Science.gov

Sample records for relict sand wedges

  1. Intrinsic versus extrinsic variability of analogue sand-box experiments - Insights from statistical analysis of repeated accretionary sand wedge experiments

    NASA Astrophysics Data System (ADS)

    Santimano, Tasca; Rosenau, Matthias; Oncken, Onno

    2015-06-01

    Analogue models are not perfectly reproducible even under controlled boundary conditions which make their interpretation and application not always straight forward. As any scientific experiment they include some random component which can be influenced both by intrinsic (inherent processes) and extrinsic (boundary conditions, material properties) sources. In order to help in the assessment of analogue model results, we discriminate and quantify the intrinsic versus extrinsic variability of results from "sandbox" models of accretionary wedges that were repeated in a controlled environment. The extrinsic source of variability, i.e. the parameter varied is the nature of the décollement (material, friction and thickness). Experiment observables include geometric properties of the faults (lifetime, spacing, dip) as well as wedge geometry (height, slope, length). For each variable we calculated the coefficient of variance (CV) and quantified the variability as a symmetric distribution (Normal, Laplacian) or asymmetric distribution (Gamma) using a Chi squared test (χ2). Observables like fault dip/back thrust dip (CV = 0.6-0.7/0.2-0.6) are less variable and decrease in magnitude with decreasing basal friction. Variables that are time dependent like fault lifetime (CV = 0.19-0.56) and fault spacing (CV = 0.12 - 0.36) have a higher CV consequently affecting the variability of wedge slope (CV = 0.12-0.33). These observables also increase in magnitude with increasing basal friction. As the mechanical complexity of the evolving wedge increases over time so does the CV and asymmetry of the distribution. In addition, we confirm the repeatability of experiments using an ANOVA test. Through the statistical analysis of results from repeated experiments we present a tool to quantify variability and an alternative method to gaining better insights into the dynamic mechanics of deformation in analogue sand wedges.

  2. Sand provenance documents continuing accretion of the pro-wedge and erosional unroofing of the retro-wedge during arc-continent collision (Taiwan)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Padoan, Marta; Resentini, Alberto; Vezzoli, Giovanni; Castelltort, Sebastien; Tien-Shun Lin, Andrew

    2014-05-01

    The Taiwan doubly-vergent orogenic wedge developed during collision between the Luzon volcanic arc and the Chinese passive continental margin since the late Miocene (Byrne et al., 2011). In the east, the Coastal Range represents the northernmost extension of the Luzon arc and includes Neogene volcanic rocks and Plio-Pleistocene siliciclastic deposits. West of the plate boundary, running along the Longitudinal Valley, the Central Range includes polymetamorphic rocks (Tananao Complex) and a Slate Belt (Backbone Range and Hsuehshan Range). Farther to the west, the Western Foothills are a fold-thrust belt incorporating Oligo-Miocene sediments of the Chinese margin and younger foreland-basin deposits. High-resolution framework-petrography and heavy-mineral analyses were carried out on 106 samples collected from major rivers and beaches all around Taiwan in October 2012. The Coastal Range sheds feldspatho-lithic volcaniclastic sands including rich clinopyroxene-hypersthene suites with kaersutitic hornblende. Recycling of Plio-Pleistocene siliciclastics produces quartzo-lithic sands with cellular serpentinite and poor suites including hypersthene, epidote, clinopyroxene, kaersutitic hornblende and rare Cr-spinel. Similar mineralogy characterizes detritus from the Liji Mélange. Sands from the Tananao Complex are quartzo-lithic metamorphiclastic with common marble grains, sporadic metabasite, and moderately rich epidote-hornblende suites. Sands from the Slate Belt are invariably quartzo-lithic with very poor zircon-tourmaline suites. Phyllite and slate grains dominate in the east (Yuli Belt), slate grains in the middle (Backbone Range), and shale/siltstone and slate grains in the northwest (Hsuehshan Range). Neogene strata of the foothills shed litho-quartzose sands with poor suites including zircon, tourmaline, and garnet. Sands from the Tatung volcano are feldspatho-quartzo-lithic with extremely rich hypersthene-clinopyroxene suites including kaersutitic hornblende. The

  3. Relict grains in chondrules

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.

    1981-01-01

    Attention is given to the fact that a significant fraction of the chondrules from ordinary chondrites contain silicate grains that survived the chondrule formation process without melting. Typically, these grains consist of coarse olivine, rarely orthopyroxene, crystals located in the core of chondrules and displaying a zoning that is inconsistent with crystallization from a silicate melt. It is noted that the relict grains still preserve the imprint of processes that occurred in the solar nebula and, in some cases, may include the isotopic record of interstellar grains. Information is presented on the chondrule precursor materials and the process of chondrule formation which was acquired by a compositional and textural study of three of the most unequilibrated type 3 ordinary chondrites.

  4. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  5. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  6. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  7. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  8. Wedge Joints for Trusses

    NASA Technical Reports Server (NTRS)

    Wood, Kenneth E.

    1987-01-01

    Structure assembled rapidly with simple hand tools. Proposed locking wedge joints enable rapid assembly of lightweight beams, towers, scaffolds, and other truss-type structures. Lightweight structure assembled from tubular struts joined at nodes by wedge pins fitting into mating slots. Joint assembled rapidly by seating wedge pin in V-shaped slots and deforming end of strut until primary pawl engages it.

  9. Coupled wedge waves.

    PubMed

    Abell, Bradley C; Pyrak-Nolte, Laura J

    2013-11-01

    The interface between two wedges can be treated as a displacement discontinuity characterized by elastic stiffnesses. By representing the boundary between the two quarter-spaces as a displacement discontinuity, coupled wedge waves were determined theoretically to be dispersive and to depend on the specific stiffness of the non-welded contact between the two wedges. Laboratory experiments on isotropic and anisotropic aluminum confirmed the theoretical prediction that the velocity of coupled wedge waves, for a non-welded interface, ranged continuously from the single wedge wave velocity at low stress to the Rayleigh velocity as the load applied normal to the interface was increased. Elastic waves propagating along the coupled wedges of two quarter-spaces in non-welded contact are found to exist theoretically even when the material properties of the two quarter-spaces are the same.

  10. Micromachine Wedge Stepping Motor

    SciTech Connect

    Allen, J.J.; Schriner, H.K.

    1998-11-04

    A wedge stepping motor, which will index a mechanism, has been designed and fabricated in the surface rnicromachine SUMMiT process. This device has demonstrated the ability to index one gear tooth at a time with speeds up to 205 teeth/see. The wedge stepper motor has the following features, whi:h will be useful in a number of applications. o The ability to precisely position mechanical components. . Simple pulse signals can be used for operation. o Only 2 drive signals are requixed for operation. o Torque and precision capabilities increase with device size . The device to be indexed is restrained at all times by the wedge shaped tooth that is used for actuation. This paper will discuss the theory of operation and desi=m of the wedge stepping motor. The fabrication and testing of I he device will also be presented.

  11. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  12. The Cosmonaut Sea Wedge

    USGS Publications Warehouse

    Solli, K.; Kuvaas, B.; Kristoffersen, Y.; Leitchenkov, G.; Guseva, J.; Gandyukhin, V.

    2007-01-01

    A set of multi-channel seismic profiles (~15000 km) acquired by Russia, Norway and Australia has been used to investigate the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge below the upper part of the continental rise. The wedge, herein termed the Cosmonaut Sea Wedge, is positioned stratigraphically underneath the inferred glaciomarine section and extends for at least 1200 km along the continental margin and from 80 to about 250 km seaward or to the north. Lateral variations in the growth pattern of the wedge indicate several overlapping depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits suggests that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems.

  13. Influence of Relict Joints on Permeability of Residual Soil

    NASA Astrophysics Data System (ADS)

    Talib, Z. A.; Kassim, A.; Yunusa, G. H.

    2016-07-01

    Weathering process of granitic material results in the formation of relict joint in lateritic layer of the weathering profile. The number and arrangements of the relict joints affects the permeability of the residual soil which invariably affects water flow and suction distribution in the residual soil. Although the permeability of residual soil without a relict joint can be determined using standard permeability test, it is difficult to be measured when a relict joint is incorporated due to limitation of size and area of the standard equipment. Hence, modified permeability test equipment is introduced in this study. Two arrangement of the relict joint in the equipment were considered. In the first arrangement one relict joint with various spacing were tested while the orientation and spacing of the relict joint were tested using two relict joints in the second arrangement. The results obtained shows that the permeability of the residual soil due to one and two relict joint varies by two orders of magnitude. Therefore, the number and spacing of relict joints modified the permeability of residual soil.

  14. Europa Wedge Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This image shows an area of crustal separation on Jupiter's moon, Europa. Lower resolution pictures taken earlier in the tour of NASA's Galileo spacecraft revealed that dark wedge-shaped bands in this region are areas where the icy crust has completely pulled apart. Dark material has filled up from below and filled the void created by this separation.

    In the lower left corner of this image, taken by Galileo's onboard camera on December 16, 1997, a portion of one dark wedge area is visible, revealing a linear texture along the trend of the wedge. The lines of the texture change orientation slightly and reflect the fact that we are looking at a bend in the wedge. The older, bright background, visible on the right half of the image, is criss-crossed with ridges. A large, bright ridge runs east-west through the upper part of the image, cutting across both the older background plains and the wedge. This ridge is rough in texture, with numerous small terraces and troughs containing dark material.

    North is to the top of the picture and the sun illuminates the surface from the northwest. This image, centered at approximately 16.5 degrees south latitude and 196.5 degrees west longitude, covers an area approximately 10 kilometers square (about 6.5 miles square). The resolution of this image is about 26 meters per picture element. This image was taken by the solid state imaging system from a distance of 1250 kilometers (750 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.

  15. Relicts and models of the RNA world

    NASA Astrophysics Data System (ADS)

    Lehto, Kirsi; Karetnikov, Alexey

    2005-01-01

    It is widely believed that the current DNA-RNA-protein-based life forms have evolved from preceding RNA-protein-based life forms, and these again, from mere RNA replicons. By rationale, it can be assumed that the early RNA replicons were fully heterotrophic in terms of obtaining all their building blocks from their environment. In the absence of protein catalysts, their essential life functions had to be mediated by simple functional structures and mechanisms, such as RNA secondary structures, RNA-RNA interactions and RNA-mediated catalysis, and possibly by catalytic minerals or clays. The central role of RNA catalysts in early life forms is supported by the fact that several catalytic RNAs still perform central biological functions in current life forms, and at least some of these may be derived as molecular relicts from the early RNA-based life. The RNA-catalysed metabolic reactions and molecular fossils are more conserved in the eukaryotic life forms than in the prokaryotes, suggesting that the linear eukaryote genomes may more closely resemble the structure and function of the early RNA replicons, than what do the circular prokaryote genomes. Present-day RNA viruses and viroids utilize ultimately simple life strategies, which may be similar to those used by the early RNA replicons. Thus, molecular and functional properties of viruses and viroids may be considered as examples or models of the structures and replication mechanisms, which might have been used for the replication of the early biopolymers.

  16. Relict landscape resistance to dissection by upstream migrating knickpoints

    NASA Astrophysics Data System (ADS)

    Brocard, Gilles Y.; Willenbring, Jane K.; Miller, Thomas E.; Scatena, Frederik N.

    2016-06-01

    Expanses of subdued topographies are common at high elevation in mountain ranges. They are often interpreted as relict landscapes and are expected to be replaced by steeper topography as erosion proceeds. Preservation of such relict fragments can merely reflect the fact that it takes time to remove any preexisting topography. However, relict fragments could also possess intrinsic characteristics that make them resilient to dissection. We document here the propagation of a wave of dissection across an uplifted relict landscape in Puerto Rico. Using 10Be-26Al burial dating on cave sediments, we show that uplift started 4 Ma and that river knickpoints have since migrated very slowly across the landscape. Modern detrital 10Be erosion rates are consistent with these long-term rates of knickpoint retreat. Analysis of knickpoint distribution, combined with visual observations along the streambeds, indicates that incision by abrasion and plucking is so slow that bedrock weathering becomes a competing process of knickpoint retreat. The studied rivers flow over a massive stock of quartz diorite surrounded by an aureole of metavolcanic rocks. Earlier studies have shown that vegetation over the relict topography efficiently limits erosion, allowing for the formation of a thick saprolite underneath. Such slow erosion reduces streambed load fluxes delivered to the knickpoints, as well as bed load grain size. Both processes limit abrasion. Compounding the effect of slow abrasion, wide joint spacing in the bedrock makes plucking infrequent. Thus, the characteristics of the relict upstream landscape have a direct effect on stream incision farther downstream, reducing the celerity at which the relict, subdued landscape is dissected. We conclude that similar top-down controls on river incision rate may help many relict landscapes to persist amidst highly dissected topographies.

  17. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  18. Pseudo-ice-wedge casts of Connecticut, northeastern United States

    NASA Astrophysics Data System (ADS)

    Black, Robert F.

    1983-07-01

    Since 1965, ice-wedge casts have been reported in deposits of sand and gravel in Connecticut. These are wedge forms up to 1.1 m wide and many meters high. Most are single forms, not in polygonal array. They are found in adjoining states as well. Their distribution, dimensions, structure, and fabric and an assessment of the former physical environment preclude their origin as permafrost features. They appear to be tension fractures produced by the loading of coarse clastics on fine clastics near and below the water table where sediments creep toward a stream or depression. Locally movement started with kettle formation during deglaciation. However, some wedges cut horizontal layers of iron-coated sand and gravel and must be younger than those distinctly postglacial phenomena. Moreover, modern B horizons of the overlying soil have moved down into some wedges more than 2 m, indicating that fracturing is still active today. Complex fracture fillings in bedrock also have been attributed to a permafrost origin, but this too seems unlikely.

  19. Sojourner, Wedge, & Shark

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This Imager for Mars Pathfinder (IMP) image taken near the end of daytime operations on Sol 50 shows the Sojourner rover between the rocks 'Wedge' (foreground) and 'Shark' (behind rover). The rover successfully deployed its Alpha Proton X-Ray Spectrometer on Shark on Sol 52.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  20. Wedge and Flat Top

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Flat Top, the rectangular rock at right, is part of a stretch of rocky terrain in this image, taken by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. Dust has accumulated on the top of Flat Top, but is not present on the sides due to the steep angles of the rock. This dust may have been placed by dust storms moving across the Martian surface. The rock dubbed 'Wedge' is at left. The objects have been studied using several different color filters on the IMP camera.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  1. Ultrasonic fluid densitometer having liquid/wedge and gas/wedge interfaces

    DOEpatents

    Greenwood, Margaret S.

    2000-01-01

    The present invention is an ultrasonic liquid densitometer that uses a material wedge having two sections, one with a liquid/wedge interface and another with a gas/wedge interface. It is preferred that the wedge have an acoustic impedance that is near the acoustic impedance of the liquid, specifically less than a factor of 11 greater than the acoustic impedance of the liquid. Ultrasonic signals are internally reflected within the material wedge. Density of a liquid is determined by immersing the wedge into the liquid and measuring reflections of ultrasound at the liquid/wedge interface and at the gas/wedge interface.

  2. Charcoal kiln relicts - a favorable site for tree growth?

    NASA Astrophysics Data System (ADS)

    Buras, Allan; Hirsch, Florian; van der Maaten, Ernst; Takla, Melanie; Räbiger, Christin; Cruz Garcia, Roberto; Schneider, Anna; Raab, Alexandra; Raab, Thomas; Wilmking, Martin

    2015-04-01

    Soils with incompletely combusted organic material (aka 'black carbon') are considered fertile for plant growth. Considerable enrichment of soils with black carbon is known from Chernozems, from anthropogenic induced altering of soils like the 'Terra Preta' in South America (e.g. Glaser, 2001), and from charcoal kiln relicts. Recent studies have reported a high spatial frequency of charcoal kiln relicts in the Northeastern German lowlands (Raab et al., 2015), which today are often overgrown by forest plantations. In this context the question arises whether these sites are favorable for tree growth. Here we compare the performance of 22 Pinus sylvestris individuals - a commonly used tree species in forestry - growing on charcoal kiln relicts with 22 control trees. Growth performance (height growth and diameter growth) of the trees was determined using dendrochronological techniques, i.e. standard ring-width measurements were undertaken on each two cores per tree and tree height was measured in the field. Several other wood properties such as annual wood density, average resin content, as well as wood chemistry were analyzed. Our results indicate that trees growing on charcoal kiln relicts grow significantly less and have a significantly lower wood density in comparison with control trees. Specific chemical components such as Manganese as well as resin contents were significantly higher in kiln trees. These results highlight that tree growth on charcoal kiln relicts is actually hampered instead of enhanced. Possibly this is a combined effect of differing physical soil properties which alter soil water accessibility for plants and differing chemical soil properties which may negatively affect tree growth either if toxic limits are surpassed or if soil nutrient availability is decreased. Additional soil analyses with respect to soil texture and soil chemistry shall reveal further insight into this hypothesis. Given the frequent distribution of charcoal kiln relicts in

  3. Steepened channels upstream of knickpoints: Controls on relict landscape response

    NASA Astrophysics Data System (ADS)

    Berlin, Maureen M.; Anderson, Robert S.

    2009-09-01

    The morphology of a relict landscape provides important insight into erosion rates and processes prior to base level fall. Fluvial knickpoints are commonly thought to form a leak-proof moving boundary between a rejuvenated landscape below and a relict landscape above. We argue that fluvial rejuvenation may leak farther upstream, depending on the rate and style of knickpoint migration. The outer margin of a relict landscape should therefore be used with caution in tectonic geomorphology studies, as channel steepening upstream of knickpoints could reduce the relict area. We explore the response of the Roan Plateau to knickpoint retreat triggered by late Cenozoic upper Colorado River incision. Multiple knickpoints (100-m waterfalls) separate a low-relief, upper landscape from incised canyons below. Two digital elevation model data sets (10-m U.S. Geological Survey and 1-m Airborne Laser Swath Mapping) indicate steeper channels above waterfalls relative to concave channels farther upstream. The steepened reaches are several kilometers long, correspond to doubling of slope, and exhibit channel narrowing and an increase in hillslope angle. We compare two mechanisms for generating steepened reaches. The first uses a recent model for erosion amplification due to flow acceleration at the waterfall lip. The second acknowledges that waterfall lips may be limited to the outcrop of a resistant formation. Subtle structural warping of the stratigraphy can lead to lowering of the waterfall lip as it retreats, thus lowering base level for upstream channels. Results of numerical modeling experiments suggest the latter mechanism is more consistent with our observations of long, mildly steepened reaches.

  4. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, R.P.; Feldman, M.

    1992-12-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10[sup 8]. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing. 7 figs.

  5. Wavelength meter having elliptical wedge

    DOEpatents

    Hackel, Richard P.; Feldman, Mark

    1992-01-01

    A wavelength meter is disclosed which can determine the wavelength of a laser beam from a laser source within an accuracy range of two parts in 10.sup.8. The wavelength meter has wedge having an elliptically shaped face to the optical path of the laser source and includes interferometer plates which form a vacuum housing.

  6. Wedge immersed thermistor bolometer measures infrared radiation

    NASA Technical Reports Server (NTRS)

    Dreyfus, M. G.

    1965-01-01

    Wedge immersed-thermistor bolometer measures infrared radiation in the atmosphere. The thermistor flakes are immersed by optical contact on a wedge-shaped germanium lens whose narrow dimension is clamped between two complementary wedge-shaped germanium blocks bonded with a suitable adhesive.

  7. Four new triterpenes from the endemic relict shrub Tetraena mongolica.

    PubMed

    Tang, Sheng-An; Ding, Lin-Lin; Zhai, Hui-Yuan; Qin, Nan; Duan, Hong-Quan

    2012-01-01

    A chemical investigation of the endemic relict shrub Tetraena mongolica led to the isolation of four new triterpenes: 11α,12α:13β,28-diepoxyoleanane-3β-yl trans-caffeate (1), 3β-hydroxy-11α,12α-epoxyoleanane-28-al (2), olean-11-en-28-al-3β-yl trans-caffeate (3), and 28-acetoxy-olean-12-en-3β-yl trans-caffeate (4). Their structures were elucidated by extensive spectroscopic methods. PMID:22873370

  8. Sands-on Learning.

    ERIC Educational Resources Information Center

    Vandervoort, Frances S.

    1989-01-01

    Provides information for the development of a lesson which teaches students about sand, discusses facts about sands, sand studies, life in the sands, and sand activities. Includes diagrams showing the range in sand grain shape, formation of sand ripples, and sand samples from around the world. (RT)

  9. Fusion of arkosic sand by intrusive andesite

    USGS Publications Warehouse

    Bailey, Roy A.

    1954-01-01

    An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.

  10. A small Tim homohexamer in the relict mitochondrion of Cryptosporidium.

    PubMed

    Alcock, Felicity; Webb, Chaille T; Dolezal, Pavel; Hewitt, Victoria; Shingu-Vasquez, Miguel; Likić, Vladimir A; Traven, Ana; Lithgow, Trevor

    2012-01-01

    The apicomplexan parasite Cryptosporidium parvum possesses a mitosome, a relict mitochondrion with a greatly reduced metabolic capability. This mitosome houses a mitochondrial-type protein import apparatus, but elements of the protein import pathway have been reduced, and even lost, through evolution. The small Tim protein family is a case in point. The genomes of C. parvum and related species of Cryptosporidium each encode just one small Tim protein, CpTimS. This observation challenged the tenet that small Tim proteins are always found in pairs as α3β3 hexamers. We show that the atypical CpTimS exists as a relatively unstable homohexamer, shedding light both on the early evolution of the small Tim protein family and on small Tim hexamer formation in contemporary eukaryotes.

  11. Relict grains in chondrules: Evidence for chondrule recycling

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1994-01-01

    The presence of relict grains in chondrules, which offers some insight into the degree to which chondrule material was recycled in the chondrule-forming region, is discussed in this report. Relics are grains that clearly did not crystallize in situ in the host chondrule. They represent coarse-grained precursor material that did not melt during chondrule formation, and provide the only tangible record of chondrule precursor grains. Relics are commonly identified by a large difference in size, textural differences, and/or significant compositional differences compared with normal grains in the host chondrule. Two important types of relics are: (1) 'dusty,' metal-bearing grains of olivine and pyroxene; and (2) forsterite (Mg-rich olivine) grains present in FeO-rich chondrules.

  12. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  13. Ice Particle Impacts on a Moving Wedge

    NASA Technical Reports Server (NTRS)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Lyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0, 30, 45, and 60. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  14. Wedged Fibers Suppress Feedback of Laser Beam

    NASA Technical Reports Server (NTRS)

    Ladany, I.

    1986-01-01

    When injected laser is coupled into optical fiber, emission instabilities arise because of optical feedback losses from fiber into laser. Coupling efficiencies as high as 80 percent, however, obtained by shaping end of multimode fiber into obtuse-angled wedge. Because slanted sides eliminate back reflection, such wedged fiber achieves high coupling efficiency.

  15. How can we detect relict landslides? - and are they really relict? Lessons from Garbatka landslide terrain, Sudetes, SW Poland

    NASA Astrophysics Data System (ADS)

    Migoń, Piotr; Kacprzak, Andrzej; Malik, Ireneusz; Owczarek, Piotr; Kasprzak, Marek; Wistuba, Małgorzata

    2013-04-01

    Landslide hazard for the Sudetes mountain range, Poland/Czech Republic, is generally estimated as low. Only a few historic landslides of larger dimensions have been recorded, usually triggered by heavy rain on river undercut hillslopes. However, recent geomorphic research indicates that in many localities within the Sudetes relict landslides of poorly specified age occur. The largest concentration of relict forms occurs in the Kamienne Mountains, in the Middle Sudetes. They have been recognized using field mapping that identified degraded head scarps, tongue-like depositional bodies within valley floors, steepened toes, and large allochthonous boulders on low gradient terrain, far from source. One such an apparently relict landslide fills the small valley below Mt Garbatka (792 m), near the village of Sokołowsko. It is approximately 1 km long and 200-300 m wide, while its flattened surface morphology and the occurrence of large dispersed boulders in the distal part suggests a flow-like movement. Geomorphic signatures of landsliding are subdued, suggesting that considerable time has elapsed since the origin of the landslide. This is consistent with the results of an extensive soil survey within the landslide body and on surrounding slopes. Similarity of soil properties and well-developed horizonation of profiles both within the landslide and outside it show that no major disturbance has taken place during soil formation, i.e. during the Holocene. This would suggest pre-Holocene age of the landslide. However, dendrogeomorphological research yielded evidence of numerous growth disturbances recorded in tree rings of Norway spruce growing on the landslide body. Some trees are tilted, mostly upslope. Former studies have revealed that this is a symptom of contemporary ground movements. The analysis of tree-ring eccentricity allowed us to determine the frequency of disturbance events (avg. 1 per 10 years during the last 70 years). These signals are interpreted that the

  16. Stable isotope and gas properties of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Boereboom, T.; Samyn, D.; Meyer, H.; Tison, J.-L.

    2011-12-01

    This paper presents and discusses the texture, fabric and gas properties (contents of total gas, O2, N2, CO2, and CH4) of two ice wedges from Cape Mamontov Klyk, Laptev Sea, Northern Siberia. The two ice wedges display contrasting structures: one being of relatively "clean" ice and the other showing clean ice at its centre as well as debris-rich ice on its sides (referred to as ice-sand wedge). A comparison of gas properties, crystal size, fabrics and stable isotope data (δ18O and δD) allows discriminating between three different facies of ice with specific paleoenvironmental signatures, suggesting different climatic conditions and rates of biological activity. More specifically, total gas content and composition reveal variable intensities of meltwater infiltration and show the impact of biological processes with contrasting contributions from anaerobic and aerobic conditions. Stable isotope data are shown to be valid for discussing changes in paleoenvironmental conditions and/or decipher different sources for the snow feeding into the ice wedges with time. Our data also give support to the previous assumption that the composite ice wedge was formed in Pleistocene and the ice wedge in Holocene times. This study sheds more light on the conditions of ice wedge growth under changing environmental conditions.

  17. The Cimmerian accretionary wedge of Anarak, Central Iran

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Malaspina, Nadia; Zanchetta, Stefano; Berra, Fabrizio; Benciolini, Luca; Bergomi, Maria; Cavallo, Alessandro; Javadi, Hamid Reza; Kouhpeyma, Meyssam

    2015-04-01

    The occurrence in Iran of several ophiolite belts dating between Late Palaeozoic to Triassic poses several questions on the possible existence of various sutures marking the closure of the Palaeotethys ocean between Eurasia and this Gondwana-derived microplate. In this scenario, the Anarak region in Central Iran still represents a conundrum. Contrasting geochronological, paleontological, paleomagnetic data and reported field evidence suggest different origins for the Anarak Metamorphic Complex (AMC). The AMC is either interpreted, as: (1) relict of an accretionary wedge developed at the Eurasia margin during the Palaeotethys subduction as part of the Cimmerian suture zone of NE Iran, displaced to Central Iran by a large counter-clockwise rotation of the central Iranian blocks; (2) autochthonous unit forming a secondary branch of the main suture zone. Our structural, petrographic and geochemical data indicate that the AMC consists of several metamorphic units also including dismembered "ophiolites" which display different tectono-metamorphic evolutions. Three main ductile deformational events can be distinguished in the AMC. The Morghab and Chah Gorbeh complexes preserve a different M1 metamorphism, characterized by blueschist relics in the S1 foliation of the former unit, and greenschist assemblages in the latter. They share a subsequent similar D2 deformational and M2 metamorphic history, showing a prograde metamorphism with syn- to post-deformation growth of blueschist facies mineral assemblages on pre-existing greenschist facies associations. High pressure, low temperature (HP/LT) metamorphism responsible for the growth of sodic amphibole has been recognized also within marble lenses at the contact between the Chah Gorbeh Complex and serpentinites. Evidence of HP/LT metamorphism also occurs in glaucophane-bearing meta-pillow lavas and serpentinites, which contain antigorite and form most of the "ophiolites" within the AMC. Structural relationships show that the

  18. Capillarity driven motion of solid film wedges

    SciTech Connect

    Wong, H.; Miksis, M.J.; Voorhees, P.W.; Davis, S.H.

    1997-06-01

    A solid film freshly deposited on a substrate may form a non-equilibrium contact angle with the substrate, and will evolve. This morphological evolution near the contact line is investigated by studying the motion of a solid wedge on a substrate. The contact angle of the wedge changes at time t = 0 from the wedge angle {alpha} to the equilibrium contact angle {beta}, and its effects spread into the wedge via capillarity-driven surface diffusion. The film profiles at different times are found to be self-similar, with the length scale increasing as t{sup 1 4}. The self-similar film profile is determined numerically by a shooting method for {alpha} and {beta} between 0 and 180. In general, the authors find that the film remains a wedge when {alpha} = {beta}. For {alpha} < {beta}, the film retracts, whereas for {alpha} > {beta}, the film extends. For {alpha} = 90{degree}, the results describe the growth of grain-boundary grooves for arbitrary dihedral angles. For {beta} = 90{degree}, the solution also applies to a free-standing wedge, and the thin-wedge profiles agree qualitatively with those observed in transmission electron microscope specimens.

  19. Ultrasonic transducer with laminated coupling wedge

    DOEpatents

    Karplus, Henry H. B.

    1976-08-03

    An ultrasonic transducer capable of use in a high-temperature environment incorporates a laminated metal coupling wedge including a reflecting edge shaped as a double sloping roof and a transducer crystal backed by a laminated metal sound absorber disposed so as to direct sound waves through the coupling wedge and into a work piece, reflections from the interface between the coupling wedge and the work piece passing to the reflecting edge. Preferably the angle of inclination of the two halves of the reflecting edge are different.

  20. Pressure Distributions About Finite Wedges in Bounded and Unbounded Subsonic Streams

    NASA Technical Reports Server (NTRS)

    Donoughe, Patrick L; Prasse, Ernst I

    1953-01-01

    An analytical investigation of incompressible flow about wedges was made to determine effects of tunnel-wedge ratio and wedge angle on the wedge pressure distributions. The region of applicability of infinite wedge-type velocity distribution was examined for finite wedges. Theoretical and experimental pressure coefficients for various tunnel-wedge ratios, wedge angles, and subsonic Mach numbers were compared.

  1. The genetic structure of a relict population of wood frogs

    USGS Publications Warehouse

    Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara

    2012-01-01

    Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.

  2. Long-range hybrid wedge plasmonic waveguide.

    PubMed

    Zhang, Zhonglai; Wang, Jian

    2014-11-03

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

  3. Long-range hybrid wedge plasmonic waveguide.

    PubMed

    Zhang, Zhonglai; Wang, Jian

    2014-01-01

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius. PMID:25362900

  4. 3D stability of accretionary wedges by application of the maximum strength theorem

    NASA Astrophysics Data System (ADS)

    Souloumiac, P.; Leroy, Y. M.; Krabbenhoft, K.; Maillot, B.

    2009-04-01

    The objective is to capture the 3D failure modes in accretionary wedges and their analogue experiments in the laboratory from the sole knowledge of the material and interface strengths. The proposed methodology relies on the maximum strength theorem inherited from classical limit analysis. The virtual velocity field is constructed by spatial discretization. The numerical scheme is first applied to a perfectly-triangular 2D wedge. It is shown that the 2D critical slope αc for stability is captured precisely by the numerical scheme, the ramp and the back thrust corresponding to regions of localized virtual strain. The influence of the back-wall friction on αc is explored, explained by the Mohr construction and by analogue experiments with sand. The first 3D problem concerns a wedge with a lateral variation in its topographic slope α so that it is sub-critical (α < αc) and super-critical (α > αc) to the right and to the left boundary, respectively. It is shown that the localized deformation of the ramp on the right side, is getting diffuse as one moves to the left side where more décollement is activated. The influence of the two lateral boundaries is felt for wedge widths even greater than the length. The second 3D problem explores the influence of the side wall friction on the results of laboratory experiments. It is found that the deformation is diffuse close to the side wall with a vertical stretching and less dcollement activated. The side wall influences the rest of the wedge over a width 1.5 times the wedge thickness, for realistic friction angles. Comparison with analogue experiments shows the connection between the virtual 3D velocity field and the actual deformation.

  5. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?

    PubMed

    Patiño, Jairo; Goffinet, Bernard; Sim-Sim, Manuela; Vanderpoorten, Alain

    2016-03-01

    The disjunction of floras between East Asia, Southeast North America, West North America, and Southwest Eurasia has been interpreted in terms of the fragmentation of a once continuous mixed mesophytic forest that occurred throughout the Northern Hemisphere due to the climatic and geological changes during the late Tertiary. The sword moss, Bryoxiphium, exhibits a distribution that strikingly resembles that of the mesophytic forest elements such as Liriodendron and is considered as the only living member of an early Tertiary flora in Iceland. These hypotheses are tested here using molecular dating analyses and ancestral area estimations. The results suggest that the extant range of Bryoxiphium results from the fragmentation of a formerly wider range encompassing North America and Southeast Asia about 10 million years ago. The split of continental ancestral populations is too recent to match with a continental drift scenario but is spatially and temporally remarkably congruent with that observed in Tertiary angiosperm relict species. The timing of the colonization of Iceland from Macaronesian ancestors, about two million years ago, is, however, incompatible with the hypothesis that Bryoxiphium is the only living member of an early Tertiary flora of the island. Alaska was recurrently colonized from East Asia. The ability of Bryoxiphium to overcome large oceanic barriers is further evidenced by its occurrence on remote oceanic archipelagos. In particular, Madeira was colonized twice independently from American and East Asian ancestors, respectively. The striking range disjunction of Bryoxiphium is interpreted in terms of its mating system, as the taxon exhibits a very singular pattern of spatial segregation of the sexes. PMID:26708122

  6. Is the sword moss (Bryoxiphium) a preglacial Tertiary relict?

    PubMed

    Patiño, Jairo; Goffinet, Bernard; Sim-Sim, Manuela; Vanderpoorten, Alain

    2016-03-01

    The disjunction of floras between East Asia, Southeast North America, West North America, and Southwest Eurasia has been interpreted in terms of the fragmentation of a once continuous mixed mesophytic forest that occurred throughout the Northern Hemisphere due to the climatic and geological changes during the late Tertiary. The sword moss, Bryoxiphium, exhibits a distribution that strikingly resembles that of the mesophytic forest elements such as Liriodendron and is considered as the only living member of an early Tertiary flora in Iceland. These hypotheses are tested here using molecular dating analyses and ancestral area estimations. The results suggest that the extant range of Bryoxiphium results from the fragmentation of a formerly wider range encompassing North America and Southeast Asia about 10 million years ago. The split of continental ancestral populations is too recent to match with a continental drift scenario but is spatially and temporally remarkably congruent with that observed in Tertiary angiosperm relict species. The timing of the colonization of Iceland from Macaronesian ancestors, about two million years ago, is, however, incompatible with the hypothesis that Bryoxiphium is the only living member of an early Tertiary flora of the island. Alaska was recurrently colonized from East Asia. The ability of Bryoxiphium to overcome large oceanic barriers is further evidenced by its occurrence on remote oceanic archipelagos. In particular, Madeira was colonized twice independently from American and East Asian ancestors, respectively. The striking range disjunction of Bryoxiphium is interpreted in terms of its mating system, as the taxon exhibits a very singular pattern of spatial segregation of the sexes.

  7. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2011-01-01

    Domestic production of industrial sand and gravel in 2010 was about 26.5 Mt (29.2 million st), a 6-percent increased from 2009. Certain end uses of industrial sand and gravel, such as sand for container glass, golf course sand, recreational sand, specialty glass and water filtration, showed increased demand in 2010.

  8. Mechanics of injection wedges in collision orogens

    NASA Astrophysics Data System (ADS)

    Thompson, A. B.; Schulmann, K.

    2003-04-01

    Instantaneously juxtaposed lithospheric sections, marked by different geothermal gradient and lithological make-up, are examined to identify zones of highly contrasting strength in adjacent transposed crust and lithospheric mantle. Three types of geotherms and four reference lithospheric segments: thin crust/hot geotherm (rift), thin crust/mean geotherm (relaxed rift), standard crust/hot geotherm (arc), standard crust/mean geotherm (normal crust), are compared with variable permutations of cratonic, standard and rifted lithosphere thicknesses. This permits identification of strong brittle-elastic or plastic mantle, lower and upper crust juxtaposed against plastic rocks of a weak adjacent lithosphere. Vertical positions of shallow dipping detachment zones thus delineate possible areas of hot or cold injection wedges which include: (i) Single shallow wedge (or Flake), (ii) Double shallow and deep wedge, (iii) Deep lithospheric crocodile, (iv) Crustal thickening due to shallow strength differences, (v) Mantle Lithosphere thickening, or wedging, due to deep mantle strength differences and (vii) Exchange tectonics as an extreme wedging process, in which horizontal mass exchange is approximately equal. Rheological calculations are compared to a database of seismic profiles in which the geometry of detachment zones and proposed thermal conditions and lithological make-ups have been presented.

  9. Long polymers near wedges and cones

    NASA Astrophysics Data System (ADS)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  10. Long polymers near wedges and cones.

    PubMed

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N-step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d=2), or the tip of an impenetrable cone in d=3, of sizes ranging up to N=10(6) steps. We find that the critical exponent γ(α), which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α, is in good agreement with the theory for d=2. We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γ(α), as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions. PMID:26764719

  11. Beach sands

    SciTech Connect

    Fairbridge, R.W.; Lowrie, A.

    1988-01-01

    Beach sands are the residual of climatic and sea level processes interacting in an oscillating geologic continuum. The location of a shoreface is the result of tectonic, sedimentary, oceanographic, and climatic processes, all interweaving to create a single location. The combining processes include passive continental margin subsidence, lithospheric flexuring and epirogenic uplift, depositional processes, fluvial transportation traits, sediment compaction and lithostatic pressure, global wind and ocean currents, global average temperature, and insolation rate. These mechanisms are either synergistic or algebraically additive, positive or negative, and act with periodicities ranging from 10/sup 8/ to 10/sup 0/ years. Sea level oscillations have maximal impact, with climate-weather characteristics and associated oscillation ranges occurring at different periods: plate margin rifted-basin tectonics at 10/sup 8/ years, characterized by periods of major glacial activity lasting 10/sup 7/ years and sea level oscillation ranges of up to 0.5 km; regional basin evolution at 10/sup 7/ years and oscillation ranges of several hundreds of meters; local basin tectonics and sedimentation patterns and long-term sets of climate and sea level oscillation patterns at 10/sup 6/ years, with oscillation ranges of up to 125 m and averaging 50 m; individual glacial and sea level cycles (controlled by planetary orbital motions and insolation) at 10/sup 5/ and 10/sup 4/ years, and oscillation ranges of up to 125 m and averaging 50 m; medium-term climate cycles at 10/sup 3/ years, characterized by peaks of storminess and oscillation ranges of meters to decameters; short-term climate-weather cycles at 10/sup 2/, 10/sup 1/, and 10/sup 0/ years, and oscillation ranges of meters to centimeters. All of these processes impact on sea level oscillations, thus, on the shoreface, leaving a residuum of beach sands.

  12. Structure of turbulent wedges created by isolated surface roughness

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew S.; White, Edward B.

    2016-04-01

    Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.

  13. Nannofossil age constraints for the northern KwaZulu-Natal shelf-edge wedge: Implications for continental margin dynamics, South Africa, SW Indian Ocean

    NASA Astrophysics Data System (ADS)

    Green, A. N.; Ovechkina, M.; Uken, R.

    2008-10-01

    Samples collected from the shelf-edge wedge using surface grab samples and the Jago submersible constrain the KwaZulu-Natal shelf-edge wedge to a late Pliocene age on the basis of the absence of Gephyrocapsa oceanica s.l. and Discoaster brouweri, and the presence of Calcidiscus macintyrei. This correlates with proposed Tertiary sea-level curves for southern Africa and indicates relative sea-level fall during the late Pliocene coupled with hinterland uplift. Exposed failure scarps in the upper portions of submarine canyons yield sediment samples of early Pleistocene ages, indicating the uppermost age of deposition of clinoform topsets exposed in the scarp walls. Partially consolidated, interbedded silty and sandy deposits of similar age outcrop in the thalweg of Leven canyon at a depth of 150 m. These sediments provide an upper age limit of the shelf-edge wedge of early Pleistocene, giving a sedimentation rate of this wedge of 162-309 m/Ma. The distribution of widespread basal-most Pleistocene sediments on the upper slope indicates that these sediments escaped major reworking during sea-level falls associated with Pleistocene glaciations and remain as relict upper slope veneers. The absence of more recent sediments suggests that this area has been a zone of sediment bypass or starvation since the early Pleistocene. Areas where younger sediments mantle deposits of early Pleistocene ages represent areas of offshore bedload parting, re-distributing younger Holocene sediment offshore and downslope.

  14. Wedge indentation of an elastoviscoplastic material

    NASA Astrophysics Data System (ADS)

    Huang, Zhihong; Lucas, Margaret; Adams, Michael J.

    2002-05-01

    This paper describes the modeling of the indentation of an elasto-viscoplastic material. The finite element code ABAQUS was used to study the bulk mechanical, thermal and interface frictional characteristics for rigid wedge indenters. A series of simulations has been performed at a constant velocity to prescribed depths of penetration for a range of wedge surface temperatures and semi-included angles. Selected experimental data are provided as a basis for validating the numerical simulation. In the simulations, the constitutive behavior of the model material Plasticine is treated as non-linear elasto-viscoplastic, in which the stress scales linearly with the elastic strain and non-linearly with the plastic strain rate. The result demonstrate that the FE simulations agree well with the experimental dat of displacement, strain and stress for all the range of wedge angles and temperatures examined.

  15. Ecological Catastrophes and Disturbance Relicts: A Case Study from Easter Island

    NASA Astrophysics Data System (ADS)

    Wynne, J.

    2014-12-01

    Caves are often considered buffered environments in terms of their ability to sustain near constant microclimatic conditions. However, environments within cave entrances are expected to respond most quickly to changing surface conditions. We cataloged a relict assemblage of at least 10 endemic arthropods likely restricted to caves and occurring primarily within cave entranceways. Of these animals, eight were considered new undescribed species. These endemic arthropods have persisted in Rapa Nui (Easter Island) caves despite a catastrophic ecological shift induced by island-wide deforestation, fire intolerance, and drought, as well as intensive livestock grazing and surface ecosystems dominated by invasive species. We consider these animals to be "disturbance relicts" - species whose distributions are now limited to areas that experienced minimal human disturbance historically. Today, these species represent one-third of the Rapa Nui's known endemic arthropods. Given the island's severely depauperate native fauna, these arthropods should be considered among the highest priority targets for biological conservation. In other regions globally, epigean examples of imperiled disturbance relicts persisting within narrow distributional ranges have been documented. As human activity intensifies, and habitat loss and fragmentation continues worldwide, additional disturbance relicts will be identified. We expect extinction debts, global climate change and interactions with invasive species will challenge the persistence of both hypogean and epigean disturbance relict species.

  16. A review of dynamics modelling of friction wedge suspensions

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  17. CHIRP seismic reflection study of falling-stage (forced regressive) sediment wedges on the New Jersey outer continental shelf

    NASA Astrophysics Data System (ADS)

    Santra, M.; Goff, J.; Ron, S.; Austin, J.

    2007-12-01

    High-resolution (1-12 kHz), deep-towed and hull-mounted CHIRP seismic data were collected on the New Jersey outer shelf in 2001, 2002 and 2006 as part of Office of Naval Research-funded projects. These data have imaged two well-developed, offlapping sedimentary wedges (named outer-shelf wedge and deep-shelf wedge) that are now postulated to have developed on the falling-stage limb of the last glacial cycle, during some time prior to the Last Glacial Maximum (20-22 kyrs BP). These wedges formed atop the high-amplitude, regional R horizon, a complex erosional unconformity that formed about 40,000 years ago. The outer shelf wedge is also characterized in part by an enigmatic, erose boundary separating layered horizons below from a mostly transparent section above. New Jersey shelf wedges appear analogous to forced-regressive units imaged on the Rhone shelf edge, as well as Eocene sections documented from seismic-scale outcrops on Spitsbergen Island. These examples can reach thicknesses up to 100 m on the shelf edge and uppermost slope, but usually thin rapidly downslope. Such wedges represent one of two documented mechanisms involving sand transport across a shelf margin into deeper water settings, the other being a canyonized shelf-edge. Our study will includes analysis of the CHIRP data and, if available, additional ground truth provided by short cores collected in summer 2007 at numerous intra-wedge stratigraphic horizons. Our goals are to understand the external and internal geometry of the wedges and sediment pathways across the paleo-shelf. These data should allow us to characterize margin segments that build during sea-level fall by slope-apron accretion rather than by the formation of channel-levee complexes. The literature is heavily weighted by the latter and their associated canyon systems, but information on shelf-edge attached slope aprons and how they contribute to deep-water sedimentation, and in particular the delivery of clean sands to slope settings

  18. Sources and distribution of upper Pleistocene sand, Eastern United States Atlantic Shelf

    SciTech Connect

    Leschak, P.; Prusak, D.; Mazzullo, J.

    1985-02-01

    A 2-yr study of the sources and distribution of upper Pleistocene and Holocene sand on the eastern US shelf between the Bay of Fundy and Cape Hatteras reveals that 3 sand types are found on this shelf: (1) glacially transported, very angular sands, (2) fluvially transported, well-rounded sands derived from unlithified coastal plan deposits, and (3) fluvially transported, moderately angular sands derived from lithified sedimentary and crystalline rocks of the Appalachian and New England areas. For the most part, the distribution of these sand types reflects the late Pleistocene paleogeography of this shelf. Glacial sands are found in the areas of upper Pleistocene till, moraine, and outwash-plain deposits east and northeast of the Hudson Canyon; the 2 fluvial sands are found in coast-normal stripes that correspond to the ancestral paths of the many rivers that traversed this shelf during the late Pleistocene. The preservation of relict paleogeographic patterns of these sorts are an indication of diffusive transport of sand through most of this shelf. The exceptions to this are found in the shallow waters of Nantucket Shoals and Geoges Bank, where glacial sands are presently being advected to the southwest by the strong tidal currents that prevail.

  19. Microbial Community Structure of Relict Niter-Beds Previously Used for Saltpeter Production

    PubMed Central

    Narihiro, Takashi; Tamaki, Hideyuki; Akiba, Aya; Takasaki, Kazuto; Nakano, Koichiro; Kamagata, Yoichi; Hanada, Satoshi; Maji, Taizo

    2014-01-01

    From the 16th to the 18th centuries in Japan, saltpeter was produced using a biological niter-bed process and was formed under the floor of gassho-style houses in the historic villages of Shirakawa-go and Gokayama, which are classified as United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Sites. The relict niter-beds are now conserved in the underfloor space of gassho-style houses, where they are isolated from destabilizing environmental factors and retain the ability to produce nitrate. However, little is known about the nitrifying microbes in such relict niter-bed ecosystems. In this study, the microbial community structures within nine relict niter-bed soils were investigated using 454 pyrotag analysis targeting the 16S rRNA gene and the bacterial and archaeal ammonia monooxygenase gene (amoA). The 16S rRNA gene pyrotag analysis showed that members of the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes were major microbial constituents, and principal coordinate analysis showed that the NO3−, Cl−, K+, and Na+ contents were potential determinants of the structures of entire microbial communities in relict niter-bed soils. The bacterial and archaeal amoA libraries indicated that members of the Nitrosospira-type ammonia-oxidizing bacteria (AOB) and “Ca. Nitrososphaera”-type ammonia-oxidizing archaea (AOA), respectively, predominated in relict niter-bed soils. In addition, soil pH and organic carbon content were important factors for the ecological niche of AOB and AOA in relict niter-bed soil ecosystems. PMID:25111392

  20. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  1. Microbial community structure of relict niter-beds previously used for saltpeter production.

    PubMed

    Narihiro, Takashi; Tamaki, Hideyuki; Akiba, Aya; Takasaki, Kazuto; Nakano, Koichiro; Kamagata, Yoichi; Hanada, Satoshi; Maji, Taizo

    2014-01-01

    From the 16th to the 18th centuries in Japan, saltpeter was produced using a biological niter-bed process and was formed under the floor of gassho-style houses in the historic villages of Shirakawa-go and Gokayama, which are classified as United Nations Educational, Scientific and Cultural Organization (UNESCO) World Heritage Sites. The relict niter-beds are now conserved in the underfloor space of gassho-style houses, where they are isolated from destabilizing environmental factors and retain the ability to produce nitrate. However, little is known about the nitrifying microbes in such relict niter-bed ecosystems. In this study, the microbial community structures within nine relict niter-bed soils were investigated using 454 pyrotag analysis targeting the 16S rRNA gene and the bacterial and archaeal ammonia monooxygenase gene (amoA). The 16S rRNA gene pyrotag analysis showed that members of the phyla Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Planctomycetes were major microbial constituents, and principal coordinate analysis showed that the NO3-, Cl-, K+, and Na+ contents were potential determinants of the structures of entire microbial communities in relict niter-bed soils. The bacterial and archaeal amoA libraries indicated that members of the Nitrosospira-type ammonia-oxidizing bacteria (AOB) and "Ca. Nitrososphaera"-type ammonia-oxidizing archaea (AOA), respectively, predominated in relict niter-bed soils. In addition, soil pH and organic carbon content were important factors for the ecological niche of AOB and AOA in relict niter-bed soil ecosystems. PMID:25111392

  2. Fluid and mass transfer into the cold mantle wedge of subduction zones: budgets and seismic constraints

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Hacker, B. R.; Van Keken, P. E.; Nakajima, J.; Kita, S.

    2015-12-01

    Dehydration of subducting plates should hydrate the shallow overlying mantle wedge where mantle is cold. In the shallow mantle wedge hydrous phases, notably serpentines, chlorite, brucite and talc should be stable to form a significant reservoir for H2O. Beneath this cold nose thermal models suggest only limited slab dehydration occurs at depths less than ca. 80 km except in warm subduction zones, but fluids may flow updip from deeper within the subducting plate to hydrate the shallow mantle. We estimate the total water storage capacity in cold noses, at temperatures where hydrous phases are stable, to be roughly 2-3% the mass of the global ocean. At modern subduction flux rates its full hydration could be achieved in 50-100 Ma if all subducting water devolatilized in the upper 100 km flows into the wedge; these estimates have at least a factor of two uncertainty. To investigate the extent to which wedge hydration actually occurs we compile and generate seismic images of forearc mantle regions. The compilation includes P- and S-velocity images with good sampling below the Moho and above the downgoing slab in forearcs, from active-source imaging, local earthquake tomography and receiver functions, while avoiding areas of complex tectonics. Well-resolved images exist for Cascadia, Alaska, the Andes, Central America, North Island New Zealand, and Japan. We compare the observed velocities to those predicted from thermal-petrologic models. Among these forearcs, Cascadia stands out as having upper-mantle seismic velocities lower than overriding crust, consistent with high (>50%) hydration. Most other forearcs show Vp close to 8.0 km/s and Vp/Vs of 1.73-1.80. We compare these observations to velocities predicted from thermal-mineralogical models. Velocities are slightly slower than expected for dry peridotite and allow 10-20% hydration, but also could also be explained as relict accreted rock, or delaminated, relaminated, or offscraped crustal material mixed with mantle

  3. Links Between Displacement Rates and Erosion in Experimental Tectonic Wedges

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Hilley, G.; Take, A.

    2008-12-01

    Erosional redistribution of mass along Earth's surface modifies the near-surface lithostatic stresses, altering displacement rates and the kinematics within orogens. In this study we use analogue experiments of a deforming sand wedge to systematically examine the impact that erosion may have had on the kinematics of the Argentine Precordilleran fold-and-thrust belt at ~32.5°S. Here, the history of deformation has been superbly documented by others, and that work resolves changes in shortening rates over time throughout the range. Specifically, total shortening rates across the fold-and-thrust belt may have changed over time, and out-of-sequence thrusting may have played an important role accommodating deformation at various times in the history of the fold-and-thrust belt. We hypothesize that such changes may be the response of the fold-and-thrust belt to changing erosion of these ranges. To this end, we have constructed an analogue sandbox experiments whose specific layered rheology is akin to that documented in the Precordillera fold-and-thrust belt in central Argentina. Our contractional experimental apparatus (sandbox) includes a servo-controlled feedback system that allows for a variety of boundary conditions to be applied to the moving wall, including constant displacement rate, time-varying displacement rate, constant loading, and time-varying loading. The application of a loading rate allows us to explicitly investigate feedbacks between topographic construction, erosion, strain softening within the dry sand, and temporal changes in total shortening rates that would be difficult to examine using the constant velocity conditions that are usually applied to the analogue models. We also apply Particle Image Velocimetry (PIV) techniques to digital images from the experimental model to derive high-resolution kinematics and calculate strain, uplift and exhumation rates. Preliminary results indicate that changes in the erosional efficiency in the experimental

  4. Wedge Waveguides and Resonators for Quantum Plasmonics

    PubMed Central

    2015-01-01

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499

  5. Wedge Waveguides and Resonators for Quantum Plasmonics.

    PubMed

    Kress, Stephan J P; Antolinez, Felipe V; Richner, Patrizia; Jayanti, Sriharsha V; Kim, David K; Prins, Ferry; Riedinger, Andreas; Fischer, Maximilian P C; Meyer, Stefan; McPeak, Kevin M; Poulikakos, Dimos; Norris, David J

    2015-09-01

    Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light-matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (~90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ~0.004λvac(3) in an exposed single-mode waveguide-resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light-matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon-matter coupling.

