Science.gov

Sample records for remediation technologies demonstration

  1. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    EPA Science Inventory

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  2. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) DEMONSTRATION BULLETIN

    EPA Science Inventory

    The ElectroChemical Remediation Technologies (ECRTs) process was developed by P2-Soil Remediation, Inc. P-2 Soil Remediation, Inc. formed a partnership with Weiss Associates and ElectroPetroleum, Inc. to apply the technology to contaminated sites. The ECRTs process was evaluated ...

  3. SYNOPSES OF FEDERAL DEMONSTRATIONS OF INNOVATIVE REMEDIATION TECHNOLOGIES

    EPA Science Inventory

    This collection of abstracts, compiled by the Federal Remediation Technology Roundtable, describes field demonstrations of innovative technologies to treat hazardous waste. The collection is intended to be an information resource for hazardous waste site project managers for asse...

  4. SYNOPSES OF FEDERAL DEMONSTRATIONS OF INNOVATIVE REMEDIATION TECHNOLOGIES

    EPA Science Inventory

    This collection of abstracts, compiled by the Federal Remediation Technology Roundtable, describes field demonstrations of innovative technologies to treat hazardous waste. The collection is intended to be an information resource for hazardous waste site project managers for asse...

  5. DEMONSTRATION OF ELECTROCHEMICAL REMEDIATION TECHNOLOGIES-INDUCED COMPLEXATION

    SciTech Connect

    Barry L. Burks

    2002-12-01

    The Project Team is submitting this Topical Report on the results of its bench-scale demonstration of ElectroChemical Remediation Technologies (ECRTs) and in particular the Induced Complexation (ECRTs-IC) process for remediation of mercury contaminated soils at DOE Complex sites. ECRTs is an innovative, in-situ, geophysically based soil remediation technology with over 50 successful commercial site applications involving remediation of over two million metric tons of contaminated soils. ECRTs-IC has been successfully used to remediate 220 cu m of mercury-contaminated sediments in the Union Canal, Scotland. In that operation, ECRTs-IC reduced sediment total mercury levels from an average of 243 mg/kg to 6 mg/kg in 26 days of operation. The clean up objective was to achieve an average total mercury level in the sediment of 20 mg/kg.

  6. Robotics technology demonstration progam for underground storage tank remediation

    SciTech Connect

    Jaquish, W.R.; Shen, E.J.; Yount, J.A.

    1991-09-01

    To address the technological problems associated with waste retrieval from underground storage tanks, the US Department of Energy Office of Technology Development has created the Robotics Technology Demonstration Program for Underground Storage Tanks. The mission of this program is to develop existing and emerging technologies for possible use in storage tank remediation activities. In 1991, this program has created the Robotics Technology Test Bed at the Hanford Site, Washington. A waste storage tank mockup and multiple robotic manipulators, sensors, and surveillance systems have been installed in this test bed. The test and evaluation activities being performed in the test bed will lead to the development of faster and safer methods for waste retrieval, inspection, and surveillance. 3 refs.

  7. Preliminary assessment of worker and ambient air exposures during soil remediation technology demonstration.

    PubMed

    Romine, James D; Barth, Edwin F

    2002-01-01

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead-contaminated soil sites. Industrial hygiene surveys and air monitoring programs for both lead and dust were performed during initial soil sampling activities and during pilot scale technology demonstration activities at two lead-contaminated soil sites to assess whether worker protection or temporary resident relocation would be suggested during any subsequent remediation technology activities. The concentrations of lead and dust in the air during pilot scale technology demonstration studies were within applicable exposure guidelines, including Occupational Health and Safety Administration permissible exposure limits, National Institute for Occupational Safety and Health recommended exposure limits, American Conference of Governmental Industrial Hygiene threshold limit values, and the United States Environmental Protection Agency's National Ambient Air Quality Standards program limits.

  8. Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  9. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

  10. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

  11. Innovative Remediation Technologies: Field-Scale Demonstration Projects in North America, 2nd Edition

    EPA Pesticide Factsheets

    This report consolidates key reference information in a matrix that allows project mangers to quickly identify new technologies that may answer their cleanup needs and contacts for obtaining technology demonstration results and other information.

  12. PRELIMINARY ASSESSMENT OF WORKER AND AMBIENT AIR EXPOSURES DURING SOIL REMEDIATION TECHNOLOGY DEMONSTRATIONS

    EPA Science Inventory

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead contaminated soil sites. An industrial hygiene survey and air monitoring program for both lead and dust were performed during initial soil sampling acti...

  13. PRELIMINARY ASSESSMENT OF WORKER AND AMBIENT AIR EXPOSURES DURING SOIL REMEDIATION TECHNOLOGY DEMONSTRATIONS

    EPA Science Inventory

    Hazardous waste site remediation workers or neighboring residents may be exposed to particulates during the remediation of lead contaminated soil sites. An industrial hygiene survey and air monitoring program for both lead and dust were performed during initial soil sampling acti...

  14. Sour gas plant subsurface remediation technology research and demonstration project. Quarterly technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Stepan, D.J.; Kuehnel, V.

    1994-04-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP), formerly the Canadian Petroleum Association (CPA), and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. The first phase of the project was completed in 1990, and consisted of a comprehensive review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Clean Water Act (1980). That review indicated that all but one of the 45 sour gas plants for which data were available exhibited some form of impact on soil and groundwater quality. The study identified the most frequently occurring contamination situations at the sites and classified them by source, type of contaminant, and the hydrogeological characteristics of the contaminated setting. The project steering committee subsequently selected the Strachan Gas Plant, located near Rocky Mountain House, Alberta, Canada, as a field research and remediation technology demonstration site. Research to be performed under this agreement is for activities in the areas of soil vapor extraction (SVE), bioventing, and bioremediation, all focusing on residual contamination in the unsaturated, or vadose, zone at the site, as well as evaluations of biological treatment of groundwater and ex situ soil remediation using solvent extraction in conjunction with photooxidation, solvent extraction in conjunction with microwave irradiation, and low-temperature thermal desorption.

  15. Sour gas plant remediation technology research and demonstration project, Task 7.53. Topical report, January--December 1993

    SciTech Connect

    Stepan, D.J.; Kuehnel, V.; Schmit, C.R.

    1994-02-01

    Recognizing the potential impacts of sour gas plant operations on the subsurface environment, the Canadian Association of Petroleum Producers (CAPP) and Environment Canada initiated a multiphase study focusing on research related to the development and demonstration of remedial technologies for soil and groundwater contamination at these facilities. Research performed under this project was designed to supplement and be coordinated with research activities being conducted at an operational sour gas plant located in Rocky Mountain House, Alberta, Canada. These research tasks included hydrogeological site characterization, subsurface contaminant characterization, ex situ treatment of groundwater, and subsurface remediation of residual contamination in the unsaturated zone. Ex situ treatment of groundwater included evaluations of air stripping, steam stripping, advanced oxidation, and biological treatment, as well as the development of an artificial freeze crystallization process. Soil vapor extraction was evaluated as a technique to address residual contamination in the unsaturated zone.

  16. ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION

    EPA Science Inventory

    Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...

  17. ENHANCED REMEDIATION DEMONSTRATIONS AT HILL AFB: INTRODUCTION

    EPA Science Inventory

    Nine enhanced aquifer remediation technologies were demonstrated side-by-side at a Hill Air Force Base Chemical Disposal Pit/Fire Training Area site. The demonstrations were performed inside 3 x 5 m cells isolated from the surrounding shallow aquifer by steel piling. The site w...

  18. GLASS FORMULATION DEVELOPMENT AND TESTING FOR COLD CRUCIBLE INDUCTION MELTER (CCIM) ADVANCED REMEDIATION TECHNOLOGIES DEMONSTRATION PROJECT - 9208

    SciTech Connect

    Marra, J; Amanda Billings, A; David Peeler, D; Michael Stone, M; Tommy Edwards, T

    2008-08-27

    Over the past few years, Cold Crucible Induction Melter (CCIM) demonstrations have been completed using SRS sludge batches 2, 3 and 4 (SB2, SB3 and SB4) simulant compositions. These campaigns demonstrated the ability of the CCIM to effectively produce quality glasses at high waste loadings. The current Advanced Remediation Technology (ART) Phase II-A Project is aimed at demonstrating the CCIM technology under representative DWPF flowsheet conditions and to demonstrate extended operations of the melter. A glass composition development effort was completed to identify and recommend a frit composition and sludge batch 4 (SB4) simulant waste loading target for subsequent ART-Phase II-A CCIM demonstration testing. Based on the results of the glass formulation testing, it was recommended that the Frit 503-R6 composition (B{sub 2}O{sub 3} = 14 wt %; Li{sub 2}O = 9 wt %; Na{sub 2}O = 3 wt %; and SiO{sub 2} = 74 wt %) be utilized for the demonstration. Furthermore, a waste loading of 46 wt % was recommended. The recommended frit and waste loading would produce a glass with acceptable durability with a liquidus temperature adequately below the 1250 C nominal CCIM operating temperature. This frit composition and waste loading was found to result in a glass that met CCIM processing requirements for viscosity, electrical conductivity and thermal conductivity. The recommended frit and waste loading level should also provide a buffer for sludge product compositional variation to support the Phase II-A CCIM demonstration.

  19. Innovative technology demonstrations

    SciTech Connect

    Anderson, D.B.; Luttrell, S.P. ); Hartley, J.N. . Environmental Management Operations); Hinchee, R. )

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ.

  20. Innovative technology demonstrations

    SciTech Connect

    Anderson, D.B.; Luttrell, S.P.; Hartley, J.N.; Hinchee, R.

    1992-08-01

    Environmental Management Operations (EMO) is conducting an Innovative Technology Demonstration Program for Tinker Air Force Base (TAFB). Several innovative technologies are being demonstrated to address specific problems associated with remediating two contaminated test sites at the base. Cone penetrometer testing (CPT) is a form of testing that can rapidly characterize a site. This technology was selected to evaluate its applicability in the tight clay soils and consolidated sandstone sediments found at TAFB. Directionally drilled horizontal wells was selected as a method that may be effective in accessing contamination beneath Building 3001 without disrupting the mission of the building, and in enhancing the extraction of contamination both in ground water and in soil. A soil gas extraction (SGE) demonstration, also known as soil vapor extraction, will evaluate the effectiveness of SGE in remediating fuels and TCE contamination contained in the tight clay soil formations surrounding the abandoned underground fuel storage vault located at the SW Tanks Site. In situ sensors have recently received much acclaim as a technology that can be effective in remediating hazardous waste sites. Sensors can be useful for determining real-time, in situ contaminant concentrations during the remediation process for performance monitoring and in providing feedback for controlling the remediation process. Following the SGE demonstration, the SGE system and SW Tanks test site will be modified to demonstrate bioremediation as an effective means of degrading the remaining contaminants in situ. The bioremediation demonstration will evaluate a bioventing process in which the naturally occurring consortium of soil bacteria will be stimulated to aerobically degrade soil contaminants, including fuel and TCE, in situ.

  1. Pilot Study on Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater Volumes 1 and 2 EPA/600/SR-93/012

    EPA Science Inventory

    This two-volume report presents information on a 5-yr pilot study (1986- 1991) sponsored by the North Atlantic Treaty Organization's (NATO) Committee on the Challenges of Modern Society (CCMS) entitled "Demonstration of Remedial Action Technologies for Contaminated Land and Gr...

  2. Pilot Study on Demonstration of Remedial Action Technologies for Contaminated Land and Groundwater Volumes 1 and 2 EPA/600/SR-93/012

    EPA Science Inventory

    This two-volume report presents information on a 5-yr pilot study (1986- 1991) sponsored by the North Atlantic Treaty Organization's (NATO) Committee on the Challenges of Modern Society (CCMS) entitled "Demonstration of Remedial Action Technologies for Contaminated Land and Gr...

  3. Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Mahoney, John; Olsen, Wade

    2010-01-01

    This slide presentation reviews programs at NASA aimed at development at Remediation Technology development for removal of environmental pollutants from NASA sites. This is challenging because there are many sites with different environments, and various jurisdictions and regulations. There are also multiple contaminants. There must be different approaches based on location and type of contamination. There are other challenges: such as costs, increased need for resources and the amount of resources available, and a regulatory environment that is increasing.

  4. Remediation technologies for contaminated sediments

    SciTech Connect

    Swanson, L.M.

    1995-09-01

    Although soil and groundwater remediation has been conducted for many years, sediment remediation is still in its infancy. Regulatory agencies are now beginning to identify areas where contaminated sediments exist and evaluate their environmental impact. As these evaluations are completed, the projects must shift focus to how these sediments can be remediated. Also as the criteria for aquatic disposal of dredged sediments become more stringent, remediation technologies must be developed to address contaminated sediments generated by maintenance dredging.This report describes the various issues and possible technologies for sediment remediation.

  5. California seeks new technologies for site remediation

    SciTech Connect

    Not Available

    1989-09-01

    Innovative new technologies for site remediation will be sought by the California Department of Health Services (Department), Toxic Substances Control Division, Alternative Technology Section, for assessment in the field as full-scale demonstration projects. The Remedial Technology Assessment Program (RTAP) fosters emerging technologies, which have been successfully tested in the laboratory, at bench scale, or at pilot scale and are ready for field or full-scale demonstration project testing. The Department will solicit interest from companies to conduct full-scale demonstrations of remedial treatment technologies for site remediation. The solicitation responses will be used to compile a list of treatment technologies which can be considered during the Remedial Action Plan (RAP) process for implementation at State-lead Bond Expenditure Plan sites and possibly responsible party sites. RTAP will attempt to match submitted remedial technologies to specific hazardous waste sites via the RAP process. A technical report, including an evaluation of the technical and economic feasibility, will be prepared after each demonstration project.

  6. Innovative Technologies for Chlorinated Solvent Remediation

    NASA Astrophysics Data System (ADS)

    Pennell, Kurt D.; Cápiro, Natalie L.

    2014-07-01

    The following sections are included: * INTRODUCTION * TRADITIONAL REMEDIATION TECHNOLOGIES (1980s) * RESEARCH AND DEVELOPMENT OF INNOVATIVE REMEDIATION TECHNOLOGIES (1990s-2000s) * CURRENT TRENDS IN CHLORINATED SOLVENT REMEDIATION (2010s) * CLOSING THOUGHTS * REFERENCES

  7. Remediation Technologies Eliminate Contaminants

    NASA Technical Reports Server (NTRS)

    2012-01-01

    groundwater tainted by chlorinated solvents once used to clean rocket engine components. The award-winning innovation (Spinoff 2010) is now NASA s most licensed technology to date. PCBs in paint presented a new challenge. Removing the launch stand for recycling proved a difficult operation; the toxic paint had to be fully stripped from the steel structure, a lengthy and costly process that required the stripped paint to be treated before disposal. Noting the lack of efficient, environmentally friendly options for dealing with PCBs, Quinn and her colleagues developed the Activated Metal Treatment System (AMTS). AMTS is a paste consisting of a solvent solution containing microscale particles of activated zero-valent metal. When applied to a painted surface, the paste extracts and degrades the PCBs into benign byproducts while leaving the paint on the structure. This provides a superior alternative to other methods for PCB remediation, such as stripping the paint or incinerating the structure, which prevents reuse and can release volatized PCBs into the air. Since its development, AMTS has proven to be a valuable solution for removing PCBs from paint, caulking, and various insulation and filler materials in older buildings, naval ships, and former munitions facilities where the presence of PCBs interferes with methods for removing trace explosive materials. Miles of potentially toxic caulking join sections of runways at airports. Any of these materials installed before 1979 potentially contain PCBs, Quinn says. "This is not just a NASA problem," she says. "It s a global problem."

  8. INTERAGENCY DNAPL CONSORTIUM: A COMMITMENT TO SUCCESSFULLY ACCOMPLISH A COMPLEX DEMONSTRATION OF INNOVATIVE TECHNOLOGIES FOR DNAPL REMEDIATION

    EPA Science Inventory

    The USDOE, Office of Science and Technology (DOE-OST); USEPA/NRMRL; National Aeronautics and Space Administration, Kennedy Space Center (NASA-KSC); and the USAir Force 45th Space Wing (rtth Space Wing) have combined resources to form the Interagency Dense Non Aqueous Phase Liquid...

  9. INTERAGENCY DNAPL CONSORTIUM: A COMMITMENT TO SUCCESSFULLY ACCOMPLISH A COMPLEX DEMONSTRATION OF INNOVATIVE TECHNOLOGIES FOR DNAPL REMEDIATION

    EPA Science Inventory

    The USDOE, Office of Science and Technology (DOE-OST); USEPA/NRMRL; National Aeronautics and Space Administration, Kennedy Space Center (NASA-KSC); and the USAir Force 45th Space Wing (rtth Space Wing) have combined resources to form the Interagency Dense Non Aqueous Phase Liquid...

  10. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  11. Remediation Technology for Contaminated Groundwater

    EPA Science Inventory

    Bioremediation is the most commonly selected technology for remediation of ground water at Superfund sites in the USA. The next most common technology is Chemical treatment, followed by Air Sparging, and followed by Permeable Reactive Barriers. This presentation reviews the the...

  12. Buried Waste Integrated Demonstration. Technology summary

    SciTech Connect

    Not Available

    1994-03-01

    The Buried Waste Integrated Demonstration (BWID) supports the applied research, development, demonstration, and evaluation of a suite of advanced technologies that offer promising solutions to the problems associated with the remediation of buried waste. BWID addresses the difficult remediation problems associated with DOE complex-wide buried waste, particularly transuranic (TRU) contaminated buried waste. BWID has implemented a systems approach to the development and demonstration of technologies that will characterize, retrieve, treat, and dispose of DOE buried wastes. This approach encompasses the entire remediation process from characterization to post-monitoring. The development and demonstration of the technology is predicated on how a technology fits into the total remediation process. To address all of these technological issues, BWID has enlisted scientific expertise of individuals and groups from within the DOE Complex, as well as experts from universities and private industry. The BWID mission is to support development and demonstration of a suite of technologies that, when integrated with commercially-available technologies, forms a comprehensive, remediation system for the effective and efficient remediation of buried waste throughout the DOE Complex. BWID will evaluate and validate demonstrated technologies and transfer this information and equipment to private industry to support the Office of Environmental Restoration (ER), Office of Waste Management (WM), and Office of Facility Transition (FT) remediation planning and implementation activities.

  13. Ground Water Remediation Technologies

    EPA Science Inventory

    The USEPA's Ground Water and Ecosystems Restoration Division (GWERD) conducts research and provides technical assistance to support the development of strategies and technologies to protect and restore ground water, surface water, and ecosystems impacted by man-made and natural...

  14. Technology Demonstration Missions

    NASA Image and Video Library

    NASA's Technology Demonstration Missions (TDM) Program seeks to infuse new technology into space applications, bridging the gap between mature “lab-proven” technology and "flight-ready" status....

  15. FY-95 technology catalog. Technology development for buried waste remediation

    SciTech Connect

    1995-10-01

    The US Department of Energy`s (DOE) Buried Waste Integrated Demonstration (BWID) program, which is now part of the Landfill Stabilization Focus Area (LSFA), supports applied research, development, demonstration, and evaluation of a multitude of advanced technologies dealing with underground radioactive and hazardous waste remediation. These innovative technologies are being developed as part of integrated comprehensive remediation systems for the effective and efficient remediation of buried waste sites throughout the DOE complex. These efforts are identified and coordinated in support of Environmental Restoration (EM-40) and Waste Management (EM-30) needs and objectives. Sponsored by the DOE Office of Technology Development (EM-50), BWID and LSFA work with universities and private industry to develop technologies that are being transferred to the private sector for use nationally and internationally. This report contains the details of the purpose, logic, and methodology used to develop and demonstrate DOE buried waste remediation technologies. It also provides a catalog of technologies and capabilities with development status for potential users. Past FY-92 through FY-94 technology testing, field trials, and demonstrations are summarized. Continuing and new FY-95 technology demonstrations also are described.

  16. Technology development activities supporting tank waste remediation

    SciTech Connect

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy`s Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation.

  17. EMERGING TECHNOLOGY SUMMARY: DEMONSTRATION OF AMBERSORB 563 ADSORBENT TECHNOLOGY

    EPA Science Inventory

    A field pilot study was conducted to demonstrate the technical feasibility and cost-effectiveness of Ambersorb® 5631 carbonaceous adsorbent for remediating groundwater contaminated with volatile organic compounds (VOCs). The Ambersorb adsorbent technology demonstration consist...

  18. Solar Powered Bioreactor Demonstrates Sustainable Remediation

    DTIC Science & Technology

    2009-05-01

    Young – CH2M HILL • Brad Shearer – CH2M HILL Copyright 2009 by CH2M HILL, Inc. 3 Overview • Technology Description • Technical Objectives • Demonstration...Section Solar Panels Distribution Piping DOC - Dissolved Organic Carbon Former Sump Source Area Solar Powered Pump Geotextile Layer Copyright...2009 by CH2M HILL, Inc. Technical Objectives • Demonstrate that an in situ bioreactor with groundwater recirculation can reduce TCE and daughter

  19. Offsite demonstrations for MWLID technologies

    SciTech Connect

    Williams, C.; Gruebel, R.

    1995-04-01

    The goal of the Offsite Demonstration Project for Mixed Waste Landfill Integrated Demonstration (MWLID)-developed environmental site characterization and remediation technologies is to facilitate the transfer, use, and commercialization of these technologies to the public and private sector. The meet this goal, the project identified environmental restoration needs of mixed waste and/or hazardous waste landfill owners (Native American, municipal, DOE, and DoD); documenting potential demonstration sites and the contaminants present at each site; assessing the environmental regulations that would effect demonstration activities; and evaluating site suitability for demonstrating MWLID technologies at the tribal and municipal sites identified. Eighteen landfill sites within a 40.2-km radius of Sandia National Laboratories are listed on the CERCLIS Site/Event Listing for the state of New Mexico. Seventeen are not located within DOE or DoD facilities and are potential offsite MWLID technology demonstration sites. Two of the seventeen CERCLIS sites, one on Native American land and one on municipal land, were evaluated and identified as potential candidates for off-site demonstrations of MWLID-developed technologies. Contaminants potentially present on site include chromium waste, household/commercial hazardous waste, volatile organic compounds, and petroleum products. MWLID characterization technologies applicable to these sites include Magnetometer Towed Array, Cross-borehole Electromagnetic Imaging, SitePlanner {trademark}/PLUME, Hybrid Directional Drilling, Seamist{trademark}/Vadose Zone Monitoring, Stripping Analyses, and x-ray Fluorescence Spectroscopy for Heavy Metals.

  20. Exploration Technology Development & Demonstration

    NASA Image and Video Library

    Chris Moore delivers a presentation from the Exploration Technology Development & Demonstration (ETDD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX....

  1. Review of the Vortec soil remediation demonstration program

    SciTech Connect

    Patten, J.S.

    1994-12-31

    The principal objective of the METC/Vortec program is to develop and demonstrate the effectiveness of the Vortec CMS in remediating soils contaminated with hazardous materials and/or low levels of radionuclides. To convincingly demonstrate the CMS`s capability, a Demonstration Plant will be constructed and operated at a DOE site that has a need for the remediation of contamination soil. The following objectives will be met during the program: (1) establish the glass chemistry requirements to achieve vitrification of contaminated soils found at the selected DOE site; (2) complete the design of a fully integrated soil vitrification demonstration plant with a capacity to process 25 TPD of soil; (3) establish the cost of a fully integrated soil demonstration plant with a capacity to process 25 TPD of soil; (4) construct and operate a fully integrated demonstration plant; (5) analyze all influent and effluent streams to establish the partitioning of contaminants and to demonstrate compliance with all applicable health, safety, and environmental requirements; (6) demonstrate that the CMS technology has the capability to produce a vitrified product that will immobilize the hazardous and radionuclide materials consistent with the needs of the specific DOE waste repositories.

  2. Characterization technologies for environmental remediation

    SciTech Connect

    Pruett, J.G.

    1991-01-01

    Improved site characterization technologies are being developed at Martin Marietta Energy Systems for the US Department of Energy (DOE) Office of Technology Development (OTD) in support of environmental restoration activities throughout the DOE complex. Since site characterization is an expensive and time consuming process that must be performed prior to, during, and following remediation efforts, an obvious way to reduce the overall cost of remediation is to develop improved characterization methods. For example, the Derivative Ultraviolet Absorption Spectrometer (DUVAS), which is being field tested as part of the OTD program, is a fiberoptic device for in situ, real time measurement of aromatic organic compounds in groundwater. A transportable, direct sampling Ion Trap Mass Spectrometer (ITMS) is being developed for continuous monitoring of hazardous organic compounds in air. In areas where the environment is hazardous to human health, it is desirous to perform site characterization remotely; if robotics are to be employed, the Ultrasonic Ranging and Data System (USRADS) can be used to provide telemetry information on robot location as well as sensor measurements. Once fully developed, these technologies can be transferred to the private sector. 19 refs., 2 tabs.

  3. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part A, Remedial action

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part A of Volume 3 and contains the Remedial Action section.

  4. Flagship Technology Demonstrations (FTD)

    NASA Image and Video Library

    Mike Conley delivers a presentation from the Flagship Technology Demonstrations (FTD) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose of t...

  5. Field Applications of In Situ Remediation Technologies: Chemical Oxidation

    EPA Pesticide Factsheets

    Describes recent pilot demonstrations and full-scale applications that either treat soil and ground water in place or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies.

  6. Mars Umbilical Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Houshangi, Nasser

    2000-01-01

    The objective of this project is to develop a autonomous umbilical mating for the mars umbilical technology demonstrator. The Mars Umbilical Technology Demonstrator (MUTD) shall provide electrical power and fiber optic data cable connections between two simulated mars vehicles. The Omnibot is used to provide the mobile base for the system. The mate to umbilical plate is mounted on a three axis Cartesian table, which is installed on the Omnibot mobile base. The Omnibot is controlled in a teleoperated mode. The operator using the vision system will guide the Omnibot to get close to the mate to plate. The information received from four ultrasonic sensors is used to identify the position of mate to plate and mate the umbilical plates autonomously. A successful experimentation verifies the approach.

  7. Technology Demonstration Missions

    NASA Technical Reports Server (NTRS)

    McDougal, John; French, Raymond; Adams-Fogle, Beth; Stephens, Karen

    2015-01-01

    Technology Demonstration Missions (TDM) is in its third year of execution, being initiated in 2010 and baselined in January of 2012. There are 11 projects that NASA Marshall Space Flight Center (MSFC) has contributed to or led: (1) Evolvable Cryogenics (eCryo): Cyrogenic Propellant Storage and Transfer Engineering Development Unit (EDU), a proof of manufacturability effort, used to enhance knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. (2) Composites for Exploration Upper Stage (CEUS): Design, build, test, and address flight certification of a large composite shell suitable for the second stage of the Space Launch System (SLS). (3) Deep Space Atomic Clock (DSAC): Spaceflight to demo small, low-mass atomic clock that can provide unprecedented stability for deep space navigation. (4) Green Propellant Infusion Mission (GPIM): Demo of high-performance, green propellant propulsion system suitable for Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA)-class spacecraft. (5) Human Exploration Telerobotics (HET): Demonstrating how telerobotics, remote control of a variety of robotic systems, can take routine, highly repetitive, dangerous or long-duration tasks out of human hands. (6) Laser Communication Relay Demo (LCRD): Demo to advance optical communications technology toward infusion into deep space and near Earth operational systems, while growing the capabilities of industry sources. (7) Low Density Supersonic Decelerator (LDSD): Demo new supersonic inflatable decelerator and parachute technologies to enable Mars landings of larger payloads with greater precision at a wider range of altitudes. (8) Mars Science Laboratory (MSL) Entry Descent & Landing Instrumentation (MEDLI): Demo of embedded sensors embedded in the MSL heat shield, designed to record the heat and atmospheric pressure experienced during the spacecraft's high-speed, hot entry in the Martian atmosphere. (9) Solar Electric Propulsion

  8. New aspects of soil remediation technologies

    SciTech Connect

    Fels, H.; Becker, S.; Pietsch, R.

    1995-12-31

    In Germany soil remediation technologies are looking back to a development of 10 to 15 years. In the eighties ground examination standards and waste limits values have been defined which are forming the base of all remediation methods. Today the classical cleaning technologies like soil washing and activated coal adsorption just have reached their physical limits. Additional technical proceedings have to improve cleaning efficiency and decomposition of waste.

  9. BEAM Technology Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Wang, David

    2005-01-01

    As technologies advance, their growing complexity makes them harder to maintain. Detection methods for isolating and identifying impending problems are needed to balance this complexity. Through comparison of signal pairs from onboard sensors, the Beacon-based Exception Analysis For Multimissions (BEAM) algorithm can identify and help classify deviations in system operation from a data-trained statistical model. The goal of this task is to mature BEAM and validate its performance on a flying test bed. A series of F-18 flight demonstrations with BEAM monitoring engine parameters in real time was used to demonstrate in-the-field readiness. Captured F-18 and simulated F-18 engine data were used in model creation and training. The algorithm was then ported to the embedded system with a data buffering, file writing, and data-time-stamp monitoring shell to reduce the impact of embedded system faults on BEAM'S ability to correctly identify engine faults. Embedded system testing identified hardware related restrictions and contributed to iterative improvements in the code's runtime performance. The system was flown with forced engine flameouts and other pilot induced faults to simulate operation out of the norm. Successful detection of these faults, confirmed through post-flight data analysis, helped BEAM achieve TRL6.

  10. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  11. Arsenic Treatment Technology Demonstrations

    EPA Pesticide Factsheets

    EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.

  12. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  13. ELECTROCHEMICAL REMEDIATION TECHNOLOGIES (ECRTS) - IN SITU REMEDIATION OF CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    This Innovative Technology Evaulation Report summarizes the results of the evaluation of the Electrochemical Remediation Technologies (ECRTs) process, developed by P2-Soil Remediation, Inc. (in partnership with Weiss Associates and Electro-Petroleum, Inc.). This evaluation was co...

  14. The role of innovative remediation technologies

    SciTech Connect

    Doesburg, J.M.

    1992-05-01

    There are currently over 1200 sites on the US Superfund`s National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don`t really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

  15. The role of innovative remediation technologies

    SciTech Connect

    Doesburg, J.M.

    1992-05-01

    There are currently over 1200 sites on the US Superfund's National Priorities List (NPL) of hazardous waste sites, and there are over 30, 000 sites listed by the Comprehensive Environmental Responsibility, Compensation and Liability Information System (CERCLIS). The traditional approach to remediating sites in the US has been to remove the material and place it in a secure landfill, or in the case of groundwater, pump and treat the effluent. These technologies have proven to be very expensive and don't really fix the problem. The waste is just moved from one place to another. In recent years, however, alternative and innovative technologies have been increasingly used in the US to replace the traditional approaches. This paper will focus on just such innovative remediation technologies in the US, looking at the regulatory drivers, the emerging technologies, some of the problems in deploying technologies, and a case study.

  16. Decision support software technology demonstration plan

    SciTech Connect

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  17. SAMSON Technology Demonstrator

    DTIC Science & Technology

    2014-06-01

    escrow service in the operational environment. For the SAMSON TD, two key escrow systems were demonstrated: StrongAuth SKLES; a 3rd party key... escrow appliance; and A custom database-based key escrow system created for the SAMSON TD. The external label that is placed on file objects that...the key that was used to protect the file. When a SAMSON component presents a token to the KMS, the associated key is retrieved from the escrow and

  18. The Need for Unexploded Ordnance Remediation Technology.

    DTIC Science & Technology

    1994-10-01

    global environmental change research; and • identify private sector technologies that are useful for Department of Defense and Department of Energy...prevention, global environmental change , and energy conservation/renewable resources. Developing more efficient and effective means for the remediation

  19. DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING

    EPA Science Inventory

    In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...

  20. DESIGN AND COST REDUCTION OF REMEDIATION TECHNOLOGY PILOT TESTING

    EPA Science Inventory

    In order to effectively address the inherent variability of MTBE concentrations at a small fuel contamination site chosen for an in-situ remedial technology test demonstration, curtain walls for metering mixtures of conservative and non-conservative tracers into an aquifer were u...

  1. Radioactive Tank Waste Remediation Focus Area. Technology summary

    SciTech Connect

    1995-06-01

    In February 1991, DOE`s Office of Technology Development created the Underground Storage Tank Integrated Demonstration (UST-ID), to develop technologies for tank remediation. Tank remediation across the DOE Complex has been driven by Federal Facility Compliance Agreements with individual sites. In 1994, the DOE Office of Environmental Management created the High Level Waste Tank Remediation Focus Area (TFA; of which UST-ID is now a part) to better integrate and coordinate tank waste remediation technology development efforts. The mission of both organizations is the same: to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. The TFA has focused on four DOE locations: the Hanford Site in Richland, Washington, the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho, the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site (SRS) in Aiken, South Carolina.

  2. Remediation technologies for heavy metal contaminated groundwater.

    PubMed

    Hashim, M A; Mukhopadhyay, Soumyadeep; Sahu, Jaya Narayan; Sengupta, Bhaskar

    2011-10-01

    The contamination of groundwater by heavy metal, originating either from natural soil sources or from anthropogenic sources is a matter of utmost concern to the public health. Remediation of contaminated groundwater is of highest priority since billions of people all over the world use it for drinking purpose. In this paper, thirty five approaches for groundwater treatment have been reviewed and classified under three large categories viz chemical, biochemical/biological/biosorption and physico-chemical treatment processes. Comparison tables have been provided at the end of each process for a better understanding of each category. Selection of a suitable technology for contamination remediation at a particular site is one of the most challenging job due to extremely complex soil chemistry and aquifer characteristics and no thumb-rule can be suggested regarding this issue. In the past decade, iron based technologies, microbial remediation, biological sulphate reduction and various adsorbents played versatile and efficient remediation roles. Keeping the sustainability issues and environmental ethics in mind, the technologies encompassing natural chemistry, bioremediation and biosorption are recommended to be adopted in appropriate cases. In many places, two or more techniques can work synergistically for better results. Processes such as chelate extraction and chemical soil washings are advisable only for recovery of valuable metals in highly contaminated industrial sites depending on economical feasibility.

  3. Acoustically enhanced remediation, Phase 2: Technology scaling

    SciTech Connect

    Iovenitti, J.L.; Hill, D.G.; Rynne, T.M.; Spadaro, J.F.; Hutchinson, W.; Illangasakere, T.

    1996-12-31

    Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

  4. In Situ Remediation Integrated Program: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  5. Remediation technologies for oil-contaminated sediments.

    PubMed

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  6. Polyphosphate Remediation Technology for In-Situ Stabilization of Uranium

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Webb, Samuel M.

    2009-03-01

    A labortory testing program has been conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology infiltration demonstration to stabilize soluble, uranium-bearing source phases in the vadose zone and capillary fringe. Source treatment in the deep vadose zone will accelerate the natural attenuation of uranium to more thermodynamically stable uranium-phosphate minerals, enhancing the performance of the proposed polyphosphate remediation within the 300 Area aquifer. The objective of this investigation was to develop polyphosphate remediation technology to treat uranium contamination contained within the deep vadose zone and capillary fringe. This paper presents the results of an investigation that evaluated the rate and extent of reaction between polyphosphate and the uranium mineral phases present within the 300 Area vadose zone and capillary fringe and autunite formation as a function of polyphosphate formulation and concentration. This information is critical for identifying the optimum implementation approach and controlling the flux of uranium from the vadose zone and capillary fringe to the underlying aquifer during remediation. Results from this investigation will be used to design a full-scale remediation of uranium at the 300 Area of the Hanford Site.

  7. Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers

    DTIC Science & Technology

    2002-01-01

    Field Applications of In Situ Remediation Technologies: Permeable Reactive Barriers United States Environmental Protection Agency PRB Remediated... Applications of In Situ Remediation Technologies: Permeable Reactive Barriers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Field Applications of In Situ Remediation Technologies

  8. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-05-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  9. Applications of microwave radiation environmental remediation technologies

    SciTech Connect

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail.

  10. Federal Remediation Technology Roundtable: Five Years of Cooperation

    EPA Pesticide Factsheets

    An overview of the activities of the Federal Remediation Technologies Roundtable--a working group seeking to build a more collaborative atmosphere among the federal agencies involved in hazardous waste site remediation.

  11. In-Situ Electrokinetic Remediation of Metal Contaminated Soils Technology Status Report

    DTIC Science & Technology

    2000-07-01

    demonstration of electrokinetic remediation at Naval Air Weapons Station (NAWS) Point Mugu. Dr. R. Mark Bricka, David Gent , and Chris Fetter of the...Profile 23 5 I. Introduction Electrokinetic remediation is an in-situ process in which an electrical field is created in a soil matrix by...technology at its current stage of development. 6 II. Technology Description Electrokinetic remediation is an in-situ process in which an

  12. Historical hydronuclear testing: Characterization and remediation technologies

    SciTech Connect

    Shaulis, L.; Wilson, G.; Jacobson, R.

    1997-09-01

    This report examines the most current literature and information available on characterization and remediation technologies that could be used on the Nevada Test Site (NTS) historical hydronuclear test areas. Historical hydronuclear tests use high explosives and a small amount of plutonium. The explosion scatters plutonium within a contained subsurface environment. There is currently a need to characterize these test areas to determine the spatial extent of plutonium in the subsurface and whether geohydrologic processes are transporting the plutonium away from the event site. Three technologies were identified to assist in the characterization of the sites. These technologies are the Pipe Explorer{trademark}, cone penetrometer, and drilling. If the characterization results indicate that remediation is needed, three remediation technologies were identified that should be appropriate, namely: capping or sealing the surface, in situ grouting, and in situ vitrification. Capping the surface would prevent vertical infiltration of water into the soil column, but would not restrict lateral movement of vadose zone water. Both the in situ grouting and vitrification techniques would attempt to immobilize the radioactive contaminants to restrict or prevent leaching of the radioactive contaminants into the groundwater. In situ grouting uses penetrometers or boreholes to inject the soil below the contaminant zone with low permeability grout. In situ vitrification melts the soil containing contaminants into a solid block. This technique would provide a significantly longer contaminant immobilization, but some research and development would be required to re-engineer existing systems for use at deep soil depths. Currently, equipment can only handle shallow depth vitrification. After existing documentation on the historical hydronuclear tests have been reviewed and the sites have been visited, more specific recommendations will be made.

  13. Installation of an innovative remedial technology

    SciTech Connect

    Hines, B.

    1995-12-31

    The major goal of the Lasagna{trademark} project was to design, construct, install, and operate an in situ remediation system in low-permeability soil. A new technology--the Lasagna process--uses electro-osmosis to move contaminated groundwater through treatment zones. The treatment zones are installed in contaminated soils, thereby forming an integrated in situ remedial process. Electro-osmosis, well known for its effectiveness and extremely low power consumption, uses a direct current to cause Groundwater to travel through low-permeability soil. When a bench-scale version of the technology was 98 percent effective in removing contamination, an actual field test was the next step. The site chosen for this first field effort was the DOE-owned Paducah Gaseous Diffusion Plant located in Paducah, Kentucky. The target contaminant for this project was trichloroethylene (TCE) because it is found at many sites across the country and is present at approximately 60 percent of DOE`s sites.

  14. The NASA telerobot technology demonstrator

    NASA Technical Reports Server (NTRS)

    Schenker, P. S.; French, R. L.; Sirota, A. R.; Matijevic, J. R.

