rater reliability of two nurses and that of two physicians were assessed. The intra-rater reliability was also evaluated by using test-retest method at approximately two weeks later. In 84.2% of the patient medical records, the nurses agreed as to the necessity for the second stage review (kappa, 0.68; 95% confidence interval [CI], 0.54 to 0.83). In 93.0% of the patient medical records screened by nurses, the physicians agreed about the absence or presence of adverse events (kappa, 0.71; 95% CI, 0.44 to 0.97). When assessing intra-rater reliability, the kappa indices of two nurses were 0.54 (95% CI, 0.31 to 0.77) and 0.67 (95% CI, 0.47 to 0.87), whereas those of two physicians were 0.87 (95% CI, 0.62 to 1.00) and 0.37 (95% CI, -0.16 to 0.89). In this study, the medical record review for detecting adverse events showed intermediate to good level of inter-rater and intra-rater reliability. Well organized training program for reviewers and clearly defining SC are required to get more reliable results in the hospital adverse event study.

  16. Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein

    PubMed Central

    Castillo, Daniela S.

    2017-01-01

    Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention. PMID:28759641

  17. Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein.

    PubMed

    Castillo, Daniela S; Cassola, Alejandro

    2017-01-01

    Cow milk protein allergy (CMPA) is the most common childhood food allergy, which can sometimes persist or can newly develop in adulthood with severe symptoms. CMPA's treatment is complete dietary avoidance of milk proteins. To achieve this task, patients have to be aware of milk proteins found as "hidden allergens" in food commodities. In regard to milk proteins, it has been reported that allergenicity of caseins remains unaffected upon heat treatment. For these reasons, we aimed to obtain monoclonal antibodies (mAbs) against native and denatured β-casein, one of the most abundant and antigenic caseins, in order to develop an indirect competitive ELISA (icELISA) to detect and quantify traces of this milk allergen in raw and processed foodstuffs. We developed two specific hybridoma clones, 1H3 and 6A12, which recognized β-casein in its denatured and native conformations by indirect ELISA (iELISA). Cross-reaction analysis by Western blot and iELISA indicated that these mAbs specifically recognized β-casein from bovine and goat milk extracts, while they did not cross-react with proteins present in other food matrixes. These highly specific mAbs enabled the development of sensitive, reliable and reproducible icELISAs to detect and quantify this milk protein allergen in food commodities. The extraction of β-casein from foodstuff was efficiently carried out at 60°C for 15 minutes, using an extraction buffer containing 1% SDS. The present study establishes a valid 1H3 based-icELISA, which allows the detection and quantification -0.29 ppm and 0.80 ppm, respectively- of small amounts of β-casein in raw and processed foods. Furthermore, we were able to detect milk contamination in incurred food samples with the same sensitivity as a commercial sandwich ELISA thus showing that this icELISA constitutes a reliable analytical method for control strategies in food industry and allergy prevention.

  18. Seismic monitoring at Cascade Volcanic Centers, 2004?status and recommendations

    USGS Publications Warehouse

    Moran, Seth C.

    2004-01-01

    The purpose of this report is to assess the current (May, 2004) status of seismic monitoring networks at the 13 major Cascade volcanic centers. Included in this assessment are descriptions of each network, analyses of the ability of each network to detect and to locate seismic activity, identification of specific weaknesses in each network, and a prioritized list of those networks that are most in need of additional seismic stations. At the outset it should be recognized that no Cascade volcanic center currently has an adequate seismic network relative to modern-day networks at Usu Volcano (Japan) or Etna and Stromboli volcanoes (Italy). For a system the size of Three Sisters, for example, a modern-day, cutting-edge seismic network would ideally consist of a minimum of 10 to 12 short-period three-component seismometers (for determining particle motions, reliable S-wave picks, moment tensor inversions, fault-plane solutions, and other important seismic parameters) and 7 to 10 broadband sensors (which, amongst other considerations, enable detection and location of very long period (VLP) and other low-frequency events, moment tensor inversions, and, because of their wide dynamic range, on-scale recording of large-amplitude events). Such a dense, multi component seismic network would give the ability to, for example, detect in near-real-time earthquake migrations over a distance of ~0.5km or less, locate tremor sources, determine the nature of a seismic source (that is, pure shear, implosive, explosive), provide on-scale recordings of very small and very large-amplitude seismic signals, and detect localized changes in seismic stress tensor orientations caused by movement of magma bodies. However, given that programmatic resources are currently limited, installation of such networks at this time is unrealistic. Instead, this report focuses on identifying what additional stations are needed to guarantee that anomalous seismicity associated with volcanic unrest will be detected in a timely manner and, in the case of magnitude = 1 earthquakes, reliably located.

  19. Reliability of Achilles Tendon Moment Arm Measured In Vivo Using Freehand Three-Dimensional Ultrasound.

    PubMed

    Obst, Steven J; Barber, Lee; Miller, Ashton; Barrett, Rod S

    2017-08-01

    This study investigated reliability of freehand three-dimensional ultrasound (3DUS) measurement of in vivo human Achilles tendon (AT) moment arm. Sixteen healthy adults were scanned on 2 separate occasions by a single investigator. 3DUS scans were performed over the free AT, medial malleolus, and lateral malleolus with the ankle passively positioned in maximal dorsiflexion, mid dorsiflexion, neutral, mid plantar flexion and maximal plantar flexion. 3D reconstructions of the AT, medial malleolus, and lateral malleolus were created from manual segmentation of the ultrasound images and used to geometrically determine the AT moment arm using both a straight (straight AT MA ) and curved (curved AT MA ) tendon line-of-action. Both methods were reliable within- and between-session (intra-class correlation coefficients > 0.92; coefficient of variation < 2.5 %) and revealed that AT moment arm increased by ∼ 7 mm from maximal dorsiflexion (∼ 41mm) to maximal plantar flexion (∼ 48 mm). Failing to account for tendon curvature led to a small overestimation (< 2 mm) of AT moment arm that was most pronounced in ankle plantar flexion, but was less than the minimal detectable change of the method and could be disregarded.

  20. A prototype for unsupervised analysis of tissue microarrays for cancer research and diagnostics.

    PubMed

    Chen, Wenjin; Reiss, Michael; Foran, David J

    2004-06-01

    The tissue microarray (TMA) technique enables researchers to extract small cylinders of tissue from histological sections and arrange them in a matrix configuration on a recipient paraffin block such that hundreds can be analyzed simultaneously. TMA offers several advantages over traditional specimen preparation by maximizing limited tissue resources and providing a highly efficient means for visualizing molecular targets. By enabling researchers to reliably determine the protein expression profile for specific types of cancer, it may be possible to elucidate the mechanism by which healthy tissues are transformed into malignancies. Currently, the primary methods used to evaluate arrays involve the interactive review of TMA samples while they are viewed under a microscope, subjectively evaluated, and scored by a technician. This process is extremely slow, tedious, and prone to error. In order to facilitate large-scale, multi-institutional studies, a more automated and reliable means for analyzing TMAs is needed. We report here a web-based prototype which features automated imaging, registration, and distributed archiving of TMAs in multiuser network environments. The system utilizes a principal color decomposition approach to identify and characterize the predominant staining signatures of specimens in color space. This strategy was shown to be reliable for detecting and quantifying the immunohistochemical expression levels for TMAs.

  1. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  2. Detection of atrial fibrillation with seismocardiography.

    PubMed

    Pankaala, Mikko; Koivisto, Tero; Lahdenoja, Olli; Kiviniemi, Tuomas; Saraste, Antti; Vasankari, Tuija; Airaksinen, Juhani

    2016-08-01

    In this paper we study the feasibility of seismocardiography (SCG) for the detection of Atrial Fibrillation (AF). In this preclinical study, data acquired from one patient having paroxysmal AF (no other heart diseases) is used to introduce specific changes in SCG signal due to AF. Observed changes and phenomena create a foundation for the development of SCG-based AF detection algorithms. SCG data was recorded from the sternum of an AF patient in dorso-ventral direction while at rest in a supine position using a three-axis high precision MEMS accelerometer simultaneously with a one-lead ECG. In contrast to ECG, the magnitude of beats registered with SCG varies considerably from beat to beat during AF. We show that the magnitude of the beats is not random but is in relation to beat intervals. It is shown that extra indicators for detecting AF become available when SCG data is combined with electrocardiographical (ECG) data; there is a certain behavior in the electromechanical delay characteristic of the AF. It is discussed how all this information can be taken advantage of in the detection of AF. Today electrocardiography (ECG) is the primary method for diagnosing arrhythmias, but there is a growing need for simpler and more convenient method for detecting asymptomatic AF. Given the very small dimensions of modern MEMS accelerometers (2mm×2mm), a reliable MEMS based measurement may provide totally new venues for arrhythmia detection.

  3. Evaluation of Small Mass Spectrometer Systems

    NASA Technical Reports Server (NTRS)

    Arkin, C. Richard; Griffin, Timothy P.; Ottens, Andrew K.; Diaz, Jorge A.; Follistein, Duke W.; Adams, Fredrick W.; Helms, William R.; Voska, N. (Technical Monitor)

    2002-01-01

    This work is aimed at understanding the aspects of designing a miniature mass spectrometer (MS) system. A multitude of commercial and government sectors, such as the military, environmental agencies and industrial manufacturers of semiconductors, refrigerants, and petroleum products, would find a small, portable, rugged and reliable MS system beneficial. Several types of small MS systems are evaluated and discussed, including linear quadrupole, quadrupole ion trap, time of flight and sector. The performance of each system in terms of accuracy, precision, limits of detection, response time, recovery time, scan rate, volume and weight is assessed. A performance scale is setup to rank each systems and an overall performance score is given to each system. All experiments involved the analysis of hydrogen, helium, oxygen and argon in a nitrogen background with the concentrations of the components of interest ranging from 0-5000 part-per-million (ppm). The relative accuracies of the systems vary from < 1% to approx. 40% with an average below 10%. Relative precisions varied from 1% to 20%, with an average below 5%. The detection limits had a large distribution, ranging from 0.2 to 170 ppm. The systems had a diverse response time ranging from 4 s to 210 s as did the recovery time with a 6 s to 210 s distribution. Most instruments had scan times near, 1 s, however one instrument exceeded 13 s. System weights varied from 9 to 52 kg and sizes from 15 x 10(exp 3)cu cm to 110 x 10(exp 3) cu cm.

  4. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool.

    PubMed

    Manterola, Lorea; Guruceaga, Elizabeth; Gállego Pérez-Larraya, Jaime; González-Huarriz, Marisol; Jauregui, Patricia; Tejada, Sonia; Diez-Valle, Ricardo; Segura, Victor; Samprón, Nicolás; Barrena, Cristina; Ruiz, Irune; Agirre, Amaia; Ayuso, Angel; Rodríguez, Javier; González, Alvaro; Xipell, Enric; Matheu, Ander; López de Munain, Adolfo; Tuñón, Teresa; Zazpe, Idoya; García-Foncillas, Jesús; Paris, Sophie; Delattre, Jean Yves; Alonso, Marta M

    2014-04-01

    Glioblastoma multiforme (GBM) is the most frequent malignant brain tumor in adults, and its prognosis remains dismal despite intensive research and therapeutic advances. Diagnostic biomarkers would be clinically meaningful to allow for early detection of the tumor and for those cases in which surgery is contraindicated or biopsy results are inconclusive. Recent findings show that GBM cells release microvesicles that contain a select subset of cellular proteins and RNA. The aim of this hypothesis-generating study was to assess the diagnostic potential of miRNAs found in microvesicles isolated from the serum of GBM patients. To control disease heterogeneity, we used patients with newly diagnosed GBM. In the discovery stage, PCR-based TaqMan Low Density Arrays followed by individual quantitative reverse transcriptase polymerase chain reaction were used to test the differences in the miRNA expression levels of serum microvesicles among 25 GBM patients and healthy controls paired by age and sex. The detected noncoding RNAs were then validated in another 50 GBM patients. We found that the expression levels of 1 small noncoding RNA (RNU6-1) and 2 microRNAs (miR-320 and miR-574-3p) were significantly associated with a GBM diagnosis. In addition, RNU6-1 was consistently an independent predictor of a GBM diagnosis. Altogether our results uncovered a small noncoding RNA signature in microvesicles isolated from GBM patient serum that could be used as a fast and reliable differential diagnostic biomarker.

  5. [Clinical utility of real-time fluorescent PCR for combined detection of anaplastic lymphoma kinase and c-ros oncogene 1 receptor tyrosine kinase in non-small cell lung cancer].

    PubMed

    Bai, D Y; Zhang, H P; Zhong, S; Suo, W H; Gao, D H; Ding, Y; Tu, J H

    2016-12-23

    Objective: To investigate the clinical application value of combined detection of ALK fusion gene and c-ros oncogene 1 receptor tyrosine kinase (ROS1) fusion gene in non-small cell lung cancer (NSCLC) using real-time fluorescent PCR. Methods: A kit for combined detection of ALK fusion gene and ROS1 fusion gene based on fluorescent PCR was used to simultaneously detect the two fusion genes in 302 cases of NSCLC specimens. The results were validated through Sanger sequencing. The consistency of the two detection methods was analyzed. Results: All 302 cases of NSCLC specimens were successfully analyzed through fluorescent PCR (302/302). 12 cases (4.0%) were found to contain ALK fusion gene, including 3 cases with ALK-M1, 3 with ALK-M2, 3 with ALK-M3, 1 with ALK-M4, and 2 with ALK-M6 fusion gene.12 cases (4.0%) were found to contain ROS1 fusion gene, including 1 case with ROS1-M7, 8 cases with ROS1-M8, 1 case with ROS1-M12, 1 case with ROS1-M14, and 1 case with double-positive ROS1-M3 and ROS1-M8 fusion genes. The total detection rate of ALK fusion gene and ROS1 fusion gene was 7.9% (24/302) and 278 cases showed to be negative for ALK fusion gene and ROS1 fusion gene. The successful detection rates for Sanger DNA sequencing were also 100%. The positive, negative and total coincidence rates obtained by real-time fluorescent PCR and by Sanger DNA sequencing were all 100%. Conclusions: The results of Sanger DNA sequencing demonstrate that the real-time fluorescent PCR assay is equally effective in detecting ALK and ROS1 fusion genes in NSCLC tissues. Furthermore, real-time fluorescent PCR assay can be used to detect trace ALK and ROS1 fusion gene simultaneously in tiny samples, and can save time and avoid repeated sampling. It is worthy of recommendation as a rapid and reliable detection technique.

  6. Optical detection of Trypanosoma cruzi in blood samples for diagnosis purpose

    NASA Astrophysics Data System (ADS)

    Alanis, Elvio; Romero, Graciela; Alvarez, Liliana; Martinez, Carlos C.; Basombrio, Miguel A.

    2004-10-01

    An optical method for detection of Trypanosoma Cruzi (T. cruzi) parasites in blood samples of mice infected with Chagas disease is presented. The method is intended for use in human blood, for diagnosis purposes. A thin layer of blood infected by T. cruzi parasites, in small concentrations, is examined in an interferometric microscope in which the images of the vision field are taken by a CCD camera and temporarily stored in the memory of a host computer. The whole sample is scanned displacing the microscope plate by means of step motors driven by the computer. Several consecutive images of the same field are taken and digitally processed by means of image temporal differentiation in order to detect if a parasite is eventually present in the field. Each field of view is processed in the same fashion, until the full area of the sample is covered or until a parasite is detected, in which case an acoustical warning is activated and the corresponding image is displayed permitting the technician to corroborate the result visually. A discussion of the reliability of the method as well as a comparison with other well established techniques are presented.

  7. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    PubMed Central

    Fan, Wei; Li, Rong; Li, Sifan; Ping, Wenli; Li, Shujun; Naumova, Alexandra; Peelen, Tamara; Yuan, Zheng; Zhang, Dabing

    2016-01-01

    Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR) assay and the other loop-mediated isothermal amplification (LAMP) assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum) in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS), and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise. PMID:27635142

  8. The Scaling of Performance and Losses in Miniature Internal Combustion Engines

    DTIC Science & Technology

    2010-01-01

    reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer...making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat ...the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer

  9. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    PubMed

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  10. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Guitot, Karine; Scarabelli, Silvia; Drujon, Thierry; Bolbach, Gérard; Amoura, Mehdi; Burlina, Fabienne; Jeltsch, Albert; Sagan, Sandrine; Guianvarc'h, Dominique

    2014-07-01

    Histone lysine methyltransferases (HKMTs) are enzymes that play an essential role in epigenetic regulation. Thus, identification of inhibitors specifically targeting these enzymes represents a challenge for the development of new antitumor therapeutics. Several methods for measuring HKMT activity are already available. Most of them use indirect measurement of the enzymatic reaction through radioactive labeling or antibody-recognized products or coupled enzymatic assays. Mass spectrometry (MS) represents an interesting alternative approach because it allows direct detection and quantification of enzymatic reactions and can be used to determine kinetics and to screen small molecules as potential inhibitors. Application of mass spectrometry to the study of HKMTs has not been fully explored yet. We describe here the development of a simple reliable label-free MALDI-TOF MS-based assay for the detection and quantification of peptide methylation, using SET7/9 as a model enzyme. Importantly, the use of expensive internal standard often required in mass spectrometry quantitative analysis is not necessary in this assay. This MS assay allowed us to determine enzyme kinetic parameters as well as IC50 for a known inhibitor of this enzyme. Furthermore, a comparative study with an antibody-based immunosorbent assay showed that the MS assay is more reliable and suitable for the screening of inhibitors. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Novel method for the authentication of frigate tunas (Auxis thazard and Auxis rochei) in commercial canned products.

    PubMed

    Infante, Carlos; Catanese, Gaetano; Ponce, Marian; Manchado, Manuel

    2004-12-15

    A novel procedure for the authentication of frigate tunas (Auxis thazard and Auxis rochei) in commercially canned products has been developed. Three mitochondrial regions were simultaneously amplified by multiplex-Polymerase Chain Reaction, one corresponding to the small rRNA 12S subunit as a positive amplification control and two species-specific fragments corresponding to cytochrome b for A. rochei and ATPase 6 for A. thazard, respectively. Testing of two different detection systems revealed the fluorescence-based approach as the most sensitive. The results demonstrate that this rapid, low-cost methodology is a reliable molecular tool for direct application in the authentication of canned products.

  12. Reliability of the Q Force; a mobile instrument for measuring isometric quadriceps muscle strength.

    PubMed

    Douma, K W; Regterschot, G R H; Krijnen, W P; Slager, G E C; van der Schans, C P; Zijlstra, W

    2016-01-01

    The ability to generate muscle strength is a pre-requisite for all human movement. Decreased quadriceps muscle strength is frequently observed in older adults and is associated with a decreased performance and activity limitations. To quantify the quadriceps muscle strength and to monitor changes over time, instruments and procedures with a sufficient reliability are needed. The Q Force is an innovative mobile muscle strength measurement instrument suitable to measure in various degrees of extension. Measurements between 110 and 130° extension present the highest values and the most significant increase after training. The objective of this study is to determine the test-retest reliability of muscle strength measurements by the Q Force in older adults in 110° extension. Forty-one healthy older adults, 13 males and 28 females were included in the study. Mean (SD) age was 81.9 (4.89) years. Isometric muscle strength of the Quadriceps muscle was assessed with the Q Force at 110° of knee extension. Participants were measured at two sessions with a three to eight day interval between sessions. To determine relative reliability, the intraclass correlation coefficient (ICC) was calculated. To determine absolute reliability, Bland and Altman Limits of Agreement (LOA) were calculated and t-tests were performed. Relative reliability of the Q Force is good to excellent as all ICC coefficients are higher than 0.75. Generally a large 95 % LOA, reflecting only moderate absolute reliability, is found as exemplified for the peak torque left leg of -18.6 N to 33.8 N and the right leg of -9.2 N to 26.4 N was between 15.7 and 23.6 Newton representing 25.2 % to 39.9 % of the size of the mean. Small systematic differences in mean were found between measurement session 1 and 2. The present study shows that the Q Force has excellent relative test-retest reliability, but limited absolute test-retest reliability. Since the Q Force is relatively cheap and mobile it is suitable for application in various clinical settings, however, its capability to detect changes in muscle force over time is limited but comparable to existing instruments.