  6. Modes in Lined Wedge-Shaped Ducts

    NASA Astrophysics Data System (ADS)

    Mechel, F. P.

    1998-10-01

    The computation of sound fields in wedge-shaped spaces with an absorbing boundary (the seabed) is a classical problem of underwater acoustics, covered by a large number of publications. All known solutions are approximations which are restricted to very small wedge angles θ0, typically less than 3°. In underwater acoustics it is further assumed thatk0r≫1. The background of the present paper is the performance of lined conical duct sections in silencers. There the wedge angle can attain values around 45°, and the assumptionk0r≫1 cannot be made. The absorber of the lined boundary here is supposed to be locally reacting (for reasons of simplicity); it can be characterized by a normalized surface admittanceG0. The problems of the analysis arise from the fact, that the fundamental field solutions (modes) can no longer be separated in the cylindrical co-ordinatesr, θ if a boundary is absorbing. This paper describes analytical solutions for the construction of modes in lined wedge-shaped ducts; they can be applied for wedge angles up to about 15° (a subsequent paper will describe a method for angles up to about 45° but only moderatek0rvalues). In the solutions, use is made of “fictitious modes”, which satisfy the boundary conditions and solve a part of the wave equation. They must be completed by a “modal rest” to satisfy approximately the full wave equation. In the first solution, the rest is synthesized by fictitious modes; in the second solution, a separate function is introduced for the rest. Modes for typical underwater acoustics conditions will arise as side products.

  7. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2013-01-01

    Domestic production of industrial sand and gravel in 2012 was about 49.5 Mt (55 million st), increasing 13 percent compared with that of 2011. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  8. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2012-01-01

    Domestic production of industrial sand and gravel in 2011 was about 30 Mt (33 million st), increasing slightly compared with 2010. Some important end uses for industrial sand and gravel include abrasives, filtration, foundry, glassmaking, hydraulic fracturing sand (frac sand) and silicon metal applications.

  9. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  10. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention pressure wedge provides mechanical support to the perianal region during the labor and delivery...

  11. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  12. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  13. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  14. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  15. 49 CFR 215.113 - Defective plain bearing wedge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective plain bearing wedge. 215.113 Section 215... Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  16. Terra Pretas: Charcoal Amendments Influence on Relict Soils and Modern Agriculture

    ERIC Educational Resources Information Center

    Ricigliano, Kristin

    2011-01-01

    Most soils found in the Amazon region are characterized by highly weathered profiles that are incapable of longterm agricultural production. However, small patches of highly fertile relict soil referred to as Terra Pretas, are also found in the Amazon region, and have maintained their integrity for thousands of years. These soils were…

  17. Phylogeography of Declining Relict and Lowland Leopard Frogs in the Desert Southwest of North America

    EPA Science Inventory

    We investigated the phylogeography of the closely related relict leopard frog (Rana onca) and lowland leopard frog (R. yavapaiensis) – two declining anurans from the warm-desert regions of southwestern North America. We used sequence data from two mitochondrial DNA genes to asses...

  18. Nitrate Removal in Two Relict Oxbow Urban Wetlands: A 15N Mass-balance Approach

    EPA Science Inventory

    A 15N-tracer method was used to quantify nitrogen (N) removal processes in two relict oxbow wetlands located adjacent to the Minebank Run restored stream reach in Baltimore County (Maryland, USA) during summer 2009 and early spring 2010. A mass-balance approach was used to determ...

  19. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  20. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    PubMed

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-01-01

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling. PMID:26369980

  1. POPULATION STATUS AND DISTRIBUTION OF A DECIMATED AMPHIBIAN, THE RELICT LEOPARD FROG (RANA ONCA)

    EPA Science Inventory

    The relict leopard frog (Rana onca) was once thought to be extinct, but has recently been shown to comprise a valid taxon with extant populations. We delineate the minimum historical range of the species, and report results of surveys at 12 historical and 54 other localities to d...

  2. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    PubMed

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-09-15

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  3. Distribution of Cenozoic plant relicts in China explained by drought in dry season

    PubMed Central

    Huang, Yongjiang; Jacques, Frédéric M. B.; Su, Tao; Ferguson, David K.; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-01-01

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling. PMID:26369980

  4. Experimental study on the water impact of a symmetrical wedge

    NASA Astrophysics Data System (ADS)

    Yettou, El-Mahdi; Desrochers, Alain; Champoux, Yvan

    2006-01-01

    In this paper, we report the results of our experimental investigation of the pressure distribution on a free-falling wedge upon entering water. Parameters such as the drop height, the deadrise angle and the mass of the wedge are related to the water pressure on the wedge and its dynamic behavior. Existing models that assumed a constant water-entry velocity of the wedge are compared with experimental data. In order to take into account the inherent variation in the velocity of a free-falling wedge, a combination of two models are proposed. This method gives an adequate approximation of the maximum pressures measured.

  5. Relict olivine, chondrule recycling, and the evolution of nebular oxygen reservoirs

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Hiyagon, H.; Hutson, M.; Floss, C.

    2007-05-01

    Chondrules often contain relict olivine grains that did not crystallize in situ, providing opportunities to decipher how chondrule components evolved. We studied olivine in the Sahara-97210 (LL3.2), Wells (LL3.3) and Chainpur (LL3.4) chondrites using SEM, EMPA, and SIMS techniques. Oxygen isotopes were analyzed in 16 objects from all three meteorites, and trace elements were analyzed in Sahara-97210 and Chainpur. Two groups of olivine are identified based on oxygen isotope compositions. One group is enriched in 16O (Δ 17O ˜ - 8 to - 4‰) and falls close to the CCAM mixing line; it includes forsterite and Mg-rich olivine present as relict grains in Type II (ferrous) chondrules and the forsteritic cores of some isolated grains. These low-Δ 17O grains are poor in MnO (< 0.2 wt.%) and are usually enriched in CaO (˜ 0.3-0.65 wt.%). The other group is less enriched in 16O (Δ 17O ˜ - 3 to + 4 ‰); it includes normal (non-relict) ferrous olivine in type II chondrules, normal (non-relict) Mg-rich olivine in Type I (magnesian) chondrules, dusty olivine relict grains in Type I chondrules, and Mg-rich olivine relicts in a Type II and a Type I chondrule. These high-Δ 17O grains have variable CaO (0-0.95 wt.%) and MnO (˜ 0-0.45 wt.%) contents, with the more calcic and Mn-poor compositions associated with forsteritic olivine. Trace-element data show that forsteritic olivine grains in both oxygen groups are similarly enriched in refractory elements (Al, Sc, Y, Ca, Ti, V) and depleted in volatile elements (Cr, Mn, P, Rb, sometimes K and Na) compared to normal ferrous olivine, suggesting that variations in chemical composition reflect the extent of thermal processing (greater for magnesian olivine). The data are consistent with a model in which nebular reservoirs became less enriched in 16O with time. An earlier episode of chondrule formation produced Type I chondrules and isolated forsterites in carbonaceous chondrites, and forsteritic grains that were incorporated into

  6. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  7. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    PubMed

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. . PMID:22519974

  8. Radiation pressure on a dielectric wedge.

    PubMed

    Mansuripur, Masud; Zakharian, Armis; Moloney, Jerome

    2005-03-21

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  9. High-energy rate forgings of wedges :

    SciTech Connect

    Reynolds, Thomas Bither; Everhart, Wesley; Switzner, Nathan T; Balch, Dorian K.; San Marchi, Christopher W.

    2014-05-01

    The wedge geometry is a simple geometry for establishing a relatively constant gradient of strain in a forged part. The geometry is used to establish gradients in microstructure and strength as a function of strain, forging temperature, and quenching time after forging. This geometry has previously been used to benchmark predictions of strength and recrystallization using Sandias materials model for type 304L austenitic stainless steel. In this report, the processing conditions, in particular the times to forge and quench the forged parts, are summarized based on information recorded during forging on June 18, 2013 of the so-called wedge geometry from type 316L and 21Cr-6Ni-9Mn austenitic stainless steels.

  10. Two dimensional wedge/translating shroud nozzle

    NASA Technical Reports Server (NTRS)

    Maiden, D. L. (Inventor)

    1978-01-01

    A jet propulsion exhaust nozzle is reported for multi-engine installations which produces high internal/external, thrust-minus-drag, performance for transonic cruise or transonic acceleration as well as improved performance at subsonic and supersonic speeds. A two dimensional wedge/translating shroud provides the variable nozzle exit geometry needed to achieve high engine performance over a wide range of throttle power settings.

  11. Wedge assembly for electrical transformer component spacing

    DOEpatents

    Baggett, Franklin E.; Cage, W. Franklin

    1991-01-01

    A wedge assembly that is easily inserted between two surfaces to be supported thereby, and thereafter expanded to produce a selected spacing between those surfaces. This wedge assembly has two outer members that are substantially identical except that they are mirror images of each other. Oppositely directed faces of these of these outer members are substantially parallel for the purpose of contacting the surfaces to be separated. The outer faces of these outer members that are directed toward each other are tapered so as to contact a center member having complementary tapers on both faces. A washer member is provided to contact a common end of the outer members, and a bolt member penetrates this washer and is threadably received in a receptor of the center member. As the bolt member is threaded into the center member, the center member is drawn further into the gap between the outer members and thereby separates these outer members to contact the surfaces to be separated. In the preferred embodiment, the contacting surfaces of the outer member and the center member are provided with guide elements. The wedge assembly is described for use in separating the secondary windings from the laminations of an electrical power transformer.

  12. Interior impedance wedge diffraction with surface waves

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Griesser, Timothy

    1988-01-01

    The exact impedance wedge solution is evaluated asymptotically using the method of steepest descents for plane wave illumination at normal incidence. Uniform but different impedances on each face are considered for both soft and hard polarizations. The asymptotic solution isolates the incident, singly reflected, multiply reflected, diffracted, and surface wave fields. Multiply reflected fields of any order are permitted. The multiply reflected fields from the exact solution are written as ratios of auxiliary Maliuzhinets functions, whereas a geometrical analysis gives the reflected fields as products of reflection coefficients. These two representations are shown to be identical in magnitude, phase and the angular range over which they exist. The diffracted field includes four Fresnel transition functions as in the perfect conductor case, and the expressions for the appropriate discontinuities at the shadow boundaries are presented. The surface wave exists over a finite angular range and only for certain surface impedances. A surface wave transition field is included to retain continuity. Computations are presented for interior wedge diffractions although the formulation is valid for both exterior and interior wedges.

  13. Quantitative comparisons of analogue models of brittle wedge dynamics

    NASA Astrophysics Data System (ADS)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  14. Watching Faults Grow in Sand

    NASA Astrophysics Data System (ADS)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  15. Knee abduction angular impulses during prolonged running with wedged insoles.

    PubMed

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2013-07-01

    Wedged insoles may produce immediate effects on knee abduction angular impulses during running; however, it is currently not known whether these knee abduction angular impulse magnitudes are maintained throughout a run when fatigue sets in. If changes occur, this could affect the clinical utility of wedged insoles in treating conditions such as patellofemoral pain. Thus, the purpose of this study was to determine whether knee abduction angular impulses are altered during a prolonged run with wedged insoles. It was hypothesized that knee abduction angular impulses would be reduced following a prolonged run with wedged insoles. Nine healthy runners participated. Runners were randomly assigned to either a 6-mm medial wedge condition or a 6-mm lateral wedge condition and then ran continuously overground for 30 min. Knee abduction angular impulses were quantified at 0 and 30 min using a gait analysis procedure. After 2 days, participants returned to perform the same test but with the other wedge type. Two-way repeated-measures analysis of variance was used to evaluate main effects of wedge condition and time and interactions between wedge condition and time (α = 0.05). Paired t-tests were used for post hoc analysis (α = 0.01). No interaction effects (p = 0.958) were found, and knee abduction angular impulses were not significantly different over time (p = 0.384). Lateral wedge conditions produced lesser knee abduction angular impulses than medial conditions at 0 min (difference of 2.79 N m s, p = 0.006) and at 30 min (difference of 2.76 N m s, p < 0.001). It is concluded that significant knee abduction angular impulse changes within wedge conditions do not occur during a 30-min run. Additionally, knee abduction angular impulse differences between wedge conditions are maintained during a 30-min run.

  16. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests.

    PubMed

    Kondraskov, Paulina; Schütz, Nicole; Schüßler, Christina; de Sequeira, Miguel Menezes; Guerra, Arnoldo Santos; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Marrero-Rodríguez, Águedo; Koch, Marcus A; Linder, Peter; Kovar-Eder, Johanna; Thiv, Mike

    2015-01-01

    The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data.

  17. Accumulation and Connectivity of Coarse Woody Debris in Partial Harvest and Unmanaged Relict Forests

    PubMed Central

    Morrissey, Robert C.; Jenkins, Michael A.; Saunders, Michael R.

    2014-01-01

    When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD), including standing deadwood (SDW) and downed deadwood (DDW), is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m×10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp.) in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function. PMID:25409459

  18. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests

    PubMed Central

    Kondraskov, Paulina; Schütz, Nicole; Schüßler, Christina; de Sequeira, Miguel Menezes; Guerra, Arnoldo Santos; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Marrero-Rodríguez, Águedo; Koch, Marcus A.; Linder, Peter; Kovar-Eder, Johanna; Thiv, Mike

    2015-01-01

    The Macaronesian laurel forests (MLF) are dominated by trees with a laurophyll habit comparable to evergreen humid forests which were scattered across Europe and the Mediterranean in the Paleogene and Neogene. Therefore, MLF are traditionally regarded as an old, 'Tertiary relict' vegetation type. Here we address the question if key taxa of the MLF are relictual. We evaluated the relict hypothesis consulting fossil data and analyses based on molecular phylogenies of 18 representative species. For molecular dating we used the program BEAST, for ancestral trait reconstructions BayesTraits and Lagrange to infer ancestral areas. Our molecular dating showed that the origins of four species date back to the Upper Miocene while 14 originated in the Plio-Pleistocene. This coincides with the decline of fossil laurophyllous elements in Europe since the middle Miocene. Ancestral trait and area reconstructions indicate that MLF evolved partly from pre-adapted taxa from the Mediterranean, Macaronesia and the tropics. According to the fossil record laurophyllous taxa existed in Macaronesia since the Plio- and Pleistocene. MLF are composed of species with a heterogeneous origin. The taxa dated to the Pleistocene are likely not 'Tertiary relicts'. Some species may be interpreted as relictual. In this case, the establishment of most species in the Plio-Pleistocene suggests that there was a massive species turnover before this time. Alternatively, MLF were largely newly assembled through global recruitment rather than surviving as relicts of a once more widespread vegetation. This process may have possibly been triggered by the intensification of the trade winds at the end of the Pliocene as indicated by proxy data. PMID:26173113

  19. Accumulation and connectivity of coarse woody debris in partial harvest and unmanaged relict forests.

    PubMed

    Morrissey, Robert C; Jenkins, Michael A; Saunders, Michael R

    2014-01-01

    When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD), including standing deadwood (SDW) and downed deadwood (DDW), is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m × 10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp.) in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function.

  20. Opening wedge osteotomies for correction of hallux valgus: a review of wedge plate fixation.

    PubMed

    Smith, W Bret; Hyer, Christopher F; DeCarbo, William T; Berlet, Gregory C; Lee, Thomas H

    2009-12-01

    Osteotomy of the proximal metatarsal for the correction of moderate to severe hallux valgus deformity is commonly performed. The purpose of this study is to review the early results of a technique for the correction of hallux valgus, an opening wedge osteotomy of the proximal first metatarsal with opening wedge plate fixation. A review was performed of the results of 47 patients (49 feet) who underwent correction of hallux valgus with proximal metatarsal opening wedge osteotomy. All osteotomies were secured with plate fixation on the medial side. Evaluation consisted of preoperative and postoperative radiographic as well as clinical evaluations. Mean corrections of 7 degrees were achieved for the 1-2 intermetatarsal angles. Fourteen complications occurred, 6 of which involved mild hardware irritation and did not affect outcome. Four nonunions or delayed unions were identified. The authors find the opening wedge osteotomy of the proximal first metatarsal to be a technically straightforward procedure for correcting moderate to severe hallux valgus. The correction obtained is comparable to other described techniques. PMID:20400425

  1. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  2. Invertebrates of the relict steppe ecosystems of Beringia, and the reconstruction of Pleistocene landscapes

    NASA Astrophysics Data System (ADS)

    Berman, Daniil; Alfimov, Arcady; Kuzmina, Svetlana

    2011-08-01

    Studies of invertebrates from steppe patches in the tundra and taiga zones of Beringia provide additional evidence that these areas could be relict steppes. A number of insect species common to both modern relict steppes and fossil Beringian insect faunal assemblages have been found. These provide important information on the moisture and temperature preferences of some of the surviving members of Pleistocene steppe-tundra insect communities. The most significant species of West Beringian insects are weevils in the genus Stephanocleonus (Coleoptera, Curculionidae), indicators of thermophytic steppe, and the pill beetle Morychus viridis (Coleoptera, Byrrhidae), the indicator of hemicryophytic steppe. The East Beringian invertebrate population of relict steppe is substantially different. Fossil evidence suggests that biotic exchange between the two parts of Beringia was limited during the Pleistocene; populations of steppe insects did not move across the Bering Land Bridge (BLB), while tundra species had more flexibility. The tundra environment reconstructed for the Pleistocene BLB should have facilitated amphi-beringian distributions for most tundra invertebrate species, but apparently only a few species achieved this.

  3. Control of structural inheritance on thrust initiation and material transfer in accretionary wedges

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Geersen, Jacob; Ritter, Malte; Lieser, Kathrin; Behrmann, Jan

    2016-04-01

    Faults in the incoming sediment layer are commonly observed in subduction zone settings and well developed in the incoming plate off Sumatra. To investigate how they affect the structural development of the accretionary wedge, we conducted a series of 2D analogue tectonic experiments in which a 2 cm thick quartz sand layer on top of a thin detachment layer of glass beads was pulled against a rigid backstop by a basal conveyor belt in a 20cm wide box with glass walls. A gap at the base of the back wall avoids entrainment of the glass beads. At regular spacing of either 2.3, 5.5 or 7.8 cm (fractions of the thrust sheet length in the reference model), conjugate pairs of weakness zones dipping 60deg were created by cutting the sand layer with a thin (1 mm) metal blade. Both the undisturbed sand and the pre-cuts have an angle of internal friction of ~29o, but their cohesion is different by 50 Pa (110 Pa for the undisturbed material, 60 Pa along the pre-cuts). Friction of the glass beads is ~24deg. The experiments are monitored with high resolution digital cameras; displacement fields derived from digital image correlation are used to constrain fault activity. In all experiments, a critically tapered wedge developed with a surface slope of 7.5deg. In the reference model (no weakness zones in the input section), the position of new thrust faults is controlled by the frontal slope break. The average length of the thrust sheets is 11 cm and the individual thrusts accommodate on average 8 cm displacement each. The presence of weakness zones causes thrust initiation at a position different from the reference case, and affects their dip. For a fault spacing of 7.8 cm (or 75% of the reference thrust sheet length), every single incoming weakness zone causes the formation of a new thrust, thus resulting in thrust sheets shorter than the equilibrium case. In addition, less displacement is accommodated on each thrust. As a consequence, the frontal taper is smaller than expected

  4. Molecular depth profiling by wedged crater beveling.

    PubMed

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-08-15

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40-keV C(60)(+) cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ∼(1)/(3) during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm to ∼4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments.

  5. Experimental and numerical investigations on melamine wedges.

    PubMed

    Schneider, S

    2008-09-01

    Melamine wedges are often used as acoustic lining material for anechoic chambers. It was proposed here to study the effects of the mounting conditions on the acoustic properties of the melamine wedges used in the large anechoic chamber at the LMA. The results of the impedance tube measurements carried out show that the mounting conditions must be taken into account when assessing the quality of an acoustic lining. As it can be difficult to simulate these mounting conditions in impedance tube experiments, a numerical method was developed, which can be used to complete the experiments or for parametric studies. By combining the finite and the boundary element method, it is possible to investigate acoustic linings with almost no restrictions as to the geometry, material behavior, or mounting conditions. The numerical method presented here was used to study the acoustic properties of the acoustic lining installed in the anechoic chamber at the LMA. Further experiments showed that the behavior of the melamine foam is anisotropic. Numerical simulations showed that this anisotropy can be used to advantage when designing an acoustic lining.

  6. Mid-Calcaneal Length After Evans Calcaneal Osteotomy: A Retrospective Comparison of Wedge Locking Plates and Tricortical Allograft Wedges.

    PubMed

    Protzman, Nicole M; Wobst, Garrett M; Storts, Eric C; Mulhern, Jennifer L; McCarroll, Raymond E; Brigido, Stephen A

    2015-01-01

    Evans calcaneal osteotomy remains a cornerstone in the correction of the flexible flatfoot. Although multiple techniques have been used to maintain the length of the lateral column, a low profile wedge locking plate was recently introduced as an alternative to the traditional tricortical allograft wedge. We hypothesized that the wedge locking plate would better maintain the mid-calcaneal length compared with the tricortical allograft wedge. To test this hypothesis, after Evans osteotomy, the mid-calcaneal length was measured in the immediate postoperative period and again at 3 and 6 months. A total of 24 patients met the inclusion criteria. The mean patient age was 48.1 years (range 11 to 66). Of the 24 patients, 9 (37.5%) were treated with a tricortical allograft wedge and 15 (62.5%) with a wedge locking plate. At 3 months postoperatively, the mean decrease in mid-calcaneal length was similar for the tricortical allograft wedge group (1.3 ± 1.9 mm) and the wedge locking plate group (0.5 ± 0.9 mm, p = .275). At 6 months postoperatively, however, the mean decrease in mid-calcaneal length was greater for the tricortical allograft wedge group (2.8 ± 1.7 mm) than for the wedge locking plate group (0.6 ± 0.7 mm, p = .004). The 2 groups demonstrated a similar incidence of dorsally displaced distal calcaneal fragments throughout the study endpoint (p ≥ .052). These results suggest that the wedge locking plate better maintains the mid-calcaneal length over time compared with the tricortical allograft wedge.

  7. Constraints on the age of the Great Sand Dunes, Colorado, from subsurface stratigraphy and OSL dates

    USGS Publications Warehouse

    Madole, Richard F.; Mahan, Shannon; Romig, Joe H.; Havens, Jeremy C.

    2013-01-01

    The age of the Great Sand Dunes has been debated for nearly 150 yr. Seven ages ranging from Miocene to late Holocene have been proposed for them. This paper presents new information—chiefly subsurface stratigraphic data, OSL dates, and geomorphic evidence—that indicates that the Great Sand Dunes began to form in the latter part of the middle Pleistocene. The dunes overlie a thick wedge of piedmont-slope deposits, which in turn overlies sediment of Lake Alamosa, a paleolake that began to drain about 440 ka. The wedge of piedmont-slope deposits extends westward for at least 23 km and is as much as 60 m thick at a distance of 10 km from the Sangre de Cristo Range. Ostracodes from one well indicate that the eastern shoreline of Lake Alamosa extended to within 4.3 km of where the Great Sand Dunes eventually formed. The time represented by the wedge of piedmont-slope deposits is not known exactly, but the wedge post-dates 440 ka and was in place prior to 130 ka because by then the dunes overlying it were sufficiently close and tall enough to obstruct streams draining from the Sangre de Cristo Range.

  8. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2006-01-01

    In 2005, domestic production of industrial sand and gravel was about 31 Mt, a 5% increase from 2004. This increase was bouyed by robust construction and petroleum sectors of the US economy. Based on estimated world production figures, the United States was the world's leading producer and consumer of industrial sand and gravel. In the short term, local shortages of industrial sand and gravel will continue to increase.

  9. 28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. REPRESENTATIVE CENTER WEDGE. BALANCE WHEELS ON TRACK, WITH RACK TO OUTSIDE, SHOWN TO RIGHT OF THE WEDGE. PHOTO TAKEN AT SOUTH SWING SPAN. - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  10. Computing pressure distributions in wedges and pinch-outs

    SciTech Connect

    Chih-Cheng Chen; Raghaven, R.

    1995-12-31

    A solution for wedge-type systems in terms of the Laplace transformation is derived. Characteristics of responses are discussed and computational issues are addressed. The algorithm given here is a practical tool for analyzing flows in wedge-type systems and may be incorporated immediately into existing software packages. Existing solutions are a subset of the solution given here.

  11. Magneto-optical and photoemission studies of ultrathin wedges

    SciTech Connect

    Bader, S.D.; Li, Dongqi

    1995-12-01

    Magnetic phase transitions of Fe wedges grown epitaxially on Cu(100) are detected via the surface magneto-optical Kerr effect and used to construct a phase diagram for face centered Fe. Also, the confinement of Cu sp- and d-quantum-well states is studied for Cu/Co(wedge)/Cu(100) utilizing undulator-based photoemission experiments.

  12. 21 CFR 884.5200 - Hemorrhoid prevention pressure wedge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hemorrhoid prevention pressure wedge. 884.5200... Devices § 884.5200 Hemorrhoid prevention pressure wedge. (a) Identification. A hemorrhoid prevention... hemorrhoids associated with vaginal childbirth. (b) Classification. Class II (special controls). The...

  13. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  14. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  15. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  16. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  17. 49 CFR 230.104 - Driving box shoes and wedges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Driving box shoes and wedges. 230.104 Section 230.104 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Locomotives and Tenders Running Gear § 230.104 Driving box shoes and wedges. Driving box shoes and...

  18. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    NASA Astrophysics Data System (ADS)

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-05-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials.

  19. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    PubMed Central

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  20. Transmission of a Gaussian beam by a Fizeau interferential wedge.

    PubMed

    Stoykova, Elena

    2005-12-01

    Analysis of transmission of a finite-diameter Gaussian beam by a Fizeau interferential wedge is presented. The fringe calculation is based on angular spectrum expansion of the complex amplitude of the incident wave field. The developed approach is applicable to any beam diameter and wedge thickness at any distance from the wedge and yields as a boundary case the fringes at plane-wave illumination. The spatial region of resonant transmission on the wedge surface is given by the width of the transmitted peak for plane-wave illumination. At higher coating reflectivity, the direction of the transmitted beam is deviated with respect to that of the incident beam. Evaluation of the spectral response based on the spectral width of the transmitted power curve is introduced as more realistic for a correct description of the application of a Fizeau wedge as an interferential selector in laser resonators. PMID:16396037

  1. Effect of friction in wedging of elastic solids

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Arin, K.

    1976-01-01

    In this paper the contact problem for an elastic wedge of arbitrary angle is considered. It is assumed that the external load is applied to the medium through a rigid wedge and the coefficient of friction between the loading wedge and the elastic solid is constant. The problem is reduced to a singular integral equation of the second kind with the contact pressure as the unknown function. An effective numerical solution of the integral equation is described and the results of three examples are presented. The comparison of these results with those obtained from the frictionless wedge problem indicates that generally friction has the tendency of reducing the peak values of the stress intensity factors calculated at the wedge apex and at the end points of the contact area.

  2. Fabrication of wedged multilayer Laue lenses

    DOE PAGESBeta

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack.more » This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.« less

  3. Fabrication of wedged multilayer Laue lenses

    SciTech Connect

    Prasciolu, M.; Leontowich, A. F. G.; Krzywinski, J.; Andrejczuk, A.; Chapman, H. N.; Bajt, S.

    2015-01-01

    We present a new method to fabricate wedged multilayer Laue lenses, in which the angle of diffracting layers smoothly varies in the lens to achieve optimum diffracting efficiency across the entire pupil of the lens. This was achieved by depositing a multilayer onto a flat substrate placed in the penumbra of a straight-edge mask. The distance between the mask and the substrate was calibrated and the multilayer Laue lens was cut in a position where the varying layer thickness and the varying layer tilt simultaneously satisfy the Fresnel zone plate condition and Bragg’s law for all layers in the stack. This method can be used to extend the achievable numerical aperture of multilayer Laue lenses to reach considerably smaller focal spot sizes than achievable with lenses composed of parallel layers.

  4. Characterization of CNRS Fizeau wedge laser tuner

    NASA Astrophysics Data System (ADS)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  5. Cesarean section in a wedged head.

    PubMed

    Khosla, A H; Dahiya, K; Sangwan, K

    2003-05-01

    Cesarean section many a times, has to be done late in labour when the head is deeply wedged in the pelvis. The techniques described in standard text books, usually result in extension of the incision either laterally into the broad ligament or vertically upwards into the upper segment or downwards posterior to the bladder from the centre of the incision line. In this study we have reviewed the Patwardhan's technique for the extraction of baby and fetomaternal outcome was compared with cases where this technique was not used. There was no extension of the incision either laterally into broad ligament or upwards or downwards. Haemorrhage due to extension of incision requiring blood transfusion occurred in 24% of patients in group II as compared to nil in group I. PMID:14514249

  6. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  7. Configuration and Generation of Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, Xiangning

    The substorm current wedge (SCW), a core element of substorm dynamics coupling the magnetotail to the ionosphere, is crucial in understanding substorms. It has been suggested that the field-aligned currents (FACs) in the SCW are caused by either pressure gradients or flow vortices, or both. Our understanding of FAC generations is based predominately on numerical simulations, because it has not been possible to organize spacecraft observations in a coordinate system determined by the SCW. This dissertation develops an empirical inversion model of the current wedge and inverts midlatitude magnetometer data to obtain the parameters of the current wedge for three solar cycles. This database enables statistical data analysis of spacecraft plasma and magnetic field observations relative to the SCW coordinate. In chapter 2, a new midlatitude positive bay (MPB) index is developed and calculated for three solar cycles of data. The MPB index is processed to determine the substorm onset time, which is shown to correspond to the auroral breakup onset with at most 1-2 minutes difference. Substorm occurrence rate is found to depend on solar wind speed while substorm duration is rather constant, suggesting that substorm process has an intrinsic pattern independent of external driving. In chapter 3, an SCW inversion technique is developed to determine the strength and locations of the FACs in an SCW. The inversion parameters for FAC strength and location, and ring current strength are validated by comparison with other measurements. In chapter 4, the connection between earthward flows and auroral poleward expansion is examined using improved mapping, obtained from a newly-developed dynamic magnetospheric model by superimposing a standard magnetospheric field model with substorm current wedge obtained from the inversion technique. It is shown that the ionospheric projection of flows observed at a fixed point in the equatorial plane map to the bright aurora as it expands poleward

  8. The matching of wedge transmission factors across six multi-energy linear accelerators.

    PubMed

    Weston, S J; Thompson, R C A; Morgan, A M

    2007-01-01

    Elekta Precise linear accelerators create a wedged isodose distribution using a single, fixed, motorized wedge with a nominal wedge angle of 60 degrees. Wedge angles of less than 60 degrees can be produced by varying the proportion of open and wedge monitor units for a given exposure. The fixed wedge can be replaced with a mobile wedge, the position of which can be moved in order to adjust the wedge transmission factor (WTF). Using the original fixed wedges installed in our fleet of six Elekta accelerators, we found a range of 4% in measured wedge transmission factor for 6 MV beams. Results are presented which demonstrate that by using the mobile wedge it is possible to match the wedge transmission factors to within 1% for the six linear accelerators over three energies. PMID:17267473

  9. Steam sand dryer in northeast part of sand tower. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Steam sand dryer in northeast part of sand tower. View to northeast - Duluth & Iron Range Rail Road Company Shops, Sand Tower, Southwest of downtown Two Harbors, northwest of Agate Bay, Two Harbors, Lake County, MN

  10. An Affair with Sand.

    ERIC Educational Resources Information Center

    Stroud, Sharon

    1980-01-01

    Described is a resource idea developed for the teaching of oceanography to junior high students. Sand is studied to help make the study of beaches more relevant to students who may have never seen an ocean. Sand samples are brought into the classroom from various coastal cities, then analyzed and compared. (Author/DS)

  11. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  12. Sedimentary structures and textures of Rio Orinoco channel sands, Venezuela and Colombia

    USGS Publications Warehouse

    McKee, Edwin Dinwiddie

    1989-01-01

    Most sedimentary structures represented in sand bodies of the Rio Orinoco are tabular-planar cross-strata which, together with some wedge-planar cross-strata, are the products of sand-wave deposition. Locally, in areas of river meander where point bars characteristically form, trough structures forming festoon patterns are numerous. At a few localities, sets of nearly horizontal strata occur between tabular-planar sets and are interpreted to be the deposits of very fast currents of the upper flow regime; elsewhere, uncommon lenses and beds of silt, clay, or organic matter consisting of leaves and twigs, seem to be the result of quiet-water settling through gravity. By far the most common grain size represented in the tabular-planar and wedge-planar cross-strata of the sandwave deposits is medium sand (? - ? millimeter) as determined by screen analyses. Many samples, however, also contain moderate quantities of coarse or very coarse sand. Eolian dunes on top of the sand-wave deposits are dominantly fine grained. The river channel sands were determined to be largely moderately well sorted, although in some places they were mostly well sorted, and in others, mostly moderately sorted.

  13. Using cyclic steps on drift wedges to amend established models of carbonate platform slopes

    NASA Astrophysics Data System (ADS)

    Betzler, Christian; Lindhorst, Sebastian; Eberli, Gregor; Reijmer, John; Lüdmann, Thomas

    2015-04-01

    Hydroacoustic and sedimentological data of the western flank of Great Bahama Bank and Cay Sal Bank document how the interplay of offbank sediment export, along-slope transport, and erosion together shape facies and thickness distribution of slope deposits. The integrated data set depicts the combined product of these processes and allows formulating a comprehensive model of a periplatform drift that significantly amends established models of carbonate platform slope facies distribution and geometry. The basinward thinning wedge of the periplatform drift at the foot of the escarpment of Great Bahama Bank displays along- and down-slope variations in sedimentary architecture. Sediments consist of periplatform ooze, i.e. carbonate mud and muddy carbonate sand, coarsening basinward. In zones of lower contour current speed, depth related facies belts develop. In the upper part of the periplatform drift wedge in a water depth of 180 to 300 m and slope angles of 6° - 9° the seafloor displays a smooth surface. Parasound data indicate that this facies is characterized by a parallel layering. Basinward, the slope shows a distinct break at which the seafloor inclination diminishes to 1° to 2°. Downslope of this break, the drift wedge has a 3 - 4 km wide pervasive cover of bedforms down to a water depth of around 500 m. The steep flanks and internal stratification of the wavy bedforms face upslope, indicating upstream migration; the bedforms therefore share all the characteristics of cyclic step sedimentation. This is the first description of cyclic step sedimentation patterns in carbonate slope depositional systems. This new slope sedimentation model aids in understanding the complexity of carbonate slope sedimentation models with facies belts perpendicular and parallel to the platform margin. The new model sharply contrasts with existing slope facies models in which facies belts are solely positioned parallel to the platform margin.

  14. The western pond turtle (Clemmys marmorata) in the Mojave River, California, USA: Highly adapted survivor or tenuous relict?

    USGS Publications Warehouse

    Lovich, J.; Meyer, K.

    2002-01-01

    Aspects of the ecology of populations of the western pond turtle Clemmys marmorata were investigated in the Mojave River of the central Mojave Desert, California, U.S.A. One population occupied man-made ponds and the other occurred in natural ponds in the flood plain of the Mojave River. Both habitats are severely degraded as a result of ground water depletion from human activities along the river and one is infested with the exotic shrub saltcedar Tamarix ramosissima. Mean female carapace length (CL) was significantly greater (14.4 cm) than that of males (13.7 cm). Live juveniles were not detected during the period of study. Shelled eggs were visible in X-radiographs from 26 May to 14 July. Mean clutch size was 4.46 and ranged from 3 to 6 eggs. Clutch size did not vary between 1998 and 1999 but was significantly correlated with CL for both years combined, increasing at the rate of 0.548 eggs/cm CL. Gravid female CL ranged from 13.3-16.0 cm. Some females nested in both years. Mean X-ray egg width (21.8 mm) was not significantly correlated with CL or clutch size. X-ray egg width differed more among clutches than within, whether including CL as a co-variate or not. Nesting migrations occurred from 6 June to 8 July with minimum round trip distances ranging from 17.5-585 m with a mean of 195 m. Mean estimated time of departure as measured at the drift fence was 18:13. Most females returned to the ponds in the early morning. Nesting migrations required females to be out of the water for estimated periods of 0.83 to 86 h. The destination of nesting females was typically fluvial sand bars in the channel of the dry riverbed. Overall, the ecology of C. marmorata in the Mojave River is very similar to that reported for populations in less severe habitats along the west coast of the United States. Notable exceptions include long nesting migrations to sandbars in the dry river channel, a possible result of human modifications to the environment, and an apparent lack of

  15. Kinematic evolution of thrusts wedge and erratic line length balancing: insights from deformed sandbox models

    NASA Astrophysics Data System (ADS)

    Ahmad, Mohammad Irfan; Dubey, A. K.; Toscani, Giovanni; Bonini, Lorenzo; Seno, Silvio

    2014-01-01

    Kinematic evolution of fold-thrust structures has been investigated by analogue models that include syntectonic sedimentation. Different decollement dips and basement thicknesses produced different wedge geometries and propagating characteristics. A model with one decollement level was characterized by a closely spaced thrust system during early stages of shortening as compared to the late stages. The frequency of fault nucleation was rapid during the early stages of deformation. Conversely, the frequency of fault nucleation was low and thrust spacing was significantly wider in a model with two decollement levels. Individual faults became locked at steep dips and deformation stepped forward as a new fault nucleated in-sequence in front of the older locked structure. Once the thrust system was established up to 27 % overall shortening, an overlying bed was introduced to simulate syntectonic deformation. Model sand wedge did not grow self similarly but rather its length and height increased episodically with deformation. Restoration of deformed models show that layer parallel shortening accommodated for approximately half of the total model shortening across the multilayers. Calculated error in apparent layer shortening from the restored layers revealed a direct relation with depth of the layers in the models. The experimental results are comparable to a natural example from the Northern Apennines fold-and-thrust belts.

  16. Analysis of Oblique Wedges Using Analog and Numerical Models

    NASA Astrophysics Data System (ADS)

    Haq, S. S.; Koster, K.; Martin, R. S.; Flesch, L. M.

    2010-12-01

    Oblique plate motion is understood to be a primary factor in determining the style and location of deformation at many convergent margins. These margins are frequently characterized by a dominant strike-slip fault parallel to the margin, which accommodates margin-parallel motion and shear and is adjacent to partitioned and near margin-normal thrusting. We have performed a series of analog experiment in which we have simulated oblique wedges with frictional and layered, friction over viscous, rheologies. Using the detailed analysis of topography and strain from these analog models we have compared them to geometrically similar 2D and 3D numerical models. While our pure frictional analog wedges are characterized by numerous discrete thrust faults in the pro-wedge and a zone of shear between the pro-wedge and the retro-wedges, our layered wedges have a dominate shear zone that is long-lived. In all models the highest rate of contractional deformation is at the thrust front, while the highest rate of shear is isolated in a relatively narrow zone at the back of the pro-wedge. Because the layered analog wedge is better able isolate shear behind the pro-wedge it can better partition strain into dip-slip thrusting normal to the margin. Our numerical simulations support the assertion that a relatively small amount of extensional stress is needed to play a significant role in the structural evolution of convergent systems. However, the manner in which this stress is localized on discrete structures, and in particular, how the style of strain (extension or contraction) will evolve, is a strong function of rheology and its strength at depth for a given initial geometry.

  17. Fluvial braidplain evolving into lagoonal environment in the coarse marginal facies of the lower buntsandstein relicts in saxony (German Democratic Republic)

    NASA Astrophysics Data System (ADS)

    Grunert, Siegfried

    The Lower Buntsandstein in Saxony (German Democratic Republic) is present in mainly isolated relicts in the Zeitz-Schmölln Syncline, the Borna Syncline and the Mügeln Basin where the Nordhausen-Folge and the lower part of the Bernburg-Folge are preserved. The separate occurrences are the remnants of a formerly continuous and extensive distribution of the Buntsandstein which was dissolved and split into pieces by erosion and tectonics. The Buntsandstein overlies the Zechstein; only in the eastern parts of the Mügeln Basin, the Triassic red beds lap on the crystalline basement. Palaeocurrents as revealed from cross-stratification and composition of the gravel-size clasts were directed towards the north and northwest. As most of the pebbles derived from provenance areas that are located some 10 - 30 km south of the occurrences, the Buntsandstein remnants in Saxony represent a marginal part of the basin, as also indicated by the coarse facies. Conglomerates were formed in highly- to moderately-braided river systems operating in braidplain belts or even alluvial-fan chains seaming the basement at the boundary of the depositional area. Towards the centre of the basin, the conglomerate train gives rapidly way to a sand flat in front of the braidplain belt or fan chain where the rivers are no longer capable to transport gravel-size material as a consequence of lowering of the palaeoslope gradient. Accumulation of sand by infilling of shallow watercourses and accretion of mud by plugging of overbank lakes and ponds take place at the margin of a lagoonal sea. The Buntsandstein onlapping on the crystalline basement buries a fossil block package in the granodiorite of the Meißen Massif which originated by weathering and pedogenesis in a semi-arid climate with alternating dry and wet periods. The temporarily brakish lagoonal sea is repeatedly refreshed by influx from braided rivers in the marginal parts that come from the continent.

  18. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, J.P.; Sawvel, R.M.; Draggoo, V.G.

    1994-06-28

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior. 8 figures.

  19. Recirculating wedges for metal-vapor plasma tubes

    DOEpatents

    Hall, Jerome P.; Sawvel, Robert M.; Draggoo, Vaughn G.

    1994-01-01

    A metal vapor laser is disclosed that recycles condensed metal located at the terminal ends of a plasma tube back toward the center of the tube. A pair of arcuate wedges are incorporated on the bottom of the plasma tube near the terminal ends. The wedges slope downward toward the center so that condensed metal may be transported under the force of gravity away from the terminal ends. The wedges are curved to fit the plasma tube to thereby avoid forming any gaps within the tube interior.

  20. Octave spanning wedge dispersive mirrors with low dispersion oscillations.

    PubMed

    Habel, Florian; Shirvanyan, Vage; Trubetskov, Michael; Burger, Christian; Sommer, Annkatrin; Kling, Matthias F; Schultze, Martin; Pervak, Vladimir

    2016-05-01

    A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

  1. Ancient Yedoma carbon loss: primed by ice wedge thaw?

    NASA Astrophysics Data System (ADS)

    Dowdy, K. L.; Vonk, J. E.; Mann, P. J.; Zimov, N.; Bulygina, E. B.; Davydova, A.; Spencer, R. G.; Holmes, R. M.

    2012-12-01

    Northeast Siberian permafrost is dominated by frozen Yedoma deposits containing ca. 500 Gt of carbon, nearly a quarter of northern permafrost organic carbon (OC). Yedoma deposits are Pleistocene-age alluvial and/or aeolian accumulations characterized by high ice wedge content (~50%), making them particularly vulnerable to a warming climate and to surface collapse upon thaw. Dissolved OC in streams originating primarily from Yedoma has been shown to be highly biolabile, relative to waters containing more modern OC. The cause of this biolability, however, remains speculative. Here we investigate the influence of ice wedge input upon the bioavailability of Yedoma within streams from as a potential cause of Yedoma carbon biolability upon release into the Kolyma River from the thaw-eroding river exposures of Duvannyi Yar, NE Siberia. We measured biolability on (1) ice wedge, Kolyma, and Yedoma leachate controls; (2) ice wedge and Kolyma plus Yedoma OC (8 g/L); and (3) varying ratios of ice wedge water to Kolyma river water. Biolability assays were conducted using both 5-day BOD (biological oxygen demand) and 11-day BDOC (biodegradable dissolved organic carbon) incubations. We found that ancient DOC in Yedoma soil leachate alone was highly biolabile with losses of 52±0.1% C over a 5-day BOD incubation. Similarly, DOC contained in pure ice wedge water was found to be biolabile, losing 21±0% C during a 5-day BOD incubation. Increased ice wedge contributions led to higher overall C losses in identical Yedoma soil leachates, with 8.9±0.6% losses of Yedoma C with 100% ice wedge water, 7.1±1% (50% ice wedge/ 50% Kolyma) and 5±0.3% with 100% Kolyma River water. We discuss potential mechanisms for the increased loss of ancient C using associated measurements of nutrient availability, carbon quality (CDOM/FDOM) and extracellular enzyme activity rates. Our initial results indicate that ice wedge meltwater forming Yedoma streams makes Yedoma OC more bioavailable than it would

  2. Basaltic island sand provenance

    SciTech Connect

    Marsaglia, K.M. . Dept. of Geological Sciences)

    1992-01-01

    The Hawaiian Islands are an ideal location to study basaltic sand provenance in that they are a series of progressively older basaltic shield volcanoes with arid to humid microclimates. Sixty-two sand samples were collected from beaches on the islands of Hawaii, Maui, Oahu and Kauai and petrographically analyzed. The major sand components are calcareous bioclasts, volcanic lithic fragments, and monomineralic grains of dense minerals and plagioclase. Proportions of these components vary from island to island, with bioclastic end members being more prevalent on older islands exhibiting well-developed fringing reef systems and volcanic end members more prevalent on younger, volcanically active islands. Climatic variations across the island of Hawaii are reflected in the percentage of weathered detritus, which is greater on the wetter, northern side of the island. The groundmass of glassy, basaltic lithics is predominantly black tachylite, with lesser brown sideromelane; microlitic and lathwork textures are more common than holohyaline vitric textures. Other common basaltic volcanic lithic fragments are holocrystalline aggregates of silt-sized pyroxene or olivine, opaque minerals and plagioclase. Sands derived from alkalic lavas are texturally and compositionally indistinguishable from sands derived from tholeiitic lavas. Although Hawaiian basaltic sands overlap in composition with magmatic arc-derived sands in terms of their relative QFL, QmPK and LmLvLs percentages, they are dissimilar in that they lack felsic components and are more enriched in lathwork volcanic lithic fragments, holocrystalline volcanic lithic fragments, and dense minerals.

  3. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands

    NASA Astrophysics Data System (ADS)

    Zielińska, Katarzyna M.; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-08-01

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is – Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and ‘small’ bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats.

  4. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands

    PubMed Central

    Zielińska, Katarzyna M.; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-01-01

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is – Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and ‘small’ bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats. PMID:27534690

  5. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands.

    PubMed

    Zielińska, Katarzyna M; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-08-18

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is - Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and 'small' bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats.

  6. Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria.

    PubMed

    Maralikova, Barbora; Ali, Vahab; Nakada-Tsukui, Kumiko; Nozaki, Tomoyoshi; van der Giezen, Mark; Henze, Katrin; Tovar, Jorge

    2010-03-01

    The assembly of vital reactive iron-sulfur (Fe-S) cofactors in eukaryotes is mediated by proteins inherited from the original mitochondrial endosymbiont. Uniquely among eukaryotes, however, Entamoeba and Mastigamoeba lack such mitochondrial-type Fe-S cluster assembly proteins and possess instead an analogous bacterial-type system acquired by lateral gene transfer. Here we demonstrate, using immunomicroscopy and biochemical methods, that beyond their predicted cytosolic distribution the bacterial-type Fe-S cluster assembly proteins NifS and NifU have been recruited to function within the relict mitochondrial organelles (mitosomes) of Entamoeba histolytica. Both Nif proteins are 10-fold more concentrated within mitosomes compared with their cytosolic distribution suggesting that active Fe-S protein maturation occurs in these organelles. Quantitative immunoelectron microscopy showed that amoebal mitosomes are minute but highly abundant cellular structures that occupy up to 2% of the total cell volume. In addition, protein colocalization studies allowed identification of the amoebal hydroperoxide detoxification enzyme rubrerythrin as a mitosomal protein. This protein contains functional Fe-S centres and exhibits peroxidase activity in vitro. Our findings demonstrate the role of analogous protein replacement in mitochondrial organelle evolution and suggest that the relict mitochondrial organelles of Entamoeba are important sites of metabolic activity that function in Fe-S protein-mediated oxygen detoxification. PMID:19888992

  7. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands.

    PubMed

    Zielińska, Katarzyna M; Kiedrzyński, Marcin; Grzyl, Andrzej; Rewicz, Agnieszka

    2016-01-01

    The long-term survival of relict populations depends on the accessibility of appropriate sites (microrefugia). In recent times, due to the mass extinction of rare species that has resulted from the loss of natural habitats, the question is - Are there any human-made sites that can act as refugial habitats? We examined forest roadside populations of the mountain plant Pulsatilla vernalis in the last large lowland refugium in Central Europe. We compared the habitat conditions and community structure of roadsides with P. vernalis against the forest interior. Light availability and bryophyte composition were the main factors that distinguished roadsides. Pulsatilla occurred on sites that had more light than the forest interior, but were also more or less shaded by trees, so more light came as one-side illumination from the road. Roadsides had also a lower coverage of bryophytes that formed large, dense carpets. At the same time, they were characterised by a greater richness of vascular plants and 'small' bryophytes, which corresponds to a higher frequency of disturbances. In a warming and more fertile Anthropocene world, competition plays the main role in the transformation of forest communities, which is why relict populations have found refugia in extensively disturbed human-made habitats. PMID:27534690

  8. Multiple origins of circumboreal taxa in Pyrola (Ericaceae), a group with a Tertiary relict distribution

    PubMed Central

    Liu, Zhen-Wen; Jolles, Diana D.; Zhou, Jing; Peng, Hua; Milne, Richard I.

    2014-01-01

    Background and Aims In the Northern Hemisphere, Tertiary relict disjunctions involve older groups of warm affinity and wide disjunctions, whereas circumboreal distributions in Arctic-Alpine taxa tend to be younger. Arctic-Alpine species are occasionally derived from Tertiary relict groups, but Pyrola species, in particular, are exceptional and they might have occurred multiple times. The aim of this study was to reconstruct the biogeographic history of Pyrola based on a clear phylogenetic analysis and to explore how the genus attained its circumboreal distribution. Methods Estimates of divergence times and ancestral geographical distributions based on neutrally evolving DNA sequence variation were used to develop a spatio-temporal model of colonization patterns for Pyrola. Key Results Pyrola originated and most diversification occurred in Asia; North America was reached first by series Scotophyllae in the late Miocene, then by sub-clades of series Pyrola and Ellipticae around the Pliocene. The three circumboreal taxa, P. minor, P. chlorantha and the P. rotundifolia complex, originated independently of one another, with the last two originating in Asia. Conclusions Three circumboreal Pyrola lineages have arisen independently and at least two of these appear to have originated in Asia. The cool, high-altitude habitats of many Pyrola species and the fact that diversification in the genus coincided with global cooling from the late Miocene onwards fits a hypothesis of pre-adaptation to become circumboreal within this group. PMID:25326138

  9. Industrial sand and gravel

    USGS Publications Warehouse

    Dolley, T.P.

    2010-01-01

    Domestic production of industrial sand and gravel in 2009 was about 27 Mt (30 million st), declining by 10 percent compared with 2008. Certain end uses of industrial sand and gravel, such as foundry and glassmaking sand, may have declined by a factor greater than 10 percent in 2009. U.S. apparent consumption was 24.7 Mt (27.2 million st) in 2009, down by 10 percent from the previous year, and imports declined to 83 kt (91,000 st).

  10. Glacial eustatic mechanism (marine ice sheet decoupling) for isolation of shelf sand bodies

    SciTech Connect

    Anderson, J.B.; Bartek, L.R.; Thomas, M.A.

    1988-01-01

    The formation of shelf sand bodies requires a mechanism for delivering sand to the offshore environment (below wave base or ravinement depth). The distribution of these sand bodies (sheetlike versus patchy distribution) is greatly influenced by the rate of shoreline translation. Holocene sand bodies of the north Texas shelf illustrate these influences well, as does a map depicting the thickness and lateral extent of sand bodies that would be formed were sea level to rise rapidly again. Preliminary observations imply that wave-dominated deltas have actively (via plume mechanisms) and passively (via transgressions) been key factors in delivering very fine to fine sands to the offshore environment. Other sand bodies may be relict shoreline deposits that, like the modern Galveston Island barrier, prograded into the offshore environment so that their roots were preserved beneath the ravinement surface. Recently gathered evidence from the Antarctic continental shelf indicates that ice sheets were formerly grounded to the shelf edge and that the retreat of these ice sheets from the shelf was rapid but sporadic. The subsequent ''drawdown'' of marine ice sheets and the associated eustatic rise in sea level during any single event was probably on the order of 5-10 m in a few centuries. Such a sea level rise would manifest itself in rapid translations of the shoreline of about 10-25 km on the Texas shelf. Several of these eustatic events are believed to have occurred during the Holocene, and were probably instrumental in isolating shelf sand bodies. Sand bodies associated with the most recent rapid rise occur within 30 km of the present shoreline and their origin is being investigated using high-resolution seismic (uniboom) profiling and coring.