    1987-01-01

    The ongoing development of a telerobot technology demonstrator is reported. The demonstrator is implemented as a laboratory-based research testbed, and will show proof-of-concept for supervised automation of space assembly, servicing, and repair operations. The demonstrator system features a hierarchically layered intelligent control architecture which enables automated planning and run-time sequencing of complex tasks by a supervisory human operator. The demonstrator also provides a full bilateral force-reflecting hand control teleoperations capability. The operator may switch smoothly between the automated and teleoperated tasking modes in run-time, either on a preplanned or operator-designated basis.

  15. Surfactant remediation field demonstration using a vertical circulation well

    SciTech Connect

    Knox, R.C.; Sabatini, D.A.; Harwell, J.H.; Brown, R.E.; West, C.C.; Blaha, F.; Griffin, C.

    1997-11-01

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system for controlling chemical extractants added to the subsurface; and (2) to assess the behavior of the surfactant solution in the subsurface, with a goal of maximum surfactant recovery. A secondary objective was to demonstrate enhanced removal of PCE and recalcitrant components of a jet fuel. The analytical results showed that the surfactant increased the contaminant mass extracted by 40-fold and 90-fold for the PCE and jet fuel constituents, respectively. The surfactant solution demonstrated minimal sorption (retardation) and did not precipitate in the subsurface formation. In addition, the VCW system was able to capture in excess of 95% of the injected surfactant solution. Additional field testing and full-scale implementation of surfactant-enhanced subsurface remediation should be performed.

  16. Cost studies of thermally enhanced in situ soil remediation technologies

    SciTech Connect

    Bremser, J.; Booth, S.R.

    1996-05-01

    This report describes five thermally enhanced technologies that may be used to remediate contaminated soil and water resources. The standard methods of treating these contaminated areas are Soil Vapor Extraction (SVE), Excavate & Treat (E&T), and Pump & Treat (P&T). Depending on the conditions at a given site, one or more of these conventional alternatives may be employed; however, several new thermally enhanced technologies for soil decontamination are emerging. These technologies are still in demonstration programs which generally are showing great success at achieving the expected remediation results. The cost savings reported in this work assume that the technologies will ultimately perform as anticipated by their developers in a normal environmental restoration work environment. The five technologies analyzed in this report are Low Frequency Heating (LF or Ohmic, both 3 and 6 phase AC), Dynamic Underground Stripping (DUS), Radio Frequency Heating (RF), Radio Frequency Heating using Dipole Antennae (RFD), and Thermally Enhanced Vapor Extraction System (TEVES). In all of these technologies the introduction of heat to the formation raises vapor pressures accelerating contaminant evaporation rates and increases soil permeability raising diffusion rates of contaminants. The physical process enhancements resulting from temperature elevations permit a greater percentage of volatile organic compound (VOC) or semi- volatile organic compound (SVOC) contaminants to be driven out of the soils for treatment or capture in a much shorter time period. This report presents the results of cost-comparative studies between these new thermally enhanced technologies and the conventional technologies, as applied to five specific scenarios.

  17. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

  18. Satellite Technology Demonstration; Final Report.

    ERIC Educational Resources Information Center

    Federation of Rocky Mountain States, Inc., Denver, CO.

    The goal of the Satellite Technology Demonstration project (STD) was to show the feasibility of a satellite-based media system for isolated, rural populations and to test and evaluate user acceptance and the cost of various delivery modes using a variety of materials. The STD amalgamated the resources of government, health, education, and…

  19. Review of the Vortec soil remediation demonstration program

    SciTech Connect

    Patten, J.S.

    1994-11-01

    The DOE`s clean-up of its nuclear complex require the development of innovative technologies to convert soils contaminated by hazardous and/or radioactive wastes to forms which can be readily disposed in accordance with current waste disposal methods. The unique features of Votec CMS technology should make it particularly cost-effective process for the vitrification of soils, sediments, sludges, and mill tailings containing organic metallic and/or radioactive contaminants. This article describes the technology (Votec`s combustion and melting system), the results of testing, the demonstration plant system, and summarizes the future schedule and the equipment needed. 3 figs., 3 tabs.

  20. Lust remediation technologies. Part 2. Soil corrective action descriptions

    SciTech Connect

    Not Available

    1993-08-01

    Leaking underground storage tanks (LUSTs) have been recognized as a major potential source of ground water contamination in the U.S. Current state and federal regulations require the remediation of sites where the soil and/or ground water has been contaminated by leaking underground storage tanks. The document presents information on technologies for the remediation of contaminated soils at LUST sites. A companion volume, LUST Remediation Technologies: Part III - Ground Water Corrective Action Descriptions, presents information on technologies for the remediation of contaminated ground water at LUST sites.

  1. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  2. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS & PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  3. Y-12 Plant remedial action Technology Logic Diagram: Volume 3, Technology evaluation data sheets: Part B, Characterization; robotics/automation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) problems at the Y-12 Plant to potential technologies that can remediate theses problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to remedial action (RA) activities. The TLD consists of three volumes. Volume 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 contains the TLD data sheets. This report is Part B of Volume 3 and contains the Characterization and Robotics/Automation sections.

  4. UXO Technology Demonstration Program at Jefferson Proving Ground, Phase IV

    DTIC Science & Technology

    1999-05-01

    former Department of Defense (DOD) properties. A legacy of decades old unexploded projectiles, rockets, bombs, and missiles, and even cannonballs ...the project team members . • Equipment data that identified the technologies used in the demonstration. • Results in the form of a standard data...Technician 1.3 Subcontractors and Team Members There were no subcontractors utilized on this project. 2.0 DEMONSTRATED TECHNOLOGIES 2.1 Remediation System

  5. Technology needs for remediation: Hanford and other DOE sites

    SciTech Connect

    Stapp, D.C.

    1993-01-01

    Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

  6. Technology demonstration for reusable launchers

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Bonnal, Ch.

    2016-03-01

    Reusable launchers have been studied under CNES contracts for more than 30 years, with early concepts such as STS-2000 or Oriflamme, more recently with very significant efforts devoted to Liquid Fly Back Boosters as with the Bargouzin project led with Tsniimash, TSTO with the Everest concept studied by Airbus-DS as prime contractor or the RFS Reusable First Stage concept of a large first stage associated to a cryotechnic second stage. These investigations, summarized in the first part of the paper, enabled CNES to identify clearly the technology requirements associated to reusability, as well as cost efficiency through detailed non-recurring costs and mission costs analysis. In parallel, CNES set in place development logic for sub-systems and equipment based on demonstrators, hardware test benches enabling maturation of technologies up to a TRL such that an actual development can be decided with limited risk. This philosophy has been applied so far to a large number of cases, such as TPTech and TPX for Hydrogen turbo pump, GGPX as demonstrator of innovative gas generator, HX demonstrator of modern cryotechnic upper stage with a dozen of different objectives (Thermal Protection, 20K Helium storage, measurements …). This virtuous approach, "learn as you test", is currently applied in the phased approach towards scaled down reusable booster stage, whose possibility to be used as first stage of a microlaunch vehicle is under investigation. The selected technologies allow paving the way towards reusable booster stages for Ariane 6 evolutions or main reusable stage for a further generation of heavy launchers. The paper describes the logic behind this project, together with the demonstration objectives set for the various sub-systems as well as operations.

  7. Engineering parameters for environmental remediation technologies. Final report

    SciTech Connect

    Kikkeri, S.R.

    1996-06-01

    This document identifies engineering parameters and establishes ranges of values for 33 environmental remediation technologies. The main purpose is to provide U.S. Coast Guard (USCG) civil engineering personnel with summarized information regarding matrix characteristics and design parameters that are applicable to each of the technologies. This information is intended to guide USCG personnel when making decisions regarding the selection of appropriate remediation technologies. This document has been developed to be used as a companion document to the Remediation Technologies Screening Matrix and Reference Guide (EPN542/B-94/013).

  8. Aerospace Communications Security Technologies Demonstrated

    NASA Technical Reports Server (NTRS)

    Griner, James H.; Martzaklis, Konstantinos S.

    2003-01-01

    In light of the events of September 11, 2001, NASA senior management requested an investigation of technologies and concepts to enhance aviation security. The investigation was to focus on near-term technologies that could be demonstrated within 90 days and implemented in less than 2 years. In response to this request, an internal NASA Glenn Research Center Communications, Navigation, and Surveillance Aviation Security Tiger Team was assembled. The 2-year plan developed by the team included an investigation of multiple aviation security concepts, multiple aircraft platforms, and extensively leveraged datalink communications technologies. It incorporated industry partners from NASA's Graphical Weather-in-the-Cockpit research, which is within NASA's Aviation Safety Program. Two concepts from the plan were selected for demonstration: remote "black box," and cockpit/cabin surveillance. The remote "black box" concept involves real-time downlinking of aircraft parameters for remote monitoring and archiving of aircraft data, which would assure access to the data following the loss or inaccessibility of an aircraft. The cockpit/cabin surveillance concept involves remote audio and/or visual surveillance of cockpit and cabin activity, which would allow immediate response to any security breach and would serve as a possible deterrent to such breaches. The datalink selected for the demonstrations was VDL Mode 2 (VHF digital link), the first digital datalink for air-ground communications designed for aircraft use. VDL Mode 2 is beginning to be implemented through the deployment of ground stations and aircraft avionics installations, with the goal of being operational in 2 years. The first demonstration was performed December 3, 2001, onboard the LearJet 25 at Glenn. NASA worked with Honeywell, Inc., for the broadcast VDL Mode 2 datalink capability and with actual Boeing 757 aircraft data. This demonstration used a cockpitmounted camera for video surveillance and a coupling to

  9. Deep Space 1 Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The completely assembled Deep Space 1 (DS-1) technology demonstrator spacecraft. The DS-1 spacecraft incorporates a number of advanced technology concepts in its mission, but none so 'high profile' as its Ion propulsion system. The name itself evokes visions of Star Trek and science fiction fantasy, although the idea actually dates from the 1950s. However, unlike the 'Warp Drive' propulsion system that zings the fictional starship Enterprise across the cosmos in minutes, the almost imperceptible thrust from the ion propulsion system is equivalent to the pressure exerted by a sheet of paper held in the palm of your hand. The ion engine is very slow to pick up speed, but over the long haul it can deliver 10 times as much thrust per pound of fuel as more traditional rockets. Unlike the fireworks of most chemical rockets using solid or liquid fuels, the ion drive emits only an eerie blue glow as ionized (electrically charged) atoms of xenon are pushed out of the engine. Xenon is the same gas found in photo flash tubes and many lighthouse bulbs. Deep Space 1 was launched in October 1998 as part of NASA's New Millennium Program, which is managed by JPL for NASA's Office of Space Science, Washington, DC. The California Institute of Technology in Pasadena manages JPL for NASA.

  10. Unmanned space vehicle technology demonstrator

    NASA Astrophysics Data System (ADS)

    Tancredi, U.; Accardo, D.; Grassi, M.; Curreri, F.

    2007-02-01

    The unmanned space vehicle (USV) program has been undertaken by the Italian Center for Aerospace Research with the aim of developing flying test beds of next generation reentry launch vehicles. In this framework, the development of small demonstrators is also foreseen to validate technological and operational aspects of full-scale vehicles and missions. In this paper, a small-scale demonstrator of the sub-orbital re-entry test mission of the USV program is described. Both mission profile and objectives are very challenging in terms of demonstrator guidance, navigation and control. After a short description of the mission and demonstrator architectures, particular emphasis is given to the guidance and navigation analysis. To this end, mission objectives and reduced-scale system constaints are integrated and translated into innovative guidance solutions relying on optimization techniques. Then, performance of a commercial-off-the-shelf GPS-aided, miniature inertial navigation system over the proposed trajectories is evaluated by Monte Carlo analysis. Standalone inertial and GPS-aided inertial navigation performance is also compared considering GPS loss conditions due to antenna plasma effects.

  11. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    SciTech Connect

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

  12. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  13. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    EPA Science Inventory

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  14. In situ remediation technologies for mercury-contaminated soil

    DOE PAGES

    He, Feng; Gao, Jie; Pierce, Eric; ...

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic,more » and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.« less

  15. In situ remediation technologies for mercury-contaminated soil

    SciTech Connect

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P. J.; Wang, Hailong; Liang, Liyuan

    2015-04-09

    A pollutant that poses significant risks to humans and the environment is mercury from anthropogenic activities. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. Our paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. We also discussed two emerging technologies, phytoremediation and nanotechnology, in this review.

  16. In situ remediation technologies for mercury-contaminated soil.

    PubMed

    He, Feng; Gao, Jie; Pierce, Eric; Strong, P J; Wang, Hailong; Liang, Liyuan

    2015-06-01

    Mercury from anthropogenic activities is a pollutant that poses significant risks to humans and the environment. In soils, mercury remediation can be technically challenging and costly, depending on the subsurface mercury distribution, the types of mercury species, and the regulatory requirements. This paper introduces the chemistry of mercury and its implications for in situ mercury remediation, which is followed by a detailed discussion of several in situ Hg remediation technologies in terms of applicability, cost, advantages, and disadvantages. The effect of Hg speciation on remediation performance, as well as Hg transformation during different remediation processes, was detailed. Thermal desorption, electrokinetic, and soil flushing/washing treatments are removal technologies that mobilize and capture insoluble Hg species, while containment, solidification/stabilization, and vitrification immobilize Hg by converting it to less soluble forms. Two emerging technologies, phytoremediation and nanotechnology, are also discussed in this review.

  17. Composite Cryotank Technologies and Demonstration

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.

  18. The option to abandon: stimulating innovative groundwater remediation technologies characterized by technological uncertainty.

    PubMed

    Compernolle, T; Van Passel, S; Huisman, K; Kort, P

    2014-10-15

    Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...

  20. DESIGN OF A SURFACTANT REMEDIATION FIELD DEMONSTRATION BASED ON LABORATORY AND MODELINE STUDIES

    EPA Science Inventory

    Surfactant-enhanced subsurface remediation is being evaluated as an innovative technology for expediting ground-water remediation. This paper reports on laboratory and modeling studies conducted in preparation for a pilot-scale field test of surfactant-enhanced subsurface remedia...

  1. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  2. ELECTROKINETIC REMEDIATION: BASICS AND TECHNOLOGY STATUS

    EPA Science Inventory

    Electrokinetic remediation, variably named as electrochemical soil processing, electromigration, electrokinetic decontamination or electroreclamation uses electric currents to extract radionuclides, heavy metals, certain organic compounds, or mixed inorganic species and some orga...

  3. NASA Remediation Technology Collaboration Development Task, Overview and Project Summaries

    NASA Technical Reports Server (NTRS)

    Romeo, James G.

    2014-01-01

    An overview presentation of NASA's Remediation Technology Collaboration Development Task including the following project summaries: in situ groundwater monitor, in situ chemical oxidation, in situ bioremediation, horizontal multi-port well, and high resolution site characterization.

  4. Green Remediation Best Management Practices: Implementing In Situ Thermal Technologies

    EPA Pesticide Factsheets

    Over recent years, the use of in situ thermal technologies such as electrical resistance heating, thermal conductive heating, and steam enhanced extraction to remediate contaminated sites has notably increased.

  5. Demonstration designs for the remediation of space debris from the International Space Station

    NASA Astrophysics Data System (ADS)

    Ebisuzaki, Toshikazu; Quinn, Mark N.; Wada, Satoshi; Piotrowski, Lech Wiktor; Takizawa, Yoshiyuki; Casolino, Marco; Bertaina, Mario E.; Gorodetzky, Philippe; Parizot, Etienne; Tajima, Toshiki; Soulard, Rémi; Mourou, Gérard

    2015-07-01

    We present here designs for a staged implementation of an orbiting debris remediation system comprised of a super-wide field-of-view telescope (EUSO) and a novel high efficiency fibre-based laser system (CAN). Initial proof of concept stages will operate from the International Space Station (ISS) where the EUSO telescope has been designed for operation as a detector of ultra-high energy cosmic rays. Equipped with 2.5 m optics and a field of view of ±30°, the EUSO telescope can also be utilised for the detection of high velocity fragmentation debris in orbit near the ISS. Further tracking, characterisation and remediation are to be performed by a CAN laser system operating in tandem with the EUSO telescope. For full scale versions of both instruments, the range of the detection/removal operation can be as large as 100 km. Utilising a step-by-step approach of increasing scale we present an analysis of implementation of: 1) Proof of principle demonstration of the detection by a mini-EUSO and operation of 100-fibre CAN laser technology as an ISS based prototype, 2) Technical demonstrator of debris-removal that consists of the EUSO telescope for the detection and a 10,000 fibre CAN laser for tracking and impulse delivery for debris re-entry, and 3) A free-flyer mission dedicated to debris remediation in a polar orbit with the altitude near 800 km. The integration of the two novel technologies aboard the ISS amounts to a novel approach as an immediate response to the serious space debris problem with the existing platform of ISS.

  6. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  7. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    EPA Science Inventory

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  8. REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA

    EPA Science Inventory

    This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...

  9. MTBE TREATMENT TECHNOLOGIES DEMONSTRATION PROJECTS

    EPA Science Inventory

    The NRMRL, in collaboration with the State of California, and Department of Defense research program (ESTCP) is hosting a field-scale evaluation of cleanup technologies at the Department of Defense National Environmental Technology Test Site at Port Hueneme California. EPA has ...

  10. Site Remediation Technology InfoBase: A Guide to Federal Programs, Information Resources, and Publications on Contaminated Site Cleanup Technologies. First Edition

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Table of Contents: Federal Cleanup Programs; Federal Site Remediation Technology Development Assistance Programs; Federal Site Remediation Technology Development Electronic Data Bases; Federal Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Other Electronic Resources for Site Remediation Technology Information; Selected Bibliography: Federal Publication on Alternative and Innovative Site Remediation; and Appendix: Technology Program Contacts.

  11. Microbial fuel cells demonstrate high coulombic efficiency applicable for water remediation.

    PubMed

    Devasahayam, Mercy; Masih, Sam A

    2012-06-01

    Microbial fuel cells (MFCs) convert biomass into electricity by the metabolic activity of microorganisms and are also used for remediation and water treatment. Power output was compared for a dual chambered membrane MFC using either E. coli or two Yamuna river samples, Yamuna (before the Sangam region)--slow flow (sample 1) and Sangam region--fast flow (sample 2). E. coli and the two river water samples 1 and 2 gave a maximum voltage of 779, 463 and 415 mV respectively. Using E. coli the maximum power density obtained with a 100 omega resistor was 220.66 mW/cm2 and the highest power generated 6068.41 mW. The results demonstrate E. coli, river sample 1 and river sample 2 have a comparable coulombic efficiency of 85.2, 71 and 77% respectively when using 0.4% sucrose as substrate. The decrease in chemical oxidative demand of all river water samples using MFC technology demonstrates efficient remediation of inland water.

  12. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

  13. VOCs in Non-Arid Soils Integrated Demonstration: Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

  14. COBALT Flight Demonstrations Fuse Technologies

    NASA Image and Video Library

    2017-06-07

    This 5-minute, 50-second video shows how the CoOperative Blending of Autonomous Landing Technologies (COBALT) system pairs new landing sensor technologies that promise to yield the highest precision navigation solution ever tested for NASA space landing applications. The technologies included a navigation doppler lidar (NDL), which provides ultra-precise velocity and line-of-sight range measurements, and the Lander Vision System (LVS), which provides terrain-relative navigation. Through flight campaigns conducted in March and April 2017 aboard Masten Space Systems' Xodiac, a rocket-powered vertical takeoff, vertical landing (VTVL) platform, the COBALT system was flight tested to collect sensor performance data for NDL and LVS and to check the integration and communication between COBALT and the rocket. The flight tests provided excellent performance data for both sensors, as well as valuable information on the integrated performance with the rocket that will be used for subsequent COBALT modifications prior to follow-on flight tests. Based at NASA’s Armstrong Flight Research Center in Edwards, CA, the Flight Opportunities program funds technology development flight tests on commercial suborbital space providers of which Masten is a vendor. The program has previously tested the LVS on the Masten rocket and validated the technology for the Mars 2020 rover.

  15. Amine Swingbed Payload Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Sweterlitsch, Jeffrey

    2014-01-01

    The Amine Swingbed is an amine-based, vacuum-regenerated adsorption technology for removing carbon dioxide and humidity from a habitable spacecraft environment, and is the baseline technology for the Orion Program’s Multi-Purpose Crew Vehicle (MPCV). It uses a pair of interleaved-layer beds filled with SA9T, the amine sorbent, and a linear multiball valve rotates 270° back and forth to control the flow of air and vacuum to adsorbing and desorbing beds. One bed adsorbs CO2 and H2O from cabin air while the other bed is exposed to vacuum for regeneration by venting the CO2 and H2O. The two beds are thermally linked, so no additional heating or cooling is required. The technology can be applied to habitable environments where recycling CO2 and H2O is not required such as short duration missions.

  16. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    SciTech Connect

    Rossabi, J.; Jenkins, R.A.; Wise, M.B.

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  17. Reductive photo-dechlorination (RPD) technology for remediation of TCA

    SciTech Connect

    Lavid, M.; Gulati, S.K.; Teytelboym, M.

    1994-12-31

    The Reductive Photo-Dechlorination (RPD) technology uses ultraviolet light in a reducing atmosphere to remove chlorine atoms from organo-chlorine waste streams at low to moderate temperatures. Because chlorinated organics are destroyed in a reducing environment, process products include valuable hydrocarbons and hydrogen chloride with no toxic oxygenated chlorocarbon by-products. The RPD process is designed specifically to treat volatile chlorinated wastes in the liquid or gaseous phases. Field applications include organic wastes produced from soil venting operations and those adsorbed on activated carbon. The process can also be used to pretreat gas streams entering catalytic oxidation systems, reducing chlorine content and hereby protecting the catalyst against poisoning. This paper focuses on photo-thermal remediation of 1,1,1-trichloroethane (TCA). It describes bench-scale experimental results, kinetic modeling predictions, and selected design parameters for a pilot-scale demonstration.

  18. In Situ Uranium Stabilization through Polyphosphate Remediation: Development and Demonstration at the Hanford Site 300 Area, Washington State

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Vermeul, Vincent R.; Mattigod, Shas V.; Richards, Emily L.; Williams, Mark D.; Fruchter, Jonathan S.; Icenhower, Jonathan P.

    2008-06-27

    A site specific treatability test was conducted to optimize polyphosphate remediation technology for implementation through a field-scale technology demonstration to accelerate monitored natural attenuation of the uranium plume within the Hanford 300 Area aquifer. A focused application of polyphosphate was conducted in a source or “hot spot” area to reduce the inventory of available uranium that contributes to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite acting as a long-term sorbent for uranium. The general treatability testing approach consisted of initial site characterization and setup, a polyphosphate injection test, and post-treatment performance assessment. Fundamental science studies were conducted with site specific sediment and groundwater to develop an effective remediation scheme for deployment of polyphosphate technology. In addition to remediating a portion of the plume, the data from this test provides valuable information for designing a full-scale remediation of uranium in the aquifer at the 300 Area of the Hanford Site. It will also provide a detailed understanding of the fundamental underpinnings necessary to evaluate the efficacy and potential utilization of polyphosphate technology at other sites with varying geochemical and hydrodynamic conditions.

  19. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE`s Office of Technology Development (OTD).

  20. Buried waste integrated demonstration technology integration process

    SciTech Connect

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD).

  1. Tandem mirror technology demonstration facility

    SciTech Connect

    Not Available

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  2. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  3. Coupling risk-based remediation with innovative technology

    SciTech Connect

    Goodheart, G.F.; Teaf, C.M. |; Manning, M.J.

    1998-05-01

    Tiered risk-based cleanup approaches have been effectively used at petroleum sites, pesticide sites and other commercial/industrial facilities. For example, the Illinois Environmental Protection Agency (IEPA) has promulgated guidance for a Tiered Approach to Corrective action Objectives (TACO) to establish site-specific remediation goals for contaminated soil and groundwater. As in the case of many other state programs, TACO is designed to provide for adequate protection of human health and the environment based on potential risks posed by site conditions. It also incorporates site-related information that may allow more cost-effective remediation. IEPA developed TACO to provide flexibility to site owners/operators when formulating site-specific remediation activities, as well as to hasten property redevelopment to return sites to more productive use. Where appropriate, risk-based cleanup objectives as set by TACO-type programs may be coupled with innovative remediation technologies such as air sparging, bioremediation and soil washing.

  4. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of

  5. SURFACTANT REMEDIATION FIELD DEMONSTRATION USING A VERTICAL CIRCULATION WELL

    EPA Science Inventory

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system...

  6. SURFACTANT REMEDIATION FIELD DEMONSTRATION USING A VERTICAL CIRCULATION WELL

    EPA Science Inventory

    A field demonstration of surfactant-enhanced solubilization was completed in a shallow unconfined aquifer located at a Coast Guard Station in Traverse City, Michigan. The primary objectives of the study were: (1) to assess the ability of the vertical circulation well (VCW) system...

  7. Technology, cognitive remediation, and nursing: directions for successful cognitive aging.

    PubMed

    Vance, David E; McNees, Patrick; Meneses, Karen

    2009-02-01

    Many older adults experience cognitive difficulties and declines as a part of normal aging. Nurses and other health care professionals will require assistance in technologies that can help older patients maintain or improve cognition. Cognitive remediation represents a well-established laboratory approach that augments cognitive functioning in older adults. Emerging technologies allow such cognitive remediation to be self-administered through gaming software, making it convenient, fun, and inexpensive to deliver. As such, guiding older patients, as well as some facilities, in this direction may be a way to help. However, certain caveats and suggestions are warranted.

  8. Surfactants and cosolvents for NAPL remediation. A technologies practices manual

    SciTech Connect

    Lowe, D.F.; Oubre, C.L.; Ward, C.H.

    1999-11-01

    This book gives you tools to provide assistance in the application of surfactant- and cosolvent-based flushing technologies to subsurface remediation. Written for the field practitioners, the book covers important aspects--from design to operation--of this unique remediation technique. Topics of discussion include the following: technology description and current status; geology and contaminant distribution; surfactant/cosolvent enhanced recovery of NAPL; produced fluids and management and surfactant/cosolvent flushing; cost considerations; field project case studies; literature summary database; cost worksheets/design worksheets; surfactant cost estimates; and future research.

  9. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  10. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  11. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  12. National conference on environmental remediation science and technology: Abstracts

    SciTech Connect

    1998-12-31

    This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

  13. TREATMENT TECHNOLOGY FOR REMEDIATION OF WOOD PRESERVING SITES: OVERVIEW

    EPA Science Inventory

    This is the first in a series of five articles describing the applicability, performance and cost of technologies for the remediation of contaminated soil and water at wood preserving sites. Site-specific treatability studies conducted under the supervision of the USEPA NRMRL fro...

  14. Field Applications of In Situ Remediation Technologies: Ground-Water Circulation Wells

    EPA Pesticide Factsheets

    This report is one in a series that show recent pilot demonstrations and full-scale applications that treat soil and ground water in situ or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies.

  15. In situ remediation integrated program: Development of containment technology

    SciTech Connect

    Peterson, M.E.

    1994-08-01

    The In Situ Remediation Integrated Program (ISR IP) is supporting the development of subsurface containment barrier technology for use in site restoration applications at contaminated sites throughout the US Department of Energy (DOE) complex. The types of subsurface barriers being developed include impermeable barriers and sorbent barriers. The specific containment technology projects described in this paper include frozen soil barriers, flowable grout techniques, hydraulic and diffusion barriers, horizontal grout barriers, chemically enhanced barriers, and viscous liquid barriers.

  16. DEMONSTRATION BULLETIN: GRACE DEARBORN INC. DARAMEND™ BIOREMEDIATION TECHNOLOGY

    EPA Science Inventory

    The DARAMEND™ Bioremediation Technology may be applied to the remediation of soils and sediments contaminated by a wide variety of organic contaminants including chlorinated phenols, polynuclear aromatic hydrocarbons (PAHs), and petroleum hydrocarbons. The technology may be ap...

  17. DEMONSTRATION BULLETIN: GRACE DEARBORN INC. DARAMEND™ BIOREMEDIATION TECHNOLOGY

    EPA Science Inventory

    The DARAMEND™ Bioremediation Technology may be applied to the remediation of soils and sediments contaminated by a wide variety of organic contaminants including chlorinated phenols, polynuclear aromatic hydrocarbons (PAHs), and petroleum hydrocarbons. The technology may be ap...

  18. Inexpensive Demonstrations for a Communications Technology Course.

    ERIC Educational Resources Information Center

    Mirabito, Michael M.

    1987-01-01

    Discusses the effects of fiber-optics and other new technologies on communication technology courses. Explores several of the technologies that are applicable to this type of course. Describes how various applications can be presented and highlighted using inexpensive classroom demonstrations. (TW)

  19. Inexpensive Demonstrations for a Communications Technology Course.

    ERIC Educational Resources Information Center

    Mirabito, Michael M.

    1987-01-01

    Discusses the effects of fiber-optics and other new technologies on communication technology courses. Explores several of the technologies that are applicable to this type of course. Describes how various applications can be presented and highlighted using inexpensive classroom demonstrations. (TW)

  20. ESA Technologies for Space Debris Remediation

    NASA Astrophysics Data System (ADS)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  1. Los Alamos Team Demonstrates Bottle Scanner Technology

    SciTech Connect

    Espy, Michelle; Schultz, Larry

    2014-05-06

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  2. Los Alamos Team Demonstrates Bottle Scanner Technology

    ScienceCinema

    Espy, Michelle; Schultz, Larry

    2016-07-12

    Los Alamos scientists are demonstrating a Nuclear Magnetic Resonance Imaging (NMR) technology that may provide a breakthrough for screening liquids at airport security. By adding low-power X-ray data to the NMR mix, scientists believe they have unlocked a new detection technology. Funded in part by the Department of Homeland Security's Science and Technology Directorate, the new technology is called MagRay.

  3. DESIGN OF A MTBE REMEDIATION TECHNOLOGY EVALUATION

    EPA Science Inventory

    This study examines the intrinsic variability of dissolved MTBE concentrations in ground water during the course of a pilot-scale bioremedial technology trial in Port Hueneme, California. A pre-trial natural gradient tracer experiment using bromide was conducted in an anaerobic t...

  4. DESIGN OF A MTBE REMEDIATION TECHNOLOGY EVALUATION

    EPA Science Inventory

    This study examines the intrinsic variability of dissolved MTBE concentrations in ground water during the course of a pilot-scale bioremedial technology trial in Port Hueneme, California. A pre-trial natural gradient tracer experiment using bromide was conducted in an anaerobic t...

  5. Environmental Remediation Technologies Derived from Space Industry Research

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline; Sauser, Brian; Helminger, Andrew

    2004-01-01

    Beginning in the 1950s and 1960s, an abundance of effort and initiative was focused on propelling the space industry outward for planetary exploration and habitation. During these early years, the push to take space science to new levels indirectly contributed to the evolution of another science field that would not fully surface until the early 1980s, environmental remediation. This field is associated with the remediation or cleanup of environmental resources such as groundwater, soil, and sediment. Because the space-exploration initiative began prior to the establishment of the U.S. Environmental Protection Agency (EPA) in December of 1970, many NASA Centers as well as space-related support contractors allowed for the release of spent chemicals into the environment. Subsequently, these land owners have been directed by the EPA to responsibly initiate cleanup of their impacted sites. This paper will focus on the processes and lessons learned with the development, testing, and commercialization initiatives associated with four remediation technologies. The technologies include installation techniques for permeable reactive barriers (PRBs), the use of ultrasound to improve long-term performance of PRBs, emulsified zero-valent iron for product-level solvent degradation, and emulsion technologies for application to metal and polychlorinated biphenyl contaminated media. Details of the paper cover technology research, evaluation, and testing; contracts and grants; and technology transfer strategies including patenting, marketing, and licensing.

  6. Remediation Technologies for Environmental Projects in the United States Military: Part 2

    DTIC Science & Technology

    1998-05-01

    Remediation Technologies for Environmental Projects in the United States Military: Part II by Joseph Aloysius Campbell, B.S.M.E. Thesis Presented...Science in Engineering The University of Texas at Austin May 1998 Remediation Technologies for Environmental Projects in the United States...Military: Part II APPROVED BY SUPERVISING COMMITTEE: * %hnD. Borcherding ABSTRACT Remediation Technologies for Environmental Projects in the

  7. Emerging Technologies for Environmental Remediation: Integrating Data and Judgment.

    PubMed

    Bates, Matthew E; Grieger, Khara D; Trump, Benjamin D; Keisler, Jeffrey M; Plourde, Kenton J; Linkov, Igor

    2016-01-05

    Emerging technologies present significant challenges to researchers, decision-makers, industry professionals, and other stakeholder groups due to the lack of quantitative risk, benefit, and cost data associated with their use. Multi-criteria decision analysis (MCDA) can support early decisions for emerging technologies when data is too sparse or uncertain for traditional risk assessment. It does this by integrating expert judgment with available quantitative and qualitative inputs across multiple criteria to provide relative technology scores. Here, an MCDA framework provides preliminary insights on the suitability of emerging technologies for environmental remediation by comparing nanotechnology and synthetic biology to conventional remediation methods. Subject matter experts provided judgments regarding the importance of criteria used in the evaluations and scored the technologies with respect to those criteria. The results indicate that synthetic biology may be preferred over nanotechnology and conventional methods for high expected benefits and low deployment costs but that conventional technology may be preferred over emerging technologies for reduced risks and development costs. In the absence of field data regarding the risks, benefits, and costs of emerging technologies, structuring evidence-based expert judgment through a weighted hierarchy of topical questions may be helpful to inform preliminary risk governance and guide emerging technology development and policy.

  8. System description for DART (Decision Analysis for Remediation Technologies)

    SciTech Connect

    Nonte, J.; Bolander, T.; Nickelson, D.; Nielson, R.; Richardson, J.; Sebo, D.

    1997-09-01

    DART is a computer aided system populated with influence models to determine quantitative benefits derived by matching requirements and technologies. The DART database is populated with data from over 900 DOE sites from 10 Field Offices. These sites are either source terms, such as buried waste pits, or soil or groundwater contaminated plumes. The data, traceable to published documents, consists of site-specific data (contaminants, area, volume, depth, size, remedial action dates, site preferred remedial option), problems (e.g., offsite contaminant plume), and Site Technology Coordinating Group (STCG) need statements (also contained in the Ten-Year Plan). DART uses this data to calculate and derive site priorities, risk rankings, and site specific technology requirements. DART is also populated with over 900 industry and DOE SCFA technologies. Technology capabilities can be used to match technologies to waste sites based on the technology`s capability to meet site requirements and constraints. Queries may be used to access, sort, roll-up, and rank site data. Data roll-ups may be graphically displayed.

  9. Y-12 Plant Remedial Action technology logic diagram. Volume I: Technology evaluation

    SciTech Connect

    1994-09-01

    The Y-12 Plant Remedial Action Program addresses remediation of the contaminated groundwater, surface water and soil in the following areas located on the Oak Ridge Reservation: Chestnut Ridge, Bear Creek Valley, the Upper and Lower East Fork Popular Creek Watersheds, CAPCA 1, which includes several areas in which remediation has been completed, and CAPCA 2, which includes dense nonaqueous phase liquid wells and a storage facility. There are many facilities within these areas that are contaminated by uranium, mercury, organics, and other materials. This Technology Logic Diagram identifies possible remediation technologies that can be applied to the soil, water, and contaminants for characterization, treatment, and waste management technology options are supplemented by identification of possible robotics or automation technologies. These would facilitate the cleanup effort by improving safety, of remediation, improving the final remediation product, or decreasing the remediation cost. The Technology Logic Diagram was prepared by a diverse group of more than 35 scientists and engineers from across the Oak Ridge Reservation. Most are specialists in the areas of their contributions. 22 refs., 25 tabs.

  10. Technology needs for environmental restoration remedial action

    SciTech Connect

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  11. Technology for remediation and disposal of arsenic.

    PubMed

    Visoottiviseth, Pornsawan; Ahmed, Feroze

    2008-01-01

    Groundwater contaminated with arsenic must be treated to meet stringent drinking water standards or guideline values. In recent years, several reliable, cost-effective, and sustainable treatment technologies have been developed, although improvements will continue to emerge as work continues. All treatment technologies work by concentrating arsenic at some stage of treatment. Large-scale use of arsenic removal systems generates arsenic-rich treatment wastes, and indiscriminate disposal of these sizable wastes may lead to environmental pollution. Safe disposal of arsenic-rich media is a growing environmental concern that needs to be addressed. For the developing world, arsenic-contaminated water requires some form of treatment to be sufficiently safe for consumption by local populations. Such treatment is particularly important where arsenic [particularly as As(III)] levels in raw water exceed 200 microg/L. At this level and above, >95% removal efficiency is required to produce water that meets international standards, an unlikely result in many locations. Alternative sources for securing safe water may also include rainwater harvesting, use of uncontaminated (filtered) surface waters, and water extraction from new deep tube wells and dug wells. There are disadvantages attendant to using these alternative water sources. For example, rainwater has few mineral salts and is subject to contamination from air pollution or by microbes, including pathogens. Similarly, surface waters, e.g., pond waters, or water from dug wells may require purification before use. Excessive pumping from deep tube wells may lower the water table sufficiently to allow entry of arsenic-contaminated waters from shallower horizons. Bioremediation and phytoremediation are more suitable to developing countries where sunlight is plentiful. In such countries, plant biodiversity is also great and may allow identification of plants suitable for bioremediation. In addition to removing arsenic from water

  12. Electrochemical Nanoparticle Injection Technology for Remediating Leaks

    NASA Astrophysics Data System (ADS)

    Hubler, M.; Xi, Y.; Newell, P.; Dewers, T. A.

    2016-12-01

    A key challenge in improving the lifetime of underground Carbon Capture and Storage (CCS) is to ensure the quality of the borehole cementitious materials. Leakage of a well can occur through the wellbore, the annulus between well tubing and casing, or on the outside of the casing. The goal of this research is to solve the casing leakage problem by injecting nano- and micro-scale particles electrochemically to improve internal structure of well cement, and to simultaneously reduce the corrosion risk of steel casing by removing some of the harmful ions (i.e. chloride) in the system. The proposed approach is based on two repair methods: electrochemical chloride extraction (ECE) and electrochemical injection (EI) techniques which have previously been applied to accomplish the same goal in reinforced concrete infrastructure. This presentation presents the recent experimental, theoretical, and numerical work that has been conducted in an effort to realize this repair technology. It presents experiments injecting particles into the oil well cement using the electro-migration method. Samples that have been aged in an environment replicating underground aging are generated. It is shown that the nanoparticle enriched composite materials enhance the material microstructure in terms of their bulk density and newly developed reaction products. The work tests a variety of particles together with various chemical agents to seal the wellbore cement crack network. The study also experimentally and analytically evaluates the effectiveness of the particles injected into the oil well cement, such as the increase of mechanical properties and their impact on the material porosity. It is found that the particle injection method is feasible and does improve the material properties if the percentage of particles added to the matrix is controlled. Methods of applying this technology on a field scale are discussed as future work.

  13. Modelling of Remediation Technologies at the Performance Assessment Level

    SciTech Connect

    Parton, N.J.; Paksy, A.; Eden, L.; Trivedi, D.P.