  13. "Reliability of the Norwegian version of the short physical performance battery in older people with and without dementia".

    PubMed

    Olsen, Cecilie Fromholt; Bergland, Astrid

    2017-06-09

    The purpose of the study was to establish the test-retest reliability of the Norwegian version of the Short Physical Performance Battery (SPPB). This was a cross- sectional reliability study. A convenience sample of 61 older adults with a mean age of 88.4(8.1) was tested by two different physiotherapists at two time points. The mean time interval between tests was 2.5 days. The Intraclass Correlation Coefficient model 3.1 (ICC, 3.1) with 95% confidence intervals as well as the weighted Kappa (K) were used as measures of relative reliability. The Standard Error of Measurement (SEM) and Minimal Detectable Change (MDC) were used to measure absolute reliability. The results were also analyzed for a subgroup of 24 older people with dementia. The ICC reflected high relative reliability for the SPPB summary score and the 4 m walk test (4mwt), both for the total sample (ICC = 0.92, and 0.91 respectively)) and for the subgroup with dementia (ICC = 0.84 and 0.90 respectively). Furthermore, weighted Ks for the SPPB subscales were 0.64 for the chair stand, 0.80 for gait and 0.52 for balance for the total sample and almost identical for the subgroup with dementia. MDC-values at the 95% confidence intervals (MDC95) were calculated at 0.8 for the total score of SPPB and 0.39 m/s for the 4mwt in the total sample. For the subgroup with dementia MDC95 was 1.88 for the total score of SPPB and 0.28 m/s for 4mwt. The SPPB total score and the timed walking test showed overall high relative and absolute reliability for the total sample indicating that the Norwegian version of the SPPB is reliable when used by trained physiotherapists with older people. The reliability of the Norwegian SPPB in older people with dementia seems high, but due to a small sample size this needs further investigation.

  14. MEMS device for mass market gas and chemical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air in the house. Internet grocery delivery services could check for spoiled foods in their clients' refrigerators. City emissions regulators could monitor the various emissions sources throughout the area from their desk to predict how many pollution vouchers they will need to trade in the next week. We describe a new component architecture for mass-market sensors based on silicon microelectromechanical systems (MEMS) technology. MEMS are micrometer-scale devices that can be fabricated as discrete devices or large arrays, using the technology of integrated circuit manufacturing. These new photonic bandgap and MEMS fabricataion technologies will simplify the component technology to provide high-quality gas and chemical sensors at consumer prices.

  15. Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows

    PubMed Central

    Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Jayaprakash, G.; Pushpadass, Heartwin A.; Sivaram, M.; Ramesha, K. P.; Das, D. N.; Kataktalware, Mukund A.; Prakash, M. Arul; Kumar, R. Dhinesh

    2016-01-01

    The animal husbandry and livestock sectors play a major role in the rural economy, especially for the small and marginal farmers. India has the largest livestock population in the world and ranks first in the milk production. Mastitis is the most common and expensive infectious disease in dairy cattle. The global economic losses per year due to mastitis amounts to USD 35 billion and for Indian dairy industry ₹6000 crores per year. Early detection of mastitis is very important to reduce the economic loss to the dairy farmers and dairy industry. Automated methods for early and reliable detection of mastitis are currently in focus under precision dairying. Skin surface temperature is an important indicator for the diagnosis of cow’s illnesses and for the estimation of their physiological status. Infrared thermography (IRT) is a simple, effective, on-site, and noninvasive method that detects surface heat, which is emitted as infrared radiation and generates pictorial images without causing radiation exposure. In human and bovine medicine, IRT is used as a diagnostic tool for assessment of normal and physiological status. PMID:27847416

  16. Comparison of Ground-Penetrating Radar and Low-Frequency Electromagnetic Sounding for Detection and Characterization of Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    2003-01-01

    Two orbital, ground-penetrating radars, MARSIS and SHARAD, are scheduled for Mars flight, with detection of groundwater a high priority. While these radars will doubtlessly provide significant new information on the subsurface of Mars, thin films of adsorbed water in the cryosphere will strongly attenuate radar signals and prevent characterization of any true aquifers, if present. Scattering from 10-m scale layering or wavelength-size regolith heterogeneities will also degrade radar performance. Dielectric contrasts are sufficiently small for low-porosity, deep aquifers that groundwater cannot be reliably identified. In contrast, low-frequency (mHz-kHz) soundings are ideally suited to groundwater detection due to their great depths of penetration and the high electrical conductivity (compared to cold, dry rock) of groundwater. A variety of low-frequency methods span likely ranges of mass, volume, and power resources, but all require acquisition at or near the planetary surface. Therefore the current generation of orbital radars will provide useful global reconnaissance for subsequent targeted exploration at low frequency. Introduction: Electromagnetic (EM) methods

  17. Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection

    DOE PAGES

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.; ...

    2015-10-21

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  18. Continuous video coherence computing model for detecting scene boundaries

    NASA Astrophysics Data System (ADS)

    Kang, Hang-Bong

    2001-07-01

    The scene boundary detection is important in the semantic understanding of video data and is usually determined by coherence between shots. To measure the coherence, two approaches have been proposed. One is a discrete approach and the other one is a continuous approach. In this paper, we use the continuous approach and propose some modifications on the causal First-In-First-Out(FIFO) short-term memory-based model. One modification is that we allow dynamic memory size in computing coherence reliably regardless of the size of each shot. Another modification is that some shots can be removed from the memory buffer not by the FIFO rule. These removed shots have no or small foreground objects. Using this model, we detect scene boundaries by computing shot coherence. In computing coherence, we add one new term which is the number of intermediate shots between two comparing shots because the effect of intermediate shots is important in computing shot recall. In addition, we also consider shot activity because this is important to reflect human perception. We experiment our computing model on different genres of videos and have obtained reasonable results.

  19. Detecting drawdowns masked by environmental stresses with water-level models

    USGS Publications Warehouse

    Garcia, C.A.; Halford, K.J.; Fenelon, J.M.

    2013-01-01

    Detecting and quantifying small drawdown at observation wells distant from the pumping well greatly expands the characterized aquifer volume. However, this detection is often obscured by water level fluctuations such as barometric and tidal effects. A reliable analytical approach for distinguishing drawdown from nonpumping water-level fluctuations is presented and tested here. Drawdown is distinguished by analytically simulating all pumping and nonpumping water-level stresses simultaneously during the period of record. Pumping signals are generated with Theis models, where the pumping schedule is translated into water-level change with the Theis solution. This approach closely matched drawdowns simulated with a complex three-dimensional, hypothetical model and reasonably estimated drawdowns from an aquifer test conducted in a complex hydrogeologic system. Pumping-induced changes generated with a numerical model and analytical Theis model agreed (RMS as low as 0.007 m) in cases where pumping signals traveled more than 1 km across confining units and fault structures. Maximum drawdowns of about 0.05 m were analytically estimated from field investigations where environmental fluctuations approached 0.2 m during the analysis period.

  20. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    PubMed Central

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-01-01

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers. PMID:25014097

  1. Tunable diode laser absorption spectroscopy as method of choice for non-invasive and automated detection of microbial growth in media fills.

    PubMed

    Brueckner, David; Roesti, David; Zuber, Ulrich; Sacher, Meik; Duncan, Derek; Krähenbühl, Stephan; Braissant, Olivier

    2017-05-15

    Tunable diode laser absorption spectroscopy (TDLAS) was evaluated on its potential to detect bacterial growth of contaminated media fill vials. The target was a replacement/ automation of the traditional visual media fill inspection. TDLAS was used to determine non-invasively O 2 and/or CO 2 changes in headspaces of such vials being induced by metabolically active microorganisms. Four different vial formats, 34 microorganisms (inoculation volume<10 cells) and two different media (TSB/FTM) were tested. Applying parallel CO 2 and O 2 headspace measurements all format-organism combinations were detected within <11 days reliably with reproducible results. False negatives were exclusively observed for samples that were intentionally breached with syringes of 0.3mm in diameter. Overall it was shown that TDLAS functionality for a replacement of the visual media fill inspection is given and that investing in further validation and implementation studies is valuable. Nevertheless, some small but vincible challenges remain to have this technology in practical use. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rare Cell Detection by Single-Cell RNA Sequencing as Guided by Single-Molecule RNA FISH.

    PubMed

    Torre, Eduardo; Dueck, Hannah; Shaffer, Sydney; Gospocic, Janko; Gupte, Rohit; Bonasio, Roberto; Kim, Junhyong; Murray, John; Raj, Arjun

    2018-02-28

    Although single-cell RNA sequencing can reliably detect large-scale transcriptional programs, it is unclear whether it accurately captures the behavior of individual genes, especially those that express only in rare cells. Here, we use single-molecule RNA fluorescence in situ hybridization as a gold standard to assess trade-offs in single-cell RNA-sequencing data for detecting rare cell expression variability. We quantified the gene expression distribution for 26 genes that range from ubiquitous to rarely expressed and found that the correspondence between estimates across platforms improved with both transcriptome coverage and increased number of cells analyzed. Further, by characterizing the trade-off between transcriptome coverage and number of cells analyzed, we show that when the number of genes required to answer a given biological question is small, then greater transcriptome coverage is more important than analyzing large numbers of cells. More generally, our report provides guidelines for selecting quality thresholds for single-cell RNA-sequencing experiments aimed at rare cell analyses. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A locomotion intent prediction system based on multi-sensor fusion.

    PubMed

    Chen, Baojun; Zheng, Enhao; Wang, Qining

    2014-07-10

    Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot) are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions) is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers.

  4. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    PubMed

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  5. Development of Multiple Cell-Based Assays for the Detection of Histone H3 Lys27 Trimethylation (H3K27me3)

    PubMed Central

    Lu, Lihui; Wu, Jianghong

    2013-01-01

    Abstract Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA® and LanthaScreen® technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA®) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds. PMID:23992119

  6. Feature Detection in SAR Interferograms With Missing Data Displays Fault Slip Near El Mayor-Cucapah and South Napa Earthquakes

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Glasscoe, M. T.; Stough, T.

    2015-12-01

    Edge detection identifies seismic or aseismic fault motion, as demonstrated in repeat-pass inteferograms obtained by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) program. But this identification, demonstrated in 2010, was not robust: for best results, it requires a flattened background image, interpolation into missing data (holes) and outliers, and background noise that is either sufficiently small or roughly white Gaussian. Proper treatment of missing data, bursting noise patches, and tiny noise differences at short distances apart from bursts are essential to creating an acceptably reliable method sensitive to small near-surface fractures. Clearly a robust method is needed for machine scanning of the thousands of UAVSAR repeat-pass interferograms for evidence of fault slip, landslides, and other local features: hand-crafted intervention will not do. Effective methods of identifying, removing and filling in bad pixels reveal significant features of surface fractures. A rich network of edges (probably fractures and subsidence) in difference images spanning the South Napa earthquake give way to a simple set of postseismically slipping faults. Coseismic El Mayor-Cucapah interferograms compared to post-seismic difference images show nearly disjoint patterns of surface fractures in California's Sonoran Desert; the combined pattern reveals a network of near-perpendicular, probably conjugate faults not mapped before the earthquake. The current algorithms for UAVSAR interferogram edge detections are shown to be effective in difficult environments, including agricultural (Napa, Imperial Valley) and difficult urban areas (Orange County.).

  7. Fast Radio Burst/Gamma-Ray Burst Cosmography

    NASA Astrophysics Data System (ADS)

    Gao, He; Li, Zhuo; Zhang, Bing

    2014-06-01

    Recently, both theoretical arguments and observational evidence suggested that a small fraction of fast radio bursts (FRBs) could be associated with gamma-ray bursts (GRBs). If such FRB/GRB association systems are commonly detected in the future, the combination of dispersion measures (DM) derived from FRBs and redshifts derived from GRBs makes these systems a plausible tool to conduct cosmography. We quantify uncertainties in deriving the redshift-dependent DM_{IGM} as a function of z and test how well dark energy models can be constrained with Monte Carlo simulations. We show that with several tens of FRB/GRB systems potentially detected in a decade or so, one may reach reasonable constraints on wCDM models. When combined with Type Ia supernova (SN Ia) data, unprecedented constraints on the dark energy equation of state may be achieved, thanks to the prospects of detecting FRB/GRB systems at relatively high redshifts. The ratio between the mean value \\lt {DM_IGM} (z)\\gt and luminosity distance (D L(z)) is insensitive to dark energy models. This gives the prospect of applying SN Ia data to calibrate \\lt {DM_IGM} (z)\\gt using a relatively small sample of FRB/GRB systems, allowing a reliable constraint on the baryon inhomogeneity distribution as a function of redshift. The methodology developed in this paper can also be applied if the FRB redshifts can be measured by other means. Some caveats of putting this method into practice are also discussed.

  8. Neuropathic pain: is quantitative sensory testing helpful?

    PubMed

    Krumova, Elena K; Geber, Christian; Westermann, Andrea; Maier, Christoph

    2012-08-01

    Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system and is characterised by a combination of positive and negative sensory symptoms. Quantitative sensory testing (QST) examines the sensory perception after application of different mechanical and thermal stimuli of controlled intensity and the function of both large (A-beta) and small (A-delta and C) nerve fibres, including the corresponding central pathways. QST can be used to determine detection, pain thresholds and stimulus-response curves and can thus detect both negative and positive sensory signs, the second ones not being assessed by other methods. Similarly to all other psychophysical tests QST requires standardised examination, instructions and data evaluation to receive valid and reliable results. Since normative data are available, QST can contribute also to the individual diagnosis of neuropathy, especially in the case of isolated small-fibre neuropathy, in contrast to the conventional electrophysiology which assesses only large myelinated fibres. For example, detection of early stages of subclinical neuropathy in symptomatic or asymptomatic patients with diabetes mellitus can be helpful to optimise treatment and identify diabetic foot at risk of ulceration. QST assessed the individual's sensory profile and thus can be valuable to evaluate the underlying pain mechanisms which occur in different frequencies even in the same neuropathic pain syndromes. Furthermore, assessing the exact sensory phenotype by QST might be useful in the future to identify responders to certain treatments in accordance to the underlying pain mechanisms.

  9. Differential gene expression detection and sample classification using penalized linear regression models.

    PubMed

    Wu, Baolin

    2006-02-15

    Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colotelo, Alison HA; Smokorowski, Karen; Haxton, Tim

    Current methods of fish epithelial injury detection are limited to gross macroscopic examination that has a subjective bias as well as an inability to reliably quantify the degree of injury. Fluorescein, a presumptive test for blood, has been shown to have the capability to detect and quantify fish epithelial injury. However, there are several other presumptive tests for blood (Bluestar*, phenolphthalein, and HemastixH) that may have benefits over the use of fluorescein, particularly for field research on wild fish. This study investigated the capabilities of these four tests to detect and quantify a variety of injuries commonly encountered by fishmore » (abrasion, cuts, fin frays, and punctures) using the freshwater bluegill Lepomis macrochirus as a model. Fluorescein was consistently found to be the most reliable (i.e., detected the highest proportion of true positive results and rarely detected false positive reactions) of the four presumptive tests for blood compared. Further testing was conducted to examine the reliability of fluorescein. By 24 h after an injury was inflicted, the injury was no longer detectable by fluorescein, and when fluorescein was applied to an injured fish, the fluorescein was no longer detectable 3 h after application. In a comparison of two common anaesthetics used in fisheries research, there was no significant difference in the proportion of injury detected when 3- aminobenzoic acid ethyl ester methanesulfate (tricaine) was used compared with a clove oil and ethanol (1:9) solution. In summary, fluorescein was the most reliable presumptive test for blood examined in this study for the detection and quantification of recent (hours) fish epithelial injury.« less

  11. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  12. Deep-cascade: Cascading 3D Deep Neural Networks for Fast Anomaly Detection and Localization in Crowded Scenes.

    PubMed

    Sabokrou, Mohammad; Fayyaz, Mohsen; Fathy, Mahmood; Klette, Reinhard

    2017-02-17

    This paper proposes a fast and reliable method for anomaly detection and localization in video data showing crowded scenes. Time-efficient anomaly localization is an ongoing challenge and subject of this paper. We propose a cubicpatch- based method, characterised by a cascade of classifiers, which makes use of an advanced feature-learning approach. Our cascade of classifiers has two main stages. First, a light but deep 3D auto-encoder is used for early identification of "many" normal cubic patches. This deep network operates on small cubic patches as being the first stage, before carefully resizing remaining candidates of interest, and evaluating those at the second stage using a more complex and deeper 3D convolutional neural network (CNN). We divide the deep autoencoder and the CNN into multiple sub-stages which operate as cascaded classifiers. Shallow layers of the cascaded deep networks (designed as Gaussian classifiers, acting as weak single-class classifiers) detect "simple" normal patches such as background patches, and more complex normal patches are detected at deeper layers. It is shown that the proposed novel technique (a cascade of two cascaded classifiers) performs comparable to current top-performing detection and localization methods on standard benchmarks, but outperforms those in general with respect to required computation time.

  13. Performance characteristics of a reverse transcriptase-polymerase chain reaction assay for the detection of tumor-specific fusion transcripts from archival tissue.

    PubMed

    Fritsch, Michael K; Bridge, Julia A; Schuster, Amy E; Perlman, Elizabeth J; Argani, Pedram

    2003-01-01

    Pediatric small round cell tumors still pose tremendous diagnostic problems. In difficult cases, the ability to detect tumor-specific gene fusion transcripts for several of these neoplasms, including Ewing sarcoma/peripheral primitive neuroectodermal tumor (ES/PNET), synovial sarcoma (SS), alveolar rhabdomyosarcoma (ARMS), and desmoplastic small round cell tumor (DSRCT) using reverse transcriptase-polymerase chain reaction (RT-PCR), can be extremely helpful. Few studies to date, however, have systematically examined several different tumor types for the presence of multiple different fusion transcripts in order to determine the specificity and sensitivity of the RT-PCR method, and no study has addressed this issue for formalin-fixed material. The objectives of this study were to address the specificity, sensitivity, and practicality of such an assay applied strictly to formalin-fixed tissue blocks. Our results demonstrate that, for these tumors, the overall sensitivity for detecting each fusion transcript is similar to that reported in the literature for RT-PCR on fresh or formalin-fixed tissues. The specificity of the assay is very high, being essentially 100% for each primer pair when interpreting the results from visual inspection of agarose gels. However, when these same agarose gels were examined using Southern blotting, a small number of tumors also yielded reproducibly detectable weak signals for unexpected fusion products, in addition to a strong signal for the expected fusion product. Fluorescence in situ hybridization (FISH) studies in one such case indicated that a rearrangement that would account for the unexpected fusion was not present, while another case was equivocal. The overall specificity for each primer pair used in this assay ranged from 94 to 100%. Therefore, RT-PCR using formalin-fixed paraffin-embedded tissue sections can be used to detect chimeric transcripts as a reliable, highly sensitive, and highly specific diagnostic assay. However, we strongly suggest that the final interpretation of the results from this assay be viewed in light of the other features of the case, including clinical history, histology, and immunohistochemistry, by the diagnostic pathologist. Additional studies such as FISH may be useful in clarifying the nature of equivocal or unexpected results.