  11. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING NORTH - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  12. VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF LINE OF DRILL HOLES WITH METAL WEDGES, IN NORTHERN QUARRY AREA, FACING SOUTHEAST - Granite Hill Plantation, Quarry No. 2, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  13. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING NORTHWEST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  14. DETAIL VIEW OF THREEPART METAL WEDGE EMBEDDED IN EDGE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF THREE-PART METAL WEDGE EMBEDDED IN EDGE OF QUARRY WALL, FACING EAST - Granite Hill Plantation, Quarry No. 3, South side of State Route 16, 1.3 miles northeast east of Sparta, Sparta, Hancock County, GA

  15. Single-photon cooling in a wedge billiard

    SciTech Connect

    Choi, S.; Sundaram, B.; Raizen, M. G.

    2010-09-15

    Single-photon cooling (SPC), noted for its potential as a versatile method for cooling a variety of atomic species, has recently been demonstrated experimentally. In this paper, we study possible ways to improve the performance of SPC by applying it to atoms trapped inside a wedge billiard. The main feature of the wedge billiard for atoms, also experimentally realized recently, is that the nature of atomic trajectories within it changes from stable periodic orbit to random chaotic motion with the change in wedge angle. We find that a high cooling efficiency is possible in this system with a relatively weak dependence on the wedge angle and that chaotic dynamics, rather than a regular orbit, is more desirable for enhancing the performance of SPC.

  16. Structure and Kinematics of the Indo-Burmese Wedge

    NASA Astrophysics Data System (ADS)

    Maurin, T.; Rangin, C.

    2007-12-01

    The Burma subduction trench and the associated Indo Burmese wedge mark the present eastern boundary of the Indian plate in the northern Bengal area. The initiation, duration and history of the Bengal crust subduction beneath Burma is still debated. The aim of this paper is to provide a structural and kinematic analysis of the Indo- Burmese wedge in order to better constraints the Bengal crust subduction history beneath Burma. On the basis of field observations, seismic reflection data interpretation and well logs data we present a structural analysis of the Outer Indo-Burmese Wedge. We also constrain the onset of this Outer Wedge to be younger than 2Ma, implying a recent and fast westward growth (~10cm/yr) since Late Pliocene in close relationship with the onset of the Shillong plateau. Restoration process of a synthetic cross section through the Outer Wedge allowed us to estimate the amount of EW shortening accommodated in the Outer Wedge to be 5.1mm/yr since 2Ma. These results combined with previous available GPS data from central Myanmar suggest strain partitioning at wedge scale. The core of the wedge is affected by shear deformation and acts as a buttress for a frontal wedge that accommodates a more compressive strain component. Finally we propose that the main characteristic of the Indo-Burmese wedge growth mechanism is the progressive incorporation of the most internal part of the wedge, formerly affected by transpressive thin-skinned tectonics, to the buttress where they are subsequently affected by shear deformation. The crustal structure boarding the newly formed buttress seems to be guided by the subducting crust fabrics. We are in favour of a very recent (Late Miocene) onset of the present Indian crust subduction beneath Burma coeval with the global plate kinematics reorganisation related to the Indian/Australian plate spliting. This subduction postdates the Indo Burmese range onset that must have started in early Miocene. This range first began to

  17. Structure and Kinematics of the Indo-Burmese Wedge

    NASA Astrophysics Data System (ADS)

    Maurin, T.; Rangin, C.

    2004-12-01

    The Burma subduction trench and the associated Indo Burmese wedge mark the present eastern boundary of the Indian plate in the northern Bengal area. The initiation, duration and history of the Bengal crust subduction beneath Burma is still debated. The aim of this paper is to provide a structural and kinematic analysis of the Indo- Burmese wedge in order to better constraints the Bengal crust subduction history beneath Burma. On the basis of field observations, seismic reflection data interpretation and well logs data we present a structural analysis of the Outer Indo-Burmese Wedge. We also constrain the onset of this Outer Wedge to be younger than 2Ma, implying a recent and fast westward growth (~10cm/yr) since Late Pliocene in close relationship with the onset of the Shillong plateau. Restoration process of a synthetic cross section through the Outer Wedge allowed us to estimate the amount of EW shortening accommodated in the Outer Wedge to be 5.1mm/yr since 2Ma. These results combined with previous available GPS data from central Myanmar suggest strain partitioning at wedge scale. The core of the wedge is affected by shear deformation and acts as a buttress for a frontal wedge that accommodates a more compressive strain component. Finally we propose that the main characteristic of the Indo-Burmese wedge growth mechanism is the progressive incorporation of the most internal part of the wedge, formerly affected by transpressive thin-skinned tectonics, to the buttress where they are subsequently affected by shear deformation. The crustal structure boarding the newly formed buttress seems to be guided by the subducting crust fabrics. We are in favour of a very recent (Late Miocene) onset of the present Indian crust subduction beneath Burma coeval with the global plate kinematics reorganisation related to the Indian/Australian plate spliting. This subduction postdates the Indo Burmese range onset that must have started in early Miocene. This range first began to

  18. The statics of the wedge-shaped jar opener

    NASA Astrophysics Data System (ADS)

    Donolato, C.

    2015-11-01

    This paper analyzes the static equilibrium of a simple jar opener on the basis of rigid-body mechanics with friction. The opener-lid system is described as a disk lying inside a wedge, where only one side has friction; the disk is assumed to be acted upon by a wedging force and a torque. The resulting equilibrium equations have an exact solution that yields the non-sliding conditions for the disk as functions of applied forces and system parameters.

  19. The Flow of Sand.

    ERIC Educational Resources Information Center

    Yersel, Metin

    2000-01-01

    Describes a simple demonstration of the flow of sand through an orifice at the bottom of a sandbox. Advocates the experiment's use with dimensional analysis for students in an introductory physics course. (WRM)

  20. Modeling Structural and Mechanical Responses to Localized Erosional Processes on a Bivergent Orogenic Wedge

    NASA Astrophysics Data System (ADS)

    Marzen, R.; Morgan, J. K.

    2014-12-01

    Critical Coulomb wedge theory established that orogenic and accretionary wedges should develop self-similarly and maintain a critical taper that reflects the balance of strength of the wedge material and a basal décollement. However, a variety of geological processes can perturb that balance, forcing readjustment of the wedge. For example, glacial erosion and landsliding can concentrate erosion on a localized portion of the wedge slope, leaving that portion of the wedge with an out-of-equilibrium slope that would need to re-develop for the wedge to resume self-similar growth. We use the discrete element method to analyze how growing bivergent wedges with different cohesive strengths respond structurally and mechanically to erosional events localized along upper, middle, and lower segments of the pro-wedge. Mechanically, pro-wedge erosion results in a sudden decrease followed by a quick recovery of the mean stress and maximum shear stress throughout the pro-wedge. However, when erosion is localized in the mid- to lower portions of the pro-wedge, a zone of increased mean stress develops where the wedge is concentrating deformation to recover its taper. In contrast, when erosion is localized in the upper axial zone, there is almost no recovery of the wedge taper, reflecting the fact that the material at the top of the wedge is being carried passively in a transition zone between the pro-wedge and retro-wedge. Structurally, wedges composed of lower cohesion material recover their critical taper almost immediately through distributed deformation, while wedges of higher-cohesion material recover more slowly, and incompletely, by concentrating deformation along existing fault surfaces. As a result, localized erosional episodes can have a lasting effect on the wedge morphology when the wedge is composed of higher cohesion material.

  1. North Polar Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-417, 10 July 2003

    The martian north polar ice cap is surrounded by fields of dark, windblown sand dunes. This March 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dunes near 76.5oN, 264.7oW. The steep dune slip faces indicate wind transport of sand from the lower left toward the upper right. Sunlight illuminates the scene from the lower left.

  2. Growth of the deposit wedge in the mountain reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Song, G.

    2011-12-01

    The sedimentary problem of mountain reservoirs in Taiwan is getting serious year by year.Due to eroded sediments enter downstream reservoirs,the loss of sediment transport capacity may cause deposition of sediment in reservoirs.This phenomenon make problems to small mountain reservoirs.To realize the interaction between deposit wedges and mountain reservoirs,we selected Wushe reservoir which is situated in central Taiwan for a case study. Wushe reservoir is long and narrow.In recent years,most sediment is introduced during rain events that now accompany climate change are very important in sediment supply.In this thesis,we collected data of underwater landform and sub-bottom bedding information by using high resolution Multibeam Survey System(MBS) and seismic-reflection system.Up to now,we already had the bathymetric data for more than ten years,moreover,in 2010,we used 3.5kHz sub-bottom seismic profiler to analysis the sedimentary bedding situation in this area.These methods provide us accurate reservoir topography,sediment accumulation and the major ways of sediment transportation.The study purposes are as follows: First,according to the available underwater data for last ten years,we recognize the geomorphological characters of sedimentation as well as complete the mappings.Comparing to bathymetric images each year,we evaluate the carried ways of sediment.The flow water which enters this area transports along the thalweg,which in eastern reservoir.The range of water level variation cause alteration of sedimentary morphology,it also affects the scope of alluvial fan.The alluvial fan is located in the middle of the reservoir,the edge of it had moved forward 500 meters for last ten years.The annual mean of forward velocity was 50 meters,the elevation of fan edge also accelerated 10 meters per year.In a word,the large volume of the sedimentary delta is in Wushe reservoir now. Second,trying to clarify the composition of sedimentation and explain the sub

  3. Sand Volcano Following Earthquake

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Sand boil or sand volcano measuring 2 m (6.6 ft.) in length erupted in median of Interstate Highway 80 west of the Bay Bridge toll plaza when ground shaking transformed loose water-saturated deposit of subsurface sand into a sand-water slurry (liquefaction) in the October 17, 1989, Loma Prieta earthquake. Vented sand contains marine-shell fragments. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: J.C. Tinsley, U.S. Geological Survey)

  4. Large sand waves on the Atlantic Outer Continental Shelf around Wilmington Canyon, off Eastern United States

    USGS Publications Warehouse

    Knebel, H. J.; Folger, D.W.

    1976-01-01

    New seismic-reflection data show that large sand waves near the head of Wilmington Canyon on the Atlantic Outer Continental Shelf have a spacing of 100-650 m and a relief of 2-9 m. The bedforms trend northwest and are asymmetrical, the steeper slopes being toward the south or west. Vibracore sediments indicate that the waves apparently have formed on a substrate of relict nearshore sediments. Although the age of the original bedforms is unknown, the asymmetry is consistent with the dominant westerly to southerly drift in this area which has been determined by other methods; the asymmetry, therefore, is probably modern. Observations in the sand-wave area from a submersible during August 1975, revealed weak bottom currents, sediment bioturbation, unrippled microtopography, and lack of scour. Thus, the asymmetry may be maintained by periodic water motion, possibly associated with storms or perhaps with flow in the canyon head. ?? 1976.

  5. The New Madrid earthquakes; an engineering-geologic interpretation of relict liquefaction features

    USGS Publications Warehouse

    Obermeier, Stephen F.

    1989-01-01

    Earthquake-induced sand blows and sand-filled fissures are present in a belt 40 to 60 km. wide that extends from near Charleston, Mo., southward to about 20 km. south of Marked Tree, Ark. This region of earthquake-induced sand blows and other liquefaction-related features is almost exclusively in the St. Francis Basin, an alluvial lowland that typically has a thin (2 to 8 m thick), clay-bearing topstratum underlain by about 30 to 60 m of unconsolidated sand (the substratum). Liquefaction of the substratum sands has made the sand blows. The sand blows and other liquefaction-related features on the ground surface in the St. Francis Basin are almost certainly results of the New Madrid earthquakes of 1811-12. In this report, geologic and engineering properties of the alluvium are used in combination with a map showing the bounds of the liquefaction-related features to locate approximately the epicentral zones for two of the major shocks: the earthquakes of December 16,1811, and February 7,1812. Properties used for the analysis included the Standard Penetration Resistance of the substratum sands, characteristics of the sand's grain size, thickness of the topstratum, and the thickness of the post-Tertiary alluvium. The method of analysis relies largely on the evaluation of the liquefaction potential of the sands. This is done by using the Standard Penetration Test blow counts and by devising a method that uses all possible combinations of liquefaction potential and a realistic relation between attenuation of earthquake accelerations and distance from the epicenter (or more correctly, energy-release center). Two interpreted 1811-12 energy-release centers generally agree well with zones of seismicity defined by modern, small earthquakes. Bounds on accelerations are placed at the limits of sand blows that were generated by the 1811-12 earthquakes in the St. Francis Basin. Conclusions show how the topstratum thickness, sand size of the substratum, and thickness of alluvium

  6. The Influence of Localized Glacial Erosion on Exhumation Paths in Accreting Coulomb Wedges: Insights from Particle Velocimetry Analysis of Sandbox Models

    NASA Astrophysics Data System (ADS)

    Newman, P. J.; Davis, K.; Haq, S. S. B.; Ridgway, K.

    2015-12-01

    Glacial erosion can have an impact on the location and development of faults in mountain belts. The rapid removal and deposition of rock, in some cases, is thought to affect the initiation of slip on older fault structures, or cause the development of new structures within the older part of the wedge. We present cross-sectional data from both erosional and non-erosional sandbox models of Coulomb wedges in order to quantify the impact of localized erosion on the location of and slip on deformational structures, as well as the general path of material through a wedge. To do this, we employ Lagrangian particle tracking velocimetry (PTV) using the open-source Python PTV toolkit trackpy, among a suite of other data analysis tools. We are able to extract robust and reliable sets of particle trajectories from a series of images without the need for predefined markers or marker-beds, instead identifying and tracking natural variations in sand color as individual particles. By comparing the motion of particles in cross-section to the local surface topography over an entire experiment, we determine a high-resolution record of exhumation rates, in addition to simple uplift rates. These comparisons are further informed by the use of high-definition Eulerian particle image velocimetry (PIV), which provides quantitative data about the distribution of deformation and instantaneous material displacements throughout a cross-sectional view of a Coulomb wedge. This allows us to interpret these pathways in relation to the behavior of active structures and general wedge morphology. In our experiments, we observe that localized glacial erosion has an impact on material pathways, in the form of an increased rate of exhumation locally, more vertical trajectories towards surface below the zone of erosion, and reactivation of older structures to maintain force balance within the entire wedge.

  7. Stratigraphic framework of inner shelf storm-dominated sand ridges, Alabama EEZ: Implications for sequence stratigraphy, global climate change, and petroleum exploration

    SciTech Connect

    Davies, D.J.; Parker, S.J. )

    1993-09-01

    The Alabama exclusive economic zone (EEZ) contains an abundance of orthoquartzitic shelf sand ridges elongate northwest-southeast diagonally from the shoreline. Soft-sediment peels from 59 Vibracores[sup TM] from the Alabama inner shelf permit detailed description of sand ridge sedimentary structures, fabrics, and eight sea-floor sediment types. These overlie the pre-Holocene sequence boundary and lower Holocene transgressive sediments. In general, the ridges are capped by coarse stacked graded shelly sands, echinoid sands, and clean sands deposited well above storm wave base. The graded shelly sand microfacies, the most common sediment type, is inferred to represent shelf storm deposits because of its graded nature, sharp base, and variable thickness (0.1 to 4 m). Considerable patchiness of facies is found on a single sand ridge. The facies patchiness may result from the interplay between relict sediment distribution, present hydrodynamics and local difference in preserved shell content. Due to the microtidal regime of the Alabama EEZ and the prevalence of the graded sands on the ridge crests, the ridges are interpreted to be dominantly storm-wave in origin. This type of coarse, clean sandy deposit is a poorly studied yet important possible model for many shelf-sand petroleum reservoirs.

  8. Discovery of relict subglacial lakes and their geometry and mechanism of drainage.

    PubMed

    Livingstone, Stephen J; Utting, Daniel J; Ruffell, Alastair; Clark, Chris D; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C

    2016-06-13

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow.

  9. Discovery of a relict lineage and monotypic family of passerine birds

    PubMed Central

    Alström, Per; Hooper, Daniel M.; Liu, Yang; Olsson, Urban; Mohan, Dhananjai; Gelang, Magnus; Le Manh, Hung; Zhao, Jian; Lei, Fumin; Price, Trevor D.

    2014-01-01

    Analysis of one of the most comprehensive datasets to date of the largest passerine bird clade, Passerida, identified 10 primary well-supported lineages corresponding to Sylvioidea, Muscicapoidea, Certhioidea, Passeroidea, the ‘bombycillids’ (here proposed to be recognized as Bombycilloidea), Paridae/Remizidae (proposed to be recognized as Paroidea), Stenostiridae, Hyliotidae, Regulidae (proposed to be recognized as Reguloidea) and spotted wren-babbler Spelaeornis formosus. The latter was found on a single branch in a strongly supported clade with Muscicapoidea, Certhioidea and Bombycilloidea, although the relationships among these were unresolved. We conclude that the spotted wren-babbler represents a relict basal lineage within Passerida with no close extant relatives, and we support the already used name Elachura formosa and propose the new family name Elachuridae for this single species. PMID:24598108

  10. VH gene organization in a relict species, the coelacanth Latimeria chalumnae: evolutionary implications.

    PubMed

    Amemiya, C T; Ohta, Y; Litman, R T; Rast, J P; Haire, R N; Litman, G W

    1993-07-15

    The living coelacanth Latimeria chalumnae is a relict species whose higher-level phylogenetic relationships have not been resolved clearly by traditional systematic approaches. Previous studies show that major differences in immunoglobulin gene structure and organization typify different phylogenetic lineages. To date, mammalian-, avian-, and elasmobranch-type gene organizations have been identified in representatives of these different phylads. A fourth form or organization is found in Latimeria, which possesses immunoglobulin heavy-chain variable region (VH) elements separated by approximately 190 nucleotides from diversity (D) elements. Adjacency of VH and D elements is characteristic of the elasmobranch "clustered" arrangement, although many other features of coelacanth VH gene organization and structure are more similar to those of bony fishes and tetrapods. These observations strongly support a phylogenetic hypothesis in which Latimeria occupies a sister-group relationship with teleosts and tetrapods.

  11. Hydraulic properties and inner structure of a relict rock glacier in the Eastern Alps, Austria

    NASA Astrophysics Data System (ADS)

    Pauritsch, Marcus; Winkler, Gerfried; Kellerer-Pirklbauer, Andreas; Birk, Steffen

    2013-04-01

    Water economic studies in 1990s documented the importance of the springs draining relict rock glaciers for water supply and human consumption as well as for the ecosystem in alpine catchments in the Niederen Tauern Range, Austria. Recent studies confirm the hydrologic importance and show that in the easternmost subunit, the Seckauer Tauern Range, more than 40% of the area above 2000 m a.s.l. and up to 20% of the area above 1500 m a.s.l. drain through relict rock glaciers. Thus, the hydraulic properties of these alpine aquifers are considered to be important controls on the hydrology of these areas. Nevertheless their hydraulic properties and their inner structure are still poorly understood. Our hydrogeological research is carried out at the Schöneben Rock Glacier, located in Seckauer Tauern Range, Austria. This rock glacier is presumably relict although patches of permafrost might exist particularly in the upper part of the landform. The rock glacier covers an area of 0.11 km² and drains a total catchment of 0.76 km² with a maximum elevation of 2282 m a.s.l.. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is recorded since 2002. Electrical conductivity and water temperature used as natural tracers are continuously monitored since 2008. Furthermore, a tracer test with simultaneous injection of the fluorescent dyes naphthionate and fluoresceine at two injection points (one close to the front and one close to the rooting zone of the rock glacier) was performed. Recession analysis of the spring hydrograph reveals similarities to the flow dynamics of karst springs. The results exhibit on the one hand a slow base flow recession indicating a high storage capacity and on the other hand sharp discharge peaks immediately after rainfall events referring to a high hydraulic conductivity. Applying different analytic runoff models, the

  12. Discovery of relict subglacial lakes and their geometry and mechanism of drainage

    PubMed Central

    Livingstone, Stephen J.; Utting, Daniel J.; Ruffell, Alastair; Clark, Chris D.; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C.

    2016-01-01

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049

  13. Discovery of relict subglacial lakes and their geometry and mechanism of drainage.

    PubMed

    Livingstone, Stephen J; Utting, Daniel J; Ruffell, Alastair; Clark, Chris D; Pawley, Steven; Atkinson, Nigel; Fowler, Andrew C

    2016-01-01

    Recent proxy measurements reveal that subglacial lakes beneath modern ice sheets periodically store and release large volumes of water, providing an important but poorly understood influence on contemporary ice dynamics and mass balance. This is because direct observations of how lake drainage initiates and proceeds are lacking. Here we present physical evidence of the mechanism and geometry of lake drainage from the discovery of relict subglacial lakes formed during the last glaciation in Canada. These palaeo-subglacial lakes comprised shallow (<10 m) lenses of water perched behind ridges orientated transverse to ice flow. We show that lakes periodically drained through channels incised into bed substrate (canals). Canals sometimes trend into eskers that represent the depositional imprint of the last high-magnitude lake outburst. The subglacial lakes and channels are preserved on top of glacial lineations, indicating long-term re-organization of the subglacial drainage system and coupling to ice flow. PMID:27292049

  14. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  15. Transient response of sand bedforms to changes in flow

    NASA Astrophysics Data System (ADS)

    Martin, R. L.; Jerolmack, D. J.

    2011-12-01

    Lowland rivers commonly experience discharge variability spanning more than an order of magnitude, producing correspondingly large changes in bed morphology. However, field and lab studies indicate that bedform geometries lag changes in flow, producing hysteretic relationships between bed morphology, roughness, and water discharge. The ability of bedforms to maintain equilibrium with hydrodynamic flow variability thus depends on the timescale of transient bedform adjustment to flow. Here, we present results of flume experiments carried out at the Saint Anthony Falls Laboratory, University of Minnesota, in which we continuously tracked adjustment of sand bedform morphologies to abrupt changes in water discharge. We show how the timescale of bedform adjustment is driven by three primary factors: 1. directionality of adjustment, 2. preexisting bedform geometry, and 3. sediment flux. Directionality of adjustment (rising versus falling water discharge) determines whether bedforms grow quickly by irreversible merger (rising flows) or shrink slowly through secondary bedform cannibalization of relict larger bedforms (falling flows). Preexisting bedform geometry (height and length) determines the amount of bed deformation required for adjustment to new equilibrium, and sediment flux determines the rate at which this change is affected. These three factors all favor faster adjustment of bedforms to rising flows. We experimentally demonstrate this bedform adjustment hysteresis through a variety of increasing and decreasing discharge changes, across both sand ripple and dune regimes. Finally, we propose and validate a simple conceptual model for estimating the adjustment timescale based on sediment flux and equilibrium bedform geometry.

  16. Aquatic insect assemblages associated with subalpine stream segment types in relict glaciated headwaters

    USGS Publications Warehouse

    Kubo, Joshua S.; Torgersen, Christian E.; Bolton, Susan M.; Weekes, Anne A.; Gara, Robert I.

    2013-01-01

    1. Aquatic habitats and biotic assemblages in subalpine headwaters are sensitive to climate and human impacts. Understanding biotic responses to such perturbations and the contribution of high-elevation headwaters to riverine biodiversity requires the assessment of assemblage composition among habitat types. We compared aquatic insect assemblages among headwater stream segment types in relict glaciated subalpine basins in Mt. Rainier National Park, Washington, USA. 2. Aquatic insects were collected during summer and autumn in three headwater basins. In each basin, three different stream segment types were sampled: colluvial groundwater sources, alluvial lake inlets, and cascade-bedrock lake outlets. Ward's hierarchical cluster analysis revealed high β diversity in aquatic insect assemblages, and non-metric multidimensional scaling indicated that spatial and temporal patterns in assemblage composition differed among headwater stream segment types. Aquatic insect assemblages showed more fidelity to stream segment types than to individual basins, and the principal environmental variables associated with assemblage structure were temperature and substrate. 3. Indicator species analyses identified specific aquatic insects associated with each stream segment type. Several rare and potentially endemic aquatic insect taxa were present, including the recently described species, Lednia borealis (Baumann and Kondratieff). 4. Our results indicate that aquatic insect assemblages in relict glaciated subalpine headwaters were strongly differentiated among stream segment types. These results illustrate the contribution of headwaters to riverine biodiversity and emphasise the importance of these habitats for monitoring biotic responses to climate change. Monitoring biotic assemblages in high-elevation headwaters is needed to prevent the potential loss of unique and sensitive biota.

  17. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species.

    PubMed

    Silva, Jose L; Brennan, Adrian C; Mejías, José A

    2016-01-01

    The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6-1.0) compared to S. fragilis (ISI = 0.1-0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group.

  18. Disappearance of Relict Permafrost in Boreal North America: Effects on Peatland Carbon Storage and Fluxes

    SciTech Connect

    Turetsky, M. R.; Wieder, R. K.; Vitt, D. H.; Evans, R. J.; Scott, K. D.

    2007-01-01

    Boreal peatlands in Canada have harbored relict permafrost since the Little Ice Age due to the strong insulating properties of peat. Ongoing climate change has triggered widespread degradation of localized permafrost in peatlands across continental Canada. Here, we explore the influence of differing permafrost regimes (bogs with no surface permafrost, localized permafrost features with surface permafrost, and internal lawns representing areas of permafrost degradation) on rates of peat accumulation at the southernmost limit of permafrost in continental Canada. Net organic matter accumulation generally was greater in unfrozen bogs and internal lawns than in the permafrost landforms, suggesting that surface permafrost inhibits peat accumulation and that degradation of surface permafrost stimulates net carbon storage in peatlands. To determine whether differences in substrate quality across permafrost regimes control trace gas emissions to the atmosphere, we used a reciprocal transplant study to experimentally evaluate environmental versus substrate controls on carbon emissions from bog, internal lawn, and permafrost peat. Emissions of CO{sub 2} were highest from peat incubated in the localized permafrost feature, suggesting that slow organic matter accumulation rates are due, at least in part, to rapid decomposition in surface permafrost peat. Emissions of CH{sub 4} were greatest from peat incubated in the internal lawn, regardless of peat type. Localized permafrost features in peatlands represent relict surface permafrost in disequilibrium with the current climate of boreal North America, and therefore are extremely sensitive to ongoing and future climate change. Our results suggest that the loss of surface permafrost in peatlands increases net carbon storage as peat, though in terms of radiative forcing, increased CH{sub 4} emissions to the atmosphere will partially or even completely offset this enhanced peatland carbon sink for at least 70 years following

  19. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species.

    PubMed

    Silva, Jose L; Brennan, Adrian C; Mejías, José A

    2016-01-01

    The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6-1.0) compared to S. fragilis (ISI = 0.1-0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group. PMID:27154621

  20. Population genetics of self-incompatibility in a clade of relict cliff-dwelling plant species

    PubMed Central

    Silva, Jose L.; Brennan, Adrian C.; Mejías, José A.

    2016-01-01

    The mating systems of species in small or fragmented populations impact upon their persistence. Small self-incompatible (SI) populations risk losing S allele diversity, responsible for the SI response, by drift thereby limiting mate availability and leading to population decline or SI system breakdown. But populations of relict and/or endemic species have resisted these demographic conditions over long periods suggesting their mating systems have adapted. To address a lack of empirical data on this topic, we studied the SI systems of three relict cliff-dwelling species of Sonchus section Pustulati (Asteraceae): S. masguindalii, S. fragilis and S. pustulatus in the western Mediterranean region. We performed controlled pollinations within and between individuals to measure index of SI (ISI) expression and identify S alleles in multiple population samples. Sonchus masguindalii and S. pustulatus showed strong SI (ISI = 0.6–1.0) compared to S. fragilis (ISI = 0.1–0.7). Just five S alleles were estimated for Spanish S. pustulatus and a moderate 11-15 S alleles for Moroccan S. pustulatus and S. fragilis, respectively. The fact that autonomous fruit set was generally improved by active self-pollination in self-compatible S. fragilis suggests that individuals with weak SI can show a wide range of outcrossing levels dependent on the degree of self or outcross pollen that pollinators bear. We conclude that frequent S allele dominance interactions that mask the incompatibility interactions of recessive S alleles leading to higher mate availability and partial breakdown of SI leading to mixed mating, both contribute to reproductive resilience in this group. PMID:27154621

  1. On the formation of sand ramps: A case study from the Mojave Desert

    NASA Astrophysics Data System (ADS)

    Bateman, Mark D.; Bryant, Robert G.; Foster, Ian D. L.; Livingstone, Ian; Parsons, Anthony J.

    2012-08-01

    Sand ramps are dune-scale sedimentary accumulations found at mountain fronts and consist of a combination of aeolian sands and the deposits of other geomorphological processes associated with hillslope and fluvial activity. Their complexity and their construction by wind, water and mass movement means that sand ramps potentially hold a very rich store of palaeoenvironmental information. However, before this potential can be realised a full understanding of their formation is necessary. This paper aims to provide a better understanding of the principal factors influencing the development of sand ramps. It reviews the stratigraphic, chronometric and sedimentological evidence relating to the past development of sand ramps, focussing particularly on Soldier Mountain sand ramp in the Mojave Desert, as well as using observations of the modern movement of slope material to elucidate the formation of stone horizons within sand ramps. Findings show that sand ramps cannot easily be interpreted in terms of a simple model of fluctuating palaeoenvironmental phases from aeolian dominated to soil/fluvial dominated episodes. They accumulate quickly (perhaps in < 5 ka), probably in a single phase before becoming relict. Based on the evidence from Soldier Mountain, they appear strongly controlled by a 'window of opportunity' when sediment supply is plentiful and cease to develop when this sediment supply diminishes and/or the accommodation space is filled up. Contemporary observations of stone movement both on rock and sandy sloping surfaces in the Mojave region indicate movement rates in the order of 0.6 and 11 mm yr- 1, which is insufficiently fast to explain how stone horizons could have been moved across and been incorporated into sand ramps on multiple occasions. Stone horizons found within the aeolian sediments lack evidence for soil development and are interpreted as very short-term events in which small streams moved and splayed discontinuous stone horizons across the sand

  2. Shocks in supersonic sand.

    PubMed

    Rericha, Erin C; Bizon, Chris; Shattuck, Mark D; Swinney, Harry L

    2002-01-01

    We measure time-averaged velocity, density, and temperature fields for steady granular flow past a wedge. We find the flow to be supersonic with a speed of granular pressure disturbances (sound speed) equal to about 10% of the flow speed, and we observe shocks nearly identical to those in a supersonic gas. Molecular dynamics simulations of Newton's laws yield fields in quantitative agreement with experiment. A numerical solution of Navier-Stokes-like equations agrees with a molecular dynamics simulation for experimental conditions excluding wall friction.

  3. Five questions to consider before conducting a stepped wedge trial.

    PubMed

    Hargreaves, James R; Copas, Andrew J; Beard, Emma; Osrin, David; Lewis, James J; Davey, Calum; Thompson, Jennifer A; Baio, Gianluca; Fielding, Katherine L; Prost, Audrey

    2015-08-17

    Researchers should consider five questions before starting a stepped wedge trial. Why are you planning one? Researchers sometimes think that stepped wedge trials are useful when there is little doubt about the benefit of the intervention being tested. However, if the primary reason for an intervention is to measure its effect, without equipoise there is no ethical justification for delaying implementation in some clusters. By contrast, if you are undertaking pragmatic research, where the primary reason for rolling out the intervention is for it to exert its benefits, and if phased implementation is inevitable, a stepped wedge trial is a valid option and provides better evidence than most non-randomized evaluations. What design will you use? Two common stepped wedge designs are based on the recruitment of a closed or open cohort. In both, individuals may experience both control and intervention conditions and you should be concerned about carry-over effects. In a third, continuous-recruitment, short-exposure design, individuals are recruited as they become eligible and experience either control or intervention condition, but not both. How will you conduct the primary analysis? In stepped wedge trials, control of confounding factors through secular variation is essential. 'Vertical' approaches preserve randomization and compare outcomes between randomized groups within periods. 'Horizontal' approaches compare outcomes before and after crossover to the intervention condition. Most analysis models used in practice combine both types of comparison. The appropriate analytic strategy should be considered on a case-by-case basis. How large will your trial be? Standard sample size calculations for cluster randomized trials do not accommodate the specific features of stepped wedge trials. Methods exist for many stepped wedge designs, but simulation-based calculations provide the greatest flexibility. In some scenarios, such as when the intracluster correlation coefficient is

  4. Sidewinding snakes on sand

    NASA Astrophysics Data System (ADS)

    Marvi, Hamidreza; Dimenichi, Dante; Chrystal, Robert; Mendelson, Joseph; Goldman, Daniel; Hu, David; Georgia Tech and Zoo Atlanta Collaboration

    2012-11-01

    Desert snakes such as the rattlesnake Crotalus cerastes propel themselves over sand using sidewinding, a mode of locomotion relying upon helical traveling waves. While sidewinding on hard ground has been described, the mechanics of movement on more natural substrates such as granular media remain poorly understood. In this experimental study, we use 3-D high speed video to characterize the motion of a sidewinder rattlesnake as it moves on a granular bed. We study the movement both on natural desert sand and in an air-fluidized bed trackway which we use to challenge the animal on different compactions of granular media. Particular attention is paid to rationalizing the snake's thrust on this media using friction and normal forces on the piles of sand created by the snake's body. The authors thank the NSF (PHY-0848894), Georgia Tech, and the Elizabeth Smithgall Watts endowment for support. We would also like to thank Zoo Atlanta staff for their generous help with this project.

  5. Empirical evidence for two nightside current wedges during substorms

    NASA Astrophysics Data System (ADS)

    Hoffman, R. A.; Gjerloev, J. W.

    2013-12-01

    We present results from a comprehensive statistical study of the ionospheric current system and its coupling to the magnetosphere during classical bulge type substorms. We identified 116 substorms and determined the global ionospheric current system before and during the substorm using the SuperMAG initiative and global auroral images obtained by the Polar VIS Earth camera. The westward electrojet (WEJ) display a distinct latitudinal shift between the pre- and post-midnight region and we find evidence that the two WEJ regions are disconnected. This, and other observational facts, led us to propose a new 3D current system configuration that consists of 2 wedge type systems: a current wedge in the pre-midnight region (substorm current wedge), and another current wedge system in the post-midnight region (oval current wedge). There is some local time overlap between the two systems. The former maps to the region inside the near Earth neutral line and is associated with structured BPS type electron precipitation. The latter maps to the inner magnetosphere and is associated with diffuse electron precipitation. We present results of the statistical study, show typical events, results from Biot-Savart simulations, and discuss the implications for our understanding of the 3D current system associated with substorms.

  6. Diffusion induced flow on a wedge-shaped obstacle

    NASA Astrophysics Data System (ADS)

    Zagumennyi, Ia V.; Dimitrieva, N. F.

    2016-08-01

    In this paper the problem of evolution of diffusion induced flow on a wedge-shaped obstacle is analyzed numerically. The governing set of fundamental equations is solved using original solvers from the open source OpenFOAM package on supercomputer facilities. Due to breaking of naturally existing diffusion flux of a stratifying agent by the impermeable surface of the wedge a complex multi-level vortex system of compensatory fluid motions is formed around the obstacle. Sharp edges of the obstacle generate extended high-gradient horizontal interfaces which are clearly observed in laboratory experiments by high-resolution Schlieren visualization. Formation of an intensive pressure depression zone in front of the leading vertex of the wedge is responsible for generation of propulsive force resulting in a self-displacement of the obstacle along the neutral buoyancy horizon in a stably stratified environment. The size of the pressure deficiency area near the sharp vertex of a concave wedge is about twice that for a convex one. This demonstrates a more intensive propulsion mechanism in case of the concave wedge and, accordingly, a higher velocity of its self-movement in a continuously stratified medium.

  7. Casimir effect for a semitransparent wedge and an annular piston

    SciTech Connect

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-12-15

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by {delta}-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green's functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  8. Casimir effect for a semitransparent wedge and an annular piston

    NASA Astrophysics Data System (ADS)

    Milton, Kimball A.; Wagner, Jef; Kirsten, Klaus

    2009-12-01

    We consider the Casimir energy due to a massless scalar field in a geometry of an infinite wedge closed by a Dirichlet circular cylinder, where the wedge is formed by δ-function potentials, so-called semitransparent boundaries. A finite expression for the Casimir energy corresponding to the arc and the presence of both semitransparent potentials is obtained, from which the torque on the sidewalls can be derived. The most interesting part of the calculation is the nontrivial nature of the angular mode functions. Numerical results are obtained which are closely analogous to those recently found for a magnetodielectric wedge, with the same speed of light on both sides of the wedge boundaries. Alternative methods are developed for annular regions with radial semitransparent potentials, based on reduced Green’s functions for the angular dependence, which allows calculations using the multiple-scattering formalism. Numerical results corresponding to the torque on the radial plates are likewise computed, which generalize those for the wedge geometry. Generally useful formulas for calculating Casimir energies in separable geometries are derived.

  9. Sand Dunes with Frost

    NASA Technical Reports Server (NTRS)

    2004-01-01

    9 May 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of frost-covered sand dunes in the north polar region of Mars in early spring, 2004. The dunes indicate wind transport of sand from left to right (west to east). These landforms are located near 78.1oN, 220.8oW. This picture is illuminated by sunlight from the lower left and covers an area about 3 km (1.9 mi) across.

  10. Description, distribution, and paleoclimatic significance of relict periglacial features east of Waterton-Glacier parks, Alberta and Montana

    SciTech Connect

    Karlstrom, E.T. . Geography Dept.)

    1993-04-01

    Periglacial wedges, involutions, patterned ground and soil wedges are locally preserved in pre-Wisconsinan outwash/alluvium and till on a series of erosion surfaces east of the Lewis Range mountain front and in Wisconsinan outwash near Cutbank, Montana. Ice-wedge casts, observed at six sites within 8 km of the Wisconsinan Laurentide glacier boundary, are 80 to 400 cm wide at the top and 95 to 240 cm deep. Host gravels are commonly foliated against wedge margins. Formation of these wedges required development of perennially frozen ground and mean annual temperatures at least 10 degrees C below those of today (5 degrees C). Soil wedges and tongues, 40 to 70 cm wide at the top and up to 55 cm deep, are developed in loess overlying the outwash/alluvial gravels, and in till and lacustrine deposits. They also occur at five sites within 8 km of the Wisconsinan Laurentide glacier boundary. Involutions and predominantly vertically-oriented gravels occur at eight more widely distributed sites without ice-wedge casts. Strongly weathered, 2+ m thick, pre-Illinoian paleosols, also preserved locally on the erosion surfaces, are truncated and/or completely stripped in the areas most affected by cryoturbation. Hence, most of the periglacial features postdate the paleosols. Stratigraphic and geomorphic relations suggest that the periglacial features formed during at least three glacial/periglacial episodes, probably including the Wisconsinan, Illinoian, and a pre-Illinoian glaciation.

  11. Reverse wedge osteotomy of the distal radius in Madelung's deformity.

    PubMed

    Mallard, F; Jeudy, J; Rabarin, F; Raimbeau, G; Fouque, P-A; Cesari, B; Bizot, P; Saint-Cast, Y

    2013-06-01

    Madelung's deformity results from a growth defect in the palmar and ulnar region of the distal radius. It presents as an excessively inclined radial joint surface, inducing "spontaneous progressive palmar subluxation of the wrist". The principle of reverse wedge osteotomy (RWO) consists in the reorientation of the radial joint surface by taking a circumferential bone wedge, the base of which is harvested from the excess of the radial and dorsal cortical bone of the distal radius, then turning it over and putting back this reverse wedge into the osteotomy so as to obtain closure on the excess and opening on the deficient cortical bone. RWO corrects the palmar subluxation of the carpus and improves distal radio-ulnar alignment. All five bilaterally operated patients were satisfied, esthetically and functionally. Its corrective power gives RWO a place apart among the surgical techniques currently available in Madelung's deformity.

  12. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  13. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  14. Ganges Chasma Sands

    NASA Technical Reports Server (NTRS)

    2005-01-01

    8 July 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark, windblown sand in the form of dunes and a broad, relatively flat, sand sheet in Ganges Chasma, part of the eastern Valles Marineris trough complex. The winds responsible for these dunes blew largely from the north. Sand dunes on Mars, unlike their Earthly counterparts, are usually dark in tone. This is a reflection of their composition, which includes minerals that are more rich in iron and magnesium than the common silica-rich dunes of Earth. Similar dark sands on Earth are found in volcanic regions such as Iceland and Hawaii. A large dune field of iron/magnesium-rich grains, in the form fragments of the volcanic rock, basalt, occurs south of Moses Lake, Washington, in the U.S.

    Location near: 7.7oS, 45.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Spring

  15. Building with Sand

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2010-01-01

    Children playing in damp sand invariably try to make a tower or a tunnel. By providing experiences with a variety of materials, alone and together, teachers set up the conditions for children to learn through their senses and ensure that a class approaches a topic with a common set of experiences to build on. Learning about the properties of…

  16. The Engineering of Sand.

    ERIC Educational Resources Information Center

    Pilkey, Orrin H.

    1989-01-01

    Discussed are beach replenishment, and hard structures in relation to the sand transportation system. Failures of current engineering practices and the resulting costs to the taxpayer are stressed. Equations and parameters used to make predictions of beach durability are criticized. (CW)

  17. Sand-box modelling

    SciTech Connect

    Avery, P.

    1983-01-01

    As the result of an enquiry into BHRA's physical-reservoir-modelling experience, the use of sand box models was investigated. The type of model was considered a possible means of confirmation of a numerical model. The problem facing the numerical model user was comparing the performance of inclined or horizontal oil wells with that of the conventional vertical well.

  18. Sand and sandstone

    SciTech Connect

    Pettijohn, F.J.; Potter, P.E.; Siever, R.

    1987-01-01

    Here is a new, second edition of a classical textbook in sedimentology, petrology, and petrography of sand and sandstones. It has been extensively revised and updated, including: new techniques and their utility; new literature; new illustrations; new, explicitly stated problems for the student; and a wider scope.

  19. Speleothems and Sand Castles

    ERIC Educational Resources Information Center

    Hance, Trevor; Befus, Kevin

    2015-01-01

    The idea of building sand castles evokes images of lazy summer days at the beach, listening to waves crash, enjoying salty breezes, and just unplugging for a while to let our inner child explore the wonderful natural toys beneath our feet. The idea of exploring caves might evoke feelings and images of claustrophobia or pioneers and Native…

  20. An analysis of scattering from a reentrant wedge

    NASA Astrophysics Data System (ADS)

    Bhatta, Ambika

    In this thesis the scattering of acoustic pressure from a rigid wedge is examined. The wedges having re-entrant geometry are of particular interest. The incident field is considered from a time harmonic point source. The solution for the scattered pressure field is obtained by modal, image and asymptotic analysis. It is numerically shown that the exact modal solution and image based solution for different incident frequencies and source positions are the same. It is also shown that the asymptotic solution obtained matches with the image based solution.

  1. Extracting Oil From Tar Sands

    NASA Technical Reports Server (NTRS)

    Ford, L. B.; Daly, D.

    1984-01-01

    Recovery of oil from tar sands possible by batch process, using steam produced by solar heater. In extraction process, solar heater provides steam for heating solvent boiler. Boiling solvent removes oil from tar sands in Soxhlet extractor.

  2. Western Gas Sands Subprogram

    SciTech Connect

    Not Available

    1983-12-01

    The Western Gas Sands Subprogram (WGSS) is a multidisciplinary research effort within the US Department of Energy program on Unconventional Gas Recovery. The subprogram, managed by DOE's Morgantown Energy Technology Center, is directed towards the development of tight (very low permeability) lenticular gas sands in the western United States. The purpose of the subprogram is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. The subprogram has two broad goals: (1) to reduce the uncertainty of the reservoir production potential and (2) to improve the extraction technology. With input from the gas industry, universities, and geologic and engineering consulting firms, the WGSS was broadened to include more fundamental research and development. Consequently, for the last five years it has focused on improving diagnostic instrumentation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of the three priority basins containing tight sands and selected by DOE as research targets have also been pursued as part of this new effort. To date, the following tentative conclusions have evolved: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than conventional gas deposits. Nineteen western geologic basins and trends containing significant amounts of tight gas have been identified. Gas resources in the priority geologic basins are Piceance Basin, 49 tcf., Uinta Basin, 20 tcf., and Greater Green River Basin, 136 tcf. The presence of natural micro-fractures within the production zone of a reservoir and the effective propped length of hydraulically-induced fractures are the critical parameters for successful development of tight sand resources. 8 figures.

  3. Experimental Replication of Relict "Dusty" Olivine in Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Le, L.

    2002-01-01

    Introduction: Relict "dusty" olivine is considered to be a remnants of previous chondrule forming events based on petrographic and chemical evidence. Dynamic crystallization experiments confirm that dusty olivine can be produced by reduction of FeO-rich olivine in Unequilibrated Ordinary Chondrite (UOC) material. The results of these experiments compliment those of who also produced dusty olivine, but from synthetic starting materials. Techniques: Dynamic crystallization experiments were conducted in which UOC material was reduced in presence of graphite. Starting material was coarsely ground GR095554 or WSG95300 that contained olivine of Fo 65-98. Approximately 75 mg. of UOC material was placed in a graphite crucible and sealed in an evacuated silica tube. The tube was suspended in a gas-mixing furnace operated at 1 log unit below the IW buffer. The experiments were as brief as 1.5 hrs up to 121 hrs. Results: Dusty olivine was produced readily in experiments melted at 1400 C for I hr. and cooled between 5 and 100 C/hr or melted at 1300-1400 C for 24 hours. Fe-rich olivine (dusty olivine precursors) that have been partially reduced were common in the experiments melted at 1400 C and cooled at 1000 C/hr or melted at 1200 C for 24 hrs. Relict olivine is absent in experiments melted at 1400 for 24 hrs, melted above 1400 C, or cooled more slowly than 10 C/hr. Relict olivine in the experiments has minimum Fo value of 83 . Thus even in the shortest experiments the most Fe-rich olivine has been altered significantly. The precursor olivine disappears in a few to many hours depending on temperature. The experiments show Fe-rich olivine in all stages of transition to the new dusty form. The olivine is reduced to form dusty olivine in a matter of a few hours at temperatures less than 1400 C and in minutes at higher temperatures. The reduction appears to proceed from the rim of the crystal inward with time. The reduction appears initially rectilinear as if controlled by

  4. The shallow stratigraphy and sand resources offshore from Cat Island, Mississippi

    USGS Publications Warehouse

    Kindinger, Jack G.; Miselis, Jennifer L.; Buster, Noreen A.

    2014-01-01

    In collaboration with the U.S. Army Corps of Engineers, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center collected over 487 line kilometers (> 300 miles) of high-resolution geophysical data around Cat Island, Mississippi, to improve understanding of the island's geologic evolution and identify potential sand resources for coastal restoration. In addition, 40 vibracores were collected on and around the island, generating more than 350 samples for grain-size analysis. The results indicate that the geologic evolution of Cat Island has been influenced by deltaic, lagoonal/estuarine, tidal, and oceanographic processes, resulting in a stratigraphic record that is quite complex. The region north of the island is dominated by lagoonal/estuarine deposition, whereas the region south of the island is dominated by deltaic and tidal deposition. In general, the veneer of modern sediment surrounding the island is composed of newly deposited sediment and highly reworked relict sediments. The region east of the island shows the interplay of antecedent barrier-island change with delta development despite a significant ravinement of sediments. The data show from little to no modern sediment east of the island, exposing relict sediments at the seafloor. Finally, the data reveal four subaqueous sand units around the island. Two of the units are northwest of the modern island and one is southwest. Given the dominant, westward, longshore transport along the Mississippi and Alabama barrier islands, the geographic location of these three units suggests that they do not contribute to the modern sediment budget of Cat Island. The last unit is directly east of the island and represents the antecedent island platform that has supplied sand over geologic time for creation of the spits that form the eastern shoreline. Because of its location east of the island, the antecedent island unit may still supply sediment to the island today.

  5. Development of 23 novel polymorphic EST-SSR markers for the endangered relict conifer Metasequoia glyptostroboides1

    PubMed Central

    Jin, Yuqing; Bi, Quanxin; Guan, Wenbin; Mao, Jian-Feng

    2015-01-01

    Premise of the study: Metasequoia glyptostroboides is an endangered relict conifer species endemic to China. In this study, expressed sequence tag–simple sequence repeat (EST-SSR) markers were developed using transcriptome mining for future genetic and functional studies. Methods and Results: We collected 97,565 unigene sequences generated by 454 pyrosequencing. A bioinformatics analysis identified 2087 unique and putative microsatellites, from which 96 novel microsatellite markers were developed. Fifty-three of the 96 primer sets successfully amplified clear fragments of the expected sizes; 23 of those loci were polymorphic. The number of alleles per locus ranged from two to eight, with an average of three, and the observed and expected heterozygosity values ranged from 0 to 1.0 and 0.117 to 0.813, respectively. Conclusions: These microsatellite loci will enrich the genetic resources to develop functional studies and conservation strategies for this endangered relict species. PMID:26421250

  6. Flowfield Establishment and Unsteadiness in Hypervelocity Double Wedge Flows

    NASA Astrophysics Data System (ADS)

    Swantek, A. B.; Knisely, A. M.; Austin, J. M.

    Significant discrepancies between experiments and simulations have been reported in the normalized establishment times for hypervelocity double wedge and double cone flows. Experimental results for flow establishment times based on heat transfer measurements have been reported by Holden and Mallinson, Gai, and Mudford [1, 2].

  7. Magnetic and structural instabilities of ultrathin Fe(100) wedges

    SciTech Connect

    Bader, S.D.; Li, Dongqi; Qiu, Z.Q.

    1994-05-01

    An overview is provided of recent efforts to explore magnetic and related structural issues for ultrathin Fe films grown epitaxially as wedge structures onto Ag(100) and Cu(100). Experiments were carried out utilizing the surface magneto-optic Kerr effect (SMOKE). Ordinary bcc Fe is lattice-matched to the primitive unit cell of the Ag(100) surface. Fe wedges on Ag(100) can be fabricated whose thick end has in-plane magnetic easy axes due to the shape anisotropy, and whose thin end has perpendicular easy axes due to the surface magnetic anisotrophy. A spin-reorientation transition can thus be studied in the center of the wedge where the competing anisotropies cancel. The goal is to test the Mermin-Wagner theorem which states that long-range order is lost at finite temperatures in an isotropic two-dimensional Heisenberg system. Fe wedges on Cu(100) can be studied in like manner, but the lattice matching permits fcc and tetragonally-distorted fcc phases to provide structural complexity in addition to the interplay of competing magnetic anisotropies. The results of these studies are new phase identifications that help both to put previous work into perspective and to define issues to pursue in the future.

  8. Thrusting and wedge growth, Southern Alps of Lombardia (Italy)

    NASA Astrophysics Data System (ADS)

    Roeder, Dietrich

    1992-06-01

    A south-vergent fold-thrust belt of Miocene-Recent age accompanies the south slope of the Lombardian Alps and is partly buried beneath Plio-Pleistocene Po Valley basin fill. The belt is probably detached along a trans-crustal thrust, named Main South Alpine Thrust (MSAT), with an estimated dip slip of 70-100 km. Transport on this thrust piggybacks the Adamello pluton of Late Eocene age, pre-Adamello folds, and Oligocene-Miocene Insubric strike-slip structures, by ramping up through 12-15 km of Austro-Alpine (Adria) crust and through 8-10 km of Triassic to Eocene sediments. Folds in the Front Ranges are ascribed to MSAT ramping, not to pre-Adamello compression. The MSAT soles upward in a blind thrust beneath 3-4 km of Oligocene-Pliocene foredeep fill. Initial regional failure along the MSAT implies substantial and pre-existing topographic relief near the Insubric line. An average of 25% wedge thickening during MSAT transport is consistent with the requirement of Coulomb critical taper. Progression of the south-Alpine detachment from the MSAT to the base of the foreland sediments has added a thickness of 6-12 km in footwall imbrications to the base and the toe of the thrust wedge. This addition in wedge volume is consistent with wedge dynamics only if a mid-Miocene or younger spike of excess Alpine topography is admitted.