    2008-07-01

    This paper presents approaches to modelling three different remediation technologies that are designed to support site operators during their assessment of remediation options for the management of radioactively contaminated land on nuclear licensed sites in the UK. The three selected technologies were soil washing, permeable reactive barrier and in-situ stabilisation. The potential exists to represent electrokinetics in the future. These technologies were chosen because it was considered that enough information already existed for site operators to assess mature technologies such as soil dig and disposal and groundwater pump and treat. Using the software code GoldSim, the models have been designed to allow site operators to make both a reasonable scoping level assessment of the viability of treatment and understand the cost-benefits of each technology. For soil washing, a standard soil leaching technique was simulated whereby the soil is separated into fines and oversize particles, and subsequently a chemical reagent is used to strip contamination off the soil. The cost benefit of this technology in terms of capital costs for the plant and materials, operational costs and waste disposal costs can also be assessed. The permeable reactive barrier (PRB) model can represent either a continuous wall or a funnel and gate system. The model simulates the transport of contaminants through the reactive material contained in the PRB. The outputs from the model include concentration of contaminants in the groundwater flow downstream of the PRB, mass of contaminants retained by the PRB, total mass and volume of waste and the various costs associated with the PRB remediation technology. The in-situ stabilisation (ISS) model has the capability to represent remediation by the addition of reagents that immobilise contaminated soil. The model simulates the release of contaminants from the treated soil over time. Performance is evaluated by comparison of the mass of contaminants

  14. Hypersonic Force Application and Launch Technology Demonstration

    DTIC Science & Technology

    2004-09-14

    region Regardless of anti-access threats In a single or multi-theater environment Distribution: Gov & Gov Contractors, ITAR Restricted 4 SMALL SATELLITE...demand Distribution: Gov & Gov Contractors, ITAR Restricted Objective: CAV Technology Demonstration Flight Test Description of CAV: Lifting aeroshell...Common Aero Vehicle (CAV) Distribution: Gov & Gov Contractors, ITAR Restricted 7 HYPERSONIC TECHNOLOGY EVOLUTION Building Block Tech Development and

  15. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    SciTech Connect

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  16. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.'' The overall objectives of this project are to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.'' This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  17. A literature review of nonbiological remediation technologies which may be applicable to fertilizer/agrichemical dealer sites

    SciTech Connect

    Enlow, P.D.

    1990-10-01

    The National Fertilizer and Environmental Research Center at TVA has initiated a Window of Opportunity (WOO) project for the ``Development of Waste Treatment and Site Remediation Technologies for Fertilizer Dealers.`` The overall objectives of this project are ``to identify, evaluate, modify, research, develop, demonstrate, introduce, and market waste treatment and site remediation technologies/strategies for fertilizer dealers.`` This bulletin supports the WOO project by providing a general literature overview of the more prominent nonbiological remediation technologies that may be applicable to fertilizer/agrichemical dealer sites. The technologies discussed are: incineration, anaerobic pyrolysis, in situ vitrification, thermal desorption, air stripping (soil), air stripping (water), steam stripping, soil washing, solvent extraction, solidification/stabilization, supercritical fluid extraction, and supercritical water oxidation. The advantages, disadvantages, applicability to remediation of contaminated sites, and need for further research are discussed.

  18. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    SciTech Connect

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  19. Environmental management technology demonstration and commercialization

    SciTech Connect

    Daly, D.J.; Erickson, T.A.; Groenewold, G.H.

    1995-10-01

    The Energy & Environmental Research Center (EERC), a contract-supported organization focused on technology research, development, demonstration, and commercialization (RDD&C), is entering its second year of a Cooperative Agreement with the U.S. Department of Energy (DOE) Morgantown Energy Technology Center (METC) to facilitate the development, demonstration, and commercialization of innovative environmental management (EM) technologies in support of the activities of DOE`s Office of Environmental Science and Technology (EM-50) under DOE`s EM Program. This paper reviews the concept and approach of the program under the METC-EERC EM Cooperative Agreement and profiles the role the program is playing in the commercialization of five EM technologies.

  20. OVERVIEW OF USEPA'S ARSENIC TECHNOLOGY DEMONSTRATION PROGRAM

    EPA Science Inventory

    This presentation provides a summary on the Arsenic Treatment Technology Demonstration Program. The information includes the history and the current status of the demonstration projects on both round 1 and round 2 including some photos of the treatment systems. The presentation m...

  1. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz; K.E. Brown

    2003-02-01

    There are four primary goals of contract DE-FG26-99FT40703: (1) We seek to better understand how and why two damage mechanisms--(1) inorganic precipitants, and (2) hydrocarbons and organic residues, occur at the reservoir/wellbore interface in gas storage wells. (2) We plan on testing potential prevention and remediation strategies related to these two damage mechanisms in the laboratory. (3) We expect to demonstrate in the field, cost-effective prevention and remediation strategies that laboratory testing deems viable. (4) We will investigate new technology for the gas storage industry that will provide operators with a cost effective method to reduce non-darcy turbulent flow effects on flow rate. For the above damage mechanisms, our research efforts will demonstrate the diagnostic technique for determining the damage mechanisms associated with lost deliverability as well as demonstrate and evaluate the remedial techniques in the laboratory setting and in actual gas storage reservoirs. We plan on accomplishing the above goals by performing extensive lab analyses of rotary sidewall cores taken from at least two wells, testing potential remediation strategies in the lab, and demonstrating in the field the applicability of the proposed remediation treatments. The benefits from this work will be quantified from this study and extrapolated to the entire storage industry. The technology and project results will be transferred to the industry through DOE dissemination and through the industry service companies that work on gas storage wells. Achieving these goals will enable the underground gas storage industry to more cost-effectively mitigate declining deliverability in their storage fields. Work completed to date includes the following: (1) Solicited potential participants from the gas storage industry; (2) Selected one participant experiencing damage from inorganic precipitates; (3) Developed laboratory testing procedures; (4) Collected cores from National Fuel Gas

  2. Pilot demonstrations of arsenic removal technologies.

    SciTech Connect

    Siegal Malcolm D.

    2004-09-01

    The Arsenic Water Technology Partnership (AWTP) program is a multi-year program funded by a congressional appropriation through the Department of Energy to develop and test innovative technologies that have the potential to reduce the costs of arsenic removal from drinking water. The AWTP members include Sandia National Laboratories, the American Water Works Association (Awwa) Research Foundation and WERC (A Consortium for Environmental Education and Technology Development). The program is designed to move technologies from bench-scale tests to field demonstrations. The Awwa Research Foundation is managing bench-scale research programs; Sandia National Laboratories is conducting the pilot demonstration program and WERC will evaluate the economic feasibility of the technologies investigated and conduct technology transfer activities. The objective of the Sandia Arsenic Treatment Technology Demonstration project (SATTD) is the field demonstration testing of both commercial and innovative technologies. The scope for this work includes: (1) Identification of sites for pilot demonstrations; (2) Accelerated identification of candidate technologies through Vendor Forums, proof-of-principle laboratory and local pilot-scale studies, collaboration with the Awwa Research Foundation bench-scale research program and consultation with relevant advisory panels; and (3) Pilot testing multiple technologies at several sites throughout the country, gathering information on: (a) Performance, as measured by arsenic removal; (b) Costs, including capital and Operation and Maintenance (O&M) costs; (c) O&M requirements, including personnel requirements, and level of operator training; and (d) Waste residuals generation. The New Mexico Environment Department has identified over 90 public water systems that currently exceed the 10 {micro}g/L MCL for arsenic. The Sandia Arsenic Treatment Technology Demonstration project is currently operating pilots at three sites in New Mexico. The cities of

  3. Technologies of democracy: experiments and demonstrations.

    PubMed

    Laurent, Brice

    2011-12-01

    Technologies of democracy are instruments based on material apparatus, social practices and expert knowledge that organize the participation of various publics in the definition and treatment of public problems. Using three examples related to the engagement of publics in nanotechnology in France (a citizen conference, a series of public meetings, and an industrial design process), the paper argues that Science and Technology Studies provide useful tools and methods for the analysis of technologies of democracy. Operations of experiments and public demonstrations can be described, as well as controversies about technologies of democracy giving rise to counter-experiments and counter-demonstrations. The political value of the analysis of public engagement lies in the description of processes of stabilization of democratic orders and in the display of potential alternative political arrangements.

  4. Guidance manual for conducting technology demonstration activities

    SciTech Connect

    Jolley, Robert L.; Morris, Michael I.; Singh, Suman P.N.

    1991-12-01

    This demonstration guidance manual has been prepared to assist Martin Marietta Energy Systems, Inc. (Energy Systems), staff in conducting demonstrations. It is prepared in checklist style to facilitate its use and assumes that Energy Systems personnel have project management responsibility. In addition to a detailed step-by-step listing of procedural considerations, a general checklist, logic flow diagram, and several examples of necessary plans are included to assist the user in developing an understanding of the many complex activities required to manage technology demonstrations. Demonstrations are pilot-scale applications of often innovative technologies to determine the commercial viability of the technologies to perform their designed function. Demonstrations are generally conducted on well-defined problems for which existing technologies or processes are less than satisfactory in terms of effectiveness, cost, and/or regulatory compliance. Critically important issues in demonstration management include, but are not limited to, such factors as communications with line and matrix management and with the US Department of Energy (DOE) and Energy Systems staff responsible for management oversight, budgetary and schedule requirements, regulatory compliance, and safety.

  5. Security Technology Demonstration and Validation Sustainability Plan

    SciTech Connect

    None, None

    2008-08-31

    This report describes the process of creating continuity and sustainability for demonstration and validation (DEMVAL) assets at the National Security Technology Incubator (NSTI). The DEMVAL asset program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The mission of the NSTI program is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. Part of this support is envisioned to be research and development of companies’ technology initiatives, at the same time providing robust test and evaluation of actual development activities. This program assists companies in developing technologies under the NSTI program through demonstration and validation of technologies applicable to national security created by incubators and other sources. The NSPP also will support the creation of an integrated demonstration and validation environment. Development of the commercial potential for national security technologies is a significant NSTI focus. As part of the process of commercialization, a comprehensive DEMVAL program has been recognized as an essential part of the overall incubator mission. A number of resources have been integrated into the NSTI program to support such a DEMVAL program.

  6. Deep Aquifer Remediation Tools (DARTs): A new technology for ground-water remediation

    USGS Publications Warehouse

    Naftz, David L.; Davis, James A.

    1999-01-01

    Potable ground-water supplies throughout the world are contaminated or threatened by advancing plumes containing radionuclides, metals, and organic compounds. Currently (1999), the most widely used method of ground-water remediation is a combination of extraction, ex-situ treatment, and discharge of the treated water, commonly known as pump and treat. Pump-and-treat methods are costly and often ineffective in meeting long-term protection standards (Travis and Doty, 1990; Gillham and Burris, 1992; National Research Council, 1994). This fact sheet describes a new and potentially cost-effective technology for removal of organic and inorganic contaminants from ground water. The U.S. Geological Survey (USGS) is currently exploring the possibilities of obtaining a U.S. Patent for this technology.

  7. A database of information on technologies for hazardous waste site remediation

    SciTech Connect

    Holter, G.M.; White, M.K.; Byrant, J.L.

    1992-04-01

    A personal-computer-based database and user interface has been developed for retrieving and reviewing information on technologies applicable to the environmental remediation of hazardous waste sites. This system and its information represent a useful source of technology information for people preparing, reviewing, and approving site remediation plans or evaluating remediation technologies. The system includes a variety of information for approximately 90 distinct remedial action technologies. A general text description of each technology is provided, together with basic engineering or design parameters and flowcharts. Information on applying a given technology includes the applicability of the technology to specific contaminants, associated technologies that may be required in conjunction to provide for complete remediation of a site, technical limitations and constraints on the use of the technology, and identification of information or site data needed to deploy the technology at a particular site. US federal regulatory information relating to each technology is also provided. In addition, the system identifies sources for more detailed information for these technologies (i.e., references and specific sites where these technologies have been used). Technologies to be considered can be selected from the complete list of technologies for which information is included, or can be chosen from a shorter list of technologies matching a set of user-specific remediation objectives. The technology information is compiled from a wide variety of sources. The system is designed to support the assessment of remedial alternatives at US sites, but should be readily adaptable to other environmental remediation situations throughout the world.

  8. Contaminant plumes containment and remediation focus area. Technology summary

    SciTech Connect

    1995-06-01

    EM has established a new approach to managing environmental technology research and development in critical areas of interest to DOE. The Contaminant Plumes Containment and Remediation (Plumes) Focus Area is one of five areas targeted to implement the new approach, actively involving representatives from basic research, technology implementation, and regulatory communities in setting objectives and evaluating results. This document presents an overview of current EM activities within the Plumes Focus Area to describe to the appropriate organizations the current thrust of the program and developing input for its future direction. The Plumes Focus Area is developing remediation technologies that address environmental problems associated with certain priority contaminants found at DOE sites, including radionuclides, heavy metals, and dense non-aqueous phase liquids (DNAPLs). Technologies for cleaning up contaminants of concern to both DOE and other federal agencies, such as volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), and other organics and inorganic compounds, will be developed by leveraging resources in cooperation with industry and interagency programs.

  9. Field demonstration of technologies for delineating uranium contaminated soils

    SciTech Connect

    Tidwell, V.C.; Cunnane, J.C.; Schwing, J.; Lee, S.Y.; Perry, D.L.; Morris, D.E.

    1993-11-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Restoration Management Corporation (FERMCO), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort is the evaluation of field screening tools capable of acquiring high resolution information on the distribution of uranium contamination in surface soils in a cost-and-time efficient manner. Consistent with this need, four field screening technologies have been demonstrated at two hazardous waste sites at the FERMCO. The four technologies tested are wide-area gamma spectroscopy, beta scintillation counting, laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES), and long-range alpha detection (LRAD). One of the important findings of this demonstration was just how difficult it is to compare data collected by means of multiple independent measurement techniques. Difficulties are attributed to differences in measurement scale, differences in the basic physics upon which the various measurement schemes are predicated, and differences in the general performance of detector instrumentation. It follows that optimal deployment of these techniques requires the development of an approach for accounting for the intrinsic differences noted above. As such, emphasis is given in this paper to the development of a methodology for integrating these techniques for use in site characterization programs as well as the development of a framework for interpreting the collected data. The methodology described here also has general application to other field-based screening technologies and soil sampling programs.

  10. NASA Technology Demonstrations Missions Program Overview

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Fiscal Year 2010 (FY10) budget introduced a new strategic plan that placed renewed emphasis on advanced missions beyond Earth orbit. This supports NASA s 2011 strategic goal to create innovative new space technologies for our exploration, science, and economic future. As a result of this focus on undertaking many and more complex missions, NASA placed its attention on a greater investment in technology development, and this shift resulted in the establishment of the Technology Demonstrations Missions (TDM) Program. The TDM Program, within the newly formed NASA Office of the Chief Technologist, supports NASA s grand challenges by providing a steady cadence of advanced space technology demonstrations (Figure 1), allowing the infusion of flexible path capabilities for future exploration. The TDM Program's goal is to mature crosscutting capabilities to flight readiness in support of multiple future space missions, including flight test projects where demonstration is needed before the capability can transition to direct mission The TDM Program has several unique criteria that set it apart from other NASA program offices. For instance, the TDM Office matures a small number of technologies that are of benefit to multiple customers to flight technology readiness level (TRL) 6 through relevant environment testing on a 3-year development schedule. These technologies must be crosscutting, which is defined as technology with potential to benefit multiple mission directorates, other government agencies, or the aerospace industry, and they must capture significant public interest and awareness. These projects will rely heavily on industry partner collaboration, and funding is capped for all elements of the flight test demonstration including planning, hardware development, software development, launch costs, ground operations, and post-test assessments. In order to inspire collaboration across government and industry

  11. RUBIN Microsatellites for Advanced Space Technology Demonstration

    NASA Astrophysics Data System (ADS)

    Kalnins, Indulis

    The first new space technology demonstration payload BIRD-RUBIN was developed by OHB- System in co-operation with students from the University of Applied Sciences, Bremen, and was successfully launched July 15th, 2000 together with the scientific satellites CHAMP and MITA onboard a COSMOS 3M launcher. The BIRD-RUBIN mission has tested the telematics technology in space via ORBCOMM network. Small data packages were sent by the hatbox sized system to the ORBCOMM satellite net, then transmitted further on to the ground stations and from that point entered into the internet. The payload user could retrieve the data direct via email account and was able to send commands back to payload in orbit. The next micro satellite RUBIN-2 for advanced space technology demonstration will be launched at the end of 2002 as "secondary" payload on the Russian launcher DNEPR. The RUBIN-2 micro satellite platform will use again the inter-satellite communication mode via Orbcomm network and offers an orbital testbed with low cost, bi-directional and near real-time Internet access. In parallel to the further inter satellite link experiments using Orbcomm, several additional leading edge technology experiments will be done onboard Rubin-2 (electrical propulsion, two loop miniaturized thermal control system, GPS navigation, LI-Ion Battery, etc.). This paper provides an overview of RUBIN micro satellites for advanced space technology demonstrations. The main results of the first BIRD-RUBIN experiment and the goals of the second Rubin-2 mission are described. The potential of low cost technology demonstration missions using Internet and inter satellite communication technology via commercial satellite systems and the piggyback flight opportunities on Russian launchers are discussed.

  12. Fission Surface Power Technology Demonstration Unit

    NASA Image and Video Library

    2016-11-09

    NASA Glenn Technician Mark Springowski works on a 10-kilowatt Stirling Power Conversion Unit, which is part of the Fission Surface Power Technology Demonstration Unit. This is a system level demonstration of a surface power system, which could potentially be used to support manned missions to the moon or Mars. A flight system would use 180 kilowatt nuclear fission reactor and four Stirling PCU’s to produce 40 kW of electricity for manned surface missions.

  13. Re-demonstration without remediation - a missed opportunity? A national survey of internal medicine clerkship directors.

    PubMed

    Hawthorne, Mary R; Chretien, Katherine C; Torre, Dario; Chheda, Shobhina G

    2014-01-01

    Background Many different components factor into the final grade assigned for the internal medicine clerkship. Failure of one or more of these requires consideration of remedial measures. Purpose To determine which assessment components are used to assign students a passing grade for the clerkship and what remediation measures are required when students do not pass a component. Methods A national cross-sectional survey of Clerkship Directors in Internal Medicine (CDIM) institutional members was conducted in April 2011. The survey included sections on remediation, grading practices, and demographics. The authors analyzed responses using descriptive and comparative statistics. Results Response rate was 73% (86/113). Medicine clerkships required students to pass the following components: clinical evaluations 83 (97%), NBME subject exam 76 (88%), written assignments 40 (46%), OSCE 35 (41%), in-house written exam 23 (27%), and mini-CEX 19 (22%). When students failed a component of the clerkship for the first time, 55 schools (64%) simply allowed students to make up the component, while only 16 (18%) allowed a simple make-up for a second failure. Additional ward time was required by 24 schools (28%) for a first-time failure of one component of the clerkship and by 49 (57%) for a second failure. The presence or absence of true remedial measures in a school was not associated with clerkship director academic rank, grading scheme, or percent of students who failed the clerkship in the previous year. Conclusions Most schools required passing clinical evaluations and NBME subject exam components to pass the medicine clerkship, but there was variability in other requirements. Most schools allowed students to simply re-take the component for a first-time failure. This study raises the question of whether true remediation is being undertaken before students are asked to re-demonstrate competence in a failed area of the clerkship to be ready for the subinternship level.

  14. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    PubMed

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy.

  15. Possible Applications of Soil Remediation Technologies in Latvia

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Vircavs, Magnuss

    2011-01-01

    Increasing public concern about deleterious effects of contamination on the environment and human health has led to legislative actions aimed at controlling and regulating the emission of potential contaminants into the environment, but there is still a plethora of territories historically contaminated with different contaminants within the territory of Latvia. The purpose of the present study is to give an overview of the formerly and presently contaminated areas and give some recommendations for remediation. 242 first category contaminated territories (the contamination exceeds the acceptable normative 10 times or more) are mentioned in the National Register of Contaminated Territories, a lot of them are known as contaminated with hazardous contaminants such as heavy metals, oil products, organic compounds and other contaminants in different amounts and concentrations. An overview of soil contamination in Latvia is provided, the planned and recommended research, as well as the planned remediation in pilot case studies, are described, giving a review of the historical contamination situation and of applications of the planned remediation technologies.

  16. Bioremediation: a genuine technology to remediate radionuclides from the environment

    PubMed Central

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-01-01

    Summary Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of ‘-omics’-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. PMID:23617701

  17. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  18. Hot demonstration of proposed commercial nuclide removal technology

    SciTech Connect

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-10-01

    Cesium, strontium, and technetium radionuclides are a small fraction of the mainly sodium and potassium salts in storage tank supernatants at the Hanford, Oak Ridge, Savannah River, and Idaho sites that DOE must remediate. Radionuclide removal technologies supplied by the ESP-CP have been previously proposed and tested in small batch and column tests using simulated and a few actual supernatants. They must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This task involves operation of an experimental unit designed and constructed to test radionuclide removal technologies during continuous operation on actual supernatants. The equipment diagram, consists of the tanks, pumps, tubing and fittings, filters, and intrumentation for testing radionuclide removal technologies in a continuous-flow system in an Oak Ridge National Laboratory (ORNL) hot cell. The task provides a test bed for investigating new technologies, such as 3M`s SLIG 644 WWL WEB and AEA Technology`s EIX electrochemical elution system, and complements ESP`s comprehensive supernatant task (TTPOR06C341) by using larger engineering-scale, continuous equipment to verify and expand that task`s batch studies. This task complements the Tanks Focus Area`s (TFA`s) Cesium Removal Demonstration (CsRD) at ORNL by providing sorbent selection information, evaluating and testing proposed sorbents, and providing operational experience and characteristics using the sorbent and supernatant to be used in the demonstration, followed by evaluating and comparing small-scale to demonstration-scale performance. The authors cooperate closely with other ESP-CP tasks and the TFA to ultimately transfer the technologies being developed to the end user.

  19. Wireless Power Transmission Technology Development and Demonstrations

    NASA Astrophysics Data System (ADS)

    Steinsiek, F.; Weber, K.-H.; Foth, W.-P.; Foth, H. J.; Schäfer, C.

    2004-12-01

    The Wireless Power Transmission (WPT) technology has been treated to a wide extent in the recent years. A broad variety of applications has been investigated, from earth to orbit, orbit to earth, in-orbit and planetary ones, as for moon and Mars missions. In this course the question to use laser or microwave technology has widely been discussed. Beaming energy to spacecrafts could provide an important space mission-economic potential. It promises significant reduction in the cost of access to space, for scientific and commercial missions, and increases the mission capabilities for in-space systems. For the future enhancement of ISS capabilities and operational efficiency, the use of WPT technology became part of the technology research planning for the ISS. The WPT may have the potential of providing operational benefits, increase of spacecraft systems efficiency for elements like co-orbiting platforms, transfer vehicles or other ISS related in-orbit spacecrafts, and planetary exploration vehicles. The laser technology provides specific technical, operational and economic benefits compared to microwave applications and provides the actual basis for the envisioned wireless power transmission concepts. An outlook in terms of future wireless power perspectives, both for terrestrial as for space-to-space scenarios is given; these applications are part of a technology demonstration roadmap for wireless power transmission key- and supporting technologies, which is characterized by dedicated technology demonstration milestones on ground and in space. The actual technology development philosophy as conceived at EADS-Space Transportation is described and includes main system demonstration missions, as a laboratory test bed employing a small rover system, a scaled airship model demonstration as planned in 2004 and an experiment onboard the International Space Station ISS. These demonstrations represent milestones in terms of technical capability verification on the way to

  20. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  1. Air-Based Remediation Workshop - Section 7 Sustainable Remediation And Air-Based Technologies

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites, " the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Enviro...

  2. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    EPA Science Inventory

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  3. Mobility Controlled Flooding (MCF) Technology for Enhanced Sweeping and NAPL Remediation in Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Oostrom, M.; Wietsma, T.

    2005-12-01

    Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are bypassed when remedial fluid is injected into heterogeneous systems. The contaminant in the bypassed areas is therefore untouched by the remedial fluid, which can prolong the remediation operations significantly. Methods of forcing fluids into low-permeability flow paths have been developed and widely implemented to solve the heterogeneity-induced bypassing problem encountered during oil recovery in the petroleum industry over the past 40 years. Since the intent of the petroleum reservoir engineers is to control the mobility of the injected fluid in the high-permeable zones so that the fluid can be pushed through the low-permeable zones to contact and mobilize the remaining oil in these zones, this method are referred as mobility controlled flooding (MCF) technology in the petroleum engineering literature. Two methods of mobility control have been developed. One method is to use a water-soluble polymer to increase the viscosity of the injectate so that the in situ pore pressure is raised, and cross-flow between layers with different permeability occurs. The other method is to use surfactant-foam flood to generate foam in high permeable zones in situ; therefore, the injected fluid is forced into the low-permeable areas. A water-soluble polymer, xanthan gum, and surfactant MA-80 was used to formulate MCF remedial fluids to remediate nonaqueous phase liquid (NAPL) contaminated heterogonous systems in two-dimensional (2-D) flow-cell (40 by 50 by 5 cm) experiments. It was demonstrated that the MCF technology is capable of sweeping the low-permeability flow paths. The bypassing of low-permeable zones was significantly reduced. The removal of NAPL trapped in the low-perm zones was remarkable enhanced attributed to more efficient NAPL mobilization. The results also indicate that the MCF technology is able to manage the fluid density effects. The

  4. Advance Power Technology Demonstration on Starshine 3

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip; Scheiman, David; Wilt, David; Raffaelle, Ryne; Button, Robert; Smith, Mark; Kerslake, Thomas; Miller, Thomas

    2002-01-01

    The Starshine 3 satellite will carry several power technology demonstrations. Since Starshine 3 is primarily a passive experiment and does not need electrical power to successfully complete its mission, the requirement for a highly reliable power system is greatly reduced. This creates an excellent opportunity to test new power technologies. Several government and commercial interests have teamed up to provide Starshine 3 with a small power system using state-of-the-art components. Starshine 3 will also fly novel integrated microelectronic power supplies (IMPS) for evaluation.

  5. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  6. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    FINAL REPORT Development of an Expanded, High-Reliability Cost and Performance Database for In-Situ Remediation Technologies ESTCP Project... Database for In-Situ Remediation Technologies Travis McGuire David Adamson Charles Newell Poonam Kulkarni GSI Environmental, Inc. GSI Environmental...technologies. The overall objective of this work was to develop a comprehensive remediation performance and cost database . N/A U U U UU 109 Travis

  7. Status of ERA Airframe Technology Demonstrators

    NASA Technical Reports Server (NTRS)

    Davis, Pamela; Jegley, Dawn; Rigney, Tom

    2015-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise. The Airframe Technology subproject contains two elements. Under the Damage Arresting Composite Demonstration an advanced material system is being explored which will lead to lighter airframes that are more structural efficient than the composites used in aircraft today. Under the Adaptive Compliant Trailing Edge Flight Experiment a new concept of a flexible wing trailing edge is being evaluated which will reduce weight and improve aerodynamic performance. This presentation will describe the development these two airframe technologies.

  8. [Cognitive remediation and cognitive assistive technologies in schizophrenia].

    PubMed

    Sablier, J; Stip, E; Franck, N

    2009-04-01

    Cognitive impairments are a core feature in schizophrenia. They impact several cognitive abilities but most importantly attention, memory and executive functions, consequently leading to great difficulties in everyday life. Most schizophrenia patients need assurance and require assistance and help from care workers, family members and friends. Family members taking care of a patient have additional daily work burden, and suffer psychological anguish and anxiety. Therefore, improving cognitive functions in schizophrenia patients is essential for the well-being of patients and their relatives. Reducing these deficits may decrease the economic burden to the health care system through lower numbers of hospital admissions and shorter hospitalisation periods, for example. Cognitive rehabilitation was developed to address the limited benefits of conventional treatments on cognitive deficits through the use of assistive technology as a means of enhancing memory and executive skills in schizophrenia patients. To provide clinicians with comprehensive knowledge on cognitive trainings, programs of remediation, and cognitive assistive technologies. Literature review. A search in the electronic databases (PubMed, EMBASE, Index Medicus) for recent articles in the last 10 years related to cognitive remediation published in any language using the words: cognitive and remediation or rehabilitation and schizophrenia, and a search for chapters in psychiatry and rehabilitation textbooks. We found 392 articles and 112 review paper mainly in English. First, we identified cognitive remediation programs that were beneficial to schizophrenia patients. Programs available in French (IPT, RECOS, and RehaCom) and others (CET, NET, CRT, NEAR, APT and CAT) were identified. In addition, since memory and executive function impairments could be present in people without schizophrenia, we reviewed inventories of cognitive assistive technologies proven to enhance cognitive skills in other populations

  9. Bioventing and vapor extraction: Innovative technologies for contaminated site remediation

    SciTech Connect

    Long, G. )

    1992-03-01

    Bioventing and Vapor Extraction are two technologies which are finding increasing use in performing soil cleanup at hazardous and nonhazardous waste sites. Both processes are characterized by the controlled use of air as a carrier to either remove contaminants from soil or to supply oxygen for aerobic bioremediation of the compounds in the unsaturated zone into less toxic materials. These topics are the focus of a unique Bioventing Satellite Seminar broadcast on April 15, 1992. The seminar, a joint venture between the Air and Waste Management Association (A and WMA) and the Hazardous Waste Action Coalition (HWAC), is the second in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies.

  10. Development and applications of groundwater remediation technologies in the USA

    NASA Astrophysics Data System (ADS)

    Barcelona, Michael J.

    2005-03-01

    The future of the development and application of groundwater remediation technologies will unfold in an atmosphere of heightened public concern and attention. Cleanup policy will undergo incremental change towards more comprehensive efforts which account for the impact of remediation on nearby resources. Newly discovered contaminants will cause the re-examination of "mature" technologies since they may be persistent, mobile and difficult to treat in-situ. Evaluations of the effectiveness of remedial technologies will eventually include by-product formation, geochemical consequences and sustainability. Long-term field trials of remedial technologies alone can provide the data necessary to support claims of effectiveness. Dans le futur, le développement et les applications des technologies de traitement des eaux souterraines seront déroulés en tenant compte de l'inquiétude et l'attention croissante de l'opinion publique. La politique de nettoyage va subir un changement vers des efforts plus compréhensifs qui prendront en compte l'impact du traitement sur les ressources voisines. Les nouveaux contaminants seront persistants, mobiles et difficile de traiter in situ; par conséquence ils vont provoquer la reexamination des technologies consacrées. L'évaluation de l'efficacité des technologies de traitement doit considérer l'apparition des produits secondaires ainsi que les conséquences géochimiques et le développement durable. Seulement les essais in situ, pendant des longues périodes sur les technologies peuvent fournir les éléments nécessaires pour démontrer leur efficacité. El futuro del desarrollo y de la aplicación de las tecnologías para la recuperación del agua subterránea, se revelará en una atmósfera de gran atención e interés público elevado. La política de limpieza sufrirá un cambio adicional hacia esfuerzos más tangibles, los cuales incluyan el impacto de la recuperación en los recursos circundantes. Los contaminantes

  11. Emerging Technologies and Techniques for Wide Area Radiological Survey and Remediation

    SciTech Connect

    Sutton, M.; Zhao, P.

    2016-03-24

    Technologies to survey and decontaminate wide-area contamination and process the subsequent radioactive waste have been developed and implemented following the Chernobyl nuclear power plant release and the breach of a radiological source resulting in contamination in Goiania, Brazil. These civilian examples of radioactive material releases provided some of the first examples of urban radiological remediation. Many emerging technologies have recently been developed and demonstrated in Japan following the release of radioactive cesium isotopes (Cs-134 and Cs-137) from the Fukushima Dai-ichi nuclear power plant in 2011. Information on technologies reported by several Japanese government agencies, such as the Japan Atomic Energy Agency (JAEA), the Ministry of the Environment (MOE) and the National Institute for Environmental Science (NIES), together with academic institutions and industry are summarized and compared to recently developed, deployed and available technologies in the United States. The technologies and techniques presented in this report may be deployed in response to a wide area contamination event in the United States. In some cases, additional research and testing is needed to adequately validate the technology effectiveness over wide areas. Survey techniques can be deployed on the ground or from the air, allowing a range of coverage rates and sensitivities. Survey technologies also include those useful in measuring decontamination progress and mapping contamination. Decontamination technologies and techniques range from non-destructive (e.g., high pressure washing) and minimally destructive (plowing), to fully destructive (surface removal or demolition). Waste minimization techniques can greatly impact the long-term environmental consequences and cost following remediation efforts. Recommendations on technical improvements to address technology gaps are presented together with observations on remediation in Japan.

  12. In Situ Remediation Integrated Program: Evaluation and assessment of containment technology

    SciTech Connect

    Gerber, M.A.; Fayer, M.J.

    1994-06-01

    Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

  13. Sumbandilasat—An operational technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mostert, Sias; Steyn, Herman; Burger, Hendrik; Bosman, Helena

    2008-12-01

    Technology advances in sensor, digital technology and a standardised modular satellite bus are enabling a new generation of 80 kg micro-satellites with a better than 6.5 m GSD multi-spectral performance, to be specified, built and deployed with a dedicated launch within 12 months. The result of the standardised modular bus is lower cost, higher reliability and fast deployment. Operational remote sensing with a micro-satellite is thus within reach of individual organisations for dedicated missions. Sumbandilasat (pioneer in the Venda language) is a second generation satellite technology building on the expertise obtained in the Sunsat small satellite programme. The components used to build Sumbandilasat are the result of a technology development program of more than 3 years. Sumbandilasat is an operational technology demonstrator with more than 90% newly developed or improved subsystems and a compact refractive imager as a precursor to the MSMISat satellite with the same multi-spectral band set. The scalable, standardised modular satellite bus architecture enables satellites with a mass of 80-450 kg to be adapted to the specific mission requirements with minimum new engineering effort.

  14. Demonstration test and evaluation of ultraviolet/ultraviolet catalyzed peroxide oxidation for groundwater remediation at Oak Ridge K-25 Site

    SciTech Connect

    1994-12-31

    In the UItraviolet/Ultraviolet Catalyzed Groundwater Remediation program, W.J. Schafer Associates, Inc. (WJSA) demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another (such as in activated carbon or air stripping). Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the TCA was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system.

  15. Demonstration of Spacecraft Fire Safety Technology

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Urban, David L.

    2012-01-01

    During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.

  16. THE FISSILE MATERIAL TRANSPARENCY TECHNOLOGY DEMONSTRATION (FMTTD)

    SciTech Connect

    L. R. AVENS; J. E. DOYLE; M. F. MULLEN

    2001-06-01

    The United States Department of Defense, Defense Threat Reduction Agency Cooperative Threat Reduction program is supporting the construction of a fissile material storage facility at Mayak in the Russian Federation. Up to 34 tons of weapon-grade plutonium will be stored in the facility to await disposition. In order to meet arms control and nonproliferation objectives, the U.S. Congress has requested assurances that the nuclear material stored at the Mayak facility is derived from dismantled nuclear weapons. The usual approach to identify the origin or state of radioactive materials is to measure the intensity and energy of neutron and gamma radiation emitted. However, the Russian Federation considers such details as isotopic composition and mass to be classified. The solution arrived at by a DOE multilaboratory team is to place the radioactive specimen, the gamma and neutron counters, and all the computational equipment behind an information barrier. In the Fissile Materials Transparency Technology Demonstration (FMTD), this equipment was configured and programmed to measure the following six attributes: isotopic ratio, threshold mass, absence of oxide, presence of plutonium, age, and symmetry. On August 16, 2000, at Los Alamos National Laboratory, a delegation of Russian officials observed the successful demonstration of this new technology (called an Attribute Measurement System with Information Barrier, or AMS/IB). The scientists were able to demonstrate without releasing classified information that the nuclear material sample being tested (a nuclear weapon pit) had the declared weapon-grade plutonium characteristics. Once fully developed, AMS/IB technology will protect sensitive information while providing the United States increased confidence that the mandated Russian fissile materials have been stored. Attribute measurement systems can play a role in a number of U.S.-Russian nuclear security regimes such as the Trilateral Initiative, the Plutonium

  17. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  18. Off site demonstrations for MWLID technologies

    SciTech Connect

    Williams, C.; Gruebel, R.

    1995-04-01

    Open demonstrations of technologies developed by the Office of Technology Development`s (QTD`s) Mixed Waste Landfill Integrated Demonstration (MWLID) should facilitate regulatory acceptance and speed the transfer and commercialization of these technologies. The purpose of the present project is to identify the environmental restoration needs of hazardous waste and/or mixed waste landfill owners within a 25-mile radius of Sandia National Laboratories (SNL). Most municipal landfills that operated prior to the mid-1980s accepted household/commercial hazardous waste and medical waste that included low-level radioactive waste. The locations of hazardous and/or mixed waste landfills within the State of New Mexico were. identified using federal, state, municipal and Native American tribal environmental records. The records reviewed included the US Environmental Protection Agency (EPA) Superfund Program CERCLIS Event/Site listing (which includes tribal records), the New Mexico Environment Department (NMED), Solid Waste Bureau mixed waste landfill database, and the City of Albuquerque Environmental Health Department landfill database. Tribal envirorunental records are controlled by each tribal government, so each tribal environmental officer and governor was contacted to obtain release of specific site data beyond what is available in the CERCLIS listings.

  19. Active capping technology: a new environmental remediation of contaminated sediment.

    PubMed

    Zhang, Chang; Zhu, Meng-Ying; Zeng, Guang-Ming; Yu, Zhi-Gang; Cui, Fang; Yang, Zhong-Zhu; Shen, Liu-Qing

    2016-03-01

    The management and treatment of contaminated sediment is a worldwide problem and poses major technical and economic challenges. Nowadays, various attempts have been committed to investigating a cost-effective way in contaminated sediment restoration. Among the remediation options, in situ capping turns out to be a less expensive, less disruptive, and more durable approach. However, by using the low adsorption capacity materials, traditional caps do not always fulfill the reduction of risks that can be destructive for human health, ecosystem, and even natural resources. Active caps, therefore, are designed to employ active materials (activated carbon, apatite, zeolite, organoclay, etc.) to strengthen their adsorption and degradation capacity. The active capping technology promises to be a permanent and cost-efficient solution to contaminated sediments. This paper provides a review on the types of active materials and the ways of these active materials employed in recent active capping studies. Cap design considerations including site-specific conditions, diffusion/advection, erosive forces, and active material selection that should be noticed in an eligible remediation project are also presented.

  20. NASA Technology Evaluation for Environmental Risk Mitigation Remediation Technology Collaboration Development

    NASA Technical Reports Server (NTRS)

    Romeo, James

    2013-01-01

    NASA is committed to finding solutions to agency cleanup problems that are better, cheaper, and more effective than the status quo. Unfortunately, some potential solutions involve innovative technologies for which NASA remediation managers may not have a high level of understanding or confidence. Since 2004, NASA's Stennis Space Center (SSC) in Mississippi has been pumping groundwater contaminated with trichloroethylene (TCE) and other halogenated volatile organic compounds (HVOC) from their cleanup location designated "Area G" through extraction wells to an aboveground treatment system. Over time, however, the effectiveness of this treatment strategy has diminished and an alternative approach is needed. In 2012, professionals from NASA's Principal Center for Technology Evaluation for Environmental Risk Mitigation (TEERM) introduced SSC managers to an innovative technology for enhancing the performance of SSC's existing pump and treat system. The technology, generally referred to as in situ chemical oxidation (ISCO), involves slowly and continuously injecting a strong but safe chemical oxidant into the groundwater. Treatment is enhanced by a "surfactant-type effect" which causes residual contamination from saturated soil to be released into the dissolved-phase where it can be readily oxidized. Any dissolved-phase contamination that was not oxidized can be collected by the extraction well network and treated aboveground. SSC was not familiar with the technology so to increase their confidence, TEERM identified a contractor who was willing to demonstrate their product and process at a significantly reduced price. An initial, small-scale demonstration of ISCO began at sse in March 2012 and completed in August 2012. This successful demonstration was followed by three larger-scale ISCO demonstrations between August and December 2012. The contractor's innovative Continuous Injection System (CIS) incorporated "green" and sustainable technologies and practices. A slow

  1. Technology demonstration by the BIRD-mission

    NASA Astrophysics Data System (ADS)

    Brieß, K.; Bärwald, W.; Gill, E.; Kayal, H.; Montenbruck, O.; Montenegro, S.; Halle, W.; Skrbek, W.; Studemund, H.; Terzibaschian, T.; Venus, H.