  14. Reliability and cost evaluation of small isolated power systems containing photovoltaic and wind energy

    NASA Astrophysics Data System (ADS)

    Karki, Rajesh

    Renewable energy application in electric power systems is growing rapidly worldwide due to enhanced public concerns for adverse environmental impacts and escalation in energy costs associated with the use of conventional energy sources. Photovoltaics and wind energy sources are being increasingly recognized as cost effective generation sources. A comprehensive evaluation of reliability and cost is required to analyze the actual benefits of utilizing these energy sources. The reliability aspects of utilizing renewable energy sources have largely been ignored in the past due the relatively insignificant contribution of these sources in major power systems, and consequently due to the lack of appropriate techniques. Renewable energy sources have the potential to play a significant role in the electrical energy requirements of small isolated power systems which are primarily supplied by costly diesel fuel. A relatively high renewable energy penetration can significantly reduce the system fuel costs but can also have considerable impact on the system reliability. Small isolated systems routinely plan their generating facilities using deterministic adequacy methods that cannot incorporate the highly erratic behavior of renewable energy sources. The utilization of a single probabilistic risk index has not been generally accepted in small isolated system evaluation despite its utilization in most large power utilities. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy. This thesis presents an evaluation model for small isolated systems containing renewable energy sources by integrating simulation models that generate appropriate atmospheric data, evaluate chronological renewable power outputs and combine total available energy and load to provide useful system indices. A software tool SIPSREL+ has been developed which generates risk, well-being and energy based indices to provide realistic cost/reliability measures of utilizing renewable energy. The concepts presented and the examples illustrated in this thesis will help system planners to decide on appropriate installation sites, the types and mix of different energy generating sources, the optimum operating policies, and the optimum generation expansion plans required to meet increasing load demands in small isolated power systems containing photovoltaic and wind energy sources.

  15. Geo-Referenced Dynamic Pushbroom Stereo Mosaics for 3D and Moving Target Extraction - A New Geometric Approach

    DTIC Science & Technology

    2009-12-01

    facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . We use the fact that all the...a moving platform, we will have to naturally and effectively handle obvious motion parallax and object occlusions in order to be able to detect ...facilitating reliable stereo matching, occlusion handling, accurate 3D reconstruction and robust moving target detection . Based on the above two

  16. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-02-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  17. Low prevalence of methicillin-resistant Staphylococcus aureus nasal carriage in urban and rural community settings in Bolivia and Peru.

    PubMed

    Bartoloni, Alessandro; Pallecchi, Lucia; Fernandez, Connie; Mantella, Antonia; Riccobono, Eleonora; Magnelli, Donata; Mannini, Dario; Strohmeyer, Marianne; Bartalesi, Filippo; Segundo, Higinio; Monasterio, Joaquin; Rodriguez, Hugo; Cabezas, César; Gotuzzo, Eduardo; Rossolini, Gian Maria

    2013-05-01

    To investigate the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage in rural and urban community settings of Bolivia and Peru. MRSA nasal carriage was investigated in 585 individuals living in rural and urban areas of Bolivia and Peru (one urban area, one small rural village, and two native communities, one of which was highly isolated). MRSA isolates were subjected to molecular analysis for the detection of virulence genes, characterization of the staphylococcal cassette chromosome mec (SCCmec), and genotyping (multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE)). An overall very low prevalence of MRSA nasal carriage was observed (0.5%), with MRSA carriers being detected only in a small rural village of the Bolivian Chaco. The three MRSA isolates showed the characteristics of community-associated MRSA (being susceptible to all non-beta-lactam antibiotics and harboring the SCCmec type IV), were clonally related, and belonged to ST1649. This study provides an insight into the epidemiology of MRSA in community settings of Bolivia and Peru. Reliable, time-saving, and low-cost methods should be implemented to encourage continued surveillance of MRSA dissemination in resource-limited countries. Copyright © 2012 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. "Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples.

    PubMed

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R

    2016-02-15

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  19. Comparative Study of Three Methods for Affinity Measurements: Capillary Electrophoresis Coupled with UV Detection and Mass Spectrometry, and Direct Infusion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Mironov, Gleb G.; Logie, Jennifer; Okhonin, Victor; Renaud, Justin B.; Mayer, Paul M.; Berezovski, Maxim V.

    2012-07-01

    We present affinity capillary electrophoresis and mass spectrometry (ACE-MS) as a comprehensive separation technique for label-free solution-based affinity analysis. The application of ACE-MS for measuring affinity constants between eight small molecule drugs [ibuprofen, s-flurbiprofen, diclofenac, phenylbutazone, naproxen, folic acid, resveratrol, and 4,4'-(propane-1,3-diyl) dibenzoic acid] and β-cyclodextrin is described. We couple on-line ACE with MS to combine the separation and kinetic capability of ACE together with the molecular weight and structural elucidation of MS in one system. To understand the full potential of ACE-MS, we compare it with two other methods: Direct infusion mass spectrometry (DIMS) and ACE with UV detection (ACE-UV). After the evaluation, DIMS provides less reliable equilibrium dissociation constants than separation-based ACE-UV and ACE-MS, and cannot be used solely for the study of noncovalent interactions. ACE-MS determines apparent dissociation constants for all reacting small molecules in a mixture, even in cases when drugs overlap with each other during separation. The ability of ACE-MS to interact, separate, and rapidly scan through m/z can facilitate the simultaneous affinity analysis of multiple interacting pairs, potentially leading to the high-throughput screening of drug candidates.

  20. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Sirera, Rafael; Jantus-Lewintre, Eloísa; Reclusa, Pablo; Calabuig-Fariñas, Silvia; Blasco, Ana; Pisapia, Pasquale; Rolfo, Christian; Camps, Carlos

    2017-03-01

    The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.

  1. Improved light collection and wavelet de-noising enable quantification of cerebral blood flow and oxygen metabolism by a low-cost, off-the-shelf spectrometer

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; Wright, Eric; Toronov, Vladislav; Lee, Ting-Yim; St. Lawrence, Keith

    2014-05-01

    Broadband continuous-wave near-infrared spectroscopy (CW-NIRS) is an attractive alternative to time-resolved and frequency-domain techniques for quantifying cerebral blood flow (CBF) and oxygen metabolism in newborns. However, efficient light collection is critical to broadband CW-NIRS since only a small fraction of the injected light emerges from any given area of the scalp. Light collection is typically improved by optimizing the contact area between the detection system and the skin by means of light guides with large detection surface. Since the form-factor of these light guides do not match the entrance of commercial spectrometers, which are usually equipped with a narrow slit to improve their spectral resolution, broadband NIRS spectrometers are typically custom-built. Nonetheless, off-the-shelf spectrometers have attractive advantages compared to custom-made units, such as low cost, small footprint, and wide availability. We demonstrate that off-the-shelf spectrometers can be easily converted into suitable instruments for deep tissue spectroscopy by improving light collection, while maintaining good spectral resolution, and reducing measurement noise. The ability of this approach to provide reliable cerebral hemodynamics was illustrated in a piglet by measuring CBF and oxygen metabolism under different anesthetic regimens.

  2. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    PubMed Central

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  3. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens*

    PubMed Central

    Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko

    2016-01-01

    Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. PMID:27473201

  4. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens.

    PubMed

    Kriegsmann, Mark; Casadonte, Rita; Kriegsmann, Jörg; Dienemann, Hendrik; Schirmacher, Peter; Hendrik Kobarg, Jan; Schwamborn, Kristina; Stenzinger, Albrecht; Warth, Arne; Weichert, Wilko

    2016-10-01

    Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Identification of small exonic CNV from whole-exome sequence data and application to autism spectrum disorder.

    PubMed

    Poultney, Christopher S; Goldberg, Arthur P; Drapeau, Elodie; Kou, Yan; Harony-Nicolas, Hala; Kajiwara, Yuji; De Rubeis, Silvia; Durand, Simon; Stevens, Christine; Rehnström, Karola; Palotie, Aarno; Daly, Mark J; Ma'ayan, Avi; Fromer, Menachem; Buxbaum, Joseph D

    2013-10-03

    Copy number variation (CNV) is an important determinant of human diversity and plays important roles in susceptibility to disease. Most studies of CNV carried out to date have made use of chromosome microarray and have had a lower size limit for detection of about 30 kilobases (kb). With the emergence of whole-exome sequencing studies, we asked whether such data could be used to reliably call rare exonic CNV in the size range of 1-30 kilobases (kb), making use of the eXome Hidden Markov Model (XHMM) program. By using both transmission information and validation by molecular methods, we confirmed that small CNV encompassing as few as three exons can be reliably called from whole-exome data. We applied this approach to an autism case-control sample (n = 811, mean per-target read depth = 161) and observed a significant increase in the burden of rare (MAF ≤1%) 1-30 kb CNV, 1-30 kb deletions, and 1-10 kb deletions in ASD. CNV in the 1-30 kb range frequently hit just a single gene, and we were therefore able to carry out enrichment and pathway analyses, where we observed enrichment for disruption of genes in cytoskeletal and autophagy pathways in ASD. In summary, our results showed that XHMM provided an effective means to assess small exonic CNV from whole-exome data, indicated that rare 1-30 kb exonic deletions could contribute to risk in up to 7% of individuals with ASD, and implicated a candidate pathway in developmental delay syndromes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Ovarian stem cells are always accompanied by very small embryonic-like stem cells in adult mammalian ovary.

    PubMed

    Bhartiya, Deepa

    2015-11-05

    Existing dogma that a female is born with fixed number of eggs was challenged by the detection of stem cells in adult mammalian ovary. Data has accumulated in support of ovarian stem cells (OSCs) proliferation, maintenance in culture, formation of germ cell nests and differentiation into oocytes and primordial follicle assembly using different strategies. Flow cytometry analysis identified >8 μm OSCs which are DDX1 positive and are considered equivalent to spermatogonial stem cells (SSCs) in testis. Analysis of both ovarian and testicular smears obtained after enzymatic digestion has led to the identification of an additional stem cell population termed very small embryonic-like stem cells (VSELs). VSELs and OSCs/SSCs differ from each other in their size and OCT-4 expression. VSELs express pluripotent markers including nuclear OCT-4 whereas OSCs/SSCs express cytoplasmic OCT-4 suggesting a differentiated state. VSELs can be studied by flow cytometry as small sized cells which are LIN-/CD45-/Sca-1+. We have reported 0.02 ± 0.008, 0.03 ± 0.017 and 0.08 ± 0.03 % of total cells as VSELs in normal, chemoablated and after FSH treatment to chemoablated mouse ovary. VSELs have remained poorly studied till now because of their very small size and rare occurrence. Spinning cells obtained after enzymatic digestion of ovarian tissue at a speed of 1000G (rather than 1200 rpm) throughout processing allows reliable detection of the VSELs by flow cytometry. VSELs exist in aged, chemoablated and non-functional ovary and providing a healthy niche to support their function offers an interesting strategy to manage infertility.

  7. Statistical Tests of Reliability of NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.

    1987-01-01

    Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.

  8. A Note on Structural Equation Modeling Estimates of Reliability

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2010-01-01

    Reliability can be estimated using structural equation modeling (SEM). Two potential problems with this approach are that estimates may be unstable with small sample sizes and biased with misspecified models. A Monte Carlo study was conducted to investigate the quality of SEM estimates of reliability by themselves and relative to coefficient…

  9. Reliability and precision of pellet-group counts for estimating landscape-level deer density

    Treesearch

    David S. deCalesta

    2013-01-01

    This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...

  10. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain.

    PubMed

    Walton, David M; Macdermid, Joy C; Nielson, Warren; Teasell, Robert W; Chiasson, Marco; Brown, Lauren

    2011-09-01

    Clinical measurement. To evaluate the intrarater, interrater, and test-retest reliability of an accessible digital algometer, and to determine the minimum detectable change in normal healthy individuals and a clinical population with neck pain. Pressure pain threshold testing may be a valuable assessment and prognostic indicator for people with neck pain. To date, most of this research has been completed using algometers that are too resource intensive for routine clinical use. Novice raters (physiotherapy students or clinical physiotherapists) were trained to perform algometry testing over 2 clinically relevant sites: the angle of the upper trapezius and the belly of the tibialis anterior. A convenience sample of normal healthy individuals and a clinical sample of people with neck pain were tested by 2 different raters (all participants) and on 2 different days (healthy participants only). Intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable change were calculated. A total of 60 healthy volunteers and 40 people with neck pain were recruited. Intrarater reliability was almost perfect (ICC = 0.94-0.97), interrater reliability was substantial to near perfect (ICC = 0.79-0.90), and test-retest reliability was substantial (ICC = 0.76-0.79). Smaller change was detectable in the trapezius compared to the tibialis anterior. This study provides evidence that novice raters can perform digital algometry with adequate reliability for research and clinical use in people with and without neck pain.

  11. Reliability and minimal detectable difference in multisegment foot kinematics during shod walking and running.

    PubMed

    Milner, Clare E; Brindle, Richard A

    2016-01-01

    There has been increased interest recently in measuring kinematics within the foot during gait. While several multisegment foot models have appeared in the literature, the Oxford foot model has been used frequently for both walking and running. Several studies have reported the reliability for the Oxford foot model, but most studies to date have reported reliability for barefoot walking. The purpose of this study was to determine between-day (intra-rater) and within-session (inter-trial) reliability of the modified Oxford foot model during shod walking and running and calculate minimum detectable difference for common variables of interest. Healthy adult male runners participated. Participants ran and walked in the gait laboratory for five trials of each. Three-dimensional gait analysis was conducted and foot and ankle joint angle time series data were calculated. Participants returned for a second gait analysis at least 5 days later. Intraclass correlation coefficients and minimum detectable difference were determined for walking and for running, to indicate both within-session and between-day reliability. Overall, relative variables were more reliable than absolute variables, and within-session reliability was greater than between-day reliability. Between-day intraclass correlation coefficients were comparable to those reported previously for adults walking barefoot. It is an extension in the use of the Oxford foot model to incorporate wearing a shoe while maintaining marker placement directly on the skin for each segment. These reliability data for walking and running will aid in the determination of meaningful differences in studies which use this model during shod gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Inter- and intraexaminer reliability of bitewing radiography and near-infrared light transillumination for proximal caries detection and assessment.

    PubMed

    Litzenburger, Friederike; Heck, Katrin; Pitchika, Vinay; Neuhaus, Klaus W; Jost, Fabian N; Hickel, Reinhard; Jablonski-Momeni, Anahita; Welk, Alexander; Lederer, Alexander; Kühnisch, Jan

    2018-02-01

    The purpose of this in vitro study was to evaluate the inter- and intraexaminer reliability of digital bitewing (DBW) radiography and near-infrared light transillumination (NIRT) for proximal caries detection and assessment in posterior teeth. From a pool of 85 patients, 100 corresponding pairs of DBW and NIRT images (~1/3 healthy, ~1/3 with enamel caries and ~1/3 with dentin caries) were chosen. 12 dentists with different professional status and clinical experience repeated the evaluation in two blinded cycles. Two experienced dentists provided a reference diagnosis after analysing all images independently. Statistical analysis included the calculation of simple (κ) and weighted Kappa (wκ) values as a measure of reliability. Logistic regression with a backward elimination model was used to investigate the influence of the diagnostic method, evaluation cycle, type of tooth, and clinical experience on reliability. Altogether, inter- and intraexaminer reliability exhibited good to excellent κ and wκ values for DBW radiography (Inter: κ = 0.60/ 0.63; wκ = 0.74/0.76; Intra: κ = 0.64; wκ = 0.77) and NIRT (Inter: κ = 0.74/0.64; wκ = 0.86/0.82; Intra: κ = 0.68; wκ = 0.84). The backward elimination model revealed NIRT to be significantly more reliable than DBW radiography. This study revealed a good to excellent inter- and intraexaminer reliability for proximal caries detection using DBW and NIRT images. The logistic regression analysis revealed significantly better reliability for NIRT. Additionally, the first evaluation cycle was more reliable according to the reference diagnoses.

  13. [The Basel Screening Instrument for Psychosis (BSIP): development, structure, reliability and validity].

    PubMed

    Riecher-Rössler, A; Aston, J; Ventura, J; Merlo, M; Borgwardt, S; Gschwandtner, U; Stieglitz, R-D

    2008-04-01

    Early detection of psychosis is of growing clinical importance. So far there is, however, no screening instrument for detecting individuals with beginning psychosis in the atypical early stages of the disease with sufficient validity. We have therefore developed the Basel Screening Instrument for Psychosis (BSIP) and tested its feasibility, interrater-reliability and validity. Aim of this paper is to describe the development and structure of the instrument, as well as to report the results of the studies on reliability and validity. The instrument was developed based on a comprehensive search of literature on the most important risk factors and early signs of schizophrenic psychoses. The interraterreliability study was conducted on 24 psychiatric cases. Validity was tested based on 206 individuals referred to our early detection clinic from 3/1/2000 until 2/28/2003. We identified seven categories of relevance for early detection of psychosis and used them to construct a semistructured interview. Interrater-reliability for high risk individuals was high (Kappa .87). Predictive validity was comparable to other, more comprehensive instruments: 16 (32 %) of 50 individuals classified as being at risk for psychosis by the BSIP have in fact developed frank psychosis within an follow-up period of two to five years. The BSIP is the first screening instrument for the early detection of psychosis which has been validated based on transition to psychosis. The BSIP is easy to use by experienced psychiatrists and has a very good interrater-reliability and predictive validity.

  14. Small space station electrical power system design concepts

    NASA Technical Reports Server (NTRS)

    Jones, G. M.; Mercer, L. N.

    1976-01-01

    A small manned facility, i.e., a small space station, placed in earth orbit by the Shuttle transportation system would be a viable, cost effective addition to the basic Shuttle system to provide many opportunities for R&D programs, particularly in the area of earth applications. The small space station would have many similarities with Skylab. This paper presents design concepts for an electrical power system (EPS) for the small space station based on Skylab experience, in-house work at Marshall Space Flight Center, SEPS (Solar Electric Propulsion Stage) solar array development studies, and other studies sponsored by MSFC. The proposed EPS would be a solar array/secondary battery system. Design concepts expressed are based on maximizing system efficiency and five year operational reliability. Cost, weight, volume, and complexity considerations are inherent in the concepts presented. A small space station EPS based on these concepts would be highly efficient, reliable, and relatively inexpensive.

  15. Object acquisition and tracking for space-based surveillance

    NASA Astrophysics Data System (ADS)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  16. The role of extra-foveal processing in 3D imaging

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Lago, Miguel A.; Abbey, Craig K.