  9. How important is randomisation in a stepped wedge trial?

    PubMed

    Hargreaves, James R; Prost, Audrey; Fielding, Katherine L; Copas, Andrew J

    2015-01-01

    In cluster randomised trials, randomisation increases internal study validity. If enough clusters are randomised, an unadjusted analysis should be unbiased. If a smaller number of clusters are included, stratified or matched randomisation can increase comparability between trial arms. In addition, an adjusted analysis may be required; nevertheless, randomisation removes the possibility for systematically biased allocation and increases transparency. In stepped wedge trials, clusters are randomised to receive an intervention at different start times ('steps'), and all clusters eventually receive it. In a recent study protocol for a 'modified stepped wedge trial', the investigators considered randomisation of the clusters (hospital wards), but decided against it for ethical and logistical reasons, and under the assumption that it would not add much to the rigour of the evaluation. We show that the benefits of randomisation for cluster randomised trials also apply to stepped wedge trials. The biggest additional issue for stepped wedge trials in relation to parallel cluster randomised trials is the need to control for secular trends in the outcome. Analysis of stepped wedge trials can in theory be based on 'horizontal' or 'vertical' comparisons. Horizontal comparisons are based on measurements taken before and after the intervention is introduced in each cluster, and are unbiased if there are no secular trends. Vertical comparisons are based on outcome measurements from clusters that have switched to the intervention condition and those from clusters that have yet to switch, and are unbiased under randomisation since at any time point, which clusters are in intervention and control conditions will have been determined at random. Secular outcome trends are a possibility in many settings. Many stepped wedge trials are analysed with a mixed model, including a random effect for cluster and fixed effects for time period to account for secular trends, thereby combining both

  10. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  11. The Arabian Cradle: Mitochondrial Relicts of the First Steps along the Southern Route out of Africa

    PubMed Central

    Fernandes, Verónica; Alshamali, Farida; Alves, Marco; Costa, Marta D.; Pereira, Joana B.; Silva, Nuno M.; Cherni, Lotfi; Harich, Nourdin; Cerny, Viktor; Soares, Pedro; Richards, Martin B.; Pereira, Luísa

    2012-01-01

    A major unanswered question regarding the dispersal of modern humans around the world concerns the geographical site of the first human steps outside of Africa. The “southern coastal route” model predicts that the early stages of the dispersal took place when people crossed the Red Sea to southern Arabia, but genetic evidence has hitherto been tenuous. We have addressed this question by analyzing the three minor west-Eurasian haplogroups, N1, N2, and X. These lineages branch directly from the first non-African founder node, the root of haplogroup N, and coalesce to the time of the first successful movement of modern humans out of Africa, ∼60 thousand years (ka) ago. We sequenced complete mtDNA genomes from 85 Southwest Asian samples carrying these haplogroups and compared them with a database of 300 European examples. The results show that these minor haplogroups have a relict distribution that suggests an ancient ancestry within the Arabian Peninsula, and they most likely spread from the Gulf Oasis region toward the Near East and Europe during the pluvial period 55–24 ka ago. This pattern suggests that Arabia was indeed the first staging post in the spread of modern humans around the world. PMID:22284828

  12. [FTIR and XRD analysis of hydroxyapatite from fossil human and animal teeth in Jinsha Relict, Chengdu].

    PubMed

    Huang, Cheng-min; Zhang, Qing; Bai, Song; Wang, Cheng-shan

    2007-12-01

    Diagenetic effect during burial on the hydroxyapatite in enamel and dentin from fossil human and animal teeth was examined, using X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). For the enamel and dentin of all fossil teeth, XRD patterns exhibit bulge line and overlap between major reflections of hydroxyapatite, and the crystallinity of hydroxyapatite is low. For each infrared spectrum, H2O and OH(-) have distinct peaks of absorbance, and PO4(3-) and CO3(2-) ions have intensive infrared vibration modes at the fundamental wave numbers. The component of hydroxyapatite of all fossil teeth is similar to the modern biological hydroxyapatite. Furthermore, the index (PCI) which reflects the hydroxyapatite crystallinity of each sample ranges from 2.4 to 4.0 while the index (BPI) reflecting the amount of type B carbonate to phosphate indicates that the values of CO3(2-) content in hydroxyapatite are rather high, accordingly the crystallinity of all fossil hydroxyapatites are poor. It could be concluded that little alteration of hydroxyapatites from fossil human and animal teeth occurred in the process of diagenesis in Jinsha Relict, Chengdu, China.

  13. Phylogeography of declining relict and lowland leopard frogs in the desert Southwest of North America

    USGS Publications Warehouse

    Olah-Hemmings, V.; Jaeger, J.R.; Sredl, M.J.; Schlaepfer, Martin A.; Jennings, R.D.; Drost, C.A.; Bradford, D.F.; Riddle, B.R.

    2010-01-01

    We investigated the phylogeography of the closely related relict leopard frog Rana onca (=Lithobates onca) and lowland leopard frog Rana yavapaiensis (=Lithobates yavapaiensis) – two declining anurans from the warm-desert regions of south-western North America. We used sequence data from mitochondrial DNA (mtDNA) to assess 276 individuals representing 30 sites from across current distributions. Our analysis supports a previously determined phylogenetic break between these taxa, and we found no admixing of R. onca and R. yavapaiensis haplotypes within our extensive sampling of sites. Our phylogeographic assessment, however, further divided R. yavapaiensis into two distinct mtDNA lineages, one representing populations across Arizona and northern Mexico and the other a newly discovered population within the western Grand Canyon, Arizona. Estimates of sequence evolution indicate a possible Early Pleistocene divergence of R. onca and R. yavapaiensis, followed by a Middle Pleistocene separation of the western Grand Canyon population of R. yavapaiensis from the main R. yavapaiensis clade. Phylogeographic and demographic analyses indicate population or range expansion for R. yavapaiensis within its core distribution that appears to predate the latest glacial maximum. Species distribution models under current and latest glacial climatic conditions suggest that R. onca and R. yavapaiensis may not have greatly shifted ranges.

  14. Phylogenetic position and biogeography of Hillebrandia sandwicensis (Begoniaceae): a rare Hawaiian relict.

    PubMed

    Clement, Wendy L; Tebbitt, Mark C; Forrest, Laura L; Blair, Jaime E; Brouillet, Luc; Eriksson, Torsten; Swensen, Susan M

    2004-06-01

    The Begoniaceae consist of two genera, Begonia, with approximately 1400 species that are widely distributed in the tropics, and Hillebrandia, with one species that is endemic to the Hawaiian Islands and the only member of the family native to those islands. To help explain the history of Hillebrandia on the Hawaiian Archipelago, phylogenetic relationships of the Begoniaceae and the Cucurbitales were inferred using sequence data from 18S, rbcL, and ITS, and the minimal age of both Begonia and the Begoniaceae were indirectly estimated. The analyses strongly support the placement of Hillebrandia as the sister group to the rest of the Begoniaceae and indicate that the Hillebrandia lineage is at least 51-65 million years old, an age that predates the current Hawaiian Islands by about 20 million years. Evidence that Hillebrandia sandwicensis has survived on the Hawaiian Archipelago by island hopping from older, now denuded islands to younger, more mountainous islands is presented. Various scenarios for the origin of ancestor to Hillebrandia are considered. The geographic origin of source populations unfortunately remains obscure; however, we suggest a boreotropic or a Malesian-Pacific origin is most likely. Hillebrandia represents the first example in the well-studied Hawaiian flora of a relict genus.

  15. Western gas sands

    SciTech Connect

    Not Available

    1985-03-01

    The purpose of this research is to demonstrate the feasibility of economically producing natural gas from low-permeability reservoirs. Two broad research goals have been defined: (1) reducing the uncertainty of the reservoir production potential, and (2) improving the extraction technology. These goals are being pursued by conducting research and encouraging industrial efforts in developing the necessary technology, including: (1) providing fundamental research into the nature of tight, lenticular gas sands and the technologies for diagnosing and developing them: (2) developing and verifying the technology for effective gas production; and (3) promoting the transfer of research products and technology advances to the gas industry in usable forms. The focus of the research for the last several years has been improving diagnostic instrumentation for reservoir and stimulation performance evaluation, geophysical and engineering interpretation, and stimulation techniques. Integrated geologic studies of three basins containing tight lenticular sands, which were selected by DOE as priority research targets, have also been pursued as part of this new effort. To date, the following tentative conclusions have been formed: Permeability of the tight gas sands can be as much as three to four orders of magnitude lower than that of conventional gas deposits. Nineteen western geologic basins and trends containing significant volumes of tight gas have been identified. Gas resources in the priority geologic basins have been estimated - Piceance Basin 49 Tcf.; Greater Green River Basin, 136 Tcf.; Uinta Basin, 20 Tcf. Presence of natural micro-fractures within a reservoir and the effective propped length of hydraulically induced fratures are the critical parameters for successful development of tight sand resources. Stimulation technology at the present time is insufficient to efficiently recover gas from lenticular tight reservoirs. 8 figs., 3 tabs.

  16. Basement control on sand distribution in the Hamaca area of the Orinoco Belt

    SciTech Connect

    Flores, D.; Uzcategui, M. )

    1993-02-01

    The interpretation of aeromagnetic and seismic data in the Hamaca area of the Orinoco Belt helped to determine the basement topographic control of the sedimentation in the Hamaca area. The Cretaceous thin wedge preserved in the northwestern part of the area had a very limited effect on the deposition of sediments. Two different basement grains were interpreted from the aeromagnetic data. The contact between these two basement typed precluded the existence of a differential erosional zone along it, which exerted control on the drainage pattern of the tertiary sedimentation. Focally, fault scarps and monaduocks affected sand deposition. Regional mapping of the lower tertiary sands correlates with the basement features. The integrated regional interpretation of geophysical and geological data allowed the delineation of passive and active basement structures and their effect on the tertiary sand-shale distribution.

  17. Computation of the seismic stability of rock wedges

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Haupt, W.

    1989-04-01

    Newmark's concept of computing the permanent displacement under seismic loads has been combined with the conventional limit equilibrium analysis to compute the displacements of a rock wedge. The rock wedge formed by the intersecting planes may or may not have a tension crack in the upper slope surface. As the static analysis of a rock wedge is available from the literature, only the seismic problem is treated theoretically in more details. A computer program has been developed to compute the displacements from the digitised input data of the acceleration-time-history. The program can take into account the water pressure on the intersecting planes and on the planes of the tension crack. The effect of rock anchors if present is also taken care of in addition to static surcharge loads. The program calculates the conventional static factor of safety, remaining resistance against sliding, the critical acceleration, exciting force, relative velocity with time and the cumulative displacements. Two model examples are presented: one with simple sinusoidal acceleration and the other one with actual earthquake data considering the different systems of forces acting on the wedge. The results are critically discussed with respect to the different parameters e. g. anchor forces, water pressure and cohesion influencing the magnitude of displacements under seismic loads. It is shown that the critical acceleration is a better index for the seismic stability than the conventional factor of safety. The critical acceleration presented in this paper serves as a very handy tool for a site engineer to get the first hand information about the stability of the wedge for a given acceleration-time-history without going into the details of dynamic analysis.

  18. Intricately Rippled Sand Deposits

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on the image for Intricately Rippled Sand Deposits (QTVR)

    NASA's Mars Exploration Rover Spirit welcomed the beginning of 2006 on Earth by taking this striking panorama of intricately rippled sand deposits in Gusev Crater on Mars. This is an approximate true-color rendering of the 'El Dorado' ripple field provided by Spirit over the New Year's holiday weekend. The view spans about 160 degrees in azimuth from left to right and consists of images acquired by Spirit's panoramic camera on Spirit's 708th and 710th Martian days, or sols, (Dec. 30, 2005 and Jan. 1, 2006). Spirit used the Pancam's 750-nanometer, 530-nanometer and 430-nanometer filters to capture the colors on Mars. Scientists have eliminated seams between individual frames in the sky portion of the mosaic to better simulate the vista a person standing on Mars would see. Spirit spent several days acquiring images, spectral data, and compositional and mineralogical information about these large sand deposits before continuing downhill toward 'Home Plate.'

  19. Booming Sand Dunes

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie

    "Booming" sand dunes are able to produce low-frequency sound that resembles a pure note from a music instrument. The sound has a dominant audible frequency (70-105 Hz) and several higher harmonics and may be heard from far distances away. A natural or induced avalanche from a slip face of the booming dune triggers the emission that may last for several minutes. There are various references in travel literature to the phenomenon, but to date no scientific explanation covered all field observations. This thesis introduces a new physical model that describes the phenomenon of booming dunes. The waveguide model explains the selection of the booming frequency and the amplification of the sound in terms of constructive interference in a confined geometry. The frequency of the booming is a direct function of the dimensions and velocities in the waveguide. The higher harmonics are related to the higher modes of propagation in the waveguide. The experimental validation includes quantitative field research at the booming dunes of the Mojave Desert and Death Valley National Park. Microphone and geophone recordings of the acoustic and seismic emission show a variation of booming frequency in space and time. The analysis of the sensor data quantifies wave propagation characteristics such as speed, dispersion, and nonlinear effects and allows the distinction between the source mechanism of the booming and the booming itself. The migration of sand dunes results from a complicated interplay between dune building, wind regime, and precipitation. The morphological and morphodynamical characteristics of two field locations are analyzed with various geophysical techniques. Ground-penetrating radar images the subsurface structure of the dunes and reveal a natural, internal layering that is directly related to the history of dune migration. The seismic velocity increases abruptly with depth and gradually increases with downhill position due to compaction. Sand sampling shows local

  20. Vertebral Osteotomies in Ankylosing Spondylitis-Comparison of Outcomes Following Closing Wedge Osteotomy versus Opening Wedge Osteotomy: A Systematic Review.

    PubMed

    Ravinsky, Robert A; Ouellet, Jean-Albert; Brodt, Erika D; Dettori, Joseph R

    2013-04-01

    Study Design Systematic review. Study Rationale To seek out and assess the best quality evidence available comparing opening wedge osteotomy (OWO) and closing wedge osteotomy (CWO) in patients with ankylosing spondylitis to determine whether their results differ with regard to several different subjective and objective outcome measures. Objective The aim of this study is to determine whether there is a difference in subjective and objective outcomes when comparing CWO and OWO in patients with ankylosing spondylitis suffering from clinically significant thoracolumbar kyphosis with respect to quality-of-life assessments, complication risks, and the amount of correction of the spine achieved at follow-up. Methods A systematic review was undertaken of articles published up to July 2012. Electronic databases and reference lists of key articles were searched to identify studies comparing effectiveness and safety outcomes between adult patients with ankylosing spondylitis who received closing wedge versus opening wedge osteotomies. Studies that included pediatric patients, polysegmental osteotomies, or revision procedures were excluded. Two independent reviewers assessed the strength of evidence using the GRADE criteria and disagreements were resolved by consensus. Results From a total of 67 possible citations, 4 retrospective cohorts (class of evidence III) met our inclusion criteria and form the basis for this report. No differences in Oswestry Disability Index, visual analog scale for pain, Scoliosis Research Society (SRS)-24 score, SRS-22 score, and patient satisfaction were reported between the closing and opening wedge groups across two studies. Regarding radiological outcomes following closing versus opening osteotomies, mean change in sagittal vertical axis ranged from 8.9 to 10.8 cm and 8.0 to 10.9 cm, respectively, across three studies; mean change in lumbar lordosis ranged from 36 to 47 degrees and 19 to 41 degrees across four studies; and mean change

  1. Sequence stratigraphy and sedimentology of a shelf-margin lowstand wedge in the deep Wilcox flexture trend of south Texas

    SciTech Connect

    Snedden, J.W. ); Cooke, J.C. ); Johnson, R.K.; Conrad, K.T. )

    1991-03-01

    An integrated sedimentologic and biostratigraphic study of 15 wells and over 1400 ft (430 m) of core facilitated establishment of a sequence stratigraphic framework for the deep Wilcox Group of south Texas. This analysis also revealed the presence of a dip-restricted, sand-prone sediment wedge that produces hydrocarbons in growth-fault structures. A sequence stratigraphic framework for the Wilcox was constructed via the use of faunal-increase markers, thin intervals present in well cuttings characterized by rises in the relative abundance of planktonic foraminifera. These marine flooding horizons can be utilized to subdivide the Wilcox Group into four depositional sequences termed P(aleogene)-8, P-7, P-4, and P-3, in descending order. Identification of standard sequence-bounding unconformities is hampered by the poor seismic expression of the Wilcox and the structural complexity of the area.

  2. Geometry of relict surfaces in Northern Norway: Implications for the extensional evolution of the NE Atlantic margin

    NASA Astrophysics Data System (ADS)

    Schermer, Elizabeth; Redfield, Tim

    2013-04-01

    The distribution and geometry of relict surfaces adjacent to the northern Norwegian passive margin can help constrain the post-rift evolution of the onshore region. A swath map of relict surfaces, covering the coast of Senja Island and extending SE to the drainage divide, was constructed from DEMs, aerial photos and an NGU digital map database of Quaternary features. The map and histograms of elevation distribution depict three distinctly stepped, coast-parallel belts of preserved relict surfaces. The belts increase in mean elevation from coast to the southeast and, to a certain degree, correlate with the bedrock geology. Overall, the relict surfaces dip to the NW. Locally SE dipping surfaces in the coastal and central belts may be controlled by post-surface reactivation of normal faults. The coastal belt coincides with a fault-bounded horst of Precambrian rock. Although deeply incised by Alpine glaciers and fjords, relict surfaces are preserved on ridge tops and local broad peaks at 700-800 m. A central belt of much lower relief and with surfaces averaging 900-1100 m high coincides with Caledonian nappe rocks and exhibits few preserved surfaces. An inner belt of extensive and well preserved surfaces averaging 1300-1400m high coincides with peaks and the gently rolling upland of the Scandinavian mountain crest. Here, NW-trending paleoridges and paleovalleys are evident in contours of the highest surfaces. NW-SE topographic profiles (perpendicular to the COB) show distinct steps in the maximum height of the relict surfaces, interpreted to coincide with mapped normal faults whose vertical offsets (throw) may be up to 600-700 m. The geometry of relict surfaces is consistent with multiple rock column uplift events. Published apatite fission track (AFT) apparent ages are ~200 Ma (range ~170-220 Ma), indicating the onshore bedrock was within ~2-3 km of the surface since Early Jurassic time. No distinct AFT age offsets can be resolved within the data, limiting net throw

  3. Sand injectites at the base of the Coconino Sandstone, Grand Canyon, Arizona (USA)

    NASA Astrophysics Data System (ADS)

    Whitmore, John H.; Strom, Ray

    2010-10-01

    In the Grand Canyon, large tabular and wedge shaped sand-filled cracks commonly occur at the base of the Coconino Sandstone, penetrating downward into the coarse siltstones of the Hermit Formation. All previous workers have casually identified the vertical sand-filled cracks as desiccation cracks. Until now, they have never been studied. Cracks and their associated features were found and examined at thirty locations; and it was found that they have characteristics difficult to explain using desiccation mud cracks or large playa cracks as a model. Instead, it was found the cracks have features commonly found in clastic dikes and sand injectites. Some lateral sand bodies associated with the cracks have clastic sill-like characteristics. Liquefaction and injection of the basal Coconino into the Hermit is indicated by 1) macroscopic and microscopic banding (flow structures) within the cracks, 2) bedded sandstone clast breccias in structureless sandstone lenses at the base of the Coconino, 3) lateral sand bodies which are connected to the vertical cracks, 4) a zoned depth distribution of cracks about the Bright Angel Fault zone, 5) insufficient clay mineralogy and particle size for the Hermit to crack by desiccation, 6) preferred orientation of the cracks roughly perpendicular to the Bright Angel Fault zone and several other features. Caution should be exercised when interpreting sand-filled cracks as desiccation features (i.e., "mud cracks"), even if the interpretation fits well with accepted paleoenvironmental models.

  4. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  5. Laboratory singing sand avalanches.

    PubMed

    Dagois-Bohy, Simon; Ngo, Sandrine; du Pont, Sylvain Courrech; Douady, Stéphane

    2010-02-01

    Some desert sand dunes have the peculiar ability to emit a loud sound up to 110 dB, with a well-defined frequency: this phenomenon, known since early travelers (Darwin, Marco Polo, etc.), has been called the song of dunes. But only in late 19th century scientific observations were made, showing three important characteristics of singing dunes: first, not all dunes sing, but all the singing dunes are composed of dry and well-sorted sand; second, this sound occurs spontaneously during avalanches on a slip face; third this is not the only way to produce sound with this sand. More recent field observations have shown that during avalanches, the sound frequency does not depend on the dune size or shape, but on the grain diameter only, and scales as the square root of g/d--with g the gravity and d the diameter of the grains--explaining why all the singing dunes in the same vicinity sing at the same frequency. We have been able to reproduce these singing avalanches in laboratory on a hard plate, which made possible to study them more accurately than on the field. Signals of accelerometers at the flowing surface of the avalanche are compared to signals of microphones placed above, and it evidences a very strong vibration of the flowing layer at the same frequency as on the field, responsible for the emission of sound. Moreover, other characteristics of the booming dunes are reproduced and analyzed, such as a threshold under which no sound is produced, or beats in the sound that appears when the flow is too large. Finally, the size of the coherence zones emitting sound has been measured and discussed.

  6. Sand dollar sites orogenesis

    NASA Astrophysics Data System (ADS)

    Amos, Dee

    2013-04-01

    The determinology of the humble sand dollars habitat changing from inception to the drastic evolution of the zone to that of present day. Into the cauldron along the southern Californian 'ring of fire' lithosphere are evidence of geosynclinals areas, metasedimentary rock formations and hydrothermal activity. The explanation begins with 'Theia' and the Moon's formation, battles with cometary impacts, glacial ages, epochs with evolutionary bottlenecks and plate tectonics. Fully illustrated the lecture includes localised diagrams and figures with actual subject photographic examples of plutonic, granitic, jade and peridodite. Finally, the origins of the materials used in the lecture are revealed for prosecution by future students and the enjoyment of interested parties in general.

  7. Fortune Cookie Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-432, 25 July 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a field of small barchan sand dunes in the north polar region near 71.7oN, 51.3oW. Some of them are shaped like fortune cookies. The message these dunes provide: winds blow through this region from the lower right toward the upper left. The steep slip face slopes of these dunes, which point toward the upper left, indicate the wind direction. The scene is illuminated by sunlight from the upper right. The image is 3 km (1.9 mi) wide.

  8. Sand Dunes in Hellas

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-537, 7 November 2003

    The smooth, rounded mounds in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture are sand dunes. The scene is located in southern Hellas Planitia and was acquired in mid-southern autumn, the ideal time of year for Hellas imaging. Sunlight illuminates the scene from the upper left. These dunes are located near 49.1oS, 292.6oW. The picture covers an area 3 km (1.9 mi) wide.

  9. Ganges Rocks and Sand

    NASA Technical Reports Server (NTRS)

    2005-01-01

    17 January 2004 The top half of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows wind-eroded remnants of sedimentary rock outcrops in Ganges Chasma, one of the troughs of the Valles Marineris system. The lower half shows a thick accumulation of dark, windblown sand. The image covers an area about 3 km (1.9 mi) wide and is illuminated by sunlight from the upper left. These features are located near 7.6oS, 49.4oW.

  10. Phylogeography and genetic structure of a Tertiary relict tree species, Tapiscia sinensis (Tapisciaceae): implications for conservation

    PubMed Central

    Zhang, Jinju; Li, Zuozhou; Fritsch, Peter W.; Tian, Hua; Yang, Aihong; Yao, Xiaohong

    2015-01-01

    Background and Aims The phylogeography of plant species in sub-tropical China remains largely unclear. This study used Tapiscia sinensis, an endemic and endangered tree species widely but disjunctly distributed in sub-tropical China, as a model to reveal the patterns of genetic diversity and phylogeographical history of Tertiary relict plant species in this region. The implications of the results are discussed in relation to its conservation management. Methods Samples were taken from 24 populations covering the natural geographical distribution of T. sinensis. Genetic structure was investigated by analysis of molecular variance (AMOVA) and spatial analysis of molecular variance (SAMOVA). Phylogenetic relationships among haplotypes were constructed with maximum parsimony and haplotype network methods. Historical population expansion events were tested with pairwise mismatch distribution analysis and neutrality tests. Species potential range was deduced by ecological niche modelling (ENM). Key Results A low level of genetic diversity was detected at the population level. A high level of genetic differentiation and a significant phylogeographical structure were revealed. The mean divergence time of the haplotypes was approx. 1·33 million years ago. Recent range expansion in this species is suggested by a star-like haplotype network and by the results from the mismatch distribution analysis and neutrality tests. Conclusions Climatic oscillations during the Pleistocene have had pronounced effects on the extant distribution of Tapiscia relative to the Last Glacial Maximum (LGM). Spatial patterns of molecular variation and ENM suggest that T. sinensis may have retreated in south-western and central China and colonized eastern China prior to the LGM. Multiple montane refugia for T. sinense existing during the LGM are inferred in central and western China. The populations adjacent to or within these refugia of T. sinense should be given high priority in the development of

  11. Nitrate removal in two relict oxbow urban wetlands: a 15N mass-balance approach

    NASA Astrophysics Data System (ADS)

    Harrison, M. D.; Groffman, P. M.; Mayer, P. M.; Kaushal, S.

    2012-12-01

    A mass-balance approach was used to directly determine the flow of 15NO3- to plants, algae, and sediments,with unaccounted for 15N assumed to be denitrified. During the summer, plant and algal uptake accounted for 42%, of the added 15NO3 - in oxbow 1, less than 1% remained in the water column and 57% was unaccounted for. In oxbow 2 during the summer, plant and algal uptake accounted for 63% of the added 15NO3 -, with 1% remaining in the water column and 38% unaccounted for. During the early spring, plant and algal uptake were much lower in both oxbows, ranging from 0.05 to 13.3% of the 15N added, with 97 and 87% was unaccounted for in oxbow 1 and 2, respectively. The amount of unaccounted for 15N was equivalent to estimated areal denitrification rates of 12 and 6 mg N m-2 d-1 in the summer and 78 and 15 mg N m-2 d-1 in the spring, in oxbow 1 and oxbow 2, respectively. However, the uncertainty of these estimates is high as it was difficult to detect accumulation of 15N in the sediments which could have accounted for a very large percentage of the added 15N. Our results suggest that the two relict oxbow wetlands are sinks for NO3 - during both summer and spring. Plane view of Ox1 (A) and Ox2 (B) wetlands with closed contour intervals (color scale) and surrounding stream and upland elevations (labeled in black) located at Minebank Run, near Glen Arms, MD. 15N enrichment (atom %) of measured N pools prior to (Day 0) and after (Day 5) the end of the experiment in July 2009 and April 2010 for Ox1 and Ox2. Values are mean atom % (n = 2 algae, macrophytes and sediment; n = 6 for water samples).

  12. Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?

    PubMed

    Wynn-Williams, D D; Cabrol, N A; Grin, E A; Haberle, R M; Stoker, C R

    2001-01-01

    Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.

  13. Are expansive North American marshes a relict of historical land use change?

    NASA Astrophysics Data System (ADS)

    Kirwan, M.; Murray, A. B.; Donnelly, J.

    2009-12-01

    Fluctuations in sea level rise rates are thought to dominate the evolution of coastal wetlands. Indeed, many salt marshes developed during a late-Holocene deceleration in sea level rise, vertical accretion rates commonly mimic rates of sea level rise, and observations of degradation in marshes today are often attributed to high relative sea level rise rates. Here, we consider a contrasting scenario in which land-use related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain the morphology of marshes despite recent sediment supply reduction and sea level acceleration. Our stratigraphic analysis suggests that much of the Plum Island Estuary (MA) existed as a shallow subtidal bay with marshes occupying high elevations along its perimeter. Around 1800 AD, salt marshes rapidly prograded across the basin, constricting the bay into a well defined marsh-channel network system. We attribute this marsh expansion to increased rates of sediment delivery associated with regional deforestation associated with European settlement. Expansive marshland exits along the North American coast today despite 20th century sea level acceleration and sediment supply reduction associated with dam construction and reforestation. Numerical modeling suggests that these factors lead to deepening of marsh elevations relative to sea level, but that ecogeomorphic feedbacks that enhance accretion and limit channel erosion allow marshes to persist in a metastable equilibrium even under conditions in which they could not develop. If true, expansive marshland along the North American coast is a relict feature of high 19th century sediment delivery rates, and marshland lost today will not be recovered in the future, even if rates of sea level rise and sediment delivery were to stabilize.

  14. Are expansive North American marshes a relict of historical land use change? (Invited)

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Murray, A. B.; Donnelly, J. P.; Corbett, D. R.

    2010-12-01

    Fluctuations in sea level rise rates are thought to dominate the evolution of coastal wetlands. Indeed, many salt marshes developed during a late-Holocene deceleration in sea level rise, vertical accretion rates commonly mimic rates of sea level rise, and observations of degradation in marshes today are often attributed to high relative sea level rise rates. Here, we consider a contrasting scenario in which land-use related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain the morphology of marshes despite recent sediment supply reduction and sea level acceleration. Our stratigraphic analysis suggests that much of the Plum Island Estuary (MA) existed as a shallow subtidal bay with marshes occupying high elevations along its perimeter. Around 1800 AD, salt marshes rapidly prograded across the basin, constricting the bay into a well defined marsh-channel network system. We attribute this marsh expansion to increased rates of sediment delivery associated with regional deforestation associated with European settlement. Expansive marshland exits along the North American coast today despite 20th century sea level acceleration and sediment supply reduction associated with dam construction and reforestation. Numerical modeling suggests that these factors lead to deepening of marsh elevations relative to sea level, but that ecogeomorphic feedbacks that enhance accretion and limit channel erosion allow marshes to persist in a metastable equilibrium even under conditions in which they could not develop. If true, expansive marshland along the North American coast is a relict feature of high 19th century sediment delivery rates, and marshland lost today will not be recovered in the future, even if rates of sea level rise and sediment delivery were to stabilize.

  15. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng

    PubMed Central

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution. PMID:26136762

  16. Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?

    PubMed

    Wynn-Williams, D D; Cabrol, N A; Grin, E A; Haberle, R M; Stoker, C R

    2001-01-01

    Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers. PMID:12467120

  17. Simulated herbivory does not constrain phenotypic plasticity to shade through ontogeny in a relict tree.

    PubMed

    Pardo, A; García, F M; Valladares, F; Pulido, F

    2016-07-01

    Ecological limits to phenotypic plasticity (PP), induced by simultaneous biotic and abiotic factors, can prevent organisms from exhibiting optimal plasticity, and in turn lead to decreased fitness. Herbivory is an important biotic stressor and may limit plant functional responses to challenging environmental conditions such as shading. In this study we investigated whether plant functional responses and PP to shade are constrained by herbivory, and whether such constraints are due to direct effects based on resource limitation by considering ontogeny. We used as a model system the relict tree Prunus lusitanica and implemented an indoor experiment to quantify the response of saplings of different ages to shade and herbivory. We measured five functional traits and quantitatively calculated PP. Results showed that herbivory did not constrain functional responses or PP to shade except for shoot:root ratio (SR), which, despite showing a high PP in damaged saplings, decreased under shade instead of increasing. Damaged saplings of older age did not exhibit reduced constraints on functional responses to shade and generally presented a lower PP than damaged saplings of younger age. Our findings suggest that herbivory-mediated constraints on plant plasticity to shade may not be as widespread as previously thought. Nonetheless, the negative effect of herbivory on SR plastic expression to shade could be detrimental for plant fitness. Finally, our results suggest a secondary role of direct effects (resource-based) on P. lusitanica plasticity limitation. Further studies should quantify plant resources in order to gain a better understanding of this seldom-explored subject.

  18. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): unearthing the subterranean biodiversity of the Dinaric Karst

    PubMed Central

    2013-01-01

    Background Patterns of biodiversity in the subterranean realm are typically different from those encountered on the Earth’s surface. The Dinaric karst of Croatia, Slovenia and Bosnia and Herzegovina is a global hotspot of subterranean biodiversity. How this was achieved and why this is so remain largely unresolved despite a long tradition of research. To obtain insights into the colonisation of the Dinaric Karst and the effects of the subterranean realm on its inhabitants, we studied the tertiary relict Congeria, a unique cave-dwelling bivalve (Dreissenidae), using a combination of biogeographical, molecular, morphological, and paleontological information. Results Phylogenetic and molecular clock analyses using both nuclear and mitochondrial markers have shown that the surviving Congeria lineage has actually split into three distinct species, i.e., C. kusceri, C. jalzici sp. nov. and C. mulaomerovici sp. nov., by vicariant processes in the late Miocene and Pliocene. Despite millions of years of independent evolution, analyses have demonstrated a great deal of shell similarity between modern Congeria species, although slight differences in hinge plate structure have enabled the description of the two new species. Ancestral plesiomorphic shell forms seem to have been conserved during the processes of cave colonisation and subsequent lineage isolation. In contrast, shell morphology is divergent within one of the lineages, probably due to microhabitat differences. Conclusions Following the turbulent evolution of the Dreissenidae during the Tertiary and major radiations in Lake Pannon, species of Congeria went extinct. One lineage survived, however, by adopting a unique life history strategy that suited it to the underground environment. In light of our new data, an alternative scenario for its colonisation of the karst is proposed. The extant Congeria comprises three sister species that, to date, have only been found to live in 15 caves in the Dinaric karst. Inter

  19. Compressive behavior of fine sand.

    SciTech Connect

    Martin, Bradley E.; Kabir, Md. E.; Song, Bo; Chen, Wayne

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  20. [Sensitometry of Mammographic Screen-film System Using Bootstrap Aluminum Step-Wedge.].

    PubMed

    Abe, Shinji; Imada, Ryou; Terauchi, Takashi; Fujisaki, Tatsuya; Monma, Masahiko; Nishimura, Katsuyuki; Saitoh, Hidetoshi; Mochizuki, Yasuo

    2005-01-01

    Recently, a few types of step-wedges for bootstrap sensitometry with a mammographic screen-film system have been proposed. In this study, the bootstrap sensitometry with the mammographic screen-film system was studied for two types of aluminum step-wedges. Characteristic X-ray energy curves were determined using mammographic and general radiographic aluminum step-wedges devised to prevent scattered X-rays generated from one step penetrating into the region of another one, and dependence of the characteristic curves on the wedges was also discussed. No difference was found in the characteristic curves due to the difference in the step-wedges for mammography and general radiography although there was a slight difference in shape at the shoulder portion for the two types of step-wedges. Therefore, it was concluded that aluminum step-wedges for mammography and general radiography could be employed in bootstrap sensitometry with the mammographic screen-film system. PMID:16479054

  1. Mechanism of Hot Finger Formation in Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Matsuo, M. Y.; Tamura, Y.; Sakaguchi, H.

    2013-12-01

    Processes of mantle melting and volcanic eruptions along subduction zones are often illustrated by the use of two-dimensional cross-section models of convergent margins. However, Quaternary volcanoes in the NE Japan arc could be grouped into ten volcano clusters striking transverse to the arc; these have an average width of ~ 50 km, and are separated by parallel gaps 30-75 km wide (Tamura et al., 2002). Moreover, the structure of the mantle wedge and arc crust beneath the NE Japan arc and the Izu-Bonin-Mariana arc, respectively, suggest that the third dimension, lying along the strike of the arc, is necessary to understand the actual production of magmas in subduction zones (e.g., Nakajima et al., 2001; Hasegawa & Nakajima, 2004; Kodaira et al., 2007; Kodaira et al., 2008). Common periodic structural variations, having wavelengths of 80-100 km, can be observed in both areas. This grouping of volcanoes and the structural variations may be related to locally developed hot regions within the mantle wedge that have the form of inclined, 50 km-wide fingers (hot fingers). The 'hot fingers' models (Tamura et al., 2002) may play an important role in linking the 3D structures within the mantle wedge and overlying arc crust to volcanic eruptions at the surface. To explore a physical and mathematical mechanism to produce a hot finger pattern, we develop a hydrodynamic model of mantle convection in mantle wedge. A hypothesis incorporated in our model is a double diffusive mechanism of mantle materials; diffusion of composition of mantle materials is much weaker than temperature diffusion. We show that our model shows a spatiotemporal pattern in a mantle material composition, temperature, and velocity that are similar to the spatiotemporal patterns observed in the NE Japan arc.

  2. Modal Analysis in Lined Wedge-Shaped Ducts

    NASA Astrophysics Data System (ADS)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  3. On the acoustic wedge design and simulation of anechoic chamber

    NASA Astrophysics Data System (ADS)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  4. Dual Double-Wedge Pseudo-Depolarizer with Anamorphic PSF

    NASA Technical Reports Server (NTRS)

    Hill, Peter; Thompson, Patrick

    2012-01-01

    A polarized scene, which may occur at oblique illumination angles, creates a radiometric signal that varies as a function of viewing angle. One common optical component that is used to minimize such an effect is a polarization scrambler or depolarizer. As part of the CLARREO mission, the SOLARIS instrument project at Goddard Space Flight Center has developed a new class of polarization scramblers using a dual double-wedge pseudo-depolarizer that produces an anamorphic point spread function (PSF). The SOLARIS instrument uses two Wollaston type scramblers in series, each with a distinct wedge angle, to image a pseudo-depolarized scene that is free of eigenstates. Since each wedge is distinct, the scrambler is able to produce an anamorphic PSF that maintains high spatial resolution in one dimension by sacrificing the spatial resolution in the other dimension. This scrambler geometry is ideal for 1-D imagers, such as pushbroom slit spectrometers, which require high spectral resolution, high spatial resolution, and low sensitivity to polarized light. Moreover, the geometry is applicable to a wide range of scientific instruments that require both high SNR (signal-to-noise ratio) and low sensitivity to polarized scenes

  5. Shock interaction mechanisms on a double wedge at Mach 7

    NASA Astrophysics Data System (ADS)

    Durna, Ahmet Selim; El Hajj Ali Barada, Mohamad; Celik, Bayram

    2016-09-01

    Present computational study investigates formation and interaction mechanisms of shocks and boundary layer for low enthalpy Mach 7 flows of nitrogen over double wedges, which have fixed fore and various aft angles of 30° and 45°-60°, respectively. We use a density based finite-volume Navier-Stokes solver to simulate low enthalpy Mach 7 flows of nitrogen over double wedges. The solver is first and second order accurate in time and space, respectively. The meshes used in simulations of two-dimensional laminar flows consist of multiple blocks of structured mesh. Depending on the intensity, impingement angle, and impingement location of transmitted shock wave, the resulting adverse pressure gradient related disturbances on the wedge surface can trigger complex flow physics both in subsonic and supersonic regions. We observe a strong interaction between the deformation of the boundary layer and the bow shock as well as the transmitted shock for high aft angles. Comparison of the obtained results in terms of general flow physics shows that there exists an aft angle threshold value for such interaction which is in the range of 45°-50°.

  6. Reflection of cylindrical converging shock wave over a plane wedge

    NASA Astrophysics Data System (ADS)

    Zhang, Fu; Si, Ting; Zhai, Zhigang; Luo, Xisheng; Yang, Jiming; Lu, Xiyun

    2016-08-01

    The cylindrical converging shock reflection over a plane wedge is investigated experimentally and numerically in a specially designed shock tube which converts a planar shock into a cylindrical one. When the converging shock is moving along the wedge, both the shock strength and the incident angle are changing, which provides the possibility for the wave transition. The results show that both regular reflection (RR) and Mach reflection (MR) are found on the wedge with different initial incident angles. The wave transitions from direct Mach reflection (DiMR) to inverse Mach reflection (InMR) and further to transitioned regular reflection (TRR) are observed with appropriate initial incident angles. The instability development in the shear layer and strong vortices formation near the wall are evident, which are ascribed not only to the interaction of two shear layers but also to the shock impact and the shock converging effect. Because of the flow unsteadiness after the converging shock, the detachment criterion provides a good estimation for the RR → MR transition, but fails to predict the DiMR → InMR transition, and MR is found to persist slightly below the mechanical equilibrium condition. A hysteresis process is found in the MR → TRR transition and becomes more apparent as the increase of the initial incident angle due to the shock converging effect.

  7. The wedge hot-film anemometer in supersonic flow

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.

    1983-01-01

    A commercial wedge hot-film probe is studied to determine its heat transfer response in transonic to low supersonic flows of high unit Reynolds number. The results of this study show that its response in this flow regime differs from the response of cylindrical type sensors. Whereas the cylindrical sensor has the same sensitivity to velocity as to density for free-stream Mach numbers exceeding 1.3, the wedge probe sensitivity to velocity is always greater than its sensitivity to density over the entire flow regime. This property requires determination of three fluctuation components due to density, velocity, and temperature, in a transonic or supersonic turbulent flow. Sensitivity equations are derived based on the observed behavior of the wedge probe. Both the durability and the frequency response of the probe are excellent, the square wave insertion test indicating frequency response near 130 kHz. The directional response of the probe at sonic speed is poor and requires further examination before Reynolds stress measurements are attempted with dual sensor probes.

  8. Geomorphological-thermo-mechanical modeling: Application to orogenic wedge dynamics

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Willett, S. D.; Gerya, T.; Ruh, J.

    2015-09-01

    Coupled geomorphological-thermo-mechanical modeling is presented in a new implementation that combines two established thermo-mechanical and landscape evolution models. A finite-difference marker-in-cell technique is used to solve for the thermo-mechanical problem including complex visco-plastic rheologies in high resolution. Each timestep is synchronously solved with a fluvial landscape evolution model that includes numerical solution of fluvial incision and analytical hillslope processes for both diffusive and slope-limited processes on an adaptive grid. The implementation is successful in modeling large deformation at different scales. We demonstrate high degrees of coupling through processes such as exhumation of rocks with different erodibilities. Sensitivity of the coupled system evolution to surface parameters, and mechanical parameters, is explored for the established case of development of compressive wedges. The evolution of wedge models proves to be primarily sensitive to erodibility and the degree of river network integration. Relief follows deformation in propagating forward with wedge growth. We apply the method to a large-scale model of continental collision, in which a close relationship between deep tectonics, fluvial network evolution, and uplift and erosion can be demonstrated.

  9. Missing wedge computed tomography by iterative algorithm DIRECTT.

    PubMed

    Kupsch, Andreas; Lange, Axel; Hentschel, Manfred P; Lück, Sebastian; Schmidt, Volker; Grothausmann, Roman; Hilger, André; Manke, Ingo

    2015-01-01

    A strategy to mitigate typical reconstruction artefacts in missing wedge computed tomography is presented. These artefacts appear as elongations of reconstructed details along the mean direction (i.e. the symmetry centre of the projections). Although absent in standard computed tomography applications, they are most prominent in advanced electron tomography and also in special topics of X-ray and neutron tomography under restricted geometric boundary conditions. We investigate the performance of the DIRECTT (Direct Iterative Reconstruction of Computed Tomography Trajectories) algorithm to reduce the directional artefacts in standard procedures. In order to be sensitive to the anisotropic nature of missing wedge artefacts, we investigate isotropic substructures of metal foam as well as circular disc models. Comparison is drawn to filtered backprojection and algebraic techniques. Reference is made to reconstructions of complete data sets. For the purpose of assessing the reconstruction quality, Fourier transforms are employed to visualize the missing wedge directly. Deficient reconstructions of disc models are evaluated by a length-weighted kernel density estimation, which yields the probabilities of boundary orientations. The DIRECTT results are assessed at different signal-to-noise ratios by means of local and integral evaluation parameters. PMID:26367127

  10. Washing wedges: a capillary instability in a gradient of confinement

    NASA Astrophysics Data System (ADS)

    Keiser, Ludovic; Herbaut, Remy; Bico, Jose; Reyssat, Etienne

    2015-11-01

    When a drop of oil is introduced into a gradient of confinement (two glass plates forming a sharp wedge) capillary forces drive it toward the most confined regions, where the solid-fluid contact area is maximal. A surfactant solution subsequently introduced into the wedge undergoes the same movement until it reaches the oil previously added. If the aqueous phase wets the solid better than the oil, a complex exchange process between both phases occurs. The water-oil interface destabilizes, oil fingers grow in the water phase, pinch-off and lead to the formation of droplets that migrate away from the tip of the wedge. The whole oil phase is eventually extracted. A linear stability analysis of the interface is presented and captures the size of the oil droplets. The dynamics of the system is however not perfectly explained by a simple Poiseuille flow. Indeed, more refined models should account for the dissipation in meniscii and lubrication films. Finally, we suggest that our model experiment may constitute a useful tool to select optimal systems for oil recovery processes.

  11. Integrated waste management as a climate change stabilization wedge.

    PubMed

    Bahor, Brian; Van Brunt, Michael; Stovall, Jeff; Blue, Katherine

    2009-11-01

    Anthropogenic sources of greenhouse gas emissions are known to contribute to global increases in greenhouse gas concentrations and are widely believed to contribute to climate change. A reference carbon dioxide concentration of 383 ppm for 2007 is projected to increase to a nominal 500 ppm in less than 50 years according to business as usual models. This concentration change is equivalent to an increase of 7 billion tonnes of carbon per year (7 Gt C year(-1)). The concept of a stabilization wedge was introduced by Pacala and Socolow (Science, 305, 968-972, 2004) to break the 7 Gt C year(- 1) into more manageable 1 Gt C year(- 1) reductions that would be achievable with current technology. A total of fifteen possible 'wedges' were identified; however, an integrated municipal solid waste (MSW) management system based on the European Union's waste management hierarchy was not evaluated as a wedge. This analysis demonstrates that if the tonnage of MSW is allocated to recycling, waste to energy and landfilling in descending order in lieu of existing 'business-as-usual' practices with each option using modern technology and best practices, the system would reduce greenhouse gas emissions by more than 1 Gt C year( -1). This integrated waste management system reduces CO(2) by displacing fossil electrical generation and avoiding manufacturing energy consumption and methane emissions from landfills.

  12. Subduction zone evolution and low viscosity wedges and channels

    NASA Astrophysics Data System (ADS)

    Manea, Vlad; Gurnis, Michael

    2007-12-01

    Dehydration of subducting lithosphere likely transports fluid into the mantle wedge where the viscosity is decreased. Such a decrease in viscosity could form a low viscosity wedge (LVW) or a low viscosity channel (LVC) on top of the subducting slab. Using numerical models, we investigate the influence of low viscosity wedges and channels on subduction zone structure. Slab dip changes substantially with the viscosity reduction within the LVWs and LVCs. For models with or without trench rollback, overthickening of slabs is greatly reduced by LVWs or LVCs. Two divergent evolutionary pathways have been found depending on the maximum depth extent of the LVW and wedge viscosity. Assuming a viscosity contrast of 0.1 with background asthenosphere, models with a LVW that extends down to 400 km depth show a steeply dipping slab, while models with an LVW that extends to much shallower depth, such as 200 km, can produce slabs that are flat lying beneath the overriding plate. There is a narrow range of mantle viscosities that produces flat slabs (5 to10 × 10 19 Pa s) and the slab flattening process is enhanced by trench rollback. Slab can be decoupled from the overriding plate with a LVC if the thickness is at least a few 10 s of km, the viscosity reduction is at least a factor of two and the depth extent of the LVC is several hundred km. These models have important implications for the geochemical and spatial evolution of volcanic arcs and the state of stress within the overriding plate. The models explain the poor correlation between traditional geodynamic controls, subducting plate age and convergence rates, on slab dip. We predict that when volcanic arcs change their distance from the trench, they could be preceded by changes in arc chemistry. We predict that there could be a larger volatile input into the wedge when arcs migrate toward the trench and visa-versa. The transition of a subduction zone into the flat-lying regime could be preceded by changes in the volatile

  13. Robustness of oscillatory α2 dynamos in spherical wedges

    NASA Astrophysics Data System (ADS)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  14. Adaptive consequences of human-mediated introgression for indigenous tree species: the case of a relict Pinus pinaster population.

    PubMed

    Ramírez-Valiente, José Alberto; Robledo-Arnuncio, Juan José

    2014-12-01

    Human-induced gene movement via afforestation and restoration programs is a widespread phenomenon throughout the world. However, its effects on the genetic composition of native populations have received relatively little attention, particularly in forest trees. Here, we examine to what extent gene flow from allochthonous plantations of Pinus pinaster Aiton impacts offspring performance in a neighboring relict natural population and discuss the potential consequences for the long-term genetic composition of the latter. Specifically, we conducted a greenhouse experiment involving two contrasting watering treatments to test for differences in a set of functional traits and mortality rates between P. pinaster progenies from three different parental origins: (i) local native parents, (ii) exotic parents and (iii) intercrosses between local mothers and exotic fathers (intraspecific hybrids). Our results showed differences among crosses in cumulative mortality over time: seedlings of exotic parents exhibited the lowest mortality rates and seedlings of local origin the highest, while intraspecific hybrids exhibited an intermediate response. Linear regressions showed that seedlings with higher water-use efficiency (WUE, δ(13)C) were more likely to survive under drought stress, consistent with previous findings suggesting that WUE has an important role under dry conditions in this species. However, differences in mortality among crosses were only partially explained by WUE. Other non-measured traits and factors such as inbreeding depression in the relict population are more likely to explain the lower performance of native progenies. Overall, our results indicated that intraspecific hybrids and exotic individuals are more likely to survive under stressful conditions than local native individuals, at least during the first year of development. Since summer drought is the most important demographic and selective filter affecting tree establishment in Mediterranean ecosystems

  15. Organic fertilization and sufficient nutrient status in prehistoric agriculture?--Indications from multi-proxy analyses of archaeological topsoil relicts.

    PubMed

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure).

  16. Organic fertilization and sufficient nutrient status in prehistoric agriculture?--Indications from multi-proxy analyses of archaeological topsoil relicts.

    PubMed

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure). PMID

  17. Organic Fertilization and Sufficient Nutrient Status in Prehistoric Agriculture? – Indications from Multi-Proxy Analyses of Archaeological Topsoil Relicts

    PubMed Central

    Lauer, Franziska; Prost, Katharina; Gerlach, Renate; Pätzold, Stefan; Wolf, Mareike; Urmersbach, Sarah; Lehndorff, Eva; Eckmeier, Eileen; Amelung, Wulf

    2014-01-01

    Neolithic and Bronze Age topsoil relicts revealed enhanced extractable phosphorus (P) and plant available inorganic P fractions, thus raising the question whether there was targeted soil amelioration in prehistoric times. This study aimed (i) at assessing the overall nutrient status and the soil organic matter content of these arable topsoil relicts, and (ii) at tracing ancient soil fertilizing practices by respective stable isotope and biomarker analyses. Prehistoric arable topsoils were preserved in archaeological pit fillings, whereas adjacent subsoils served as controls. One Early Weichselian humic zone represented the soil status before the introduction of agriculture. Recent topsoils served as an additional reference. The applied multi-proxy approach comprised total P and micronutrient contents, stable N isotope ratios, amino acid, steroid, and black carbon analyses as well as soil color measurements. Total contents of P and selected micronutrients (I, Cu, Mn, Mo, Se, Zn) of the arable soil relicts were above the limits for which nutrient deficiencies could be assumed. All pit fillings exhibited elevated δ15N values close to those of recent topsoils (δ15N>6 to 7‰), giving first hints for prehistoric organic N-input. Ancient legume cultivation as a potential source for N input could not be verified by means of amino acid analysis. In contrast, bile acids as markers for faecal input exhibited larger concentrations in the pit fillings compared with the reference and control soils indicating faeces (i.e. manure) input to Neolithic arable topsoils. Also black carbon contents were elevated, amounting up to 38% of soil organic carbon, therewith explaining the dark soil color in the pit fillings and pointing to inputs of burned biomass. The combination of different geochemical analyses revealed a sufficient nutrient status of prehistoric arable soils, as well as signs of amelioration (inputs of organic material like charcoal and faeces-containing manure). PMID

  18. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    NASA Astrophysics Data System (ADS)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  19. Sand and Dust on Mars

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Haberle, Robert M.

    1991-01-01

    Mars is a planet of high scientific interest. Various studies are currently being made that involve vehicles that have landed on Mars. Because Mars is known to experience frequent wind storms, mission planners and engineers require knowledge of the physical and chemical properties of Martian windblown sand and dust, and the processes involved in the origin and evolution of sand and dust storms.

  20. Science Learning in the Sand.

    ERIC Educational Resources Information Center

    Sexton, Ursula

    1997-01-01

    Presents activities that allow students to think about the Earth in a contextual manner and become familiar with constructive and destructive processes as they relate to sand - its origins, cyclical processes, and yielding of new products. Explores the bigger idea with a developmentally appropriate study of water, rocks, sand, physical phenomena,…

  1. Study of stress distribution of forming slandering of automobile semi-axes with multi-wedge cross wedge rolling by FEM simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Shu, Xuedao; Hu, Zhenghuan

    2005-12-01

    Cross wedge rolling with multi-wedge (MCWR) is a new advanced technology of forming the slandering of automobile semi-axes. However, restriction relationship between main wedges and side wedges is complex, there is not almost theory forming automobile axes at inland or overseas. According to the characteristics of forming slandering of automobile semi-axes by MCWR, three-dimensional parameterized model of the MCWR and corresponding program of finite element simulation is worked out. Adopting FEM analysis technology, rules of stress distribution in work piece at main stages, such as knifing zone, stretching zone in main wedges was investigated. The results indicate that forming automobile semi-axes by MCWR is feasible. It provides reliable theory foundation for designing mould of rolling automobile axes by MCWR and choosing technology parameters.