    2005-01-01

    Small satellites have to meet a big challenge: to answer high-performance requirements by means of small equipment and especially of small budgets. Out of all aspects the cost aspect is one of the most important driver for small satellite missions. To keep the costs within the low-budget frame (in comparison to big missions) the demonstration of new and not space-qualified technologies for the spacecraft is one key point in fulfilling high-performance mission requirements. Taking this into account the German DLR micro-satellite mission BIRD (Bi-spectral Infra-Red Detection) has to demonstrate a high-performance capability of spacecraft bus by using and testing new technologies basing on a mixed parts and components qualification level. The basic approach for accomplishing high-performance capability for scientific mission objectives under low-budget constraints is characterized by using state-of-the-art technologies, a mixed strategy in the definition of the quality level of the EEE parts and components, a tailored quality management system according to ISO 9000 and ECSS, a risk management system, extensive redundancy strategies, extensive tests especially on system level, large designs margins (over-design), robust design principles. The BIRD-mission is dedicated to the remote sensing of hot spot events like vegetation fires, coal seam fires or active volcanoes from space and to the space demonstration of new technologies. For these objectives a lot of new small satellite technologies and a new generation of cooled infrared array sensors suitable for small satellite missions are developed to fulfil the high scientific requirements of the mission. Some basic features of the BIRD spacecraft bus are compact micro satellite structure with high mechanical stability and stiffness, envelope qualification for several launchers, cubic shape in launch configuration with dimensions of about 620×620×550mm3 and variable launcher interface, mass ratio bus:payload = 62 kg:30

  2. Enzymatic technologies for remediation of hydrophobic organic pollutants in soil.

    PubMed

    Eibes, G; Arca-Ramos, A; Feijoo, G; Lema, J M; Moreira, M T

    2015-11-01

    Worldwide there are numerous contaminated sites as a result of the widespread production and use of chemicals in industrial and military activities as well as poor schemes of waste disposal and accidental spillages. The implementation of strategies for decontamination and restoration of polluted sites has become a priority, being bioremediation with biological agents a promising alternative. Enzyme-based technologies offer several advantages over the use of microbial cells, provided that the biocatalyst meets specific requirements: efficiency to remove the target pollutant/s, non-dependency on expensive coenzymes or cofactors, enzyme stability, and an affordable production system. In this mini-review, the direct application of enzymes for in situ soil bioremediation is explored, and also novel ex situ enzymatic technologies are presented. This new perspective provides a valuable insight into the different enzymatic alternatives for decontamination of soils. Examples of recent applications are reported, including pilot-scale treatments and patented technologies, and the principles of operation and the main requirements associated are described. Furthermore, the main challenges regarding the applicability of enzymatic technologies for remediation of hydrophobic organic pollutants from soil are discussed.

  3. Applications of Genomic Technologies to Ecological Risk Assessments at Remediation / Restoration Sites

    SciTech Connect

    Miracle, Ann L.; Evans, Clive; Ferguson, Elizabeth; Greenberg, Bruce; Kille, Peter; Schaeffner, Anton; Sprenger, Mark; van Aerle, Ronny; Versteeg, Donald

    2008-01-01

    How genomic technologies contribute to remediation programs now and in the future is the focus of this chapter. It first reviews the remediation and restoration or recovery process, the use of genomic technologies as the remediative process itself, and then identifies opportunities within remediation/restoration where genomic technologies can be used to resolve particular issues and how the research needs can be defined to achieve these goals. This chapter also explores the current regulatory needs that can be satisfied by genomic technologies research and potential field reliable techniques. From these needs and the current state of the science and projected technologies, Applications of genomic technology data and techniques derived from genomic data are explored in response to the need for assessment, remediation, and restoration.

  4. Evaluation of the efficacy of polyphosphate remediation technology: Direct and indirect remediation of uranium under alkaline conditions

    SciTech Connect

    Wellman, Dawn M.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Richards, Emily L.; Jansik, Danielle P.; Edge, Ellen

    2011-08-31

    A field-scale technology demonstration has been conducted to optimize polyphosphate remediation technology for enhanced monitored natural attenuation of the uranium plume within the 300 Area aquifer at the Hanford Site, southeastern Washington State. The objective was to evaluate the efficacy of polyphosphate to treat uranium-contaminated groundwater in situ. Focused application of polyphosphate was conducted in a source or 'hot spot' area to reduce the inventory of available uranium contributing to the groundwater plume through direct precipitation of uranyl-phosphate solids and secondary containment via precipitation of apatite which can serve as a long-term sorbent for uranium. The test site consisted of an injection well and 15 monitoring wells installed in the 300 Area near the process trenches that had previously received uranium-bearing effluents. The results indicated sequestration of uranium as insoluble phosphate phases appears to be a promising alternative for treating the uranium- contaminated groundwater at the Hanford Site 300 Area. However, the formation of the apatite during the test was limited due to two separate overarching issues: (1) formation and emplacement of apatite via polyphosphate technology, and (2) efficacy of apatite for sequestering uranium under the present geochemical and hydrodynamic conditions.

  5. Lightweight active controlled primary mirror technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mazzinghi, P.; Bratina, V.; Ferruzzi, D.; Gambicorti, L.; Simonetti, F.; Zuccaro Marchi, A.; Salinari, P.; Lisi, F.; Olivier, M.; Bursi, A.; Gallieni, D.; Biasi, R.; Pereira, J.

    2007-10-01

    This paper describes the design, manufacturing and test of a ground demonstrator of an innovative technology able to realize lightweight active controlled space-borne telescope mirror. This analysis is particularly devoted to applications for a large aperture space telescope for advanced LIDAR, but it can be used for any lightweight mirror. For a space-borne telescope the mirror weight is a fundamental parameter to be minimized (less than 15 Kg/m2), while maximizing the optical performances (optical quality better than λ/3). In order to guarantee these results, the best selected solution is a thin glass primary mirror coupled to a stiff CFRP (Carbon Fiber Reinforced Plastic) panel with a surface active control system. A preliminary design of this lightweight structure highlighted the critical areas that were deeply analyzed by the ground demonstrator: the 1 mm thick mirror survivability on launch and the actuator functional performances with low power consumption. To preserve the mirror glass the Electrostatic Locking technique was developed and is here described. The active optics technique, already widely used for ground based telescopes, consists of a metrology system (wave front sensor, WFS), a control algorithm and a system of actuators to slightly deform the primary mirror and/or displace the secondary, in a closed-loop control system that applies the computed corrections to the mirror's optical errors via actuators. These actuators types are properly designed and tested in order to guarantee satisfactory performances in terms of stroke, force and power consumption. The realized and tested ground demonstrator is a square CFRP structure with a flat mirror on the upper face and an active actuator beneath it. The test campaign demonstrated the technology feasibility and robustness, supporting the next step toward the large and flat surface with several actuators.

  6. Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)

    SciTech Connect

    Tucker, M.D.; Valdez, J.M.; Khan, M.A.

    1995-06-01

    The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

  7. Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary

    SciTech Connect

    Not Available

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

  8. Airport Surface Movement Technologies: Atlanta Demonstrations Overview

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Young, Steven D.

    1997-01-01

    A flight demonstration was conducted in August 1997 at the Hartsfield Atlanta (ATL) International Airport as part of low visibility landing and surface operations (LVLASO) research activities. This research was aimed at investigating technology to improve the safety and efficiency of aircraft movements on the surface during the operational phases of roll-out, turnoff, and taxi in any weather condition down to a runway visual range of 300 feet. The system tested at ATL was composed of airborne and ground-based components that were integrated to provide both the flight crew and controllers with supplemental information to enable safe, expedient surface operations. Experimental displays were installed on a Boeing 757-200 research aircraft in both headup and head-down formats. On the ground, an integrated system maintained surveillance of the airport surface and a controller interface provided routing and control instructions. While at ATL, the research aircraft performed a series of flight and taxi operations to show the validity of the operational concept at a major airport facility, to validate simulation findings, and to assess each of the individual technologies performance in an airport environment. The concept was demonstrated to over 100 visitors from the Federal Aviation Administration (FAA) and the aviation community. This paper gives an overview of the LVLASO system and ATL test activities.

  9. In-Space Recycler Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Hoyt, Rob; Werkheiser, NIKI; Kim, Tony

    2016-01-01

    In 2014, a 3D printer was installed and used successfully on the International Space Station (ISS), creating the first additively manufactured part in space. While additive manufacturing is a game changing technology for exploration missions, the process still requires raw feedstock material to fabricate parts. Without a recycling capability, a large supply of feedstock would need to be stored onboard, which negates the logistical benefits of these capabilities. Tethers Unlimited, Inc. (TUI), received a Small Business Innovation Research (SBIR) award to design and build the first In-space Recycler for demonstration aboard the ISS in 2017. To fully test this technology in microgravity, parts will be 3D printed, recycled into reusable filament, and then reprinted into new parts. Recycling scrap into printer filament is quite challenging in that a recycler must be able to handle a large variety of possible scrap configurations and densities. New challenges include: dealing with inevitable contamination of the scrap material, minimizing damage to the molecular structure of the plastic during reprocessing, managing a larger volume of hot liquid plastic, and exercising greater control over the cooling/resolidification of the material. TUI has developed an architecture that addresses these challenges by combining standard, proven technologies with novel, patented processes developed through this effort. Results show that the filament diameter achieved is more consistent than commercial filament, with only minimal degradation of material properties over recycling steps. In May 2016, TUI completed fabrication of a flight prototype, which will ultimately progress to the demonstration unit for the ISS as a testbed for future exploration missions. This capability will provide significant cost savings by reducing the launch mass and volume required for printer feedstock as well as reduce waste that must be stored or disposed.

  10. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS AND PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  11. TECHNOLOGY INTEGRATION FOR CONTAMINATED SITE REMEDIATION: CLEANUP GOALS AND PERFORMANCE CRITERIA

    EPA Science Inventory

    There is a need to develop and field-test integrated remediation technologies that operate in a synergistic manner for cost-effective treatment of contaminated sites to achieve risk-based and rational endpoints. Aggressive technologies designed for rapid source-zone remediation m...

  12. Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration

    SciTech Connect

    Peterson, T.S.; McCabe, G.H.; Brockbank, B.R.

    1995-05-01

    Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

  13. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    SciTech Connect

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  14. Tank waste remediation system integrated technology plan. Revision 2

    SciTech Connect

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  15. Combined remediation technologies: results from field trials at chlorinated solvent impacted sites

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Chowdhury, A. I.; Lomheim, L.; Boparai, H. K.; Weber, K.; Austrins, L. M.; Edwards, E.; Sleep, B.; de Boer, C. V.; Garcia, A. N.

    2015-12-01

    Non-aqueous phase liquids (NAPLs) are one class of waste liquids often generated from waste mixtures in industrial processes containing surfactants, chlorinated hydrocarbons and other compounds. Chlorinated solvents, a particularly persistent NAPL contaminant, frequently contaminate water sources for decades and are one of the more common contaminants at brownfield and industrialized sites. Although considerable advances in our understanding of the phenomena governing NAPL remediation have been made, and a number of innovative remediation technologies have been developed, existing technologies are rarely able to achieve clean up goals in contaminated aquifers at the completion of remedial activities. The development and pilot scale testing of new and innovative remediation technologies is, therefore, crucial to achieve clean up goals at contaminated sites. Our research group is currently investigating a number of innovative remediation technologies, either individually or as combined remedies. This includes the applicability of nanometals and ISCO (e.g., persulfate) for contaminated site remediation. These technologies can be combined with technologies to enhance amendment delivery (e.g., electrokinetics) or create conditions favorable for enhanced biotic contaminant degradation. This presentation will discuss outcomes from a number of field trials conducted at chlorinated solvent impacted sites by our group with a particular focus on combined remediation technologies.

  16. High-level waste tank remediation technology integration summary. Revision 1

    SciTech Connect

    DeLannoy, C.R.; Susiene, C.; Fowler, K.M.; Robson, W.M.; Cruse, J.M.

    1994-07-01

    The U.S. Department of Energy`s Environmental Restoration and Waste Management and Technology Development Programs are engaged in a number of projects to develop, demonstrate, test, and evaluate new technologies to support the cleanup and site remediation of more than 300 underground storage tanks containing over 381,000 m{sup 3} (100 million gal) of liquid radioactive mixed waste at the Hanford Reservation. Significant development is needed within primary functions and in determining an overall bounding strategy. This document is an update of continuing work to summarize the overall strategy and to provide data regarding technology development activities within the strategy. It is intended to serve as an information resource to support understanding, decision making, and integration of multiple program technology development activities. Recipients are encouraged to provide comments and input to the authors for incorporation in future revisions.

  17. Optimization of Remediation Conditions using Vadose Zone Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.; Mandelbaum, R.; Ronen, Z.

    2010-12-01

    Success of in-situ bio-remediation of the vadose zone depends mainly on the ability to change and control hydrological, physical and chemical conditions of subsurface. These manipulations enables the development of specific, indigenous, pollutants degrading bacteria or set the environmental conditions for seeded bacteria. As such, the remediation efficiency is dependent on the ability to implement optimal hydraulic and chemical conditions in deep sections of the vadose zone. Enhanced bioremediation of the vadose zone is achieved under field conditions through infiltration of water enriched with chemical additives. Yet, water percolation and solute transport in unsaturated conditions is a complex process and application of water with specific chemical conditions near land surface dose not necessarily result in promoting of desired chemical and hydraulic conditions in deeper sections of the vadose zone. A newly developed vadose-zone monitoring system (VMS) allows continuous monitoring of the hydrological and chemical properties of the percolating water along deep sections of the vadose zone. Implementation of the VMS at sites that undergoes active remediation provides real time information on the chemical and hydrological conditions in the vadose zone as the remediation process progresses. Manipulating subsurface conditions for optimal biodegradation of hydrocarbons is demonstrated through enhanced bio-remediation of the vadose zone at a site that has been contaminated with gasoline products in Tel Aviv. The vadose zone at the site is composed of 6 m clay layer overlying a sandy formation extending to the water table at depth of 20 m bls. The upper 5 m of contaminated soil were removed for ex-situ treatment, and the remaining 15 m vadose zone is treated in-situ through enhanced bioremedaition. Underground drip irrigation system was installed below the surface on the bottom of the excavation. Oxygen and nutrients releasing powder (EHCO, Adventus) was spread below the

  18. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect

    Jensen, Kevin

    2014-09-01

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  19. LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT-TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS)

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    In recent years, an increasing demand for remediation technologies has fueled rapid growth in the D&D technologies. The D&D project managers are now faced with the task of selecting from among the many commercially available and innovative technologies, the most appropriate technology, or combination of technologies, that will address their specific D&D needs. The DOE's Office of Science and Technology (OST) sponsored the Large-Scale Demonstration and Deployment Projects (LSDDP) to demonstrate improved and innovative technologies that are potentially beneficial to DOE's environmental project. To date, three LSDDPS have been conducted at DOE's nuclear production and research facilities at the Fernald Environmental Management Project--Plant-1 (FEMP), Chicago Pile-5 Research Reactor (CP-5), and Hanford Production Reactor 105-C, Now four new LSDDPS have been launched at the Los Alamos National Laboratory (LANL), Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Mound Environmental Management Project (MEMP). In the LSDDPS, an extensive search is first conducted to identify candidate technologies that can potentially address the identified problems The candidate technologies then go through a screening process to select those technologies with the best potential for addressing remediation problems at the LSDDP site as well as project sites across the DOE complex. This selection process can be overwhelming and time-consuming. The result is that D&D project managers for the new LSDDPS are challenged to avoid duplication of demonstrated technologies.

  20. Tandem-mirror technology demonstration facility

    SciTech Connect

    Fowler, T.K.; Logan, B.G.

    1981-09-18

    Preliminary calculations at LLNL indicate that a Technology Demonstration Facility (TDF) consisting of a tandem mirror machine about the size of TMX could begin providing fusion nuclear engineering data as early as 1988. With high density operation based on physics already demonstrated in TMX, this machine would produce 12 MW of DT neutrons in steady-state from a plasma column 0.08 m in radius and 8 m in length. Allowing space for neutral beam injectors at each end of the column, this would permit testing of blanket modules and components at 1 MW/m/sup 2/ neutron wall load over a cylindrical surface 8 m/sup 2/ in area at a radius of 0.25 m; or one could irradiate thousands of small samples at 2 MW/m/sup 2/ at r = 0.125 m (4 m/sup 2/ area). With improved end-plug physics to be tested in TMX-Upgrade in 1982-83, the wall load at 0.25 m could be increased to 2 MW/m/sup 2/ (4 MW/m/sup 2/ at r = 0.125 m). Construction of the TDF could begin in FY84 and be completed in 4 to 5 years, at a cost roughly estimated as $700M in '81 dollars including engineering and 30% contingency.

  1. External metrology truss technology demonstration (KITE)

    NASA Astrophysics Data System (ADS)

    Nemati, Bijan

    2003-02-01

    To achieve micro-arcsecond astrometry, SIM's external metrology system must track the relative changes of three baseline vectors with a precision of tens of picometers over a one-hour time scale. The Kite testbed is designed to be the technology demonstration for a picometer-class external metrology truss. Four fiducials, two simple corner cubes and two triple corner cubes, ar arranged in a planar parallelogram configuration to allow a redundant measurement of truss deformations by six metrology gauges placed between the fiducials. Each metrology gauge is capable of 20-pm relative metrology accuracy and 10-μm absolute metrology accuracy, using a beam launcher capable of self-alignment at the arcsecond level. The Kite demonstration involves the articulation of one of the corner cubes to simulate SIM instrument geometrical changes while various performance metrics are evaluated based on the readings of the individual metrology gauges. The test performance metric compares the direct measurement of length changes by one metrology gauge against the computed estimate for the same based on the other five gauges.

  2. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    SciTech Connect

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers during the

  3. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    SciTech Connect

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linking them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.

  4. Thermal plasma waste remediation technology: Historical perspective and current trends. Final report

    SciTech Connect

    Counts, D.A.; Sartwell, B.D.; Peterson, S.H.; Kirkland, R.; Kolak, N.P.

    1999-01-29

    The idea of utilizing thermal plasma technology for waste processing goes back to the mid-1970`s during the energy crisis. Since then, more interest has been shown by universities, industry, and government in developing thermal plasma waste processing technology for hazardous and non-hazardous waste treatment. Much of the development has occurred outside of the United States, most significantly in Japan and France, while the market growth for thermal plasma waste treatment technology has remained slow in the United States. Despite the slow expansion of the market in the United States, since the early 1990`s there has been an increase in interest in utilizing thermal plasma technology for environmental remediation and treatment in lieu of the more historical methods of incineration and landfilling. Currently within the Department of Defense there are several demonstration projects underway, and details of some of these projects are provided. Prior to these efforts by the U.S. Government, the State of New York had investigated the use of thermal plasma technology for treating PCB contaminated solvent wastes from the Love Canal cleanup. As interest continues to expand in the application of thermal plasma technology for waste treatment and remediation, more and more personnel are becoming involved with treatment, regulation, monitoring, and commercial operations and many have little understanding of this emerging technology. To address these needs, this report will describe: (1) characteristics of plasmas; (2) methods for generating sustained thermal plasmas; (3) types of thermal plasma sources for waste processing; (4) the development of thermal plasma waste treatment systems; and (5) Department of Defense plasma arc waste treatment demonstration projects.

  5. Joint demilitarization technology test and demonstration capabilities

    SciTech Connect

    Williams, S.M.; Byrd, E.R.; Decker, M.W.

    1998-12-31

    This paper provides a review of the two components of the Nevada Test Site (NTS) Demilitarization test and demonstration capabilities. Part one is a general discussion of the NTS and the many assets it offers to the Demilitarization community; and more specifically, a discussion of the NTS Open Burn/Open Detonation (OB/OD) test facility. The NTS Joint Demilitarization Technology (JDT) OB/OD Test Chamber is located at the X Tunnel facility which as been designed and constructed to contain and characterize the effluent from demilitarization activities. X Tunnel consists of a large test chamber capable of withstanding a 3,000 pound net explosive weight detonation or up to a static pressure of well over 100 pounds per square inch. The test chamber is fully instrumented to measure and collect gas and particulate samples as well as to monitor shock phenomenology. Part two is a discussion of the NTS Tactical Demilitarization Demonstration (TaDD) program currently planned for the Area 11 Technical Facility. This project will produce equipment that can dispose of unneeded tactical military rocket motors in a safe, environmentally-friendly, and timely fashion. The initial effort is the development of a demilitarization system for the disposal of excess Shillelagh missiles at the Anniston Army Depot. The prototype for this system will be assembled at the Area 11 facility taking advantage of the inherent infrastructure and proximity to numerous existing structures. Upon completion of testing, the prototype facility will become the test bed for future tactical disposal development activities. It is expected that the research and development techniques, prototype testing and production processes, and expertise developed during the Shillelagh disposal program will be applicable to follow-on tactical missile disposal programs, but with significant cost and schedule advantages.

  6. A comprehensive guide of remediation technologies for oil contaminated soil - Present works and future directions.

    PubMed

    Lim, Mee Wei; Lau, Ee Von; Poh, Phaik Eong

    2016-08-15

    Oil spills result in negative impacts on the environment, economy and society. Due to tidal and waves actions, the oil spillage affects the shorelines by adhering to the soil, making it difficult for immediate cleaning of the soil. As shoreline clean-up is the most costly component of a response operation, there is a need for effective oil remediation technologies. This paper provides a review on the remediation technologies for soil contaminated with various types of oil, including diesel, crude oil, petroleum, lubricating oil, bitumen and bunker oil. The methods discussed include solvent extraction, bioremediation, phytoremediation, chemical oxidation, electrokinetic remediation, thermal technologies, ultrasonication, flotation and integrated remediation technologies. Each of these technologies was discussed, and associated with their advantages, disadvantages, advancements and future work in detail. Nonetheless, it is important to note that no single remediation technology is considered the best solution for the remediation of oil contaminated soil. This review provides a comprehensive literature on the various remediation technologies studied in the removal of different oil types from soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Research on the Screening Method of Soil Remediation Technology at Contaminated Sites and Its Application].

    PubMed

    Bai, Li-ping; Luo, Yun; Liu, Li; Zhou, You-ya; Yan, Zeng-guang; Li, Fa-sheng

    2015-11-01

    Soil remediation technology screening is an important procedure in the supervision of contaminated sites. The efficiency and costs of contaminated site remediation will be directly affected by the applicability of soil remediation technology. The influencing factors include characteristics of contaminants, site conditions, remediation time and costs should be considered to determine the most applicable remediation technology. The remediation technology screening was commonly evaluated by the experienced expert in China, which limited the promotion and application of the decision making method. Based on the supervision requirements of contaminated sites and the research status at home and abroad, the screening method includes preliminary screening and explicit evaluation was suggested in this paper. The screening index system was constructed, and the extension theory was used to divide the technology grade. The extension theory could solve the problem of human interference in the evaluation process and index value assignment. A chromium residue contaminated site in China was selected as the study area, and the applicable remediation technologies were suggested by the screening method. The research results could provide a scientific and technological support for the supervision and management of contaminated sites in China.

  8. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    SciTech Connect

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ``whole system`` approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program.

  9. Development of an Expanded, High Reliability Cost and Performance Database for In Situ Remediation Technologies

    DTIC Science & Technology

    2016-03-01

    ER-201120) Development of an Expanded, High- Reliability Cost and Performance Database for In-Situ...10 4.1 Overview of the Database ...Concentrations for Four Active In-Situ Remediation Technologies vs. MNA Table 5.1 OoM Reduction in Parent Compound at 235 Databases Sites vs. 3 “Remediation

  10. Horizontal directional drilling: a green and sustainable technology for site remediation.

    PubMed

    Lubrecht, Michael D

    2012-03-06

    Sustainability has become an important factor in the selection of remedies to clean up contaminated sites. Horizontal directional drilling (HDD) is a relatively new drilling technology that has been successfully adapted to site remediation. In addition to the benefits that HDD provides for the logistics of site cleanup, it also delivers sustainability advantages, compared to alternative construction methods.

  11. Near-Net Forging Technology Demonstration Program

    NASA Technical Reports Server (NTRS)

    Hall, I. Keith

    1996-01-01

    Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce

  12. REMOVAL OF ISOPROPHYL ALCOHOL FROM A SURFACTANT-BASED SOIL REMEDIATION FLUID BY PERVAPORATION: PILOT SCALE FIELD DEMONSTRATION

    EPA Science Inventory

    The USEPA, NRMRL participated in a field demonstration of a surfactant enhanced aquifer remediation (SEAR) process. The main purpose of this field demonstration was to combine and optimize the subsurface extraction of a dense non-aqueous phase liquid with the above ground deconta...

  13. REMOVAL OF ISOPROPHYL ALCOHOL FROM A SURFACTANT-BASED SOIL REMEDIATION FLUID BY PERVAPORATION: PILOT SCALE FIELD DEMONSTRATION

    EPA Science Inventory

    The USEPA, NRMRL participated in a field demonstration of a surfactant enhanced aquifer remediation (SEAR) process. The main purpose of this field demonstration was to combine and optimize the subsurface extraction of a dense non-aqueous phase liquid with the above ground deconta...

  14. DEMONSTRATION BULLETIN: BIOGENESIS SOIL WASHING TECHNOLOGY - BIOGENESIS

    EPA Science Inventory

    The BioGenesisSM soil washing technology was developed by BioGenesis Enterprises, Inc. to remove organic compounds from soil. The technology uses a proprietary solution (BioGenesisSM cleaner) to transfer organic compounds from the soil matrix to a liquid phase. BioGenesis claims...

  15. DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.

    EPA Science Inventory

    SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...

  16. DEMONSTRATION BULLETIN: MEMBRANE FILTRATION - SBP TECHNOLOGIES, INC.

    EPA Science Inventory

    SBP Technologies Inc. (SBP) has developed a membrane-based separation technology that can reduce the volume of contaminated groundwater requiring treatment. The SBP Filtration Unit consists of porous, sintered, stainless steel tubes arranged in a shell-and-tube module configurati...

  17. Sustainable exposure prevention through innovative detection and remediation technologies from the NIEHS Superfund Research Program.

    PubMed

    Henry, Heather F; Suk, William A

    2017-03-01

    Innovative devices and tools for exposure assessment and remediation play an integral role in preventing exposure to hazardous substances. New solutions for detecting and remediating organic, inorganic, and mixtures of contaminants can improve public health as a means of primary prevention. Using a public health prevention model, detection and remediation technologies contribute to primary prevention as tools to identify areas of high risk (e.g. contamination hotspots), to recognize hazards (bioassay tests), and to prevent exposure through contaminant cleanups. Primary prevention success is ultimately governed by the widespread acceptance of the prevention tool. And, in like fashion, detection and remediation technologies must convey technical and sustainability advantages to be adopted for use. Hence, sustainability - economic, environmental, and societal - drives innovation in detection and remediation technology. The National Institute of Health (NIH) National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program (SRP) is mandated to advance innovative detection, remediation, and toxicity screening technology development through grants to universities and small businesses. SRP recognizes the importance of fast, accurate, robust, and advanced detection technologies that allow for portable real-time, on-site characterization, monitoring, and assessment of contaminant concentration and/or toxicity. Advances in non-targeted screening, biological-based assays, passive sampling devices (PSDs), sophisticated modeling approaches, and precision-based analytical tools are making it easier to quickly identify hazardous "hotspots" and, therefore, prevent exposures. Innovation in sustainable remediation uses a variety of approaches: in situ remediation; harnessing the natural catalytic properties of biological processes (such as bioremediation and phytotechnologies); and application of novel materials science (such as nanotechnology, advanced

  18. Aeroflex Technology as Class-Y Demonstrator

    NASA Technical Reports Server (NTRS)

    Suh, Jong-ook; Agarwal, Shri; Popelar, Scott

    2014-01-01

    costly functional parts. Among space parts manufacturers who were interested in producing class-Y products, Aeroflex Microelectronic Solutions-HiRel had been developing assembly processes using their internal R&D classy type samples. In early 2012, JPL and Aeroflex initiated a collaboration to study reliability of the Aeroflex technology as a class-Y demonstrator.

  19. Milliken Clean Coal Technology Demonstration Project. Project performance summary, Clean Coal Technology Demonstration Program

    SciTech Connect

    None, None

    2002-11-30

    The New York State Electric & Gas Corporation (NYSEG) demonstrated a combination of technologies at its Milliken Station in Lansing, New York, designed to: (1) achieve high sulfur dioxide (SO2) capture efficiency, (2) bring nitrogen oxide (NOx) emissions into compliance with Clean Air Act Amendments of 1990 (CAAA), (3) maintain high station efficiency, and (4) eliminate waste water discharge. This project is part of the U.S. Department of Energy's (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advance coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of nine selected in January 1991 from 33 proposals submitted in response to the program's fourth solicitation.

  20. Design and application of innovative site remediation technologies: Bioremediation

    SciTech Connect

    DuPont, R.R.

    1998-12-31

    The book covers bioventing, land treatment, and soil cells for soil treatment; Raymond process, intrinsic remediation, reactors, and biosparging for groundwater; and biofilters for vapors. 119 figs., 78 tabs.

  1. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  2. Engineering Issue: Technology Alternatives for the Remediation of PCB Contaminated Soils and Sediments

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Engineering Issue papers are a series of documents that summarize the available information on specific contaminates, selected treatment and site remediation technologies, and related issues. This Engineering Issue paper is intended...

  3. Integrated technologies for expedited soil and groundwater remediation

    SciTech Connect

    Lewis, R.; Wellman, D.

    1996-12-01

    A fast-track and economic approach was necessary to meet the needs of a property transfer agreement and to minimize impact to future usage of a site in the Los Angeles Basin. Woodward-Clyde responded by implementing site investigation, remedial action plan preparation for soil and groundwater, and selection and installation of remedial alternatives in an aggressive schedule of overlapped tasks. Assessment of soil and groundwater was conducted at the site, followed by design and construction of remediation systems. This phase of activity was completed within 2 years. Soil and groundwater were found to be impacted by chlorinated solvents and petroleum hydrocarbons. A vapor extraction system (2,000 scfm capacity) was installed for soil remediation, and an innovative air sparging system was installed for cost effective groundwater cleanup. A bioventing system was also applied in selected areas. The vapor extraction wellfield consists of 26 extraction and monitoring well points, with multiple screened casings. The air sparging wellfield consists of 32 sparging wells with a designed maximum flow of 400 scfm. The systems began operation in 1993, and have resulted in the estimated removal of approximately 30,000 pounds of contaminants, or about 90% of the estimated mass in place. The combined vapor extraction/air sparging system is expected to reduce the time for on-site groundwater remediation from 1/3 to 1/6 the time when compared to the conventional pump and treat method for groundwater remediation.

  4. Composite Cryotank Technologies and Demonstration Project

    NASA Image and Video Library

    The Composite Cryogenic Propellant Tank project will develop and ground demonstrate large-scale composite cryogenic propellant tanks applicable to heavy-lift launch vehicles, propellant depots, and...

  5. New Continuous Monitoring Technologies for Vapor Intrusion, Remediation and Site Assessment: Benefits of Time Series Data

    DTIC Science & Technology

    2011-03-31

    00-00-2011 4. TITLE AND SUBTITLE New Continuous Monitoring Technologies for Vapor Intrusion , Remediation and Site Assessment. Benefits of Time...Std Z39-18 Dr Peter Morris, Geoff Hewitt New Continuous Monitoring Technologies for Vapor Intrusion , Remediation and Site Assessment. Benefits of...Time series Data Why do we monitor Ground-Gas/ Vapours ? Health and Safety – range of toxic affects explosion, suffocation Contaminated land site

  6. DEMONSTRATION BULLETIN: MICROFILTRATION TECHNOLOGY EPOC WATER, INC.

    EPA Science Inventory

    The EPOC mbrofiltratbn technology is designed to remove suspended solids that are 0.1 microns in diameter or larger from liquid wastes. Wastewaters containing dissolved metals are treated by chemical precipitation, so that the metal contamination present is greater than or equal...

  7. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  8. Innovative Rehabilitation Technology Demonstration and Evaluation Program

    EPA Science Inventory

    The needs associated with the aging water infrastructure are immense and have been estimated at more than $1 trillion dollars over the next 20 years for water and wastewater utilities. To meet this growing need, utilities require the use of innovative technologies and procedures...

  9. Innovative Rehabilitation Technology Demonstration and Evaluation Program

    EPA Science Inventory

    The needs associated with the aging water infrastructure are immense and have been estimated at more than $1 trillion dollars over the next 20 years for water and wastewater utilities. To meet this growing need, utilities require the use of innovative technologies and procedures...

  10. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  11. DEMONSTRATION BULLETIN: MICROFILTRATION TECHNOLOGY EPOC WATER, INC.

    EPA Science Inventory

    The EPOC mbrofiltratbn technology is designed to remove suspended solids that are 0.1 microns in diameter or larger from liquid wastes. Wastewaters containing dissolved metals are treated by chemical precipitation, so that the metal contamination present is greater than or equal...

  12. DEMONSTRATION BULLETIN: FORAGER™ SPONGE TECHNOLOGY - DYNAPHORE, INC.

    EPA Science Inventory

    The Forager™ Sponge is an open-celled cellulose sponge incorporating an amine-containing chelating polymer that has selective affinity for dissolved heavy metals in both cationic and anionic states. The Forager™ Sponge technology can be utilized to remove and concentrate heavy me...

  13. Propulsion Technology Demonstrator. [Demonstrating Novel CubeSat Technologies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Marmie, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    NASA's Pathfinder Technology Demonstrator (PTD) project will test the operation of a variety of novel CubeSat technologies in low- Earth orbit, providing significant enhancements to the performance of these small and effective spacecraft. Each Pathfinder Technology Demonstrator mission consists of a 6-unit (6U) CubeSat weighing approximately 26 pounds (12 kilograms) and measuring 12 inches x 10 inches x 4 inches (30 centimeters x 25 centimeters x 10 centimeters), comparable in size to a common shoebox. CubeSats are a class of nanosatellites that use a standard size and form factor. The standard Cube- Sat size uses a "one unit" or "1U" measuring 4 inches x 4 inches x 4 inches (10x10x10 centimeters) and is extendable to larger sizes by "stacking" a number of the 1U blocks to form a larger spacecraft. Each PTD spacecraft will also be equipped with deployable solar arrays that provide an average of 44 watts of power while in orbit.

  14. Space Internet-Embedded Web Technologies Demonstration

    NASA Technical Reports Server (NTRS)

    Foltz, David A.

    2001-01-01

    The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.

  15. Laser-boosted lightcraft technology demonstrator

    NASA Technical Reports Server (NTRS)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    1990-01-01

    The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.

  16. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect

    Holt, D.L.; Butcher, B.T.

    1992-05-01

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department's future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  17. An overview of treatment and characterization technologies for environmental remediation at the Savannah River Site

    SciTech Connect

    Holt, D.L.; Butcher, B.T.

    1992-05-01

    The Environmental Restoration Department (ERD) at the Savannah River Site (SRS) has the responsibility to remediate waste sites and groundwater to standards as determined by Federal and State Authorities. This mission requires that certain programmatic interfaces within the ERD, Savannah River Technology Center (SRTC, formerly Savannah River Laboratory (SRL)), the Department of Energy Headquarters (DOE-HQ) Office of Technology Development (OTD), and outside commercial contractors be utilized to ensure cost-effective remediation technologies are utilized. This paper provides a synopsis of a select cross-section of the treatment and characterization technologies currently being pursued by ERD. Environmental Restoration Technology (ERT) Department`s future role in providing the necessary technologies for waste sites and groundwater remediation is also discussed.

  18. Vibration isolation technology development to demonstration

    NASA Technical Reports Server (NTRS)

    Grodsinsky, Carlos

    1992-01-01

    The main thrust of these studies has resulted in an active inertial feedforward/feedback isolation system. This prototype magnetic suspension system has been demonstrated in a laboratory setting in six degrees-of-freedom and has been preliminarily characterized in its isolation performance with favorable results. This isolation system consists of a closed loop digital control system referencing a platform around six relative and six inertial sensors. These sensors control the isolated mass through nine attractive electromagnetic actuators with a system capability of +/- three-tenths of an inch travel in three dimensions. The development of a prototype system from design to fabrication leads directly into the demonstration phase of the project which will attempt a low gravity environmental demonstration of engineering hardware for the isolation of a scientific payload. The demonstration phase of the project will use an aircraft low gravity maneuver to establish a research testbed for the study of isolation hardware and control strategies in an off-loaded environment. In developing this demonstration capability the Lewis Learjet aircraft has been characterized through its parabolic flight maneuvers and a trunnioned experimental volume has been designed for the test of both active and passive isolation packages. This vibration isolation testbed is operational and has two data acquisition systems available for both autonomous and interactive operation, with a combined input capability of 32 channels.

  19. Robotics subsurface mapping demonstration technology test plan

    SciTech Connect

    Griebenow, B.E.

    1991-06-01

    The Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) contains an estimated 2 million cubic feet of contaminated, hazardous, radioactive buried waste. The waste was received in cardboard boxes, steel drums plywood boxes, and as loose material. Possible leaching of the buried waste may have created mixed hazardous fill dirt, with an estimated volume of 6 million cubic feet. The Department of Energy has committed to clean up the SDA. Cleanup efforts will include characterizing and removing the waste. Waste characterization provides information on what, where, and how much waste is buried. This information will be used to determine how the waste will be removed and treated. Limited historical data of the waste buried within the SDA exist, but have not been verified and are believed to be incorrect or incomplete in many cases. There are two objectives to the Robotics Subsurface Mapping Demonstration. The first is to demonstrate the feasibility of using a remotely operated platform to perform characterization operations. In the demonstration, the Soldier Robot Interface Project (SRIP) platform will be equipped with multiple sensors to provide data for buried waste characterization and will be remotely controlled and tracked by the Ultrasonic Ranging and Data System (USRADS). The second objective of the demonstration is to characterize the waste in locations within the SDA, as specified by the Buried Waste Integrated Demonstration (BWID) Project.

  20. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.

    PubMed

    Kuppusamy, Saranya; Thavamani, Palanisami; Venkateswarlu, Kadiyala; Lee, Yong Bok; Naidu, Ravi; Megharaj, Mallavarapu

    2017-02-01

    For more than a decade, the primary focus of environmental experts has been to adopt risk-based management approaches to cleanup PAH polluted sites that pose potentially destructive ecological consequences. This focus had led to the development of several physical, chemical, thermal and biological technologies that are widely implementable. Established remedial options available for treating PAH contaminated soils are incineration, thermal conduction, solvent extraction/soil washing, chemical oxidation, bioaugmentation, biostimulation, phytoremediation, composting/biopiles and bioreactors. Integrating physico-chemical and biological technologies is also widely practiced for better cleanup of PAH contaminated soils. Electrokinetic remediation, vermiremediation and biocatalyst assisted remediation are still at the development stage. Though several treatment methods to remediate PAH polluted soils currently exist, a comprehensive overview of all the available remediation technologies to date is necessary so that the right technology for field-level success is chosen. The objective of this review is to provide a critical overview in this respect, focusing only on the treatment options available for field soils and ignoring the spiked ones. The authors also propose the development of novel multifunctional green and sustainable systems like mixed cell culture system, biosurfactant flushing, transgenic approaches and nanoremediation in order to overcome the existing soil- contaminant- and microbial-associated technological limitations in tackling high molecular weight PAHs. The ultimate objective is to ensure the successful remediation of long-term PAH contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Application of a World Wide Web technology to environmental remediation

    SciTech Connect

    Johnson, R.; Durham, L. A.

    2000-03-09

    As part of the Formerly Utilized Site Remedial Action Program (FUSRAP), the United States Army Corps of Engineers (USACE), Buffalo District, is responsible for overseeing the remediation of several sites within its jurisdiction. FUSRAP sites are largely privately held facilities that were contaminated by activities associated with the nuclear weapons program in the 1940s, 50s, and 60s. The presence of soils and structures contaminated with low levels of radionuclides is a common problem at these sites. Typically, contaminated materials must be disposed of off-site at considerable expense (up to several hundred dollars per cubic yard of waste material). FUSRAP is on an aggressive schedule, with most sites scheduled for close-out in the next couple of years. Among the multitude of tasks involved in a typical remediation project is the need to inform and coordinate with active stakeholder communities, including local, state, and federal regulators.

  2. Technology Tips: Building Interactive Demonstrations with Sage

    ERIC Educational Resources Information Center

    Murray, Maura

    2013-01-01

    Sage is an open-source software package that can be used in many different areas of mathematics, ranging from algebra to calculus and beyond. One of the most exciting pedagogical features of Sage (http://www.sagemath.org) is its ability to create interacts--interactive examples that can be used in a classroom demonstration or by students in a…

  3. Technology Tips: Building Interactive Demonstrations with Sage

    ERIC Educational Resources Information Center

    Murray, Maura

    2013-01-01

    Sage is an open-source software package that can be used in many different areas of mathematics, ranging from algebra to calculus and beyond. One of the most exciting pedagogical features of Sage (http://www.sagemath.org) is its ability to create interacts--interactive examples that can be used in a classroom demonstration or by students in a…

  4. IN SITU REMEDIATION OF CONTAMINATED SEDIMENTS - ACTIVE CAPPING TECHNOLOGY

    SciTech Connect

    Knox, A.; Roberts, J.; Paller, M.; Reible, D.

    2010-09-02

    Active capping is a relatively new approach for treating contaminated sediments. It involves applying chemically reactive amendments to the sediment surface. The main role of active caps is to stabilize contaminants in contaminated sediments, lower the bioavailable pool of contaminants, and reduce the release of contaminants to the water column. Metals are common contaminants in many marine and fresh water environments as a result of industrial and military activities. The mobile, soluble forms of metals are generally considered toxic. Induced chemical precipitation of these metals can shift toxic metals from the aqueous phase to a solid, precipitated phase which is often less bioavailable. This approach can be achieved through application of sequestering agents such as rock phosphates, organoclays, zeolites, clay minerals, and biopolymers (e.g., chitosan) in active capping technology. Active capping holds great potential for a more permanent solution that avoids residual risks resulting from contaminant migration through the cap or breaching of the cap. In addition to identifying superior active capping agents, research is needed to optimize application techniques, application rates, and amendment combinations that maximize sequestration of contaminants. A selected set of active capping treatment technologies has been demonstrated at a few sites, including a field demonstration at the Savannah River Site, Aiken, SC. This demonstration has provided useful information on the effects of sequestering agents on metal immobilization, bioavailability, toxicity, and resistance to mechanical disturbance.

  5. A TOOL FOR STRATEGIC TARGET SETTING ON DEVELOPMENT AND IMPROVEMENT OF REMEDIATION TECHNOLOGIES

    NASA Astrophysics Data System (ADS)

    Inoue, Yasushi; Katayama, Arata

    A tool for strategic development and improvement of remediation technologies was proposed to set a target specification by applying the RNSOIL, an evaluation index of remediation technologies for contaminated soil. Under the scenario of agricultural site contamination with dieldrin and its remediation, improving items and the target values of the bioremediation using charcoal material (charcoal bioremediation), as a developing technology, were determined. The development target was that the RNSOIL value of charcoal bioremediation fell below that of high temperature thermal desorption as a competing technology. Sensitivity assessments of the RNSOIL selected a remediation period and an incubation volume for bacterial growth and settlement in the charcoal as improving properties. Risk assessment and life cycle inventory analysis was introduced to determine a human health risk due to contaminant, and a total cost of remediation or a CO2 emission accompanied with remediation, as evaluating factors of RNSOIL, respectively. Assessment based on the RNSOIL was able to show clearly improving items for achieving the target or items with great effect for improvement.

  6. Engaging with residents' perceived risks and benefits about technologies as a way of resolving remediation dilemmas.

    PubMed

    Prior, Jason; Rai, Tapan

    2017-12-01

    In recent decades the diversity of remediation technologies has increased significantly, with the breadth of technologies ranging from dig and dump to emergent technologies like phytoremediation and nanoremediation. The benefits of these technologies to the environment and human health are believed to be substantial. However, they also potentially constitute risks. Whilst there is a growing body of knowledge about the risks and benefits of these technologies from the perspective of experts, little is known about how residents perceive the risks and benefits of the application of these technologies to address contaminants in their local environment. This absence of knowledge poses a challenge to remediation practitioners and policy makers who are increasingly seeking to engage these affected local residents in choosing technology applications. Building on broader research into the perceived benefits and risks of technologies, and data from a telephone survey of 2009 residents living near 13 contaminated sites in Australia, regression analysis of closed-ended survey questions and coding of open-ended questions are combined to identify the main predictors of resident's perceived levels of risk and benefit to resident's health and to their local environment from remediation technologies. This research identifies a range of factors associated with the residents' physical context, their engagement with institutions during remediation processes, and the technologies which are associated with residents' level of perceived risk and benefit for human health and the local environment. The analysis found that bioremediation technologies were perceived as less risky and more beneficial than chemical, thermal and physical technologies. The paper also supports broader technology research that reports an inverse correlation between levels of perceived risks and benefits. In addition, the paper reveals the types of risks and benefits to human health and the local environment that

  7. Demonstration of automated proximity and docking technologies

    NASA Astrophysics Data System (ADS)

    Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.

    An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.

  8. Demonstration of automated proximity and docking technologies

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Tsugawa, Roy K.; Bryan, Thomas C.

    1991-01-01

    An autodock was demonstrated using straightforward techniques and real sensor hardware. A simulation testbed was established and validated. The sensor design was refined with improved optical performance and image processing noise mitigation techniques, and the sensor is ready for production from off-the-shelf components. The autonomous spacecraft architecture is defined. The areas of sensors, docking hardware, propulsion, and avionics are included in the design. The Guidance Navigation and Control architecture and requirements are developed. Modular structures suitable for automated control are used. The spacecraft system manager functions including configuration, resource, and redundancy management are defined. The requirements for autonomous spacecraft executive are defined. High level decisionmaking, mission planning, and mission contingency recovery are a part of this. The next step is to do flight demonstrations. After the presentation the following question was asked. How do you define validation? There are two components to validation definition: software simulation with formal and vigorous validation, and hardware and facility performance validated with respect to software already validated against analytical profile.

  9. Demonstration and Field Test of airjacket technology

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  10. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    SciTech Connect

    Siegrist, R.L. |; Lowe, K.S.; Murdoch, L.D. |; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies.

  11. Fixed capital investments for the uranium soils integrated demonstration soil treatment technologies

    SciTech Connect

    Douthat, D.M.; Armstrong, A.Q.; Stewart, R.N.

    1995-05-01

    The development of a nuclear industry in the United States required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the United States Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the Uranium Soils Integrated Demonstration (USID) Program was formed to evaluate and compare the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium contaminated soils. The USID Program has five major tasks in developing and demonstrating these technologies. Each must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies developed by the USID Program. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

  12. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    NASA Technical Reports Server (NTRS)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  13. Groundwater Contamination: DOD Uses and Develops a Range of Remediation Technologies to Clean Up Military Sites

    DTIC Science & Technology

    2005-06-01

    Enhanced recovery X X X Chemical treatments X X X X X Monitored natural attenuation X X X X X Multiphase extraction X X X X X Permeable reactive...site, alone or in conjunction with other types of remediation. However, compared with active techniques, natural attenuation often requires longer...existing technologies. DOD actively researches and tests new approaches to groundwater remediation largely by developing and promoting the acceptance of

  14. Surfactant Behavior and Application with a Brine-Based Remediation Technology

    NASA Astrophysics Data System (ADS)

    Pedit, J. A.; Sanderson, P. M.; Johnson, D. N.; Miller, C. T.

    2006-12-01

    With the general inability of existing groundwater remediation techniques to efficiently remove dense nonaqueous phase liquids (DNAPLs) from the subsurface, a novel strategy known as the Brine-Based Remediation Technology (BBRT), which relies upon a brine barrier to control downward migration of DNAPL after exposure to an interfacial tension reducing surfactant, has been proposed as a potential alternative to currently used remedial strategies. The choice of surfactants is a challenging problem and much effort has been devoted to screening of surfactants for DNAPL systems. However, due to the sensitivity of many of these surfactant solutions to electrolyte concentrations, they are unsuitable for BBRTs due to the presence of a high concentration brine. Therefore, it is necessary to characterize and evaluate potential surfactant formulations that possess favorable phase behavior, do not precipitate in the presence of high concentration brines, perform favorably in subsurface systems, (i.e., low viscosities and limited losses due to sorption), and effectively reduce interfacial tension to levels required for mobilization. Batch reactor studies were performed that identified surfactant formulations that did not precipitate in solutions containing high concentrations of calcium bromide brine and that possessed favorable phase behavior. The best behaved formulations contained a mixture of a nonionic surfactant, Triton X-100, and an anionic surfactant, Aerosol MA-80. Sorption of one of these mixtures was evaluated in experiments conducted in batch and one-dimensional column reactors. The ability of the mixture to mobilize tetrachloroethylene was evaluated in column experiments. The mixture was used in a BBRT demonstration at the Dover National Test Site in Dover, DE, where a test cell was contaminated with tetrachloroethylene.

  15. DEMONSTRATION BULLETIN: PNEUMATIC FRACTURING EXTRACTION™ AND HOT GAS INJECTION, PHASE I - ACCUTECH REMEDIAL SYSTEMS, INC.

    EPA Science Inventory

    The Pneumatic Fracturing Extraction(PFE) process developed by Accutech Remedial Systems, Inc. makes it possible to use vapor extraction to remove volatile organics at increased rates from a broader range of vadose zones. The low permeability of silts, clays, shales, etc. would ot...

  16. DEMONSTRATION BULLETIN: PNEUMATIC FRACTURING EXTRACTION™ AND HOT GAS INJECTION, PHASE I - ACCUTECH REMEDIAL SYSTEMS, INC.

    EPA Science Inventory

    The Pneumatic Fracturing Extraction(PFE) process developed by Accutech Remedial Systems, Inc. makes it possible to use vapor extraction to remove volatile organics at increased rates from a broader range of vadose zones. The low permeability of silts, clays, shales, etc. would ot...

  17. How X-37 Technology Demonstration Supports Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Manley, David J.; Cervisi, Richard T.; Staszak, Paul R.

    2000-01-01

    This presentation discusses, in viewgraph form, how X-37 Technology Demonstration Supports Reusable Launch Vehicles. The topics include: 1) X-37 Program Objectives; 2) X-37 Description; 3) X-37 Vehicle Characteristics; 4) X-37 Expands the Testbed Envelope to Orbital Capability; 5) Overview of X-37 Flight Test Program; 6) Thirty-Nine Technologies and Experiments are Being Demonstrated on the X-37; 7) X-37 Airframe/Structures Technologies; 8) X-37 Mechanical, Propulsion, and Thermal System Technologies and Experiments; 9) X-37 GN&C Technologies; 10) X-37 Avionics, Power, and Software Technologies and Experiments; and 11) X-37 Technologies and Experiments Support Reusable Launch Vehicle Needs.

  18. EPA/Navy CERCLA Remedial Action Technology Guide

    DTIC Science & Technology

    1993-11-01

    Pollution 18:25-36, 1988. Control Association, August 19-21, 1985. 11. Nirmalakhandan, N. N. and R. E. Speece. QSAR Model for Predicting Henry’s...Las Vegas , Nevada. May 1988.. 6. Bergstrom, Wayne R., Gray, Donald H. Fly Ash Utilization 12. Handbook - Remedial Action at Waste Disposal Sites in...of the soil piles should be are needed to confirm that the contaminants of concern can be designed as a package. There are computer models available

  19. CHARACTERIZATION OF CONDITIONS OF NATURAL GAS STORAGE RESERVOIRS AND DESIGN AND DEMONSTRATION OF REMEDIAL TECHNIQUES FOR DAMAGE MECHANISMS FOUND THEREIN

    SciTech Connect

    J.H. Frantz Jr; K.G. Brown; W.K. Sawyer; P.A. Zyglowicz; P.M. Halleck; J.P. Spivey

    2004-12-01

    The underground gas storage (UGS) industry uses over 400 reservoirs and 17,000 wells to store and withdrawal gas. As such, it is a significant contributor to gas supply in the United States. It has been demonstrated that many UGS wells show a loss of deliverability each year due to numerous damage mechanisms. Previous studies estimate that up to one hundred million dollars are spent each year to recover or replace a deliverability loss of approximately 3.2 Bscf/D per year in the storage industry. Clearly, there is a great potential for developing technology to prevent, mitigate, or eliminate the damage causing deliverability losses in UGS wells. Prior studies have also identified the presence of several potential damage mechanisms in storage wells, developed damage diagnostic procedures, and discussed, in general terms, the possible reactions that need to occur to create the damage. However, few studies address how to prevent or mitigate specific damage types, and/or how to eliminate the damage from occurring in the future. This study seeks to increase our understanding of two specific damage mechanisms, inorganic precipitates (specifically siderite), and non-darcy damage, and thus serves to expand prior efforts as well as complement ongoing gas storage projects. Specifically, this study has resulted in: (1) An effective lab protocol designed to assess the extent of damage due to inorganic precipitates; (2) An increased understanding of how inorganic precipitates (specifically siderite) develop; (3) Identification of potential sources of chemical components necessary for siderite formation; (4) A remediation technique that has successfully restored deliverability to storage wells damaged by the inorganic precipitate siderite (one well had nearly a tenfold increase in deliverability); (5) Identification of the types of treatments that have historically been successful at reducing the amount of non-darcy pressure drop in a well, and (6) Development of a tool that can

  20. Technology Demonstration Summary, Chemfix Solidification/Stabilization Process, Clackamas, Oregon

    EPA Science Inventory

    ChemfIx's* patented stabilization/solidification technology was demonstrated at the Portable Equipment Salvage Company (PESC) site in Clackamas, Oregon, as part of the Superfund Innovative Technology Evaluation (SITE) program. The Chemfix process is designed to solidify and sta...

  1. Smouldering Remediation (STAR) Technology: Field Pilot Tests and First Full Scale Application

    NASA Astrophysics Data System (ADS)

    Gerhard, J.; Kinsman, L.; Torero, J. L.

    2015-12-01

    STAR (Self-sustaining Treatment for Active Remediation) is an innovative remediation technology based on the principles of smoldering combustion where the contaminants are the fuel. The self-sustaining aspect means that a single, local ignition event can result in many days of contaminant destruction in situ. Presented research to date has focused on bench scale experiments, numerical modelling and process understanding. Presented here is the maturation of the in situ technology, including three field pilot tests and a full-scale implementation to treat coal tar-impacted soils. The first pilot determined a Radius of Influence (ROI) for a single ignition of approximately eight feet with an average propagation rate of the reaction of approximately one foot per day. TPH concentrations in soils were reduced from 10,000 milligrams per kilogram to a few hundred milligrams per kilogram. The second pilot was conducted in an area of significant void spaces created through the anthropogenic deposition of clay bricks and tiles. The void spaces led to pre-mature termination of the combustion reaction, limiting ROI and the effectiveness of the technology in this setting. The third case study involved the pilot testing, design, and full-scale implementation of STAR at a 37-acre former chemical manufacturing facility. Three phases of pilot testing were conducted within two hydrogeologic units at the site (i.e., surficial fill and deep alluvial sand units). Pilot testing within the fill demonstrated self-sustained coal tar destruction rates in excess of 800 kg/day supported through air injection at a single well. Deep sand unit testing (twenty-five feet below the water table) resulted in the treatment of a targeted six-foot layer of impacted fine sands to a radial distance of approximately twelve feet. These results (and additional parameters) were used to develop a full-scale STAR design consisting of approximately 1500 surficial fill ignition points and 500 deep sand ignition

  2. The application of iron-based technologies in uranium remediation: A review.

    PubMed

    Chen, Anwei; Shang, Cui; Shao, Jihai; Zhang, Jiachao; Huang, Hongli

    2017-01-01

    Remediating uranium contamination is of worldwide interest because of the increasing release of uranium from mining and processing, nuclear power leaks, depleted uranium components in weapons production and disposal, and phosphate fertilizer in agriculture activities. Iron-based technologies are attractive because they are highly efficient, inexpensive, and readily available. This paper provides an overview of the current literature that addresses the application of iron-based technologies in the remediation of sites with elevated uranium levels. The application of iron-based materials, the current remediation technologies and mechanisms, and the effectiveness and environmental safety considerations of these approaches were discussed. Because uranium can be reduced and reoxidized in the environment, the review also proposes strategies for long-term in situ remediation of uranium. Unfortunately, iron-based materials (nanoscale zerovalent iron and iron oxides) can be toxic to microorganisms. As such, further studies exploring the links among the fates, ecological impacts, and other environmentally relevant factors are needed to better understand the constraints on using iron-based technologies for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Re-demonstration without remediation – a missed opportunity? A national survey of internal medicine clerkship directors

    PubMed Central

    Hawthorne, Mary R.; Chretien, Katherine C.; Torre, Dario; Chheda, Shobhina G.

    2014-01-01

    Background Many different components factor into the final grade assigned for the internal medicine clerkship. Failure of one or more of these requires consideration of remedial measures. Purpose To determine which assessment components are used to assign students a passing grade for the clerkship and what remediation measures are required when students do not pass a component. Methods A national cross-sectional survey of Clerkship Directors in Internal Medicine (CDIM) institutional members was conducted in April 2011. The survey included sections on remediation, grading practices, and demographics. The authors analyzed responses using descriptive and comparative statistics. Results Response rate was 73% (86/113). Medicine clerkships required students to pass the following components: clinical evaluations 83 (97%), NBME subject exam 76 (88%), written assignments 40 (46%), OSCE 35 (41%), in-house written exam 23 (27%), and mini-CEX 19 (22%). When students failed a component of the clerkship for the first time, 55 schools (64%) simply allowed students to make up the component, while only 16 (18%) allowed a simple make-up for a second failure. Additional ward time was required by 24 schools (28%) for a first-time failure of one component of the clerkship and by 49 (57%) for a second failure. The presence or absence of true remedial measures in a school was not associated with clerkship director academic rank, grading scheme, or percent of students who failed the clerkship in the previous year. Conclusions Most schools required passing clinical evaluations and NBME subject exam components to pass the medicine clerkship, but there was variability in other requirements. Most schools allowed students to simply re-take the component for a first-time failure. This study raises the question of whether true remediation is being undertaken before students are asked to re-demonstrate competence in a failed area of the clerkship to be ready for the subinternship level. PMID

  4. Re-demonstration without remediation--a missed opportunity? A national survey of internal medicine clerkship directors.

    PubMed

    Hawthorne, Mary R; Chretien, Katherine C; Torre, Dario; Chheda, Shobhina G

    2014-01-01

    Many different components factor into the final grade assigned for the internal medicine clerkship. Failure of one or more of these requires consideration of remedial measures. To determine which assessment components are used to assign students a passing grade for the clerkship and what remediation measures are required when students do not pass a component. A national cross-sectional survey of Clerkship Directors in Internal Medicine (CDIM) institutional members was conducted in April 2011. The survey included sections on remediation, grading practices, and demographics. The authors analyzed responses using descriptive and comparative statistics. Response rate was 73% (86/113). Medicine clerkships required students to pass the following components: clinical evaluations 83 (97%), NBME subject exam 76 (88%), written assignments 40 (46%), OSCE 35 (41%), in-house written exam 23 (27%), and mini-CEX 19 (22%). When students failed a component of the clerkship for the first time, 55 schools (64%) simply allowed students to make up the component, while only 16 (18%) allowed a simple make-up for a second failure. Additional ward time was required by 24 schools (28%) for a first-time failure of one component of the clerkship and by 49 (57%) for a second failure. The presence or absence of true remedial measures in a school was not associated with clerkship director academic rank, grading scheme, or percent of students who failed the clerkship in the previous year. Most schools required passing clinical evaluations and NBME subject exam components to pass the medicine clerkship, but there was variability in other requirements. Most schools allowed students to simply re-take the component for a first-time failure. This study raises the question of whether true remediation is being undertaken before students are asked to re-demonstrate competence in a failed area of the clerkship to be ready for the subinternship level.

  5. Remediation of DNAPLs in Low Permeability Soils. Innovative Technology Summary Report

    SciTech Connect

    2000-09-01

    Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U. S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.

  6. EM-54 Technology Development In Situ Remediation Integrated Program. Annual report

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years.

  7. Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration

    DTIC Science & Technology

    2016-08-01

    ARL-TR-7743 ● AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology...AUG 2016 US Army Research Laboratory Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology Demonstration by Muthuvel...COVERED (From - To) 10 January 2012–29 February 2016 4. TITLE AND SUBTITLE Adaptive Seat Energy Absorbers for Enhanced Crash Safety: Technology

  8. Possibilities and Realities in Leveraging Innovative Technologies and Techniques to Meet Aggressive Remediation Timelines and Performance Goals

    DTIC Science & Technology

    2011-11-30

    Innovative  Technologies & Techniques to Meet Aggressive  Remediation Timelines & Performance Goals Greg Gervais USEPA Office of  Superfund  Remediation...S) AND ADDRESS(ES) U.S. Environmental Protection Agency,Office of Superfund Remediation and Technology Innovation,1200 Pennsylvania Avenue NW...MR. GREGORY GERVAIS, P.E. USEPA Office of Superfund Remediation and Technology Innovation 1200 Pennsylvania Avenue NW 5203P Washington, DC 20460

  9. Clean Coal Technology Demonstration Program: Program Update 2001

    SciTech Connect

    Assistant Secretary for Fossil Energy

    2002-07-30

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results. Also includes Power Plant Improvement Initiative Projects.

  10. Clean Coal Technology Demonstration Program: Program Update 1998

    SciTech Connect

    Assistant Secretary for Fossil Energy

    1999-03-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  11. Demonstration of Innovative Sewer System Inspection Technology SewerBatt

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...

  12. Demonstration of Innovative Sewer System Inspection Technology: SL-RAT

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  13. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  14. ATP Interior Noise Technology and Flight Demonstration Program

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Powell, Clemans A.

    1988-01-01

    The paper provides an overview of the ATP (Advanced Turboprop Program) acoustics program with emphasis on the NASA technology program and the recent NASA/Industry demonstration programs aimed at understanding and controlling passenger cabin noise. Technology developments in propeller (source) noise, cabin noise transmission, and subjective acoustics are described. Finally, an overview of the industry demonstrator programs is presented.

  15. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  16. Demonstration of Innovative Sewer System Inspection Technology: SL-RAT

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  17. Demonstration of Innovative Sewer System Inspection Technology SewerBatt

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...

  18. Clean Coal Technology Demonstration Program: Program Update 2000

    SciTech Connect

    Assistant Secretary for Fossil Energy

    2001-04-01

    Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.

  19. Electrokinetic-Fenton technology for the remediation of hydrocarbons historically polluted sites.

    PubMed

    Sandu, Ciprian; Popescu, Marius; Rosales, Emilio; Bocos, Elvira; Pazos, Marta; Lazar, Gabriel; Sanromán, M Angeles

    2016-08-01

    The feasibility of the electrokinetic-Fenton technology coupled with surfactants in the treatment of real historically hydrocarbons polluted soils has been studied. The characterisation of these soils from Spain and Romania was performed and identified as diesel and diesel-motor oil spillages, respectively. Moreover, the ageing of the spillages produced by the soil contamination was estimated showing the historical pollution of the sites (around 11 and 20 years for Romanian and Spanish soils, respectively). An ex-situ electrochemical treatment was performed to evaluate the adequacy of surfactants for the degradation of the hydrocarbons present in the soils. It was found an enhancement in the solubilisation and removal of TPHs with percentages increasing from 25.7 to 81.8% by the presence of Tween 80 for Spanish soil and from 15.1% to 71.6% for Triton X100 in Romanian soil. Therefore, the viability of coupling enhanced electrokinetic and Fenton remediation was evaluated through a simulated in-situ treatment at laboratory scale. The results demonstrated that the addition of the selected surfactants improved the solubilisation of the hydrocarbons and influenced the electroosmotic flow with a slight decrease. The efficiency of the treatment increased for both considered soil samples and a significant degradation level of the hydrocarbons compounds was observed. Buffering of pH coupled with the addition of a complexing agent showed to be important in the treatment process, facilitating the conditions for the degradation reactions that take place into the soil matrix. The results demonstrated the effectiveness of the selected techniques for remediation of the investigated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Democratic Citizenship and Information Technology: Promises, Challenges, and Remedies.

    ERIC Educational Resources Information Center

    White, Charles S.

    This paper examines the relationship between democratic citizenship and information technology. Modern information technology disputes the idea that citizens can be properly educated to assume the burdens necessary to reap the blessing of freedom. Information technologies challenge the ability of citizens to fulfill the fundamental requirement of…

  1. Remedial actions: A discussion of technological, regulatory and construction issues

    SciTech Connect

    Manrod, W.E.; Miller, R.A.; Barton, W.D. III; Pierce, T.J.

    1989-11-01

    The Oak Ridge Reservation consists of approximately 35,252 acres located in the Ridge and Valley Province of the Appalachian Mountains in Eastern Tennessee. Three Department of Energy facilities are located on the Reservation: the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant and the Oak Ridge National Laboratory. The plants have, over the years, disposed of low-level and mixed waste in various areas on the reservation principally with shallow land burial. A discussion is presented of some of the actions to remediate and close areas used for disposal of waste in the past. Current or planned activities for waste disposal and storage are also discussed. Closures completed to date have complied with Resource Conservation and Recovery Act Regulations. The new approach for disposal and storage has adopted ideas that have been successfully used by the French to dispose of low-level waste, as well as, improved on older shallow burial disposal techniques.

  2. Hands-free focus night vision technology demonstration

    NASA Astrophysics Data System (ADS)

    Haran, Terence L.; James, J. Christopher; Roberts, David W.; Knotts, Michael E.; Wasilewski, Anthony A.; West, Leanne L.; Robinson, William G.; Bennett, Gisele

    2007-04-01

    The Georgia Tech Research Institute is currently developing a device to demonstrate a hands-free focus technology for head-mounted night vision sensors. The demonstrator device will integrate a computational imaging technique that increases depth of field with a digital night vision sensor. The goal of the demonstrator is to serve as a test bed for evaluating the critical performance/operational parameters necessary for the hands-free focus technology to support future tactical night vision concepts of operation. This paper will provide an overview of the technology studies and design analyses that have been performed to date as well as the current state of the demonstrator design.

  3. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    SciTech Connect

    Bossart, S.J.

    1996-02-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D&D) one of its facilities using a combination of innovative and commercial D&D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer{trademark}. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA.

  4. Assessment of Carbon Tetrachloride Groundwater Transport in Support of the Hanford Carbon Tetrachloride Innovative Technology Demonstration Program

    SciTech Connect

    Truex, Michael J.; Murray, Christopher J.; Cole, Charles R.; Cameron, Richard J.; Johnson, Michael D.; Skeen, Rodney S.; Johnson, Christian D.

    2001-07-13

    Groundwater modeling was performed in support of the Hanford Carbon Tetrachloride Innovative Treatment Remediation Demonstration (ITRD) Program. The ITRD program is facilitated by Sandia National Laboratory for the Department of Energy Office of Science and Technology. This report was prepared to document the results of the modeling effort and facilitate discussion of characterization and remediation options for the carbon tetrachloride plume among the ITRD participants. As a first step toward implementation of innovative technologies for remediation of the carbon tetrachloride (CT) plume underlying the 200-West Area, this modeling was performed to provide an indication of the potential impact of the CT source on the compliance boundary approximately 5000 m distant. The primary results of the modeling bracket the amount of CT source that will most likely result in compliance/non-compliance at the boundary and the relative influence of the various modeling parameters.

  5. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  6. Air-Based Remediation Workshop - Section 1 Sampling And Analysis Revelant To Air-Based Remediation Technologies

    EPA Science Inventory

    Pursant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Force Air Remediation Workshop in Taipei to deliver expert training to the Environme...

  7. Overview of remediation technologies for persistent toxic substances.

    PubMed

    Lodolo, A; Gonzalez-Valencia, E; Miertus, S

    2001-06-01

    This paper gives a review of established and emerging technologies for the treatment of wastes and soils contaminated by Persistent Toxic Substances which include the Persistent Organic Pollutants. The technologies are classified as biological, physico-chemical, and thermal treatments, describing main unit operations and comparing technical, social and environmental limitations, including some potential risks and environmental impacts. Estimated overall costs, cleanup times, reliability, and maintenance levels are also presented in order to assess advantages and limitations of each technology.

  8. Technology Demonstration Summary Site Program Demonstration Test Soliditech Inc Solidification-stabilization Process

    EPA Science Inventory

    The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...

  9. Technology Demonstration Summary Site Program Demonstration Test Soliditech Inc Solidification-stabilization Process

    EPA Science Inventory

    The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...

  10. Field Applications of In Situ Remediation Technologies: Ground-Water Circulation Wells

    DTIC Science & Technology

    1998-10-01

    D.J.; and Vidic, R.D. “In Situ Air Stripping,” Water Environment and Technology, Vol. 8, No. 2, pp 45-51, February 1996. Buermann , W. and Bott-Breuning...Herrling, B.; Stamm, J.; and Buermann , W. “Hydraulic Circulation System for In Situ Bioreclamation and/or In Situ Remediation of Strippable

  11. Using Computer Technology To Monitor Student Progress and Remediate Reading Problems.

    ERIC Educational Resources Information Center

    McCullough, C. Sue

    1995-01-01

    Focuses on research about application of text-to-speech systems in diagnosing and remediating word recognition, vocabulary knowledge, and comprehension disabilities. As school psychologists move toward a consultative model of service delivery, they need to know about technology such as speech synthesizers, digitizers, optical-character-recognition…

  12. BASICS OF PUMP-AND-TREAT GROUND-WATER REMEDIATION TECHNOLOGY

    EPA Science Inventory

    The pump-and-treat process, whereby contaminated groundwater is pumped to the surface for treatment, is one of the most common groundwater remediation technologies used at hazardous waste sites. owever, recent research has identified complex chemical and physical interactions bet...

  13. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    EPA Science Inventory

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  14. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    EPA Science Inventory

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  15. Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect

    Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

    2014-03-01

    In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

  16. Technology Demonstration Summary Technology Evaluation Report, Site Demonstration Test, Hazcon Solidification, Douglassville, Pennsylvania

    EPA Science Inventory

    The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...

  17. Technology Demonstration Summary Technology Evaluation Report, Site Demonstration Test, Hazcon Solidification, Douglassville, Pennsylvania

    EPA Science Inventory

    The major objective of the HAZCON Solidification SITE Program Demonstration Test was to develop reliable performance and cost information. The demonstration occurred at a 50-acre site of a former oil reprocessing plant at Douglassville, PA containing a wide range of organic...

  18. Bioslurping technology applications at Naval fuel remediation sites

    SciTech Connect

    Hoeppel, R.; Goetz, F.; Zwick, T.; Kittel, J.; Julio, S.D.

    1996-12-01

    Bioventing accelerates the biodegradation of both high and low volatility fuels immobilized in the vadose zone by satisfying the high oxygen demand of in situ microorganisms through forced aeration of subsurface soils. However, many Naval field sites have light non-aqueous phase liquid (LNAPL) residing at and above the groundwater table. In such cases biodegradation of the LNAPL may be a very slow process because bioemulsification and bioavailability are impeded. Bioslurper systems are designed to recover LNAPL via vacuum-assisted pumping, while simultaneously promoting the remediation of vadose zone soil contamination via bioventing. Bioslurping has been ongoing at NAS Fallon, Nevada, for over three years and was initiated at Marine Corps Base Hawaii last summer. The sites have low volatility JP-5 jet fuel on the groundwater table in low to medium permeability soils. An arid bioventing site at Twentynine Palms, CA, appears to be moisture limited. Subsurface irrigation of the 190 ft vadose zone has increased mixed fuel biodegradation rates about 10-fold but wetting the contaminated zone has been a slow process.

  19. Demonstration of Resolving Urban Problems by Applying Smart Technology.

    NASA Astrophysics Data System (ADS)

    Kim, Y.

    2016-12-01

    Recently, movements to seek various alternatives are becoming more active around the world to resolve urban problems related to energy, water, a greenhouse gas, and disaster by utilizing smart technology system. The purpose of this study is to evaluate service verification aimed at demonstration region applied with actual smart technology in order to raise the efficiency of the service and explore solutions for urban problems. This process must be required for resolving urban problems in the future and establishing `integration platform' for sustainable development. The demonstration region selected in this study to evaluate service verification is `Busan' in Korea. Busan adopted 16 services in 4 sections last year and begun demonstration to improve quality of life and resolve urban environment problems. In addition, Busan participated officially in `Global City Teams Challenge (GCTC)' held by National Institute of Standards and Technology (NIST) in USA last year and can be regarded as representative demonstration region in Korea. The result of survey showed that there were practical difficulties as explained below in the demonstration for resolving urban problems by applying smart technology. First, the participation for demonstration was low because citizens were either not aware or did not realize the demonstration. Second, after demonstrating various services at low cost, it resulted in less effect of service demonstration. Third, as functions get fused, it was found that management department, application criteria of technology and its process were ambiguous. In order to increase the efficiency of the demonstration for the rest of period through the result of this study, it is required to draw demand that citizens requires in order to raise public participation. In addition, it needs to focus more on services which are wanted to demonstrate rather than various service demonstrations. Lastly, it is necessary to build integration platform through cooperation

  20. Remediation System Design Optimization: Field Demonstration at the Umatilla Army Deport

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Wang, P. P.

    2002-05-01

    Since the early 1980s, many researchers have shown that the simulation-optimization (S/O) approach is superior to the traditional trial-and-error method for designing cost-effective groundwater pump-and-treat systems. However, the application of the S/O approach to real field problems has remained limited. This paper describes the application of a new general simulation-optimization code to optimize an existing pump-and-treat system at the Umatilla Army Depot in Oregon, as part of a field demonstration project supported by the Environmental Security Technology Certification Program (ESTCP). Two optimization formulations were developed to minimize the total capital and operational costs under the current and possibly expanded treatment plant capacities. A third formulation was developed to minimize the total contaminant mass of RDX and TNT remaining in the shallow aquifer by the end of the project duration. For the first two formulations, this study produced an optimal pumping strategy that would achieve the cleanup goal in 4 years with a total cost of 1.66 million US dollars in net present value. For comparison, the existing design in operation was calculated to require 17 years for cleanup with a total cost of 3.83 million US dollars in net present value. Thus, the optimal pumping strategy represents a reduction of 13 years in cleanup time and a reduction of 56.6 percent in the expected total expenditure. For the third formulation, this study identified an optimal dynamic pumping strategy that would reduce the total mass remaining in the shallow aquifer by 89.5 percent compared with that calculated for the existing design. In spite of their intensive computational requirements, this study shows that the global optimization techniques including tabu search and genetic algorithms can be applied successfully to large-scale field problems involving multiple contaminants and complex hydrogeological conditions.

  1. Use of Stable Isotope Technologies to Accomplish In-Situ Biological Remediation of Explosives

    DTIC Science & Technology

    2011-03-30

    Use of Stable Isotope Technologies to Accomplish In-Situ Biological Remediation of Explosives Eleanor M. Jennings, Ph.D. Dennis Clark URS...30 MAR 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Use of Stable Isotope Technologies to Accomplish In...98) Prescribed by ANSI Std Z39-18 Introduction to Isotopic Carbon  Carbon comes in different weights  12C and 13C are most common isotopes

  2. Methods for determining NAPL source zone remediation efficiency of in-situ flushing technologies

    SciTech Connect

    Jawitz, J.W.; Sillan, R.K.; Annable, M.D.; Rao, P.S.C.

    1997-12-31

    In-situ flushing technologies are often evaluated using small pilot-scale tests conducted within the contaminated aquifer targeted for remediation. If more than one technology has been evaluated, the site manager and regulatory agencies must determine which is best for full-scale remediation. Data from two in-situ flushing studies conducted at Hill AFB, Utah are analyzed here to investigate the best approaches for comparing technologies based on effectiveness and efficiency for source zone remediation. The technologies are compared using partitioning tracers, core sample analysis and mass removal by flushing. A NAPL remediation efficiency measure is derived using each of these measures. The critical issue of differences in the initial condition is addressed with regard to how this may bias the evaluation of each technology. Differences which were considered include variability in hydraulic conductivity field, NAPL distribution, and NAPL composition. The Hill AFB studies were conducted within an extensive NAPL source zone. Cosolvents and a surfactant/cosolvent mixture were the two flushing methods tested. The cosolvent flushing solution consisted of a completely miscible ethanol/pentanol/water mixture, while the surfactant/cosolvent system was a Winsor Type I single-phase microemulsion of a nonionic surfactant and pentanol. The two flushing technologies were evaluated in very similar sheet pile-isolated test cells, with similar flushing protocols providing consistent data sets with which to make comparisons. Results indicated that both technologies were effective, removing approximately 95% of the NAPL, according to soil core analyses. In addition, the efficiencies of both technologies were similar, removing n-decane 10{sup 6} times more efficiently than pump-and-treat would have.

  3. CONSIDERATIONS FOR INNOVATIVE REMEDIATION TECHNOLOGY EVALUATION SAMPLING PLANS

    EPA Science Inventory

    Field trials of innovative subsurface cleanup technologies require the use of integrated site characterization approaches to obtain critical design parameters, to evaluate pre-treatment contaminant distributions, and to assess process efficiency. This review focuses on the trans...

  4. Green Remediation Best Management Practices: Pump and Treat Technologies

    EPA Pesticide Factsheets

    The U.S. EPA Principles for Greener Cleanups outline the Agency's policy for evaluating and minimizing the environmental 'footprint' of activities undertaken when cleaning up a contaminated site with pump and treat technologies.

  5. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  6. MEMBRANE TECHNOLOGIES FOR REMEDIATING CONTAMINATED SOILS: A CRITICAL REVIEW

    EPA Science Inventory

    Regulatory compliance requires the cleanup of soils contaminated with toxic organic and metallic compounds. Several chemical and thermal detoxification technologies have been tested on soils excavated from contaminated sites. Soil washing with aqueous solutions transfers the cont...

  7. U.S. EPA's Ultraviolet Disinfection Technologies Demonstration Study

    EPA Science Inventory

    This presentation will give a background on USEPA's Disinfection Technologies Demonstration Study. This will include regulatory background, science background, goals of the project, and ultimate expected outcome of the project. This presentation will preceed a panel discussion ...

  8. U.S. EPA's Ultraviolet Disinfection Technologies Demonstration Study

    EPA Science Inventory

    This presentation will give a background on USEPA's Disinfection Technologies Demonstration Study. This will include regulatory background, science background, goals of the project, and ultimate expected outcome of the project. This presentation will preceed a panel discussion ...

  9. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  10. Shallow Water UXO Technology Demonstration Site Scoring Record No. 3

    DTIC Science & Technology

    2007-01-01

    TECHNOLOGY TYPE/PLATFORM: MAGNETOMETER PREPARED BY: U.S. ARMY ABERDEEN TEST CENTER ABERDEEN PROVING GROUND, MD 21005-5059 JANUARY 2007... magnetometers . Testing was conducted at ATC, Standardized Shallow Water UXO Technology Demonstration Site. A description of the tested system and an estimate... magnetometer , MEC Unclassified Unclassified Unclassified SAR (Page ii Blank) i ACKNOWLEDGMENTS Author

  11. Autonomous Mobility Applique System Joint Capability Technology Demonstration

    DTIC Science & Technology

    2013-04-22

    UNCLASSIFIED Page-1 Autonomous Mobility Appliqué System Joint Capability Technology Demonstration Participants • COCOM Sponsor: CENTCOM...COCOM Co-Sponsor: TRANSCOM • Lead Service: US Army • Supporting Service: USMC • Oversight Executive: OUSD(AT&L)DDRE/RFD/CS/MK Tribbie • Technical...Autonomous Mobility Applique System Joint Capability Technology Demonstration 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  12. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    SciTech Connect

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions.

  13. Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2015 Progress Report

    SciTech Connect

    Peterson, Mark J.; Brooks, Scott C.; Mathews, Teresa J.; Mayes, Melanie; Johs, Alexander; Watson, David B.; Poteat, Monica D.; Smith, John; Mehlhorn, Tonia; Lester, Brian; Morris, Jesse; Lowe, Kenneth; Dickson, Johnbull O.; Eller, Virginia; DeRolph, Christopher R.

    2016-04-01

    Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM) because of large historical losses of mercury within buildings and to soils and surface waters at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the downstream environment, the success of conventional options for mercury remediation in lower East Fork Poplar Creek (EFPC) is uncertain. A phased, adaptive management approach to remediation of surface water includes mercury treatment actions at Y-12 in the short-term and research and technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014b).

  14. Clean Coal Technology Demonstration Program: Program update 1993

    SciTech Connect

    Not Available

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  15. Demonstration of Combined Zero-Valent Iron and Electrical Resistance Heating for In Situ Trichloroethene Remediation

    SciTech Connect

    Truex, Michael J.; Macbeth, Tamzen; Vermeul, Vincent R.; Fritz, Brad G.; Mendoza, Donaldo P.; Mackley, Rob D.; Wietsma, Thomas W.; Sandberg, Greg; Powell, Thomas; Powers, Jeff; Pitre, Emile; Michalsen, Mandy M.; Ballock-Dixon, Sage; Zhong, Lirong; Oostrom, Martinus

    2011-06-27

    The effectiveness of in situ treatment using zero-valent iron to remediate sites with non-aqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene source area, combining moderate-temperature (maximum 50oC) subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate dechlorination and dissolution rates by a factor of 4 to 6 based on organic daughter products and a factor 8-16 using a chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization at ambient groundwater temperature (~10oC) and as temperature was increased up to about 50oC. Increased reaction and contaminant dissolution were observed with increased temperature, but volatilization was minimal during the test because in situ reactions maintained low aqueous-phase TCE concentrations.

  16. Remediation of oil-contaminated soil using the CLEANSOIL technology

    NASA Astrophysics Data System (ADS)

    Zakharchenko, A. V.; Korzhov, Yu. V.; Lapshina, E. D.; Kul'Kov, M. G.; Yarkov, D. M.; Khoroshev, D. I.

    2011-04-01

    Approbation data of the innovative CLEANSOIL technology of soil purification after oil pollution are given. Drainage pipes filled with an adsorbent with microorganisms placed in the soil are used. It is revealed that the content of hydrocarbons under the technological constructions (metal columns and reservoirs) rises in comparison with the open oil-polluted areas. It is shown that the oil is destroyed quicker under the constructions versus in the open areas. The microorganisms better assimilate the n-alkanes with C14 chains than the C32-40 hydrocarbons. The application of a combined technology based on the sorption and reduction of the hydrocarbons by microorganisms makes it possible to quickly reduce the soil pollution by oil products without the soil cover's disturbance.

  17. Graphite/Larc-160 technology demonstration segment test results

    NASA Technical Reports Server (NTRS)

    Morita, W. H.; Graves, S. R.

    1983-01-01

    A structural test program was conducted on a Celion/LARC-160 graphite/polyimide technology demonstration segment (TDS) to verify the technology. The 137 x 152 cm (54 x 60 in.) TDS simulates a full-scale section of the orbiter composite body flap design incorporating three ribs and extending from the forward cove back to the rear spar. The TDS was successfully subjected to mechanical loads and thermal environments (-170 to 316 C) simulating 100 shuttle orbiter missions. Successful completion of the test program verified the design, analysis, and fabrication methodology for bonded Gr/PI honeycomb sandwich structure and demonstration that Gr/PI composite technology readiness is established.

  18. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  19. DEMONSTRATION OF PILOT-SCALE PERVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. II. HOLLOW FIBER MEMBRANE MODULES

    EPA Science Inventory

    Pilot-scale demonstration of pervaporation-based removal of volatile organic compounds from a surfactant enhanced aquifer remediation (SEAR) fluid has been conducted at USEPA's Test & Evaluation Facility using hollow fiber membrane modules. The membranes consisted of microporous...

  20. Technology Evaluation Report - SITE PROGRAM DEMONSTRATION OF THE ULTROX INTERNATIONAL ULTRAVIOLET RADIATION OXIDATION TECHNOLOGY

    EPA Science Inventory

    In support of EPA's Superfund Innovative Technology Evaluation (SITE) Program, this report presents the results of the Ultrox International technology demonstration. The Ultrox® technology (a registered trademark of Ultrox International) simultaneously uses ultraviolet (UV) radi...

  1. Technology Evaluation Report - SITE PROGRAM DEMONSTRATION OF THE ULTROX INTERNATIONAL ULTRAVIOLET RADIATION OXIDATION TECHNOLOGY

    EPA Science Inventory

    In support of EPA's Superfund Innovative Technology Evaluation (SITE) Program, this report presents the results of the Ultrox International technology demonstration. The Ultrox® technology (a registered trademark of Ultrox International) simultaneously uses ultraviolet (UV) radi...

  2. Bioremediation, an environmental remediation technology for the bioeconomy.

    PubMed

    Gillespie, Iain M M; Philp, Jim C

    2013-06-01

    Bioremediation differs from other industrial biotechnologies in that, although bioremediation contractors must profit from the activity, the primary driver is regulatory compliance rather than manufacturing profit. It is an attractive technology in the context of a bioeconomy but currently has limitations at the field scale. Ecogenomics techniques may address some of these limitations, but a further challenge would be acceptance of these techniques by regulators.

  3. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect

    Jorgensen, Douglas Kay; Nickelson, David Frank; Nickelson, Reva Anne; Farnsworth, Richard Kent; Jessmore, James Joseph

    1999-03-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy’s Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE’s Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  4. Evaluating In Situ Treatment Technologies for Buried Mixed Waste Remediation at the INEEL

    SciTech Connect

    D.F. Nickelson; D.K. Jorgensen; J.J. Jessmore; R.A. Hyde; R.K. Farnsworth

    1999-02-01

    Mixed radioactive and hazardous wastes were buried at the Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) Subsurface Disposal Area from 1952 to 1969. To begin the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remediation process for the Subsurface Disposal Area, the Environmental Protection Agency (EPA) added the INEEL to its National Priorities List in 1989. DOE's Office of Environmental Restoration is planning several CERCLA treatability studies of remedial technologies that will be evaluated for potential remediation of the buried waste in the Subsurface Disposal Area. This paper discusses the in situ treatability studies that will be performed, including in situ vitrification, in situ grouting, and in situ thermal desorption. The in situ treatability studies will be conducted on simulated and actual buried wastes at the INEEL in 1999 and 2000. Results from the treatability studies will provide substantial information on the feasibility, implementability, and cost of applying these technologies to the INEEL Subsurface Disposal Area. In addition, much of the treatability study data will be applicable to buried waste site remediation efforts across the DOE complex.

  5. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.

    PubMed

    Salman, Madiha; Gerhard, Jason I; Major, David W; Pironi, Paolo; Hadden, Rory

    2015-03-21

    Self-sustaining treatment for active remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil: TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000 mg/kg canola oil was found to treat sand exhibiting up to 80,000 mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy.

  6. EPA'S FIELD DEMONSTRATION OF INNOVATIVE CAPPING TECHNOLOGIES FOR THE RISK MANAGEMENT OF CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Research on capping technologies is directed at assessing the effectiveness of innovative capping materials, factors that control contaminant release at the sediment-water interface, installation of cap, resuspension mechanism, and gas ebullition. U.S. EPA's Land Remediation and ...

  7. EPA'S FIELD DEMONSTRATION OF INNOVATIVE CAPPING TECHNOLOGIES FOR THE RISK MANAGEMENT OF CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Research on capping technologies is directed at assessing the effectiveness of innovative capping materials, factors that control contaminant release at the sediment-water interface, installation of cap, resuspension mechanism, and gas ebullition. U.S. EPA's Land Remediation and ...

  8. Defense Acquisitions: Factors Affecting Outcomes of Advanced Concept Technology Demonstrations

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Since the ACTD (Advanced Concept Technology Demonstrations) program was started in 1994, a wide range of products have been tested by technology experts and military operators in realistic settings-from unmanned aerial vehicles, to friend-or-foe detection systems, to biological agent detection systems, to advanced simulation technology designed to enhance joint training. Many of these have successfully delivered new technologies to users. Though the majority of the projects that were examined, transitioned technologies to users, there are factors that hamper the ACTD process. For example: Technology has been too immature to be tested in a realistic setting, leading to cancellation of the demonstration. Military services and defense agencies have been reluctant to fund acquisition of ACTD-proven technologies, especially those focusing on joint requirements, because of competing priorities. ACTD's military utility may not have been assessed consistently. Some of the barriers identified can be addressed through efforts DOD (Department of Defense) now has underway, including an evaluation of how the ACTD process can be improved; adoption of criteria to be used to ensure technology is sufficiently mature; and placing of more attention on the end phase of the ACTD process. Other barriers, however, will be much more difficult to address in view of cultural resistance to joint initiatives and the requirements of DOD's planning and funding process.

  9. Innovative technology summary report: System for Tracking Remediation, Exposure, Activities and Materials

    SciTech Connect

    1998-09-01

    The System for Tracking Remediation, Exposure, Activities, and Materials (STREAM) technology is a multi-media database that consolidates project information into a single, easily-accessible place for day-to-day work performance and management tracking. Information inputs can range from procedures, reports, and references to waste generation logs and manifests to photographs and contaminant survey maps. Key features of the system are quick and easy information organization and retrieval, versatile information display options, and a variety of visual imaging methods. These elements enhance productivity and compliance and facilitate communications with project staff, clients, and regulators. Use of STREAM also gives visual access to contaminated areas, reducing the number of physical entries and promoting safety and as low as reasonably achievable (ALARA) principles. The STREAM system can be customized to focus on the information needs of a specific project, and provides a capability and work process improvement well beyond the usual collection of paperwork and independent databases. Especially when incorporated early in project planning and implemented to the fullest extent, it is a systematic and cost-effective tool for controlling and using project information. The STREAM system can support up to 50 different work stations. This report covers the period February through October 1997, when the STREAM software program, owned by Delphinus Engineering, was demonstrated at the Hanford Site`s Reactor Interim Safe Storage (ISS) Project.

  10. PERFORMANCE OF ACTIVE IN SITU REMEDIAL TECHNOLOGY FOR TREATMENT OF MTBE AND BENZENE AT UST SOURCE AREAS IN KANSAS

    EPA Science Inventory

    Both MtBE and Benzene are present at over 86% of the Underground Storage Tank sites in Kansas, USA that require active remediation. In situ remedial technologies, consisting primarily of soil vapor extraction and air sparging, are the preferred choice for treatment for MtBE site...

  11. Polyethylene encapsulation full-scale technology demonstration. Final report

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1994-10-01

    A full-scale integrated technology demonstration of a polyethylene encapsulation process, sponsored by the US Department of Energy (DOE) Office of Technology Development (OTD), was conducted at the Environmental & Waste Technology Center at Brookhaven National Laboratory (BNL.) in September 1994. As part of the Polymer Solidification National Effort, polyethylene encapsulation has been developed and tested at BNL as an alternative solidification technology for improved, cost-effective treatment of low-level radioactive (LLW), hazardous and mixed wastes. A fully equipped production-scale system, capable of processing 900 kg/hr (2000 lb/hr), has been installed at BNL. The demonstration covered all facets of the integrated processing system including pre-treatment of aqueous wastes, precise feed metering, extrusion processing, on-line quality control monitoring, and process control.

  12. Technology needs for environmental restoration remedial action. Environmental Restoration Program

    SciTech Connect

    Watson, J.S.

    1992-11-01

    This report summarizes the current view of the most important technology needs for the US Department of Energy (DOE) facilities operated by Martin Marietta Energy Systems, Inc. These facilities are the Oak Ridge National Laboratory, the Oak Ridge K-25 Site, the Oak Ridge Y-12 Plant, the Paducah Gaseous Diffusion Plant, and the Portsmouth Gaseous Diffusion Plant. The sources of information used in this assessment were a survey of selected representatives of the Environmental Restoration (ER) programs at each facility, results from a questionnaire distributed by Geotech CWM, Inc., for DOE, and associated discussions with individuals from each facility. This is not a final assessment, but a brief look at an ongoing assessment; the needs will change as the plans for restoration change and, it is hoped, as some technical problems are solved through successful development programs.

  13. DOE In Situ Remediation Integrated Program. In situ manipulation technologies subprogram plan

    SciTech Connect

    Yow, J.L. Jr.

    1993-12-22

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified.

  14. Anthropology and decision making about chronic technological disasters: Mixed waste remediation on the Oak Ridge Reservation

    SciTech Connect

    Wolfe, A.K.; Schweitzer, M.

    1996-12-31

    This paper discusses two related case studies of decision making about the remediation of mixed (hazardous and radioactive) wastes on the Oak Ridge Reservation in Tennessee. The three goals of the paper are to (1) place current decision-making efforts in the varied and evolving social, political, regulatory, economic, and technological contexts in which they occur; (2) present definitions and attributes of {open_quotes}successful{close_quotes} environmental decision making from the perspectives of key constituency groups that participate in decision making; and (3) discuss the role of anthropology in addressing environmental decision making. Environmental decision making about remediation is extraordinarily complex, involving human health and ecological risks; uncertainties about risks, technological ability to clean up, the financial costs of clean up; multiple and sometimes conflicting regulations; social equity and justice considerations; and decreasing budgets. Anthropological theories and methods can contribute to better understanding and, potentially, to better decision making.

  15. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  16. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    EPA Science Inventory

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  17. Evaluation of in situ remedial technologies for sites contaminated with hydrocarbons. Final report

    SciTech Connect

    Lige, J.E.; Kunkel, M.L.; MacFarlane, I.D.

    1998-01-01

    This report presents the results of an extensive literature review that was performed to assess the overall effectiveness, applicability, and limitations of the various in situ technologies currently being applied to remediate sites contaminated by petroleum hydrocarbons. Of 17 technologies that were identified in an initial review and database search, nine were selected as widely used or promising for increased future use: soil vapor extraction, bioventing, pump and treat, aquifer air sparging, biosparging, in situ enhanced aquifer bioremediation, natural attenuation, in-well aeration, and dual-phase extraction. Following a general discussion of in situ technology, the report devotes one chapter to each of these nine technologies, presenting in each chapter a description of the technology; criteria to be used in considering applicability of the technology at a site; a discussion of design criteria and operating conditions; a strategy for monitoring remediation and determining when clean-up criteria are met; a discussion of performance-related issues; documented case studies; and a hypothetical application of the technology. Report appendices provide an overview of petroleum hydrocarbon constituents and their properties, and a glossary of terms.

  18. Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition.

    PubMed

    Hu, Xintao; Zhu, Jianxin; Ding, Qiong

    2011-07-15

    Remediation action is critical for the management of polychlorinated biphenyl (PCB) contaminated sites. Dozens of remediation technologies developed internationally could be divided in two general categories incineration and non-incineration. In this paper, life cycle assessment (LCA) was carried out to study the environmental impacts of these two kinds of remediation technologies in selected PCB contaminated sites, where Infrared High Temperature Incineration (IHTI) and Base Catalyzed Decomposition (BCD) were selected as representatives of incineration and non-incineration. A combined midpoint/damage approach was adopted by using SimaPro 7.2 and IMPACTA2002+ to assess the human toxicity, ecotoxicity, climate change impact, and resource consumption from the five subsystems of IHTI and BCD technologies, respectively. It was found that the major environmental impacts through the whole lifecycle arose from energy consumption in both IHTI and BCD processes. For IHTI, primary and secondary combustion subsystem contributes more than 50% of midpoint impacts concerning with carcinogens, respiratory inorganics, respiratory organics, terrestrial ecotoxity, terrestrial acidification/eutrophication and global warming. In BCD process, the rotary kiln reactor subsystem presents the highest contribution to almost all the midpoint impacts including global warming, non-renewable energy, non-carcinogens, terrestrial ecotoxity and respiratory inorganics. In the view of midpoint impacts, the characterization values for global warming from IHTI and BCD were about 432.35 and 38.5 kg CO(2)-eq per ton PCB-containing soils, respectively. LCA results showed that the single score of BCD environmental impact was 1468.97 Pt while IHTI's score is 2785.15 Pt, which indicates BCD potentially has a lower environmental impact than IHTI technology in the PCB contaminated soil remediation process.

  19. Analyzing Remediation Technologies for Department of Energy Sites contaminated with DNAPL Pollitants - Thesis

    SciTech Connect

    Anthony F. Paptyi, Captain, USAF

    1997-03-01

    A comprehensive literature review to investigate the following topics: * Decision analysis - with specific attention to geologic applications * Multiattribute Utility Theory (MAUT) The development of DA tools that will accommodate life cycle cost, time, stochastic performance measures, and decision maker preferences for selecting remediation or containment technology trains for DNAPL contaminated sites A thorough sensitivity analysis of the results of the WAG6 site specific analysis for a specified spill volume Conclusions regarding the model and the sensitivity analysis Recommendations for further research

  20. TANK FARM REMEDIATION TECHNOLOGY DEVELOPMENT PROJECT AN EXERCISE IN TECHNICAL & REGULATORY COLLABORATION

    SciTech Connect

    JARAYSI, M.N.

    2007-01-08

    The Tank Farm Remediation Technology Development Project at the Hanford Site focuses on waste storage tanks, pipelines and associated ancillary equipment that are part of the C-200 single-shell tank (SST) farm system located in the C Tank Farm. The purpose of the project is to obtain information on the implementation of a variety of closure activities and to answer questions on technical, operational and regulatory issues associated with closure.

  1. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  2. Summary report of the drilling technologies tested at the Integrated Demonstration Project for cleanup of organic contaminants in soils and groundwater at non-arid sites

    SciTech Connect

    Not Available

    1993-11-01

    The Department of Energy`s Office of Technology Development initiated an integrated demonstration of innovative technologies and systems for cleanup of volatile organic compounds in soil and groundwater at SRS. The overall goal of the program is the demonstration of multiple technologies and systems in the fields of drilling, characterization, monitoring, and remediation at a single test bed. Horizontal environmental well installation technology was one of the remediation technologies that was demonstrated at SRS. Four distinctly different systems of directional drilling and horizontal well installations were successfully demonstrated and evaluated. The four systems were developed in the petroleum industry, the river crossing industry, and the utility industry. The transfer of information concerning the horizontal environmental well installations has been facilitated by publishing a series of reports describing each individual demonstration. This is the final report in the series and provides a comprehensive evaluation of all four systems. The objectives of this report are to summarize the strengths and weaknesses of each drilling technology, describe and compare the problems encountered by each drilling technology, compare the compatibility of each technology with varying logistical and geological conditions, and discuss the expense of using each technology. This report is designed to be a horizontal environmental well reference document for the environmental remediation industry. An environmental problem holder may use this report to evaluate a directional drilling technology for use at his/her site.

  3. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    PubMed

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2017-04-26

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  4. DEEP VADOSE ZONE APPLIED FIELD RESEARCH CENTER: TRANSFORMATIONAL TECHNOLOGY DEVELOPMENT FOR ENVIRONMENTAL REMEDIATION

    SciTech Connect

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-02-27

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  5. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  6. Biosurfactant technology for remediation of cadmium and lead contaminated soils.

    PubMed

    Juwarkar, Asha A; Nair, Anupa; Dubey, Kirti V; Singh, S K; Devotta, Sukumar

    2007-08-01

    This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.

  7. Field Demonstration of Propane Biosparging for In Situ Remediation of N-Nitrosodimethylamine (NDMA) in Groundwater

    DTIC Science & Technology

    2015-12-01

    concentrations in samples from Picatinny Arsenal , NJ in the presence of absence of TCE (2 mg/L). TCE caused no difference in either the rate or extent of...from Picatinny Arsenal , NJ in the presence of absence of TCE (2 mg/L). Figure 5-15. Original layout of demonstration plot biosparge and monitoring...sites reporting NDMA in groundwater include the Rocky Mountain Arsenal (CO); former Air Force Site PJKS (CO); White Sands Missile Range (NM); Aerojet

  8. Demonstration Experiments to Advance Spacecraft Fire Safety Technology

    NASA Astrophysics Data System (ADS)

    Ruff, G. A.; Urban, D. L.; Dietrich, D.

    2012-01-01

    Spacecraft fire safety technologies developed during the implementation of NASA's Constellation Program (CxP) highlighted the need for a range of normal-gravity and low-gravity technology demonstration experiments. Terrestrial fire safety technologies have relied heavily on both bench-scale and full-scale experiments and have included extensive study of the ignitability of materials and fire behavior, quantification of fire signatures, fire suppression equipment and procedures, and fire fighter protection equipment. Full-scale tests of these technologies in terrestrial fire-fighting applications are frequently performed to demonstrate their performance and give first-responders hands-on experience in their use. However, experiments conducted to aid the development of spacecraft fire safety technologies have generally been performed at length and time scales that make extrapolation of the results to full scale unreliable. Extrapolation of the results of the relatively few spacecraft fire safety experiments conducted in long- term low-gravity to spacecraft-relevant length and time scales is problematic. In general, the results cannot be verified in ground-based low-g facilities and remains a challenging problem for current numerical simulations. This paper will highlight low-g and ground-based experiments and demonstrations that are being conducted and planned to provide relevant spacecraft fire safety data.

  9. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect

    Devgun, J.S.; Beskid, N.J.; Natsis, M.E.; Walker, J.S.

    1993-03-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  10. Soil washing as a potential remediation technology for contaminated DOE sites

    SciTech Connect

    Devgun, J.S.; Beskid, N.J. ); Natsis, M.E. ); Walker, J.S. )

    1993-01-01

    Frequently detected contaminants at US Department of Energy (DOE) sites include radionuclides, heavy metals, and chlorinated hydrocarbons. Remediation of these sites requires application of several technologies used in concert with each other, because no single technology is universally applicable. Special situations, such as mixed waste, generally require innovative technology development. This paper, however, focuses on contaminated soils, for which soil washing and vitrification technologies appear to have wide ranging application potential. Because the volumes of contaminated soils around the DOE complex are so large, soil washing can offer a potentially inexpensive way to effect remediation or to attain waste volume reduction. As costs for disposal of low-level and mixed wastes continue to rise, it is likely that volume-reduction techniques and in-situ containment techniques will become increasingly important. This paper reviews the status of the soil washing technology, examines the systems that are currently available, and discusses the potential application of this technology to some DOE sites, with a focus on radionuclide contamination and, primarily, uranium-contaminated soils

  11. Reference Guide to Non-combustion Technologies for Remediation of Persistent Organic Pollutants in Soil, Second Edition - 2010

    EPA Pesticide Factsheets

    This report is the second edition of the U.S. Environmental Protection Agency's (US EPA's) 2005 report and provides a high level summary of information on the applicability of existing and emerging noncombustion technologies for the remediation of...

  12. Technology Development and Demonstration Concepts for the Space Elevator

    NASA Technical Reports Server (NTRS)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  13. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this demonstration project was to evaluate technologies that are designed for rapid deployment using portable equipment that can result in significant cost-savings to wastewater utilities. Smaller diameter pipes (i.e., less than 12-inch diameter) are gen...

  14. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    EPA Science Inventory

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  15. Technology Demonstration: Acoustic Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    The overall objective of this demonstration project was to evaluate technologies that are designed for rapid deployment using portable equipment that can result in significant cost-savings to wastewater utilities. Smaller diameter pipes (i.e., less than 12-inch diameter) are gen...

  16. Limited Digital Response. Satellite Technology Demonstration, Technical Report No. 0426.

    ERIC Educational Resources Information Center

    Laurence, Dennis; Woughter, William

    The VHF system used by the Satellite Technology Demonstration had a built-in digital response system to collect data about student programing. This paper describes the hardware and software required to implement and operate the system. In addition, information on the applications of this device is provided along with the results of a field…

  17. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  18. MINE WASTE TECHNOLOGY PROGRAM - UNDERGROUND MINE SOURCE CONTROL DEMONSTRATION PROJECT

    EPA Science Inventory

    This report presents results of the Mine Waste Technology Program Activity III, Project 8, Underground Mine Source Control Demonstration Project implemented and funded by the U. S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U. S. Department of E...

  19. DEMONSTRATION BULLETIN: CYCLONE FURNACE SOIL VITRI- FICATION TECHNOLOGY - BABCOCK & WILCOX

    EPA Science Inventory

    Babcock and Wilcox's (B&W) cyclone furnace is an innovative thermal technology which may offer advantages in treating soils containing organics, heavy metals, and/or radionuclide contaminants. The furnace used in the SITE demonstration was a 4- to 6-million Btu/hr pilot system....

  20. Illustration of the X-37 Advanced Technology Demonstrator during flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An artist's conception of the X-37 Advanced Technology Demonstrator as it glides to a landing on earth. Its design features a rounded fuselage topped by an experiment bay; short, double delta wings (like those of the Shuttle orbiter); and two stabilizers (that form a V-shape) at the rear of the vehicle.

  1. Illustration of the X-37 Advanced Technology Demonstrator during flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An artist's conception of the X-37 Advanced Technology Demonstrator as it glides to a landing on earth. Its design features a rounded fuselage topped by an experiment bay; short, double delta wings (like those of the Shuttle orbiter); and two stabilizers (that form a V-shape) at the rear of the vehicle.

  2. FIELD DEMONSTRATION OF LEAD PAINT ABATEMENT TECHNOLOGIES IN RESIDENTIAL HOUSING

    EPA Science Inventory

    This study was conducted to demonstrate lead-based paint (LBP) removal from architectural wood components in CO2 unoccupied residential housing using four technologies: granular carbon dioxide (CO2 blasting), pelletized CO2 blasting, encapsulant paint remover, and wet abrasive bl...

  3. Demonstration test and evaluation of Ultraviolet/Ultraviolet Catalyzed Peroxide Oxidation for Groundwater Remediation at Oak Ridge K-25 Site. Final report [March 16, 1993--March 16, 1994

    SciTech Connect

    Not Available

    1994-03-01

    We demonstrated, tested and evaluated a new ultraviolet (UV) lamp integrated with an existing commercial technology employing UV catalyzed peroxide oxidation to destroy organics in groundwater at an Oak Ridge K-25 site. The existing commercial technology is the perox-pure{trademark} process of Peroxidation Systems Incorporated (PSI) that employs standard UV lamp technology to catalyze H{sub 2}O{sub 2} into OH radicals, which attack many organic molecules. In comparison to classical technologies for remediation of groundwater contaminated with organics, the perox-pure{trademark} process not only is cost effective but also reduces contaminants to harmless by-products instead of transferring the contaminants from one medium to another. Although the perox-pure{trademark} process is cost effective against many organics, it is not effective for some organic contaminants of interest to DOE such as TCA, which has the highest concentration of the organics at the K-25 test site. Contaminants such as TCA are treated more readily by direct photolysis using short wavelength UV light. WJSA has been developing a unique UV lamp which is very efficient in the short UV wavelength region. Consequently, combining this UV lamp with the perox-pure{trademark} process results in a means for treating essentially all organic contaminants. In the program reported here, the new UV lamp lifetime was improved and the lamp integrated into a PSI demonstration trailer. Even though this UV lamp operated at less than optimum power and UV efficiency, the destruction rate for the highest concentration organic (TCA) was more than double that of the commercial unit. An optimized UV lamp may double again the destruction rate; i.e., a factor of four greater than the commercial system. The demonstration at K-25 included tests with (1) the commercial PSI system, (2) the new UV lamp-based system and (3) the commercial PSI and new UV lamp systems in series.

  4. A closed-loop air revitalization process technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark

    Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.

  5. Fissile material transparency technology demonstration : neutron multiplicity counter /

    SciTech Connect

    Bourret, S. C.; Harker, W. C.; Hypes, P. A.; Langner, D. C.; Salazar, S. D.; Siebelist, R.; Smith, M. K.; Sweet, M. R.; Mayo, D. R.

    2001-01-01

    The Fissile Material Transparency Technology Demonstration occurred at Los Alamos National Laboratory, August 14-17, 2000. The demonstration showed the determination of six attributes (Pu presence, Pu isotopics, Pu mass, absence of oxide, symmetry, and age) on unclassified plutonium samples and a US nuclear weapons component. The demonstrations showed that a six-attribute measurement system with information barrier could be fabricated and was capable of protecting classified information. In order to measure the six attributes, a high-resolution gamma-ray spectroscopy system and neutron multiplicity system were developed. This talk discusses the neutron multiplicity system, along with data taken on the unclassified samples.

  6. A demonstration of shared decision making in primary care highlights barriers to adoption and potential remedies.

    PubMed

    Friedberg, Mark W; Van Busum, Kristin; Wexler, Richard; Bowen, Megan; Schneider, Eric C

    2013-02-01

    Recent developments in health reform related to the passage of the Affordable Care Act and ensuing regulations encourage delivery systems to engage in shared decision making, in which patients and providers together make health care decisions that are informed by medical evidence and tailored to the specific characteristics and values of the patient. To better understand how delivery systems can implement shared decision making, we interviewed representatives of eight primary care sites participating in a demonstration funded and coordinated by the Informed Medical Decisions Foundation. Barriers to shared decision making included overworked physicians, insufficient provider training, and clinical information systems incapable of prompting or tracking patients through the decision-making process. Methods to improve shared decision making included using automatic triggers for the distribution of decision aids and engaging team members other than physicians in the process. We conclude that substantial investments in provider training, information systems, and process reengineering may be necessary to implement shared decision making successfully.

  7. Dust Removal Technology Demonstration for a Lunar Habitat

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Chen, A.; Immer, C. D.; Csonka, M.; Hogue, M. D.; Snyder, S. J.; Rogriquez, M.; Margiotta, D. V.

    2010-01-01

    We have developed an Electrodynamic Dust Shield (EDS), an active dust mitigation technology with applications to solar panels, thermal radiators, optical systems, visors, seals and connectors. This active technology is capable of removing dust and granular material with diameters as large as several hundred microns. In this paper, we report on the development of three types of EDS systems for NASA's Habitat Demonstration Unit (HDU). A transparent EDS 20 cm in diameter with indium tin oxide electrodes on a 0.1 mm-thick polyethylene terephtalate (PET) film was constructed for viewport dust protection. Two opaque EDS systems with copper electrodes on 0.1 mm-thick Kapton were also built to demonstrate dust removal on the doors of the HDU. A lotus coating that minimizes dust adhesion was added to one of the last two EDS systems to demonstrate the effectiveness of the combined systems.

  8. Applicability of petroleum horizontal drilling technology to hazardous waste site characterization and remediation

    SciTech Connect

    Goranson, C.

    1992-09-01

    Horizontal wells have the potential to become an important tool for use in characterization, remediation and monitoring operations at hazardous waste disposal, chemical manufacturing, refining and other sites where subsurface pollution may develop from operations or spills. Subsurface pollution of groundwater aquifers can occur at these sites by leakage of surface disposal ponds, surface storage tanks, underground storage tanks (UST), subsurface pipelines or leakage from surface operations. Characterization and remediation of aquifers at or near these sites requires drilling operations that are typically shallow, less than 500-feet in depth. Due to the shallow nature of polluted aquifers, waste site subsurface geologic formations frequently consist of unconsolidated materials. Fractured, jointed and/or layered high compressive strength formations or compacted caliche type formations can also be encountered. Some formations are unsaturated and have pore spaces that are only partially filled with water. Completely saturated underpressured aquifers may be encountered in areas where the static ground water levels are well below the ground surface. Each of these subsurface conditions can complicate the drilling and completion of wells needed for monitoring, characterization and remediation activities. This report describes some of the equipment that is available from petroleum drilling operations that has direct application to groundwater characterization and remediation activities. A brief discussion of petroleum directional and horizontal well drilling methodologies is given to allow the reader to gain an understanding of the equipment needed to drill and complete horizontal wells. Equipment used in river crossing drilling technology is also discussed. The final portion of this report is a description of the drilling equipment available and how it can be applied to groundwater characterization and remediation activities.

  9. Water as a Reagent for Soil Remediation

    SciTech Connect

    Jayaweera, Indira S.; Marti-Perez, Montserrat; Diaz-Ferrero, Jordi; Sanjurjo, Angel

    2003-03-06

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, for remediating petroleum-contaminated soils. The bench-scale demonstration of the process has shown great promise, and the implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and provide a standalone technology for removal of both volatile and heavy components from contaminated soil.

  10. Simulation and optimization technologies for petroleum waste management and remediation process control.

    PubMed

    Qin, X S; Huang, G H; He, L

    2009-01-01

    Leakage and spill of petroleum hydrocarbons from underground storage tanks and pipelines have posed significant threats to groundwater resources across many petroleum-contaminated sites. Remediation of these sites is essential for protecting the soil and groundwater resources and reducing risks to local communities. Although many efforts have been made, effective design and management of various remediation systems are still challenging to practitioners. In recent years, the subsurface simulation model has been combined with techniques of optimization to address important problems of contaminated site management. The combined simulation-optimization system accounts for the complex behavior of the subsurface system and identifies the best management strategy under consideration of the management objectives and constraints. During the past decades, a large number of studies were conducted to simulate contaminant flow and transport in the subsurface and seek cost-effective remediation designs. This paper gives a comprehensive review on recent developments, advancements, challenges, and barriers associated with simulation and optimization techniques in supporting process control of petroleum waste management and site remediation. A number of related methodologies and applications were examined. Perspectives of effective site management were investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns in uncertainty, necessity of post-modeling analysis, and usefulness of development of process control techniques.

  11. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  12. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  13. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  14. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  15. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    SciTech Connect

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

  16. EVALUATION OF NATURAL AND IN-SITU REMEDIATION TECHNOLOGIES FOR A COAL-RELATED METALS PLUME

    SciTech Connect

    Ross, Jeffrey A.; Bayer, Cassandra L.; Socha, Ronald P.; Sochor,Cynthia S.; Fliermans, Carl B.; McKinsey, Pamela C.; Millings, Margaret R.; Phifer, Mark A.; Powell, Kimberly R.; Serkiz, Steven M.; Sappington, Frank C.; Turick, Charles E.

    2003-02-27

    Metals contamination exceeding drinking water standards (MCLs) is associated with acidic leachate generated from a coal pile runoff basin at the Savannah River Site (SRS) in Aiken, South Carolina. The metals plume extends over 100 acres with its' distal boundary about onehalf mile from the Savannah River. Based on the large plume extent and high dissolved iron and aluminum concentrations, conventional treatment technologies are likely to be ineffective and cost prohibitive. In-situ bioremediation using existing groundwater microbes is being evaluated as a promising alternative technology for effective treatment, along with consideration of natural attenuation of the lower concentration portions of the plume to meet remedial goals. Treatment of the high concentration portion of the groundwater plume by sulfate-reducing bacteria (SRB) is being evaluated through laboratory microcosm testing and a field-scale demonstration. Organic substrates are added to promote SRB growth. These bacteria use dissolved sulfate as an electron acceptor and ultimately precipitate dissolved metals as metal sulfides. Laboratory microcosm testing indicate SRB are present in groundwater despite low pH conditions, and that their growth can be stimulated by soybean oil and sodium lactate. The field demonstration consists of substrate injection into a 30-foot deep by 240-foot long permeable trench. Microbial activity is demonstrated by an increase in pH from 3 to 6 within the trench. Downgradient monitoring will be used to evaluate the effectiveness of SRB in reducing metal concentrations. Natural attenuation (NA) is being evaluated for the low concentration portion of the plume. A decrease in metal mobility can occur through a variety of abiotically and/or biotically mediated mechanisms. Quantification of these mechanisms is necessary to more accurately predict contaminant attenuation using groundwater transport models that have historically relied on simplified conservative assumptions

  17. Program test objectives milestone 3. [Integrated Propulsion Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.

    1994-01-01

    The following conclusions have been developed relative to propulsion system technology adequacy for efficient development and operation of recoverable and expendable launch vehicles (RLV and ELV) and the benefits which the integrated propulsion technology demonstrator will provide for enhancing technology: (1) Technology improvements relative to propulsion system design and operation can reduce program cost. Many features or improvement needs to enhance operability, reduce cost, and improve payload are identified. (2) The Integrated Propulsion Technology Demonstrator (IPTD) Program provides a means of resolving the majority of issues associated with improvement needs. (3) The IPTD will evaluate complex integration of vehicle and facility functions in fluid management and propulsion control systems, and provides an environment for validating improved mechanical and electrical components. (4) The IPTD provides a mechanism for investigating operational issues focusing on reducing manpower and time to perform various functions at the launch site. These efforts include model development, collection of data to validate subject models, and ultimate development of complex time line models. (5) The IPTD provides an engine test bed for tri/bi-propellant engine development firings which is representative of the actual vehicle environment. (6) The IPTD provides for only a limited multiengine configuration integration environment for RLV. Multiengine efforts may be simulated for a number of subsystems and a number of subsystems are relatively independent of the multiengine influences.

  18. Nuclear waste repository transparency technology test bed demonstrations at WIPP

    SciTech Connect

    BETSILL,J. DAVID; ELKINS,NED Z.; WU,CHUAN-FU; MEWHINNEY,JAMES D.; AAMODT,PAUL

    2000-01-27

    Secretary of Energy, Bill Richardson, has stated that one of the nuclear waste legacy issues is ``The challenge of managing the fuel cycle's back end and assuring the safe use of nuclear power.'' Waste management (i.e., the back end) is a domestic and international issue that must be addressed. A key tool in gaining acceptance of nuclear waste repository technologies is transparency. Transparency provides information to outside parties for independent assessment of safety, security, and legitimate use of materials. Transparency is a combination of technologies and processes that apply to all elements of the development, operation, and closure of a repository system. A test bed for nuclear repository transparency technologies has been proposed to develop a broad-based set of concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle. WIPP is the world's first complete geologic repository system for nuclear materials at the back end of the cycle. While it is understood that WIPP does not currently require this type of transparency, this repository has been proposed as realistic demonstration site to generate and test ideas, methods, and technologies about what transparency may entail at the back end of the nuclear materials cycle, and which could be applicable to other international repository developments. An integrated set of transparency demonstrations was developed and deployed during the summer, and fall of 1999 as a proof-of-concept of the repository transparency technology concept. These demonstrations also provided valuable experience and insight into the implementation of future transparency technology development and application. These demonstrations included: Container Monitoring Rocky Flats to WIPP; Underground Container Monitoring; Real-Time Radiation and Environmental Monitoring; Integrated level of confidence in the system and information provided. As the world's only operating deep geologic

  19. Environmental cognitive remediation in schizophrenia: ethical implications of "smart home" technology.

    PubMed

    Stip, Emmanuel; Rialle, Vincent

    2005-04-01

    In light of the advent of new technologies, we proposed to reexamine certain challenges posed by cognitive remediation and social reintegration (that is, deinstitutionalization) of patients with severe and persistent mental disorders. We reviewed literature on cognition, remediation, smart homes, as well as on objects and utilities, using medical and computer science electronic library and Internet searches. These technologies provide solutions for disabled persons with respect to care delivery, workload reduction, and socialization. Examples include home support, video conferencing, remote monitoring of medical parameters through sensors, teledetection of critical situations (for example, a fall or malaise), measures of daily living activities, and help with tasks of daily living. One of the key concepts unifying all these technologies is the health-smart home. We present the notion of the health-smart home in general and then examine it more specifically in relation to schizophrenia. Management of people with schizophrenia with cognitive deficits who are being rehabilitated in the community can be improved with the use of technology; however, such technology has ethical ramifications.

  20. Urban gunshot and sniper location: technologies and demonstration results

    NASA Astrophysics Data System (ADS)

    Lewis, Glynn; Shaw, Scott; Crowe, Michael; Cranford, Clay; Torvik, Kevin; Scharf, Peter; Stellingworth, Bob

    2002-08-01

    The Law Enforcement and Military technology development communities have a growing common interest in the technologies associated with gunshot detection and localization. These common interests include urban warfare, community-oriented policing and sniper location. Technologies of interest include those associated with muzzle blast and bullet shockwave detection and the inter-netting of these acoustic sensors with electro-optic sensors. To date, no one sensor technology has proven totally effective for a complete solution. PSI has a muzzle blast detection and localization product which is wireless, highly mobile and reconfigurable, with a user-friendly laptop processor and display unit, which is currently being demonstrated in two different implementations: 1) A one-year, and on-going urban gunshot detection system installed in Austin, Texas, that began July 2001; and 2) A counter sniper system demonstration conducted at both the Aberdeen Proving Grounds and at an Israeli Defense Force firing range in the second half of the year in 2001. The former topic is under the auspices of a National Institute of Justice Cooperative Agreement with PSI and the Austin Police Department, and the latter topic was managed by the Army Research Laboratory and co-funded by DARPA/ATO and PSI. This paper will discuss successful aspects of the demonstrations to date, operational conclusions, and the development directions indicated for the future.

  1. Overview of Phosphate-Based Remediation Technologies At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Thompson, K. M.; Fruchter, J. S.

    2009-12-01

    Phosphate-based technologies have been tested to sequester strontium-90 and uranium at the Hanford Site, part of the U.S. Department of Energy's (DOE)nuclear weapons complex that encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach) where localized groundwater plumes upwell into the river. Efforts to reduce the flux of Sr-90 to the Columbia River from Hanford Site 100-N Area past practice liquid waste disposal sites have been underway since the early 1990s. Termination of all liquid discharges to the ground in 1993 was a major step toward meeting this goal. However, Sr 90 adsorbed onto sediment beneath liquid waste disposal sites, and onto sediment that extends beneath the near-shore riverbed, remains a continuing contaminant source for impacting groundwater and the Columbia River. Initial remediation efforts using a pump-and treat system proved to be ineffective as a long-term solution because of the geochemical characteristics of Sr-90. Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-N Area hydrogeologic conditions, the U.S. Department of Energy and the Washington State Department of Ecology agreed to evaluate apatite sequestration as the primary remedial technology, combined with a secondary polishing step utilizing phytoextraction if necessary. DOE is also evaluating the efficacy of using polyphosphate to reduce uranium concentrations in the groundwater with the goal of meeting drinking water standards (30 μg/L). This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long-term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. These remedial technologies are being developed by Pacific Northwest National

  2. The Satellite Technology Demonstration's Experiences with Varied Terrestrial Signal Distribution Methods. Satellite Technology Demonstration, Technical Report No. 0335.

    ERIC Educational Resources Information Center

    Anderson, Frank; And Others

    Though the Satellite Technology Demonstration (STD) system had the capacity to deliver quality broadcast signals to specially designed ground terminals its budget did not provide for more than one receiver in each rural community. In order to translate the satellite signal into a broadcast available to the individual home viewer, several systems…

  3. Secure, Mobile, Wireless Network Technology Designed, Developed, and Demonstrated

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.

    2004-01-01

    The inability to seamlessly disseminate data securely over a high-integrity, wireless broadband network has been identified as a primary technical barrier to providing an order-of-magnitude increase in aviation capacity and safety. Secure, autonomous communications to and from aircraft will enable advanced, automated, data-intensive air traffic management concepts, increase National Air Space (NAS) capacity, and potentially reduce the overall cost of air travel operations. For the first time ever, secure, mobile, network technology was designed, developed, and demonstrated with state-ofthe- art protocols and applications by a diverse, cooperative Government-industry team led by the NASA Glenn Research Center. This revolutionary technology solution will make fundamentally new airplane system capabilities possible by enabling secure, seamless network connections from platforms in motion (e.g., cars, ships, aircraft, and satellites) to existing terrestrial systems without the need for manual reconfiguration. Called Mobile Router, the new technology autonomously connects and configures networks as they traverse from one operating theater to another. The Mobile Router demonstration aboard the Neah Bay, a U.S. Coast Guard vessel stationed in Cleveland, Ohio, accomplished secure, seamless interoperability of mobile network systems across multiple domains without manual system reconfiguration. The Neah Bay was chosen because of its low cost and communications mission similarity to low-Earth-orbiting satellite platforms. This technology was successfully advanced from technology readiness level (TRL) 2 (concept and/or application formation) to TRL 6 (system model or prototype demonstration in a relevant environment). The secure, seamless interoperability offered by the Mobile Router and encryption device will enable several new, vehicle-specific and systemwide technologies to perform such things as remote, autonomous aircraft performance monitoring and early detection and

  4. Satellite Communications for Aeronautics Applications: Technology Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Hoder, Douglas J.; Zakrajsek, Robert J.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is performing research and development to improve the safety and increase the capacity of the National Airspace System (NAS). Improved communications, especially to and from the aircraft flight deck, has been identified as an essential enabling technology for future improvements to the air traffic management system and aviation safety. NASA's Glenn Research Center is engaged in research and development of satellite communications technologies for aeronautical applications. A mobile aero terminal has been developed for use with Ku band commercial communications satellites. This experimental terminal will be used in mobile ground and air-based tests and demonstrations during 2000-2004. This paper will describe the basic operational parameters of the Ku Band aero terminal, the communications architecture it is intended to demonstrate, and the key technology issues being addressed in the tests and demonstrations. The design of the Ku Band aero terminal and associated ground testbed, planned tests and demonstrations, and results to date will be presented.

  5. INTERNATIONAL ENVIRONMENTAL TECHNOLOGY IDENTIFICATION, DEVELOPMENT, DEMONSTRATION, DEPLOYMENT AND EXCHANGE

    SciTech Connect

    Roy C. Herndon

    2001-02-28

    Cooperative Agreement (DE-FC21-95EW55101) between the U.S. Department of Energy (DOE) and the Florida State University's Institute for International Cooperative Environmental Research (IICER) was designed to facilitate a number of joint programmatic goals of both the DOE and the IICER related to international technology identification, development, demonstration and deployment using a variety of mechanisms to accomplish these goals. These mechanisms included: laboratory and field research; technology demonstrations; international training and technical exchanges; data collection, synthesis and evaluation; the conduct of conferences, symposia and high-level meetings; and other appropriate and effective approaches. The DOE utilized the expertise and facilities of the IICER at Florida State University to accomplish its goals related to this cooperative agreement. The IICER has unique and demonstrated capabilities that have been utilized to conduct the tasks for this cooperative agreement. The IICER conducted activities related to technology identification, development, evaluation, demonstration and deployment through its joint centers which link the capabilities at Florida State University with collaborating academic and leading research institutions in the major countries of Central and Eastern Europe (e.g., Czech Republic, Hungary, Poland) and Russia. The activities and accomplishments for this five-year cooperative agreement are summarized in this Final Technical Report.

  6. Mercury Ion Clock for a NASA Technology Demonstration Mission.

    PubMed

    Tjoelker, Robert; Prestage, John; Burt, Eric; Chen, Pin; Chong, Yong; Chung, Sang; Diener, William; Ely, Todd; Enzer, Daphna; Mojaradi, Hadi; Okino, Clayton; Pauken, Mike; Robison, David; Swenson, Brad; Tucker, Blake; Wang, R

    2016-03-21

    There are many different atomic frequency standard technologies but few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. JPL is developing a linear ion trap based mercury ion clock, referred to as DSAC (Deep Space Atomic Clock) under NASA's Technology Demonstration Mission (TDM) program. This clock is expected to provide a new capability with broad application to space based navigation and science. A one year flight demonstration is planned as a hosted payload following an early 2017 launch. This first generation mercury ion clock for space demonstration has a volume, mass, and power of 17 liters, 16 kilograms, and 47 Watts respectively, with further reductions planned for follow-on applications. Clock performance with an SNR*Q limited stability of 1.5E-13/τ1/2 has been observed and a fractional frequency stability of 2E-15 at 1 day measured (no drift removed). Such a space based stability enables autonomous timekeeping of Δt<0.2 ns/day with a technology capable of even higher stability, if desired. To date the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 grms level, thermal-vacuum operation over a range of 42 °C, and electro-magnetic susceptibility tests.

  7. Mercury Ion Clock for a NASA Technology Demonstration Mission.

    PubMed

    Tjoelker, Robert L; Prestage, John D; Burt, Eric A; Chen, Pin; Chong, Yong J; Chung, Sang K; Diener, William; Ely, Todd; Enzer, Daphna G; Mojaradi, Hadi; Okino, Clay; Pauken, Mike; Robison, David; Swenson, Bradford L; Tucker, Blake; Wang, Rabi

    2016-07-01

    There are many different atomic frequency standard technologies but only few meet the demanding performance, reliability, size, mass, and power constraints required for space operation. The Jet Propulsion Laboratory is developing a linear ion-trap-based mercury ion clock, referred to as DSAC (Deep-Space Atomic Clock) under NASA's Technology Demonstration Mission program. This clock is expected to provide a new capability with broad application to space-based navigation and science. A one-year flight demonstration is planned as a hosted payload following an early 2017 launch. This first-generation mercury ion clock for space demonstration has a volume, mass, and power of 17 L, 16 kg, and 47 W, respectively, with further reductions planned for follow-on applications. Clock performance with a signal-to-noise ratio (SNR)*Q limited stability of 1.5E-13/τ(1/2) has been observed and a fractional frequency stability of 2E-15 at one day measured (no drift removed). Such a space-based stability enables autonomous timekeeping of with a technology capable of even higher stability, if desired. To date, the demonstration clock has been successfully subjected to mechanical vibration testing at the 14 grms level, thermal-vacuum operation over a range of 42(°)C, and electromagnetic susceptibility tests.

  8. Simulator platform for fast reactor operation and safety technology demonstration

    SciTech Connect

    Vilim, R. B.; Park, Y. S.; Grandy, C.; Belch, H.; Dworzanski, P.; Misterka, J.

    2012-07-30

    A simulator platform for visualization and demonstration of innovative concepts in fast reactor technology is described. The objective is to make more accessible the workings of fast reactor technology innovations and to do so in a human factors environment that uses state-of-the art visualization technologies. In this work the computer codes in use at Argonne National Laboratory (ANL) for the design of fast reactor systems are being integrated to run on this platform. This includes linking reactor systems codes with mechanical structures codes and using advanced graphics to depict the thermo-hydraulic-structure interactions that give rise to an inherently safe response to upsets. It also includes visualization of mechanical systems operation including advanced concepts that make use of robotics for operations, in-service inspection, and maintenance.

  9. Technology demonstration of space intravehicular automation and robotics

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  10. Three-dimensional landing zone joint capability technology demonstration

    NASA Astrophysics Data System (ADS)

    Savage, James; Goodrich, Shawn; Ott, Carl; Szoboszlay, Zoltan; Perez, Alfonso; Soukup, Joel; Burns, H. N.

    2014-06-01

    The Three-Dimensional Landing Zone (3D-LZ) Joint Capability Technology Demonstration (JCTD) is a 27-month program to develop an integrated LADAR and FLIR capability upgrade for USAF Combat Search and Rescue HH-60G Pave Hawk helicopters through a retrofit of current Raytheon AN/AAQ-29 turret systems. The 3D-LZ JCTD builds upon a history of technology programs using high-resolution, imaging LADAR to address rotorcraft cruise, approach to landing, landing, and take-off in degraded visual environments with emphasis on brownout, cable warning and obstacle avoidance, and avoidance of controlled flight into terrain. This paper summarizes ladar development, flight test milestones, and plans for a final flight test demonstration and Military Utility Assessment in 2014.

  11. DEMONSTRATION BULLETIN: UNTERDUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL - ROY F. WESTON, INC./IEG TECHNOLOGIES CORPORATION

    EPA Science Inventory

    The Weston/IEG UVB technology is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile organic compounds. A UVB system consists of a single well with two hydraulically separated screened interva...

  12. DEMONSTRATION BULLETIN: UNTERDUCK-VERDAMPFER- BRUNNEN TECHNOLOGY (UVB) VACUUM VAPORIZING WELL - ROY F. WESTON, INC./IEG TECHNOLOGIES CORPORATION

    EPA Science Inventory

    The Weston/IEG UVB technology is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile organic compounds. A UVB system consists of a single well with two hydraulically separated screened interva...

  13. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  14. Experiences with new neutralization technologies for remediation after ISL mining of uranium in Straz Pod Ralskem

    SciTech Connect

    Sedlakova, Veronika; Kaspar, Ludvik; Tykal, Tomas

    2013-07-01

    A big affection of the rock environment and groundwaters occurred during the chemical mining of uranium in the years 1966 to 1996 in the neighbourhood of the town Straz pod Ralskem in the Czech Republic. It is necessary to clean the residual technological solutions (RTS) from the underground. The pH of the solutions in some places is still less than 2 and the concentration of sulphates reaches up to 65 g/l. The remedial activities consist of pumping of the RTS from the ground and reprocessing of the RTS in the surface technologies. The implementation of the new neutralization technologies NDS ML and NDS 10 help us with increasing of the efficiency of the remedial process. The NDS ML technology ('Mother liquor reprocessing station') started its operation in 2009 and it processes the concentrated technological solution from the evaporation station after the alum crystallization (mother liquor) with the concentration of total dissolved solids up to 250 g/l. The principle is the neutralization of the acid solutions with the aid of the lime milk. The suspension is then filtrated in the filter press, the filter cake is deposited in the tailings pond and the filtrate is injected back into the underground rock environment. The NDS 10 technology ('Neutralization and Decontamination Station NDS 10') started its operation in 2012 and it works on the same technological principle as the NDS ML station. The difference is that the NDS 10 station can process higher volume (4.4 m{sup 3}/min) of the RTS with lower concentration of total dissolved solids 20 - 25 g/l. This poster describes the experiences of the state enterprise DIAMO with putting of these two neutralization technologies into operation and with using of the lime milk neutralization in such a large scale. (authors)

  15. Concept designs for NASA's Solar Electric Propulsion Technology Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David H.; Herman, Daniel A.

    2014-01-01

    Multiple Solar Electric Propulsion Technology Demonstration Mission were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kilogram spacecraft capable of delivering 4000 kilogram of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kilogram spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload. Low-cost and maximum Delta-V capability variants of a spacecraft concept based on utilizing a secondary payload adapter as the primary bus structure were developed as were concepts designed to be co-manifested with another spacecraft on a single launch vehicle. Each of the Solar Electric Propulsion Technology Demonstration Mission concepts developed included an estimated spacecraft cost. These data suggest estimated spacecraft costs of $200 million - $300 million if 30 kilowatt-class solar arrays and the corresponding electric propulsion system currently under development are used as the basis for sizing the mission concept regardless of launch vehicle costs. The most affordable mission concept developed based on subscale variants of the advanced solar arrays and electric propulsion technology currently under development by the NASA Space Technology Mission Directorate has an estimated cost of $50M and could provide a Delta-V capability comparable to much larger spacecraft concepts.

  16. Overview of Chromium Remediation Technology Evaluations At The Hanford Site, Richland Washington

    NASA Astrophysics Data System (ADS)

    Morse, J. G.; Hanson, J. P.

    2009-12-01

    This paper will present an overview of the different technologies and the results to date for optimizing and improving the remediation of Cr+6 in the soil and groundwater at the Hanford Site. The Hanford Site, par of the U.S. Department of Energy's (DOE)nuclear weapons complex, encompasses approximately 586 square miles in southeast Washington State. The Columbia River flows through the site (Hanford Reach.) Reactors were located along the Hanford Reach as part of the production process. Sodium dichromate was used as a corrosion inhibitor in the cooling water for the reactors. As a result chromium (Cr+6) is present in the soil and groundwater. Since the mid 90's interim groundwater pump and treat systems have been in place to try and contain or mitigate the migration of contaminated groundwater into the Columbia River. The primary concern being the protection of aquatic spawning habitat for salmon and other species. In order to improve the effectiveness of the remedial actions a number of different technologies have been evaluated and/or deployed. These include, permeable reactive barriers, in-situ bio-stimulation, in-situ chemical reduction, zero-valent iron injection and evaluation of improved above ground treatment technologies. An overview of the technologies and results to date are presented.

  17. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  18. Shallow Water UXO Technology Demonstration Site Scoring Record No. 7

    DTIC Science & Technology

    2007-05-01

    to eat lunch and charge the battery – using the truck instead of the trickle charger . Downtime equipment 85 1425 1450 Surveying. Collecting data...sensor array designed by 3DGeophysics. Testing was conducted at ATC, Standardized Shallow Water UXO Technology Demonstration Site. A description of...available on the capabilities of shallow water detection systems when these criteria were developed. However, they were used in the design of the test

  19. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    SciTech Connect

    Beiswanger, Robert C.

    2013-02-28

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  20. A-7 Airborne Light Optical Fiber Technology (ALOFT) Demonstration Project

    DTIC Science & Technology

    1977-02-03

    differentl foom Report) 15 UPLEMENTARY NOTES Il. K<EY’ WORDS (Continue on reverse side if nec.saary and Identity by block number) Fiber opticsI...and weapon-delivery system, electrical interface . page 5 2. Summary LCC results for A-7 alternative configurations ... 10 3. Side -by- side comparison... Side -by- side comparison, fiber-optic and electrical cables ... 12 INTROI)UCTION The Airborne Light Optical Fiber Technology (AL.OFT) demonstration was

  1. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    SciTech Connect

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will

  2. Progress Toward Demonstrating a High Performance Optical Tape Recording Technology

    NASA Technical Reports Server (NTRS)

    Oakley, W. S.

    1996-01-01

    This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.

  3. Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD Sites

    DTIC Science & Technology

    2007-02-01

    trace elements that did not equilibrate within 28 days. Equilibration times for selected explosive compounds through dialysis membranes were...PROTOCOL Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and...Demonstration and Validation of a Regenerated Cellulose Dialysis Membrane Diffusion Sampler for Monitoring Groundwater Quality and Remediation Progress at DoD

  4. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  5. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  6. Effects of gentle remediation technologies on soil biological and biochemical activities - a review.

    NASA Astrophysics Data System (ADS)

    Marschner, B.; Haag, R.; Renella, G.

    2009-04-01

    Remediation technologies for contaminated sites are generally designed to reduce risks for human health, groundwater or plant quality. While some drastic remediation measures such as soil excavation, thermal treatment or soil washing eliminate or strongly reduce soil life, in-situ treatments involving plants or immobilizing additives may also restore soil functionality by establishing or promoting a well structured and active community of soil organisms. Biological parameters that are sensitive to contaminants and other pedo-environmental conditions and which contribute to biogeochemical nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given remediation approaches. Data from long-term studies on re-vegetated mine spoils show that biological and biochemical activity is enhanced with increasing plant density and diversity. Among the soil amendments, most measures that introduce organic matter or alkalinity to the contaminated soils also improve microbial or faunal parameters. Only few amendments, such as phosphates and chelators have deleterious effects on soil biota. In this review, soil microbial biomass and the activity of the enzymes phosphatase and arylsulphatase are identified as suitable and sensitive biological indicators for soil health. The results and future research needs are are summarized.

  7. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  8. TECHNOLOGY DEMONSTRATION SUMMARY. BABCOCK AND WILCOX CYCLONE FURNACE VITRIFICATION TECHNOLOGY (EPA/540/SR-92/017)

    EPA Science Inventory

    A Superfund Innovative Technology Evaluation (SITE) Demonstration of the Babcock & Wilcox Cyclone Furnace Vitrification Technology was conducted in November 1991. This Demonstration occurred at the Babcock & Wilcox (B&W) Alliance Research Center (ARC) in Alliance, OH. The B&W cyc...

  9. Demonstration of Innovative Applications of Technology for the CT-121 FGD Process. Project Performance Summary, Clean Coal Technology Demonstration Project

    SciTech Connect

    None, None

    2002-08-01

    This project is part of the U.S. Department of Energy's (DOE) Clean Coal Technology Demonstration Program (CCTDP) established to address energy and environmental concerns related to coal use. DOE sought cost-shared partnerships with industry through five nationally competed solicitations to accelerate commercialization of the most promising advanced coal-based power generation and pollution control technologies. The CCTDP, valued at over five billion dollars, has significantly leveraged federal funding by forging effective partnerships founded on sound principles. For every federal dollar invested, CCTDP participants have invested two dollars. These participants include utilities, technology developers, state governments, and research organizations. The project presented here was one of sixteen selected from 55 proposals submitted in 1988 and 1989 in response to the CCTDP second solicitation.

  10. Application of remedy studies to the development of a soil washing pilot plant that uses mineral processing technology: a practical experience.

    PubMed

    Richardson, W S; Phillips, C R; Luttrell, J; Hicks, R; Cox, C

    1999-04-23

    Soil washing employing mineral processing technology to treat radionuclide-contaminated soils has been examined as a remedy alternative to the exclusive excavation, transportation, and disposal of the soil. Successful application depends on a thorough remedy study, employing a systematic tiered approach that is efficient, self-limiting, and cost effective. The study includes: (1) site and soil characterization to determine the basic mineral and physical properties of both the soil and contaminants and to identify their relative associations; (2) treatment studies to evaluate the performance of process units for contaminant separation; (3) conceptual process design to develop a treatment pilot plant; and (4) engineering design to construct, test, and optimize the actual full-scale plant. A pilot plant using soil washing technology for the treatment of radium-contaminated soil was developed, tested, and demonstrated. The plant used particle-size separation to produced a remediated product that represented approximately 50% of the contaminated soil. Subsequently, it was modified for more effective performance and application to soil with alternate characteristics; it awaits further testing. The economic analysis of soil washing using the pilot plant as a model indicates that a remedy plan based on mineral processing technology is very competitive with the traditional alternative employing excavation, transportation, and disposal exclusively, even when disposal costs are modest or when recovery of remediated soil during treatment is low. This paper reviews the tiered approach as it applies to mineral processing technology to treat radionuclide-contaminated soils and a pilot plant developed to test the soil washing process.

  11. Hanford Tanks Initiative fiscal year 1997 retrieval technology demonstrations

    SciTech Connect

    Berglin, E.J.

    1998-02-05

    The Hanford Tanks Initiative was established in 1996 to address a range of retrieval and closure issues associated with radioactive and hazardous waste stored in Hanford`s single shell tanks (SSTs). One of HTI`s retrieval goals is to ``Successfully demonstrate technology(s) that provide expanded capabilities beyond past practice sluicing and are extensible to retrieve waste from other SSTS.`` Specifically, HTI is to address ``Alternative technologies to past practice sluicing`` ... that can ... ``successfully remove the hard heel from a sluiced tank or to remove waste from a leaking SST`` (HTI Mission Analysis). During fiscal year 1997, the project contracted with seven commercial vendor teams to demonstrate retrieval technologies using waste simulants. These tests were conducted in two series: three integrated tests (IT) were completed in January 1997, and four more comprehensive Alternative Technology Retrieval Demonstrations (ARTD) were completed in July 1997. The goal of this testing was to address issues to minimize the risk, uncertainties, and ultimately the overall cost of removing waste from the SSTS. Retrieval technologies can be separated into three tracks based on how the tools would be deployed in the tank: globally (e.g., sluicing) or using vehicles or robotic manipulators. Accordingly, the HTI tests included an advanced sluicer (Track 1: global systems), two different vehicles (Track 2: vehicle based systems), and three unique manipulators (Track 3: arm-based systems), each deploying a wide range of dislodging tools and conveyance systems. Each industry team produced a system description as envisioned for actual retrieval and a list of issues that could prevent using the described system; defined the tests to resolve the issues; performed the test; and reported the results, lessons learned, and state of issue resolution. These test reports are cited in this document, listed in the reference section, and summarized in the appendices. This report

  12. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    SciTech Connect

    Boyd, Brian K.; Parker, Graham B.; Petersen, Joseph M.; Sullivan, Greg; Goetzler, W.; Foley, K. J.; Sutherland, T. A.

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  13. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Astrophysics Data System (ADS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observered in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris, Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  14. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  15. Space Solar Power Technology Demonstration for Lunar Polar Applications

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  16. FY 2009 Progress: Process Monitoring Technology Demonstration at PNNL

    SciTech Connect

    Arrigo, Leah M.; Christensen, Ronald N.; Fraga, Carlos G.; Liezers, Martin; Peper, Shane M.; Thomas, Elizabeth M.; Bryan, Samuel A.; Douglas, Matthew; Laspe, Amy R.; Lines, Amanda M.; Peterson, James M.; Ward, Rebecca M.; Casella, Amanda J.; Duckworth, Douglas C.; Levitskaia, Tatiana G.; Orton, Christopher R.; Schwantes, Jon M.

    2009-12-01

    Pacific Northwest National Laboratory (PNNL) is developing and demonstrating three technologies designed to assist in the monitoring of reprocessing facilities in near-real time. These technologies include 1) a multi-isotope process monitor (MIP), 2) a spectroscopy-based monitor that uses UV-Vis-NIR (ultraviolet-visible-near infrared) and Raman spectrometers, and 3) an electrochemically modulated separations approach (EMS). The MIP monitor uses gamma spectroscopy and pattern recognition software to identify off-normal conditions in process streams. The UV-Vis-NIR and Raman spectroscopic monitoring continuously measures chemical compositions of the process streams including actinide metal ions (uranium, plutonium, neptunium), selected fission products, and major cold flow sheet chemicals. The EMS approach provides an on-line means for separating and concentrating elements of interest out of complex matrices prior to detection via nondestructive assay by gamma spectroscopy or destructive analysis with mass spectrometry. A general overview of the technologies and ongoing demonstration results are described in this report.

  17. Hybrid life cycle assessment comparison of colloidal silica and cement grouted soil barrier remediation technologies.

    PubMed

    Gallagher, Patricia M; Spatari, Sabrina; Cucura, Jeffrey

    2013-04-15

    Site remediation involves balancing numerous costs and benefits but often neglects the environmental impacts over the entire project life cycle. Life cycle assessment (LCA) offers a framework for inclusion of global environmental "systems-level" decision metrics in combination with technological and cost analysis. We compare colloidal silica (CS) and cement grouted soil barrier remediation technologies for soils affected by low level radionuclides at a U.S. Superfund site using hybrid LCA methods. CS is a new, high performance grouting material installed using permeation grouting techniques. Cement, a more traditional grouting material, is typically installed using jet grouting techniques. Life cycle impacts were evaluated using the US EPA TRACI 2 model. Results show the highest life cycle environmental impacts for the CS barrier occur during materials production and transportation to the site. In general, the life cycle impacts for the cement barrier were dominated by materials production; however, in the extreme scenario the life cycle impacts were dominated by truck transportation of spoils to a distant, off-site radioactive waste facility. It is only in the extreme scenario tested in which soils are transported by truck (Option 2) that spoils waste transport dominates LCIA results. Life cycle environmental impacts for both grout barriers were most sensitive to resource input requirements for manufacturing volumes and transportation. Uncertainty associated with the efficacy of new technology such as CS over its required design life indicates that barrier replacement could increase its life cycle environmental impact above that of the cement barrier.

  18. Feasibility of supercritical CO{sub 2} extraction as a remediation technology for Hanford contaminated soils

    SciTech Connect

    Moody, T.E.; Krukonis, V.J.

    1994-12-31

    A technology used by the petroleum industry for separation and purification and the coffee industry for caffeine removal is being used by a Hanford scientist with the prospect of remediating organic contaminated Hanford soil. The process is known as Supercritical Fluid Extraction or SFE. Dr. Timothy Moody of the Westinghouse Hanford Company and the Phasex Corporation of Lawrence, Mass., have conducted successful bench-scale experiments at the 50g, 500g, and 5kg levels showing that SFE can remove various chemicals from large volumes of contaminated soil. The results indicate that organic contaminant removal from soil is much more efficient than the current industrial uses of SFE.

  19. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  20. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.

  1. Lunar rover technology demonstrations with Dante and Ratler

    NASA Astrophysics Data System (ADS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-10-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  2. Lunar rover technology demonstrations with Dante and Ratler

    NASA Technical Reports Server (NTRS)

    Krotkov, Eric; Bares, John; Katragadda, Lalitesh; Simmons, Reid; Whittaker, Red

    1994-01-01

    Carnegie Mellon University has undertaken a research, development, and demonstration program to enable a robotic lunar mission. The two-year mission scenario is to traverse 1,000 kilometers, revisiting the historic sites of Apollo 11, Surveyor 5, Ranger 8, Apollo 17, and Lunokhod 2, and to return continuous live video amounting to more than 11 terabytes of data. Our vision blends autonomously safeguarded user driving with autonomous operation augmented with rich visual feedback, in order to enable facile interaction and exploration. The resulting experience is intended to attract mass participation and evoke strong public interest in lunar exploration. The encompassing program that forwards this work is the Lunar Rover Initiative (LRI). Two concrete technology demonstration projects currently advancing the Lunar Rover Initiative are: (1) The Dante/Mt. Spurr project, which, at the time of this writing, is sending the walking robot Dante to explore the Mt. Spurr volcano, in rough terrain that is a realistic planetary analogue. This project will generate insights into robot system robustness in harsh environments, and into remote operation by novices; and (2) The Lunar Rover Demonstration project, which is developing and evaluating key technologies for navigation, teleoperation, and user interfaces in terrestrial demonstrations. The project timetable calls for a number of terrestrial traverses incorporating teleoperation and autonomy including natural terrain this year, 10 km in 1995. and 100 km in 1996. This paper will discuss the goals of the Lunar Rover Initiative and then focus on the present state of the Dante/Mt. Spurr and Lunar Rover Demonstration projects.

  3. Demonstration of Metabolic Heat Regenerated Temperature Swing Adsorption Technology

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Iacomini, Christine; Powers, Aaron; Dunham, Jonah; Straub-Lopez, Katie; Anerson, Grant; MacCallum, Taber

    2007-01-01

    Patent-pending Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is currently being investigated for removal and rejection of CO2 and heat from a Portable Life Support System (PLSS) to a Martian environment. The metabolically-produced CO2 present in the vent loop gas is collected using a CO2 selective adsorbent that has been cooled via a heat exchanger to near CO2 sublimation temperatures (approx.195K) with liquid CO2 obtained from Martian resources. Once the adsorbent is fully loaded, fresh warm, moist vent loop (approx.300K) is used to heat the adsorbent via another heat exchanger. The adsorbent will then reject the collected CO2 to the Martian ambient. Two beds are used to achieve continuous CO2 removal by cycling between the cold and warm conditions for adsorbent loading and regeneration, respectively. Small experiments have already been completed to show that an adsorbent can be cycled between these PLSS operating conditions to provide adequate conditions for CO2 removal from a simulated vent loop. One of the remaining technical challenges is extracting enough heat from the vent loop to warm the adsorbent in an appreciable time frame to meet the required adsorb/desorb cycle. The other key technical aspect of the technology is employing liquid CO2 to achieve the appropriate cooling. A technology demonstrator has been designed, built and tested to investigate the feasibility of 1) warming the adsorbent using the moist vent loop, 2) cooling the adsorbent using liquid CO2, and 3) using these two methods in conjunction to successfully remove CO2 from a vent loop and reject it to Mars ambient. Both analytical and numerical methods were used to perform design calculations and trades. The demonstrator was built and tested. The design analysis and testing results are presented along with recommendations for future development required to increase the maturity of the technology.

  4. Cooperative Collision Avoidance Technology Demonstration Data Analysis Report

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report details the National Aeronautics and Space Administration (NASA) Access 5 Project Office Cooperative Collision Avoidance (CCA) Technology Demonstration for unmanned aircraft systems (UAS) conducted from 21 to 28 September 2005. The test platform chosen for the demonstration was the Proteus Optionally Piloted Vehicle operated by Scaled Composites, LLC, flown out of the Mojave Airport, Mojave, CA. A single intruder aircraft, a NASA Gulf stream III, was used during the demonstration to execute a series of near-collision encounter scenarios. Both aircraft were equipped with Traffic Alert and Collision Avoidance System-II (TCAS-II) and Automatic Dependent Surveillance Broadcast (ADS-B) systems. The objective of this demonstration was to collect flight data to support validation efforts for the Access 5 CCA Work Package Performance Simulation and Systems Integration Laboratory (SIL). Correlation of the flight data with results obtained from the performance simulation serves as the basis for the simulation validation. A similar effort uses the flight data to validate the SIL architecture that contains the same sensor hardware that was used during the flight demonstration.

  5. LIQUIDARMOR CM Flashing and Sealant, High Impact Technology Demonstration

    SciTech Connect

    Hun, Diana E.; Bhandari, Mahabir S.

    2016-12-01

    Air leakage is responsible for about 1.1 quads of energy or 6% of the total energy used by commercial buildings in the US. Consequently, infiltration and exfiltration are among the largest envelope-related contributors to the heating, ventilation, and air conditioning loads in commercial buildings. New air sealing technologies have recently emerged that aim to improve the performance of air barrier systems by simplifying their installation procedure. LIQUIDARMORTM CM Flashing and Sealant is an example of these new advanced material technologies. This technology is a spray-applied sealant and liquid flashing and can span gaps that are up to ¼ in. wide without a supporting material. ORNL verified the performance of LIQUIDARMORTM CM with field tests and energy simulations from a building in which LIQUIDARMORTM CM was one of components of the air barrier system. The Homeland Security Training Center (HTC) at the College of DuPage in Glen Ellyn, IL, served as the demonstration site. Blower door test results show the average air leakage rate in the demonstration site to be 0.15 cfm/ft2 at 1.57 psf, or 63% lower than the 0.4 cfm at 1.57 psf specified in the 2015 International Energy Conservation Code (IECC). According to simulation results, HTC lowered its annual heating and cooling cost by about $3,000 or 9% compared to a similar building that lacked an air barrier system. This demonstration project serves as an example of the level of building envelope airtightness that can be achieved by using air barrier materials that are properly installed, and illustrates the energy and financial savings that such an airtight envelope could attain.

  6. 300 Area Treatability Test: Laboratory Development of Polyphosphate Remediation Technology for In Situ Treatment of Uranium Contamination in the Vadose Zone and Capillary Fringe

    SciTech Connect

    Wellman, Dawn M.; Pierce, Eric M.; Bacon, Diana H.; Oostrom, Martinus; Gunderson, Katie M.; Webb, Samuel M.; Bovaird, Chase C.; Cordova, Elsa A.; Clayton, Eric T.; Parker, Kent E.; Ermi, Ruby M.; Baum, Steven R.; Vermeul, Vincent R.; Fruchter, Jonathan S.

    2008-09-30

    This report presents results from bench-scale treatability studies conducted under site-specific conditions to optimize the polyphosphate amendment for implementation of a field-scale technology demonstration to stabilize uranium within the 300 Area vadose and smear zones of the Hanford Site. The general treatability testing approach consisted of conducting studies with site sediment and under site conditions, to develop an effective chemical formulation and infiltration approach for the polyphosphate amendment under site conditions. Laboratory-scale dynamic column tests were used to 1) quantify the retardation of polyphosphate and its degradation products as a function of water content, 2) determine the rate of polyphosphate degradation under unsaturated conditions, 3) develop an understanding of the mechanism of autunite formation via the reaction of solid phase calcite-bound uranium and aqueous polyphosphate remediation technology, 4) develop an understanding of the transformation mechanism, the identity of secondary phases, and the kinetics of the reaction between uranyl-carbonate and -silicate minerals with the polyphosphate remedy under solubility-limiting conditions, and 5) quantify the extent and rate of uranium released and immobilized based on the infiltration rate of the polyphosphate remedy and the effect of and periodic wet-dry cycling on the efficacy of polyphosphate remediation for uranium in the vadose zone and smear zone.

  7. Standardized UXO Technology Demonstration Site Scoring Record Number 930b

    DTIC Science & Technology

    2010-11-01

    01-07-2010 4. TITLE AND SUBTITLE Standardized USO Technology Demonstration Site Scoring Record No. 930b 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...orthogonal transmitters and ten pairs of differenced receivers. Each vertical face of the cube has three induction coils, and two horizontal faces have...critically damped 5-inch coils with a self-resonant frequency of 75 kHz. The data acquisition board has 12 high-speed ADC channels for output. Ten of

  8. Real Time Technology Application Demonstration Project Final Report

    SciTech Connect

    Volpe, John; Hampson, Steve; Johnson, Robert L

    2008-09-01

    The work and results described in this final report pertain to the demonstration of real-time characterization technologies applied to potentially contaminated surface soils in and around Area of Concern (AOC) 492 at the Paducah Gaseous Diffusion Plant (PGDP). The work was conducted under the auspices of Kentucky Research Consortium for Energy and Environment (KRCEE). KRCEE was created to support the Department of Energy's (DOE) efforts to complete the expeditious and economically viable environmental restoration of the Paducah Gaseous Diffusion Plant (PGDP), the Western Kentucky Wildlife Management Area (WKWMA), and surrounding areas.

  9. Gravitational sensor for LISA and its technology demonstration mission

    NASA Astrophysics Data System (ADS)

    Dolesi, R.; Bortoluzzi, D.; Bosetti, P.; Carbone, L.; Cavalleri, A.; Cristofolini, I.; Da Lio, M.; Fontana, G.; Fontanari, V.; Foulon, B.; Hoyle, C. D.; Hueller, M.; Nappo, F.; Sarra, P.; Shaul, D. N. A.; Sumner, T.; Weber, W. J.; Vitale, S.

    2003-05-01

    We describe the current design of the European gravitational sensor (GS) for the LISA Technology Package (LTP) that, on board the mission SMART-2, aims to demonstrate geodetic motion within one order of magnitude of the anticipated LISA performance. We report also the development of a noise model used in assessing the performance and determining the feasibility of achieving the overall noise goals for the GS. This analysis includes environmental effects that will be present in the sensor. Finally, we discuss open questions regarding the GS for LTP and LISA, ground testing, and verification issues.

  10. 3D Printing in Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth C.; Edmunson, Jennifer E.; Dunn, Jason; Snyder, Michael

    2013-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA's Marshall Space Fligth Center (MSFC) and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the frst machine to perform 3D printing in space.

  11. Results of the Lasagna{trademark} Phase IIa field demonstration for the remediation of TCE in clay soils

    SciTech Connect

    Athmer, C.J.; Ho, S.V.; Hughes, B.M.; Clausen, J.L.; Johnstone, F.; Hines, R.L.