    2017-03-01

    The field of medical image quality has relied on the assumption that metrics of image quality for simple visual detection tasks are a reliable proxy for the more clinically realistic visual search tasks. Rank order of signal detectability across conditions often generalizes from detection to search tasks. Here, we argue that search in 3D images represents a paradigm shift in medical imaging: radiologists typically cannot exhaustively scrutinize all regions of interest with the high acuity fovea requiring detection of signals with extra-foveal areas (visual periphery) of the human retina. We hypothesize that extra-foveal processing can alter the detectability of certain types of signals in medical images with important implications for search in 3D medical images. We compare visual search of two different types of signals in 2D vs. 3D images. We show that a small microcalcification-like signal is more highly detectable than a larger mass-like signal in 2D search, but its detectability largely decreases (relative to the larger signal) in the 3D search task. Utilizing measurements of observer detectability as a function retinal eccentricity and observer eye fixations we can predict the pattern of results in the 2D and 3D search studies. Our findings: 1) suggest that observer performance findings with 2D search might not always generalize to 3D search; 2) motivate the development of a new family of model observers that take into account the inhomogeneous visual processing across the retina (foveated model observers).

  17. Object acquisition and tracking for space-based surveillance. Final report, Dec 88-May 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-27

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase I) and N00014-89-C-0015 (Phase II). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processingmore » into time dependent, object-dependent, and data-dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.« less

  18. Detection of Foodborne Pathogenic Bacteria using Bacteriophage Tail Spike Proteins

    NASA Astrophysics Data System (ADS)

    Poshtiban, Somayyeh

    Foodborne infections are worldwide health problem with tremendous social and financial impacts. Efforts are focused on developing accurate and reliable technologies for detection of food contaminations in early stages preferably on-site. This thesis focuses on interfacing engineering and biology by combining phage receptor binding proteins (RBPs) with engineered platforms including microresonator-based biosensors, magnetic particles and polymerase chain reaction (PCR) to develop bacterial detection sensors. We used phage RBPs as target specific bioreceptors to develop an enhanced microresonator array for bacterial detection. These resonator beams are optimized to feature a high natural frequency while offer large surface area for capture of bacteria. Theoretical analysis indicates a high mass sensitivity with a threshold for the detection of a single bacterial cell. We used phage RBPs as target specific bioreceptors, and successfully demonstrated the application of these phage RBB-immobilized arrays for specific detection of C. jejuni cells. We also developed a RBP-derivatized magnetic pre-enrichment method as an upstream sample preparation method to improve sensitivity and specificity of PCR for detection of bacterial cells in various food samples. The combination of RBP-based magnetic separation and real-time PCR allowed the detection of small number of bacteria in artificially contaminated food samples without any need for time consuming pre-enrichment step through culturing. We also looked into integration of the RBP-based magnetic separation with PCR onto a single microfluidic lab-on-a-chip to reduce the overall turnaround time.

  19. Loop-mediated isothermal amplification assay for detection and discrimination of Toxocara canis and Toxocara cati eggs directly from sand samples.

    PubMed

    Macuhova, K; Kumagai, T; Akao, N; Ohta, N

    2010-12-01

    We developed a novel and simple method, using loop-mediated isothermal amplification (LAMP), for the detection and discrimination of Toxocara canis and Toxocara cati eggs. The new method employs 4 steps: (1) concentration of Toxocara eggs in a small amount of sand; (2) dissolution of the proteinaceous membrane of eggs and simultaneously separation of them from the sand using NaClO treatment; (3) extraction of DNA using NaOH treatment; and (4) detection of T. canis / T. cati DNA using a LAMP assay. All these steps are fast, easy to perform, and do not require expensive equipment or reagents. The novel method was tested both experimentally and in a field study. In the laboratory, we could reliably detect as few as 3 T. canis eggs in artificially contaminated sand, if the experiment was repeated twice. In the field trial, we were able to detect T. cati DNA from 4 natural sandpits having moderate to heavy contamination, although not in a single lightly contaminated sandpit. All of the examined sandpits were found to be contaminated with eggs of T. cati, but none appeared to contain T. canis. Our new method could extract DNA from T. canis and T. cati eggs directly from sand samples as well as detect and distinguish these 2 species in a few easy steps, with markedly reduced time and expense.

  20. Reliability of Pseudotyped Influenza Viral Particles in Neutralizing Antibody Detection

    PubMed Central

    Yang, Jinghui; Li, Weidong; Long, Yunfeng; Song, Shaohui; Liu, Jing; Zhang, Xinwen; Wang, Xiaoguang; Jiang, Shude; Liao, Guoyang

    2014-01-01

    Background Current influenza control strategies require an active surveillance system. Pseudotyped viral particles (pp) together with the evaluation of pre-existing immunity in a population might satisfy this requirement. However, the reliability of using pp in neutralizing antibody (nAb) detection are undefined. Methodology/Principal Findings Pseudotyped particles of A(H1N1)pmd09 (A/California/7/2009) and HPAI H5N1 (A/Anhui/1/2005), as well as their reassortants, were generated. The reliability of using these pp in nAb detection were compared concurrently with the corresponding viruses by a hemagglutination inhibition test, as well as ELISA-, cytopathic effect-, and fluorescence-based microneutralization assays. In the qualitative detection on nAbs, the pp and their corresponding viruses were in complete agreement, with an R2 value equal to or near 1 in two different populations. In the quantitative detection on nAbs, although the geometric mean titers (95% confidence interval) differed between the pp and viruses, no significant difference was observed. Furthermore, humoral immunity against the reassortants was evaluated; our results indicated strong consistency between the nAbs against reassortant pp and those against naïve pp harboring the same hemagglutinin. Conclusion/Significance The pp displayed high reliability in influenza virus nAb detection. The use of reassortant pp is a safe and convenient strategy for characterizing emerging influenza viruses and surveying the disease burden. PMID:25436460

  1. The reliability, accuracy and minimal detectable difference of a multi-segment kinematic model of the foot-shoe complex.

    PubMed

    Bishop, Chris; Paul, Gunther; Thewlis, Dominic

    2013-04-01

    Kinematic models are commonly used to quantify foot and ankle kinematics, yet no marker sets or models have been proven reliable or accurate when wearing shoes. Further, the minimal detectable difference of a developed model is often not reported. We present a kinematic model that is reliable, accurate and sensitive to describe the kinematics of the foot-shoe complex and lower leg during walking gait. In order to achieve this, a new marker set was established, consisting of 25 markers applied on the shoe and skin surface, which informed a four segment kinematic model of the foot-shoe complex and lower leg. Three independent experiments were conducted to determine the reliability, accuracy and minimal detectable difference of the marker set and model. Inter-rater reliability of marker placement on the shoe was proven to be good to excellent (ICC=0.75-0.98) indicating that markers could be applied reliably between raters. Intra-rater reliability was better for the experienced rater (ICC=0.68-0.99) than the inexperienced rater (ICC=0.38-0.97). The accuracy of marker placement along each axis was <6.7 mm for all markers studied. Minimal detectable difference (MDD90) thresholds were defined for each joint; tibiocalcaneal joint--MDD90=2.17-9.36°, tarsometatarsal joint--MDD90=1.03-9.29° and the metatarsophalangeal joint--MDD90=1.75-9.12°. These thresholds proposed are specific for the description of shod motion, and can be used in future research designed at comparing between different footwear. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Statistical issues in reporting quality data: small samples and casemix variation.

    PubMed

    Zaslavsky, A M

    2001-12-01

    To present two key statistical issues that arise in analysis and reporting of quality data. Casemix variation is relevant to quality reporting when the units being measured have differing distributions of patient characteristics that also affect the quality outcome. When this is the case, adjustment using stratification or regression may be appropriate. Such adjustments may be controversial when the patient characteristic does not have an obvious relationship to the outcome. Stratified reporting poses problems for sample size and reporting format, but may be useful when casemix effects vary across units. Although there are no absolute standards of reliability, high reliabilities (interunit F > or = 10 or reliability > or = 0.9) are desirable for distinguishing above- and below-average units. When small or unequal sample sizes complicate reporting, precision may be improved using indirect estimation techniques that incorporate auxiliary information, and 'shrinkage' estimation can help to summarize the strength of evidence about units with small samples. With broader understanding of casemix adjustment and methods for analyzing small samples, quality data can be analysed and reported more accurately.

  3. A new vestibulo-ocular reflex recording system designed for routine vestibular clinical use.

    PubMed

    Funabiki, K; Naito, Y; Matsuda, K; Honjo, I

    1999-01-01

    A new vestibulo-ocular reflex (VOR) recording system was developed, which consists of an infrared eye camera, a small velocity sensor and a frequency modulator. Using this system, the head velocity signal was frequency modulated and simultaneously recorded as a sound signal on the audio track of a Hi8 video recorder with eye images. This device enabled recording of the VOR response in routine vestibular clinical practice. The reliability and effectiveness of this system were estimated by recording and analysing the VOR response against manually controlled rotation in normal subjects (n = 22) and in patients with unilateral severe vestibular hypofunction (n = 11). VOR gain on clockwise rotation viewed from the top was defined as R gain, and counterclockwise rotation as L gain. Directional preponderance (DP%) was also calculated. VOR gain towards the diseased side was significantly lower than that towards the intact side, and also significantly lower than that of normal subjects. DP% of unilateral vestibular hypofunction cases was significantly larger than that of normal subjects. These findings indicate that this VOR recording system reliably detects severe unilateral vestibular hypofunction.

  4. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  5. Accuracy of colonoscopy in localizing colonic cancer.

    PubMed

    Stanciu, C; Trifan, Anca; Khder, Saad Alla

    2007-01-01

    It is important to establish the precise localization of colonic cancer preoperatively; while colonoscopy is regarded as the diagnostic gold standard for colorectal cancer, its ability to localize the tumor is less reliable. To define the accuracy of colonoscopy in identifying the location of colonic cancer. All of the patients who had a colorectal cancer diagnosed by colonoscopy at the Institute of Gastroenterology and Hepatology, Iaşi and subsequently received a surgical intervention at three teaching hospitals in Iaşi, between January 2001 and December 2005, were included in this study. Endoscopic records and operative notes were carefully reviewed, and tumor localization was recorded. There were 161 patients (89 men, 72 women, aged 61.3 +/- 12.8 years) who underwent conventional surgery for colon cancer detected by colonoscopy during the study period. Twenty-two patients (13.66%) had erroneous colonoscopic localization of the tumors. The overall accuracy of preoperative colonoscopic localization was 87.58%. Colonoscopy is an accurate, reliable method for locating colon cancer, although additional techniques (i.e., endoscopic tattooing) should be performed at least for small lesions.

  6. High-Speed Edge-Detecting Line Scan Smart Camera

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  7. Modeling of a bubble-memory organization with self-checking translators to achieve high reliability.

    NASA Technical Reports Server (NTRS)

    Bouricius, W. G.; Carter, W. C.; Hsieh, E. P.; Wadia, A. B.; Jessep, D. C., Jr.

    1973-01-01

    Study of the design and modeling of a highly reliable bubble-memory system that has the capabilities of: (1) correcting a single 16-adjacent bit-group error resulting from failures in a single basic storage module (BSM), and (2) detecting with a probability greater than 0.99 any double errors resulting from failures in BSM's. The results of the study justify the design philosophy adopted of employing memory data encoding and a translator to correct single group errors and detect double group errors to enhance the overall system reliability.

  8. Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  9. Reliability of Total Test Scores When Considered as Ordinal Measurements

    ERIC Educational Resources Information Center

    Biswas, Ajoy Kumar

    2006-01-01

    This article studies the ordinal reliability of (total) test scores. This study is based on a classical-type linear model of observed score (X), true score (T), and random error (E). Based on the idea of Kendall's tau-a coefficient, a measure of ordinal reliability for small-examinee populations is developed. This measure is extended to large…

  10. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  11. An examination of the RCMAS-2 scores across gender, ethnic background, and age in a large Asian school sample.

    PubMed

    Ang, Rebecca P; Lowe, Patricia A; Yusof, Noradlin

    2011-12-01

    The present study investigated the factor structure, reliability, convergent and discriminant validity, and U.S. norms of the Revised Children's Manifest Anxiety Scale, Second Edition (RCMAS-2; C. R. Reynolds & B. O. Richmond, 2008a) scores in a Singapore sample of 1,618 school-age children and adolescents. Although there were small statistically significant differences in the average RCMAS-2 T scores found across various demographic groupings, on the whole, the U.S. norms appear adequate for use in the Asian Singapore sample. Results from item bias analyses suggested that biased items detected had small effects and were counterbalanced across gender and ethnicity, and hence, their relative impact on test score variation appears to be minimal. Results of factor analyses on the RCMAS-2 scores supported the presence of a large general anxiety factor, the Total Anxiety factor, and the 5-factor structure found in U.S. samples was replicated. Both the large general anxiety factor and the 5-factor solution were invariant across gender and ethnic background. Internal consistency estimates ranged from adequate to good, and 2-week test-retest reliability estimates were comparable to previous studies. Evidence providing support for convergent and discriminant validity of the RCMAS-2 scores was also found. Taken together, findings provide additional cross-cultural evidence of the appropriateness and usefulness of the RCMAS-2 as a measure of anxiety in Asian Singaporean school-age children and adolescents.

  12. Leak localization and quantification with a small unmanned aerial system

    NASA Astrophysics Data System (ADS)

    Golston, L.; Zondlo, M. A.; Frish, M. B.; Aubut, N. F.; Yang, S.; Talbot, R. W.

    2017-12-01

    Methane emissions from oil and gas facilities are a recognized source of greenhouse gas emissions, requiring cost-effective and reliable monitoring systems to support leak detection and repair programs. We describe a set of methods for locating and quantifying natural gas leaks using a small unmanned aerial system (sUAS) equipped with a path-integrated methane sensor along with ground-based wind measurements. The algorithms are developed as part of a system for continuous well pad scale (100 m2 area) monitoring, supported by a series of over 200 methane release trials covering multiple release locations and flow rates. Test measurements include data obtained on a rotating boom platform as well as flight tests on a sUAS. The system is found throughout the trials to reliably distinguish between cases with and without a methane release down to 6 scfh (0.032 g/s). Among several methods evaluated for horizontal localization, the location corresponding to the maximum integrated methane reading have performed best with a median error of ± 1 m if two or more flights are averaged, or ± 1.2 m for individual flights. Additionally, a method of rotating the data around the estimated leak location is developed, with the leak magnitude calculated as the average crosswind integrated flux in the region near the source location. Validation of these methods will be presented, including blind test results. Sources of error, including GPS uncertainty, meteorological variables, and flight pattern coverage, will be discussed.

  13. Threshold-based system for noise detection in multilead ECG recordings.

    PubMed

    Jekova, Irena; Krasteva, Vessela; Christov, Ivaylo; Abächerli, Roger

    2012-09-01

    This paper presents a system for detection of the most common noise types seen on the electrocardiogram (ECG) in order to evaluate whether an episode from 12-lead ECG is reliable for diagnosis. It implements criteria for estimation of the noise corruption level in specific frequency bands, aiming to identify the main sources of ECG quality disruption, such as missing signal or limited dynamics of the QRS components above 4 Hz; presence of high amplitude and steep artifacts seen above 1 Hz; baseline drift estimated at frequencies below 1 Hz; power-line interference in a band ±2 Hz around its central frequency; high-frequency and electromyographic noises above 20 Hz. All noise tests are designed to process the ECG series in the time domain, including 13 adjustable thresholds for amplitude and slope criteria which are evaluated in adjustable time intervals, as well as number of leads. The system allows flexible extension toward application-specific requirements for the noise levels in acceptable quality ECGs. Training of different thresholds' settings to determine different positive noise detection rates is performed with the annotated set of 1000 ECGs from the PhysioNet database created for the Computing in Cardiology Challenge 2011. Two implementations are highlighted on the receiver operating characteristic (area 0.968) to fit to different applications. The implementation with high sensitivity (Se = 98.7%, Sp = 80.9%) appears as a reliable alarm when there are any incidental problems with the ECG acquisition, while the implementation with high specificity (Sp = 97.8%, Se = 81.8%) is less susceptible to transient problems but rather validates noisy ECGs with acceptable quality during a small portion of the recording.

  14. Application of tunable diode laser absorption spectroscopy in the detection of oxygen

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jin, Xing

    2015-10-01

    Most aircrafts is driven by chemic energy which is released in the combustion process. For improving the capability of engine and controlling the running on-time, the processes of fuel physics and chemistry need to be analysis by kinds of high quality sensor. In the research of designing and improving the processes of fuel physics and chemistry, the concentration, temperature and velocity of kinds of gas in the combustor need to be detected and measured. In addition, these engines and research equipments are always in the harsh environment of high temperature, high pressure and high speed. The harsh environment needs the sensor to be high reliability, well repetition, no cross- sensitivity between gases, and the traditional measurement system can't satisfy the metrical requirement well. Tunable diode laser absorption spectroscopy (TDLAS) analytic measurement technology can well satisfy the measurement in the harsh environment, which can support the whole measurement plan and high quality measurement system. Because the TDLAS sensor has the excellence of small bulk, light weight, high reliability and well specifically measurement, the TDLAS measurement technology has wide prospects. Different from most measurements, only a beam of laser can be pass through the measured environment by TDLAS, and the measurement equipment needn't be set in the harsh environment. So, the TDLAS equipment can't be interrupted by the measured equipment. The ability of subsistence in the harsh environment is very valuable, especially in the measurement on the subject of aerospace with environment of high speed, combustion and plasma. This paper focuses on the collecting the articles on the subject of oxygen detection of TDLAS. By analyzing the research and results of the articles, we conclude the central issues, difficulties and results. And we can get some instructive conclusions.

  15. FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Gregory, Kyle; Hill, Joanne; Black, Kevin; Baumgartner, Wayne

    2013-01-01

    This technology enables detection and measurement of x-rays in an x-ray polarimeter using a field-programmable gate array (FPGA). The technology was developed for the Gravitational and Extreme Magnetism Small Explorer (GEMS) mission. It performs precision energy and timing measurements, as well as rejection of non-x-ray events. It enables the GEMS polarimeter to detect precisely when an event has taken place so that additional measurements can be made. The technology also enables this function to be performed in an FPGA using limited resources so that mass and power can be minimized while reliability for a space application is maximized and precise real-time operation is achieved. This design requires a low-noise, charge-sensitive preamplifier; a highspeed analog to digital converter (ADC); and an x-ray detector with a cathode terminal. It functions by computing a sum of differences for time-samples whose difference exceeds a programmable threshold. A state machine advances through states as a programmable number of consecutive samples exceeds or fails to exceed this threshold. The pulse height is recorded as the accumulated sum. The track length is also measured based on the time from the start to the end of accumulation. For track lengths longer than a certain length, the algorithm estimates the barycenter of charge deposit by comparing the accumulator value at the midpoint to the final accumulator value. The design also employs a number of techniques for rejecting background events. This innovation enables the function to be performed in space where it can operate autonomously with a rapid response time. This implementation combines advantages of computing system-based approaches with those of pure analog approaches. The result is an implementation that is highly reliable, performs in real-time, rejects background events, and consumes minimal power.

  16. Joint Simultaneous Reconstruction of Regularized Building Superstructures from Low-Density LIDAR Data Using Icp

    NASA Astrophysics Data System (ADS)

    Wichmann, Andreas; Kada, Martin

    2016-06-01

    There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.