  2. Study of the impact of truncations on wedge waves by using the laser ultrasound technique.

    PubMed

    Jia, Jing; Shen, Zhonghua; Sun, KaiHua

    2015-08-20

    This research focuses on measuring the impact of truncations on the dispersion characteristics of wedge waves propagating along the wedge tip by using the laser-generated ultrasound. First, the finite element method was used to simulate laser-induced wedge waves and the dispersion curves were obtained by using the 2D Fourier transformation method. Pulsed laser excitation and laser-based wedge wave detection were also utilized to investigate these characteristics experimentally. For the 20° and 60° line wedges, both experimental and numerical results indicated that a nonideal wedge tip had great impact on the wedge waves. The modes of the 20° line wedge with truncations presented anomalous dispersion, low mode closed to high mode in high frequency, and the characteristics of antisymmetric Lamb waves as truncation increased. Meanwhile, the modes of the 60° line wedge with truncations showed the characteristics of antisymmetric Lamb waves, and the A1 mode was also observed clearly. The findings of this study can be used to evaluate and detect wedge structure.

  3. Sand and Water

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 7 November 2003

    This image shows a relatively small crater (35 km across) in the heavily cratered terrain of the southern highlands. At the midlatitudes, this area is known both for its water-formed gullies and its sand dunes. This crater shows spectacular examples of both. In fact, the gullies running down the northern edge of the crater made it to the cover of Science magazine on June 30, 2000. The large dark spot in the floor of the crater is sand that has accumulated into one large dune with a single curvilinear crest.

    Image information: VIS instrument. Latitude -54.9, Longitude 17.5 East (342.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  5. Atlas of Dutch drift sands

    NASA Astrophysics Data System (ADS)

    Riksen, Michel; Jungerius, Pieter

    2013-04-01

    The Netherlands is well known for its aeolian landscapes. Frequent storms during the High Middle Ages (1000-1300 AD) reactivated Pleistocene coversands and river dunes and are responsible for the formation of the Holocene drift sands at a scale which is unique for Europe. A hypothesized relationship with farmer practices for making plaggensoils has recently been refuted, because drift sand formation began centuries earlier. The coastal dune belt with their parabolic dunes dates from the same period as the drift sand. An estimate of the extent of drift sands can be made from soil maps: drift sands are too young to show much profile development (Regosols). With this method Koster estimated the maximum extent of Holocene drift sands in the Netherlands to be about 800 km2 (Koster 2005). Laser altimetry allows a more precise estimate of the total surface affected by wind from the characteristic relief patterns produced by the Holocene wind, which is different from the smooth surface of cover sand deposits. Laser altimetry has been used before to investigate the mechanism of drift sand formation (Jungerius & Riksen 2010). Most of the surface affected by wind is not active anymore, but the tell-tale rough surface survived ages of different landuse. The total affected surface amounts to 825 km2. It is noteworthy that both methods give comparable results. We recorded a total number of 367 of affected areas of varying shapes, ranging in size from 1.6 ha to a large complex of drif sands of 7,119.5 ha. As is to be expected from their mode of origin, most occurrences are associated with cover sands, and with river dunes along the river Meuse and smaller rivers in other parts of the country. Particularly the final phases of cover sand and river dunes that show more relief as parabolic dunes were affected. There are also small aeolian deposits at the lee side blown from fallow agricultural fields but they are (sub)recent. Most of the relief is irregular, but the larger

  6. Revealing spatial distribution of soil organic carbon contents and stocks of a disturbed bog relict by in-situ NIR and apparent EC mapping

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.

    2013-04-01

    Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the

  7. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.

  8. An experimental study on pile spacing effects under lateral loading in sand.

    PubMed

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  9. An Experimental Study on Pile Spacing Effects under Lateral Loading in Sand

    PubMed Central

    Khari, Mahdy; Kassim, Khairul Anuar; Adnan, Azlan

    2013-01-01

    Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratio l/d = 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing of s/d from 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio of s/d more than 6d is large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand. PMID:24453900

  10. Facies and paleoenvironments of Campanian Basal Belly River sands, southern Alberta, Canada: a case study based on multidisciplined approach using both conventional sedimentology and palynofacies synthesis

    SciTech Connect

    Sabry, H.

    1987-05-01

    Basal Belly River sands are not a single, continuous body but are composed of many separate bodies of sand occupying slightly different stratigraphic positions. The shape of the Belly River Formation, its internal geometry, and its lithology fit well with the clastic wedge association of deltaic sediments. The textural and mineralogical immaturity of most of the Belly River sediments indicates rapid deposition, also characteristic of deltaic deposits. A detailed sedimentologic and palynofacies investigation of over 2930 ft of core from several wells in southern Alberta has led to the recognition of several distinct lithofacies. The lithofacies of the subaqueous part of the delta are (1) nearshore marine bar and interbar marine facies, (2) prodelta marine shales and siltstones, and (3) distal and proximal delta front sand facies. The subaerial part of the delta and interdeltaic shoreline sediments consists of 15 lithofacies that can be grouped as follows: estuarine distributary channel; barrier bar; barrier face and back barrier tidal channel; subtidal sand and shale-sand channels and flats; peat swamp; transgressive tidal sand ridges; and upper delta plain/alluvial meandering rivers and overbank complexes. Best reservoir developments are found in barrier bar, transgressive tidal sand ridges, subtidal channels, and point bar facies. The Basal Belly River sands of prograding deltaic origin experienced episodes of modification from an early river-dominated delta to a tidally dominated one later. This is evident from the paleogeography, geometry, continuity, and internal characteristics of the Basal Belly River sand bodies.

  11. Gap test modeling to predict wedge tests initiation of PBXN-103

    NASA Astrophysics Data System (ADS)

    Richmond, Clinton T.

    1998-07-01

    The experimental initiation of PBXN-103 by the standard wedge test has been modeled by using the HVRB initiation and growth model in the CTH code. The P-081 plane wave lens was used as initiator in these experiments. The wedge test was converted to a gap test by replacing the PBXN-103 wedge by a PBXN-103 cylinder. By modeling this gap test, shock initiation in PBXN-103 was calculated. The results of these calculations are in agreement with the data of the wedge test experiments. Comparison of the CTH code calculations with the wedge test data was accomplished by using an auxiliary program called the BCAT code. In particular, it computes the "pop plot" and compares it to the wedge test data. Shock initiation of PBX-9404 was also calculated by the HVRB model and the results compared to the initiation of PBX-9404 using the Lee-Tarver model. The two calculations from both of the models are very compatible.

  12. Medial Closing-Wedge Distal Femoral Osteotomy: Fixation With Proximal Tibial Locking Plate

    PubMed Central

    Tírico, Luís Eduardo Passarelli; Demange, Marco Kawamura; Bonadio, Marcelo Batista; Helito, Camilo Partezani; Gobbi, Riccardo Gomes; Pécora, José Ricardo

    2015-01-01

    Distal femoral varus osteotomy is a well-established procedure for the treatment of lateral compartment cartilage lesions and degenerative disease, correcting limb alignment and decreasing the progression of the pathology. Surgical techniques can be performed with a lateral opening-wedge or medial closing-wedge correction of the deformity. Fixation methods for lateral opening-wedge osteotomies are widely available, and there are various types of implants that can be used for fixation. However, there are currently only a few options of implants for fixation of a medial closing-wedge osteotomy on the market. This report describes a medial, supracondylar, V-shaped, closing-wedge distal femoral osteotomy using a locked anterolateral proximal tibial locking plate that fits anatomically to the medial side of the distal femur. This is a great option as a stable implant for a medial closing-wedge distal femoral osteotomy. PMID:26870647

  13. Dosimetric Characteristics of 6 MV Modified Beams by Physical Wedges of a Siemens Linear Accelerator.

    PubMed

    Zabihzadeh, Mansour; Birgani, Mohammad Javad Tahmasebi; Hoseini-Ghahfarokhi, Mojtaba; Arvandi, Sholeh; Hoseini, Seyed Mohammad; Fadaei, Mahbube

    2016-01-01

    Physical wedges still can be used as missing tissue compensators or filters to alter the shape of isodose curves in a target volume to reach an optimal radiotherapy plan without creating a hotspot. The aim of this study was to investigate the dosimetric properties of physical wedges filters such as off-axis photon fluence, photon spectrum, output factor and half value layer. The photon beam quality of a 6 MV Primus Siemens modified by 150 and 450 physical wedges was studied with BEAMnrc Monte Carlo (MC) code. The calculated present depth dose and dose profile curves for open and wedged photon beam were in good agreement with the measurements. Increase of wedge angle increased the beam hardening and this effect was more pronounced at the heal region. Using such an accurate MC model to determine of wedge factors and implementation of it as a calculation algorithm in the future treatment planning systems is recommended. PMID:27221838

  14. Modes of continental extension in a crustal wedge

    NASA Astrophysics Data System (ADS)

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-07-01

    We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  15. Sand, Syrup and Supervolcanoes

    NASA Astrophysics Data System (ADS)

    Kennedy, B.; Jellinek, M.; Stix, J.

    2006-12-01

    Supervolcanic eruptions are amongst the most awesome events in the history of the Earth. A supervolcano can erupt thousands of cubic kilometers of ash devastating entire countries and changing the climate for decades. During the eruption, the magma chamber partially empties and collapses. As the chamber collapses at depth, a massive subsidence pit develops at the surface, called a caldera, some calderas can be the size of the entire San Francisco Bay Area. Fortunately, a supervolcano of this size has not erupted since the development of modern man. Due to the infrequency and massive scale of these eruptions, volcanologists do not yet fully understand how calderas form and how the eruption is affected by the roof collapse and vice versa. Therefore, simple analogue experiments are amongst the best ways to understand these eruptions. We present two of these experiments that can be fun, cheap, and helpful to high school and university instructors to demonstrate caldera formation. The first experiment illustrates how magma chamber roofs collapse to produce different style calderas, the second experiment demonstrates how the magma in the chamber affects the collapse style and magma mixing during a supervolcanic eruption. The collapse of a magma chamber can be demonstrated in a simple sandbox containing a buried balloon filled with air connected to a tube that leads out of the sandbox. At this small scale the buried balloon is a good analogue for a magma chamber and sand has an appropriate strength to represent the earths crust. Faults propagate through the sand in a similar way to faults propagating through the crust on a larger scale. To form a caldera just let the air erupt out of the balloon. This experiment can be used to investigate what controls the shape and structure of calderas. Different shaped balloons, and different burial depths all produce sand calderas with different sizes and structures. Additionally, experiments can be done that erupt only part of the

  16. Waterscape genetics of the yellow perch (Perca flavescens): patterns across large connected ecosystems and isolated relict populations.

    PubMed

    Sepulveda-Villet, Osvaldo J; Stepien, Carol A

    2012-12-01

    Comparisons of a species' genetic diversity and divergence patterns across large connected populations vs. isolated relict areas provide important data for understanding potential response to global warming, habitat alterations and other perturbations. Aquatic taxa offer ideal case studies for interpreting these patterns, because their dispersal and gene flow often are constrained through narrow connectivity channels that have changed over geological time and/or from contemporary anthropogenic perturbations. Our research objective is to better understand the interplay between historic influences and modern-day factors (fishery exploitation, stocking supplementation and habitat loss) in shaping population genetic patterns of the yellow perch Perca flavescens (Percidae: Teleostei) across its native North American range. We employ a modified landscape genetics approach, analysing sequences from the entire mitochondrial DNA control region and 15 nuclear DNA microsatellite loci of 664 spawning adults from 24 populations. Results support that perch from primary glacial refugium areas (Missourian, Mississippian and Atlantic) founded contemporary northern populations. Genetic diversity today is highest in southern (never glaciated) populations and also is appreciable in northern areas that were founded from multiple refugia. Divergence is greater among isolated populations, both north and south; the southern Gulf Coast relict populations are the most divergent, reflecting their long history of isolation. Understanding the influence of past and current waterway connections on the genetic structure of yellow perch populations may help us to assess the roles of ongoing climate change and habitat disruptions towards conserving aquatic biodiversity.

  17. Pluvial Drainage Patterns and Holocene Desiccation Influenced the Genetic Architecture of Relict Dace, Relictus solitarius (Teleostei: Cyprinidae)

    PubMed Central

    Houston, Derek D.; Evans, R. Paul; Shiozawa, Dennis K.

    2015-01-01

    Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible. PMID:26394395

  18. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    PubMed

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. PMID:22845876

  19. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    PubMed

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants.

  20. Storm-generated bedforms and relict dissolution pits and channels on the Yucatan carbonate platform

    NASA Astrophysics Data System (ADS)

    Gulick, S. P.; Goff, J. A.; Stewart, H. A.; Perez-Cruz, L. L.; Davis, M. B.; Duncan, D.; Saustrup, S.; Sanford, J. C.; Fucugauchi, J. U.

    2013-12-01

    The Yucatan 2013 (cruise number 2013/4_ECORD) geophysical and geotechnical hazard site survey took place aboard the R/V Justo Sierra in April 2013. Our study was conducted within the Chicxulub impact crater, encompassing three potential IODP drilling sites. The survey was located ~32 km northwest of Progreso, Mexico; data acquired included ~15.6 km2 of complete multibeam bathymetry coverage, ~435 line km of side scan sonar and CHIRP data, 204 line kilometers of magnetometer data, and 194 line kilometers of surface tow boomer profiles. Based on these data, this portion of the Yucatan Shelf consists of flat-lying, hard limestone rock overlain by isolated ribbons of carbonate sand <1.0 m thick. These ribbons are oriented along NE-SW trends and have smaller scale orthogonal sand-waves (~20-100 m wavelengths and relief of ~0.2-0.6 m) on them. The sand waves are anisotropic with steeper slopes facing the NE. The larger scale morphology can be classified as longitudinal bedforms (ribbons), and the smaller scale transverse bedforms formed in response to a NE-directed flow. This flow direction is inconsistent with the ambient west-directed current conditions, and may therefore be indicative of storm-driven currents. Numerous dissolution pits, ~5-50m in diameter, ~0.2-0.5 m deep with steep (0.1-0.5 gradient) walls, are present in the bare rock regions of most of the study area. These occasionally are floored by rippled, highly reflective (coarse) sediments. We interpret these pits as representing karstic morphology formed during the last sub-aerial exposure of the study area interpreted to have occurred during Holocene times given the present day ~17 m average water depth. A sub-surface reflector imaged on the surface tow boomer data lies 1-3 m below the hard seafloor reflection (sand ribbons are below the vertical resolution of the surface tow boomer), which we interpret as a layer within the limestone bedrock. This reflector is flat-lying and undisturbed throughout the

  1. Quantitative Measurements of Bedform Transport Rates and Sand Sheet Character in the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Nittrouer, J. A.; Allison, M. A.; Campanella, R.

    2005-05-01

    Channel sand volume and downstream flux in the Mississippi River have important implications for proposed mitigation projects (dredging and pipelines) that seek to utilize this resource for replenishing neighboring barrier islands and restoring Louisiana's deteriorating wetlands. This study quantifies bedform migration-induced sand flux through the lower river on daily and seasonal timescales, and evaluates the sedimentary character of the bedload component. Observations and measurements were conducted along three study grids (Audubon Park, English Turn and Venice) over a range of river discharges between April 2003 and January 2005. Two multibeam bathymetric profiles of the study grids were conducted 24 h apart to document bedform migration, and stratigraphy and thickness of the sand layer were confirmed by CHIRP seismic profiling. Downstream transport is evaluated from bed elevation changes for a 1 m grid after correcting for river stage, and utilized to calculate bedload sand fluxes for larger, averaged grid cells after visual examination confirmed dunes had migrated <1 wavelength. Algorithms were formulated to remove spurious grid cells created by vessel motion, navigation and swath-matching errors. Initial data analysis indicates flux rates conform to expected trends: values are proportional to river discharge and are higher in the channel thalweg of straight reaches relative to shallower water. Bedform size also increases with river discharge and spatial changes in flux rates; height ranges from <1 m to 10 m, and wavelength from 10 m to 100 m. Seasonal trends in sand sheet thickness are evident, particularly in deeper meander reaches, where aggradation occurs at low flow and scour is observed during high flow. At highest discharges observed (35,000 m3/sec), bedform troughs bottom out on exposed relict fluvio-deltaic strata that the river has incised (i.e., sediment starved). A spatially uniform grab sampling effort (250 samples) provided grain size data of

  2. Inverted-wedge silica resonators for controlled and stable coupling.

    PubMed

    Bo, Fang; Huang, Steven He; Özdemir, Sahin Kaya; Zhang, Guoquan; Xu, Jingjun; Yang, Lan

    2014-04-01

    Silica microresonators with an inverted-wedge shape were fabricated using conventional semiconductor fabrication methods. The measured quality factors of the resonators were greater than 10(6) in 1550 nm band. Controllable coupling from undercoupling to the overcoupling regime through the critical coupling point was demonstrated by horizontally moving a fiber taper while in touch with the top surface of the resonator. The thin outer ring of the resonator provided a support for the fiber taper leading to robust stable coupling. PMID:24686619

  3. The Newton two-knife experiment: Intricacies of wedge diffraction

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.; Strange, Wayne

    1996-06-01

    About a century before Young's celebrated two-slit experiment, Isaac Newton quantitatively investigated the diffraction of light from a wedge aperture, but failed to understand the implications of his findings. We have reexamined this unusual system theoretically within the framework of the Fresnel-Kirchhoff scalar diffraction theory, and experimentally using a laser light source with pinhole spatial filter and CCD camera. Both the far-field shadow region and near-field directly illuminated region reveal aesthetically striking images that are deducible from the mathematical analysis, but whose interpretation is subtle and best elucidated by an alternative and less widely known perspective of diffraction.

  4. Hexahedron, wedge, tetrahedron, and pyramid diffusion operator discretization

    SciTech Connect

    Roberts, R.M.

    1996-08-06

    The diffusion equation, {phi}({rvec x}), is solved by finding the extrema of the functional, {Gamma}[{phi}] = {integral}({1/2}D{rvec {nabla}}{phi}{center_dot}{rvec {nabla}}{phi} + {1/2}{sigma}{sub a}{phi}{sup 2} - {ital Q}{phi}){ital d}{sup 3}{ital x}. A matrix is derived that is investigated for hexahedron, wedge, tetrahedron, and pyramid cells. The first term of the diffusion integration was concentrated and the others dropped; these dropped terms are also considered. Results are presented for hexahedral meshes and three weighting methods.

  5. Demonstration of Color Separation with 2ω KDP Wedge in High Power Laser Facilities

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Fu-Quan; Han, Wei; Feng, Bin; Zhou, Li-Dan; Jia, Huai-Ting; Cao, Hua-Bao

    2014-01-01

    A 2ω wedge design is proposed with KDP crystal to disperse the unconverted light away from the target in a high power laser facility for inertial confinement fusion. The ultraviolet B-integral problem is released, and about 1.2 times in color separation angle is achieved according to both theoretical and experimental investigations when compared with conventional 3ω wedge. The frequency conversion efficiency is unaffected when the wedge is along the non-sensitive axis of the tripler.

  6. Provenance control on chemical indices of weathering (Taiwan river sands)

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Resentini, Alberto

    2016-05-01

    Geochemical parameters obtained from the analysis of sediments and sedimentary rocks are widely used to infer weathering and paleo-weathering conditions in source areas. Chemical indices of weathering, however, may not reflect weathering only, or even principally. The concentration of chemical elements in terrigenous sediments is constrained by the original mineralogy of source rocks, and is thus provenance-dependent. Moreover, the mineralogy and consequently the geochemistry of sediments may undergo substantial modifications by diverse physical processes during transport and deposition, including recycling and hydraulic sorting by size, density or shape, and/or by chemical dissolution and precipitation during diagenesis. Around the island of Taiwan, temperature and rainfall are consistently high and relatively homogeneous, and no significant correlation is observed between geochemical and climatic parameters. Physical erosion, fostered by landslides induced by frequent earthquakes and typhoons, prevails because of high relief and extreme rates of tectonic uplift. In such a dynamic orogenic setting, all chemical indices of weathering are controlled principally by the geology of source terranes. Sedimentaclastic and metasedimentaclastic sands carried by western Taiwan rivers draining the pro-wedge display the strongest depletion in Na, Ca, Mg and Sr relative to average upper continental crust, and no depletion or even enrichment in K, Rb and Ba. Low WIP indices reflect erosion of phyllosilicate-dominated rocks in the Slate Belt and extensive recycling of clastic rocks exposed in the Western Foothills. Instead, metamorphiclastic sands carried by eastern Taiwan rivers draining the retro-wedge show no depletion or even enrichment in Mg and Ca, and low CIA and PIA, reflecting contributions from the Tailuko Belt and Coastal Range. Volcaniclastic sands have the same CIA values of their andesitic source rocks (47 ± 1 versus 47 ± 7), indicating that weathering is

  7. Offshore sand bank dynamics

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; MacDonald, N. J.; O'Connor, B. A.; Pan, S.

    2000-02-01

    The present paper reports some key results from field investigations and numerical modelling studies of the tide- and wind-induced hydrodynamics and sediment dynamics of Middelkerke Bank (MB) in the southern North Sea of Europe conducted during December 1992 to March 1993. Strong surface current refraction and acceleration effects were observed over MB using the HF radar system OSCR ( Ocean Surface Current Radar). Results suggest that OSCR data may be used remotely to monitor large-scale bathymetry in shallow coastal environments. Spatial variation in tidal propagation characteristics and modification of shoreward propagating waves was not detected at locations around MB during the experiment. Observed residual currents were found to be correlated strongly with wind speed and direction during the period 26 February to 18 March 1993. However, in low wind stress condition, a three-dimensional numerical model (3D-Bank) indicated the presence of a clockwise residual circulation of water around MB consistent with theory. Spatial and temporal variation in the average total drag coefficient ( Cd) of MB were investigated and found to correlate strongly with tidal current speed. Fluorescent sand tracers, used to monitor net sediment transport pathways, revealed a net clockwise movement of sediments around MB consistent with predictions by 3D-Bank and with theory.

  8. A depth dependence determination of the wedge transmission factor for 4-10 MV photon beams.

    PubMed

    McCullough, E C; Gortney, J; Blackwell, C R

    1988-01-01

    The depth dependence (up to 25 cm) of the in-phantom wedge transmission factor (WTF) has been determined for three medical linear accelerator x-ray beams with energies of 4, 6, and 10 MV containing 15 degrees-60 degrees (nominal) brass wedges. All measurements were made with a cylindrical ionization chamber in water, for a field size of 10 X 10 cm2 with a source-skin distance of 80 or 100 cm. We conclude that, for the accelerators studied, the WTF factor at depth is less than 2% different from that determined at dmax (for the nominal wedge angles and photon energies studied) unless the depth of interest is greater than 10 cm. Up to the maximum depth studied (25 cm) the relative wedge factor--that is, wedge factor at depth compared to that determined at dmax--was about equal to or less than 1.02 for the 15 degrees and 30 degrees wedges and any of the photon beam energies studied. For the seldom utilized combination of a nominal wedge angle in excess of 45 degrees with a depth greater than 10 cm, the WTF at depth can differ from the WTF determined at dmax, by up to 5%. Since the wedge transmission factor is reflective of relative percent dose data, our results also indicate that it is in error to use open field percent depth doses for certain combinations of wedge angle, photon energy, and depth. PMID:3211057

  9. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    NASA Astrophysics Data System (ADS)

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    this approach is - the salt component of subsurface is the global geolectrical marker of the Martian relict ocean in the past. Mars' observations by means of ground and onboard instruments are known to have been conducted in recent years. These observations provided information on Mars' surface mean temperature values and their seasonal variations. Radar measurements allowed to estimate dielectric constant and soil upper layer density values. Mars' surface radiation measurements by a 3,4 cm radiometer aboard Mars-3 and 5 automatic interplanetary stations (1971-1973) proved to be more informative. Radio brightness temperature variations were registered along the flight route. As a result surface temperature latitudinal distribution estimates in a spatial resolution element, were obtained as well as more precise values of dielectric constant and soil density of centimeter fractions this surface layer. No more experiments using microwave radiometers were conducted since. The only way to obtain information about Mars surface mezoscale structure is to use a high spatial resolution panoramic equipment on-board. Mars' surface radio images would allow to identify regions differing in ice percentage content in cryogenic surface structures or in mineralized solutions of negative temperature and to estimate relative quantity of cryogenic formations - permafrost fractions as well as to measure the soil looseness or porosity degree. In addition it would be possible to restore various regions' average vertical temperature, humidity and porosity profiles of less than 1 m thick surface layer. These dependencies combined with the results of depth inductive sounding (0.5 km) and magnitotelluric (1- 5 km) sensing would provide new and more detailed information on Martian crust structure and character and its cryolitozone, necessary to create a more reliable paleoclimatic model of the planet. Experiment equipment and methods Space experiment is conducted to obtain maps of temperature and

  10. The peculiarities of relict gas hydrate forms existence within permafrost layers

    NASA Astrophysics Data System (ADS)

    Chuvilin, E.

    2005-12-01

    It's well known that permafrost zone of the Earth is favorable for formation and existence of such ice-like compounds as gas (mainly methane) hydrates. Currently methane hydrate accumulations have identified either by direct evidences (hydrate-containing core sample) or indirect evidences in various permafrost regions of the world (Arctic coast of Canada, Alaska, the North of Siberia etc.). The special interest excites the fact that gas hydrate-shows (indirect evidences) are documented for shallow depths (down to 200-300 m) above the gas hydrate stability zone (GHSZ). The north-west part of Yamal ( West Siberia) is one of such areas (Chuvilin et al.,1998, Yakushev and Chuvilin, 2000). Special research, which included analysis of monitoring wells in cryolithozone, as well research of permafrost cores recovered during drilling, can be assumed that at least a part of gas in similar intrapermafrost accumulations exist in the form of metastable (relict) gas hydrates. They were formed in the past and exist now to the self-preservation effect. Some models of gas hydrate formation in shallow depths in permafrost are possible. They can associate with sea transgression, regional ice cover formation, freezing of gas saturated talik zones, permafrost sediments formation etc. After pressure reduction, hydrate passed through the self-preservation stage remained metastable for a long time. However, according to the shallow depth and metastable condition self reserved gas hydrate have tendency to dissociate due to the global climate warming, as well as to different technogenic effects such drilling and mining. Possibilities of formation metastable gas hydrate in permafrost confirm the special experimental investigation of gas hydrate accumulation in freezing sediments (Chuvilin and Kozlova, 2004). The experimental data shows, that the cooling of gas hydrate saturated sediments to negative temperature induced ice formation. Enclosing hydrate ice would originate from the remaining

  11. Predicting Run Distances for a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Dorgan, Robert J.; Lee, Richard; Sutherland, Gerrit

    2012-03-01

    Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture.

  12. Predicting Run Distances for a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Dorgan, Robert; Lee, Richard; Sutherland, Gerrit

    2011-06-01

    Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture. DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0053)

  13. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  14. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2015-12-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  15. Dying Flow Bursts as Generators of the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  16. The wedge bias in reionization 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Jensen, Hannes; Majumdar, Suman; Mellema, Garrelt; Lidz, Adam; Iliev, Ilian T.; Dixon, Keri L.

    2016-02-01

    A proposed method for dealing with foreground emission in upcoming 21-cm observations from the epoch of reionization is to limit observations to an uncontaminated window in Fourier space. Foreground emission can be avoided in this way, since it is limited to a wedge-shaped region in k∥, k⊥ space. However, the power spectrum is anisotropic owing to redshift-space distortions from peculiar velocities. Consequently, the 21-cm power spectrum measured in the foreground avoidance window - which samples only a limited range of angles close to the line-of-sight direction - differs from the full redshift-space spherically averaged power spectrum which requires an average over all angles. In this paper, we calculate the magnitude of this `wedge bias' for the first time. We find that the bias amplifies the difference between the real-space and redshift-space power spectra. The bias is strongest at high redshifts, where measurements using foreground avoidance will overestimate the redshift-space power spectrum by around 100 per cent, possibly obscuring the distinctive rise and fall signature that is anticipated for the spherically averaged 21-cm power spectrum. In the later stages of reionization, the bias becomes negative, and smaller in magnitude (≲20 per cent).

  17. Mass stranding of wedge-tailed shearwater chicks in Hawaii

    USGS Publications Warehouse

    Work, T.M.; Rameyer, R.A.

    1999-01-01

    Unusual numbers of wedge-tailed shearwater (Puffinus pacificus) chicks stranded on Oahu (Hawaii, USA) in 1994. Compared to healthy wedge-tailed shearwater (WTSW) chicks, stranded chicks were underweight, dehydrated, leukopenic, lymphopenic, eosinopenic, and heterophilic; some birds were toxemic and septic. Stranded chicks also were hypoglycemic and had elevated aspartate amino transferase levels. Most chicks apparently died from emaciation, dehydration, or bacteremia. Because many birds with bacteremia also had severe necrosis of the gastrointestinal (GI) mucosa associated with bacteria, we suspect the GI tract to be the source of disseminated bacterial infection. The identity of the bacteria was not confirmed. The daily number of chicks stranded was significantly related to average wind speeds, and the mortality coincided with the fledging period for WTSW. Strong southeasterly winds were a distinguishing meteorologic factor in 1994 and contributed to the distribution of stranded chicks on Oahu. More objective data on WTSW demographics would enhance future efforts to determine predisposing causes of WTSW wrecks and their effects on seabird colonies.

  18. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  19. Sand release apparatus and method

    SciTech Connect

    Hall, L.D.

    1991-05-28

    This patent describes a sand release apparatus for enabling the release of a pump. It comprises first and second telescoped tubular sleeves; a first restricting means; sleeve located drain opening means and means for enabling controlled separation of the pump from the apparatus at a specified joint. This patent also describes a method for releasing a pump determined to be sand locked. It comprises applying an upward force on the sucker rod string to break a shear pin restricting relative axial extension of telescoped sleeve members connected in the well below the pump; extending the telescoped sleeve members to expose drain openings to permit sand to flow away from the annular space; and disconnecting from the tubing string below the pump to pull the pump free of the sand locked condition.

  20. Non-aeolian sand ripples

    NASA Astrophysics Data System (ADS)

    Boudet, J. F.; Amarouchene, Y.; Bonnier, B.; Kellay, H.

    2005-02-01

    By examining the initial stages of the impact of a granular jet on a flat horizontal solid surface we evidenced the existence of oscillatory sand fronts. These oscillations give rise to a novel mechanism for the formation of ripples on sand surfaces. We here show that as the front advances, its slope changes periodically in time, leaving behind a succession of surface elevations and depressions. A key feature of these oscillations is the interplay between the deposition of mobile sand and the avalanching of the static parts giving rise to a remarkable self-regulating system. These features come out naturally from a simplified version of recently proposed models for the dynamics of sand piles.

  1. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves an interaction between solar heating, thermal instability, atmospheric turbulence, wind strength, and surface threshold conditions. During the day, solar heating produces thermal instability, which enhances the convect...

  2. Aeolian sand ripples around plants

    NASA Astrophysics Data System (ADS)

    Zhang, Qian-Hua; Miao, Tian-De

    2003-05-01

    Plants in the desert may locally change the aeolian process, and hence the pattern of sand ripples traveling nearby. The effect of plants on ripples is investigated using a coupled map lattice model with nonuniform coupling coefficients.

  3. Modern Graywacke-Type Sands.

    PubMed

    Hollister, C D; Heezen, B C

    1964-12-18

    A preliminary study of more than 100 deep-sea cores from abyssal plains has revealed two examples of recent muddy sands of the graywacke type which, together with the microcrystalline matrix, form a bimodal-size distribution sands have a well-sorted framework of quartz, feldspar, and rock fragments which, together with the microcrystalline matrix, form a bimodal-size distribution that is also typical of ancient graywackes. The matrix is considered to be primary. PMID:17775982

  4. Laboratory and numerical investigation of transport processes occurring above and within a saltwater wedge.

    PubMed

    Chang, Sun Woo; Clement, T Prabhakar

    2013-04-01

    Salt wedges divide coastal groundwater flow regime into two distinct regions that include a freshwater region above the saltwater-freshwater interface and a saltwater region below the interface. Several recent studies have investigated saltwater transport in coastal aquifers and the associated flow and mixing processes. Most of these studies, however, have either focused on studying the movement of salt wedge itself or on studying contaminant transport processes occurring above the wedge. As per our knowledge, so far no one has completed laboratory experiments to study contaminant transport processes occurring within a saltwater wedge. In this study, we completed laboratory experiments to understand contaminant transport dynamics occurring within a saltwater wedge. We used a novel experimental approach that employed multiple neutral-density tracers to map and compare the mixing and transport processes occurring above and within a saltwater wedge. The experimental data were simulated using SEAWAT, and the model was used to further investigate the saltwater flow and transport dynamics within a wedge. The laboratory data show that the transport rates active within the wedge are almost two orders of magnitude slower than the transport rates active above the wedge for the small-scale experimental system which is characterized by very low level of mixing. The numerical results, however, postulate that for large-scale systems involving higher levels of mixing (or dispersion) the transport rate active within the wedge could be comparable or even higher than the rates active above the wedge. More field or laboratory studies completed under high dispersion conditions are needed to further test this hypothesis.

  5. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    SciTech Connect

    Lindner, M.; Cottingham, J.G.

    1994-12-31

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces, respectively between the housing and adjacent coils, the interpole spaces each extending in a direction generally parallel to the housing axis. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends defining the slit to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. Preferably, the spring retainer and wedge are self-locking wherein wedge is fabricated from a material softer than a material the retainer spring is fabricated from, so that the wedge is securely retained in the slit. The retainer spring is generally triangular shaped to fit within the interpole space and fabricated from berryllium-copper alloy, and the wedge is generally T-shaped and fabricated from aluminum. Alternatively, a wedge and spring assembly includes a wedge having divergent sloped surfaces in which each surface and the respective juxtaposed ends of the retainer spring are angled relative to one another so that the wedge is securely retained in the slit by friction existing between its sloped surfaces and the juxtaposed ends of the retaining spring.

  6. Physical characteristics of sand injectites

    NASA Astrophysics Data System (ADS)

    Hurst, Andrew; Scott, Anthony; Vigorito, Mario

    2011-06-01

    Almost two hundred years of research is reviewed that focuses on the physical characteristics of sandstone intrusions. It is concerned with mechanisms of sand injection, particularly with fluid-grain transport and sedimentation processes during the remobilization, injection and extrusion of sand. Outcrop and subsurface studies in combination with laboratory experimental data are drawn on to present the state-of-the-art of sand injection. The text covers 1) geometry, internal structure, and microtexture of deformed parent units, injected and extruded sandstones, 2) host-strata and their seal characteristics that contribute to basin-wide overpressure generation, 3) common trigger mechanisms for sand injection such as high magnitude seismicity and the rapid injection of large volumes of fluids, 4) fluid types that drive sand into fractures, 5) hydrofracture mechanisms that induce regional-scale seal failure, 6) liquefaction and fluidization processes that transport sand into fractures, 7) sedimentation processes in fractures, 8) the flow regime of fluidized sand during injection, 9) post-sand-injection fluid flow and diagenesis, 10) porosity and permeability characteristics of injected sandstones and 11) post-sand-injection fluid-flow over geological timescales. Processes of sand remobilization, injection, and extrusion are complex and depend on many interrelated factors including: fluid(s) properties (e.g. pressure, volume, composition), parent unit and host-strata characteristics (e.g. depositional architecture, grain size and distribution, clay-size fraction, thickness, permeability) and burial depth at the time of injection. Many studies report erosional contacts between host strata and injected sands and these record high-velocity, erosive flow during injection. The flow regime is poorly constrained and similar features are interpreted as records of laminar and turbulent flow, or both, during injection. Internal structures are common in sandstone intrusions and

  7. Recognition of relict Mesozoic Dongsha Basin in the northern margin, South China Sea and its implication

    NASA Astrophysics Data System (ADS)

    Yan, Pin; Wang, Yanlin

    2015-04-01

    angular unconformity seen widespread over the southern margin of the South China Sea has been interpreted as formed during the Oligocene-Miocene subaerial or submarine erosion process due to its elastic flexural bulging led by gravity load of Palawan-Crocker sedimentary wedge or its collision with Borneo. However, in viewpoint of the significant similarities of Liyue Basin (Reed Bank) and its southwest adjacent waters to Dongsha Basin in their sedimentary architecture, the angular unconformity and open folds underneath, the underlying folded strata there are preferably interpreted as Mesozoic. In fact, Mesozoic sedimentary rocks have been dredged over several sites south nearby the Liyue Basin. Thus, a wide domain of Mesozoic sedimentation might be reconstructed spanning both the conjugated margins.

  8. Cryolitozone of Mars- as the climatic indicator of the Martian relict ocean

    NASA Astrophysics Data System (ADS)

    Ozorovich, Y.; Fournier-Sicre, A.; Linkin, V.; Kosov, A.; Skulachev, D.; Gorbatov, S.; Ivanov, A.; Heggy, E.

    2015-10-01

    this approach is - the salt component of subsurface is the global geolectrical marker of the Martian relict ocean in the past. Mars' observations by means of ground and onboard instruments are known to have been conducted in recent years. These observations provided information on Mars' surface mean temperature values and their seasonal variations. Radar measurements allowed to estimate dielectric constant and soil upper layer density values. Mars' surface radiation measurements by a 3,4 cm radiometer aboard Mars-3 and 5 automatic interplanetary stations (1971-1973) proved to be more informative. Radio brightness temperature variations were registered along the flight route. As a result surface temperature latitudinal distribution estimates in a spatial resolution element, were obtained as well as more precise values of dielectric constant and soil density of centimeter fractions this surface layer. No more experiments using microwave radiometers were conducted since. The only way to obtain information about Mars surface mezoscale structure is to use a high spatial resolution panoramic equipment on-board. Mars' surface radio images would allow to identify regions differing in ice percentage content in cryogenic surface structures or in mineralized solutions of negative temperature and to estimate relative quantity of cryogenic formations - permafrost fractions as well as to measure the soil looseness or porosity degree. In addition it would be possible to restore various regions' average vertical temperature, humidity and porosity profiles of less than 1 m thick surface layer. These dependencies combined with the results of depth inductive sounding (0.5 km) and magnitotelluric (1- 5 km) sensing would provide new and more detailed information on Martian crust structure and character and its cryolitozone, necessary to create a more reliable paleoclimatic model of the planet. Experiment equipment and methods Space experiment is conducted to obtain maps of temperature and

  9. Tritanium acetabular wedge augments: short-term results

    PubMed Central

    Restrepo, Camilo; Heller, Snir

    2016-01-01

    Background Reconstruction of acetabular defects in total hip arthroplasty (THA) presents a great challenge to orthopaedic surgeons. Previous studies have reported on the use and outcomes of trabecular metal acetabular augments for the reconstruction of acetabular defects. However, no study has been conducted evaluating the short-term results of tritanium acetabular wedge augments for the reconstruction of acetabular defects in THA. Methods A retrospective study was conducted using a prospective database at a single institution including primary and revision THA patients from January 2013 to December 2014. Patients were included if they received a tritanium acetabular wedge augment system and had a minimum of 2-year follow-up (average 2.2 years ±0.3, range, 2–2.6 years). Demographic data and outcomes data [Harris Hip Score—HHS and Short Form (SF)-36] was collected. Radiographic data was also collected on THA revision cases (Paprosky classification), developmental dysplasia of the hip (DDH) cases (Crowe classification), and radiographic follow-up using DeLee and Charnley’s classification system. Results There were 4 revision THA patients, 3 DDH patients, and 1 patient with posttraumatic arthritis. At the latest radiographic follow-up, there were no lucent lines in DeLee and Charnley Zones I, II or III. During the follow-up period, there was no open revision surgery. The SF-36 physical score significantly improved from preoperative measurement (29.6±2.2) to postoperative measurement (52.2±8.7, P=0.003), and the SF-36 mental score also significantly improved from preoperative assessment (34.5±4.5) to postoperative assessment (52.2±7.5, P=0.003). Total HHS scores also significantly improved postoperatively (P=0.02), with significant improvements in both the pain score (P=0.01) and function score (P=0.02). Conclusions Tritanium acetabular wedge augments in this short follow-up case series exhibit high clinical outcome scores, no radiographic lucency, and no

  10. Minor elements in relict olivine grains of deep-sea spheres: Match with Mg-rich olivines from C2 meteorites

    NASA Technical Reports Server (NTRS)

    Smith, J. V.; Steele, I. M.; Brownlee, D. E.

    1984-01-01

    The bulk composition and relict minerals of meteoroid ablation spheres from deep sea sediments can be related to the parental material, and bulk compositions and elemental ratios favor a CI/CM affinity for most spheres. Although largely melted, some deep sea spheres (DSS) have retained rare grains apparently unmodified chemically by ablation heating or seawater alteration. Minor elements in relict olivines for comparison with compositions of olivines in known meteorites were analyzed. All relict olivines are very Mg rich. No terrestrial olivines match the chemical features which reinforces other evidence for an extraterrestrial origin. There is no match with achondritic olivines. Mg rich olivines occur in all types of carbonaceous meteorites, but the minor elements of most DSS olivines do not match with those for Allende (C3) olivines, and fit poorly with those of Murchison (C2) olivines. There is a good fit for Fe and Cr with those of the olivines in the unusual Belgica 7904 (C2) meteorite (3). It seems likely that the relict olivines of at least many deep sea spheres are chemically related to olivines in at least one C2 meteorite.

  11. STATUS OF THE RELICT LEOPARD FROG (RANA ONCA): OUR LIMITED UNDERSTANDING OF THE DISTRIBUTION, SIZE, AND DYNAMICS OF EXTANT AND RECENTLY EXTINCT POPULATIONS

    EPA Science Inventory

    The relict leopard frog (Rana onca) was once thought to be extinct, but has recently been shown to comprise a valid taxon with extant populations. Here, we discuss research from several studies, conducted between 1991 and 200 1, that represent the basis for our understanding of t...

  12. Revisit the classical Newmark displacement method for earthquake-induced wedge slide

    NASA Astrophysics Data System (ADS)

    Yang, Che-Ming; Cheng, Hui-Yun; Wu, Wen-Jie; Hsu, Chang-Hsuan; Dong, Jia-Jyun; Lee, Chyi-Tyi

    2016-04-01

    Newmark displacement method has been widely used to study the earthquake-induced landslides and adopted to explore the initiation and kinematics of catastrophic planar failure in recent years. However, surprisingly few researchers utilize the Newmark displacement method to study the earthquake-induced wedge slide. The classical Newmark displacement method for earthquake-induced wedge sliding assumed the wedge is rigid and the vertical acceleration, as well as the horizontal acceleration perpendicular to the sliding direction, is neglected. Moreover, the friction coefficients on the weak planes are assumed as unchanged during sliding. The purpose of this study is to test the reasonableness of the aforementioned assumptions. This study uses Newmark displacement method incorporating the rigid wedge method (RWM) and maximum shear stress method (MSSM) to evaluate the influence of wedge deformation. We design the geometry of the wedge and input the synthetic seismicity to trigger the wedge slide. The influence for neglecting the vertical and horizontal (perpendicular to the sliding direction) accelerations is also assessed. Besides, this research incorporates the velocity-displacement dependent friction law in the analysis to evaluate the influence of constant friction coefficient assumption. Result of this study illustrated that the aforementioned assumptions have significant effects on the calculated permeant displacement, moving speed, and failure initiation. To conclude, this study provides new insights on the initiation and kinematics of an earthquake induced wedge slide.

  13. Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.

    PubMed

    Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C

    2016-03-01

    It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.

  14. Preliminary analysis of coil wedge dimensional variation in SSC Prototype Dipole Magnets

    SciTech Connect

    Pollock, D.; Brown, G.; Dwyer, S.; Gattu, R.; Warner, D.

    1993-05-01

    The wedges used in SSC Prototype Dipole Magnets determine the relative position of conductor blocks within magnet coils. They serve to compensate partially for the less than full keystoning of the superconductor cable and to adjust current distribution with azimuth to determine the magnetic field shape. The ability to control the size and uniformity of wedges therefore is an important factor influencing magnet quality. This paper presents preliminary results of a Statistical Quality Control study of wedge dimensional variation and predicted field quality. Dimensions of samples from outer wedges for magnet DCA102 have been measured using a programmable optical comparator. The data is used to evaluate wedge manufacturing process capability, wedge uniformity, and to predict changes in conductor block position due to wedge deviation. Expected multipole variation attributable to observed wedge variation is discussed. This work focuses on a Prototype Dipole Magnet being built at the SSCL Magnet Development Laboratory (SSCL MDL) in Waxahachie, Texas. The magnet is of the same design as the DCA3xx series magnets built at Fermi National Accelerator Laboratory (FNAL) in 1991--92 and later used in the 1992 Accelerator Systems String Test (ASST).

  15. Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures

    NASA Astrophysics Data System (ADS)

    Jayabalan, J.; Singh, Manoranjan P.; Rustagi, K. C.

    2003-08-01

    Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing apex angle.

  16. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    NASA Astrophysics Data System (ADS)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  17. Isolation and characterization of the first microsatellite markers for the endangered relict mussel Hypanis colorata (Mollusca: Bivalvia: Cardiidae).

    PubMed

    Popa, Oana Paula; Iorgu, Elena Iulia; Krapal, Ana Maria; Kelemen, Beatrice Simona; Murariu, Dumitru; Popa, Luis Ovidiu

    2011-01-17

    Hypanis colorata (Eichwald, 1829) (Cardiidae: Lymnocardiinae) is a bivalve relict species with a Ponto-Caspian distribution and is under strict protection in Romania, according to national regulations. While the species is depressed in the western Black Sea lagoons from Romania and Ukraine, it is also a successful invader in the middle Dniepr and Volga regions. Establishing a conservation strategy for this species or studying its invasion process requires knowledge about the genetic structure of the species populations. We have isolated and characterized nine polymorphic microsatellite markers in H. colorata. The number of alleles per locus ranged from 4 to 28 and the observed heterozygosity ranged from 0.613 to 1.000. The microsatellites developed in the present study are highly polymorphic and they should be useful for the assessment of genetic variation within this species.

  18. [Low level of allozyme polymorphism in relict aquatic plants of the Far East Nelumbo komarovii Grossh. and Euryale ferox Salisb].

    PubMed

    Koren', O G; Iatsunskaia, M S; Nakonechnaia, O V

    2012-09-01

    Using allozyme analysis, genetic variation of two relict aquatic plants from Primorsky krai, Komarov lotus (Neliumbo komarovii Grossh.) and Gorgon plant (Euryale ferox Salisb.), was examined. The absence of allozyme variation in the Primorye populations of Neliumbo komarovii along with low polymorphism level in the population of Euryale ferox (P95 = 7.69; A = 1.07; Ho = 0.072; He = 0.038) was demonstrated. Since the data for the species examined are reported for the first time ever, the pheonotypes and genetic interpretation of the enzyme systems tested are presented. The izoenzyme profiles of N. komarovii were compared with the data reported for N. nucifera from China. The absence ofallozyme variation in N. komarovii, along with extremely low level of variation revealed for E. ferox, is discussed in association with the evolutionary histories of these species, their dispersal after the Pleistocene-Holocene cooling, and survival on this territory in range boundaries.

  19. [Low level of allozyme polymorphism in relict aquatic plants of the Far East Nelumbo komarovii Grossh. and Euryale ferox Salisb].

    PubMed

    Koren', O G; Iatsunskaia, M S; Nakonechnaia, O V

    2012-09-01

    Using allozyme analysis, genetic variation of two relict aquatic plants from Primorsky krai, Komarov lotus (Neliumbo komarovii Grossh.) and Gorgon plant (Euryale ferox Salisb.), was examined. The absence of allozyme variation in the Primorye populations of Neliumbo komarovii along with low polymorphism level in the population of Euryale ferox (P95 = 7.69; A = 1.07; Ho = 0.072; He = 0.038) was demonstrated. Since the data for the species examined are reported for the first time ever, the pheonotypes and genetic interpretation of the enzyme systems tested are presented. The izoenzyme profiles of N. komarovii were compared with the data reported for N. nucifera from China. The absence ofallozyme variation in N. komarovii, along with extremely low level of variation revealed for E. ferox, is discussed in association with the evolutionary histories of these species, their dispersal after the Pleistocene-Holocene cooling, and survival on this territory in range boundaries. PMID:23113334

  20. Performance of an isolated two-dimensional wedge nozzle with fixed cowl and variable wedge centerbody at Mach numbers up to 2.01

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.

    1976-01-01

    A wind tunnel investigation has been conducted to determine the aeropropulsion performance (thrust minus drag) of an isolated, two-dimensional wedge nozzle with a simulated variable-wedge mechanism and a fixed cowl. The investigation was conducted statically and at Mach numbers from 0.60 to 1.20 in the Langley 16-foot transonic tunnel and at a Mach number of 2.01 in the Langley 4-foot supersonic pressure tunnel. The ratio of exhaust jet total pressure to free-stream static pressure was varied up to 27 depending on free-stream Mach number. The results indicate that the aeropropulsion performance of the two-dimensional fixed-cowl variable-wedge nozzle is slightly lower (0.7 to 1.4 percent of ideal thrust) than that achieved for a two-dimensional wedge nozzle with a translating shroud, although part of the difference in performance is attributed to internal-performance differences. The effects of cowl boattail angle, internal expansion area ratio, and wedge half-angle on the performance of the two-dimensional wedge nozzle are discussed.

  1. A combined geomorphological and geophysical approach to characterising relict landslide hazard on the Jurassic Escarpments of Great Britain

    NASA Astrophysics Data System (ADS)

    Boon, David P.; Chambers, Jonathan E.; Hobbs, Peter R. N.; Kirkham, Mathew; Merritt, Andrew J.; Dashwood, Claire; Pennington, Catherine; Wilby, Philip R.

    2015-11-01

    The Jurassic Escarpment in the North York Moors in Northern Britain has a high density of deep-seated relict landslides but their regional hazard is poorly understood due to a lack of detailed case studies. Investigation of a typical relict landslide at Great Fryup Dale suggests that the crop of the Whitby Mudstone Formation is highly susceptible to landslide hazards. The mudstone lithologies along the Escarpment form large multiple rotational failures which break down at an accelerated rate during wetter climates and degrade into extensive frontal mudflows. Geomorphological mapping, high resolution LiDAR imagery, boreholes, and geophysical ERT surveys are deployed in a combined approach to delimit internal architecture of the landslide. Cross-sections developed from these data indicate that the main movement displaced a bedrock volume of c. 1 × 107 m3 with a maximum depth of rupture of c. 50 m. The mode of failure is strongly controlled by lithology, bedding, joint pattern, and rate of lateral unloading. Dating of buried peats using the AMS method suggests that the 10 m thick frontal mudflow complex was last active in the Late Holocene, after c. 2270 ± 30 calendar years BP. Geomorphic mapping and dating work indicates that the landslide is dormant, but slope stability modelling suggests that the slope is less stable than previously assumed; implying that this and other similar landslides in Britain may become more susceptible to reactivation or extension during future wetter climatic phases. This study shows the value of a multi-technique approach for landslide hazard assessment and to enhance national landslide inventories.

  2. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges.

    PubMed

    Yoo, Won-Gyu

    2016-08-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females. PMID:27630437

  3. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  4. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  5. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females.

  6. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  7. Comparison of the hamstring/quadriceps ratio in females during squat exercise using various foot wedges

    PubMed Central

    Yoo, Won-gyu

    2016-01-01

    [Purpose] This study compared the hamstring/quadriceps ratio in females during squat exercise using various foot wedges. [Subjects and Methods] Nine females participated in this study. Surface electrodes measurements were taken over the hamstring and quadriceps under 3 squat exercise conditions, and the hamstring/quadriceps ratio was calculated. [Results] The hamstring/quadriceps ratio was significantly increased during squat exercise in inclined wedge condition (7.4 ± 1.8), compared to the declined wedge condition (5.3 ± 2.2) and no wedge condition (6.4 ± 3.2). [Conclusion] This study suggests that squat exercise in the inclined wedge condition may be effective for increasing the hamstring/quadriceps ratio in females. PMID:27630437

  8. Magnetic quantum well states in ultrathin film and wedge structures

    SciTech Connect

    Li, D.; Bader, S.D.

    1996-04-01

    Magnetic quantum-well (QW) states are probed with angle- and spin-resolved photoemission to address critical issues pertaining to the origin of the giant magnetoresistance (GMR) optimization and oscillatory coupling of magnetic multilayers. Two epitaxial systems are highlighted: Cu/Co(wedge)/Cu(100) and Cr/Fe(100)-whisker. The confinement of Cu sp-QW states by a Co barrier requires a characteristic Co thickness of 2.2 {+-} 0.6 {angstrom}, which is consistent with the interfacial Co thickness reported to optimize the GMR of permalloy-Cu structures. The controversial k-space origin of the 18-{angstrom} long period oscillation in Fe/Cr multilayers is identified by the vector that spans the d-derived lens feature of the Cr Fermi surface, based on the emergence of QW states with 17 {+-} 2 {angstrom} periodicity in this region.