    1998-12-31

    The Lasagna{trademark} technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electrokinetics is utilized to move the contaminants through those zones until the treatment is completed. The Phase IIa demonstration was the second field demonstration at a trichloroethylene (TCE) contaminated site in Paducah, Ky. The first demonstration, Phase I, proved that TCE could be mobilized and captured using Lasagna{trademark}. This second demonstration measured 30 feet by 21 feet by 45 feet deep and showed for the first time TCE, including pure phase residual TCE, could be mobilized in tight soils using electrokinetics and degraded in-situ using iron filings. Over 95% removal of TCE was observed in areas of the demonstration site including pure phase residual TCE regions.

  12. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-05-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a relatively inert, leach-resistant, vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 9OSr in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in mobility of more than 2 orders of magnitude. The paper also presents the current plans for continued collaboration on a two setting treatability test on one portion of an old seepage pit at ORNL.

  13. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D. ); Spalding, B.P.; Jacobs, G.K. )

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of [sup 90]r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

  14. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D. ); Spalding, B.P.; Jacobs, G.K. )

    1993-01-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a relatively inert, leach-resistant, vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of 9OSr in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in mobility of more than 2 orders of magnitude. The paper also presents the current plans for continued collaboration on a two setting treatability test on one portion of an old seepage pit at ORNL.

  15. Implementation of in situ vitrification technology for remediation of Oak Ridge contaminated soil sites: Past results and future plans

    SciTech Connect

    Tixier, J.S.; Powell, T.D.; Spalding, B.P.; Jacobs, G.K.

    1993-02-01

    In situ vitrification is a thermal treatment technology being developed for remediation of contaminated soils. The process transforms easily leached, contaminated soils into a durable, leach-resistant. vitreous and crystalline monolith. This paper presents the results of the recent highly successful ISV demonstration conducted jointly by PNL and ORNL on a tracer-level quantity of radioactive sludge in a model trench at ORNL. A retention of {sup 90}r in the vitreous and crystalline product of greater than 99.9999% was measured with a reduction in potential environmental mobility of more than two orders of magnitude. The paper also presents the current plans for continued collaboration on a two-setting treatability test on one portion of an old seepage pit at ORNL.

  16. NASA Lidar system support and MOPA technology demonstration

    NASA Technical Reports Server (NTRS)

    Laughman, L. M.; Capuano, B.; Wayne, R. J.

    1986-01-01

    A series of lidar design and technology demonstration tasks in support of a CO2 lidar program is discussed. The first of these tasks is discussed in Section VI of this report under the heading of NASA Optical Lidar Design and it consists of detailed recommendations for the layout of a CO2 Doppler lidar incorporating then existing NASA optical components and mounts. The second phase of this work consisted of the design, development, and delivery to NASA of a novel acousto-optic laser frequency stabilization system for use with the existing NASA ring laser transmitter. The second major task in this program encompasses the design and experimental demonstration of a master oscillator-power amplifier (MOPA) laser transmitter utilizing a commercially available laser as the amplifier. The MOPA design including the low chirp master oscillator is discussed in detail. Experimental results are given for one, two and three pass amplification. The report includes operating procedures for the MOPA system.

  17. The development and testing of technologies for the remediation of mercury-contaminated soils, Task 7.52. Topical report, December 1992--December 1993

    SciTech Connect

    Stepan, D.J.; Fraley, R.H.; Charlton, D.S.

    1994-02-01

    The release of elemental mercury into the environment from manometers that are used in the measurement of natural gas flow through pipelines has created a potentially serious problem for the gas industry. Regulations, particularly the Land Disposal Restrictions (LDR), have had a major impact on gas companies dealing with mercury-contaminated soils. After the May 8, 1993, LDR deadline extension, gas companies were required to treat mercury-contaminated soils by designated methods to specified levels prior to disposal in landfills. In addition, gas companies must comply with various state regulations that are often more stringent than the LDR. The gas industry is concerned that the LDRs do not allow enough viable options for dealing with their mercury-related problems. The US Environmental Protection Agency has specified the Best Demonstrated Available Technology (BDAT) as thermal roasting or retorting. However, the Agency recognizes that treatment of certain wastes to the LDR standards may not always be achievable and that the BDAT used to set the standard may be inappropriate. Therefore, a Treatability Variance Process for remedial actions was established (40 Code of Federal Regulations 268.44) for the evaluation of alternative remedial technologies. This report presents evaluations of demonstrations for three different remedial technologies: a pilot-scale portable thermal treatment process, a pilot-scale physical separation process in conjunction with chemical leaching, and a bench-scale chemical leaching process.

  18. Acoustic Cavitation: A Potential Remediation Technology for On-Site Elimination of Perfluorinated Contaminants

    NASA Astrophysics Data System (ADS)

    Vecitis, C. D.; Cheng, J.; Park, H.; Hoffmann, M. R.

    2006-12-01

    Perfluorinated chemicals are emerging as globally ubiquitous contaminants which are recalcitrant to the conventional remediation techniques of adsorption and chemical oxidation. The release of these chemicals to the environment occurs from specific sites such as manufacturing plants, fire-fighting foams at airports and contaminated landfills. Even though these compounds are widely recognized as potentially hazardous, disposal regulations have been limited due to the ineffectiveness of current pump and treat technologies towards these species. We have shown that ultrasonically induced acoustic cavitation can effectively mineralize aqueous perfluorinated acid and sulfonate species by in situ pyrolysis and chemical oxidation at the lab and pilot scale. Efficiency has been tested on a variety of matrices such as tap water, groundwater and landfill pump-out with VOC content being the major detriment towards remediation. Advanced oxidation by the simultaneously application of ozone and ultrasound seems to partially eliminate this barrier by enhancing the rate of VOC mineralization. Application of this technology to a contaminated field site and the obstacles of scaling to such a degree are discussed.

  19. Remediation of phenanthrene from contaminated kaolinite by electroremediation-Fenton technology.

    PubMed

    Alcantara, T; Pazos, M; Gouveia, S; Cameselle, C; Sanroman, M A

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) cause a high environmental impact when released into the environment. The objective of this study was to evaluate the capacity to decontaminate polluted soils with phenanthrene as a model PAH using a combination of two technologies: electrokinetic remediation and Fenton process. Kaolinite was used as a model sample that was artificially polluted at the laboratory at an initial concentration of phenanthrene of 500 mg kg(-1) of dried kaolinite. The standard electrokinetic process resulted in negligible removal of phenanthrene from the kaolinite sample. Faster and more efficient degradation of this compound can be promoted by introduction of a strong oxidant into the soil such as hydroxyl radicals. For this reason, the Fenton reactions have been induced in several experiments in which H(2)O(2) (10%) was used as flushing solution, and kaolinite polluted with iron was used. When anode and cathode chambers were filled with H(2)O(2) (10%), the kaolinite pH is maintained at an acid value around 3.5 without pH control and an overall removal and destruction efficiency of phenanthrene of 99% was obtained in 14 days by applying a voltage gradient of 3 V cm(-1). Therefore, it is evident that a combined technology of electrokinetic remediation and Fenton reaction is capable of simultaneously removing and degrading of PAHs in polluted model samples with kaolinite.

  20. 3D Printing In Zero-G ISS Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki; Cooper, Kenneth; Edmunson, Jennifer; Dunn, Jason; Snyder, Michael

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station (ISS). The 3D Printing In Zero-G experiment ('3D Print') will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station (ISS) up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up multiple drill bits that would be required to machine parts from aerospace-grade materials such as titanium 6-4 alloy and Inconel. The technology to produce parts on demand, in space, offers

  1. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  2. DEMONSTRATION OF PILOT-SCALE PREVAPORATION SYSTEMS FOR VOLATILE ORGANIC COMPOUND REMOVAL FROM A SURFACTANT ENHANCED AQUIFER REMEDIATION FLUID. I. SPIRAL WOUND MEMBRANE MODULES

    EPA Science Inventory

    During the summer of 1996, a pilot-scale demonstration of a surfactant enhanced aquifer remediation (SEAR) process for removal of dense non-aqueous phase liquids (DNAPLs) from soils was conducted at Hill Air Force Base in Layton, Utah. Five thousand gallons of the extracted DNAP...

  3. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  4. Demonstration of Bioventing for Remediation of Chlorinated Solvent Contamination at Hill Air Force Base, Ogden, Utah, Volume I

    DTIC Science & Technology

    2007-11-02

    This report describes the evaluation of the application of bioventing technology to non-petroleum hydrocarbon impacted soils. Bioventing has been...study and a field pilot-scale demonstration to evaluate the potential for applying bioventing to treat dichlorobenzenes in order to expand the list of...contaminants impacting Air Force and other Department of Defense Installations beyond petroleum hydrocarbons. A pilot-scale bioventing system consisting

  5. Joint Test Plan for Gas Dynamic Spray Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2008-01-01

    undergo some type of surface preparation and/or depainting operation to ensure adhesion of the new coating system. The GDS unit selected for demonstration has a powder feeding system that can be used for surface preparation or coating application. The surface preparation feature will also be examined. The primary objective of this effort is to demonstrate GDS technology as a repair method for TSCs. The project will also determine the optimal GDS coating thickness for acceptable performance. Successful completion of this project will result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations and will improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  6. Technology Maturation in Preparation for the Cryogenic Propellant Storage and Transfer (CPST) Technology Demonstration Mission (TDM)

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Doherty, Michael P.; Moder, Jeffrey P.

    2014-01-01

    In support of its goal to find an innovative path for human space exploration, NASA embarked on the Cryogenic Propellant Storage and Transfer (CPST) Project, a Technology Demonstration Mission (TDM) to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large in-space cryogenic propulsion stages and propellant depots. Recognizing that key Cryogenic Fluid Management (CFM) technologies anticipated for on-orbit (flight) demonstration would benefit from additional maturation to a readiness level appropriate for infusion into the design of the flight demonstration, the NASA Headquarters Space Technology Mission Directorate (STMD) authorized funding for a one-year technology maturation phase of the CPST project. The strategy, proposed by the CPST Project Manager, focused on maturation through modeling, concept studies, and ground tests of the storage and fluid transfer of CFM technology sub-elements and components that were lower than a Technology Readiness Level (TRL) of 5. A technology maturation plan (TMP) was subsequently approved which described: the CFM technologies selected for maturation, the ground testing approach to be used, quantified success criteria of the technologies, hardware and data deliverables, and a deliverable to provide an assessment of the technology readiness after completion of the test, study or modeling activity. The specific technologies selected were grouped into five major categories: thick multilayer insulation, tank applied active thermal control, cryogenic fluid transfer, propellant gauging, and analytical tool development. Based on the success of the technology maturation efforts, the CPST project was approved to proceed to flight system development.

  7. Demonstration of Innovative Water Rehabilitation Technology in Somerville, NJ

    EPA Science Inventory

    Renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating water distribution systems are generally effective, but there is still considerable room for improvement of existing technologies and for the development of new technologi...

  8. Demonstration of Innovative Water Rehabilitation Technology in Somerville, NJ

    EPA Science Inventory

    Renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating water distribution systems are generally effective, but there is still considerable room for improvement of existing technologies and for the development of new technologi...

  9. Combining innovative technology demonstrations with dense nonaqueous phase liquids cleanup

    SciTech Connect

    Hagood, M.C.; Koegler, K.J.; Rohay, V.J.; Trent, S.J.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.; Tomich, S.

    1993-05-01

    Radioactively contaminated acidic aqueous wastes and organic liquids were discharged to the soil column at three disposal sites within the 200 West Area of the Hanford Site, Washington. As a result, a portion of the underlying groundwater is contaminated with carbon tetrachloride several orders of magnitude above the maximum contaminant level accepted for a drinking water supply. Treatability testing and cleanup actions have been initiated to remove the contamination from both the unsaturated soils to minimize further groundwater contamination and the groundwater itself. To expedite cleanup, innovative technologies for (1) drilling, (2) site characterization, (3) monitoring, (4) well field development, and (5) contaminant treatment are being demonstrated and subsequently used where possible to improve the rates and cost savings associated with the removal of carbon tetrachloride from the soils and groundwater.

  10. Flight Demonstrations of Orbital Space Plane (OSP) Technologies

    NASA Technical Reports Server (NTRS)

    Turner, Susan

    2003-01-01

    The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.

  11. Thermal Protection System Application to Composite Cryotank Technology Demonstrator

    NASA Technical Reports Server (NTRS)

    Protz, Alison; Nettles, Mindy

    2015-01-01

    The EM41 Thermal Protection System (TPS) team contributed to the success of the Composite Cryotank Technology Demonstrator (CCTD) manufacturing by developing and implementing a low-cost solution to apply cryoinsulation foam on the exterior surface of the tank in the NASA Marshall Space Flight Center (MSFC) TPS Development Facility, Bldg. 4765. The TPS team used techniques developed for the smallscale composite cryotank to apply Stepanfoam S-180 polyurethane foam to the 5.5-meter CCTD using a manual spray process. Manual spray foam technicians utilized lifts and scaffolding to access the barrel and dome sections of the large-scale tank in the horizontal orientation. During manufacturing, the tank was then oriented vertically, allowing access to the final barrel section for manual spray foam application. The CCTD was the largest application of manual spray foam performed to date with the S-180 polyurethane foam and required the TPS team to employ best practices for process controls on the development article.

  12. Electrical Power Budgeting Analysis for LSA-02 UAV Technology Demonstrator

    NASA Astrophysics Data System (ADS)

    Pranoto, F. S.; Wirawan, A.; Purnamasari, D. A.

    2016-11-01

    This paper addresses the calculation of the LSA-02 UAV electrical power requirement as a technology demonstrator. To answer this issue, the method from ASTM F2490 Standard is used. By adopting that method, the condition of aircraft operation must be defined. Therefore, there are 2 aircraft conditions that will be investigated further. First, the LSA-02 aircraft will be fitted with EO/IR camera and support payload for conducting real-time surveillance system. The other condition is conducting the aerial photography mission to investigate the vegetation condition by equipping the aircraft with a multispectral camera. The results show that the real-time mission will need bigger electrical power requirement comparing to aerial photography mission. To support the mission without sacrificing the other electrical equipment for functioning, the onboard power generator system inside LSA-02 aircraft should be upgraded, at least with 3.5 kVA capacity.

  13. Demonstration of EnergyNest thermal energy storage (TES) technology

    NASA Astrophysics Data System (ADS)

    Hoivik, Nils; Greiner, Christopher; Tirado, Eva Bellido; Barragan, Juan; Bergan, Pâl; Skeie, Geir; Blanco, Pablo; Calvet, Nicolas

    2017-06-01

    This paper presents the experimental results from the EnergyNest 2 × 500 kWhth thermal energy storage (TES) pilot system installed at Masdar Institute of Science & Technology Solar Platform. Measured data are shown and compared to simulations using a specially developed computer program to verify the stability and performance of the TES. The TES is based on a solid-state concrete storage medium (HEATCRETE®) with integrated steel tube heat exchangers cast into the concrete. The unique concrete recipe used in the TES has been developed in collaboration with Heidelberg Cement; this material has significantly higher thermal conductivity compared to regular concrete implying very effective heat transfer, at the same time being chemically stable up to 450 °C. The demonstrated and measured performance of the TES matches the predictions based on simulations, and proves the operational feasibility of the EnergyNest concrete-based TES. A further case study is analyzed where a large-scale TES system presented in this article is compared to two-tank indirect molten salt technology.

  14. Exploration Drilling and Technology Demonstration At Fort Bliss

    SciTech Connect

    Barker, Ben; Moore, Joe; Segall, Marylin; Nash, Greg; Simmons, Stuart; Jones, Clay; Lear, Jon; Bennett, Carlon

    2014-02-26

    The Tularosa-Hueco basin in south-central New Mexico has long been known as an extensional area of high heat flow. Much of the basin is within the Fort Bliss military reservation, which is an exceptionally high value customer for power independent of the regional electric grid and for direct use energy in building climate control. A series of slim holes drilled in the 1990s established the existence of a thermal anomaly but not its practical value. This study began in 2009 with a demonstration of new exploration drilling technology. The subsequent phases reported here delivered a useful well, comparative exploration data sets and encouragement for further development. A production-size well, RMI56-5, was sited after extensive study of archival and newly collected data in 2010-2011. Most of 2012 was taken up with getting state and Federal authorities to agree on a lead agency for permitting purposes, getting a drilling permit and redesigning the drilling program to suit available equipment. In 2013 we drilled, logged and tested a 924 m well on the McGregor Range at Fort Bliss using a reverse circulation rig. Rig tests demonstrated commercial permeability and the well has a 7-inch slotted liner for use either in production or injection. An August 2013 survey of the completed well showed a temperature of 90 C with no reversal, the highest such temperature in the vicinity. The well’s proximity to demand suggests a potentially valuable resource for direct use heat and emergency power generation. The drilling produced cuttings of excellent size and quality. These were subjected to traditional analyses (thin sections, XRD) and to the QEMScan™ for comparison. QEMScan™ technology includes algorithms for determining such properties of rocks as density, mineralogy, heavy/light atoms, and porosity to be compared with direct measurements of the cuttings. In addition to a complete cuttings set, conventional and resistivity image logs were obtained in the open hole before

  15. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    SciTech Connect

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. In addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.

  16. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies.

    PubMed

    Huang, Binbin; Lei, Chao; Wei, Chaohai; Zeng, Guangming

    2014-10-01

    Chlorinated volatile organic compounds (Cl-VOCs), including polychloromethanes, polychloroethanes and polychloroethylenes, are widely used as solvents, degreasing agents and a variety of commercial products. These compounds belong to a group of ubiquitous contaminants that can be found in contaminated soil, air and any kind of fluvial mediums such as groundwater, rivers and lakes. This review presents a summary of the research concerning the production levels and sources of Cl-VOCs, their potential impacts on human health as well as state-of-the-art remediation technologies. Important sources of Cl-VOCs principally include the emissions from industrial processes, the consumption of Cl-VOC-containing products, the disinfection process, as well as improper storage and disposal methods. Human exposure to Cl-VOCs can occur through different routes, including ingestion, inhalation and dermal contact. The toxicological impacts of these compounds have been carefully assessed, and the results demonstrate the potential associations of cancer incidence with exposure to Cl-VOCs. Most Cl-VOCs thus have been listed as priority pollutants by the Ministry of Environmental Protection (MEP) of China, Environmental Protection Agency of the U.S. (U.S. EPA) and European Commission (EC), and are under close monitor and strict control. Yet, more efforts will be put into the epidemiological studies for the risk of human exposure to Cl-VOCs and the exposure level measurements in contaminated sites in the future. State-of-the-art remediation technologies for Cl-VOCs employ non-destructive methods and destructive methods (e.g. thermal incineration, phytoremediation, biodegradation, advanced oxidation processes (AOPs) and reductive dechlorination), whose advantages, drawbacks and future developments are thoroughly discussed in the later sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    NASA Astrophysics Data System (ADS)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  18. Cold Crucible Induction Melter Testing at The Idaho National Laboratory for the Advanced Remediation Technologies Program

    SciTech Connect

    Jay Roach; Nick Soelberg; Mike Ancho; Eric Tchemitcheff; John Richardson

    2009-03-01

    AREVA Federal Services (AFS) is performing a multi-year, multi-phase Advanced Remediation Technologies (ART) project, sponsored by the U.S. Department of Energy (DOE), to evaluate the feasibility and benefits of replacing the existing joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site with a cold crucible induction melter (CCIM). The AFS ART CCIM project includes several collaborators from AREVA subsidiaries, French companies, and DOE national laboratories. The Savannah River National Laboratory and the Commissariat a l’Energie Atomique (CEA) have performed laboratory-scale studies and testing to determine a suitable, high-waste-loading glass matrix. The Idaho National Laboratory (INL) and CEA are performing CCIM demonstrations at two different pilot scales to assess CCIM design and operation for treating SRS sludge wastes that are currently being treated in the DWPF. SGN is performing engineering studies to validate the feasibility of retrofitting CCIM technology into the DWPF Melter Cell. The long-term project plan includes more lab-testing, pilot- and large-scale demonstrations, and engineering activities to be performed during subsequent project phases. This paper provides preliminary results of tests using the engineering-scale CCIM test system located at the INL. The CCIM test system was operated continuously over a time period of about 58 hours. As the DWPF simulant feed was continuously fed to the melter, the glass level gradually increased until a portion of the molten glass was drained from the melter. The glass drain was operated semi-continuously because the glass drain rate was higher than the glass feedrate. A cold cap of unmelted feed was controlled by adjusting the feedrate and melter power levels to obtain the target molten glass temperatures with varying cold cap levels. Three test conditions were performed per the test plan, during which the melter was

  19. In Situ Sediment Treatment Using Activated Carbon: A Demonstrated Sediment Cleanup Technology

    PubMed Central

    Patmont, Clayton R; Ghosh, Upal; LaRosa, Paul; Menzie, Charles A; Luthy, Richard G; Greenberg, Marc S; Cornelissen, Gerard; Eek, Espen; Collins, John; Hull, John; Hjartland, Tore; Glaza, Edward; Bleiler, John; Quadrini, James

    2015-01-01

    This paper reviews general approaches for applying activated carbon (AC) amendments as an in situ sediment treatment remedy. In situ sediment treatment involves targeted placement of amendments using installation options that fall into two general approaches: 1) directly applying a thin layer of amendments (which potentially incorporates weighting or binding materials) to surface sediment, with or without initial mixing; and 2) incorporating amendments into a premixed, blended cover material of clean sand or sediment, which is also applied to the sediment surface. Over the past decade, pilot- or full-scale field sediment treatment projects using AC—globally recognized as one of the most effective sorbents for organic contaminants—were completed or were underway at more than 25 field sites in the United States, Norway, and the Netherlands. Collectively, these field projects (along with numerous laboratory experiments) have demonstrated the efficacy of AC for in situ treatment in a range of contaminated sediment conditions. Results from experimental studies and field applications indicate that in situ sequestration and immobilization treatment of hydrophobic organic compounds using either installation approach can reduce porewater concentrations and biouptake significantly, often becoming more effective over time due to progressive mass transfer. Certain conditions, such as use in unstable sediment environments, should be taken into account to maximize AC effectiveness over long time periods. In situ treatment is generally less disruptive and less expensive than traditional sediment cleanup technologies such as dredging or isolation capping. Proper site-specific balancing of the potential benefits, risks, ecological effects, and costs of in situ treatment technologies (in this case, AC) relative to other sediment cleanup technologies is important to successful full-scale field application. Extensive experimental studies and field trials have shown that when

  20. Hot demonstration of proposed commercial cesium removal technology

    SciTech Connect

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable.

  1. Flexible structure control laboratory development and technology demonstration

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.; Blaire, P. E.; Eldred, D. B.; Fleischer, G. E.; Ih, C.-H. C.; Nerheim, N. M.; Scheid, R. E.; Wen, J. T.

    1987-01-01

    An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware.

  2. Phytostabilization of mine tailings in arid and semiarid environments--an emerging remediation technology.

    PubMed

    Mendez, Monica O; Maier, Raina M

    2008-03-01

    Unreclaimed mine tailings sites are a worldwide problem, with thousands of unvegetated, exposed tailings piles presenting a source of contamination for nearby communities. Tailings disposal sites in arid and semiarid environments are especially subject to eolian dispersion and water erosion. Phytostabilization, the use of plants for in situ stabilization of tailings and metal contaminants, is a feasible alternative to costly remediation practices. In this review we emphasize considerations for phytostabilization of mine tailings in arid and semiarid environments, as well as issues impeding its long-term success. We reviewed literature addressing mine closures and revegetation of mine tailings, along with publications evaluating plant ecology, microbial ecology, and soil properties of mine tailings. Data were extracted from peer-reviewed articles and books identified in Web of Science and Agricola databases, and publications available through the U.S. Department of Agriculture, U.S. Environmental Protection Agency, and the United Nations Environment Programme. Harsh climatic conditions in arid and semiarid environments along with the innate properties of mine tailings require specific considerations. Plants suitable for phytostabilization must be native, be drought-, salt-, and metal-tolerant, and should limit shoot metal accumulation. Factors for evaluating metal accumulation and toxicity issues are presented. Also reviewed are aspects of implementing phytostabilization, including plant growth stage, amendments, irrigation, and evaluation. Phytostabilization of mine tailings is a promising remedial technology but requires further research to identify factors affecting its long-term success by expanding knowledge of suitable plant species and mine tailings chemistry in ongoing field trials.

  3. Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies.

    PubMed

    Franzetti, Andrea; Caredda, Paolo; Ruggeri, Claudio; La Colla, Paolo; Tamburini, Elena; Papacchini, Maddalena; Bestetti, Giuseppina

    2009-05-01

    A wide range of structurally different surface active compounds (SACs) is synthesised by many prokaryotic and eukaryotic microorganisms. Due to their properties, microbial SACs have been exploited in environmental remediation techniques. From a diesel-contaminated soil, we isolated the Gordonia sp. strain BS29 which extensively grows on aliphatic hydrocarbons and produces two different types of SACs: extracellular bioemulsans and cell-bound biosurfactants. The aim of this work was to evaluate the potential applications of the strain BS29 and its SACs in the following environmental technologies: bioremediation of soils contaminated by aliphatic and aromatic hydrocarbons, and washing of soils contaminated by crude oil, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Microcosm bioremediation experiments were carried out with soils contaminated by aliphatic hydrocarbons or PAHs, while batch soil washing experiments were carried out with soils contaminated by crude oil, PAHs or heavy metals. Bioremediation results showed that the BS29 bioemulsans are able to slightly enhance the biodegradation of recalcitrant branched hydrocarbons. On the other hand, we obtained the best results in soil washing of hydrocarbons. The BS29 bioemulsans effectively remove crude oil and PAHs from soil. Particularly, crude oil removal by BS29 bioemulsans is comparable to the rhamnolipid one in the same experimental conditions showing that the BS29 bioemulsans are promising washing agents for remediation of hydrocarbon-contaminated soils.

  4. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  5. Field demonstration of a full-scale in situ thermal desorption system for the remediation of soil containing PCBS and other hydrocarbons

    SciTech Connect

    Sheldon, R.B.; Iben, I.E.T.; Edelstein, W.A.

    1996-12-31

    A field demonstration of a full-sale, innovative and cost-effective remediation system using in situ thermal description (ISTD) was conducted at a state Superfund site in the northeastern United States in early 1996. The Demonstration was performed as part of the regulatory process to obtain a nationwide Toxic Substances Control Act (TSCA) permit for the remediation of soils containing PCBs at concentrations up to 5,000 ppm. An area of approximately 4800 square feet was remediated during six applications of an in situ Thermal Blanket covering an area of 800 square feet. Each application utilized five 160 square foot, electrically heated, 100-kilowatt modules. The Thermal Blanket heaters were operated at temperatures as high as 925 C. The modules contain 10 in. of vermiculite insulation to reduce upward heat losses to less than 10% of total power. The modules are covered with an impermeable silicone sheet and the in situ process is run at negative pressure to collect contaminants, prevent contaminant migration and eliminate odors. Off-gas emissions are controlled by a vapor extraction system comprised of a cyclonic separator for particulate removal, a flameless thermal oxidizer for destruction of residual contaminants, and a carbon polishing unit. Treatment times ranged from slightly more than 24 hours to treat the upper six inches to approximately four days to treat soil 12 to 18 inches deep. Temperature profiles and remedial efficiency are consistent with results from a computer thermal simulator. Post-treatment soil samples demonstrated the capability to achieve stringent soil cleanup levels of less than 2 ppm for PCBs while concurrently meeting ambient air quality standards with respect to air emissions and worker exposure limits. The Thermal Blanket is less intrusive than other permanent remedies and produces less noise, generates less dust and has a minimum of other impacts on the surrounding community.

  6. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  7. Project Genesis: Mars in situ propellant technology demonstrator mission

    NASA Technical Reports Server (NTRS)

    Acosta, Francisco Garcia; Anderson, Scott; Andrews, Jason; Deger, Matt; Hedman, Matt; Kipp, Jared; Kobayashi, Takahisa; Marcelo, Mohrli; Mark, Karen; Matheson, Mark

    1994-01-01

    Project Genesis is a low cost, near-term, unmanned Mars mission, whose primary purpose is to demonstrate in situ resource utilization (ISRU) technology. The essence of the mission is to use indigenously produced fuel and oxidizer to propel a ballistic hopper. The Mars Landing Vehicle/Hopper (MLVH) has an Earth launch mass of 625 kg and is launched aboard a Delta 117925 launch vehicle into a conjunction class transfer orbit to Mars. Upon reaching its target, the vehicle performs an aerocapture maneuver and enters an elliptical orbit about Mars. Equipped with a ground penetrating radar, the MLVH searches for subsurface water ice deposits while in orbit for several weeks. A deorbit burn is then performed to bring the MLVH into the Martian atmosphere for landing. Following aerobraking and parachute deployment, the vehicle retrofires to a soft landing on Mars. Once on the surface, the MLVH begins to acquire scientific data and to manufacture methane and oxygen via the Sabatier process. This results in a fuel-rich O2/CH4 mass ratio of 2, which yields a sufficiently high specific impulse (335 sec) that no additional oxygen need be manufactured, thus greatly simplifying the design of the propellant production plant. During a period of 153 days the MLVH produces and stores enough fuel and oxidizer to make a 30 km ballistic hop to a different site of scientific interest. At this new location the MLVH resumes collecting surface and atmospheric data with the onboard instrumentation. Thus, the MLVH is able to provide a wealth of scientific data which would otherwise require two separate missions or separate vehicles, while proving a new and valuable technology that will facilitate future unmanned and manned exploration of Mars. Total mission cost, including the Delta launch vehicle, is estimated to be $200 million.

  8. APPLICATION OF THE LASAGNA{trademark} SOIL REMEDIATION TECHNOLOGY AT THE DOE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Swift, Barry D.; Tarantino, Joseph J., P. E.

    2003-02-27

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the Department of Energy (DOE), has been enriching uranium since the early 1950s. The enrichment process involves electrical and mechanical components that require periodic cleaning. The primary cleaning agent was trichloroethene (TCE) until the late 1980s. Historical documentation indicates that a mixture of TCE and dry ice were used at PGDP for testing the integrity of steel cylinders, which stored depleted uranium. TCE and dry ice were contained in a below-ground pit and used during the integrity testing. TCE seeped from the pit and contaminated the surrounding soil. The Lasagna{trademark} technology was identified in the Record of Decision (ROD) as the selected alternative for remediation of the cylinder testing site. A public-private consortium formed in 1992 (including DOE, the U.S. Environmental Protection Agency, and the Kentucky Department for Environmental Protection, Monsanto, DuPont, and General Electric) developed the Lasagna{trademark} technology. This innovative technology employs electrokinetics to remediate soil contaminated with organics and is especially suited to sites with low permeability soils. This technology uses direct current to move water through the soil faster and more uniformly than hydraulic methods. Electrokinetics moves contaminants in soil pore water through treatment zones comprised of iron filings, where the contaminants are decomposed to basic chemical compounds such as ethane. After three years of development in the laboratory, the consortium field tested the Lasagna{trademark} process in several phases. CDM installed and operated Phase I, the trial installation and field test of a 150-square-foot area selected for a 120-day run in 1995. Approximately 98 percent of the TCE was removed. CDM then installed and operated the next phase (IIa), a year-long test on a 600-square-foot site. Completed in July 1997, this test removed 75 percent of the total volume of TCE down to a

  9. Alternative technologies for remediation of technogenic barrens in the Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.; Koptsik, S. V.; Smirnova, I. E.

    2016-11-01

    The efficiency of remediation of technogenic barrens under the reduction of air pollutant emissions from the Severonikel smelter in the Kola Subarctic is determined largely by the soil state and the technology applied. The covering of the contaminated soils with artificially made material based on organomineral substrates and the following liming and fertilization promoted a sharp and long-term reduction of acidity, decrease in the biological availability of heavy metals, increase in the supply with nutrients, and improvement of the life state of willow and birch plantations. The effect of economically more profitable chemo-phytostabilization is short-term; it requires constant maintenance. Under the current production and a high level of soil contamination, repeated measures are required to optimize the soil reaction, supply with nutrients, and to correct the availability of heavy metals in the soils based on the results of continuous monitoring

  10. Lithium-ion cell technology demonstration for future NASA applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Chin, K. B.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Dalton, P. J.

    2002-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to their attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including planetary orbiters, rovers and landers. For example, under the Mars Surveyor Program MSP 01 lithium-ion batteries were developed by Lithion (each being 28 V, 25 Ah, 8-cells. and 9 kg) and fully qualified prior to mission cancellation. In addition to the requirement of being able to supply at least 90 cycles on the surface of Mars, the battery demonstrated operational capability (both charge and discharge) over a large temperature range (-2O'C to +4OoC), with tolerance to non-operational excursions to -30nd 50Currently, JPL is implementing lithium-ion technology on the 2003 Mars Exploration Rover (MER), which will be coupled with a solar array. This mission has similar performance requirements to that of the 2001 Lander in that high energy density and a wide operating temperature range are necessitated. In addition to planetary rover and lander applications, we are also engaged in determining the viability of using lithium-ion technology for orbiter applications that require exceptionally long life (>20,000 cydes at partial depth of discharge). To assess the viabili of lithium-ion cells for these applications, a number of performance characterization tests have been performed (at the cell and battery level) on state-of-art prototype lihium- ion cells, induding: assessing the cycle life performance (at varying DODs), life characteristics at extreme temperatures (< -10nd >+4OoC), rate capability as a function of temperature (-30' to 4OoC), pulse capability, self-discharge and storage characteristics, as well as, mission profile capability. This paper will describe the current and

  11. Lithium-ion cell technology demonstration for future NASA applications

    NASA Technical Reports Server (NTRS)

    Smart, M. C.; Ratnakumar, B. V.; Chin, K. B.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Dalton, P. J.

    2002-01-01

    NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to their attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including planetary orbiters, rovers and landers. For example, under the Mars Surveyor Program MSP 01 lithium-ion batteries were developed by Lithion (each being 28 V, 25 Ah, 8-cells. and 9 kg) and fully qualified prior to mission cancellation. In addition to the requirement of being able to supply at least 90 cycles on the surface of Mars, the battery demonstrated operational capability (both charge and discharge) over a large temperature range (-2O'C to +4OoC), with tolerance to non-operational excursions to -30nd 50Currently, JPL is implementing lithium-ion technology on the 2003 Mars Exploration Rover (MER), which will be coupled with a solar array. This mission has similar performance requirements to that of the 2001 Lander in that high energy density and a wide operating temperature range are necessitated. In addition to planetary rover and lander applications, we are also engaged in determining the viability of using lithium-ion technology for orbiter applications that require exceptionally long life (>20,000 cydes at partial depth of discharge). To assess the viabili of lithium-ion cells for these applications, a number of performance characterization tests have been performed (at the cell and battery level) on state-of-art prototype lihium- ion cells, induding: assessing the cycle life performance (at varying DODs), life characteristics at extreme temperatures (< -10nd >+4OoC), rate capability as a function of temperature (-30' to 4OoC), pulse capability, self-discharge and storage characteristics, as well as, mission profile capability. This paper will describe the current and

  12. Pecan Street Grid Demonstration Program. Final technology performance report

    SciTech Connect

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  13. Fission Surface Power Technology Demonstration Unit Test Results

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.

  14. Fission Surface Power Technology Demonstration Unit Test Results

    NASA Technical Reports Server (NTRS)

    Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven; Sanzi, James

    2016-01-01

    The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7% resulting in a net system power of 8.1 kW and a system level efficiency of 17.2%. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to GRC. The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3%. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 %.

  15. Transfer of adapted water supply technologies through a demonstration and teaching facility

    NASA Astrophysics Data System (ADS)

    Nestmann, F.; Oberle, P.; Ikhwan, M.; Stoffel, D.; Blaß, H. J.; Töws, D.; Schmidt, S.

    2016-09-01

    Water scarcity can be defined as a lack of sufficient water resources or as the limited or even missing access to a safe water supply. Latter can be classified as `economic water scarcity' which among others can commonly be met in tropical and subtropical karst regions of emerging and developing countries. Karst aquifers, mostly consisting of limestone and carbonate rock, show high infiltration rates which leads to a lack of above ground storage possibilities. Thus, the water will drain rapidly into the underground and evolve vast river networks. Considering the lack of appropriate infrastructure and limited human capacities in the affected areas, these underground water resources cannot be exploited adequately. Against this, background innovative and adapted technologies are required to utilize hard-to-access water resources in a sustainable way. In this context, the German-Indonesian joint R&D project "Integrated Water Resources Management (IWRM) Indonesia" dealt with the development of highly adaptable water technologies and management strategies. Under the aegis of the Karlsruhe Institute of Technology (KIT) and funded by the German Ministry of Education and Research (BMBF), these innovative technical concepts were exemplarily implemented to remedy this deficiency in the model region Gunung Sewu, a karst area situated on the southern coast of Java Island, Indonesia. The experiences gained through the interdisciplinary joint R&D activities clearly showed that even in the case of availability of appropriate technologies, a comprising transfer of knowhow and the buildup of capabilities (Capacity Development) is inevitable to sustainably implement and disseminate new methods. In this context, an adapted water supply facility was developed by KIT which hereafter shall serve for demonstration, teaching, and research purposes. The plant's functionality, its teaching and research concept, as well as the design process, which was accomplished in collaboration with the

  16. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    SciTech Connect

    Miyasato, Matt; Impllitti, Joseph; Pascal, Amar

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  17. Inductive voltage adder advanced hydrodynamic radiographic technology demonstration

    SciTech Connect

    Mazarakis, M.G.; Poukey, J.W.; Maenchen; Rovang, D.C.

    1997-04-01

    This paper presents the design, results, and analysis of a high-brightness electron beam technology demonstration experiment completed at Sandia National Laboratories, performed in collaboration with Los Alamos National Laboratory. The anticipated electron beam parameters were: 12 MeV, 35-40 kA, 0.5-mm rms radius, and 40-ns full width half maximum (FWHM) pulse duration. This beam, on an optimum thickness tantalum converter, should produce a very intense x-ray source of {approximately} 1.5-mm spot size and 1 kR dose @ 1 m. The accelerator utilized was SABRE, a pulsed inductive voltage adder, and the electron source was a magnetically immersed foilless electron diode. For these experiments, SABRE was modified to high-impedance negative-polarity operation. A new 100-ohm magnetically insulated transmission line cathode electrode was designed and constructed; the cavities were rotated 180{degrees} poloidally to invert the central electrode polarity to negative; and only one of the two pulse forming lines per cavity was energized. A twenty- to thirty-Tesla solenoidal magnet insulated the diode and contained the beam at its extremely small size. These experiments were designed to demonstrate high electron currents in submillimeter radius beams resulting in a high-brightness high-intensity flash x-ray source for high-resolution thick-object hydrodynamic radiography. The SABRE facility high-impedance performance was less than what was hoped. The modifications resulted in a lower amplitude (9 MV), narrower-than-anticipated triangular voltage pulse, which limited the dose to {approximately} 20% of the expected value. In addition, halo and ion-hose instabilities increased the electron beam spot size to > 1.5 mm. Subsequent, more detailed calculations explain these reduced output parameters. An accelerator designed (versus retrofit) for this purpose would provide the desired voltage and pulse shape.

  18. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    EPA Science Inventory

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  19. Environmental Technology Verification Program - ETV - Case Studies: Demonstrating Program Outcomes

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This cd con...

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) PROGRAM CASE STUDIES: DEMONSTRATING PROGRAM OUTCOMES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) Program evaluates the performance of innovative air, water, pollution prevention and monitoring technologies that have the potential to improve human health and the environment. This bookle...