  17. A new approach for quantitative analysis of L-phenylalanine using a novel semi-sandwich immunometric assay.

    PubMed

    Kubota, Kazuyuki; Mizukoshi, Toshimi; Miyano, Hiroshi

    2013-10-01

    Here, we describe a novel method for L-phenylalanine analysis using a sandwich-type immunometric assay approach for use as a new method for amino acid analysis. To overcome difficulties of the preparation of high-affinity and selectivity monoclonal antibodies against L-phenylalanine and the inability to use sandwich-type immunometric assays due to their small molecular weight, three procedures were examined. First, amino groups of L-phenylalanine were modified by "N-Fmoc-L-cysteine" (FC) residues and the derivative (FC-Phe) was used as a hapten. Immunization of mice with bovine serum albumin/FC-Phe conjugate successfully yielded specific monoclonal anti-FC-Phe antibodies. Second, a new derivatization reagent, "biotin linker conjugate of FC-Phe N-succinimidyl ester" (FC(Biotin)-NHS), was synthesized to convert L-phenylalanine to FC-(Biotin)-Phe as a hapten structure. The biotin moiety linked to the thiol group of cysteine formed a second binding site for streptavidin/horseradish peroxidase (HRP) conjugates for optical detection. Third, a new semi-sandwich-type immunometric assay was established using pre-derivatized L-phenylalanine, the monoclonal anti-FC-Phe antibody, and streptavidin/HRP conjugate (without second antibody). Using the new "semi-sandwich" immunometric assay system, a detection limit of 35 nM (60 amol per analysis) and a detection range of 0.1-20 μM were attained using a standard L-phenylalanine solution. Rat plasma samples were analyzed to test reliability. Intra-day assay precision was within 6% of the coefficient of variation; inter-day variation was 0.1%. The recovery rates were from 92.4 to 123.7%. This is the first report of the quantitative determination of L-phenylalanine using a reliable semi-sandwich immunometric assay approach and will be applicable to the quantitative determination of other amino acids.

  18. A Small World of Neuronal Synchrony

    PubMed Central

    Yu, Shan; Huang, Debin; Singer, Wolf

    2008-01-01

    A small-world network has been suggested to be an efficient solution for achieving both modular and global processing—a property highly desirable for brain computations. Here, we investigated functional networks of cortical neurons using correlation analysis to identify functional connectivity. To reconstruct the interaction network, we applied the Ising model based on the principle of maximum entropy. This allowed us to assess the interactions by measuring pairwise correlations and to assess the strength of coupling from the degree of synchrony. Visual responses were recorded in visual cortex of anesthetized cats, simultaneously from up to 24 neurons. First, pairwise correlations captured most of the patterns in the population's activity and, therefore, provided a reliable basis for the reconstruction of the interaction networks. Second, and most importantly, the resulting networks had small-world properties; the average path lengths were as short as in simulated random networks, but the clustering coefficients were larger. Neurons differed considerably with respect to the number and strength of interactions, suggesting the existence of “hubs” in the network. Notably, there was no evidence for scale-free properties. These results suggest that cortical networks are optimized for the coexistence of local and global computations: feature detection and feature integration or binding. PMID:18400792

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Moses; Kim, Keonhui; Muljadi, Eduard

    This paper proposes a torque limit-based inertial control scheme of a doubly-fed induction generator (DFIG) that supports the frequency control of a power system. If a frequency deviation occurs, the proposed scheme aims to release a large amount of kinetic energy (KE) stored in the rotating masses of a DFIG to raise the frequency nadir (FN). Upon detecting the event, the scheme instantly increases its output to the torque limit and then reduces the output with the rotor speed so that it converges to the stable operating range. To restore the rotor speed while causing a small second frequency dipmore » (SFD), after the rotor speed converges the power reference is reduced by a small amount and maintained until it meets the reference for maximum power point tracking control. The test results demonstrate that the scheme can improve the FN and maximum rate of change of frequency while causing a small SFD in any wind conditions and in a power system that has a high penetration of wind power, and thus the scheme helps maintain the required level of system reliability. The scheme releases the KE from 2.9 times to 3.7 times the Hydro-Quebec requirement depending on the power reference.« less

  20. NGS of Virus-Derived Small RNAs as a Diagnostic Method Used to Determine Viromes of Hungarian Vineyards

    PubMed Central

    Czotter, Nikoletta; Molnar, Janos; Szabó, Emese; Demian, Emese; Kontra, Levente; Baksa, Ivett; Szittya, Gyorgy; Kocsis, Laszlo; Deak, Tamas; Bisztray, Gyorgy; Tusnady, Gabor E.; Burgyan, Jozsef; Varallyay, Eva

    2018-01-01

    As virus diseases cannot be controlled by traditional plant protection methods, the risk of their spread have to be minimized on vegetatively propagated plants, such as grapevine. Metagenomic approaches used for virus diagnostics offer a unique opportunity to reveal the presence of all viral pathogens in the investigated plant, which is why their application can reduce the risk of using infected material for a new plantation. Here we used a special branch, deep sequencing of virus-derived small RNAs, of this high-throughput method for virus diagnostics, and determined viromes of vineyards in Hungary. With NGS of virus-derived small RNAs we could detect not only the viruses tested routinely, but also new ones, which had never been described in Hungary before. Virus presence did not correlate with the age of the plantation, moreover phylogenetic analysis of the identified virus isolates suggests that infections are mostly caused by the use of infected propagating material. Our results, validated by other molecular methods, raised further questions to be answered before this method can be introduced as a routine, reliable test for grapevine virus diagnostics. PMID:25741336

  1. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models

    PubMed Central

    2018-01-01

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the ‘Internet of Things’ (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds. PMID:29748521

  2. Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models.

    PubMed

    Castaño, Fernando; Beruvides, Gerardo; Villalonga, Alberto; Haber, Rodolfo E

    2018-05-10

    On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning methodology and its implementation are presented in this paper, to maximize the reliability of LiDAR sensors network for obstacle detection in the 'Internet of Things' (IoT) mobility scenarios. The Webots Automobile 3D simulation tool for emulating sensor interaction in complex driving environments is selected in order to achieve that objective. Furthermore, a model-based framework is defined that employs a point-cloud clustering technique, and an error-based prediction model library that is composed of a multilayer perceptron neural network, and k-nearest neighbors and linear regression models. Finally, a reinforcement learning technique, specifically a Q-learning method, is implemented to determine the number of LiDAR sensors that are required to increase sensor reliability for obstacle localization tasks. In addition, a IoT driving assistance user scenario, connecting a five LiDAR sensor network is designed and implemented to validate the accuracy of the computational intelligence-based framework. The results demonstrated that the self-tuning method is an appropriate strategy to increase the reliability of the sensor network while minimizing detection thresholds.

  3. Study samples are too small to produce sufficiently precise reliability coefficients.

    PubMed

    Charter, Richard A

    2003-04-01

    In a survey of journal articles, test manuals, and test critique books, the author found that a mean sample size (N) of 260 participants had been used for reliability studies on 742 tests. The distribution was skewed because the median sample size for the total sample was only 90. The median sample sizes for the internal consistency, retest, and interjudge reliabilities were 182, 64, and 36, respectively. The author presented sample size statistics for the various internal consistency methods and types of tests. In general, the author found that the sample sizes that were used in the internal consistency studies were too small to produce sufficiently precise reliability coefficients, which in turn could cause imprecise estimates of examinee true-score confidence intervals. The results also suggest that larger sample sizes have been used in the last decade compared with those that were used in earlier decades.

  4. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor.

    PubMed

    Salim, Ahmed; Lim, Sungjoon

    2016-10-28

    In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol's concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes.

  5. A Distributed Wireless Camera System for the Management of Parking Spaces

    PubMed Central

    Melničuk, Petr

    2017-01-01

    The importance of detection of parking space availability is still growing, particularly in major cities. This paper deals with the design of a distributed wireless camera system for the management of parking spaces, which can determine occupancy of the parking space based on the information from multiple cameras. The proposed system uses small camera modules based on Raspberry Pi Zero and computationally efficient algorithm for the occupancy detection based on the histogram of oriented gradients (HOG) feature descriptor and support vector machine (SVM) classifier. We have included information about the orientation of the vehicle as a supporting feature, which has enabled us to achieve better accuracy. The described solution can deliver occupancy information at the rate of 10 parking spaces per second with more than 90% accuracy in a wide range of conditions. Reliability of the implemented algorithm is evaluated with three different test sets which altogether contain over 700,000 samples of parking spaces. PMID:29283371

  6. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time.

    PubMed

    Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl

    2009-11-01

    Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.

  7. Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.

    PubMed

    Barrett, Angela N; Chitty, Lyn S

    2014-01-01

    Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.

  8. Optimising the neutron environment of Radiation Portal Monitors: A computational study

    NASA Astrophysics Data System (ADS)

    Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.

    2015-09-01

    Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael C.

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In our paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a “locally” generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct amore » coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad 2), which is small enough to enable secure key distribution. This technology opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.« less

  10. Determination of polycyclic aromatic hydrocarbons in kerosene and bio-kerosene soot.

    PubMed

    Andrade-Eiroa, Auréa; Leroy, Valérie; Dagaut, Philippe; Bedjanian, Yuri

    2010-03-01

    Here we report a new, efficient and reliable analytical methodology for sensitive and selective quantification of Polycyclic Aromatic Hydrocarbons (PAHs) in soot samples. The methodology developed is based on ultrasonic extraction of the soot-bound PAHs into small volumes of acetonitrile, purification of the extracts through C(18) Solid Phase Extraction (SPE) cartridges and analysis by Reverse Phase Liquid Chromatography (RPLC) with UV and fluorimetric detection. For the first time, we report the convenience of adapting the SPE procedure to the nature of the soot samples. As a matter of fact, extracts containing high percentage of unpolar material are recommended to be cleaned with acetone, whereas extracts poor in unpolar compounds can be efficiently cleaned with methanol. The method was satisfactorily applied to kerosene and bio-kerosene soot from atmospheric open diffusion flames (pool fires) and premixed flames achieving Quantification and Detection limits in the range ng mg(-1) soot and recoveries about 90% for most of the PAHs studied. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Complementary Split-Ring Resonator-Loaded Microfluidic Ethanol Chemical Sensor

    PubMed Central

    Salim, Ahmed; Lim, Sungjoon

    2016-01-01

    In this paper, a complementary split-ring resonator (CSRR)-loaded patch is proposed as a microfluidic ethanol chemical sensor. The primary objective of this chemical sensor is to detect ethanol’s concentration. First, two tightly coupled concentric CSRRs loaded on a patch are realized on a Rogers RT/Duroid 5870 substrate, and then a microfluidic channel engraved on polydimethylsiloxane (PDMS) is integrated for ethanol chemical sensor applications. The resonant frequency of the structure before loading the microfluidic channel is 4.72 GHz. After loading the microfluidic channel, the 550 MHz shift in the resonant frequency is ascribed to the dielectric perturbation phenomenon when the ethanol concentration is varied from 0% to 100%. In order to assess the sensitivity range of our proposed sensor, various concentrations of ethanol are tested and analyzed. Our proposed sensor exhibits repeatability and successfully detects 10% ethanol as verified by the measurement set-up. It has created headway to a miniaturized, non-contact, low-cost, reliable, reusable, and easily fabricated design using extremely small liquid volumes. PMID:27801842

  12. Reliability of smartphone-based gait measurements for quantification of physical activity/inactivity levels.

    PubMed

    Ebara, Takeshi; Azuma, Ryohei; Shoji, Naoto; Matsukawa, Tsuyoshi; Yamada, Yasuyuki; Akiyama, Tomohiro; Kurihara, Takahiro; Yamada, Shota

    2017-11-25

    Objective measurements using built-in smartphone sensors that can measure physical activity/inactivity in daily working life have the potential to provide a new approach to assessing workers' health effects. The aim of this study was to elucidate the characteristics and reliability of built-in step counting sensors on smartphones for development of an easy-to-use objective measurement tool that can be applied in ergonomics or epidemiological research. To evaluate the reliability of step counting sensors embedded in seven major smartphone models, the 6-minute walk test was conducted and the following analyses of sensor precision and accuracy were performed: 1) relationship between actual step count and step count detected by sensors, 2) reliability between smartphones of the same model, and 3) false detection rates when sitting during office work, while riding the subway, and driving. On five of the seven models, the inter-class correlations coefficient (ICC (3,1) ) showed high reliability with a range of 0.956-0.993. The other two models, however, had ranges of 0.443-0.504 and the relative error ratios of the sensor-detected step count to the actual step count were ±48.7%-49.4%. The level of agreement between the same models was ICC (3,1) : 0.992-0.998. The false detection rates differed between the sitting conditions. These results suggest the need for appropriate regulation of step counts measured by sensors, through means such as correction or calibration with a predictive model formula, in order to obtain the highly reliable measurement results that are sought in scientific investigation.

  13. A prototype of injector to control and to detect the release of magnetic beads within the constraints of multibifurcation magnetic resonance navigation procedures.

    PubMed

    Bigot, Alexandre; Soulez, Gilles; Martel, Sylvain

    2017-01-01

    An injector equipped with a bead capture and a bead detection system is presented. In the context of magnetic resonance navigation (MRN), in which MRI gradients are used to steer intravascular therapeutic carriers, fast and reliable injection is essential. In this paper, we present a prototype of injector to control and to detect the release of magnetic beads. The injector relies on two distinct subsystems: (1) the capture subsystem, which creates local magnetic force to stop the flow of magnetic beads; and (2) the detection subsystem, which detects flowing beads and generates a trigger signal to start MRI gradient pulses. Both systems rely on small microcoils wound on the tubing. Five-turn microcoils show the best compromise between size and performance. Less than 5 mW of power is required to capture 0.8-mm beads moving in a flow above 5 mL min -1 or when a gradient above 200 mT m -1 is applied. The detection system is not sensitive to noise and detects every 0.8-mm bead in flow rates up to 14 mL m -1 . The prototype of injector shows performance above the requirements inherent to magnetic resonance navigation. This system is a step toward in vivo multibifurcation MRN. Magn Reson Med 77:444-452, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  15. Quantitative method for gait pattern detection based on fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Tong, Xinglin; Yu, Lie

    2017-03-01

    This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e., strains, forces, pressure, displacements, velocity, and accelerations), the proposed method utilizes the backreflected peak wavelength from FBG sensors to describe the motion characteristics in human walking. Specifically, the FBG sensors are sensitive to external strain with the result that their backreflected peak wavelength will be shifted according to the extent of the influence of external strain. Therefore, when subjects walk in different gait patterns, the strains on FBG sensors will be different such that the magnitude of the backreflected peak wavelength varies. To test the reliability of the FBG sensor platform for gait pattern detection, the gold standard method using force-sensitive resistors (FSRs) for defining gait patterns is introduced as a reference platform. The reliability of the FBG sensor platform is determined by comparing the detection results between the FBG sensors and FSRs platforms. The experimental results show that the FBG sensor platform is reliable in gait pattern detection and gains high reliability when compared with the reference platform.

  16. Comparison of RPR 'teardrop' card test, VDRL and FTA-ABS tests results on sera from persons with suspected yaws in Columbia.

    PubMed

    Hopkins, D R; Florez, D

    1977-08-01

    A small study comparing results of the rapid plasma reagin (RPR) teardrop card test performed in the field, with results of Venereal Disease Research Laboratory (VDRL) and fluorescent treponemal antibody absorption (FTA-ABS) tests performed in the laboratory on venous blood specimens from the same suspected yaws patients was undertaken in Columbia in July 1975. The results suggest that the RPR teardrop card test may be used to screen for infectious, or potentially infectious, yaws patients under field conditions, but that it will not reliably detect patients with VDRL titres of 1:2 or less, or all patients in whom sera are reactive in the FTA-ABS test.

  17. Comparison of RPR 'teardrop' card test, VDRL and FTA-ABS tests results on sera from persons with suspected yaws in Columbia.

    PubMed Central

    Hopkins, D R; Florez, D

    1977-01-01

    A small study comparing results of the rapid plasma reagin (RPR) teardrop card test performed in the field, with results of Venereal Disease Research Laboratory (VDRL) and fluorescent treponemal antibody absorption (FTA-ABS) tests performed in the laboratory on venous blood specimens from the same suspected yaws patients was undertaken in Columbia in July 1975. The results suggest that the RPR teardrop card test may be used to screen for infectious, or potentially infectious, yaws patients under field conditions, but that it will not reliably detect patients with VDRL titres of 1:2 or less, or all patients in whom sera are reactive in the FTA-ABS test. PMID:336143

  18. Does Life Seem Better on a Sunny Day? Examining the Association between Daily Weather Conditions and Life Satisfaction Judgments

    PubMed Central

    Lucas, Richard E.; Lawless, Nicole M.

    2013-01-01

    Weather conditions have been shown to affect a broad range of thoughts, feelings, and behaviors. The current study examines whether these effects extend to life satisfaction judgments. We examine the association between daily weather conditions and life satisfaction in a representative sample of over 1 million Americans from all 50 states who were assessed (in a cross-sectional design) over a 5-year period. Most daily weather conditions were unrelated to life satisfaction judgments, and those effects that were significant reflect very small effects that were only detectable because of the extremely high power of these analyses. These results show that weather does not reliably affect judgments of life satisfaction. PMID:23607534

  19. Observation and modeling of source effects in coda wave interferometry at Pavlof volcano

    USGS Publications Warehouse

    Haney, M.M.; van, Wijik K.; Preston, L.A.; Aldridge, D.F.

    2009-01-01

    Sorting out source and path effects for seismic waves at volcanoes is critical for the proper interpretation of underlying volcanic processes. Source or path effects imply that seismic waves interact strongly with the volcanic subsurface, either through partial resonance in a conduit (Garces et al., 2000; Sturton and Neuberg, 2006) or by random scattering in the heterogeneous volcanic edifice (Wegler and Luhr, 2001). As a result, both source and path effects can cause seismic waves to repeatedly sample parts of the volcano, leading to enhanced sensitivity to small changes in material properties at those locations. The challenge for volcano seismologists is to detect and reliably interpret these subtle changes for the purpose of monitoring eruptions. ?? 2009 Society of Exploration Geophysicists.

  20. Design and Analysis of a Preconcentrator for the ChemLab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WONG,CHUNGNIN C.; FLEMMING,JEB H.; MANGINELL,RONALD P.

    2000-07-17

    Preconcentration is a critical analytical procedure when designing a microsystem for trace chemical detection, because it can purify a sample mixture and boost the small analyte concentration to a much higher level allowing a better analysis. This paper describes the development of a micro-fabricated planar preconcentrator for the {mu}ChemLab{trademark} at Sandia. To guide the design, an analytical model to predict the analyte transport, adsorption and resorption process in the preconcentrator has been developed. Experiments have also been conducted to analyze the adsorption and resorption process and to validate the model. This combined effort of modeling, simulation, and testing has ledmore » us to build a reliable, efficient preconcentrator with good performance.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Veronica J.; ANU)

    An early diagnosis of malignancies correlates directly with a better prognosis. Yet for many malignancies there are no readily available, noninvasive, cost-effective diagnostic tests with patients often presenting too late for effective treatment. This article describes for the first time the use of fiber diffraction patterns of skin or fingernails, using X-ray sources, as a biometric diagnostic method for detecting neoplastic disorders including but not limited to melanoma, breast, colon and prostate cancers. With suitable further development, an early low-cost, totally noninvasive yet reliable diagnostic test could be conducted on a regular basis in local radiology facilities, as a confirmatorymore » test for other diagnostic procedures or as a mass screening test using suitable small angle X-ray beam-lines at synchrotrons.« less

  2. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  3. Small-strain measurement in bridge connections using the digital image correlation (DIC) technique

    NASA Astrophysics Data System (ADS)

    Desai, Niranjan

    2016-04-01

    Structural health monitoring (SHM) is emerging as a vital tool to help civil engineers improve the safety, maintainability, and reliability of critical structures and assists infrastructure owners with timely information for the continued safe and economic operation of their structure. SHM involves implementing a strategy that identifies and characterizes damage or undesirable performance in engineering structures. The goal of this research project was to determine the smallest strains measurable using standard digital image correlation (DIC) based SHM equipment. This practical investigation that had strong ties to the industry was motivated by damage observed in a real-world bridge, which was initially undetected. Its early detection would have led to reduced repair costs. To accomplish the aforementioned goal, tests were performed on a laboratory specimen that replicated a steel beam-to-column connection of the concerned bridge, involving progressively loading it in a manner in which it was loaded in the actual bridge, while simultaneously measuring the strains that developed in it using the aforementioned DIC-based equipment and software. Under the controlled conditions in the laboratory, the minimum resolution of the state-of-the-art system used in this investigation was determined. Due to the challenges faced in making these small-strain measurements even under highly controlled laboratory conditions, it was concluded that it is currently unrealistic to use the existing DIC technology in a real-world situation to measure strains as small as those that would need to be measured to detect the onset of damage in bridge connections. More work needs to be done in this area.

  4. Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow

    PubMed Central

    Buschmann, Dominik; Haberberger, Anna; Kirchner, Benedikt; Spornraft, Melanie; Riedmaier, Irmgard; Schelling, Gustav; Pfaffl, Michael W.

    2016-01-01

    Small RNA-Seq has emerged as a powerful tool in transcriptomics, gene expression profiling and biomarker discovery. Sequencing cell-free nucleic acids, particularly microRNA (miRNA), from liquid biopsies additionally provides exciting possibilities for molecular diagnostics, and might help establish disease-specific biomarker signatures. The complexity of the small RNA-Seq workflow, however, bears challenges and biases that researchers need to be aware of in order to generate high-quality data. Rigorous standardization and extensive validation are required to guarantee reliability, reproducibility and comparability of research findings. Hypotheses based on flawed experimental conditions can be inconsistent and even misleading. Comparable to the well-established MIQE guidelines for qPCR experiments, this work aims at establishing guidelines for experimental design and pre-analytical sample processing, standardization of library preparation and sequencing reactions, as well as facilitating data analysis. We highlight bottlenecks in small RNA-Seq experiments, point out the importance of stringent quality control and validation, and provide a primer for differential expression analysis and biomarker discovery. Following our recommendations will encourage better sequencing practice, increase experimental transparency and lead to more reproducible small RNA-Seq results. This will ultimately enhance the validity of biomarker signatures, and allow reliable and robust clinical predictions. PMID:27317696

  5. Reliability of air displacement plethysmography in a large, heterogeneous sample.

    PubMed

    Noreen, Eric E; Lemon, Peter W R

    2006-08-01

    Several studies have assessed the validity of air displacement plethysmography (ADP), but few have assessed the reliability of ADP using a large, heterogeneous sample. This study was conducted to determine the reliability of ADP using the Bod Pod in a large, heterogeneous sample. A total of 980 healthy men and women (30 +/- 15 yr, mean +/- SD) completed two body composition assessments separated by 15-30 min. All testing was done in accordance with the manufacturer's instructions. A significant correlation (r = 0.992, P = 0.001) was found between body density (BD) 1 (1.046 +/- 0.001 kg.L(-1); mean +/- SEM) and BD 2 (1.046 +/- 0.001 kg.L(-1). A paired t-test revealed no significant difference between BD 1 and 2 (P = 0.935). The coefficient of variation (CV) for BD was 0.15%. A significant intraclass correlation coefficient (ICC) was found for BD (ICC = 0.996, P = 0.001), and the standard error of measurement (SEM) was 0.001 kg.L(-1). Body mass (BM) 1 and 2 were correlated significantly (r = 0.999, P = 0.001); however, a significant (P = 0.001) decrease was seen from BM 1 (75.510 +/- 0.461 kg) to BM 2 (75.497 +/- 0.461 kg). Body volume (BV) tended to decrease (P = 0.08) from BV 1 (69.900 +/- 0.449 L) to BV 2 (69.884 +/- 0.449 L). ADP using the Bod Pod appears to assess BD reliably; however, the observed CV suggests that multiple trials are necessary to detect small treatment effects.

  6. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems.

    PubMed

    Miller, Manuel; Ritter, Brbel; Zorn, Julia; Brielmeier, Markus

    2016-11-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice.

  7. Exhaust Air Dust Monitoring is Superior to Soiled Bedding Sentinels for the Detection of Pasteurella pneumotropica in Individually Ventilated Cage Systems

    PubMed Central

    Miller, Manuel; Ritter, Bärbel; Zorn, Julia; Brielmeier, Markus

    2016-01-01

    Reliable detection of unwanted organisms is essential for meaningful health monitoring in experimental animal facilities. Currently, most rodents are housed in IVC systems, which prevent the aerogenic transmission of pathogens between cages. Typically soiled-bedding sentinels (SBS) exposed to soiled bedding collected from a population of animals within an IVC rack are tested as representatives, but infectious agents often go undetected due to inefficient transmission. Pasteurellaceae are among the most prevalent bacterial pathogens isolated from experimental mice, and the failure of SBS to detect these bacteria is well established. In this study, we investigated whether analysis of exhaust air dust (EAD) samples by using a sensitive and specific real-time PCR assay is superior to conventional SBS monitoring for the detection of Pasteurella pneumotropica (Pp) infections. In a rack with a known prevalence of Pp-positive mice, weekly EAD sampling was compared with the classic SBS method over 3 mo. In 6 rounds of testing, with a prevalence of 5 infected mice in each of 7 cages in a rack of 63 cages, EAD PCR detected Pp at every weekly time point; SBS failed to detect Pp in all cases. The minimal prevalence of Pp-infected mice required to obtain a reliable positive result by EAD PCR testing was determined to be 1 in 63 cages. Reliable detection of Pp was achieved after only 1 wk of exposure. Analysis of EAD samples by real-time PCR assay provides a sensitive, simple, and reliable approach for Pp identification in laboratory mice. PMID:27931316

  8. The Effect of SSM Grading on Reliability When Residual Items Have No Discriminating Power.

    ERIC Educational Resources Information Center

    Kane, Michael T.; Moloney, James M.

    Gilman and Ferry have shown that when the student's score on a multiple choice test is the total number of responses necessary to get all items correct, substantial increases in reliability can occur. In contrast, similar procedures giving partial credit on multiple choice items have resulted in relatively small gains in reliability. The analysis…

  9. Reliability of a Cryoscopic Micro-Osmometer Using 15-µL Plasma Samples to Measure Hydration Status in Varied Environmental Conditions

    ERIC Educational Resources Information Center

    Scanlan, Aaron T.; Richter-Stretton, Gina L.; Madueno, Maria C.; Borges, Nattai R.; Fenning, Andrew S.

    2017-01-01

    Measurement of plasma osmolality (P[subscript osm]) remains popular for assessing hydration status in exercise science. However, a controlled reliability assessment of micro-osmometry using small sample volumes to measure Posm remains to be performed. This study aimed to examine the reliability of a cryoscopic micro-osmometer requiring 15-µL…

  10. Familiarization, validity and smallest detectable difference of the isometric squat test in evaluating maximal strength.

    PubMed

    Drake, David; Kennedy, Rodney; Wallace, Eric

    2018-02-06

    Isometric multi-joint tests are considered reliable and have strong relationships with 1RM performance. However, limited evidence is available for the isometric squat in terms of effects of familiarization and reliability. This study aimed to assess, the effect of familiarization, stability reliability, determine the smallest detectible difference, and the correlation of the isometric squat test with 1RM squat performance. Thirty-six strength-trained participants volunteered to take part in this study. Following three familiarization sessions, test-retest reliability was evaluated with a 48-hour window between each time point. Isometric squat peak, net and relative force were assessed. Results showed three familiarizations were required, isometric squat had a high level of stability reliability and smallest detectible difference of 11% for peak and relative force. Isometric strength at a knee angle of ninety degrees had a strong significant relationship with 1RM squat performance. In conclusion, the isometric squat is a valid test to assess multi-joint strength and can discriminate between strong and weak 1RM squat performance. Changes greater than 11% in peak and relative isometric squat performance should be considered as meaningful in participants who are familiar with the test.

  11. Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries.

    PubMed

    Hoijemberg, Pablo A; Pelczer, István

    2018-01-05

    A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative compounds in the sample set.

  12. Visualization of Content Release from Cell Surface-Attached Single HIV-1 Particles Carrying an Extra-Viral Fluorescent pH-Sensor.

    PubMed

    Sood, Chetan; Marin, Mariana; Mason, Caleb S; Melikyan, Gregory B

    2016-01-01

    HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment-at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (~0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface. We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.

  13. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    PubMed Central

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients. PMID:26562020

  14. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO)

    NASA Astrophysics Data System (ADS)

    Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G.

    2013-08-01

    We present a new numerical method for automatic detection and analysis of changes in lineament patterns caused by seismic and volcanic activities. The method is implemented as a series of modules: (i) normalization of the image contrast, (ii) extraction of small linear features (stripes) through convolution of the part of the image in the vicinity of each pixel with a circular mask or through Canny algorithm, and (iii) posterior detection of main lineaments using the Hough transform. We demonstrate that our code reliably detects changes in the lineament patterns related to the stress evolution in the Earth's crust: specifically, a significant number of new lineaments appear approximately one month before an earthquake, while one month after the earthquake the lineament configuration returns to its initial state. Application of our software to the deformations caused by volcanic activity yields the opposite results: the number of lineaments decreases with the onset of microseismicity. This discrepancy can be explained assuming that the plate tectonic earthquakes are caused by the compression and accumulation of stress in the Earth's crust due to subduction of tectonic plates, whereas in the case of volcanic activity we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion and the resulting stretching of the surface.

  15. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developingmore » the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components.« less

  16. Development of an in-house fast real-time PCR method for detection of fish allergen in foods and comparison with a commercial kit.

    PubMed

    Herrero, Beatriz; Vieites, Juan M; Espiñeira, Montserrat

    2014-05-15

    Food allergy is recognised as an important human health problem. Fish represent one of the most important causes of food hypersensitivity reaction. Small amounts of the allergen can cause severe reactions in sensitive individuals, so correct labelling is essential to ensure the protection of consumers. The objective of the present work was to develop a reliable, sensitive and specific real-time PCR method for the detection of fish and traces of fish in all kind of products included those that have undergone aggressive treatments such as high temperature or pressure. This methodology was validated simulating products likely to contain this allergen and spiking them with fish cooking water. In addition, a comparison between the performance of in-house methodology and a commercial kit, both of them based on real-time PCR, was carried out. This work is relevant because it is the first, rapid real-time PCR method developed to date for the detection of fish in processed food products. The results obtained confirm the present assay is a useful tool in detecting fish and, therefore, minimising exposure and reducing incidences of allergic reaction to fish in contaminated products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Magneto immunosensor for gliadin detection in gluten-free foodstuff: towards food safety for celiac patients.

    PubMed

    Laube, T; Kergaravat, S V; Fabiano, S N; Hernández, S R; Alegret, S; Pividori, M I

    2011-09-15

    Gliadin is a constituent of the cereal protein gluten, responsible for the intolerance generated in celiac disease. Its detection is of high interest for food safety of celiac patients, since the only treatment known until now is a lifelong avoidance of this protein in the diet. Therefore, it is essential to have an easy and reliable method of analysis to control the contents in gluten-free foods. An electrochemical magneto immunosensor for the quantification of gliadin or small gliadin fragments in natural or pretreated food samples is described for the first time and compared to a novel magneto-ELISA system based on optical detection. The immunological reaction was performed on magnetic beads as solid support by the oriented covalent immobilization, of the protein gliadin on tosyl-activated beads. Direct, as well as indirect competitive immunoassays were optimized, achieving the best analytical performance with the direct competitive format. Excellent detection limits (in the order of μg L(-1)) were achieved, according to the legislation for gluten-free products. The matrix effect, as well as the performance of the assays was successfully evaluated using spiked gluten-free foodstuffs (skimmed milk and beer), obtaining excellent recovery values in the results. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Song, Yiming; Zhang, Wei; Hu, Gaowei; Dou, Yongxi; Li, Yanmin; Zhang, Zhidong

    2017-02-07

    Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.

  19. Evaluation of Renal Oxygenation Level Changes after Water Loading Using Susceptibility-Weighted Imaging and T2* Mapping.

    PubMed

    Ding, Jiule; Xing, Wei; Wu, Dongmei; Chen, Jie; Pan, Liang; Sun, Jun; Xing, Shijun; Dai, Yongming

    2015-01-01

    To assess the feasibility of susceptibility-weighted imaging (SWI) while monitoring changes in renal oxygenation level after water loading. Thirty-two volunteers (age, 28.0 ± 2.2 years) were enrolled in this study. SWI and multi-echo gradient echo sequence-based T2(*) mapping were used to cover the kidney before and after water loading. Cortical and medullary parameters were measured using small regions of interest, and their relative changes due to water loading were calculated based on baseline and post-water loading data. An intraclass correlation coefficient analysis was used to assess inter-observer reliability of each parameter. A receiver operating characteristic curve analysis was conducted to compare the performance of the two methods for detecting renal oxygenation changes due to water loading. Both medullary phase and medullary T2(*) values increased after water loading (p < 0.001), although poor correlations were found between the phase changes and the T2(*) changes (p > 0.05). Interobserver reliability was excellent for the T2(*) values, good for SWI cortical phase values, and moderate for the SWI medullary phase values. The area under receiver operating characteristic curve of the SWI medullary phase values was 0.85 and was not different from the medullary T2(*) value (0.84). Susceptibility-weighted imaging enabled monitoring changes in the oxygenation level in the medulla after water loading, and may allow comparable feasibility to detect renal oxygenation level changes due to water loading compared with that of T2(*) mapping.

  20. Comparison of Two Commercial Automated Nucleic Acid Extraction and Integrated Quantitation Real-Time PCR Platforms for the Detection of Cytomegalovirus in Plasma

    PubMed Central

    Tsai, Huey-Pin; Tsai, You-Yuan; Lin, I-Ting; Kuo, Pin-Hwa; Chen, Tsai-Yun; Chang, Kung-Chao; Wang, Jen-Ren

    2016-01-01

    Quantitation of cytomegalovirus (CMV) viral load in the transplant patients has become a standard practice for monitoring the response to antiviral therapy. The cut-off values of CMV viral load assays for preemptive therapy are different due to the various assay designs employed. To establish a sensitive and reliable diagnostic assay for preemptive therapy of CMV infection, two commercial automated platforms including m2000sp extraction system integrated the Abbott RealTime (m2000rt) and the Roche COBAS AmpliPrep for extraction integrated COBAS Taqman (CAP/CTM) were evaluated using WHO international CMV standards and 110 plasma specimens from transplant patients. The performance characteristics, correlation, and workflow of the two platforms were investigated. The Abbott RealTime assay correlated well with the Roche CAP/CTM assay (R2 = 0.9379, P<0.01). The Abbott RealTime assay exhibited higher sensitivity for the detection of CMV viral load, and viral load values measured with Abbott RealTime assay were on average 0.76 log10 IU/mL higher than those measured with the Roche CAP/CTM assay (P<0.0001). Workflow analysis on a small batch size at one time, using the Roche CAP/CTM platform had a shorter hands-on time than the Abbott RealTime platform. In conclusion, these two assays can provide reliable data for different purpose in a clinical virology laboratory setting. PMID:27494707

  1. Monitoring uterine activity during labor: a comparison of 3 methods.

    PubMed

    Euliano, Tammy Y; Nguyen, Minh Tam; Darmanjian, Shalom; McGorray, Susan P; Euliano, Neil; Onkala, Allison; Gregg, Anthony R

    2013-01-01

    Tocodynamometry (Toco; strain gauge technology) provides contraction frequency and approximate duration of labor contractions but suffers frequent signal dropout, necessitating repositioning by a nurse, and may fail in obese patients. The alternative invasive intrauterine pressure catheter (IUPC) is more reliable and adds contraction pressure information but requires ruptured membranes and introduces small risks of infection and abruption. Electrohysterography (EHG) reports the electrical activity of the uterus through electrodes placed on the maternal abdomen. This study compared all 3 methods of contraction detection simultaneously in laboring women. Upon consent, laboring women were monitored simultaneously with Toco, EHG, and IUPC. Contraction curves were generated in real-time for the EHG, and all 3 curves were stored electronically. A contraction detection algorithm was used to compare frequency and timing between methods. Seventy-three subjects were enrolled in the study; 14 were excluded due to hardware failure of 1 or more of the devices (n = 12) or inadequate data collection duration (n = 2). In comparison with the gold-standard IUPC, EHG performed significantly better than Toco with regard to the Contractions Consistency Index (CCI). The mean CCI for EHG was 0.88 ± 0.17 compared with 0.69 ± 0.27 for Toco (P < .0001). In contrast to Toco, EHG was not significantly affected by obesity. Toco does not correlate well with the gold-standard IUPC and fails more frequently in obese patients. EHG provides a reliable noninvasive alternative, regardless of body habitus. Copyright © 2013 Mosby, Inc. All rights reserved.

  2. Monitoring uterine activity during labor: a comparison of three methods

    PubMed Central

    EULIANO, Tammy Y.; NGUYEN, Minh Tam; DARMANJIAN, Shalom; MCGORRAY, Susan P.; EULIANO, Neil; ONKALA, Allison; GREGG, Anthony R.

    2012-01-01

    Objective Tocodynamometry (Toco—strain gauge technology) provides contraction frequency and approximate duration of labor contractions, but suffers frequent signal dropout necessitating re-positioning by a nurse, and may fail in obese patients. The alternative invasive intrauterine pressure catheter (IUPC) is more reliable and adds contraction pressure information, but requires ruptured membranes and introduces small risks of infection and abruption. Electrohysterography (EHG) reports the electrical activity of the uterus through electrodes placed on the maternal abdomen. This study compared all three methods of contraction detection simultaneously in laboring women. Study Design Upon consent, laboring women were monitored simultaneously with Toco, EHG, and IUPC. Contraction curves were generated in real-time for the EHG and all three curves were stored electronically. A contraction detection algorithm was used to compare frequency and timing between methods. Seventy-three subjects were enrolled in the study; 14 were excluded due to hardware failure of one or more of the devices (12) or inadequate data collection duration(2). Results In comparison with the gold-standard IUPC, EHG performed significantly better than Toco with regard to Contractions Consistency Index (CCI). The mean CCI for EHG was 0.88 ± 0.17 compared to 0.69 ± 0.27 for Toco (p<.0001). In contrast to Toco, EHG was not significantly affected by obesity. Conclusion Toco does not correlate well with the gold-standard IUPC and fails more frequently in obese patients. EHG provides a reliable non-invasive alternative regardless of body habitus. PMID:23122926

  3. Measurement properties of painDETECT: Rasch analysis of responses from community-dwelling adults with neuropathic pain.

    PubMed

    Packham, Tara L; Cappelleri, Joseph C; Sadosky, Alesia; MacDermid, Joy C; Brunner, Florian

    2017-03-04

    painDETECT (PD-Q) is a self-reported assessment of pain qualities developed as a screening tool for pain of neuropathic origin. Rasch analysis is a strategy for examining the measurement characteristics of a scale using a form of item response theory. We conducted a Rasch analysis to consider if the scoring and measurement properties of PD-Q would support its use as an outcome measure. Rasch analysis was conducted on PD-Q scores drawn from a cross-sectional study of the burden and costs of NeP. The analysis followed an iterative process based on recommendations in the literature, including examination of sequential scoring categories, unidimensionality, reliability and differential item function. Data from 624 persons with a diagnosis of painful diabetic polyneuropathy, small fibre neuropathy, and neuropathic pain associated with chronic low back pain, spinal cord injury, HIV-related pain, or chronic post-surgical pain was used for this analysis. PD-Q demonstrated fit to the Rasch model after adjustments of scoring categories for four items, and omission of the time course and radiating questions. The resulting seven-item scale of pain qualities demonstrated good reliability with a person-separation index of 0.79. No scoring bias (differential item functioning) was found for this version. Rasch modelling suggests the seven pain-qualities items from PD-Q may be used as an outcome measure. Further research is required to confirm validity and responsiveness in a clinical setting.

  4. Development and validation of a SYBR Green real-time PCR assay for rapid and quantitative detection of goose interferons and proinflammatory cytokines.

    PubMed

    Zhou, Hao; Chen, Shun; Qi, Yulin; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Cheng, Anchun

    2015-10-01

    Real time quantitative polymerase chain reaction (RT-qPCR) based on SYBR-Green I binding is a quick, reliable, and easy method for analyzing small amounts of mRNA. Viral pathogens are recognized at the time of infection by pattern recognition receptors; thus, the inflammatory cytokines (IL1β, IL6, and IL18) and antiviral cytokines (IFNα, IFNγ) are secreted by innate immune cells and induced to respond to the pathogens. The objective of this study was to develop an effective and sensitive RT-qPCR assay for the rapid and accurate quantification of goose cytokines: IFNα, IFNγ, IL1β, IL6, and IL18. Subsequently, the established methods were employed to detect the immune response in agonist-stimulated goose spleen cells in vitro. These data indicated that the established RT-qPCR is a reliable method for determining relative gene expression. The results revealed that Imiquimod led to the significant upregulation of goose IFNα (P < 0.01), IFNγ (P < 0.01), IL1β (P < 0.01), IL6 (P < 0.01), and IL18 (P < 0.05). The established methods are important for scientific research and clinical applications, which require rapid and accurate results in a short period of time. The technique can potentially be used in the further research of goose molecular immunology, which will help us understand the interactions between hosts and pathogens. © 2015 Poultry Science Association Inc.

  5. Impact of task-related changes in heart rate on estimation of hemodynamic response and model fit.

    PubMed

    Hillenbrand, Sarah F; Ivry, Richard B; Schlerf, John E

    2016-05-15

    The blood oxygen level dependent (BOLD) signal, as measured using functional magnetic resonance imaging (fMRI), is widely used as a proxy for changes in neural activity in the brain. Physiological variables such as heart rate (HR) and respiratory variation (RV) affect the BOLD signal in a way that may interfere with the estimation and detection of true task-related neural activity. This interference is of particular concern when these variables themselves show task-related modulations. We first establish that a simple movement task reliably induces a change in HR but not RV. In group data, the effect of HR on the BOLD response was larger and more widespread throughout the brain than were the effects of RV or phase regressors. The inclusion of HR regressors, but not RV or phase regressors, had a small but reliable effect on the estimated hemodynamic response function (HRF) in M1 and the cerebellum. We next asked whether the inclusion of a nested set of physiological regressors combining phase, RV, and HR significantly improved the model fit in individual participants' data sets. There was a significant improvement from HR correction in M1 for the greatest number of participants, followed by RV and phase correction. These improvements were more modest in the cerebellum. These results indicate that accounting for task-related modulation of physiological variables can improve the detection and estimation of true neural effects of interest. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Item response modeling: a psychometric assessment of the children's fruit, vegetable, water, and physical activity self-efficacy scales among Chinese children.

    PubMed

    Wang, Jing-Jing; Chen, Tzu-An; Baranowski, Tom; Lau, Patrick W C

    2017-09-16

    This study aimed to evaluate the psychometric properties of four self-efficacy scales (i.e., self-efficacy for fruit (FSE), vegetable (VSE), and water (WSE) intakes, and physical activity (PASE)) and to investigate their differences in item functioning across sex, age, and body weight status groups using item response modeling (IRM) and differential item functioning (DIF). Four self-efficacy scales were administrated to 763 Hong Kong Chinese children (55.2% boys) aged 8-13 years. Classical test theory (CTT) was used to examine the reliability and factorial validity of scales. IRM was conducted and DIF analyses were performed to assess the characteristics of item parameter estimates on the basis of children's sex, age and body weight status. All self-efficacy scales demonstrated adequate to excellent internal consistency reliability (Cronbach's α: 0.79-0.91). One FSE misfit item and one PASE misfit item were detected. Small DIF were found for all the scale items across children's age groups. Items with medium to large DIF were detected in different sex and body weight status groups, which will require modification. A Wright map revealed that items covered the range of the distribution of participants' self-efficacy for each scale except VSE. Several self-efficacy scales' items functioned differently by children's sex and body weight status. Additional research is required to modify the four self-efficacy scales to minimize these moderating influences for application.

  7. Prospective Evaluation of Thoracic Ultrasound in the Detection of Pneumothorax

    NASA Technical Reports Server (NTRS)

    Schwarz, K. W.; Hamilton, D. R.; Kirkpatrick, A. W.; Billica, R. D.; Williams, D. R.; Diebel, L. N.; Sargysan, A. E.; Dulchavsky, S. A.

    2000-01-01

    Introduction: Pneumothorax (PTX) occurs commonly in trauma patients and is confirmed by examination and radiography. Thoracic ultrasound (VIS) has been suggested as an alternative method for rapidly diagnosing PTX when X-ray is unavailable as in rural, military, or space flight settings; however, its accuracy and specificity are not known. Methods: We evaluated the accuracy of thoracic U/S detection of PTX compared to radiography in stable, emergency patients with a high suspicion of PTX at a Level-l trauma center over a 6-month period. Following University and NASA Institutional Review Board approval, informed consent was obtained from patients with penetrating or blunt chest trauma, or with a history consistent with PTX. Whenever possible, the presence or absence of the " lung sliding" sign or the "comet tail" artifact were determined by U/S in both hemithoraces by residents instructed in thoracic U/S before standard radiologic verification of PTX. Results were recorded on data sheets for comparison to standard radiography. Results: Thoracic VIS had a 94% sensitivity; two PTX could not be reliably diagnosed due to subcutaneous air; the true negative rate was 100%. In one patient, the VIS exam was positive while X ray did not confirm PTX; a follow-up film 1 hour later demonstrated a small PTX. The average time for bilateral thoracic VIS examination was 2 to 3 minutes. Conclusions: Thoracic ultrasound reliably diagnoses pneumothorax. Presence of the "lung sliding" sign conclusively excludes pneumothorax. Expansion of the FAST examination to include the thorax should be investigated.

  8. Evaluating Descriptive Metrics of the Human Cone Mosaic

    PubMed Central

    Cooper, Robert F.; Wilk, Melissa A.; Tarima, Sergey; Carroll, Joseph

    2016-01-01

    Purpose To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). Methods Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics − density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The “performance” of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. Results Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. Conclusions The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic. PMID:27273598

  9. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  10. Clinical evaluation of the reproducibility of volume measurements of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Wormanns, Dag; Kohl, Gerhard; Klotz, Ernst; Heindel, Walter; Diederich, Stefan

    2002-05-01

    High reproducibility of volumetric measurements is an important prerequisite for follow-up of small lung nodules in order to differentiate malignant from benign lesions in a lung cancer screening setting. This study was aimed to evaluate the measurement reproducibility of a new software tool for pulmonary nodule volumetry. In an ongoing study, 147 pulmonary nodules (size 1.6-17.5 mm) were examined with low-dose multidetector CT (Siemens Somatom Volume Zoom, 120 kVp, 20 mAs, detector collimation 4x1 mm, normalized pitch 1.75, slice thickness 1.25 mm, reconstruction increment 0.8 mm). Two consecutive low-dose scans covering the whole lung volume were performed within a few minutes. Between both scans, patients were asked to leave the CT scanner, and the second scan was planned independently from the first one. For all visually detected pulmonary nodules with a diameter <20 mm nodule volume was determined on both scans using a software prototype containing segmentation and volumetry algorithms. Results from both scans were compared. Nodule volume differences were determined as difference between the first and second measurement and ranged from 169 to 87%. The performance of the diagnostic test was measured using ROC analysis. For the detection of a volume doubling the area under curve (Az) was 0.98, for a growth of 50% the Az was 0.89. Further refinement of the segmentation algorithm should lead to more consistent measurements in ill-defined nodules. In conclusion, volumetric measurement of pulmonary nodules in multislice CT data sets is a reliable tool for the detection of growth in small pulmonary nodules.

  11. 24/7 security system: 60-FPS color EMCCD camera with integral human recognition

    NASA Astrophysics Data System (ADS)

    Vogelsong, T. L.; Boult, T. E.; Gardner, D. W.; Woodworth, R.; Johnson, R. C.; Heflin, B.

    2007-04-01

    An advanced surveillance/security system is being developed for unattended 24/7 image acquisition and automated detection, discrimination, and tracking of humans and vehicles. The low-light video camera incorporates an electron multiplying CCD sensor with a programmable on-chip gain of up to 1000:1, providing effective noise levels of less than 1 electron. The EMCCD camera operates in full color mode under sunlit and moonlit conditions, and monochrome under quarter-moonlight to overcast starlight illumination. Sixty frame per second operation and progressive scanning minimizes motion artifacts. The acquired image sequences are processed with FPGA-compatible real-time algorithms, to detect/localize/track targets and reject non-targets due to clutter under a broad range of illumination conditions and viewing angles. The object detectors that are used are trained from actual image data. Detectors have been developed and demonstrated for faces, upright humans, crawling humans, large animals, cars and trucks. Detection and tracking of targets too small for template-based detection is achieved. For face and vehicle targets the results of the detection are passed to secondary processing to extract recognition templates, which are then compared with a database for identification. When combined with pan-tilt-zoom (PTZ) optics, the resulting system provides a reliable wide-area 24/7 surveillance system that avoids the high life-cycle cost of infrared cameras and image intensifiers.

  12. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics.

    PubMed

    Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Hochreiter, Sepp; Wimmer, Katharina

    2017-07-01

    Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to single-nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  13. panelcn.MOPS: Copy‐number detection in targeted NGS panel data for clinical diagnostics

    PubMed Central

    Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Wimmer, Katharina

    2017-01-01

    Abstract Targeted next‐generation‐sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy‐number variations (CNVs) in addition to single‐nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user‐friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state‐of‐the‐art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user‐selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user‐friendliness rendering it highly suitable for routine clinical diagnostics. PMID:28449315

  14. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a differentmore » segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.« less

  15. Digital transillumination in caries detection versus radiographic and clinical methods: an in-vivo study

    PubMed Central

    Lara-Capi, Cynthia; Lingström, Peter; Lai, Gianfranco; Cocco, Fabio; Simark-Mattsson, Charlotte; Campus, Guglielmo

    2017-01-01

    Objectives: This article aimed to evaluate: (a) the agreement between a near-infrared light transillumination device and clinical and radiographic examinations in caries lesion detection and (b) the reliability of images captured by the transillumination device. Methods: Two calibrated examiners evaluated the caries status in premolars and molars on 52 randomly selected subjects by comparing the transillumination device with a clinical examination for the occlusal surfaces and by comparing the transillumination device with a radiographic examination (bitewing radiographs) for the approximal surfaces. Forty-eight trained dental hygienists evaluated and reevaluated 30 randomly selected images 1-month later. Results: A high concordance between transillumination method and clinical examination (kappa = 0.99) was detected for occlusal caries lesions, while for approximal surfaces, the transillumination device identified a higher number of lesions with respect to bitewing (kappa = 0.91). At the dentinal level, the two methods identified the same number of caries lesions (kappa = 1), whereas more approximal lesions were recorded using the transillumination device in the enamel (kappa = 0.24). The intraexaminer reliability was substantial/almost perfect in 59.4% of the participants. Conclusions: The transillumination method showed a high concordance compared with traditional methods (clinical examination and bitewing radiographs). Caries detection reliability using the transillumination device images showed a high intraexaminer agreement. Transillumination showed to be a reliable method and as effective as traditional methods in caries detection. PMID:28191797

  16. Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other dynamical populations such as the Trojans and KBOs are also proving fruitful. Similarities and differences among the detected systems are thus revealing important clues about the possible formation mechanisms. There are several theories seeking to explain the origin of these binary systems, all of them involving collisions of one type or another, either physical or gravitational. It is likely that several of the mechanisms will be required to explain the observations. Now that we have reliable techniques for detection, we have been rewarded with many examples of systems for study. This has in turn spurred new theoretical thinking and numerical simulations, the techniques for which have also improved substantially in recent years.

  17. Lab on a Chip

    NASA Astrophysics Data System (ADS)

    Puget, P.

    The reliable and fast detection of chemical or biological molecules, or the measurement of their concentrations in a sample, are key problems in many fields such as environmental analysis, medical diagnosis, or the food industry. There are traditionally two approaches to this problem. The first aims to carry out a measurement in situ in the sample using chemical and biological sensors. The constraints imposed by detection limits, specificity, and in some cases stability are entirely imputed to the sensor. The second approach uses so-called total analysis systems to process the sample according to a protocol made up of different steps, such as extractions, purifications, concentrations, and a final detection stage. The latter is made in better conditions than with the first approach, which may justify the greater complexity of the process. It is this approach that is implemented in most methods for identifying pathogens, whether they be in biological samples (especially for in vitro diagnosis) or samples taken from the environment. The instrumentation traditionally used to carry out these protocols comprises a set of bulky benchtop apparatus, which needs to be plugged into the mains in order to function. However, there are many specific applications (to be discussed in this chapter) for which analysis instruments with the following characteristics are needed: Possibility of use outside the laboratory, i.e., instruments as small as possible, consuming little energy, and largely insensitive to external conditions of temperature, humidity, vibrations, and so on. Possibility of use by non-specialised agents, or even unmanned operation. Possibility of handling a large number of samples in a limited time, typically for high-throughput screening applications. Possibility of handling small samples. At the same time, a high level of performance is required, in particular in terms of (1) the detection limit, which must be as low as possible, (2) specificity, i.e., the ability to detect a particular molecule in a complex mixture, and (3) speed.

  18. Reliability Assessment for Low-cost Unmanned Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Freeman, Paul Michael

    Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.

  19. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea.

    PubMed

    Moradi, Masoud

    2014-10-15

    Medium Resolution Imaging Spectrometer (MERIS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and hydro-biological measurements were used to detect two very severe blooms in the southern Caspian Sea in 2005 and 2010. The MERIS Cyanobacteria Index (CIMERIS) was more reliable for detecting cyanobacterial blooms. The CIMERIS and MODIS cyanobacteria indices (CIMODIS) were compared in an effort to find a reliable method for detecting future blooms, as MERIS data were not available after April 2012. The CIMODIS had a linear relationship with and similar spatial patterns to the CIMERIS. On the CIMODIS images, extremely high biomass cyanobacteria patches were masked. A comparison of classified in situ data with the CIMODIS and Floating Algal Index (FAI) from four images of a severe bloom event in 2005 showed that the FAI is a reliable index for bloom detection over extremely dense patches. The corrected CIMODIS, the MODIS FAI and in situ data are adequate tools for cyanobacterial bloom monitoring in the southern Caspian Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Potential Biomarkers and Their Applications for Rapid and Reliable Detection of Malaria

    PubMed Central

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2014-01-01

    Malaria has been responsible for the highest mortality in most malaria endemic countries. Even after decades of malaria control campaigns, it still persists as a disease of high mortality due to improper diagnosis and rapidly evolving drug resistant malarial parasites. For efficient and economical malaria management, WHO recommends that all malaria suspected patients should receive proper diagnosis before administering drugs. It is thus imperative to develop fast, economical, and accurate techniques for diagnosis of malaria. In this regard an in-depth knowledge on malaria biomarkers is important to identify an appropriate biorecognition element and utilize it prudently to develop a reliable detection technique for diagnosis of the disease. Among the various biomarkers, plasmodial lactate dehydrogenase and histidine-rich protein II (HRP II) have received increasing attention for developing rapid and reliable detection techniques for malaria. The widely used rapid detection tests (RDTs) for malaria succumb to many drawbacks which promotes exploration of more efficient economical detection techniques. This paper provides an overview on the current status of malaria biomarkers, along with their potential utilization for developing different malaria diagnostic techniques and advanced biosensors. PMID:24804253

  1. Reliability and validity of the de Morton Mobility Index in individuals with sub-acute stroke.

    PubMed

    Braun, Tobias; Marks, Detlef; Thiel, Christian; Grüneberg, Christian

    2018-02-04

    To establish the validity and reliability of the de Morton Mobility Index (DEMMI) in patients with sub-acute stroke. This cross-sectional study was performed in a neurological rehabilitation hospital. We assessed unidimensionality, construct validity, internal consistency reliability, inter-rater reliability, minimal detectable change and possible floor and ceiling effects of the DEMMI in adult patients with sub-acute stroke. The study included a total sample of 121 patients with sub-acute stroke. We analysed validity (n = 109) and reliability (n = 51) in two sub-samples. Rasch analysis indicated unidimensionality with an overall fit to the model (chi-square = 12.37, p = 0.577). All hypotheses on construct validity were confirmed. Internal consistency reliability (Cronbach's alpha = 0.94) and inter-rater reliability (intraclass correlation coefficient = 0.95; 95% confidence interval: 0.92-0.97) were excellent. The minimal detectable change with 90% confidence was 13 points. No floor or ceiling effects were evident. These results indicate unidimensionality, sufficient internal consistency reliability, inter-rater reliability, and construct validity of the DEMMI in patients with a sub-acute stroke. Advantages of the DEMMI in clinical application are the short administration time, no need for special equipment and interval level data. The de Morton Mobility Index, therefore, may be a useful performance-based bedside test to measure mobility in individuals with a sub-acute stroke across the whole mobility spectrum. Implications for Rehabilitation The de Morton Mobility Index (DEMMI) is an unidimensional measurement instrument of mobility in individuals with sub-acute stroke. The DEMMI has excellent internal consistency and inter-rater reliability, and sufficient construct validity. The minimal detectable change of the DEMMI with 90% confidence in stroke rehabilitation is 13 points. The lack of any floor or ceiling effects on hospital admission indicates applicability across the whole mobility spectrum of patients with sub-acute stroke.

  2. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification.

    PubMed

    Janse, Ingmar; Hamidjaja, Raditijo A; Bok, Jasper M; van Rotterdam, Bart J

    2010-12-08

    Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum.

  3. Reliable detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis by using multiplex qPCR including internal controls for nucleic acid extraction and amplification

    PubMed Central

    2010-01-01

    Background Several pathogens could seriously affect public health if not recognized timely. To reduce the impact of such highly pathogenic micro-organisms, rapid and accurate diagnostic tools are needed for their detection in various samples, including environmental samples. Results Multiplex real-time PCRs were designed for rapid and reliable detection of three major pathogens that have the potential to cause high morbidity and mortality in humans: B. anthracis, F. tularensis and Y. pestis. The developed assays detect three pathogen-specific targets, including at least one chromosomal target, and one target from B. thuringiensis which is used as an internal control for nucleic acid extraction from refractory spores as well as successful DNA amplification. Validation of the PCRs showed a high analytical sensitivity, specificity and coverage of diverse pathogen strains. Conclusions The multiplex qPCR assays that were developed allow the rapid detection of 3 pathogen-specific targets simultaneously, without compromising sensitivity. The application of B. thuringiensis spores as internal controls further reduces false negative results. This ensures highly reliable detection, while template consumption and laboratory effort are kept at a minimum PMID:21143837

  4. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  5. Reliability and Validity of the Evidence-Based Practice Confidence (EPIC) Scale

    ERIC Educational Resources Information Center

    Salbach, Nancy M.; Jaglal, Susan B.; Williams, Jack I.

    2013-01-01

    Introduction: The reliability, minimal detectable change (MDC), and construct validity of the evidence-based practice confidence (EPIC) scale were evaluated among physical therapists (PTs) in clinical practice. Methods: A longitudinal mail survey was conducted. Internal consistency and test-retest reliability were estimated using Cronbach's alpha…

  6. Multi-detector row CT colonography: effect of collimation, pitch, and orientation on polyp detection in a human colectomy specimen.

    PubMed

    Taylor, Stuart A; Halligan, Steve; Bartram, Clive I; Morgan, Paul R; Talbot, Ian C; Fry, Nicola; Saunders, Brian P; Khosraviani, Kirosh; Atkin, Wendy

    2003-10-01

    To investigate the effects of orientation, collimation, pitch, and tube current setting on polyp detection at multi-detector row computed tomographic (CT) colonography and to determine the optimal combination of scanning parameters for screening. A colectomy specimen containing 117 polyps of different sizes was insufflated and imaged with a multi-detector row CT scanner at various collimation (1.25 and 2.5 mm), pitch (3 and 6), and tube current (50, 100, and 150 mA) settings. Two-dimensional multiplanar reformatted images and three-dimensional endoluminal surface renderings from the 12 resultant data sets were examined by one observer for the presence and conspicuity of polyps. The results were analyzed with Poisson regression and logistic regression to determine the effects of scanning parameters and of specimen orientation on polyp detection. The percentage of polyps that were detected significantly increased when collimation (P =.008) and table feed (P =.03) were decreased. Increased tube current resulted in improved detection only of polyps with a diameter of less than 5 mm. Polyps of less than 5 mm were optimally depicted with a collimation of 1.25 mm, a pitch of 3, and a tube current setting of 150 mA; polyps with a diameter greater than 5 mm were adequately depicted with 1.25-mm collimation and with either pitch setting and any of the three tube current settings. Small polyps in the transverse segment (positioned at a 90 degrees angle to the z axis of scanning) were significantly less visible than those in parallel or oblique orientations (P <.001). The effective radiation dose, calculated with a Monte Carlo simulation, was 1.4-10.0 mSv. Detection of small polyps (<5 mm) with multi-detector row CT is highly dependent on collimation, pitch, and, to a lesser extent, tube current. Collimation of 1.25 mm, combined with pitch of 6 and tube current of 50 mA, provides for reliable detection of polyps 5 mm or larger while limiting the effective radiation dose. Polyps smaller than 5 mm, however, may be poorly depicted with use of these settings in the transverse colon. Copyright RSNA, 2003

  7. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock.

    PubMed

    Smith, M A; Dyson, S J; Murray, R C

    2012-11-01

    To determine the reliability of 2 magnetic resonance imaging (MRI) systems for detection of cartilage and bone lesions of the equine fetlock. To test the hypotheses that lesions in cartilage, subchondral and trabecular bone of the equine fetlock verified using histopathology can be detected on high- and low-field MR images with a low incidence of false positive or negative results; that low-field images are less reliable than high-field images for detection of cartilage lesions; and that combining results of interpretation from different pulse sequences increases detection of cartilage lesions. High- and low-field MRI was performed on 19 limbs from horses identified with fetlock lameness prior to euthanasia. Grading systems were used to score cartilage, subchondral and trabecular bone on MR images and histopathology. Sensitivity and specificity were calculated for images. High-field T2*-weighted gradient echo (T2*W-GRE) and low-field T2-weighted fast spin echo (T2W-FSE) images had high sensitivity but low specificity for detection of cartilage lesions. All pulse sequences had high sensitivity and low-moderate specificity for detection of subchondral bone lesions and moderate sensitivity and moderate-high specificity for detection of trabecular bone lesions (histopathology as gold standard). For detection of lesions of trabecular bone low-field T2*W-GRE images had higher sensitivity and specificity than T2W-FSE images. There is high likelihood of false positive results using high- or low-field MRI for detection of cartilage lesions and moderate-high likelihood of false positive results for detection of subchondral bone lesions compared with histopathology. Combining results of interpretation from different pulse sequences did not increase detection of cartilage lesions. MRI interpretation of trabecular bone was more reliable than cartilage or subchondral bone in both MR systems. Independent interpretation of a variety of pulse sequences may maximise detection of cartilage and bone lesions in the fetlock. Clinicians should be aware of potential false positive and negative results. © 2012 EVJ Ltd.

  8. Tactile detection of slip: surface microgeometry and peripheral neural codes.

    PubMed

    Srinivasan, M A; Whitehouse, J M; LaMotte, R H

    1990-06-01

    1. The role of the microgeometry of planar surfaces in the detection of sliding of the surfaces on human and monkey fingerpads was investigated. By the use of a servo-controlled tactile stimulator to press and stroke glass plates on passive fingerpads of human subjects, the ability of humans to discriminate the direction of skin stretch caused by friction and to detect the sliding motion (slip) of the plates with or without micrometer-sized surface features was determined. To identify the associated peripheral neural codes, evoked responses to the same stimuli were recorded from single, low-threshold mechanoreceptive afferent fibers innervating the fingerpads of anesthetized macaque monkeys. 2. Humans could not detect the slip of a smooth glass plate on the fingerpad. However, the direction of skin stretch was perceived based on the information conveyed by the slowly adapting afferents that respond differentially to the stretch directions. Whereas the direction of skin stretch signaled the direction of impending slip, the perception of relative motion between the plate and the finger required the existence of detectable surface features. 3. Barely detectable micrometer-sized protrusions on smooth surfaces led to the detection of slip of these surfaces, because of the exclusive activation of rapidly adapting fibers of either the Meissner (RA) or the Pacinian (PC) type to specific geometries of the microfeatures. The motion of a smooth plate with a very small single raised dot (4 microns high, 550 microns diam) caused the sequential activation of neighboring RAs along the dot path, thus providing a reliable spatiotemporal code. The stroking of the plate with a fine homogeneous texture composed of a matrix of dots (1 microns high, 50 microns diam, and spaced at 100 microns center-to-center) induced vibrations in the fingerpad that activated only the PCs and resulted in an intensive code. 4. The results show that surprisingly small features on smooth surfaces are detected by humans and lead to the detection of slip of these surfaces, with the geometry of the microfeatures governing the associated neural codes. When the surface features are of sizes greater than the response thresholds of all the receptors, redundant spatiotemporal and intensive information is available for the detection of slip.

  9. Advances in the Kepler Transit Search Engine

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.

    2016-10-01

    Twenty years ago, no planets were known outside our own solar system. Since then, the discoveries of ~1500 exoplanets have radically altered our views of planets and planetary systems. This revolution is due in no small part to the Kepler Mission, which has discovered >1000 of these planets and >4000 planet candidates. While Kepler has shown that small rocky planets and planetary systems are quite common, the quest to find Earth's closest cousins and characterize their atmospheres presses forward with missions such as NASA Explorer Program's Transiting Exoplanet Survey Satellite (TESS) slated for launch in 2017 and ESA's PLATO mission scheduled for launch in 2024. These future missions pose daunting data processing challenges in terms of the number of stars, the amount of data, and the difficulties in detecting weak signatures of transiting small planets against a roaring background. These complications include instrument noise and systematic effects as well as the intrinsic stellar variability of the subjects under scrutiny. In this paper we review recent developments in the Kepler transit search pipeline improving both the yield and reliability of detected transit signatures. Many of the phenomena in light curves that represent noise can also trigger transit detection algorithms. The Kepler Mission has expended great effort in suppressing false positives from its planetary candidate catalogs. Over 18,000 transit-like signatures can be identified for a search across 4 years of data. Most of these signatures are artifacts, not planets. Vetting all such signatures historically takes several months' effort by many individuals. We describe the application of machine learning approaches for the automated vetting and production of planet candidate catalogs. These algorithms can improve the efficiency of the human vetting effort as well as quantifying the likelihood that each candidate is truly a planet. This information is crucial for obtaining valid planet occurrence rates. Machine learning approaches may prove to be critical to the success of future missions such as TESS and PLATO.

  10. Change detection over Sokolov open-pit mining area, Czech Republic, using multi-temporal HyMAP data (2009-2010)

    NASA Astrophysics Data System (ADS)

    Adar, S.; Notesco, G.; Brook, A.; Livne, I.; Rojik, P.; Kopacková, V.; Zelenkova, K.; Misurec, J.; Bourguignon, A.; Chevrel, S.; Ehrler, C.; Fisher, C.; Hanus, J.; Shkolnisky, Y.; Ben Dor, E.

    2011-11-01

    Two HyMap images acquired over the same lignite open-pit mining site in Sokolov, Czech Republic, during the summers of 2009 and 2010 (12 months apart), were investigated in this study. The site selected for this research is one of three test sites (the others being in South Africa and Kyrgyzstan) within the framework of the EO-MINERS FP7 Project (http://www.eo-miners.eu). The goal of EO-MINERS is to "integrate new and existing Earth Observation tools to improve best practice in mining activities and to reduce the mining related environmental and societal footprint". Accordingly, the main objective of the current study was to develop hyperspectral-based means for the detection of small spectral changes and to relate these changes to possible degradation or reclamation indicators of the area under investigation. To ensure significant detection of small spectral changes, the temporal domain was investigated along with careful generation of reflectance information. Thus, intensive spectroradiometric ground measurements were carried out to ensure calibration and validation aspects during both overflights. The performance of these corrections was assessed using the Quality Indicators setup developed under a different FP7 project-EUFAR (http://www.eufar.net), which helped select the highest quality data for further work. This approach allows direct distinction of the real information from noise. The reflectance images were used as input for the application of spectral-based change-detection algorithms and indices to account for small and reliable changes. The related algorithms were then developed and applied on a pixel-by-pixel basis to map spectral changes over the space of a year. Using field spectroscopy and ground truth measurements on both overpass dates, it was possible to explain the results and allocate spatial kinetic processes of the environmental changes during the time elapsed between the flights. It was found, for instance, that significant spectral changes are capable of revealing mineral processes, vegetation status and soil formation long before these are apparent to the naked eye. Further study is being conducted under the above initiative to extend this approach to other mining areas worldwide and to improve the robustness of the developed algorithm.

  11. Small and Rural Wastewater Systems

    EPA Pesticide Factsheets

    Many tools, training, technical assistance, and funding resources are available to develop and maintain reliable and affordable wastewater treatment systems in small and rural communities including in tribal and U.S.-Mexico Border area.

  12. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  13. A simple and rapid creatinine sensing via DLS selectivity, using calix[4]arene thiol functionalized gold nanoparticles.

    PubMed

    Sutariya, Pinkesh G; Pandya, Alok; Lodha, Anand; Menon, Shobhana K

    2016-01-15

    A new, simple, ultra-sensitive and selective approach has been reported for the "on spot" colorimetric detection of creatinine based on calix[4]arene functionalized gold nanoparticles (AuNPs) with excellent discrimination in the presence of other biomolecules. The lower detection limit of the method is 2.16nM. The gold nanoparticles and p-tert-butylcalix[4]arene were synthesized by microwave assisted method. Specifically, in our study, we used dynamic light scattering (DLS) which is a powerful method for the determination of small changes in particle size, improved selectivity and sensitivity of the creatinine detection system over colorimetric method. The nanoassembly is characterized by Transmission electron microscopy (TEM), DLS, UV-vis and ESI-MS spectroscopy, which demonstrates the binding affinity due its ability of hydrogen bonding and electrostatic interaction between -NH group of creatinine and pSDSC4. It exhibits fast response time (<60s) to creatinine and has long shelf-life (>5 weeks). The developed pSDSC4-AuNPs based creatinine biosensor will be established as simple, reliable and accurate tool for the determination of creatinine in human urine samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics.

    PubMed

    Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V

    2017-01-01

    Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .

  15. A Comparative Analysis of Community Detection Algorithms on Artificial Networks

    PubMed Central

    Yang, Zhao; Algesheimer, René; Tessone, Claudio J.

    2016-01-01

    Many community detection algorithms have been developed to uncover the mesoscopic properties of complex networks. However how good an algorithm is, in terms of accuracy and computing time, remains still open. Testing algorithms on real-world network has certain restrictions which made their insights potentially biased: the networks are usually small, and the underlying communities are not defined objectively. In this study, we employ the Lancichinetti-Fortunato-Radicchi benchmark graph to test eight state-of-the-art algorithms. We quantify the accuracy using complementary measures and algorithms’ computing time. Based on simple network properties and the aforementioned results, we provide guidelines that help to choose the most adequate community detection algorithm for a given network. Moreover, these rules allow uncovering limitations in the use of specific algorithms given macroscopic network properties. Our contribution is threefold: firstly, we provide actual techniques to determine which is the most suited algorithm in most circumstances based on observable properties of the network under consideration. Secondly, we use the mixing parameter as an easily measurable indicator of finding the ranges of reliability of the different algorithms. Finally, we study the dependency with network size focusing on both the algorithm’s predicting power and the effective computing time. PMID:27476470

  16. Non-invasive assessment of parasitic nematode species diversity in wild Soay sheep using molecular markers.

    PubMed

    Wimmer, B; Craig, B H; Pilkington, J G; Pemberton, J M

    2004-04-01

    Considerable effort has been put into detecting and identifying parasitic nematodes in live ruminants, but to date most studies are limited to a small group of nematodes and/or to experimentally infected sheep. In this study, a PCR-based assay using species-specific primer pairs, located in the second internal transcribed spacer ribosomal DNA, was developed to identify nine different species from six different families of parasitic nematodes in a wild, unmanaged and naturally infected population of sheep. Each primer pair was tested for its specificity and sensitivity and it exclusively amplified the species it was designed for and exhibited a high degree of sensitivity. The method was applied to eggs and cultured larvae to identify the parasitic nematodes present in a pooled faecal sample from several host individuals with unknown parasite burden. To test detection reliability, a faecal sample from an individual with known parasite burden (through post-mortem analysis) was also examined. All species present could be correctly identified by PCR, but detecting very low levels and/or early stages of infection proved to be difficult. The method was also tested for its applicability to high through-put screening of faecal samples.

  17. A megahertz-frequency tunable piecewise-linear electromechanical resonator realized via nonlinear feedback

    NASA Astrophysics Data System (ADS)

    Bajaj, Nikhil; Chiu, George T.-C.; Rhoads, Jeffrey F.

    2018-07-01

    Vibration-based sensing modalities traditionally have relied upon monitoring small shifts in natural frequency in order to detect structural changes (such as those in mass or stiffness). In contrast, bifurcation-based sensing schemes rely on the detection of a qualitative change in the behavior of a system as a parameter is varied. This can produce easy-to-detect changes in response amplitude with high sensitivity to structural change, but requires resonant devices with specific dynamic behavior which is not always easily reproduced. Desirable behavior for such devices can be produced reliably via nonlinear feedback circuitry, but has in past efforts been largely limited to sub-MHz operation, partially due to the time delay limitations present in certain nonlinear feedback circuits, such as multipliers. This work demonstrates the design and implementation of a piecewise-linear resonator realized via diode- and integrated circuit-based feedback electronics and a quartz crystal resonator. The proposed system is fabricated and characterized, and the creation and selective placement of the bifurcation points of the overall electromechanical system is demonstrated by tuning the circuit gains. The demonstrated circuit operates at 16 MHz. Preliminary modeling and analysis is presented that qualitatively agrees with the experimentally-observed behavior.

  18. Mouse EEG spike detection based on the adapted continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Tieng, Quang M.; Kharatishvili, Irina; Chen, Min; Reutens, David C.

    2016-04-01

    Objective. Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous. Thus developing a sensitive and reliable automated algorithm for analyzing EEG data is necessary. Approach. A new algorithm for detecting and classifying interictal spikes in mouse EEG recordings is proposed, based on the adapted continuous wavelet transform (CWT). The construction of the adapted mother wavelet is founded on a template obtained from a sample comprising the first few minutes of an EEG data set. Main Result. The algorithm was tested with EEG data from a mouse model of epilepsy and experimental results showed that the algorithm could distinguish EEG spikes from other transient waveforms with a high degree of sensitivity and specificity. Significance. Differing from existing approaches, the proposed approach combines wavelet denoising, to isolate transient signals, with adapted CWT-based template matching, to detect true interictal spikes. Using the adapted wavelet constructed from a predefined template, the adapted CWT is calculated on small EEG segments to fit dynamical changes in the EEG recording.

  19. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group.

    PubMed

    Tuck, Melissa K; Chan, Daniel W; Chia, David; Godwin, Andrew K; Grizzle, William E; Krueger, Karl E; Rom, William; Sanda, Martin; Sorbara, Lynn; Stass, Sanford; Wang, Wendy; Brenner, Dean E

    2009-01-01

    Specimen collection is an integral component of clinical research. Specimens from subjects with various stages of cancers or other conditions, as well as those without disease, are critical tools in the hunt for biomarkers, predictors, or tests that will detect serious diseases earlier or more readily than currently possible. Analytic methodologies evolve quickly. Access to high-quality specimens, collected and handled in standardized ways that minimize potential bias or confounding factors, is key to the "bench to bedside" aim of translational research. It is essential that standard operating procedures, "the how" of creating the repositories, be defined prospectively when designing clinical trials. Small differences in the processing or handling of a specimen can have dramatic effects in analytical reliability and reproducibility, especially when multiplex methods are used. A representative working group, Standard Operating Procedures Internal Working Group (SOPIWG), comprised of members from across Early Detection Research Network (EDRN) was formed to develop standard operating procedures (SOPs) for various types of specimens collected and managed for our biomarker discovery and validation work. This report presents our consensus on SOPs for the collection, processing, handling, and storage of serum and plasma for biomarker discovery and validation.

  20. Anchoring Linkage Groups of the Rosa Genetic Map to Physical Chromosomes with Tyramide-FISH and EST-SNP Markers

    PubMed Central

    Kirov, Ilya; Van Laere, Katrijn; De Riek, Jan; De Keyser, Ellen; Van Roy, Nadine; Khrustaleva, Ludmila

    2014-01-01

    In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria. PMID:24755945

Top