  9. Anterolateral Biplanar Proximal Tibial Opening-Wedge Osteotomy.

    PubMed

    Dean, Chase S; Chahla, Jorge; Moulton, Samuel G; Nitri, Marco; Serra Cruz, Raphael; LaPrade, Robert F

    2016-06-01

    Proximal tibial anterolateral opening-wedge osteotomies have been reported to achieve successful biplanar lower-extremity realignment. Indications for a proximal tibial anterolateral osteotomy include symptomatic genu recurvatum with genu valgus alignment, usually in patients with a flat sagittal-plane tibial slope. The biplanar approach is able to simultaneously address both components of a patient's malalignment with a single procedure. The correction amount is verified with spacers and intraoperative imaging, while correction of the patient's heel height is simultaneously measured. A plate is secured into the osteotomy site, and the site is filled with bone allograft. The anterolateral tibial osteotomy has been reported to be an effective surgical procedure for correcting concomitant genu recurvatum and genu valgus malalignment. PMID:27656374

  10. Two-dimensional electronic spectroscopy with birefringent wedges

    SciTech Connect

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  11. Numerical investigation of shedding partial cavities over a sharp wedge

    NASA Astrophysics Data System (ADS)

    Budich, B.; Neuner, S.; Schmidt, S. J.; Adams, N. A.

    2015-12-01

    In this contribution, we examine transient dynamics and cavitation patterns of periodically shedding partial cavities by numerical simulations. The investigation reproduces reference experiments of the cavitating flow over a sharp wedge. Utilizing a homogeneous mixture model, full compressibility of the two-phase flow of water and water vapor is taken into account by the numerical method. We focus on inertia-dominated mechanisms, thus modeling the flow as inviscid. Based on the assumptions of thermodynamic equilibrium and barotropic flow, the thermodynamic properties are computed from closed-form analytical relations. Emphasis is put on a validation of the employed numerical approach. We demonstrate that computed shedding dynamics are in agreement with the references. Complex flow features observed in the experiments, including cavitating hairpin and horse-shoe vortices, are also predicted by the simulations. Furthermore, a condensation discontinuity occurring during the collapse phase at the trailing portion of the partial cavity is equally obtained.

  12. Landward thrusting in accretionary wedges: evidence for seafloor rupture?

    NASA Astrophysics Data System (ADS)

    Cubas, N.; Souloumiac, P.

    2015-12-01

    The 2004 Sumatra and 2011 Japan earthquakes took the community by surprise because they ruptured frontal sections of megathrust thought to slip aseismically. Studying the deformation of accretionary prisms can help in characterizing the specific structures associated to frontal propagation and determining the mechanical properties leading to this behavior. Recent observations suggest a correlation between landward faults and frontal propagation of earthquakes along the Sumatra subduction zone. Large sections of landward thrusts are also observed along Cascadia known to have ruptured in 1700 with a M~9 generating a large tsunami. In this study, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting with the limit analysis approach. We first show that such sequence requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward sequence appears close to the extensional critical limit. We retrieve the megathrust effective friction for three wedges with different sediment incomes. For Cascadia, we find a maximal effective friction of 0.032. For northern and southern Sumatra, we find μ≤0.02 and μ≤ 0.08 respectively. This very low effective friction is probably due to lithostatic pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Indeed, a wedge would move away from this limit if material is added synchronously to the deformation or if it is suddenly submitted to a lower effective friction. In addition, the long-term high pore pressure could be due to a low permeability enhancing thermal pressurization and co-seismic slip along the frontal part of the megathrust.

  13. Distribution of strain rates in the Taiwan orogenic wedge

    NASA Astrophysics Data System (ADS)

    Mouthereau, F.; Fillon, C.; Ma, K.-F.

    2009-07-01

    To constrain the way Eurasian crust is accreted to the Taiwan orogenic wedge we investigate the present-day 3D seismogenic deformation field using the summation of 1129 seismic moment tensors of events ( Mw > 4) covering a period of 11 years (1995 to 2005). Based on the analysis of the principal strain-rate field, including dilatation and maximum shear rates, we distinguish four domains. Domain I comprises the Coastal Plain and the Western Foothills. It is mainly contractional in both the horizontal plane and in cross-section. Domain II comprises the eastern Western Foothills, the Hsuehshan Range and the Backbone Range. It is characterized by the highest contraction rates of 10 - 6 yr - 1 in association with area expansion in cross-section and area contraction in the horizontal plane. Domain III corresponds to the Central Range. It is characterized by area contraction in cross-section and area expansion in the horizontal plane. The maximum contractional axis is typically low and plunges ~ 30°E. Extension is larger, horizontal and strikes parallel to the axis of the mountain range. Domain IV corresponding to the Coastal Range and offshore Luzon Arc shows deformation patterns similar to domain II. This seismogenic strain-rate field, which is found in good agreement with the main features of the geodetic field, supports shortening within a thick wedge whose basal décollement is relatively flat and located in the middle-to-lower crust > 20 km. The east plunges of maximum strain-rate axes below the Central Range argue for the development of top-to-the-east transport of rocks resulting from the extrusion of the whole crust along west-dipping crustal-scale shear zones. The study of seismogenic strain rates argues that the initiation of subduction reversal has already started in the Taiwan collision domain.

  14. The Substorm Current Wedge: Further Insights from MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, M.

    2015-01-01

    Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.

  15. Altitudinal vs Latitudinal Climactic Drivers: A Comparison of a Relict Picea and Abies Forest in the Southern Appalachians versus the Hemi-Boreal Transition Zone off Southern Canada

    NASA Astrophysics Data System (ADS)

    Evans, A.; Lafon, C. W.

    2015-12-01

    Identification of biotic and abiotic determinants of tree species range limits is critical for understanding the effects of climate change on species distributions. Upward shifts of species distributions in montane areas have been widely reported but there have been few reports of latitudinal range retractions. Previous studies have indicated that southern latitudinal limits of a species range are dictated by biotic factors such as competition while others have suggested that abiotic factors, such as temperature, dictate these limits. We investigated the potential climatic gradients at the southern latitudinal limit of the Spruce (Picea) and Fir (Abies) species that dominate the Canadian boreal forest community as well as relict boreal forests containing similar species found in the high elevation areas of the Southern Appalachians. Existing research has suggested that relict ecosystems are more sensitive to climate change and can be indicative of future changes at latitudinal range limits. Expanding on this literature, we hypothesized that we would see similar gradients in climatic variables at the southern latitudinal limit of the Canadian boreal forest and those in the relict boreal forests southern Appalachians acting as controlling factors of these species distributions. We used forty years of climate data from weather stations along the southern edge of the boreal forest in the Canadian Shield provinces, species distribution data from the Canadian National Forest Inventory, (CNFI) geospatial data from the National Park Service (NPS), and historical weather data from the National Oceanic and Atmospheric Administration (NOAA) to perform our analysis. Our results indicate different climate variables act as controls of warm edge range limits of the Canadian boreal forest than those of the relict boreal forest of the southern Appalachians. However, we believe range retractions of the relict forest may be indicative of a more gradual response of similar species

  16. Disturbance of the inclined inserting-type sand fence to wind-sand flow fields and its sand control characteristics

    NASA Astrophysics Data System (ADS)

    Cheng, Jian-jun; Lei, Jia-qiang; Li, Sheng-yu; Wang, Hai-feng

    2016-06-01

    The inclined inserting-type sand fence is a novel sand retaining wall adopted along the Lanxin High-Speed Railway II in Xinjiang for controlling and blocking sand movement. To verify the effectiveness of the new fence structure for sand prevention, a wind tunnel test was used for flow field test simulation of the sand fence. The results indicate that the inclined inserting-type sand fence was able to deflect the flow of the sand and was able to easily form an upward slant acceleration zone on the leeward side of the sand fence. As shown by the percentage change in sand collection rates on the windward side and the leeward side of the sand fence, the sand flux per unit area at 4 m height in the slant upward direction increased on the leeward side of the inclined inserting-type sand fence. By comparing the flow fields, this site is an acceleration zone, which also reaffirms the correspondence of wind-sand flow fields with the spatial distribution characteristic of the wind-carried sand motion. The field sand collection data indicates that under the effects of the inclined inserting-type sand fence, the sandy air currents passing in front and behind the sand fence not only changed in quality, but the grain composition and particle size also significantly changed, suggesting that the inclined inserting-type sand fence has a sorting and filtering effect on the sandy air currents that passed through. The fence retained coarse particulates on the windward side and fine particulates within the shade of the wind on the leeward side.

  17. Sand Dunes in Noachis Terra

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark-toned sand dunes in a crater in eastern Noachis Terra. Most big martian dunes tend to be dark, as opposed to the more familiar light-toned dunes of Earth. This difference is a product of the composition of the dunes; on Earth, most dunes contain abundant quartz. Quartz is usually clear (transparent), though quartz sand grains that have been kicked around by wind usually develop a white, frosty surface. On Mars, the sand is mostly made up of the darker minerals that comprise iron- and magnesium-rich volcanic rocks--i.e., like the black sand beaches found on volcanic islands like Hawaii. Examples of dark sand dunes on Earth are found in central Washington state and Iceland, among other places. This picture is located near 49.0oS, 326.3oW. Sunlight illuminates this scene from the upper left; the image covers an area 3 km (1.9 mi) wide.

  18. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  19. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    PubMed Central

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  20. Sands at Gusev Crater, Mars

    USGS Publications Warehouse

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  1. Sands at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth; Knoll, Andrew H.; Farmer, Jack; Arvidson, Raymond; Grin, Edmond; Li, Ronxing; Fenton, Lori; Cohen, Barbara; Bell, James F.; Aileen Yingst, R.

    2014-05-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  2. Ice-wedge based permafrost chronologies and stable-water isotope records from Arctic Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, Sebastian; Opel, Thomas; Meyer, Hanno; Schwamborn, Georg; Schirrmeister, Lutz; Dereviagin, Alexander Yu.

    2016-04-01

    Late Quaternary permafrost of northern latitudes contains large proportions of ground ice, including pore ice, segregation ice, massive ice, buried glacier ice and in particular ice wedges. Fossil ice-wedges are remnants of polygonal patterned ground in former tundra areas, which evolved over several tens of thousands of years in non-glaciated Beringia. Ice wedges originate from repeated frost cracking of the ground in winter and subsequent crack filling by snowmelt and re-freezing in the ground in spring. Hence, the stable water isotope composition (δ18O, δD, d excess) of wedge ice derives from winter precipitation and is commonly interpreted as wintertime climate proxy. Paleoclimate studies based on ice-wedge isotope data cover different timescales and periods of the late Quaternary. (MIS 6 to MIS 1). In the long-term scale the temporal resolution is rather low and corresponds to mid- and late Pleistocene and Holocene stratigraphic units. Recent progress has been made in developing centennial Late Glacial and Holocene time series of ice-wedge stable isotopes by applying radiocarbon dating of organic remains in ice samples. Ice wedges exposed at both coasts of the Dmitry Laptev Strait (East Siberian Sea) were studied to deduce winter climate conditions since about 200 kyr. Ice wedges aligned to distinct late Quaternary permafrost strata were studied for their isotopic composition and dated by radiocarbon ages of organic matter within the wedge ice or by cosmogenic nuclide ratios (36Cl/Cl-) of the ice. The paleoclimate interpretation is furthermore based on geocryological and paleoecological proxy data and geochronological information (radiocarbon, luminescence, radioisotope disequilibria 230Th/U) from ice-wedge embedding frozen deposits. Coldest winter conditions are mirrored by most negative δ18O mean values of -37 ‰ and δD mean values of -290 ‰ from ice wedges of the Last Glacial Maximum (26 to 22 kyr BP) while late Holocene (since about 4 kyr BP) and in

  3. Hyper-extended continental crust deformation in the light of Coulomb critical wedge theory

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Yuan, Xiaoping; Kusznir, Nick; Maillot, Bertrand

    2016-04-01

    The rocks forming the wedge shape termination of hyper-extended continental crust are deformed in the frictional field during the last stage of continental rifting due to cooling and hydration. Seismic interpretation and field evidence show that the basal boundary of the wedge is a low frictional décollement level. The wedge shape, the frictional deformation and the basal décollement correspond to the requirements of the critical Coulomb wedge (CCW) theory which describes the stability limit of a frictional wedge over a décollement. In a simple shear separation model the upper-plate margin (in the hangingwall of the detachment fault) corresponds to a tectonic extensional wedge whereas the lower plate (in the footwall of the detachment fault) is a gravitational wedge. This major difference causes the asymmetry of conjugate hyper-extended rifted margins. We measure a dataset of upper and lower hyper-extended wedge and compare it to the stability envelope of the CCW theory for serpentine and clay friction. We find a good fit by adjusting fluid pressure. The main results of our analysis are that the crustal wedges of lower plate margins are close to the critical shape, which explains their low variability whereas upper plate wedges can be critical, sub- or sup- critical due to the detachment evolution during rifting. On the upper plate side, according to the Coulomb tectonic extensional wedge, faults should be oriented toward the continent. Observations showed some continentward faults in the termination of the continental crust but there are also oceanward faults. This can be explained by two processes, first continentward faults are created only over the detachment, therefore if part of the hyper-extended upper plate crust is not directly over the detachment it will not be part of the wedge. Secondly the tip block of the wedge can be detached creating an extensional allochthon induced by the flattening of the detachment near the surface, therefore continentward

  4. Critical taper wedge strength varies with structural style: results from distinct-element models

    NASA Astrophysics Data System (ADS)

    Strayer, L. M.; Suppe, J.

    2015-12-01

    Critical-taper theory has given diverse insight into kinematics, roles of erosion and sedimentation, and the morphology of compressive mountain belts. We have made progress by recasting the parameter-rich mathematics into a simpler form that describes a linear, co-varying relationship between surface slope and detachment dip (α, β), and internal- and basal-sliding strengths (W, F). Using distinct-element models, we tested this simpler theory over a range of wedge strengths and structural styles. We also obtained W & F from observations of surface slope α and detachment dip β in active natural systems, all of which including the numerical models, show wedges are strong but detachments are weak, with F/W=0.1 or less. Model-derived W & F vary about a mean that matches geometry-derived values. Time- and spatially-averaged dynamical F & W are observed to be equal to wedge-derived results. Critical taper reflects the dynamical strengths during wedge growth and is controlled dynamically as base friction varies between an assigned quasi-static value and lower values during slip events. In the wedge, W varies more than F, which may also be true for natural systems. Detachments have frictional stick/slip behavior on a basal wall, but the wedge has more going on within it. Tandem faulting & folding serve to simultaneously weaken and strengthen the wedge, and may occur anywhere: structural style appears to be important to wedge strength evolution. The dynamics of deformation within the wedge and slip upon the base control the finite wedge geometry: static strengths drop to dynamic levels during seismicity, resulting in materials and faults that are weaker than prescribed in models or determined by testing. Relationships between α and W & F are complex. All sudden, stepwise changes in α, W & F with time coincide with seismicity spikes in the models. Large events trigger or are triggered by large changes in F and W. We examine the complex details of dynamically driven

  5. Detection of detached forced-regressive nearshore wedges: a case study from the central-southern Siena Basin (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Martini, Ivan; Arragoni, Simone; Aldinucci, Mauro; Foresi, Luca Maria; Bambini, Anna Maria; Sandrelli, Fabio

    2013-07-01

    The detection of detached nearshore wedges formed in response to relative sea-level drops is considered one of the hottest topics in sequence stratigraphic analysis due to their importance as reservoir analogues. In fact, they usually constitute sandy and porous bodies generally encased in impermeable clay, thus presenting a good potential as traps for fluids. This paper focuses on the sequence stratigraphic analysis of the Pliocene deposits cropping out in the central-southern sector of the Siena Basin (Tuscany, Italy), a post-collisional basin of the Northern Apennines. The exposed sedimentary succession was investigated through a detailed sedimentological and stratigraphic approach, integrated by biostratigraphic analyses, aimed at a better characterization of the infilling history of this sector of the basin. Specifically, this study revealed the occurrence of repeated facies shifts that allowed the identification of two depositional sequences. In detail, a thick sand-rich body far from the basin margins, and previously considered as a turbiditic lobe, has been reinterpreted as formed in a nearshore setting during a fall in relative sea level. This body is totally encased in offshore clay, and due to the lack of physical connection with the related HST deposits, it has to be considered as a detached forced-regressive wedge. The present work led to the recognition of some sedimentological and stratigraphic features typical of falling stage systems tract deposits (e.g. presence of intrabasinal recycled materials, sedimentological evidence of a pre-existing fluvial network subsequently eroded) that can provide useful clues for the identification of detached forced-regressive nearshore wedges in core studies and poorly exposed settings.

  6. A Study in Wedge Waves with Applications in Acoustic Delay- line

    NASA Astrophysics Data System (ADS)

    Tung, Po-Hsien; Wang, Wen-Chi; Yang, Che-Hua

    The acoustic delay line is usually used to supply protection from dangerous environment, to enhance signal intensity by fit geometry of analyte, or to achieve specific angle/focusing by Snell's law, but rarely to avoid noise from coupling agent and to raise spatial resolution by reducing contact area. This study is focused on wedge waves with applications in delay-line to solve the knot of traditionally transducer measurement. Wedge waves are guided acoustic waves propagating along the tip of a wedge. The advantages of wedge being used in acoustic delay line are wedge waves has large motion amplitude of anti-symmetric flexural (ASF) mode, low energy attenuation and the velocity of ASF more is regular weather frequency varied or not. According the characteristic of wedge wave and vibration direction of particle, the acoustical wedge delay line with high signal- noise-ratio, approximate point-like contact area, without coupling agent and in/out vibration measurement by specific experimental setup is developed.

  7. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing

    PubMed Central

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment. PMID:26957775

  8. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing.

    PubMed

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment.

  9. Inferring the spatial variation of the wedge strength based on a modified critical taper model

    NASA Astrophysics Data System (ADS)

    Yang, C.; Liu, H.; Hsieh, Y.; Dong, J.

    2013-12-01

    Critical taper wedge theory has been widely applied to evaluate the strength of the detachment fault and the wedge by measuring taper angle. Traditional taper model, which incorporated constant cohesion and friction angle, fails to explain the lateral variation of the taper angle. A modified critical taper model adopting nonlinear Hoek-Brown failure criterion is proposed accordingly. The fold-and-thrust belt of central Taiwan was studied. Based on the field works and laboratory tests, the geological strength index (GSI) and the uniaxial compressive strength were obtained and the wedge strength can be estimated accordingly. The GSI values from investigation are decreased from the west to the east along the cross section due to the wedge strength heterogeneity. The uniaxial compressive strength of intact rock varies from the age of formation and lithology. The estimated wedge strength exhibits a strong spatial variation. The strength of the detachment fault was derived from rotary shear tests using fault gouge materials under different velocities and normal stresses. General speaking, the steady-state friction coefficient are about 0.29-0.46 when the shear velocity less than 0.1 m/s. The friction coefficient is not sensitive to the normal stress. Consequently, the lateral variation of the taper angle, which calculated by modified critical taper model, is mainly dominated by the wedge strength heterogeneity and the thickening of the wedge from the west to the east.

  10. Gap Test Modeling to Predict Wedge Tests Initiation of PBXN-103

    NASA Astrophysics Data System (ADS)

    Richmond, Clinton Thomas

    1997-07-01

    The experimental Initiation of PBXN-103 by the standard wedge test has been modeled by using the HVRB initiation and growth model in the CTH code. The P-081 plane wave lens was used as initiator in these experiments. The wedge test was converted to a gap test by replacing the PBXN-103 wedge by a PBXN-103 cylinder. By modeling this gap test, shock initiation in the PBXN-103 was calculated. The results of these calculations are in agreement with the experimental results of the wedge tests. Comparison of the CTH code calculations with the wedge test data was accomplished by using an auxiliary program to the CTH code called the BCAT code. In particular, it computes the ``pop plot'' and compares it to the wedge test data. It also predicts other fundamental results of the wedge test. Shock initiation of PBX-9404 was also calculated by the HVRB model and compared to the same calculation using the Lee-Tarver model. Comparison of the two calculations indicate that the HVRB model is apparently as good as the Lee-Tarver model.

  11. Semi-analytical solutions of groundwater flow in multi-zone (patchy) wedge-shaped aquifers

    NASA Astrophysics Data System (ADS)

    Samani, Nozar; Sedghi, Mohammad M.

    2015-03-01

    Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head-constant head wedge, constant head-barrier wedge and barrier-barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.

  12. Diffuse holographic interferometric observation of shock wave reflection from a skewed wedge

    NASA Astrophysics Data System (ADS)

    Numata, D.; Ohtani, K.; Takayama, K.

    2009-06-01

    The pattern of shock wave reflection over a wedge is, in general, either a regular reflection or a Mach reflection, depending on wedge angles, shock wave Mach numbers, and specific heat ratios of gases. However, regular and Mach reflections can coexist, in particular, over a three-dimensional wedge surface, whose inclination angles locally vary normal to the direction of shock propagation. This paper reports a result of diffuse double exposure holographic interferometric observations of shock wave reflections over a skewed wedge surface placed in a 100 × 180 mm shock tube. The wedge consists of a straight generating line whose local inclination angle varies continuously from 30° to 60°. Painting its surface with fluorescent spray paint and irradiating its surface with a collimated object beam at a time interval of a few microseconds, we succeeded in visualizing three-dimensional shock reflection over the skewed wedge surface. Experiments were performed at shock Mach numbers, 1.55, 2.02, and 2.53 in air. From reconstructed holographic images, we estimated critical transition angles at these shock wave Mach numbers and found that these were very close to those over straight wedges. This is attributable to the flow three-dimensionality.

  13. Characterization of sand lenses embedded in tills

    NASA Astrophysics Data System (ADS)

    Kessler, T. C.; Klint, K. E. S.; Nilsson, B.; Bjerg, P. L.

    2012-10-01

    Tills dominate large parts of the superficial sediments on the Northern hemisphere. These glacial diamictons are extremely heterogeneous and riddled with fractures and lenses of sand or gravel. The frequency and geometry of sand lenses within tills are strongly linked to glaciodynamic processes occurring in various glacial environments. This study specifically focuses on the appearance and spatial distribution of sand lenses in tills. It introduces a methodology on how to measure and characterize sand lenses in the field with regard to size, shape and degree of deformation. A set of geometric parameters is defined to allow characterization of sand lenses. The proposed classification scheme uses a stringent terminology to distinguish several types of sand lenses based on the geometry. It includes sand layers, sand sheets, sand bodies, sand pockets and sand stringers. The methodology has been applied at the Kallerup field site in the Eastern part of Denmark. The site offers exposures in a number of till types that underwent different levels of glaciotectonic deformation. Sand lenses show high spatial variability and only weak uniformity in terms of extent and shape. Secondly, the genesis of the various types of sand lenses is discussed, primarily in relation to the depositional and glaciotectonic processes they underwent. Detailed characterization of sand lenses facilitates such interpretations. Finally, the observations are linked to a more general overview of the distribution of sand lenses in various glacial environments. Due to the complex and mutable appearance of sand lenses, geometric descriptions can reveal the deformation history and even give indications on the palaeo-glaciological conditions during the deposition of the surrounding tills. This information can support the understanding of till genesis and further inform till classifications. In this regard, structural heterogeneity such as sand lenses can supplement traditional directional element analysis

  14. Role of Hydrogen in stagnant slabs and big mantle wedge

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Zhao, D.

    2008-12-01

    Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath

  15. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  16. Ground Penetrating Radar Detection of Ice Wedge Geometry: Implications for Climate Change Monitoring

    NASA Astrophysics Data System (ADS)

    Williams, K. K.; Haltigin, T.; Pollard, W. H.

    2011-12-01

    Polygonal features in the Canadian High Arctic are found in many areas, have diverse appearances, and occur in a variety of surface materials. As part of a larger project using geophysical methods to study ice wedge depth, width, and thickness, ground penetrating radar (GPR) data were collected across polygonal surface features on Devon Island. As with polygonal features in other locations on Earth, not all of the features studied on Devon Island contain subsurface ice, however polygons with notable surface troughs did contain fairly large ice wedges. The polygons in this study were formed in fine sediments near Thomas Lee Inlet east of the Haughton impact crater, and GPR data were collected at 200 MHz and 400 MHz using the GSSI, Inc. SIR-3000 system. Although both GPR and capacity-coupled resistivity (CCR) data were collected, the CCR data may have been adversely affected by melt water at the base of the active layer. Conversely, the GPR data show the thickness of the active layer, the width of the top of the ice wedge, and other subsurface stratigraphic features very well. Locations and widths of wedge ice were confirmed by augering and trenching to the tops of the ice wedges. GPR data clearly delineate the edges of the tops of ice wedges. Interestingly, the GPR-determined edges correlate with surface tensional cracks that appear to be related to subsidence above the wedge. It is possible that this subsidence is caused by an increase in active layer thickness and downward melting of the ice wedge in response to increasing temperatures over several years or more. If this is the case, small amounts of surface subsidence above ice wedges could be a useful indicator of past and current climate change in Arctic regions. To address this possibility, a broader study is proposed.

  17. Depth dependence determination of the wedge transmission factor for 4--10 MV photon beams

    SciTech Connect

    McCullough, E.C.; Gortney, J.; Blackwell, C.R.

    1988-07-01

    The depth dependence (up to 25 cm) of the in-phantom wedge transmission factor (WTF) has been determined for three medical linear accelerator x-ray beams with energies of 4, 6, and 10 MV containing 15/sup 0/--60/sup 0/ (nominal) brass wedges. All measurements were made with a cylindrical ionization chamber in water, for a field size of 10 x 10 cm/sup 2/ with a source--skin distance of 80 or 100 cm. We conclude that, for the accelerators studied, the WTF factor at depth is less than 2% different from that determined at d/sub max/ (for the nominal wedge angles and photon energies studied) unless the depth of interest is greater than 10 cm. Up to the maximum depth studied (25 cm) the relative wedge factor: that is, wedge factor at depth compared to that determined at d/sub max/ : was about equal to or less than 1.02 for the 15/sup 0/ and 30/sup 0/ wedges and any of the photon beam energies studied. For the seldom utilized combination of a nominal wedge angle in excess of 45/sup 0/ with a depth greater than 10 cm, the WTF at depth can differ from the WTF determined at d/sub max/, by up to 5%. Since the wedge transmission factor is reflective of relative percent dose data, our results also indicate that it is in error to use open field percent depth doses for certain combinations of wedge angle, photon energy, and depth.

  18. Sand and Water Table Play

    ERIC Educational Resources Information Center

    Wallace, Ann H.; White, Mary J.; Stone, Ryan

    2010-01-01

    The authors observed preschoolers engaged at the sand and water table to determine if math could be found within their play. Wanting to understand how children interact with provided materials and what kinds of math ideas they explore during these interactions, the authors offer practical examples of how such play can promote mathematical…

  19. Geology on a Sand Budget

    ERIC Educational Resources Information Center

    Kane, Jacqueline

    2004-01-01

    Earth science teachers know how frustrating it can be to spend hundreds of dollars on three-dimensional (3-D) models of Earth's geologic features, to use the models for only a few class periods. To avoid emptying an already limited science budget, the author states that teachers can use a simple alternative to the expensive 3-D models--sand. She…

  20. Diurnal patterns of blowing sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex process that involves the interaction between the sun, wind, and earth. During the day, solar heating produces thermal instability, which enhances the convective mixing of high momentum winds from the upper levels of the atmosphere to the s...

  1. Registration of 'Centennial' Sand Bluestem

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Centennial’ sand bluestem (PI 670042, Andropogon hallii Hack.) is a synthetic variety selected for greater percentage seed germination and percentage seedling establishment under field conditions. Centennial was tested under the experimental designation of ‘AB-Medium Syn-2’. Two cycles of recurren...

  2. Metastable olivine wedge beneath northeast China and its applications

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  3. Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, M.; Manatschal, G.; Yuan, X. P.; Kusznir, N. J.; Maillot, B.

    2016-05-01

    The Critical Coulomb Wedge Theory (CCWT) has been extensively used in compressional tectonics to resolve the shape of orogenic or accretionary prisms, while it is less applied to extensional and gravitational wedges despite the fact that it can be described by the same equation. In particular, the hyper-extended domain at magma-poor rifted margins, forming the oceanward termination of extended continental crust, satisfies the three main requirements of the CCWT: 1) it presents a wedge shape, 2) the rocks forming the wedge are completely brittle (frictional), and 3) the base of the wedge corresponds to a low friction décollement. However hyper-extended margins present a fully frictional behaviour only for a very thin crust; therefore this study is limited to the termination of hyper-extended continental crust which deforms in the latest stage of continental rifting. In this paper we define a method to measure the surface slope and the basal deep of this wedge that we apply to 17 hyper-extended, magma-poor rifted margins in order to compare the results to the values predicted by the CCWT. Because conjugate pairs of hyper-extended, magma-poor rifted margins are commonly asymmetric, due to detachment faulting, the wedges in the upper and lower plate margins corresponding respectively to the hanging wall and footwall of the detachment system are different. While the stress field in the upper plate wedge corresponds to a tectonic extensional wedge, the one in the lower plate matches that of a gravity extensional wedge. Using typical frictional properties of phyllosilicates (e.g. clays and serpentine), the shape of the hyper-extended wedges can be resolved by the CCWT using consistent fluid overpressures. Our results show that all lower plate margins are gravitationally stable and therefore have a close to critical shape whereas the tectonic extensional wedges at upper plate margins are critical, sub or sup critical due to the detachment initial angle and the duration of

  4. Line-shape flattening resulting from hypersonic nozzle wedge flow in low-pressure chemical lasers.

    PubMed

    Livingston, P M; Bullock, D L

    1980-07-01

    The new hypersonic wedge nozzle (HYWN) supersonic wedge nozzle design produces a significant component of directed gas flow along the optical axis of a laser cavity comparable to thermal speeds. The gain-line-shape function is broadened and the refractive-index line shape is also spread as a function of wedge-flow half-angle. An analytical treatment as well as a numerical study is presented that evaluates the Doppler-directed-flow impact on the number of longitudinal modes and their frequencies as well as on gain and refractive-index saturation of those that lase in a Fabry-Perot cavity.

  5. Sol-gel based anti-reflection coatings on wedged laser rods using a spin coater

    NASA Astrophysics Data System (ADS)

    Pareek, R.; Joshi, A. S.; Gupta, P. D.; Biswas, P. K.; Das, S.

    2005-07-01

    Anti-reflection (AR) sol-gel coatings are deposited on wedge glass optics for high-power lasers using spin coating technique. Characterization of these coatings on BK-7 glass substrates is carried out in terms of thickness profile across the surface, thickness variation w.r.t. wedge angle, and its effect on AR coating reflectivity, at different wedge angles from 1° to 7°. Results of the study are used to deposit AR coatings on inclined end faces of Nd:phosphate glass laser rods.

  6. A numerical groundwater model to assess the hydrogeological behavior of a relict rock glacier aquifer (Niedere Tauern Range, Austria)

    NASA Astrophysics Data System (ADS)

    Pauritsch, Marcus; Wagner, Thomas; Winkler, Gerfried; Birk, Steffen

    2016-04-01

    A three dimensional numerical groundwater model representing a relict rock glacier with an extent of 0.17 km², located in the Eastern Alps (Schöneben rock glacier, Niedere Tauern Range, Austria) is used to highlight the impact of the major internal aquifer structures and the morphology of the aquifer base on the discharge behavior. The model is implemented in MODFLOW and calibrated using the discharge data of the spring. The recharge is determined based on precipitation and evapotranspiration which is calculated using a simple soil water balance model in combination with the monthly potential evapotranspiration. Data are provided by an automatic weather station on the Schöneben rock glacier where precipitation and air temperature are continuously measured. It is renounced to use a snow model in order to keep the model as simple as possible. Therefore the investigation is limited to the time periods from late summer to the beginning of the snowmelt in spring. The aquifer geometry and in particular the morphology of the aquifer base are based on geophysical investigations (ground penetrating radar and seismic refraction). However, due to gaps of the geophysical investigations the interpolation of the aquifer base at the margin of the rock glacier is related to uncertainties. Therefore, two different morphologies of the aquifer base were used which mainly differ in the slope of the south-eastern margin. Several model setups with increasing complexity of the internal structure (from homogeneous to heterogeneous) were applied to demonstrate the effects of the vertical (layering) and horizontal (preferential flow) aquifer heterogeneity on the discharge behavior. The results show that a model with a homogeneous setup cannot satisfyingly reproduce the discharge dynamics observed at the Schöneben rock glacier. With a heterogeneous setup, the model fit greatly improves but shows differences between the horizontally and vertically heterogeneous setups. The morphology of

  7. Dose distribution analysis of physical and dynamic wedges by using an intensity-modulated radiotherapy MatriXX

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Kag; Cho, Jae-Hwan; Cho, Dae-chul

    2013-05-01

    This study investigated differences between the physical wedge and the dynamic wedge distributions of radiation by using an intensity-modulated radiotherapy (ImRT) MatriXX. The linear accelerator used X-rays with energy levels of 6 MV and 10 MV to adjust the collimator by motoring the independent jaws (X1, X2, Y1, Y2) for setting wedge angles of 15, 30, 45, and 60 degrees. The collimator field size was set as 10 × 10 cm2 or 20 × 20 cm2 at the maximum dose point. The dose distribution for each wedge had ±5% and ±11% errors for field sizes of 10 × 10 cm2 and 20 × 20 cm2, respectively. The error was greatest at a wedge angle of 45 degrees and was pronounced at the end of the dynamic wedge where Y1 and Y2 met. Consequently, concluded that the dose distributions were similar for both wedges for the field size of a small beam profile. The beam dose was greatly increased at the end of the dynamic wedge. A more precise estimate of the therapeutic dose of radiation for a dynamic wedge that nearly matches that of the physical wedge can be achieved by correcting of the increasing part of the beam dose. The findings imply that a heavy wedge filter should not be used when calculating the isodose distribution and the therapeutic dose.

  8. The role of pore fluid overpressure in the substrates of advancing salt sheets, ice glaciers, and critical-state wedges

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Flemings, Peter B.; Hudec, Michael R.; Nikolinakou, Maria A.

    2015-01-01

    Critical-state wedges, ice glaciers, and salt sheets have many geometric and mechanical similarities. Each has a tapering geometry and moves along a basal detachment. Their motions result from the combined effects of internal deformation and basal sliding. Wedge deformation and geometry, basal conditions, and overpressure (pore fluid pressure less hydrostatic pore fluid pressure) development within the substrate interact with each other in this mechanically coupled system. However, the nature of this interaction is poorly understood. In order to investigate this coupled system, we have developed two-dimensional poromechanical finite-element models with porous fluid flow in sediments. We have simulated the advance of a salt sheet wedge across poroelastic sediments in this study. We emphasize that our results have applications beyond salt wedges to both critical-state wedges and ice glaciers. Overpressure develops within the substrate over time during the advance of the wedge. The magnitude of the overpressure influences the wedge geometry and the wedge advance rate. Lower overpressure results in a thicker and steeper wedge geometry, and a slower advance rate, while higher overpressure favors a thinner, wider, and more flattened wedge geometry and a faster advance rate. This study provides key insights into the links between wedge geometry, basal shear stress, and overpressure in substrates.

  9. Influence of intermolecular forces at critical-point wedge filling.

    PubMed

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  10. Transonic flow past a wedge profile with detached bow wave

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Wagoner, Cleo B

    1952-01-01

    A theoretical study has been made of the aerodynamic characteristics at zero angle of attack of a thin, doubly symmetrical double-wedge profile in the range of supersonic flight speed in which the bow wave is detached. The analysis utilizes the equations of the transonic small-disturbance theory and involves no assumptions beyond those implicit in this theory. The mixed flow about the front half of the profile is calculated by relaxation solution of boundary conditions along the shock polar and sonic line. The purely subsonic flow about the rear of the profile is found by means of the method of characteristics specialized to the transonic small-disturbance theory. Complete calculations were made for four values of the transonic similarity parameter. These were found sufficient to bridge the gap between the previous results of Guderley and Yoshihara at a Mach number of 1 and the results which are readily obtained when the bow wave is attached and the flow is completely supersonic.

  11. Hydrodynamics of superfluids confined in blocked rings and wedges.

    PubMed

    Dasgupta, Chandan; Valls, Oriol T

    2009-01-01

    Motivated by many recent experimental studies of nonclassical rotational inertia (NCRI) in superfluid and supersolid samples, we present a study of the hydrodynamics of a superfluid confined in the two-dimensional region (equivalent to a long cylinder) between two concentric arcs of radii b and a (bwedges (b=0) with beta>pi , we find an unexpected divergence of the velocity at the origin, which implies the presence of either a region of normal fluid or a vortex for any nonzero value of the angular velocity. Implications of our results for experiments on "supersolid" behavior in solid 4He are discussed. A number of mathematical issues are pointed out and resolved. PMID:19257135

  12. Treating tar sands formations with karsted zones

    SciTech Connect

    Vinegar, Harold J.; Karanikas, John Michael

    2010-03-09

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  13. Performance of an isolated two-dimensional variable-geometry wedge nozzle with translating shroud and collapsing wedge at speeds up to Mach 2.01

    NASA Technical Reports Server (NTRS)

    Maiden, D. L.

    1975-01-01

    A wind-tunnel investigation was conducted to determine the aeropropulsion performance (thrust-minus-drag) of a single-engine, variable-geometry, two-dimensional (2-D) wedge nozzle with simulated translating-shroud and collapsing-wedge mechanisms. The investigation was conducted statically and at Mach numbers from 0.60 to 2.01 at an angle of attack of 0 deg and at varied jet total-pressure ratios up to 21, depending on the Mach number. The results indicate that the isolated aeropropulsion performance of a variable-geometry two-dimensional wedge nozzle is competitive with axisymmetric nozzles at transonic and supersonic speeds, but the isolated performance is slightly inferior for static take-off and low subsonic speeds. With the use of a simple tertiary-air ejector, the static take-off performance was increased.

  14. A study of the relict fish fauna of northern Chad, with the first records of a polypterid and a poeciliid in the Sahara desert.

    PubMed

    Trape, Sébastien

    2013-01-01

    Seventeen species and sub-species of fishes belonging to four families (Cyprinidae, Clariidae, Aplocheilidae, Cichlidae) were known to occur in perennial bodies of water in the Sahara desert. The study of fishes collected in Lake Boukou near Ounianga Serir (Borkou, northern Chad) shows, for the first time, the occurrence in the Sahara desert of relict populations of Polypterus senegalus (Polypteridae) and Poropanchax normani (Poeciliidae). The Cichlidae Tilapia zilli was also collected in this lake. With these new records, the relict fish fauna currently known in lakes and gueltas of the Borkou plateaus comprises six species. In the Ennedi Mountains, where the specific status of Barbus populations was unclear, B. macrops was collected in Bachikere guelta. The toad Amietophrynus regularis was collected in Ounianga Kebir.

  15. Geomorphic evolution processes of the relict landscape and deep-incised valleys along the Red River fault zone, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Lin, Z.

    2015-12-01

    Based on DEM analysis and field observations, the study reveals the form of topographic characteristics of the Red River region, Yunnan Province, China, which is in response to southeastward growth of the Tibetan Plateau. Knickpoints in the valleys along the Red River fault are objectively extracted, and an upper low-relief segment separated by the knickpoints is identified, and is corresponding to the relict landscape. Continuous Davisian landform-evolution processes and propagation of the topographic steady state along the fault demonstrate that the relict landscape should originally be a continuous surface. Moreover, as the distribution pattern of the knickpoints varies along the fault from northwest to southeast, the pattern is further examined to distinguish the climatic and tectonic influences. The study provides morpholoical evidences for the episodic Plateau uplift, and also help to understand the processes of the southeastward extension of the Plateau.

  16. Relict populations of Diaphanosoma  (Cladocera: Ctenopoda) in the Chadian Sahara, with the description of a new species .

    PubMed

    Guo, Fei-Fei; Dumont, Henri J

    2014-01-01

    We record two species of Diaphanosoma from Ounianga and Tibesti in Northern Chad, the first ctenopods to be found in the Sahara desert. One species, from a freshwater guelta on the south flanks of the Tibesti (D. excisum) is tropical; the second species, found in a freshwater lake in a largely saline environment (the Ounianga plateau) is new to science (D. bopingi sp.nov.) and is here described, with special attention to some previously unnoticed structures on the postabdomen. Its relatives are northern species that may transgress into the tropics but largely live outside of them. They are also more salt-tolerant than the tropical D. excisum. The latter is considered a relict of Megachad times, while the new species is considered a relict of more humid but also cooler times in the desert.  PMID:25284649

  17. Testing the critical Coulomb wedge theory on hyper-extended rifted margins

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Kusznir, Nick

    2015-04-01

    Deformation of hyper-extended continental crust and its relationship with the underlying mantle is a key process in the evolution of rifted margins. Recent studies have focused on hyper-extension in rifted margins using different approaches such as numerical modelling, seismic interpretation, potential field methods and field observations. However many fundamental questions about the observed structures and their evolution during the formation of hyper-extended margins are still debated. In this study an observation driven approach has been used to characterise geometrical and physical attributes of the continental crust termination, considered as a hyper-extended wedge, in order to test the applicability of critical Coulomb wedge theory to hyper-extended margins. The Coulomb wedge theory was first developed on accretionary prisms and on fold and thrust belts, but it has also been applied in extensional settings. Coulomb wedge theory explains the evolution of the critical aperture angle of the wedge as a function of basal sliding without deformation in the overlying wedge. This critical angle depends on the frictional parameters of the material, the basal friction, the surface slope, the basal dip and the fluid pressure. If the evolution of hyper-extended wedges could be described by the critical Coulomb wedge theory, it would have a major impact in the understanding of the structural and physical evolution of rifted domains during the hyper-extension processes. On seismic reflection lines imaging magma-poor hyper-extended margins, the continental crust termination is often shown to form a hyper-extended wedge. ODP Sites 1067, 900 and 1068 on the Iberian margin as well as field observations in the Alps give direct access to the rocks forming the hyper-extended wedge, which are typically composed of highly deformed and hydrated continental rocks underlain by serpentinised mantle. The boundary between the hydrated continental and mantle rocks corresponds to a

  18. Measurements of dose from secondary radiation outside a treatment field: effects of wedges and blocks

    SciTech Connect

    Sherazi, S.; Kase, K.R.

    1985-12-01

    Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest in estimating organ doses. In a previous paper we reported the results of measurements made using unmodified radiation fields. We have extended this study to include the effects of wedge filters and blocks. For a given dose on the central axis of a radiation field, wedges can cause a factor of 2 to 4 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge, and generally less than a factor of 2. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  19. Crustal wedge deformation in an internally-driven, numerical subduction model

    NASA Astrophysics Data System (ADS)

    van Dinther, Ylona; Morra, Gabriele; Funiciello, Francesca; Rossetti, Federico; Faccenna, Claudio

    2010-05-01

    The Earth's active convergent margins are characterized by dynamic feedback mechanisms that interact to form an intricate system in which a crustal wedge is shaped and metamorphosed at the will of two large, converging plates. This framework is accompanied by complicated processes, such as seismogenesis and the exhumation of high pressure rocks. To honor the dynamic interaction between different entities and advance on these persisting issues, we model the interaction between the subducting and overriding lithospheres, the mantle and the crustal wedge explicitly, and observe how a crustal wedge evolves in detail within a set of rigid, internally-driven boundary conditions. We model crustal wedge evolution in an intra-oceanic subduction setting by using a plane-strain implicit solid-mechanical Finite Element Model, in which the mechanical conservation equations are solved using the software package ABAQUS. The crustal wedge is modeled as a thick-skinned accretionary wedge of inter-mediate thickness with a linear visco-elastic bulk rheology. The dynamic interaction between the subducting plate, the overriding plate, and crustal wedge is implemented using a Coulomb frictional algorithm. The interaction with the mantle is incorporated using a computationally favorable mantle drag formulation that simulates induced three-dimensional mantle flow. This results in a quasi-static framework with a freely moving slab, trench, and fault, where a weaker wedge deforms in response to self-regulating, rigid boundary conditions formed by single, frictional bounding faults. The self-regulating evolution of crustal wedge architecture follows three phases; 1) initial vertical growth, 2) coeval compression and extension leading to internal corner flow, and 3) a steady-state taper with continuous corner flow. Particle trajectories show that, as shortening continues throughout the second phase, wedge material is constantly forced upward against the backstop, while extension and ocean

  20. Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges

    NASA Astrophysics Data System (ADS)

    Xiang, Gaoxiang; Wang, Chun; Teng, Honghui; Yang, Yang; Jiang, Zonglin

    2016-06-01

    The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically. A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.

  1. Plane-wave diffraction by a wedge: A spectral domain approach

    NASA Astrophysics Data System (ADS)

    Ciarkowski, A.; Mittra, R.

    1981-11-01

    In this paper we investigate the canonical problem of plane wave diffraction by a wedge in the context of the spectral domain approach which exploits the relationship between the induced current on a scatterer and its far field. We show how the Sommerfeld solution to the wedge diffraction problem can be manipulated in a form which enables one to interpret the far scattered field as the Fourier transform of the physical optics current on the two faces of the wedge, augmented by the fringe current near the tip of the wedge. We also show that the uniform asymptotic expansion derived by Lee and Deschamps on the basis of the Lewis, Ahluwalia and Boersma ansatz can be rigorously obtained using the approach presented in this paper.

  2. Plane-wave diffraction by a wedge - A spectral domain approach

    NASA Astrophysics Data System (ADS)

    Ciarkowski, A.; Boersma, J.; Mittra, R.

    1984-01-01

    The canonical problem of plane wave diffraction by a wedge in the context of the spectral domain approach which exploits the relationship between the induced current on a scatterer and its far field is investigated. It is shown how the exact solution to the wedge diffraction problem can be manipulated in a form which enables one to interpret the far scattered field as the Fourier transform of the physical optics (PO) current on the two faces of the wedge augmented by the fringe current near the tip of the wedge. A uniform asymptotic expansion for the total field which slightly modifies the Ansatz in the uniform asymptotic theory of electromagnetic edge diffraction is constructed.

  3. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Winkler, Gerfried; Wagner, Thomas; Pauritsch, Marcus; Birk, Steffen; Kellerer-Pirklbauer, Andreas; Benischke, Ralf; Leis, Albrecht; Morawetz, Rainer; Schreilechner, Marcellus G.; Hergarten, Stefan

    2016-06-01

    More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006-2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.

  4. Salt-wedge propagation in a Mediterranean micro-tidal river mouth

    NASA Astrophysics Data System (ADS)

    Haralambidou, Kiriaki; Sylaios, Georgios; Tsihrintzis, Vassilios A.

    2010-12-01

    The dynamics of a seasonally formed salt-wedge propagating along the micro-tidal channel of Strymon River estuary, Northern Greece, and its consequences on river water quality, are thoroughly studied through intensive sampling campaigns. The wedge is developed at the downstream river part, under the summer limited freshwater discharge conditions ( Q < 30 m 3/s). The geometric features of the wedge (length and thickness) appeared directly related to Strymon River discharge. A maximum intrusion length of 4.7 km along Strymon River estuary was observed under minimum river discharge of almost 6 m 3/s. Relations produced from in situ data illustrate that limited river flow expands the wedge horizontally, reducing its vertical dimension, while higher flows lead to increased wedge thickness. Estuarine flushing time ranges between 0.2 and 1.5 days, exponentially dependent on Strymon River discharge. Wedge velocities depicted tidal asymmetry between tidal phases, with consistent inward motion, even under the ebb tidal stage. Strong vertical stratification prevails throughout the tidal cycle, proving the limited vertical mixing between the two layers, although higher interfacial stresses are produced in ebb. Bottom topography plays an interesting role in wedge propagation, as the presence of an underwater sill either prevents saline intrusion during flood or isolates the front of the wedge from its core at the ebb. Ecological consequences of salt-wedge propagation in Strymon River estuary are the frequent evidence of bottom hypoxic conditions and the increased TSS levels, leading to the occurrence of a turbidity maximum at the tip of the salt-wedge. Higher BOD and ammonium levels were mostly observed at the river end, associated to point and non-point pollution sources. Nitrates and silicates were found associated with freshwater fluxes, while ammonia levels were related to saline intrusions. The reduced phosphorus freshwater fluxes, resulting from phosphorus uptake at the

  5. Contributions of historical and contemporary geographic and environmental factors to phylogeographic structure in a Tertiary relict species, Emmenopterys henryi (Rubiaceae)

    PubMed Central

    Zhang, Yong-Hua; Wang, Ian J.; Comes, Hans Peter; Peng, Hua; Qiu, Ying-Xiong

    2016-01-01

    Examining how historical and contemporary geographic and environmental factors contribute to genetic divergence at different evolutionary scales is a central yet largely unexplored question in ecology and evolution. Here, we examine this key question by investigating how environmental and geographic factors across different epochs have driven genetic divergence at deeper (phylogeographic) and shallower (landscape genetic) evolutionary scales in the Chinese Tertiary relict tree Emmenopterys henryi. We found that geography played a predominant role at all levels – phylogeographic clades are broadly geographically structured, the deepest levels of divergence are associated with major geological or pre-Quaternary climatic events, and isolation by distance (IBD) primarily explained population genetic structure. However, environmental factors are clearly also important – climatic fluctuations since the Last Interglacial (LIG) have likely contributed to phylogeographic structure, and the population genetic structure (in our AFLP dataset) was partly explained by isolation by environment (IBE), which may have resulted from natural selection in environments with divergent climates. Thus, historical and contemporary geography and historical and contemporary environments have all shaped patterns of genetic structure in E. henryi, and, in fact, changes in the landscape through time have also been critical factors. PMID:27137438

  6. Community Structure and Survival of Tertiary Relict Thuja sutchuenensis (Cupressaceae) in the Subtropical Daba Mountains, Southwestern China

    PubMed Central

    Tang, Cindy Q.; Yang, Yongchuan; Ohsawa, Masahiko; Momohara, Arata; Yi, Si-Rong; Robertson, Kevin; Song, Kun; Zhang, Shi-Qiang; He, Long-Yuan

    2015-01-01

    A rare coniferous Tertiary relict tree species, Thuja sutchuenensis Franch, has survived in the Daba Mountains of southwestern China. It was almost eliminated by logging during the past century. We measured size and age structures and interpreted regeneration dynamics of stands of the species in a variety of topographic contexts and community associations. Forest communities containing T. sutchuenensis were of three types: (1) the Thuja community dominated by T. sutchuenensis, growing on cliffs; (2) the Thuja-Quercus-Cyclobalanopsis community dominated by T. sutchuenensis, Quercus engleriana and Cyclobalanopsis oxyodon, along with Fagus engleriana and Carpinus fargesiana, on steep slopes; (3) the Thuja-Tsuga-Quercus community dominated by T. sutchuenensis, Tsuga chinensis, and Quercus spinosa, on crest ridges. The established seedlings/saplings were found in limestone crevices, on scarred cliff-faces, cliff-edges, fallen logs, canopy gaps and forest margins. The radial growth rate was 0.5-1.1 mm per year. Its growth forms were distorted. It had strong sprouting ability after disturbances. The T. sutchuenensis population thrives on cliffs where there is little competition from other species because of harsh conditions and rockslide disturbances. It is shade-intolerant but stress-tolerant. Its regeneration has depended on natural disturbances. PMID:25928845

  7. Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States

    NASA Astrophysics Data System (ADS)

    Seifert, Christopher L.; Cox, Randel Tom; Forman, Steven L.; Foti, Tom L.; Wasklewicz, Thad A.; McColgan, Andrew T.

    2009-05-01

    The origin and significance of pimple mounds (low, elliptical to circular dune-like features found across much of the south-central United States) have been debated for nearly two centuries. We cored pimple mounds at four sites spanning the Ozark Plateau, Arkansas River Valley, and Gulf of Mexico Coastal Plain and found that these mounds have a regionally consistent textural asymmetry such that there is a significant excess of coarse-grained sediment within their northwest flanks. We interpret this asymmetry as evidence of an eolian depositional origin of these mounds and conclude they are relict nebkhas (coppice dunes) deposited during protracted middle to late Holocene droughts. These four mounds yield optically stimulated luminescence ages between 2400 and 700 yr that correlate with well-documented periods of eolian activity and droughts on the southern Great Plains, including the Medieval Climate Anomaly. We conclude vegetation loss during extended droughts led to local eolian deflation and pimple mound deposition. These mounds reflect landscape response to multi-decadal droughts for the south-central U.S. The spatial extent of pimple mounds across this region further underscores the severity and duration of late Holocene droughts, which were significantly greater than historic droughts.

  8. The Trichoderma harzianum demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages

    PubMed Central

    2010-01-01

    Background The mitosporic fungus Trichoderma harzianum (Hypocrea, Ascomycota, Hypocreales, Hypocreaceae) is an ubiquitous species in the environment with some strains commercially exploited for the biological control of plant pathogenic fungi. Although T. harzianum is asexual (or anamorphic), its sexual stage (or teleomorph) has been described as Hypocrea lixii. Since recombination would be an important issue for the efficacy of an agent of the biological control in the field, we investigated the phylogenetic structure of the species. Results Using DNA sequence data from three unlinked loci for each of 93 strains collected worldwide, we detected a complex speciation process revealing overlapping reproductively isolated biological species, recent agamospecies and numerous relict lineages with unresolved phylogenetic positions. Genealogical concordance and recombination analyses confirm the existence of two genetically isolated agamospecies including T. harzianum sensu stricto and two hypothetical holomorphic species related to but different from H. lixii. The exact phylogenetic position of the majority of strains was not resolved and therefore attributed to a diverse network of recombining strains conventionally called 'pseudoharzianum matrix'. Since H. lixii and T. harzianum are evidently genetically isolated, the anamorph - teleomorph combination comprising H. lixii/T. harzianum in one holomorph must be rejected in favor of two separate species. Conclusions Our data illustrate a complex speciation within H. lixii - T. harzianum species group, which is based on coexistence and interaction of organisms with different evolutionary histories and on the absence of strict genetic borders between them. PMID:20359347

  9. Landslides, threshold slopes, and the survival of relict terrain in the wake of the Mendocino Triple Junction

    NASA Astrophysics Data System (ADS)

    Bennett, Georgina; Miller, Scott; Roering, Joshua; Schmidt, David

    2016-04-01

    Establishing the coupled fluvial-hillslope response to uplift is critical for interpreting sediment fluxes, stream channel characteristics, hazard potential and topographic development. Threshold-slope models purport that landslide fluxes obtain a balance with river incision in response to rapid rock uplift, but a lack of observations and constraints in most settings prevents us from quantifying the process-linkages required for channels and hillslopes to adjust to tectonic forcing. We mapped landslides and knickpoints and extracted topographic metrics across the northern Californian Coast ranges, where the landscape is responding to a wave of rapid uplift related to the migration of the Mendocino Triple Junction (MTJ). We find a tightly coupled channel-landslide-hillslope response to uplift from catchment to regional scales. Locally, landslide erosion rates estimated from historical air photo analyses approach 1 mm yr-1, consistent with published cosmogenic nuclide and suspended sediment erosion rates as well as modeled isostatic uplift associated with crustal thickening proximal to the MTJ. Landslides are concentrated along channel reaches downstream of migrating knickpoints generated by base level fall at channel outlets and hillslope gradients and relief become invariant with the onset of significant landslide erosion. Following passage of the MTJ, this coupled response becomes inhibited by subsidence due to crustal thinning and landslide-derived coarse sediment delivery that suppresses catchment-wide channel incision and knickpoint migration. As a result, substantial portions of the landscape escape comprehensive adjustment to increased uplift and retain the signature of a gentle and slow-eroding relict landscape.

  10. Community Structure and Survival of Tertiary Relict Thuja sutchuenensis (Cupressaceae) in the Subtropical Daba Mountains, Southwestern China.

    PubMed

    Tang, Cindy Q; Yang, Yongchuan; Ohsawa, Masahiko; Momohara, Arata; Yi, Si-Rong; Robertson, Kevin; Song, Kun; Zhang, Shi-Qiang; He, Long-Yuan

    2015-01-01

    A rare coniferous Tertiary relict tree species, Thuja sutchuenensis Franch, has survived in the Daba Mountains of southwestern China. It was almost eliminated by logging during the past century. We measured size and age structures and interpreted regeneration dynamics of stands of the species in a variety of topographic contexts and community associations. Forest communities containing T. sutchuenensis were of three types: (1) the Thuja community dominated by T. sutchuenensis, growing on cliffs; (2) the Thuja-Quercus-Cyclobalanopsis community dominated by T. sutchuenensis, Quercus engleriana and Cyclobalanopsis oxyodon, along with Fagus engleriana and Carpinus fargesiana, on steep slopes; (3) the Thuja-Tsuga-Quercus community dominated by T. sutchuenensis, Tsuga chinensis, and Quercus spinosa, on crest ridges. The established seedlings/saplings were found in limestone crevices, on scarred cliff-faces, cliff-edges, fallen logs, canopy gaps and forest margins. The radial growth rate was 0.5-1.1 mm per year. Its growth forms were distorted. It had strong sprouting ability after disturbances. The T. sutchuenensis population thrives on cliffs where there is little competition from other species because of harsh conditions and rockslide disturbances. It is shade-intolerant but stress-tolerant. Its regeneration has depended on natural disturbances. PMID:25928845

  11. A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine

    SciTech Connect

    Miura, H.; Yamamoto, T.

    2014-03-01

    Compositional zoning in chondrule phenocrysts records the crystallization environments in the early solar nebula. We modeled the growth of olivine phenocrysts from a silicate melt and proposed a new fractional crystallization model that provides a relation between the zoning profile and the cooling rate. In our model, we took elemental partitioning at a growing solid-liquid interface and time-dependent solute diffusion in the liquid into consideration. We assumed a local equilibrium condition, namely, that the compositions at the interface are equal to the equilibrium ones at a given temperature. We carried out numerical simulations of the fractional crystallization in one-dimensional planar geometry. The simulations revealed that under a constant cooling rate the growth velocity increases exponentially with time and a linear zoning profile forms in the solid as a result. We derived analytic formulae of the zoning profile, which reproduced the numerical results for wide ranges of crystallization conditions. The formulae provide a useful tool to estimate the cooling rate from the compositional zoning. Applying the formulae to low-FeO relict olivine grains in type II porphyritic chondrules observed by Wasson and Rubin, we estimate the cooling rate to be ∼200-2000 K s{sup –1}, which is greater than that expected from furnace-based experiments by orders of magnitude. Appropriate solar nebula environments for such rapid cooling conditions are discussed.

  12. Diversity of bacterial endosymbionts and bacteria-host co-evolution in Gondwanan relict moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae).

    PubMed

    Kuechler, Stefan Martin; Gibbs, George; Burckhardt, Daniel; Dettner, Konrad; Hartung, Viktor

    2013-07-01

    Many hemipterans are associated with symbiotic bacteria, which are usually found intracellularly in specific bacteriomes. In this study, we provide the first molecular identification of the bacteriome-associated, obligate endosymbiont in a Gondwanan relict insect taxon, the moss bugs (Hemiptera: Coleorrhyncha: Peloridiidae), which represents one of the oldest lineages within the Hemiptera. Endosymbiotic associations of fifteen species of the family were analysed, covering representatives from South America, Australia/Tasmania and New Zealand. Phylogenetic analysis based on four kilobases of 16S-23S rRNA gene fragments showed that the obligate endosymbiont of Peloridiidae constitute a so far unknown group of Gammaproteobacteria which is named here 'Candidatus Evansia muelleri'. They are related to the sternorrhynchous endosymbionts Candidatus Portiera and Candidatus Carsonella. Comparison of the primary-endosymbiont and host (COI + 28S rRNA) trees showed overall congruence indicating co-speciation the hosts and their symbionts. The distribution of the endosymbiont within the insect body and its transmission was studied using FISH. The endosymbionts were detected endocellularly in a pair of bacteriomes as well as in the 'symbiont ball' of the posterior pole of each developing oocyte. Furthermore, ultrastructural analysis of the Malpighian tubules revealed that most host nuclei are infected by an endosymbiotic, intranuclear bacterium that was determined as an Alphaproteobacterium of the genus Rickettsia.

  13. Stress and displacement fields in the outer wedge induced by megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Fukao, Yoshio; Hori, Takane; Kodaira, Shuichi

    2014-05-01

    We model plate boundary slip at the outer (oceanward) segment of the megathrust wedge as slip at the base of a two-dimensional elastic wedge, subject to gravity force, with a sloping seafloor at the top, and drag at the bottom from a rigid plate in frictional contact. The stress and displacement fields in the wedge are given analytically as functions of basal frictional coefficient μe. Unlike either conventional dislocation models (constant slip) or crack models (constant stress drop), our wedge model (constant μe drop) does not show a stress singularity at the updip toe of the plate boundary. The slip increases, but the stress drop decreases updip along the fault toward the trench axis. There is a minimum stress difference state in the wedge when μe is varied. By referring to this state (μe = μec), the stress state is separated into a horizontally tensile regime (μe < μec) and a horizontally compressional regime (μe > μec). Slip associated with a μe drop in the range μe ≤ μec occurs toward increasing horizontal tension and shear energy. Such earthquakes include tsunami earthquakes occurring in the outer segment and the 2011 great Tohoku-Oki earthquake, which involved both the outer and inner segments, with much larger slip in the outer segment. These earthquakes are characterized by an almost complete drop of basal stress, which brings the wedge into the maximum tensile state, leading to the rare occurrence of thrust aftershocks at the base of the wedge and frequent occurrence of normal fault aftershocks within the wedge.

  14. The effect of a dynamic wedge in the medial tangential field upon the contralateral breast dose

    SciTech Connect

    McParland, B.J. )

    1990-12-01

    The elevated incidence of breast cancer following irradiation of breast tissue has led to concern over the magnitude of the scattered radiation received by the uninvolved contralateral breast during radiation therapy for a primary breast lesion and the risk of an induced contralateral breast cancer. Some linear accelerators use a single dynamic (or universal) wedge that is mounted within the treatment head at an extended distance from the patient. Because of the combined effects of distance and shielding, the contralateral breast dose due to a medial tangent containing a dynamic wedge is expected to be less than that containing a conventional wedge. This paper presents contralateral breast dose (CBD) measurements performed on an anthropomorphic phantom with breast prostheses irradiated with 6 MV X rays from a linear accelerator equipped with a dynamic wedge. Doses were measured at 15 points within the contralateral breast prosthesis with thermoluminescent dosimeters. It was found that the contralateral breast dose per unit target breast dose decreases with the perpendicular distance from the posterior edge of the medial tangent to the dose measurement point and increases with effective wedge angle by factors ranging up to 2.8, in agreement with data presented earlier for a water phantom geometry. This dose elevation showed no statistically significant dependence (p less than 0.05) upon the perpendicular distance from the beam edge. Comparisons with data in the literature show that the contralateral breast dose increase by a dynamic wedge is typically only about half of that reported for a conventional wedge for the same wedge angle and distance from the beam.

  15. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  16. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal. PMID:11921807

  17. Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge

    NASA Astrophysics Data System (ADS)

    Cao, Guiming; Liu, Weihua; Cao, Meng; Li, Xin; Zhang, Anping; Wang, Xiaoli; Chen, Bangdao

    2016-07-01

    The transport property of a graphene wedge channel is studied theoretically and its leakage current through field emission is estimated when considering the effect of the internal electric field. The transconductance of the graphene transistor is improved from 0.016 to 0.321 μS μm‑1 when the graphene is folded into a wedge (with angle of wedge π/6 and radius curvature 2.7 nm at the tip), while the wedge height is much smaller than the space between the top-gate and the channel. The improved transconductance is due to the locally enhanced electric field, which results in a potential well and causes electron accumulation at the wedge tip. The leakage current through field emission J FE shows a super-linear increase with the channel conductive current J DS, where overall the electron supply for the field emission at the wedge tip is improved by the channel bias voltage V DS.

  18. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    PubMed

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  19. Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge

    NASA Astrophysics Data System (ADS)

    Cao, Guiming; Liu, Weihua; Cao, Meng; Li, Xin; Zhang, Anping; Wang, Xiaoli; Chen, Bangdao

    2016-07-01

    The transport property of a graphene wedge channel is studied theoretically and its leakage current through field emission is estimated when considering the effect of the internal electric field. The transconductance of the graphene transistor is improved from 0.016 to 0.321 μS μm-1 when the graphene is folded into a wedge (with angle of wedge π/6 and radius curvature 2.7 nm at the tip), while the wedge height is much smaller than the space between the top-gate and the channel. The improved transconductance is due to the locally enhanced electric field, which results in a potential well and causes electron accumulation at the wedge tip. The leakage current through field emission J FE shows a super-linear increase with the channel conductive current J DS, where overall the electron supply for the field emission at the wedge tip is improved by the channel bias voltage V DS.

  20. The Effects of a Lateral Wedge Insole on Knee and Ankle Joints During Slope Walking.

    PubMed

    Uto, Yuki; Maeda, Tetsuo; Kiyama, Ryoji; Kawada, Masayuki; Tokunaga, Ken; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Yoshimoto, Yoichi; Yone, Kazunori

    2015-12-01

    The purpose of this study was to determine whether a lateral wedge insole reduces the external knee adduction moment during slope walking. Twenty young, healthy subjects participated in this study. Subjects walked up and down a slope using 2 different insoles: a control flat insole and a 7° lateral wedge insole. A three-dimensional motion analysis system and force plate were used to examine the knee adduction moment, the ankle valgus moment, and the moment arm of the ground reaction force to the knee joint center in the frontal plane. The lateral wedge insole significantly decreased the moment arm of the ground reaction force, resulting in a reduction of the knee adduction moment during slope walking, similar to level walking. The reduction ratio of knee adduction moment by the lateral wedge insole during the early stance of up-slope walking was larger than that of level walking. Conversely, the lateral wedge insole increased the ankle valgus moment during slope walking, especially during the early stance phase of up-slope walking. Clinicians should examine the utilization of a lateral wedge insole for knee osteoarthritis patients who perform inclined walking during daily activity, in consideration of the load on the ankle joint. PMID:26252560

  1. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  2. Possible ice-wedge polygons and recent landscape modification by “wet” periglacial processes in and around the Argyre impact basin, Mars

    NASA Astrophysics Data System (ADS)

    Soare, R. J.; Conway, S. J.; Dohm, J. M.

    2014-05-01

    wet” gullies at the martian mid-latitudes is induced by the localised (slope-side and crater-wall) thaw of the underlying LDM at the gully sites themselves, then meltwater also should be available for ice-wedging and the formation of LCPs at these sites. Interestingly, LCPs are observed on gully-channel walls as expected if meltwater is associated with gully formation; however, in some instances the LCPs are also observed on the slope-side terrain that extends for hundreds of metres beyond the channel walls and even above the gully alcoves. This suggests that the distribution of icy terrain affected by thaw could be much more substantial than has been suggested hitherto. Second, LCPs that are identical in shape and scale to the slope-side LCPs are observed on relatively flat inter-crater terrain (also underlain by the LDM) that is distal from the “wet” gullies. By contrast, here, their distribution extends for kilometres. This too could be indicative of meltwater being more extensive in the regional landscape than most workers have thought possible. Third, on Earth the “dryness” or the “wetness” of a permafrost environment determines whether LCP margins are underlain by sand or by ice. When the observed LCPs and major deposits of sand in the study region are plotted on our new map of the Argyre impact-basin, we see that these deposits are rarely proximal. On the other hand, the LDM underlies the LCPs in all instances and, if modified by thaw, seems to be a likelier source of margin fill for the LCPs than sand.

  3. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2004-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  4. Modes of continental extension in a lithospheric wedge

    NASA Astrophysics Data System (ADS)

    Wu, G.; Lavier, L. L.; Choi, E.

    2014-12-01

    We studied extension of a lithospheric wedge as an approximation to an orogenic belt or a continental margin. We ran a series of numerical models to quantify the effects of the strength of the lower crust and a mid-crustal shear zone (MCSZ) on the extension processes. When the MCSZ is present, we found that the regional lower crustal flow plays a critical role in controlling the modes of extension. The compensation is long-wavelength when the lower crust flows from the highest to the lowest elevation in order to compensate upper crustal thinning. In response to this motion, the mantle flows towards the highest elevation in order to balance for the lower crust leaving the area under the highest topography. For weak (wet quartz regime with partial melting) or intermediate (wet quartz regime), or strong (dry quartz regime) lower crust, we recognized three predominantly decoupled modes of extension characterized by 1) significant lower crustal exhumation exemplified as a large massif, 2) formation of core complexes and detachment faults, and 3) distributive domino faulting, respectively. Without the MCSZ, however, the lower crustal flow is essentially subdued with predominantly coupled extension. For weak or intermediate, or strong lower crust, we recognized three coupled modes characterized by 1) localized generally symmetric crustal exhumation, 2) distributed grabens and narrow rifts, and 3) wide continental margins, respectively. The MCSZ controls the degree of decoupling of the lower crustal flow such that a frictionally stronger MCSZ does not change the behaviors of the models but results in a more distributed extension. Due to the long-wavelength compensation, subhorizontal Moho is achieved where intensive extension occurred for all the decoupled models with a MCSZ. Natural counterparts for each mode may be easily identified, for instance, in the Basin and Range or the Aegean.

  5. Grounding zone wedges, Kveithola Trough (NW Barents Sea)

    NASA Astrophysics Data System (ADS)

    Rebesco, Michele; Urgeles, Roger; Özmaral, Asli; Hanebuth, Till; Caburlotto, Andrea; Hörner, Tanja; Lantzsch, Hendrik; LLopart, Juame; Lucchi, Renata; Skøtt Nicolaisen, Line; Giacomo, Osti; Sabbatini, Anna; Camerlenghi, Angelo

    2014-05-01

    Swath bathymetry within Kveithola Trough (NW Barents Sea) shows a seafloor characterized by E-W trending megascale glacial lineations (MSGLs) overprinted by transverse Grounding Zone Wedges (GZWs), which give the trough a stair profile (Rebesco et al., 2011). GZWs are formed by deposition of subglacial till at temporarily stable ice-stream fronts in between successive episodic retreats (Rüther et al., 2012; Bjarnadóttir et al., 2012). Sub-bottom data show that present-day morphology is largely inherited from palaeo-seafloor topography of GZWs, which is draped by a deglacial to early Holocene glaciomarine sediments (about 15 m thick). The ice stream that produced such subglacial morphology was flowing from East to West inside Kveithola Trough during Last Glacial Maximum. Its rapid retreat was likely associated with progressive lift-offs, and successive rapid melting of the grounded ice, induced by the eustatic sea-level rise (Lucchi et al., 2013). References: Bjarnadóttir, L.R., Rüther, D.C., Winsborrow, M.C.M., Andreassen, K., 2012. Grounding-line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy. Boreas, 42, 84-107. Lucchi R.G., et al. 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola TMFs: impact of extreme glacimarine sedimentation. Global and Planetary Change, 111, 309-326. Rebesco, M., et al. 2011. Deglaciation of the Barents Sea Ice Sheet - a swath bathymetric and subbottom seismic study from the Kveitehola Trough. Marine Geology, 279, 141-14. Rüther, D.C., Bjarnadóttir, L.R., Junttila, J., Husum, K., Rasmussen, T.L., Lucchi, R.G., Andreassen, K., 2012. Pattern and timing of the north-western Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition. Boreas 41, 494-512.

  6. Saline Fluids in Subduction Channels and Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Kawamoto, T.; Hertwig, A.; Schertl, H. P.; Maresch, W. V.; Shigeno, M.; Mori, Y.; Nishiyama, T.

    2015-12-01

    Saline fluids can transport large-ion-lithophile elements and carbonate. Subduction-zone fluids contain salts with various amounts of NaCl equivalent similar to that of the present and/or Phanerozoic seawater (about 3.5 wt% NaCl). The salinity of aqueous fluids in the mantle wedge decreases from trench side to back-arc side, although available data have been limited. Such saline fluids from mantle peridotite underneath Pinatubo, a frontal volcano of the Luzon arc, contain 5.1 wt% NaCl equivalent and CO2 [Kawamoto et al., 2013 Proc Natl Acad Sci USA] and in Ichinomegeta, a rear-arc volcano of the Northeast Japan arc, contain 3.7 wt% NaCl equivalent and CO2 [Kumagai et al., Contrib Mineral Petrol 2014]. Abundances of chlorine and H2O in olivine-hosted melt inclusions also suggest that aqueous fluids to produce frontal basalts have higher salinity than rear-arc basalts in Guatemala arc [Walker et al., Contrib Mineral Petrol 2003]. In addition to these data, quartz-free jadeitites contain fluid inclusions composed of aqueous fluids with 7 wt% NaCl equivalent and quartz-bearing jadeitite with 4.6 wt% NaCl equivalent in supra-subduction zones in Southwest Japan [Mori et al., 2015, International Eclogite Conference] and quartz-bearing jadeitite and jadeite-rich rocks contain fluid inclusions composed of aqueous fluids with 4.2 wt% NaCl equivalent in Rio San Juan Complex, Dominica Republic [Kawamoto et al., 2015, Goldschmidt Conference]. Aqueous fluids generated at pressures lower than conditions for albite=jadeite+quartz occurring at 1.5 GPa, 500 °C may contain aqueous fluids with higher salinity than at higher pressures.

  7. Investigation of Acoustical Shielding by a Wedge-Shaped Airframe

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.; Dunn, Mark H.; Tweed, John

    2006-01-01

    Experiments on a scale model of an advanced unconventional subsonic transport concept, the Blended Wing Body (BWB), have demonstrated significant shielding of inlet-radiated noise. A computational model of the shielding mechanism has been developed using a combination of boundary integral equation method (BIEM) and equivalent source method (ESM). The computation models the incident sound from a point source in a nacelle and determines the scattered sound field. In this way the sound fields with and without the airfoil can be estimated for comparison to experiment. An experimental test bed using a simplified wedge-shape airfoil and a broadband point noise source in a simulated nacelle has been developed for the purposes of verifying the analytical model and also to study the effect of engine nacelle placement on shielding. The experimental study is conducted in the Anechoic Noise Research Facility at NASA Langley Research Center. The analytic and experimental results are compared at 6300 and 8000 Hz. These frequencies correspond to approximately 150 Hz on the full scale aircraft. Comparison between the experimental and analytic results is quite good, not only for the noise scattering by the airframe, but also for the total sound pressure in the far field. Many of the details of the sound field that the analytic model predicts are seen or indicated in the experiment, within the spatial resolution limitations of the experiment. Changing nacelle location produces comparable changes in noise shielding contours evaluated analytically and experimentally. Future work in the project will be enhancement of the analytic model to extend the analysis to higher frequencies corresponding to the blade passage frequency of the high bypass ratio ducted fan engines that are expected to power the BWB.

  8. Flow Pattern relative to the Substorm Current Wedge

    NASA Astrophysics Data System (ADS)

    Chu, X.; McPherron, R. L.; Hsu, T.

    2013-12-01

    Magnetospheric substorms play a key role in the coupling of the solar wind and the magnetosphere. The Substorm Current Wedge (SCW) is a key element in the present physical model of substorms. It is widely accepted that the SCW is created by earthward busty flows, but the generation mechanism is still unknown. Previous studies suggest pressure gradients and magnetic vortices are possible candidates. Due to the sparse coverage of satellites in space, these studies were strongly dependent on the assumption that the satellites were in the generation region of the field-aligned currents (FAC) forming the SCW. In this work, we take advantage of an inversion technique that determines the parameters describing the SCW and perform a statistical study on the plasma and magnetic field parameters of the flow pattern relative to the SCW. The inversion technique finds the location and the intensity of the SCW from midlatitude magnetic data. The technique has been validated using auroral observations, Equivalent Ionospheric Currents (EIC), SYM-H index from SuperMAG, and magnetic perturbations at geosynchronous orbit by the GOES satellite. A database of substorm events has been created using midlatitude positive bays, which are the ground signature of the SCW at lower latitudes. The inversion technique is applied to each event in the database to determine the location of the origin of the SCW. The inversion results are also used to find conjunction events with space observations from VAP (RBSP), THEMIS and GOES. The plasma and magnetic field parameters such as the pressure gradient and magnetic vorticity are then categorized as a function of their location relative to the origin of the SCW. How the distribution/pattern of the pressure gradient and vorticity are related to the properties of the SCW (locations and intensity of the FAC), and flows (entropy, velocity and density) will be determined.

  9. Flow bursts, breakup arc, and substorm current wedge

    NASA Astrophysics Data System (ADS)

    Haerendel, Gerhard

    2015-04-01

    Energy liberated by the reconnection process in the near-Earth tail is transported via flow bursts toward the dipolar magnetosphere during substorms. The breakup arc is a manifestation of the arrival of the bursts under flow braking and energy deposition. Its structure and behavior is analyzed on the basis of five striking spatial, temporal, and energetic properties, qualitatively and in part also quantitatively. A key element is the formation of stop layers. They are thin layers, of the width of an ion gyro radius, in which the magnetic field makes a transition from tail to near-dipolar magnetosphere configurations and in which the kinetic energy of fast flows is converted into electromagnetic energy of kinetic Alfvén waves. The flows arise from the relaxation of the strong magnetic shear stresses in the leading part of the flow bursts. The bright narrow arcs of less than 10 km width inside the broad poleward expanding breakup arc, Alfvénic in nature and visually characterized by erratic short-lived rays, are seen as traces of the stop layers. The gaps between two narrow and highly structured arcs are filled with more diffuse emissions. They are attributed to the relaxation of the less strained magnetic field of the flow bursts. Eastward flows along the arcs are linked to the shrinking gaps between two successive arcs and the entry of auroral streamers into the dipolar magnetosphere in the midnight sector. Flow braking in the stop layers forms multiple pairs of narrow balanced currents and cannot be behind the formation of the substorm current wedge. Instead, its origin is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the high-beta plasma, after the high magnetic shears have relaxed and the fast flows and stop layer process have subsided, in other words, to the "dying flow bursts."

  10. Discrete dislocation plasticity analysis of the wedge indentation of films

    NASA Astrophysics Data System (ADS)

    Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van der Giessen, E.

    2006-11-01

    The plane strain indentation of single crystal films on a rigid substrate by a rigid wedge indenter is analyzed using discrete dislocation plasticity. The crystals have three slip systems at ±35.3∘ and 90∘ with respect to the indentation direction. The analyses are carried out for three values of the film thickness, 2, 10 and 50 μm, and with the dislocations all of edge character modeled as line singularities in a linear elastic material. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated through a set of constitutive rules. Over the range of indentation depths considered, the indentation pressure for the 10 and 50 μm thick films decreases with increasing contact size and attains a contact size-independent value for contact lengths A>4 μm. On the other hand, for the 2 μm films, the indentation pressure first decreases with increasing contact size and subsequently increases as the plastic zone reaches the rigid substrate. For the 10 and 50 μm thick films sink-in occurs around the indenter, while pile-up occurs in the 2 μm film when the plastic zone reaches the substrate. Comparisons are made with predictions obtained from other formulations: (i) the contact size-independent indentation pressure is compared with that given by continuum crystal plasticity; (ii) the scaling of the indentation pressure with indentation depth is compared with the relation proposed by Nix and Gao [1998. Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 43, 411-423]; and (iii) the computed contact area is compared with that obtained from the estimation procedure of Oliver and Pharr [1992. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564-1583].

  11. Paleobiology of the Sand Beneath the Valders Diamicton at Valders, Wisconsin

    USGS Publications Warehouse

    Maher, L.J.; Miller, N.G.; Baker, R.G.; Curry, B. Brandon; Mickelson, D.M.

    1998-01-01

    Previously undescribed pollen, plant macrofossils, molluscs, and ostracodes were recovered from a 2.5-m-thick glaciolacustrine unit of silty sand and clay at Valders, Wisconsin. The interstadial sediment was deposited about 12,200 14C yr B.P. after retreat of the Green Bay lobe that deposited diamicton of the Horicon Formation, and before advance of the Lake Michigan lobe that deposited the red-brown diamicton of the Valders Member of the Kewaunee Formation. Fluctuations of abundance of Candona subtriangulata, Cytherissa lacustris, and three other species define four ostracode biozones in the lower 1.7 m, suggesting an open lake environment that oscillated in depth and proximity to glacial ice. Pollen is dominated by Picea and Artemisia, but the low percentages of many other types of longdistance origin suggest that the terrestrial vegetation was open and far from the forest border. The upper part of the sediment, a massive sand deposited in either a shallow pond or a sluggish stream, contains a local concentration of plant macrofossils. The interpretation of a cold open environment is supported by the plant macrofossils of more than 20 species, dominated by those of open mineral soils (Arenaria rubella, Cerastium alpinum type, Silene acaulis, Sibbaldia procumbens, Dryas integrifolia, Vaccinium uliginosum var. alpinum, Armeria maritima, etc.) that in North America occur largely in the tundra and open tundra-forest ecotone of northern Canada. Ice-wedge casts occur in the sand. ?? 1998 University of Washington.

  12. Paleobiology of the Sand Beneath the Valders Diamicton at Valders, Wisconsin

    NASA Astrophysics Data System (ADS)

    Maher, Louis J.; Miller, Norton G.; Baker, Richard G.; Curry, B. Brandon; Mickelson, David M.

    1998-03-01

    Previously undescribed pollen, plant macrofossils, molluscs, and ostracodes were recovered from a 2.5-m-thick glaciolacustrine unit of silty sand and clay at Valders, Wisconsin. The interstadial sediment was deposited about 12,200 14C yr B.P. after retreat of the Green Bay lobe that deposited diamicton of the Horicon Formation, and before advance of the Lake Michigan lobe that deposited the red-brown diamicton of the Valders Member of the Kewaunee Formation. Fluctuations of abundance of Candona subtriangulata, Cytherissa lacustris,and three other species define four ostracode biozones in the lower 1.7 m, suggesting an open lake environment that oscillated in depth and proximity to glacial ice. Pollen is dominated by Piceaand Artemisia,but the low percentages of many other types of long-distance origin suggest that the terrestrial vegetation was open and far from the forest border. The upper part of the sediment, a massive sand deposited in either a shallow pond or a sluggish stream, contains a local concentration of plant macrofossils. The interpretation of a cold open environment is supported by the plant macrofossils of more than 20 species, dominated by those of open mineral soils ( Arenaria rubella, Cerastium alpinumtype, Silene acaulis, Sibbaldia procumbens, Dryas integrifolia, Vaccinium uliginosumvar. alpinum, Armeria maritima,etc.) that in North America occur largely in the tundra and open tundra-forest ecotone of northern Canada. Ice-wedge casts occur in the sand.

  13. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology

  14. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  15. Oncologic Safety of Laparoscopic Wedge Resection with Gastrotomy for Gastric Gastrointestinal Stromal Tumor: Comparison with Conventional Laparoscopic Wedge Resection

    PubMed Central

    Lee, Sejin; Kim, You Na; Kim, Hyoung-Il; Cheong, Jae-Ho; Hyung, Woo Jin; Noh, Sung Hoon

    2015-01-01

    Purpose Various laparoscopic wedge resection (LWR) techniques requiring gastrotomy for gastrointestinal stromal tumors (GISTs) of the stomach have been applied to facilitate tumor resection and preserve the remnant gastric volume. However, there is the possibility of cancer cell dissemination during these procedures. The aim of this study was to assess the oncologic safety of LWR with gastrotomy (LWR-G) compared to LWR without luminal exposure. Materials and Methods Clinicopathologic and operative results of 193 patients who underwent LWR for gastric GIST were retrospectively analyzed from 2003 to 2013. We stratified the patients into two groups: LWR-G and LWR without gastrotomy (LWR-C). Clinicopathologic features, short-term outcomes, and long-term outcomes were compared. Results A total of 26 patients underwent LWR-G, and 167 patients underwent LWR-C. The LWR-G group showed significantly more anterior wall-located (n=10, 38.5%), intraluminal (n=20, 76.9%), and ulcerative (n=13, 50.0%) tumors than the LWR-C group (n=33, 19.8%; n=96, 57.5%; n=46, 27.5%, respectively). Postoperative short-term outcomes did not differ between the two groups. When tumor staging was compared, no statistical difference was noted. There was no recurrence in the LWR-G group, while 2 patients in the LWR-C group experienced recurrence. The two recurrences in the LWR-C group were found in the liver and in the remnant stomach at 63 and 12 months after the operation, respectively. No gastric GIST-related death was recorded in any group during the study period. Conclusions LWR-G for gastric GIST is an oncologically safe procedure even for masses with ulcerations. PMID:26819802

  16. Process Based Explanations for Correlations Between the Structural and Seismic Segmentation of the Cascadia Subduction Wedge

    NASA Astrophysics Data System (ADS)

    Fuller, C. W.; Brandon, M. T.; Willett, S. D.

    2006-12-01

    Variations in the geological and geophysical characteristics of the Cascadia subduction wedge, the region between the trench and arc, result in along-strike wedge segmentation. We focus on explaining the large-scale structural segmentation and how processes causing this segmentation influence segmentation with respect to the seismic behavior of the wedge and subduction thrust. The relationships we develop illustrate the fundamental interplay of processes controlling long-term structure and short-term seismic behavior. Our conclusions are based on the results of numerical models designed to simulate the growth and evolution of the Cascadia subduction wedge through the accretion of a thin layer of sediment to the basaltic Coast Range Terrane (CRT) of the Cascadia margin. Two aspects of wedge structural segmentation are of interest: (1) segmentation with respect to the location or absence of large, continental shelf, forearc basins, and (2) segmentation with respect to the Coastal Range (CR) structural high. Our models illustrate that the form of the submarine portion of the Cascadia wedge, including the basins or lack thereof, is a consequence of the frictional behavior of this region of wedge, subduction thrust strength, wedge strength, and dip thrust. We propose that basin segments have stronger wedge material, a weaker thrust, or a steeper thrust than basin free segments. The presence of basins is significant because they stabilize the margin and prevent subduction and accretion related deformation. This stabilization allows the thrust to preferentially support thermally induced, fluid overpressures and undergo fault healing thus increasing the likelihood of large coseismic slip within basin segments. While no historical earthquake data supporting this argument exists for Cascadia, such behavior has been observed in many margins (Song and Simons, 2003; Wells et al., 2003). It is reasonable to assume that large earthquakes in Cascadia will have the same association

  17. [Environmental toxicity of waste foundry sand].

    PubMed

    Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying

    2013-03-01

    The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed. PMID:23745431

  18. [Environmental toxicity of waste foundry sand].

    PubMed

    Zhang, Hai-Feng; Wang, Yu-Jue; Wang, Jin-Lin; Huang, Tian-You; Xiong, Ying

    2013-03-01

    The metal leaching characteristics and volatile organic compounds (VOCs) of five different types of waste foundry sands were analyzed with the toxicity characteristic leaching procedure (TCLP) and head space-gas chromatography (HS-GC). Microtox and soil dehydrogenase activity (DHA) tests were then used to evaluate the bio-effects of these waste sands. The results showed that due to the different metals poured and casting materials used to make the sand molds, there was significant difference among the five waste foundry sands in the compositions and concentrations of metal and organic pollutants. The concentrations of Fe in the leachates of iron and steel casting waste foundry sand exceeded the maximal allowable concentrations specified in the National Standard of Drinking Water Quality, whereas the As concentration in the leachate of aluminum casting waste foundry sand exceeded the standard. The five waste foundry sands had quite different compositions and levels of VOCs, which resulted in different levels of inhibition effects on the luminescent bacteria (30% and 95%). Additionally, the soil DHA tests suggested that metal pollutants in waste foundry sands may inhibit the soil microbial activity, whereas organics in the sands may slightly promote the microbial activity. The results of this study indicated that the waste foundry sands may pose considerable threat to the environment when improperly disposed.

  19. Sediment-starved sand ridges on a mixed carbonate/siliciclastic inner shelf off west-central Florida

    USGS Publications Warehouse

    Harrison, S.E.; Locker, S.D.; Hine, A.C.; Edwards, J.H.; Naar, D.F.; Twichell, D.C.; Mallinson, D.J.

    2003-01-01

    High-resolution side-scan mosaics, sediment analyses, and physical process data have revealed that the mixed carbonate/siliciclastic, inner shelf of west-central Florida supports a highly complex field of active sand ridges mantled by a hierarchy of bedforms. The sand ridges, mostly oriented obliquely to the shoreline trend, extend from 2 km to over 25 km offshore. They show many similarities to their well-known counterparts situated along the US Atlantic margin in that both increase in relief with increasing water depth, both are oriented obliquely to the coast, and both respond to modern shelf dynamics. There are significant differences in that the sand ridges on the west-central Florida shelf are smaller in all dimensions, have a relatively high carbonate content, and are separated by exposed rock surfaces. They are also shoreface-detached and are sediment-starved, thus stunting their development. Morphological details are highly distinctive and apparent in side-scan imagery due to the high acoustic contrast. The seafloor is active and not a relict system as indicated by: (1) relatively young AMS 14C dates (< 1600 yr BP) from forams in the shallow subsurface (1.6 meters below seafloor), (2) apparent shifts in sharply distinctive grayscale boundaries seen in time-series side-scan mosaics, (3) maintenance of these sharp acoustic boundaries and development of small bedforms in an area of constant and extensive bioturbation, (4) sediment textural asymmetry indicative of selective transport across bedform topography, (5) morphological asymmetry of sand ridges and 2D dunes, and (6) current-meter data indicating that the critical threshold velocity for sediment transport is frequently exceeded. Although larger sand ridges are found along other portions of the west-central Florida inner shelf, these smaller sand ridges are best developed seaward of a major coastal headland, suggesting some genetic relationship. The headland may focus and accelerate the N-S reversing

  20. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames

    PubMed Central

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Objective Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Methods Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. Results There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. Conclusion The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment. PMID:26397375

  1. Climate adaptation wedges: a case study of premium wine in the western United States

    SciTech Connect

    Diffenbaugh, Noah; White, Michael A; Jones, Gregory V; Ashfaq, Moetasim

    2011-01-01

    Design and implementation of effective climate change adaptation activities requires quantitative assessment of the impacts that are likely to occur without adaptation, as well as the fraction of impact that can be avoided through each activity. Here we present a quantitative framework inspired by the greenhouse gas stabilization wedges of Pacala and Socolow. In our proposed framework, the damage avoided by each adaptation activity creates an 'adaptation wedge' relative to the loss that would occur without that adaptation activity. We use premium winegrape suitability in the western United States as an illustrative case study, focusing on the near-term period that covers the years 2000 39. We find that the projected warming over this period results in the loss of suitable winegrape area throughout much of California, including most counties in the high-value North Coast and Central Coast regions. However, in quantifying adaptation wedges for individual high-value counties, we find that a large adaptation wedge can be captured by increasing the severe heat tolerance, including elimination of the 50% loss projected by the end of the 2030 9 period in the North Coast region, and reduction of the projected loss in the Central Coast region from 30% to less than 15%. Increased severe heat tolerance can capture an even larger adaptation wedge in the Pacific Northwest, including conversion of a projected loss of more than 30% in the Columbia Valley region of Washington to a projected gain of more than 150%. We also find that warming projected over the near-term decades has the potential to alter the quality of winegrapes produced in the western US, and we discuss potential actions that could create adaptation wedges given these potential changes in quality. While the present effort represents an initial exploration of one aspect of one industry, the climate adaptation wedge framework could be used to quantitatively evaluate the opportunities and limits of climate adaptation

  2. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A "basic" solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and "basic" boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  3. Measured Hydrologic Storage Characteristics of Three Major Ice Wedge Polygon Types, Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Chamberlain, A. J.; Liljedahl, A.; Wilson, C. J.; Cable, W.; Romanovsky, V. E.

    2014-12-01

    Model simulations have suggested that the hydrologic fluxes and stores of Arctic wetlands are constrained by the micro-topographical features of ice wedge polygons, which are abundant in lowland tundra landscapes. Recently observed changes in ice wedge polygon landscapes - in particular, ice wedge degradation and trough formation - emphasize the need to better understand how differing ice wedge polygon morphologies affect the larger hydrologic system. Here we present three seasons of measured end-of-winter snow accumulation, continuous soil moisture and water table elevations, and repeated frost table mapping. Together, these describe the hydrologic characteristics of three main ice wedge polygon types: low centered polygons with limited trough development (representative of a ~500 year old vegetated drained thaw lake basin), and low- and high-centered polygons with well-defined troughs. Dramatic spatiotemporal variability exists both between polygon types and between the features of an individual polygon (e.g. troughs, centers, rims). Landscape-scale end-of-winter snow water equivalent is similar between polygon types, while the sub-polygon scale distribution of the surface water differs, both as snow and as ponded water. Some sub-polygon features appear buffered against large variations in water levels, while others display periods of prolonged recessions and large responses to rain events. Frost table elevations in general mimic the ground surface topography, but with spatiotemporal variability in thaw rate. The studied thaw seasons represented above long-term average rainfall, and in 2014, record high June precipitation. Differing ice wedge polygon types express dramatically different local hydrology, despite nearly identical climate forcing and landscape-scale snow accumulation, making ice wedge polygons an important component when describing the Arctic water, nutrient and energy system.

  4. Establishment of a coastal fish in the Azores: recent colonisation or sudden expansion of an ancient relict population?

    PubMed

    Stefanni, S; Castilho, R; Sala-Bozano, M; Robalo, J I; Francisco, S M; Santos, R S; Marques, N; Brito, A; Almada, V C; Mariani, S

    2015-12-01

    The processes and timescales associated with ocean-wide changes in the distribution of marine species have intrigued biologists since Darwin's earliest insights into biogeography. The Azores, a mid-Atlantic volcanic archipelago located >1000 km off the European continental shelf, offers ideal opportunities to investigate phylogeographic colonisation scenarios. The benthopelagic sparid fish known as the common two-banded seabream (Diplodus vulgaris) is now relatively common along the coastline of the Azores archipelago, but was virtually absent before the 1990 s. We employed a multiple genetic marker approach to test whether the successful establishment of the Azorean population derives from a recent colonisation from western continental/island populations or from the demographic explosion of an ancient relict population. Results from nuclear and mtDNA sequences show that all Atlantic and Mediterranean populations belong to the same phylogroup, though microsatellite data indicate significant genetic divergence between the Azorean sample and all other locations, as well as among Macaronesian, western Iberian and Mediterranean regions. The results from Approximate Bayesian Computation indicate that D. vulgaris has likely inhabited the Azores for ∼ 40 (95% confidence interval (CI): 5.5-83.6) to 52 (95% CI: 6.32-89.0) generations, corresponding to roughly 80-150 years, suggesting near-contemporary colonisation, followed by a more recent demographic expansion that could have been facilitated by changing climate conditions. Moreover, the lack of previous records of this species over the past century, together with the absence of lineage separation and the presence of relatively few private alleles, do not exclude the possibility of an even more recent colonisation event. PMID:26174025

  5. Active and relict sea-floor hydrothermal mineralization at the TAG hydrothermal field, Mid-Atlantic Ridge

    SciTech Connect

    Rona, P.A. . Atlantic Oceanographic and Meteorological Labs.); Hannington, M.D. ); Raman, C.V. ); Thompson, G.; Tivey, M.K.; Humphris, S.E. ); Lalou, C. . Lab. CNRS-CEA); Petersen, S. Aachen Univ. of Technology )

    1993-12-01

    The TAG hydrothermal field is a site of major active and inactive volcanic-hosted hydrothermal mineralization in the rift valley of the slow-spreading Mid-Atlantic Ridge at 26[degree]N. The axial high is the principal locus of present magmatic intrusions. The TAG field contains three main areas of present and past hydrothermal activity: (1) an actively venting high-temperature sulfide mound; (2) two former high-temperature vent areas; (3) a zone of low-temperature venting and precipitation of Fe and Mn oxide deposits. The volcanic centers occur at the intersections between ridge axis-parallel normal faults and projected axis-transverse transfer faults. The intersections of these active fault systems may act as conduits both for magmatic intrusions from sources beneath the axial high that build the volcanic centers and for hydrothermal upwelling that taps the heat sources. Radiometric dating of sulfide samples and manganese crusts in the hydrothermal zones and dating of sediments intercalated with pillow lava flows in the volcanic center adjacent to the active sulfide mound indicate multiple episodes of hydrothermal activity throughout the field driven by heat supplied by episodic intrusions over a period of at least 140 [times] 10[sup 3] yr. The sulfide deposits are built by juxtaposition and superposition during relatively long residence times near episodic axial heat sources counterbalanced by mass wasting in the tectonically active rift valley of the slow-spreading oceanic ridge. Hydrothermal reworking of a relict hydrothermal zone by high-temperature hydrothermal episodes has recrystallized sulfides and concentrated the first visible primary gold reported in a deposit at an oceanic ridge.

  6. Vesicles Bearing Toxoplasma Apicoplast Membrane Proteins Persist Following Loss of the Relict Plastid or Golgi Body Disruption

    PubMed Central

    Bouchut, Anne; Geiger, Jennifer A.; DeRocher, Amy E.; Parsons, Marilyn

    2014-01-01

    Toxoplasma gondii and malaria parasites contain a unique and essential relict plastid called the apicoplast. Most apicoplast proteins are encoded in the nucleus and are transported to the organelle via the endoplasmic reticulum (ER). Three trafficking routes have been proposed for apicoplast membrane proteins: (i) vesicular trafficking from the ER to the Golgi and then to the apicoplast, (ii) contiguity between the ER membrane and the apicoplast allowing direct flow of proteins, and (iii) vesicular transport directly from the ER to the apicoplast. Previously, we identified a set of membrane proteins of the T. gondii apicoplast which were also detected in large vesicles near the organelle. Data presented here show that the large vesicles bearing apicoplast membrane proteins are not the major carriers of luminal proteins. The vesicles continue to appear in parasites which have lost their plastid due to mis-segregation, indicating that the vesicles are not derived from the apicoplast. To test for a role of the Golgi body in vesicle formation, parasites were treated with brefeldin A or transiently transfected with a dominant-negative mutant of Sar1, a GTPase required for ER to Golgi trafficking. The immunofluorescence patterns showed little change. These findings were confirmed using stable transfectants, which expressed the toxic dominant-negative sar1 following Cre-loxP mediated promoter juxtaposition. Our data support the hypothesis that the large vesicles do not mediate the trafficking of luminal proteins to the apicoplast. The results further show that the large vesicles bearing apicoplast membrane proteins continue to be observed in the absence of Golgi and plastid function. These data raise the possibility that the apicoplast proteome is generated by two novel ER to plastid trafficking pathways, plus the small set of proteins encoded by the apicoplast genome. PMID:25369183

  7. Rock-magnetic and geochemical characteristics of relict Vertisols—signs of past climate and recent pedogenic development

    NASA Astrophysics Data System (ADS)

    Jordanova, Neli; Jordanova, Diana

    2016-06-01

    Rock-magnetic and geochemical characteristics of three Vertisol profiles with different degree of textural differentiation have been studied. Thermomagnetic analyses, thermal demagnetization of laboratory remanences and acquisition of isothermal remanence curves are applied for identification of iron oxide mineralogy. The main magnetic minerals in Vertisols are ferrihydrite, single-domain magnetite, maghemite and hematite. Variations in magnetic susceptibility, anhysteretic remanent magnetization, isothermal remanent magnetization, as well as different ratios (Xarm/X, ARM/SIRM, S-ratio) along depth are studied. Concentration of magnetic minerals in Vertisols is low, influenced by the intense reductomorphic processes. The lowest magnetic susceptibility is found in the most texturally differentiated soil. However, rock-magnetic data suggest the presence of small, but well defined fraction of single domain-like magnetite with relatively wide grain-size distribution found in those parts of the profiles, which are subjected to most intense and frequent seasonal changes in oxidation-reduction conditions. It is suggested that this fraction is formed as a result of transformations of ferrihydrite under repeated cycles of anaerobic/aerobic conditions. Based on geochemical data, CALMAG weathering index was calculated for the three Vertisols. Using the established relation between CALMAG and mean annual precipitation (MAP), palaeo-MAP was evaluated for the studied profiles. The obtained MAP estimations fall in the range 1000-1200 mm and are much higher compared to contemporary precipitation in the area (MAP in the interval 540-770 mm). This finding confirms the relict character of Vertisols on Bulgarian territory and gives more information about the palaeoclimate during the initial stages of Vertisol formation.

  8. Establishment of a coastal fish in the Azores: recent colonisation or sudden expansion of an ancient relict population?

    PubMed Central

    Stefanni, S; Castilho, R; Sala-Bozano, M; Robalo, J I; Francisco, S M; Santos, R S; Marques, N; Brito, A; Almada, V C; Mariani, S

    2015-01-01

    The processes and timescales associated with ocean-wide changes in the distribution of marine species have intrigued biologists since Darwin's earliest insights into biogeography. The Azores, a mid-Atlantic volcanic archipelago located >1000 km off the European continental shelf, offers ideal opportunities to investigate phylogeographic colonisation scenarios. The benthopelagic sparid fish known as the common two-banded seabream (Diplodus vulgaris) is now relatively common along the coastline of the Azores archipelago, but was virtually absent before the 1990s. We employed a multiple genetic marker approach to test whether the successful establishment of the Azorean population derives from a recent colonisation from western continental/island populations or from the demographic explosion of an ancient relict population. Results from nuclear and mtDNA sequences show that all Atlantic and Mediterranean populations belong to the same phylogroup, though microsatellite data indicate significant genetic divergence between the Azorean sample and all other locations, as well as among Macaronesian, western Iberian and Mediterranean regions. The results from Approximate Bayesian Computation indicate that D. vulgaris has likely inhabited the Azores for ∼40 (95% confidence interval (CI): 5.5–83.6) to 52 (95% CI: 6.32–89.0) generations, corresponding to roughly 80–150 years, suggesting near-contemporary colonisation, followed by a more recent demographic expansion that could have been facilitated by changing climate conditions. Moreover, the lack of previous records of this species over the past century, together with the absence of lineage separation and the presence of relatively few private alleles, do not exclude the possibility of an even more recent colonisation event. PMID:26174025

  9. Distribution of lithium in the Cordilleran Mantle wedge

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Jean, M. M.; Seitz, H. M.

    2015-12-01

    Enriched fluid-mobile element (i.e., B, Li, Be) concentrations in peridotites from the Coast Range ophiolite are compelling evidence that this ophiolite originated in a subduction environment. A new method presented in Shervais and Jean (2012) for modeling the fluid enrichment process, represents the total addition of material to the mantle wedge source region and can be applied to any refractory mantle peridotite that has been modified by melt extraction and/or metasomatism. Although the end-result is attributed to an added flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab, in the range of tens of parts per million - the nature and composition of this fluid could not be constrained. To address fluid(s) origins, we have analyzed Li isotopes in bulk rock peridotite and eclogite, and garnet separates, to identify possible sources, and fluid flow mechanisms and pathways. Bulk rock Li abundances of CRO peridotites (δ7Li = -14.3 to 5.5‰; 1.9-7.5 ppm) are indicative of Li addition and δ7Li-values are lighter than normal upper mantle values. However, Li abundances of clino- and orthopyroxene appear to record different processes operating during the CRO-mantle evolution. Low Li abundances in orthopyroxene (<1 ppm) suggest depletion via partial melting, whereas high concentrations in clinopyroxenes (>2 ppm) record subsequent interaction with Li-enriched fluids (or melts). The preferential partitioning of lithium in clinopyroxene could be indicative of a particular metasomatic agent, e.g., fluids from a dehydrating slab. Future in-situ peridotite isotope studies via laser ablation will further elucidate the fractionation of lithium between orthopyroxene, clinopyroxene, and serpentine. To obtain a more complete picture of the slab to arc transfer processes, we also measured eclogites and garnet separates to δ7Li= -18 to 3.5‰ (11.5-32.5 ppm) and δ7Li= 1.9 to 11.7‰ (0.7-3.9 ppm), respectively. In connection with previous studies focused

  10. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.

  11. Petrology and provenance of modern sands from Cascade Range Forearc and Canadian Rocky Mountain fold-thrust belt

    SciTech Connect

    Kretchmer, A.G.; Ingersoll, R.V.

    1987-05-01

    The Cascade Range volcanic arc and forearc, and the Canadian Rocky Mountain fold-thrust belt represent the two sides of a continental margin arc-trench system. Sands from these areas show clear compositional differences. The most significant discriminating parameters are volcanic lithic grains, metamorphic lithic grains, plagioclase-to-feldspar ratio, and quartz. Variable sediment composition is also evident within each setting. Cascade sands are volcaniclastic and have high plagioclase-to-feldspar ratios. They divide into three categories (volcanic arc, alluvial forearc, and coastal forearc) that differ in their lithic contents and plagioclase-to-feldspar ratios. These changes reflect the attrition of volcanic lithics with distance from the arc and the input of recycled sediment and subduction-complex lithologies. Rocky Mountain sands are sedimenticlastic. They are of two types, a miogeocline-shelf provenance and a clastic-wedge provenance. These linear belts differ in clastic-carbonate content, plagioclase-to-feldspar ratio, and quartz content. The compositional differences reflect interstratified petrofacies of fold-thrust belts. Just as they can use detrital modes of modern sands to characterize provenance and tectonic setting, modes of ancient sandstones help up to recognize provenance terranes and reconstruct paleotectonic settings.

  12. Characterizing and configuring motorized wedge for a new generation telecobalt machine in a treatment planning system.

    PubMed

    Kinhikar, Rajesh A; Sharma, Smriti; Upreti, Rituraj; Tambe, Chandrashekhar M; Deshpande, Deepak D

    2007-01-01

    A new generation telecobalt unit, Theratron Equinox-80, (MDS Nordion, Canada) has been evaluated. It is equipped with a single 60-degree motorized wedge (MW), four universal wedges (UW) for 15°, 30°, 45° and 60°. MW was configured in Eclipse (Varian, Palo Alto, USA) 3D treatment planning system (TPS). The profiles and central axis depth doses (CADD) were measured with radiation field analyzer blue water phantom for MW. These profiles and CADD for MW were compared with UW in a homogeneous phantom generated in Eclipse for various field sizes. The absolute dose was measured for a field size of 10 × 10 cm2 only in a MEDTEC water phantom at 10 cm depth with a 0.13 cc thimble ion chamber (Scanditronix Wellhofer, Uppsala, Sweden) and a NE electrometer (Nuclear Enterprises, UK). Measured dose with ion chamber was compared with the TPS predicted dose. MW angle was verified on the Equinox for four angles (15°, 30°, 45° and 60°). The variation in measured and calculated dose at 10 cm depth was within 2%. The measured and the calculated wedge angles were in well agreement within 2°. The motorized wedges were successfully configured in Eclipse for four wedge angles. PMID:21217916

  13. Investigation of turbulent wedges generated by different single surface roughness elements

    NASA Astrophysics Data System (ADS)

    Traphan, Dominik; Meinlschmidt, Peter; Lutz, Otto; Peinke, Joachim; Gülker, Gerd

    2013-11-01

    It is known that small faults on rotor blades of wind turbines can cause significant power loss. In order to better understand the governing physical effects, in this experimental study, the formation of a turbulent wedge over a flat plate induced by single surface roughness elements is under investigation. The experiments are performed at different ambient pressure gradients, thus allowing conclusions about the formation of a turbulent wedge over an airfoil. With respect to typical initial faults on operating airfoils, the roughness elements are modified in both size and shape (raised or recessed). None intrusive experimental methods, such as stereoscopic PIV and LDA, enable investigations based on temporally and spatially highly resolved velocity measurements. In this way, a spectral analysis of the turbulent boundary layer is performed and differences in coherent structures within the wedge are identified. These findings are correlated with global measurements of the wedge carried out by infrared thermography. This correlation aims to enable distinguishing the cause and main properties of a turbulent wedge by the easy applicable method of infrared thermography, which is of practical relevance in the field of condition monitoring of wind turbines.

  14. Effect of Shockwave Curvature on Run Distance Observed with a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2011-06-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various thicknesses of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the introduced shock would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor thickness via different widths of PMMA spacers placed between the donor and the wedge. A framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm thick donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  15. Effect of shockwave curvature on run distance observed with a modified wedge test

    NASA Astrophysics Data System (ADS)

    Lee, Richard; Dorgan, Robert J.; Sutherland, Gerrit; Benedetta, Ashley; Milby, Christopher

    2012-03-01

    The effect of wave curvature on shock initiation in PBXN-110 was investigated using a modified wedge test configuration. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with line-wave generators so that the shock from the donor would be the same shape, magnitude and duration across the entire input surface of the wedge. The shock parameters were varied for a given donor with PMMA spacers placed between the donor and the wedge sample. A high-speed electronic framing camera was used to observe where initiation occurred along the face of the wedge. Initiation always occurred at the center of the shock front instead of along the sides like that reported by others using a much smaller test format. Results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distance predicted in CTH for a 50.8 mm wide donor slab (low curvature) compared favorably with experimental results. However, results from thinner donor slabs (higher curvature) indicate a more sensitive behavior than the simulations predicted.

  16. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  17. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    NASA Astrophysics Data System (ADS)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  18. Interaction of disturbances with an oblique detonation wave attached to a wedge

    NASA Technical Reports Server (NTRS)

    Lasseigne, D. G.; Hussaini, M. Y.

    1992-01-01

    The linear response of an oblique overdriven detonation to impose free stream disturbances or to periodic movements of the wedge is examined. The free stream disturbances are assumed to be steady vorticity waves and the wedge motions are considered to be time periodic oscillations either about a fixed pivot point or along the plane of symmetry of the wedge aligned with the incoming stream. The detonation is considered to be a region of infinitesmal thickness in which a finite amount of heat is released. The response to the imposed disturbances is a function of the Mach number of the incoming flow, the wedge angle, and the exothermocity of the reaction within the detonation. It is shown that as the degree of overdrive increases, the amplitude of the response increases significantly; furthermore, a fundamental difference in the dependence of the response on the parameters of the problem is found between the response to a free stream disturbance and to a disturbance emanating from the wedge surface.

  19. Medpor Craniotomy Gap Wedge Designed to Fill Small Bone Defects along Cranial Bone Flap

    PubMed Central

    Goh, Duck-Ho; Kim, Gyoung-Ju

    2009-01-01

    Objective Medpor porous polyethylene was used to reconstruct small bone defects (gaps and burr holes) along a craniotomy bone flap. The feasibility and cosmetic results were evaluated. Methods Medpor Craniotomy Gap Wedges, V and T, were designed. The V implant is a 10 cm-long wedge strip, the cross section of which is an isosceles triangle with a 4 mm-long base, making it suitable for gaps less than 4 mm after trimming. Meanwhile, the Medpor T wedge includes a 10 mm-wide thin plate on the top surface of the Medpor V Wedge, making it suitable for gaps wider than 4 mm and burr holes. Sixty-eight pterional craniotomies and 39 superciliary approaches were performed using the implants, and the operative results were evaluated with respect to the cosmetic results and pain or tenderness related to the cranial flap. Results The small bone defects were eliminated with less than 10 minutes additional operative time. In a physical examination, there were no considerable cosmetic problems regarding to the cranial bone defects, such as a linear depression or dimple in the forehead, anterior temporal hollow, preauricular depression, and parietal burr hole defect. Plus, no patient suffered from any infectious complications. Conclusion The Medpor Craniotomy Gap Wedge is technically easy to work with for reconstructing small bone defects, such as the bone gaps and burr holes created by a craniotomy, and produces excellent cosmetic results. PMID:19844617

  20. Determination of the pulmonary capillary wedge position in patients with giant left atrial V waves.

    PubMed

    Moore, R A; Neary, M J; Gallagher, J D; Clark, D L

    1987-04-01

    Thirteen patients with giant left atrial V waves during preoperative cardiac catheterization were admitted into the study group. While awake and breathing spontaneously, simultaneous recordings of electrocardiographic leads II and V5, radial arterial traces, and pulmonary arterial or pulmonary capillary wedge traces were obtained. Measurements were made on four consecutive cardiac cycles in the unwedged and wedged positions for the following intervals: Q wave to the radial arterial upstroke (220 +/- 20 milliseconds) and peak (360 +/- 10 milliseconds), Q wave to the pulmonary arterial upstroke (170 +/- 20 milliseconds) and peak (350 +/- 20 milliseconds), Q wave to the V wave upstroke (280 +/- 20 milliseconds) and peak (570 +/- 20 milliseconds), and QT interval (420 +/- 20 milliseconds). These findings indicate that the radial arterial and pulmonary arterial upstrokes and peaks occur nearly simultaneously. Upon wedging, the V wave upstroke occurs significantly later in the cardiac cycle (P less than .05) compared with the pulmonary arterial upstroke, and the V wave peak occurs significantly later compared with both the pulmonary arterial and the radial arterial peak (P less than .05). A rapid, simple beat-to-beat method for differentiating pulmonary arterial from pulmonary capillary wedge positions in the presence of giant left atrial V waves is the superimposition of the pulmonary arterial trace on the radial arterial trace. When a wedge position is attained, there is an immediate rightward shift in the upstroke and peak of the pulmonary arterial pressure trace, which can be easily identified by observing the relationship between the pulmonary arterial and systemic arterial traces.

  1. A branching process model for sand avalanches

    SciTech Connect

    Garcia-Pelayo, R.; Salazar, I.; Schieve, W.C. )

    1993-07-01

    An analytically solvable model for sand avalanches of noninteracting grains of sand, based on the Chapman-Kolmogorov equations, is presented. For a single avalanche, distributions of lifetimes, sizes of overflows and avalanches, and correlation functions are calculated. Some of these are exponentials, some are power laws. Spatially homogeneous distributions of avalanches are also studied. Computer simulations of avalanches of interacting grains of sand are compared to the solutions to the Chapman-Kolmogorov equations. It is found that within the range of parameters explored in the simulation, the approximation of noninteracting grains of sand is a good one. 20 refs., 4 figs.

  2. [Model experiments on breathing under sand].

    PubMed

    Maxeiner, H; Haenel, F

    1985-01-01

    Remarkable autopsy findings in persons who had suffocated as a result of closure of the mouth and nose by sand (without the body being buried) induced us to investigate some aspects of this situation by means of a simple experiment. A barrel (diameter 36.7 cm) with a mouthpiece in the bottom was filled with sand to a depth of 15, 30, 60, or 90 cm. The subject tried to breathe as long as possible through the sand, while the amount of sand inspired was measured. Pressure and volume of the breath, as well as the O2 and CO2 content were also measured. A respiratory volume of up to 31 was possible, even when the depth was 90 cm. After about 1 min in all trials, the subject's shortness of breath forced us to stop the experiment. Measurement of O2 and CO2 concentrations proved that respiratory volume in and out of the sand shifts to atmospheric air without gas exchange, even when the sand depth is 15 cm. Sand aspiration depended on the moisture of the material: when the sand was dry, it was impossible to avoid aspiration. However, even a water content of only 5% prevented aspiration, although the sand seemed to be nearly dry.

  3. Lizard locomotion on weak sand

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2005-03-01

    Terrestrial animal locomotion in the natural world can involve complex foot-ground interaction; for example, running on sand probes the solid and fluid behaviors of the medium. We study locomotion of desert-dwelling lizard Callisaurus draconoides (length 16 cm, mass=20 g) during rapid running on sand. To explore the role of foot-ground interaction on locomotion, we study the impact of flat disks ( 2 cm diameter, 10 grams) into a deep (800 particle diameters) bed of 250 μm glass spheres of fixed volume fraction φ 0.59, and use a vertical flow of air (a fluidized bed) to change the material properties of the medium. A constant flow Q below the onset of bed fluidization weakens the solid: at fixed φ the penetration depth and time of a disk increases with increasing Q. We measure the average speed, foot impact depth, and foot contact time as a function of material strength. The animal maintains constant penetration time (30 msec) and high speed (1.4 m/sec) even when foot penetration depth varies as we manipulate material strength. The animals compensate for decreasing propulsion by increasing stride frequency.

  4. Fracture behavior of cemented sand

    NASA Astrophysics Data System (ADS)

    Alqasabi, Ahmad Othman

    While fracture mechanics for cementitious materials and composites in the past three decades have developed mainly in concrete applications, it has not yet gained its rightful place in the geotechnical field. There are many examples in the geotechnical literature, especially those related to brittle and stiff soils, where traditional approaches of analysis have proven to be inadequate. While geotechnical problems are inherently complex in nature, using the finite element method (FEM) with fracture mechanics (FM) have been shown to provide powerful analytical tool that could be used to investigate and solve many problems in geomechanics and geotechnical engineering. This thesis addresses the application of FM concepts and theories in analysis of cemented soils. In addition to theoretical aspects, experiments were conducted to evaluate the application of FM to cemented soils. Three point bending beam tests with crack mouth opening displacements (CMOD) conducted on cemented sand samples showed that fracture parameters, such as CMOD, indeed could play an important role in investigation of such soils. Using this unambiguous material parameter, field engineers might have a reliable measure that could prove to be useful in stability assessment of earth structures and soil structure system. By studying size effect on cemented sand, strong relationship was established between critical CMOD and failure, which might be a very useful index and analysis tool in geotechnical engineering practice.

  5. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady

  6. [Spatial distribution patterns of dry sand layer on windward slope of dunes in Horqin Sand Land].

    PubMed

    Zong, Qin; Lamusa, A; Luo, Yong-Ming; Niu, Cun-Yang; Chen, Xue-Feng; Wang, Hai-Yang

    2012-04-01

    An observation was conducted on the thickness of dry sand layer on the windward slope of mobile and fixed dunes in west Horqin Sand Land, with the spatial distribution of the dry sand layer analyzed. Most of the dry sand layer had a thickness of 5-15 cm, and 92.0% and 98.6% of the mobile and fixed dunes had the dry sand layer with this thickness, respectively. Sand-fixing plants affected the thickness and the spatial distribution of the dry sand layer. There was an obvious spatial difference in the thickness of the dry sand layer on mobile dunes, being much thicker in the upper west areas while much thinner in the lower east areas. The thickness of the dry sand layer varied from 0 to 40 cm, with an average of 9.58 +/- 3.95 cm, and the CV was 41%. The variogram of the spatial distribution of dry sand layer on mobile dunes was expressed as spherical model, with a moderate spatial correlation. In contrast, the thickness of dry sand layer on fixed dunes showed obvious homogeneity, and had less spatial difference. The thickness of the dry sand layer ranged from 0 to 20 cm, with an average of 10.91 +/- 1.70 cm, and the CV was only 16%.

  7. Fecal indicators in sand, sand contact, and risk of enteric illness among beach-goers

    EPA Science Inventory

    BACKGROUND: Beach sand can harbor fecal indicator organisms and pathogens, but enteric illness risk associated with sand contact remains unclear. METHODS: In 2007, visitors at 2 recreational marine beaches were asked on the day of their visit about sand contact. Ten to 12 days...

  8. Sand residence times of one million years in the Namib Sand Sea from cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Vermeesch, P.; Fenton, C. R.; Kober, F.; Wiggs, G. F. S.; Bristow, C. S.; Xu, S.

    2010-12-01

    The Namib Sand Sea is one of the world's oldest and largest sand deserts, yet little is known about the source of the sand in this, or other large deserts. In particular, it is unclear whether the sand is derived from local sediment or comes from remote sources. The relatively uniform appearance of dune sands and low compositional variability within dune fields make it difficult to address this question. Here we combine cosmogenic-nuclide measurements and geochronological techniques to assess the provenance and migration history of sand grains in the Namib Sand Sea. We use U-Pb geochronology of detrital zircons to show that the primary source of sand is the Orange River at the southern edge of the Namib desert. Our burial ages obtained from measurements of the cosmogenic nuclides 10Be, 26Al and 21Ne suggest that the residence time of sand within the sand sea is at least one million years. We therefore conclude that, despite large climatic changes in the Namib region associated with Quaternary glacial-interglacial cycles, the area currently occupied by the Namib Sand Sea has never been entirely devoid of sand during the past million years.

  9. Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks.

    PubMed

    Aubin, C E; Dansereau, J; Petit, Y; Parent, F; de Guise, J A; Labelle, H

    1998-01-01

    Idiopathic scoliosis involves complex spinal intrinsic deformations such as the wedging of vertebral bodies (VB) and intervertebral disks (ID), and it is obvious that the clinical evaluation obtained by the spinal projections on the two-dimensional (2D) radiographic planes do not give a full and accurate interpretation of scoliotic deformities. This paper presents a method that allows reconstruction in 3D of the vertebral body endplates and measurement of the 3D wedging angles. This approach was also used to verify whether 2D radiographic measurements could lead to a biased evaluation of scoliotic spine wedging. The 3D reconstruction of VB contours was done using calibrated biplanar X-rays and an iterative projection computer procedure that fits 3D oriented ellipses of adequate diameters onto the 3D endplate contours. "3D wedging angles" of the VB and ID (representing the maximum angle between adjacent vertebrae) as well as their angular locations with respect to the vertebral frontal planes were computed by finding the positions of the shortest and longest distances between consecutive endplates along their contour. This method was extensively validated using several approaches: (1) by comparing the 3D reconstructed endplates of a cadaveric functional unit (T8-T9) with precise 3D measurements obtained using a coordinate measuring machine for 11 different combinations of vertebral angular positions; (2) by a sensitivity study on 400 different vertebral segments mathematically generated, with errors randomly introduced on the digitized points (standard deviations of 0.5, 1, 2, and 3 mm); (3) by comparing the clinical wedging measurements (on postero-anterior and lateral radiographs) at the thoracic apical level of 34 scoliotic patients (15 degrees < Cobb < 45 degrees) to the computed values. Mean errors for the 11 vertebral positions were 0.5 +/- 0.4 mm for VB thickness, less than 2.2 degrees for endplate orientation, and about 11 degrees (3 mm) for the location of

  10. Wedge energy bands of monolayer black phosphorus: a first-principles study

    NASA Astrophysics Data System (ADS)

    Park, Minwoo; Bae, Hyeonhu; Lee, Seunghan; Yang, Li; Lee, Hoonkyung

    2016-08-01

    On the basis of first-principles calculations, we present intriguing electronic properties of halogen-striped functionalized monolayer black phosphorus. The halogen-striped monolayer black phosphorus is found to have a wedge energy band with the energy-momentum relation of E\\propto {{p}y} when the stripe–stripe distance is smaller than ~40 Å. Our tight-binding study shows that the wedge energy band occurs when 2-atom basis 1D lattices are periodically repeated aligned with each other in a 2D lattice. We also discuss the possible applications of this wedge energy band in electron supercollimation with high mobility or severely anisotropic electronic transport, which can be used for the development of optics-like nano-electronics.

  11. Relationship between colloid osmotic pressure and pulmonary artery wedge pressure in patients with acute cardiorespiratory failure.

    PubMed

    Weil, M H; Henning, R J; Morissette, M; Michaels, S

    1978-04-01

    Close relationships between progressive respiratory failure, roentgenographic signs of pulmonary opacification and decreases in the difference between colloid osmotic pressure of plasma and the pulmonary artery wedge pressure (colloid-hydrosatic pressure gradient) were demonstrated in 49 critically ill patients with multisystem failure, in patients in shock. The potential importance of this relationship is underscored by the observation that fatal progression of pulmonary edema was related to a critical reduction in the colloid-hydrostatic pressure gradient to levels of less than 0 mm Hg. More often, reduction in colloid osmotic pressure rather than increases in left ventricular filling pressure (pulmonary artery wedge pressure) accounted for the decline in colloid-hydrostatic pressure gradient. Routine measurement of colloid osmotic pressure, preferably in conjunction with pulmonary artery wedge pressure, is likely to improve understanding of the mechanisms of acute pulmonary edema.

  12. Wedge energy bands of monolayer black phosphorus: a first-principles study

    NASA Astrophysics Data System (ADS)

    Park, Minwoo; Bae, Hyeonhu; Lee, Seunghan; Yang, Li; Lee, Hoonkyung

    2016-08-01

    On the basis of first-principles calculations, we present intriguing electronic properties of halogen-striped functionalized monolayer black phosphorus. The halogen-striped monolayer black phosphorus is found to have a wedge energy band with the energy-momentum relation of E\\propto {{p}y} when the stripe-stripe distance is smaller than ~40 Å. Our tight-binding study shows that the wedge energy band occurs when 2-atom basis 1D lattices are periodically repeated aligned with each other in a 2D lattice. We also discuss the possible applications of this wedge energy band in electron supercollimation with high mobility or severely anisotropic electronic transport, which can be used for the development of optics-like nano-electronics.

  13. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    NASA Technical Reports Server (NTRS)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  14. Wedge energy bands of monolayer black phosphorus: a first-principles study.

    PubMed

    Park, Minwoo; Bae, Hyeonhu; Lee, Seunghan; Yang, Li; Lee, Hoonkyung

    2016-08-01

    On the basis of first-principles calculations, we present intriguing electronic properties of halogen-striped functionalized monolayer black phosphorus. The halogen-striped monolayer black phosphorus is found to have a wedge energy band with the energy-momentum relation of [Formula: see text] when the stripe-stripe distance is smaller than ~40 Å. Our tight-binding study shows that the wedge energy band occurs when 2-atom basis 1D lattices are periodically repeated aligned with each other in a 2D lattice. We also discuss the possible applications of this wedge energy band in electron supercollimation with high mobility or severely anisotropic electronic transport, which can be used for the development of optics-like nano-electronics. PMID:27299467

  15. Achieving Hard X-ray Nanofocusing Using a Wedged Multilayer Laue Lens

    SciTech Connect

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; Zhou, Juan; Macrander, Albert; Maser, Jorg; Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth; Harder, Ross; Robinson, Ian K.; Kalbfleisch, Sebastian; Chu, Yong S.

    2015-05-04

    Here, we report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. Our results indicate that the desired wedging is achieved in the fabricated structure. Furthermore, we anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers and enrich capabilities and opportunities for hard X-ray microscopy.

  16. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  17. Sand dune tracking from satellite laser altimetry

    NASA Astrophysics Data System (ADS)

    Dabboor, Mohammed

    Substantial problems arise from sand movement in arid and semi-arid countries. Sand poses a threat to infrastructure, agricultural and urban areas. These issues are caused by the encroachment of sand on roads and railway tracks, farmland, towns and villages, and airports, to name a few. Sand movement highly depends on geomorphology including vegetation cover, shape and height of the terrain, and grain size of the sand. However, wind direction and speed are the most important factors that affect efficient sand movement. The direction of the movement depends on the main direction of the wind, but it has been shown that a minimum wind speed is required, e.g. wind gusts, to initiate sand transport. This fact prevents a simple calculation of sand transport from conventional wind data as wind records rarely contain sub-minute intervals masking out any wind gusts. An alternative of predicting sand transport is the direct observation of sand advance by in situ measurements or via satellite. Until recently, satellite imagery was the only means to compare dune shape and position for predicting dune migration over several years. In 2003, the NASA laser altimetry mission ICESat became operational and monitors elevations over all surface types including sand dunes with an accuracy of about 10-20 cm. In this study, ICESat observations from repeat tracks (tracks overlapping eachother within 50 m) are used to derive sand dune advance and direction. The method employs a correlation of the elevation profiles over several dunes and was sucessfully validated with synthetic data. The accuracy of this method is 5 meters of dune advance. One of the most active areas exhibiting sand and dune movement is the area of the Arabian Peninsula. Approximately one-third of the Arabian Peninsula is covered by sand dunes. Different wind regimes (Shamal, Kaus) cause sand dune movement in the selected study area in the eastern part of the Arabian Peninsula between 20-25 degrees North and 45-55 degrees

  18. Polyploidy and microsatellite variation in the relict tree Prunus lusitanica L.: how effective are refugia in preserving genotypic diversity of clonal taxa?

    PubMed

    García-Verdugo, C; Calleja, J A; Vargas, P; Silva, L; Moreira, O; Pulido, F

    2013-03-01

    Refugia are expected to preserve genetic variation of relict taxa, especially in polyploids, because high gene dosages could prevent genetic erosion in small isolated populations. However, other attributes linked to polyploidy, such as asexual reproduction, may strongly limit the levels of genetic variability in relict populations. Here, ploidy levels and patterns of genetic variation at nuclear microsatellite loci were analysed in Prunus lusitanica, a polyploid species with clonal reproduction that is considered a paradigmatic example of a Tertiary relict. Sampling in this study considered a total of 20 populations of three subspecies: mainland lusitanica (Iberian Peninsula and Morocco), and island azorica (Azores) and hixa (Canary Islands and Madeira). Flow cytometry results supported an octoploid genome for lusitanica and hixa, whereas a 16-ploid level was inferred for azorica. Fixed heterozygosity of a few allele variants at most microsatellite loci resulted in levels of allelic diversity much lower than those expected for a high-order polyploid. Islands as a whole did not contain higher levels of genetic variation (allelic or genotypic) than mainland refuges, but island populations displayed more private alleles and higher genotypic diversity in old volcanic areas. Patterns of microsatellite variation were compatible with the occurrence of clonal individuals in all but two island populations, and the incidence of clonality within populations negatively correlated with the estimated timing of colonization. Our results also suggest that gene flow has been very rare among populations, and thus population growth following founder events was apparently mediated by clonality rather than seed recruitment, especially in mainland areas. This study extends to clonal taxa the idea of oceanic islands as important refugia for biodiversity, since the conditions for generation and maintenance of clonal diversity (i.e. occasional events of sexual reproduction, mutation and

  19. Investigating Sand on the Coast of Oregon and Washington.

    ERIC Educational Resources Information Center

    Komar, Paul D.

    2002-01-01

    Describes factors affecting sand composition and distribution along coastlines. Uses variations in sand types along the Oregon coast to illustrate the influences of sand grain density, wave action, and headlands on sand movements. Describes the seasonal movement of sand across beaches. (DLH)

  20. Submarine sand ridges and sand waves in the eastern part of the China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Ziyin; Li, Shoujun; Shang, Jihong; Zhou, Jieqiong; Zhao, Dineng; Liang, Yuyang

    2016-04-01

    Integrated with multi-beam and single-beam echo sounding data, as well as historical bathymetric data, submarine bathymetric maps of the eastern part of the China Sea, including the Bohai Sea, Huanghai Sea, and East China Sea, are constructed to systematically study submarine sand ridges and sand waves in the eastern part of the China Sea, combined with high-resolution seismic, sub-bottom profile and borehole data. Submarine sand ridges are extraordinarily developed in the eastern part of the China Sea, and 7 sand ridge areas can be divided from north to south, that is, the Laotieshan Channel sand ridge area in the Bohai Sea, the Korea Bay sand ridge area in the southern Huanghai Sea, the sand ridge area in the eastern Huanghai islands and the Huanghai Troughs, the Jianggang sand ridge area in the western Huanghai Sea, the sand ridge area in the East China Sea shelf, and the sand ridge and sand wave area in the Taiwan Strait and Taiwan Banks. The distribution area of the sand ridges and sand waves covers more than 450,000 km2, wherein ~10,000 km2 in the Bohai Bay, ~200,000 km2 in the Huanghai Sea, ~200,000 km2 in the East China Sea shelf, and ~40,000 km2 in the Taiwan Strait and Taiwan Banks, respectively. The great mass of sand ridges are distributed within water depth of 5-160 m, with a total length of over 160 km and a main width of 5-10 km. The inner structure of the sand ridges presents features of high-angle inclined beddings, with main lithology of sands, sand-mud alternations partly visible, and a small number of mud cores. Dating results indicate that the sand ridges in the eastern part of the China Sea are mainly developed in the Holocene. Sea-level variation dominates the sand ridge evolution in the eastern part of the China Sea since the LGM, and the sand ridges developed in the area of < 60m water depth are appeared in bad activity, meanwhile sand ridges with good activity are still developed in large scale.

  1. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges

    NASA Astrophysics Data System (ADS)

    Yuan, X. P.; Leroy, Y. M.; Maillot, B.

    2015-03-01

    Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography, finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size, composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress in our understanding of many laboratory experiments and field cases. For example, it is claimed from analytical results validated by experiments that the stability transition for a cohesive, triangular wedge occurs with the activation of the maximum length of the décollement. It is shown that the details of the topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability. A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a stability transition and not with a dynamically unstable state.

  2. The mantle wedge's transient 3-D flow regime and thermal structure

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Le Voci, G.; Goes, S.; Kramer, S. C.; Wilson, C. R.

    2016-01-01

    Arc volcanism, volatile cycling, mineralization, and continental crust formation are likely regulated by the mantle wedge's flow regime and thermal structure. Wedge flow is often assumed to follow a regular corner-flow pattern. However, studies that incorporate a hydrated rheology and thermal buoyancy predict internal small-scale-convection (SSC). Here, we systematically explore mantle-wedge dynamics in 3-D simulations. We find that longitudinal "Richter-rolls" of SSC (with trench-perpendicular axes) commonly occur if wedge hydration reduces viscosities to Pa s, although transient transverse rolls (with trench-parallel axes) can dominate at viscosities of Pa s. Rolls below the arc and back arc differ. Subarc rolls have similar trench-parallel and trench-perpendicular dimensions of 100-150 km and evolve on a 1-5 Myr time-scale. Subback-arc instabilities, on the other hand, coalesce into elongated sheets, usually with a preferential trench-perpendicular alignment, display a wavelength of 150-400 km and vary on a 5-10 Myr time scale. The modulating influence of subback-arc ridges on the subarc system increases with stronger wedge hydration, higher subduction velocity, and thicker upper plates. We find that trench-parallel averages of wedge velocities and temperature are consistent with those predicted in 2-D models. However, lithospheric thinning through SSC is somewhat enhanced in 3-D, thus expanding hydrous melting regions and shifting dehydration boundaries. Subarc Richter-rolls generate time-dependent trench-parallel temperature variations of up to K, which exceed the transient 50-100 K variations predicted in 2-D and may contribute to arc-volcano spacing and the variable seismic velocity structures imaged beneath some arcs.

  3. The Effect of Large-Field Wedge Filters on Stopping Power Ratios

    NASA Astrophysics Data System (ADS)

    Watts, Ronald Jay

    Over the past few decades, linear accelerators have been used for the treatment of cancer. These accelerators produce a spectrum of x-ray energies, with the maximum energy determined by the accelerating potential in the accelerator waveguide. Traditionally, the beams produced by these accelerators have been modified for certain treatment schemes to improve the overall dose distribution in the tumor volume. One of the beam modifiers has been the use of wedge filters. Although it has been accepted for some years that the introduction of a wedge filter hardens the x-ray beam from a linear accelerator, little or no correction for this effect has been routinely performed in the typical clinic. The results of this research will demonstrate that (1) a detectable change in the x-ray fluence energy distribution results with the introduction of a large field wedge, and (2) the change in the photon fluence results in a change in the average stopping power ratio for water to air used in the conversion of ionization chamber reading to absorbed dose. These effects are demonstrated for a variety of configurations including central axis and off axis points, with and without the wedge. To demonstrate the change in the x-ray fluence energy distribution, a reconstruction of bremsstrahlung spectra from measured transmission data technique was used, utilizing a Laplace Transform Pair Model. Following determination of Phi(E) for various beam configurations, with and without a wedge filter, average stopping power ratios of water to air were determined for each spectra. The results presented indicate that although a significant change in the photon fluence energy distribution results with the introduction of the wedge filter into the beam, the change in stopping power is <=q 0.5 %. This small change, however, is on the order of the chamber perturbation factors normally incorporated when using national or international dosimetry protocols. Thus this small change should be considered in

  4. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests. PMID:17938120

  5. Leaf gas exchange of understory spruce-fir saplings in relict cloud forests, southern Appalachian Mountains, USA.

    PubMed

    Reinhardt, Keith; Smith, William K

    2008-01-01

    cloud impacts on carbon gain and water relations is needed to predict future impacts on these relict forests.

  6. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    PubMed

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  7. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    PubMed

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  8. Separation over a flat plate-wedge configuration at oceanic Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Campbell, D. R.

    1973-01-01

    An experimental study of flow over a two-dimensional flat plate-wedge configuration is presented. The investigation encompasses a range of Reynolds numbers characteristics of conditions encountered by deep submersible oceanic vehicles. Flow separation, similar to that found on high speed aircraft control surfaces, is reported and discussed in light of the laminar or transitional nature of the separated shear layer. As discovered in previous high Mach number studies of plate-wedge or ramp configurations, the dependency of the size of the separated region on free stream Reynolds number is reversed for laminar and transitional types of flow separation.

  9. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion

    SciTech Connect

    Fan, Zhengfeng; Ren, Guoli; Liu, Bin; Wu, Junfeng; He, X. T.; Liu, Jie; Wang, L. F.; Ye, Wenhua

    2014-10-15

    In the present letter, we propose the design of a wedged-peak pulse at the late stage of indirect drive. Our simulations of one- and two-dimensional radiation hydrodynamics show that the wedged-peak-pulse design can raise the drive pressure and capsule implosion velocity without significantly raising the fuel adiabat. It can thus balance the energy requirement and hydrodynamic instability control at both ablator/fuel interface and hot-spot/fuel interface. This investigation has implication in the fusion ignition at current mega-joule laser facilities.

  10. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    SciTech Connect

    Haridas, Divya; P, Vibin Antony; Sajith, V.; Sobhan, C. B.

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  11. Developing a numerical model of ice wedge degradation and trough formation

    NASA Astrophysics Data System (ADS)

    Garayshin, V.; Nicolsky, D.; Romanovsky, V. E.

    2014-12-01

    The research was initiated as a part of the Next-Generation Ecosystem Experiments (NGEE) in the Arctic and also as a part of the Integrated Ecosystem Model for Alaska. The presented project explores influence of climate (mean annual and summer temperatures, and snow cover depth and density) and physical properties, soil textures and moisture content on thawing and destabilization of ice wedges on the North Slope of Alaska. Recall that ice wedges formed many years ago, when ground cracked and the cracks were filled by water. The infiltrated water then became frozen and turned into ice. When the annual and summer air temperatures become higher, the depth of the active layer increases. Deeper seasonal thawing may cause melting of the ice wedges from their tops. Consequently, the ground starts to settle and a trough form above the ice wedge. Once the trough is formed, the winter snow cover becomes deeper above it and provides a potential feedback mechanism to the further degradation of permafrost. The work deals with analysis of temperature regimes and moisture distribution and dynamics during seasonal cycles of freezing and thawing. The research focuses on the development of a computational approach to the study of seasonal temperature dynamics of the active layer, ice wedge and surrounding it permafrost. A thermo-mechanical model of the ice wedge based on principles of macroscopic thermodynamics and continuum mechanics is presented. The model includes the energy and mass conservation equations, a visco-poroelastic rheology for ground deformation, and an empirical formula which relates unfrozen water content to temperature. The complete system is reduced to a computationally convenient set of coupled equations for the temperature, pore water pressure, ground velocities and porosity in a two-dimensional domain. A finite element method and an implicit scheme in time were utilized to construct a non-linear system of equations, which was solved iteratively. The model

  12. [Radiocarbon dating of pollen and spores in wedge ice from Iamal and Kolyma].

    PubMed

    Vasil'chuk, A K

    2004-01-01

    Radiocarbon dating of pollen concentrate from late Pleistocene syngenetic wedge ice was carried out using acceleration mass spectrometry (AMS) in Seyakha and Bizon sections. Comparison of the obtained dating with palynological analysis and AMS radiocarbon dating previously obtained for other organic fractions of the same samples allowed us to evaluate accuracy of dating of different fractions. Quantitative tests for data evaluation were considered in terms of possible autochthonous or allochthonous accumulation of the material on the basis of pre-Pleistocene pollen content in these samples. Paleoecological information content of pollen spectra from late Pleistocene syngenetic wedge ice was evaluated.

  13. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    NASA Astrophysics Data System (ADS)

    Haridas, Divya; P, Vibin Antony; Sajith, V.; Sobhan, C. B.

    2014-10-01

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  14. Oblique wedge osteotomy for femoral diaphyseal deformity in fibrous dysplasia: a case report.

    PubMed

    Yamamoto, T; Hashimoto, Y; Mizuno, K

    2001-03-01

    A patient with fibrous dysplasia who had a three-dimensional diaphyseal deformity in the left femur was treated using an oblique wedge osteotomy. The patient was 26-year-old man with a history of two pathologic fractures in the midshaft of the femur. A 22 degrees angular deformity in the coronal plane and 15 degrees anterior bowing were corrected. The results at a followup 2 years after surgery were satisfactory in functional and radiologic terms. The technique and advantages of the oblique wedge osteotomy are discussed. PMID:11249172

  15. Characterization of Vibrio tapetis strains isolated from diseased cultured Wedge sole (Dicologoglossa cuneata Moreau).

    PubMed

    López, J R; Balboa, S; Núñez, S; de la Roca, E; de la Herran, R; Navas, J I; Toranzo, A E; Romalde, J L

    2011-04-01

    The first isolation of Vibrio tapetis from Wedge sole (Dicologoglossa cuneata) is reported. The bacterium was recovered from ulcers of ailing cultured fish, from two different outbreaks occurred in spring 2005. The four isolates found (a200, a201, a204 and a255) were biochemically, genetically and serologically characterized and diagnosis was confirmed by PCR V. tapetis specific primers and multilocus sequencing analysis (MLSA). The isolates constituted a homogeneous phenotypic and genotypic group, being distinct to the already serological and genetic groups defined within the species. A virulence evaluation of the isolate a255 was also carried out; however this strain was unable to induce disease in fry and juvenile Wedge sole.

  16. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.

    PubMed

    Dong, Xi; Harlow, Daniel; Wall, Aron C

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code. PMID:27447499

  17. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality.

    PubMed

    Dong, Xi; Harlow, Daniel; Wall, Aron C

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  18. Introduction to Exploring Sand and Water

    ERIC Educational Resources Information Center

    Early Childhood Today, 2006

    2006-01-01

    What happens when children pour water through a funnel? They begin to understand science and math concepts such as flow, force, gravity, and volume. What happens when children mold sand to create a tunnel? They develop skills in areas such as problem solving and predicting. They also gain knowledge about absorption and the properties of sand and…

  19. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  20. Sand Tray Group Counseling with Adolescents

    ERIC Educational Resources Information Center

    Draper, Kay; Ritter, Kelli B.; Willingham, Elizabeth U.

    2003-01-01

    Sand tray group counseling with adolescents is an activity-based intervention designed to help participants address specific intrapersonal concerns, learn important skills of socialization, and develop a caring community. The main focus of the group is building small worlds with miniature figures in individual trays of sand and having an…

  1. Explorations with the Sand and Water Table.

    ERIC Educational Resources Information Center

    Texas Child Care, 2001

    2001-01-01

    Presents sand and water activities for young children as examples of sensory explorations, science activities, and comforting play. Includes information on health and safety precautions, adaptations for children with physical disabilities, the use of other materials, and sand and water toys made from one-liter plastic bottles. (KB)

  2. Sand Play in the Primary Classroom.

    ERIC Educational Resources Information Center

    Ewing, Jan; Eddowes, E. Anne

    1994-01-01

    Examines the benefits of sand play for young children, focusing on areas of cognitive, physical, communicative, creative and social-emotional development. Also discusses the role of the teacher in encouraging children's natural curiosity and exploration with sand play, noting that teachers should observe and interact with children during play in…

  3. Dinural patterns of blowing sand and dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diurnal pattern of blowing sand results from a complex interaction between the sun, the atmosphere, and the sand surface. During the day, solar heating produces thermal instability, which enhances convective mixing of high momentum winds from the upper levels of the atmosphere to the surface la...

  4. Shock response of dry sand.

    SciTech Connect

    Reinhart, William Dodd; Thornhill, Tom Finley, III; Chhabildas, Lalit C..; Vogler, Tracy John; Brown, Justin L.

    2007-08-01

    The dynamic compaction of sand was investigated experimentally and computationally to stresses of 1.8 GPa. Experiments have been performed in the powder's partial compaction regime at impact velocities of approximately 0.25, 0.5, and 0.75 km/s. The experiments utilized multiple velocity interferometry probes on the rear surface of a stepped target for an accurate measurement of shock velocity, and an impedance matching technique was used to deduce the shock Hugoniot state. Wave profiles were further examined for estimates of reshock states. Experimental results were used to fit parameters to the P-Lambda model for porous materials. For simple 1-D simulations, the P-Lambda model seems to capture some of the physics behind the compaction process very well, typically predicting the Hugoniot state to within 3%.

  5. The Effect of Sand on Strength of Mixtures of Bentonite-Sand

    NASA Astrophysics Data System (ADS)

    Pakbaz, Mohammad C.; Khayat, Navid

    The main purpose of this research is to evaluate the effect of sand on strength of compacted samples of bentonite sand mixtures. Samples of bentonite with 10,30,50,70, and 80 percent by weight of sand at standard proctor optimum water content were compacted and tested to measure confined and unconfined strength. Unconfined strength of mixtures increased with percentage of sand until 50 percent and then it decreased thereafter. On the other hand, the confined strength of mixtures tested in triaxial UU increased with percentage of sand.

  6. Hematite Outlier and Sand Dunes

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 4 December 2003

    This image shows a crater just south of the edge of the famous hematite-bearing surface, which is visible in the context image as a smooth area to the north. The crater has two features of immediate note. The first is a layered mound in the north part of the crater floor. This mound contains hematite, and it is an outlying remnant of the greater deposits to the north that have otherwise completely disappeared in this crater. The second feature is a dune field in the center of the crater floor, with dark dunes indicating winds from the northwest. The dunes grade into a dark sand sheet with no coherent structure, indicating that the sand layer thins out to the south and east.

    Image information: VIS instrument. Latitude -4.4, Longitude 357.3 East (2.7 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Ecological release in White Sands lizards

    PubMed Central

    Roches, S Des; Robertson, J M; Harmon, L J; Rosenblum, E B

    2011-01-01

    Ecological opportunity is any change that allows populations to escape selection from competition and predation. After encountering ecological opportunity, populations may experience ecological release: enlarged population size, broadened resource use, and/or increased morphological variation. We identified ecological opportunity and tested for ecological release in three lizard colonists of White Sands, New Mexico (Sceloporus undulatus, Holbrookia maculata, and Aspidoscelis inornata). First, we provide evidence for ecological opportunity by demonstrating reduced species richness and abundance of potential competitors and predators at White Sands relative to nearby dark soils habitats. Second, we characterize ecological release at White Sands by demonstrating density compensation in the three White Sands lizard species and expanded resource use in White Sands S. undulatus. Contrary to predictions from ecological release models, we observed directional trait change but not increased trait variation in S. undulatus. Our results suggest that ecological opportunity and ecological release can be identified in natural populations, especially those that have recently colonized isolated ecosystems. PMID:22393523

  8. Spring sapping origin of the enigmatic relict valleys of Cape Cod and Martha's Vineyard and Nantucket Islands, Massachusetts

    USGS Publications Warehouse

    Uchupi, E.; Oldale, R.N.

    1994-01-01

    Steep-sided, flat-floored linear valleys that lack well developed tributaries and end in amphitheater-like heads are eroded on the outwash plains of Cape Cod, Martha's Vineyard and Nantucket Island. The valleys are restricted from the mid to the distal ends of the outwash plains and show no connection to possible water sources at the updip end of the plains. Their distribution and morphology lead us to propose that they were eroded by groundwater seeps fed by proglacial lakes (the high hydrostatic heads of the lakes led to the elevation of the water table) dammed by the outwash plains and associated moraines. The valleys on Cape Cod were initiated by seeps along the foreset surfaces of sandy deltas emplaced in lakes in Nantucket Sound and Cape Cod Bay after these lakes drained. Those on Martha's Vineyard and Nantucket islands were either eroded by seeps at the distal ends of outwash plain wedges emplaced atop the subareal continental shelf south of the islands or along the foreset surfaces of sandy deltas emplaced on a lake behind a peripheral crustal bulge south of the glacial front. Valley erosion terminated after the lakes were drained and the water table dropped. ?? 1994.

  9. Imaging of sand production in a horizontal sand pack by X-ray computed tomography

    SciTech Connect

    Tremblay, B.; Sedgwick, G.; Forshner, K.

    1996-06-01

    A laboratory experiment was performed to better understand how sand production can increase heavy oil recovery. A horizontal sand pack with an orifice at one end modeled the production of oil and sand into a perforation in a vertical well. The sand pack was scanned using X-ray computed tomography (CT). The CT images revealed that a high-porosity channel (wormhole) formed in the pack while sand was produced. The wormhole followed regions within the pack where the porosity was higher, and, consequently, the unconfined compressive strength of the sand was lower. This experiment suggests that wormholes will form within the weaker sands of a formation. The development of these high-permeability channels increases the drainage of the reservoir, which leads to higher oil recovery.

  10. Altitude of the top of the Sparta Sand and Memphis Sand in three areas of Arkansas

    USGS Publications Warehouse

    Pugh, Aaron L.; Westerfield, Paul W.; Gonthier, Gerard J.; Poynter, David T.

    1998-01-01

    The Sparta Sand and Memphis Sand form the second most productive aquifer in Arkansas. The Sparta Sand and Memphis Sand range in thick- ness from 0 to 900 feet, consisting of fine- to medium-grained sands interbedded with layers of silt, clay, shale, and minor amounts of lignite. Within the three areas of interest, the top surface of the Sparta Sand and Memphis Sand dips regionally east and southeast towards the axis of the Mississippi Embayment syncline and Desha Basin. Local variations in the top surface may be attributed to a combination of continued development of structural features, differential compaction, localized faulting, and erosion of the surface prior to subsequent inundation and deposition of younger sediments.

  11. 13. SANDSORTING BUILDING, THIRD FLOOR, VIBRATING SCREENS FOR SAND SORTING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAND-SORTING BUILDING, THIRD FLOOR, VIBRATING SCREENS FOR SAND SORTING, LOOKING SOUTHWEST - Mill "C" Complex, Sand-Sorting Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  12. An Experimental and Theoretical Approach on the Modeling of Sliding Response of Rock Wedges under Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Aydan, Ömer; Kumsar, Halil

    2010-11-01

    The stability of rock slopes under dynamic loading in mining and civil engineering depends upon the slope geometry, mechanical properties of rock mass and discontinuities, and the characteristics of dynamic loads with time. The wedge failure is one of the common forms of slope failures. The authors presented some stability conditions for rock wedges under dynamic loading and they confirmed their validity through the laboratory experimental studies in a previous paper in 2000, which is often quoted by others to validate their softwares, including some commercial software. In this study, the authors investigate the sliding responses of rock wedges under dynamic loads rather than the initiation of wedge sliding. First, some laboratory model tests are described. On the basis of these model tests on rock wedges, the theoretical model proposed previously is extended to compute the sliding responses of rock wedges in time domain. The proposed theoretical model is applied to simulate the sliding responses of rock wedge model tests and its validity is discussed. In the final part, the method proposed is applied to actual wedge failures observed in 1995 Dinar earthquake and 2005 Pakistan-Kashmir earthquake, and the results are discussed.

  13. Latest Pleistocene Sediment Wedge on the New Jersey Outer Continental Shelf - Forced Regressive Paleo-Hudson Delta?

    NASA Astrophysics Data System (ADS)

    Santra, M.; Goff, J. A.; Steel, R. J.

    2011-12-01

    The offlapping sediment wedge on the outer shelf off New Jersey that overlies the regional reflector R-horizon shows many of the characteristic features of a progradational succession deposited during falling sea level (forced regression). This interpretation is consistent with the estimated latest Pleistocene age of the wedge - a well-established period of large-scale eustatic sea level fall. The sediment wedge occupies the outer shelf of New Jersey south of the Hudson Shelf Valley, extending down to the shelf edge. The sediment wedge appears to be strongly strike-oriented. The absence of any record of time-equivalent fluvial/distributary channels on the proximal part of the sediment wedge led some previous workers to the interpretation that the wedge was a product of redistribution of sediment on the shelf rather than a deltaic feature supplied by a fluvial source. The absence of fluvial and coastal plain deposits capping the proximal end of the wedge is actually a characteristic feature of forced regressive deposits and does not preclude a fluvial source for the sediments constituting the wedge. Reinterpretation of high-resolution (1-12 kHz), deep-towed and hull-mounted CHIRP seismic data collected on the New Jersey outer shelf in 2001, 2002 and 2006 shows possible terminal distributary channel deposits and mass transport deposits preserved in the distal part of the wedge that have not been described previously. These channel-like features are restricted in their distribution and their preservation in the sedimentary record is possibly due to punctuated sea-level rise within the overall falling trajectory of sea level that preceded the last glacial maximum (LGM). The presence of these channels and the mass transport complexes point to a direct fluvial feeder, which supplied the sediments to build the sediment wedge on New Jersey outer continental shelf. Detailed mapping of the sediment wedge using the CHIRP data shows that the sediment wedge is composed of

  14. Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance.

    PubMed

    Ding, Li; Qin, Jin; Xu, Kai; Wang, Liang

    2016-02-22

    We studied a novel long range hybrid tube-wedge plasmonic (LRHTWP) waveguide consisting of a high index dielectric nanotube placed above a triangular metal wedge substrate. Using comprehensive numerical simulations on guiding properties of the designed waveguide, it is found that extreme light confinement and low propagation loss are obtained due to strong coupling between dielectric nanotube mode and wedge plasmon polariton. Comparing with previous studied hybrid plasmonic waveguides, the LRHTWP waveguide has longer propagation length and tighter mode confinement. In addition, the LRHTWP waveguide is quite tolerant to practical fabrication errors such as variation of the wedge tip angle and the horizontal misalignment between the nanotube and the metal wedge. The proposed LRHTWP waveguide could have many application potentials for various high performance nanophotonic components.

  15. Widespread Degradation of Ice Wedges on the Arctic Coastal Plain in Northern Alaska in Response to the Recent Warmer Climate

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Jorgenson, M. T.; Pullman, E. R.

    2003-12-01

    The continuous permafrost on the Arctic Coastal Plain in northern Alaska has been considered stable because permafrost temperatures remain low, even with an increase of several degrees during the last decades. Ice wedges, however, are particularly susceptible to degradation because only a very thin layer of permafrost (the transient layer) exists between the ice and the bottom of the active layer. An increase in the active layer during unusually warm periods causes the thawing front to encounter the underlying ice wedges and initiate degradation. Field observations and photogrammetric analysis of 1945, 1979, and 2001 aerial photography indicate that there has been widespread degradation of the ice wedges on the Arctic Coastal Plain west of the Colville Delta over the recent 57-year period, and indications are that most of the degradation occurred during the last two decades. Field sampling at 46 polygonal troughs and their intersections showed that ice wedge degradation has been relatively recent as indicated by newly drowned vegetation. We found thermokarst was widespread on a variety of terrain conditions, but most prevalent on, ice-rich centers of old drained lake basins and alluvial-marine terraces, which have the greatest ice wedge development in the studied landscape. Ice wedges on these terrains typically occupy from 10 to 20 % of the upper permafrost. We attributed the natural degradation to warm weather during the last decades, because disturbance of the ground surface, which could have similar impact on ice wedges, was not evident. While, ice-wedge degradation probably has been periodically occurring at low rates over the preceding centuries, it has greatly accelerated during the last several decades. We identified six stages of ice-wedge degradation and stabilization. They include: (1) the loss of transient layer of upper permafrost above ice wedges, leading to enhanced nutrient availability and vegetative growth; (2) thawing of ice wedges and surface

  16. Surviving in Mountain Climate Refugia: New Insights from the Genetic Diversity and Structure of the Relict Shrub Myrtus nivellei (Myrtaceae) in the Sahara Desert

    PubMed Central

    Migliore, Jérémy; Baumel, Alex; Juin, Marianick; Fady, Bruno; Roig, Anne; Duong, Nathalie; Médail, Frédéric

    2013-01-01

    The identification of past glacial refugia has become a key topic for conservation under environmental change, since they contribute importantly to shaping current patterns of biodiversity. However, little attention has been paid so far to interglacial refugia despite their key role for the survival of relict species currently occurring in climate refugia. Here, we focus on the genetic consequences of range contraction on the relict populations of the evergreen shrub Myrtus nivellei, endemic in the Saharan mountains since at least the end of the last Green Sahara period, around 5.5 ka B.P. Multilocus genotypes (nuclear microsatellites and AFLP) were obtained from 215 individuals collected from 23 wadis (temporary rivers) in the three main mountain ranges in southern Algeria (the Hoggar, Tassili n’Ajjer and Tassili n’Immidir ranges). Identical genotypes were found in several plants growing far apart within the same wadis, a pattern taken as evidence of clonality. Multivariate analyses and Bayesian clustering revealed that genetic diversity was mainly structured among the mountain ranges, while low isolation by distance was observed within each mountain range. The range contraction induced by the last episode of aridification has likely increased the genetic isolation of the populations of M. nivellei, without greatly affecting the genetic diversity of the species as a whole. The pattern of genetic diversity observed here suggests that high connectivity may have prevailed during humid periods, which is consistent with recent paleoenvironmental reconstructions. PMID:24058489

  17. BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BMM SHAKEOUT AND VIBRATING CONVEYOR TRANSPORT SAND AND CASTINGS TO SEPARATIONS SCREENS. - Southern Ductile Casting Company, Shaking, Degating & Sand Systems, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  18. Critical taper wedge mechanics of fold-and-thrust belts on Venus - Initial results from Magellan

    NASA Technical Reports Server (NTRS)

    Suppe, John; Connors, Chris

    1992-01-01

    Examples of fold-and-thrust belts from a variety of tectonic settings on Venus are introduced. Predictions for the mechanics of fold-and-thrust belts on Venus are examined on the basis of wedge theory, rock mechanics data, and currently known conditions on Venus. The theoretical predictions are then compared with new Magellan data.

  19. Geochemical interaction between subducting slab and mantle wedge:Insight from observation and numerical modelling

    NASA Astrophysics Data System (ADS)

    Baitsch Ghirardello, B.; Gerya, T. V.; Burg, J.-P.; Jagoutz, O.

    2009-04-01

    Understanding the subduction factory and geochemical interactions between subducting slab and the overlying non homogeneously depleted mantle wedge requires better knowledge of passways of slab-derived fluids and melts and their interactions with the melt source in the mantle wedge. Our approach of understanding subduction-related processes consists in coupled geochemical-petrological-thermomechanical numerical geodynamic modelling of subduction zones. With this method we can simulate and visualize the evolution of various fields such as temperature, pressure, melt production etc. Furthermore we extend this tool for 2D and 3D modelling of the evolution of various geochemical signatures in subduction zones. Implementation of geochemical signatures in numerical models is based on marker-in-cell method and allows capturing influences of various key processes such as mechanical mixing of crustal and mantle rocks, fluid release, transport and consuming and melt generation and extraction. Concerning the isotopic signatures, we focus at the first stage on a limited number of elements: Pb, Hf, Sr and Nd. These incompatible elements are transported by hydrated fluids and/or melts through the mantle wedge and therefore they are good tracers for presenting the interaction between mantle wedge and slab. The chosen incompatible elements are also well explored and a large data set is available from literature. At this stage we focus on intra-oceanic subduction and numerical modelling predictions are compared to natural geochemical data from various modern and fossil subduction zones (Aleutian, Marianas, New Britain, Kermadec arcs, Kohistan, Vanuatu).

  20. 50 CFR Figure 17 to Part 223 - Boone Wedge Cut Escape Opening

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Boone Wedge Cut Escape Opening 17 Figure 17 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES...