Sample records for remnants evolution including

  1. The Impact of Progenitor Mass Loss on the Dynamical and Spectral Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Lee, Shiu-Hang; Slane, Patrick O.; Badenes, Carles; Nagataki, Shigehiro; Ellison, Donald C.; Milisavljevic, Dan

    2017-11-01

    There is now substantial evidence that the progenitors of some core-collapse supernovae undergo enhanced or extreme mass loss prior to explosion. The imprint of this mass loss is observed in the spectra and dynamics of the expanding blast wave on timescales of days to years after core collapse, and the effects on the spectral and dynamical evolution may linger long after the supernova has evolved into the remnant stage. In this paper, we present, for the first time, largely self-consistent end-to-end simulations for the evolution of a massive star from the pre-main sequence, up to and through core collapse, and into the remnant phase. We present three models and compare and contrast how the progenitor mass-loss history impacts the dynamics and spectral evolution of the supernovae and supernova remnants. We study a model that only includes steady mass loss, a model with enhanced mass loss over a period of ˜5000 yr prior to core collapse, and a model with extreme mass loss over a period of ˜500 yr prior to core collapse. The models are not meant to address any particular supernova or supernova remnant, but rather to highlight the important role that the progenitor evolution plays in the observable qualities of supernovae and supernova remnants. Through comparisons of these three different progenitor evolution scenarios, we find that the mass loss in late stages (during and after core carbon burning) can have a profound impact on the dynamics and spectral evolution of the supernova remnant centuries after core collapse.

  2. A Python Calculator for Supernova Remnant Evolution

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.; Williams, J. E.

    2017-05-01

    A freely available Python code for modeling supernova remnant (SNR) evolution has been created. This software is intended for two purposes: to understand SNR evolution and to use in modeling observations of SNR for obtaining good estimates of SNR properties. It includes all phases for the standard path of evolution for spherically symmetric SNRs. In addition, alternate evolutionary models are available, including evolution in a cloudy ISM, the fractional energy-loss model, and evolution in a hot low-density ISM. The graphical interface takes in various parameters and produces outputs such as shock radius and velocity versus time, as well as SNR surface brightness profile and spectrum. Some interesting properties of SNR evolution are demonstrated using the program.

  3. Numerical Simulations of Supernova Remnant Evolution in a Cloudy Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Smith, Randall K.; Foster, Adam

    The mixed morphology class of supernova remnants has centrally peaked X-ray emission along with a shell-like morphology in radio emission. White and Long proposed that these remnants are evolving in a cloudy medium wherein the clouds are evaporated via thermal conduction once being overrun by the expanding shock. Their analytical model made detailed predictions regarding temperature, density, and emission profiles as well as shock evolution. We present numerical hydrodynamical models in 2D and 3D including thermal conduction, testing the White and Long model and presenting results for the evolution and emission from remnants evolving in a cloudy medium. We findmore » that, while certain general results of the White and Long model hold, such as the way the remnants expand and the flattening of the X-ray surface brightness distribution, in detail there are substantial differences. In particular we find that the X-ray luminosity is dominated by emission from shocked cloud gas early on, leading to a bright peak, which then declines and flattens as evaporation becomes more important. In addition, the effects of thermal conduction on the intercloud gas, which is not included in the White and Long model, are important and lead to further flattening of the X-ray brightness profile as well as lower X-ray emission temperatures.« less

  4. The Spin Evolution of Fast-rotating, Magnetized Super-Chandrasekhar White Dwarfs in the Aftermath of White Dwarf Mergers

    NASA Astrophysics Data System (ADS)

    Becerra, L.; Rueda, J. A.; Lorén-Aguilar, P.; García-Berro, E.

    2018-04-01

    The evolution of the remnant of the merger of two white dwarfs is still an open problem. Furthermore, few studies have addressed the case in which the remnant is a magnetic white dwarf with a mass larger than the Chandrasekhar limiting mass. Angular momentum losses might bring the remnant of the merger to the physical conditions suitable for developing a thermonuclear explosion. Alternatively, the remnant may be prone to gravitational or rotational instabilities, depending on the initial conditions reached after the coalescence. Dipole magnetic braking is one of the mechanisms that can drive such losses of angular momentum. However, the timescale on which these losses occur depends on several parameters, like the strength of the magnetic field. In addition, the coalescence leaves a surrounding Keplerian disk that can be accreted by the newly formed white dwarf. Here we compute the post-merger evolution of a super-Chandrasekhar magnetized white dwarf taking into account all the relevant physical processes. These include magnetic torques acting on the star, accretion from the Keplerian disk, the threading of the magnetic field lines through the disk, and the thermal evolution of the white dwarf core. We find that the central remnant can reach the conditions suitable to develop a thermonuclear explosion before other instabilities (such as the inverse beta-decay instability or the secular axisymmetric instability) are reached, which would instead lead to gravitational collapse of the magnetized remnant.

  5. A comparison of models for supernova remnants including cosmic rays

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Drury, L. O'C.

    1992-11-01

    A simplified model which can follow the dynamical evolution of a supernova remnant including the acceleration of cosmic rays without carrying out full numerical simulations has been proposed by Drury, Markiewicz, & Voelk in 1989. To explore the accuracy and the merits of using such a model, we have recalculated with the simplified code the evolution of the supernova remnants considered in Jones & Kang, in which more detailed and accurate numerical simulations were done using a full hydrodynamic code based on the two-fluid approximation. For the total energy transferred to cosmic rays the two codes are in good agreement, the acceleration efficiency being the same within a factor of 2 or so. The dependence of the results of the two codes on the closure parameters for the two-fluid approximation is also qualitatively similar. The agreement is somewhat degraded in those cases where the shock is smoothed out by the cosmic rays.

  6. The fate of the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Lahén, Natalia; Johansson, Peter H.; Rantala, Antti; Naab, Thorsten; Frigo, Matteo

    2018-04-01

    We present a high-resolution smoothed particle hydrodynamic simulation of the Antennae galaxies (NGC 4038/4039) and follow the evolution 3 Gyr beyond the final coalescence. The simulation includes metallicity-dependent cooling, star formation, and both stellar feedback and chemical enrichment. The simulated best-match Antennae reproduce well both the observed morphology and the off-nuclear starburst. We also produce for the first time a simulated two-dimensional (2D) metallicity map of the Antennae and find good agreement with the observed metallicity of off-nuclear stellar clusters; however, the nuclear metallicities are overproduced by ˜0.5 dex. Using the radiative transfer code SKIRT, we produce multiwavelength observations of both the Antennae and the merger remnant. The 1-Gyr-old remnant is well fitted with a Sérsic profile of n = 7.07, and with an r-band effective radius of re = 1.6 kpc and velocity dispersion of σe = 180 km s-1 the remnant is located on the Fundamental Plane of early-type galaxies (ETGs). The initially blue Antennae remnant evolves on to the red sequence after ˜2.5 Gyr of secular evolution. The remnant would be classified as a fast rotator, as the specific angular momentum evolves from λRe ≈ 0.11 to 0.14 during its evolution. The remnant shows ordered rotation and a double peaked maximum in the mean 2D line-of-sight velocity. These kinematical features are relatively common amongst local ETGs and we specifically identify three local ETGs (NGC 3226, NGC 3379, and NGC 4494) in the atlas3D sample, whose photometric and kinematic properties most resemble the Antennae remnant.

  7. Expansion of Kes 73, a shell supernova remnant containing a magnetar

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz

    2014-09-01

    Formation and evolution of highly magnetized neutron stars (magnetars) remain poorly understood. We can learn about magnetars by studying their remnants. Kes 73 is a young supernova remnant containing a magnetar. But basic properties of Kes 73, including its age, remain poorly known. We propose a third-epoch observation of Kes 73 with Chandra. When combined with the 2000 and 2006 observations, this will allow for determination of the remnant's age through expansion rate measurements. We will also search for spatial variations in expansion rate that will help in understanding of the remnant's dynamics. New observations will also be used to determine abundances of heavy-element supernova ejecta, placing further constraints on the supernova that produced Kes 73.

  8. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Temim, Tea

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and/or shocked SN ejecta, hard X-rays and EUV radiation fields, and shocked circumstel- lar/interstellar gas. Our study will shed light on the evolution of dust grains from their explosive formation sites, through their violent injection into the ISM, and ultimate demise or survival as they travel through a network of interstellar shock waves. It will constitute a major advance in our understanding of the origin and evolution of dust in the Milky Way, in galaxies in general, and especially in the early universe.

  9. The structure of common-envelope remnants

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.

    2015-05-01

    We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of evolved stars. These formulae can be used to better compute the outcome of common-envelope evolution with rapid evolution codes. We find that the new formulae are necessary for accurate predictions of the properties of post-common envelope systems. Finally, we use detailed remnant models of massive stars to investigate whether hydrogen may be retained after a common-envelope phase to the point of core-collapse and so be observable in supernovae. We find that this is possible and thus common-envelope evolution may contribute to the formation of Type IIb supernovae.

  10. Evolution of Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2017-12-01

    This book, both a monograph and a graduate textbook, is based on my original research and partly on the materials prepared earlier for the 2007 and 2008 IARS Astrophysics Summer School in Istanbul, AstroMundus course 'Supernovae and Their Remnants' that was held for the first time in 2011 at the Department of Astronomy, Faculty of Mathematics, University of Belgrade, and a graduate course 'Evolution of Supernova Remnants' that I teach at the aforementioned university. The first part Supernovae (introduction, thermonuclear supernovae, core-collapse supernovae) provides introductory information and explains the classification and physics of supernova explosions, while the second part Supernova remnants (introduction, shock waves, cosmic rays and particle acceleration, magnetic fields, synchrotron radiation, hydrodynamic and radio evolution of supernova remnants), which is the field I work in, is more detailed in scope i.e. technical/mathematical. Special attention is paid to details of mathematical derivations that often cannot be found in original works or available literature. Therefore, I believe it can be useful to both, graduate students and researchers interested in the field.

  11. Limits on coronal material in normal galaxies

    NASA Technical Reports Server (NTRS)

    Mccammon, D.

    1986-01-01

    Measurements of the X-ray surface brightness of a face on disk galaxy M101, have previously been used to place upper limits on the power radiated by a hot corona. Such analysis contrains the effective density of the disk; either it must be so low that the remnants drive a fast hot wind (low radiated power) or so high that the remnant temperature at overlap is low (low X-ray power). These X-ray measurements are here used to constrain the properties of the population of supernova remnants evolving in the disk. This adds a further constraint since young remnants evolving in higher density radiate more of their energy in X-rays, whether or not they eventually overlap to generate a hot corona. The strength of this second limit depends strongly on the density history of the remnants and on the assumed supernova rate. For evaporative evolution the analysis rules out McKee and Ostriker ISM model in particular and evaporative evolution in general unless the supernova rate is at least several times lower than current expectations. For standard Sedov evolutions, the density limit marginally admits evolution in 0.2 cu m, a popular alternative to the McKee and Ostriker model.

  12. Time evolution of gamma rays from supernova remnants

    NASA Astrophysics Data System (ADS)

    Gaggero, Daniele; Zandanel, Fabio; Cristofari, Pierre; Gabici, Stefano

    2018-04-01

    We present a systematic phenomenological study focused on the time evolution of the non-thermal radiation - from radio waves to gamma rays - emitted by typical supernova remnants via hadronic and leptonic mechanisms, for two classes of progenitors: thermonuclear and core-collapse. To this aim, we develop a numerical tool designed to model the evolution of the cosmic ray spectrum inside a supernova remnant, and compute the associated multi-wavelength emission. We demonstrate the potential of this tool in the context of future population studies based on large collection of high-energy gamma-ray data. We discuss and explore the relevant parameter space involved in the problem, and focus in particular on their impact on the maximum energy of accelerated particles, in order to study the effectiveness and duration of the PeVatron phase. We outline the crucial role of the ambient medium through which the shock propagates during the remnant evolution. In particular, we point out the role of dense clumps in creating a significant hardening in the hadronic gamma-ray spectrum.

  13. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-09-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  14. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  15. Supernova remnant evolution in wind bubbles: A closer look at Kes 27

    NASA Astrophysics Data System (ADS)

    Dwarkadas, V. V.; Dewey, D.

    2013-03-01

    Massive Stars (>8M⊙) lose mass in the form of strong winds. These winds accumulate around the star, forming wind-blown bubbles. When the star explodes as a supernova (SN), the resulting shock wave expands within this wind-blown bubble, rather than the interstellar medium. The properties of the resulting remnant, its dynamics and kinematics, the morphology, and the resulting evolution, are shaped by the structure and properties of the wind-blown bubble. In this article we focus on Kes 27, a supernova remnant (SNR) that has been proposed by [1] to be evolving in a wind-blown bubble, explore its properties, and investigate whether the X-Ray properties could be ascribed to evolution of a SNR in a wind-blown bubble. Our initial model does not support the scenario proposed by [1], due to the fact that the reflected shock is expanding into much lower densities.

  16. Radio Evolution of Supernova Remnants Including Nonlinear Particle Acceleration: Insights from Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Pavlović, Marko Z.; Urošević, Dejan; Arbutina, Bojan; Orlando, Salvatore; Maxted, Nigel; Filipović, Miroslav D.

    2018-01-01

    We present a model for the radio evolution of supernova remnants (SNRs) obtained by using three-dimensional hydrodynamic simulations coupled with nonlinear kinetic theory of cosmic-ray (CR) acceleration in SNRs. We model the radio evolution of SNRs on a global level by performing simulations for a wide range of the relevant physical parameters, such as the ambient density, supernova (SN) explosion energy, acceleration efficiency, and magnetic field amplification (MFA) efficiency. We attribute the observed spread of radio surface brightnesses for corresponding SNR diameters to the spread of these parameters. In addition to our simulations of Type Ia SNRs, we also considered SNR radio evolution in denser, nonuniform circumstellar environments modified by the progenitor star wind. These simulations start with the mass of the ejecta substantially higher than in the case of a Type Ia SN and presumably lower shock speed. The magnetic field is understandably seen as very important for the radio evolution of SNRs. In terms of MFA, we include both resonant and nonresonant modes in our large-scale simulations by implementing models obtained from first-principles, particle-in-cell simulations and nonlinear magnetohydrodynamical simulations. We test the quality and reliability of our models on a sample consisting of Galactic and extragalactic SNRs. Our simulations give Σ ‑ D slopes between ‑4 and ‑6 for the full Sedov regime. Recent empirical slopes obtained for the Galactic samples are around ‑5, while those for the extragalactic samples are around ‑4.

  17. Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution.

    PubMed

    Wei, Wei; Davis, Robert E; Jomantiene, Rasa; Zhao, Yan

    2008-08-19

    Mobile genetic elements have impacted biological evolution across all studied organisms, but evidence for a role in evolutionary emergence of an entire phylogenetic clade has not been forthcoming. We suggest that mobile element predation played a formative role in emergence of the phytoplasma clade. Phytoplasmas are cell wall-less bacteria that cause numerous diseases in plants. Phylogenetic analyses indicate that these transkingdom parasites descended from Gram-positive walled bacteria, but events giving rise to the first phytoplasma have remained unknown. Previously we discovered a unique feature of phytoplasmal genome architecture, genes clustered in sequence-variable mosaics (SVMs), and suggested that such structures formed through recurrent, targeted attacks by mobile elements. In the present study, we discovered that cryptic prophage remnants, originating from phages in the order Caudovirales, formed SVMs and comprised exceptionally large percentages of the chromosomes of 'Candidatus Phytoplasma asteris'-related strains OYM and AYWB, occupying nearly all major nonsyntenic sections, and accounting for most of the size difference between the two genomes. The clustered phage remnants formed genomic islands exhibiting distinct DNA physical signatures, such as dinucleotide relative abundance and codon position GC values. Phytoplasma strain-specific genes identified as phage morons were located in hypervariable regions within individual SVMs, indicating that prophage remnants played important roles in generating phytoplasma genetic diversity. Because no SVM-like structures could be identified in genomes of ancestral relatives including Acholeplasma spp., we hypothesize that ancient phage attacks leading to SVM formation occurred after divergence of phytoplasmas from acholeplasmas, triggering evolution of the phytoplasma clade.

  18. X-ray spectroscopic observations and modeling of supernova remnants

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1981-01-01

    The X-ray observations of young remnants and their theoretical interpretation are described. A number of questions concerning the nature of the blast wave interaction with the interstellar gas and grains and of atomic processes in these hot plasmas are considered. It is concluded that future X-ray spectrometers with high collecting area, moderate spectral resolution and good spatial resolution can make important contributions to the understanding of supernova remnants in the Milky Way and neighboring galaxies and of their role in the global chemical and dynamical evolution of the interstellar medium.

  19. A simulation-based analytic model of radio galaxies

    NASA Astrophysics Data System (ADS)

    Hardcastle, M. J.

    2018-04-01

    I derive and discuss a simple semi-analytical model of the evolution of powerful radio galaxies which is not based on assumptions of self-similar growth, but rather implements some insights about the dynamics and energetics of these systems derived from numerical simulations, and can be applied to arbitrary pressure/density profiles of the host environment. The model can qualitatively and quantitatively reproduce the source dynamics and synchrotron light curves derived from numerical modelling. Approximate corrections for radiative and adiabatic losses allow it to predict the evolution of radio spectral index and of inverse-Compton emission both for active and `remnant' sources after the jet has turned off. Code to implement the model is publicly available. Using a standard model with a light relativistic (electron-positron) jet, subequipartition magnetic fields, and a range of realistic group/cluster environments, I simulate populations of sources and show that the model can reproduce the range of properties of powerful radio sources as well as observed trends in the relationship between jet power and radio luminosity, and predicts their dependence on redshift and environment. I show that the distribution of source lifetimes has a significant effect on both the source length distribution and the fraction of remnant sources expected in observations, and so can in principle be constrained by observations. The remnant fraction is expected to be low even at low redshift and low observing frequency due to the rapid luminosity evolution of remnants, and to tend rapidly to zero at high redshift due to inverse-Compton losses.

  20. Recent Progress on Supernova Remnants - Progenitors, Evolution, Cosmic-ray Acceleration

    NASA Astrophysics Data System (ADS)

    Bamba, A.

    2017-10-01

    Supernova remnants supplies heavy elements, kinetic and thermal energies, and cosmic rays, into the universe, and are the key sources to make the diversity of the universe. On the other hand, we do not know the fundamental issues of supernova remnants, such as (1) what their main progenitors are, (2) how they evolve into the realistic (non-uniform) interstellar space, and (3) which type of supernova remnants can accelerate cosmic rays to the knee energy. Recent X-ray studies with XMM-Newton, Chandra, Suzaku, NuSTAR, and Hitomi, progressed understandings of these issues, and found that each issue connect others tightly. In this paper, we will overview these progresses with focusing the above three topics, and discuss what we should do next.

  1. On the population of remnant Fanaroff-Riley type II radio galaxies and implications for radio source dynamics

    NASA Astrophysics Data System (ADS)

    Godfrey, L. E. H.; Morganti, R.; Brienza, M.

    2017-10-01

    The purpose of this work is two-fold: (1) to quantify the occurrence of ultrasteep spectrum remnant Fanaroff-Riley type II (FRII) radio galaxies in a 74 MHz flux-limited sample, and (2) perform Monte Carlo simulations of the population of active and remnant FRII radio galaxies to confront models of remnant lobe evolution, and to provide guidance for further investigation of remnant radio galaxies. We find that fewer than 2 per cent of FRII radio galaxies with S74 MHz > 1.5 Jy are candidate ultrasteep spectrum remnants, where we define ultrasteep spectrum as α _74 MHz^1400 MHz > 1.2. Our Monte Carlo simulations demonstrate that models involving Sedov-like expansion in the remnant phase, resulting in rapid adiabatic energy losses, are consistent with this upper limit, and predict the existence of nearly twice as many remnants with normal (not ultrasteep) spectra in the observed frequency range as there are ultrasteep spectrum remnants. This model also predicts an ultrasteep remnant fraction approaching 10 per cent at redshifts z < 0.5. Importantly, this model implies the lobes remain overpressured with respect to the ambient medium well after their active lifetime, in contrast with existing observational evidence that many FRII radio galaxy lobes reach pressure equilibrium with the external medium whilst still in the active phase. The predicted age distribution of remnants is a steeply decreasing function of age. In other words, young remnants are expected to be much more common than old remnants in flux-limited samples. For this reason, incorporating higher frequency data ≳5 GHz will be of great benefit to future studies of the remnant population.

  2. Supernova remnants in the GC region

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul

    2016-07-01

    Along with the central Black hole the processes of active star formation play very important role in the energetics of the Galactic center region. The SNe and their remnants (SNRs) are the main ingredients of the processes of star formation. SNRs are also the sources of electromagnetic radiation of all wavelengths from the optical to hard gamma rays. In the presented work we consider the physics of supernova remnants evolving in extreme environmental conditions which are typical for the region of the Galactic center. Because of the high density and strong inhomogeneity of the surrounding medium these objects remain practically invisible at almost all wavelengths. We model evolution of SNR taking into account the pressure of the surrounding medium and the gravitational field of the matter (stars, compact clouds, dark matter) inside the remnant. As it is well established, considerable portion of the kinetic energy of the SNR can be converted into the cosmic ray particles by diffusive shock acceleration mechanism. Therefore the effect of particle acceleration is also included in the model (with the effectiveness of acceleration as a free parameter). Using the observed radiation fluxes at different wavelengths we attempt to obtain limits on the parameters of the model of the Galactic Center, namely, the frequency of star birth, the average density of the matter and radiation field, etc.

  3. Mixing processes following the final stratospheric warming

    NASA Technical Reports Server (NTRS)

    Hess, Peter G.

    1991-01-01

    An investigation is made of the dynamics responsible for the mixing and dissolution of the polar vortex during the final stratospheric warmings. The dynamics and transport during a Northern Hemisphere final stratospheric warming are simulated via a GCM and an associated offline N2O transport model. The results are compared with those obtained from LIMS data for the final warming of 1979, with emphasis on the potential vorticity evolution in the two datasets, the modeled N2O evolution, and the observed O3 evolution. Following each warming, the remnants of the originally intact vortex are found to gradually homogenize with the atmosphere at large. Two processes leading to this homogenization are identified following the final warmings, namely, the potential vorticity field becomes decorrelated from that of the chemical tracer, and the vortex remnants begin to tilt dramatically in a vertical direction.

  4. Improved optical spectrophotometry of supernova remnants in M33

    NASA Technical Reports Server (NTRS)

    Blair, W. P.; Kirshner, R. P.

    1985-01-01

    Optical spectra of SNRs in M33 have been used to investigate abundance gradients and SNR evolution in this galaxy. Abundances of O, N, and S are derived from the spectra using new shock models by Dopita et al. (1984). The results for N and S show abundance gradients similar to those in NGC 300 and the Galaxy. The O abundances may be affected by possible contamination from H II regions and low-velocity shocks. Electron densities derived from the forbidden S II 6717 A/6731 A line ratio are used with a pressure equilibrium argument to estimate the initial explosion energy for each SNR. Evolutionary models for the remnants are investigated, and the distribution of the number of remnants with diameter is found to be consistent with free expansion of the SNRs to diameters of about 26 pc. The results may also be consistent with Sedov evolution if the ranges of initial supernova energies and surrounding interstellar medium densities are large enough.

  5. LOFAR discovery of a 700-kpc remnant radio galaxy at low redshift

    NASA Astrophysics Data System (ADS)

    Brienza, M.; Godfrey, L.; Morganti, R.; Vilchez, N.; Maddox, N.; Murgia, M.; Orru, E.; Shulevski, A.; Best, P. N.; Brüggen, M.; Harwood, J. J.; Jamrozy, M.; Jarvis, M. J.; Mahony, E. K.; McKean, J.; Röttgering, H. J. A.

    2016-01-01

    Context. Remnant radio galaxies represent the final dying phase of radio galaxy evolution in which the jets are no longer active. Remnants are rare in flux-limited samples, comprising at most a few percent. As a result of their rarity and because they are difficult to identify, this dying phase remains poorly understood and the luminosity evolution is largely unconstrained. Aims: Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. Methods: By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum, we probed characteristic timescales of the radio activity. Results: The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core that is associated with the host galaxy located at z = 0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. We find that the source has remained visible in the remnant phase for about 60 Myr, significantly longer than its active phase of 15 Myr, despite being located outside a cluster. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of ~ 300 km s-1. This interaction may have played a role in the triggering and/or shut-down of the radio jets. Conclusions: The spectral shape of this remnant radio galaxy differs from most of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. Our results demonstrate that remnant radio galaxies can show a wide range of evolutionary paths and spectral properties. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.

  6. Could organic matter have been preserved on Mars for 3.5 billion years?

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1990-01-01

    About 3.5 Gyr ago, when it is thought that Mars and earth had similar climates, biological evolution on earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period, the advent of chemical evolution and subsequent origin of life occurred on earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 Gyr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 Gyr ago, then 1.6 percent would remain buried today. Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1 percent of the organics survived impact.

  7. The supernova - supernova remnant connection through multi-dimensional magnetohydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Petruk, O.; Ono, M.

    2017-10-01

    Supernova remnants (SNRs) are diffuse extended sources often characterized by a rather complex morphology and a highly non-uniform distribution of ejecta. General consensus is that such a morphology reflects, on one hand, pristine structures and features of the progenitor supernova (SN) explosion and, on the other hand, the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM) formed in the latest stages of the progenitor star's evolution. Deciphering X-ray observations of SNRs, therefore, might open the possibility to reconstruct the ejecta structure as it was soon after the SN explosion and the structure and geometry of the medium immediately surrounding the progenitor star. This requires accurate and detailed models which describe the evolution from the on-set of the SN to the full remnant development and which connect the X-ray emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR magnetohydrodynamic models have been very effective in deciphering X-ray observations of SNR Cassiopeia A and SN 1987A. This has allowed us to unveil the average structure of ejecta in the immediate aftermath of the SN explosion and to constrain the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.

  8. QUANTITATIVE EVALUATION OF THE HYPOTHESIS THAT BL LACERTAE OBJECTS ARE QSO REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borra, E. F.

    2014-11-20

    We evaluate with numerical simulations the hypothesis that BL Lacertae objects (BLLs) are the remnants of quasi-stellar objects. This hypothesis is based on their highly peculiar redshift evolution. They have a comoving space density that increases with decreasing redshift, contrary to all other active galactic nuclei. We assume that relativistic jets are below detection in young radio-quiet quasars and increase in strength with cosmic time so that they eventually are detected as BLLs. Our numerical simulations fit very well the observed redshift distributions of BLLs. There are strong indications that only the high-synchrotron-peaked BLLs could be QSO remnants.

  9. A model of the pre-Sedov expansion phase of supernova remnant-ambient plasma coupling and X-ray emission from SN 1987A

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Maran, S. P.; Clark, R. W.

    1990-01-01

    This paper examines the mechanism responsible for coupling supernova (SN) remnant to the ambient medium during the pre-Sedov or the so-called free expansion phase, immediately following the progenitor explosion. A theory is developed for the interaction of an SN piston with the ambient medium during the pre-Sedov phase. The possibility of X-ray production by the high-speed portion of the piston during this phase is investigated. The relevant observations of high-energy emissions from the SN 1987A, including the X-ray spectrum, luminosity, and temporal development, are considered. It is shown that the commonly assumed snowplow model for SNR evolution is valid, because of the action of a variety of collisionless two-stream instabilities that permit the coupling of the ambient plasma with SNR.

  10. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valsecchi, Francesca; Rasio, Frederic A.; Rappaport, Saul

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effectsmore » of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.« less

  11. X-Rays form the Vela-Puppis Complex

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1971-01-01

    A review of X-ray observations in the vicinity of the Gum nebula is presented. There is little doubt that the filamentary nebula Stromlo 16, the radio source Vela X, and the extended X-ray object Vel XR-2 are indications of the same, relatively nearby, supernova remnant. X-ray absorption measurements are consistent with a distance of 500 + or - 100 pc. The observed X-ray spectra have not yet distinguished between thermal bremsstrahlung and synchrotron radiation as the source mechanism. A search for low energy X-ray emission lines, both within the 5 deg diameter remnant and in the larger Gum nebula, may provide an important test for models of supernova remnant evolution.

  12. Evolution Models of Helium White Dwarf–Main-sequence Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xianfei; Bi, Shaolan; Hall, Philip D.

    It is predicted that orbital decay by gravitational-wave radiation and tidal interaction will cause some close binary stars to merge within a Hubble time. The merger of a helium-core white dwarf with a main-sequence (MS) star can produce a red giant branch star that has a low-mass hydrogen envelope when helium is ignited and thus become a hot subdwarf. Because detailed calculations have not been made, we compute post-merger models with a stellar evolution code. We find the evolutionary paths available to merger remnants and find the pre-merger conditions that lead to the formation of hot subdwarfs. We find thatmore » some such mergers result in the formation of stars with intermediate helium-rich surfaces. These stars later develop helium-poor surfaces owing to diffusion. Combining our results with a model population and comparing to observed stars, we find that some observed intermediate helium-rich hot subdwarfs can be explained as the remnants of the mergers of helium-core white dwarfs with low-mass MS stars.« less

  13. Could organic matter have been preserved on Mars for 3.5 billion years?

    PubMed

    Kanavarioti, A; Mancinelli, R L

    1990-03-01

    3.5 billion years (byr) ago, when it is thought that Mars and Earth had similar climates, biological evolution on Earth had made considerable progress, such that life was abundant. It is therefore surmised that prior to this time period the advent of chemical evolution and subsequent origin of life occurred on Earth and may have occurred on Mars. Analysis for organic compounds in the soil buried beneath the Martian surface may yield useful information regarding the occurrence of chemical evolution and possibly biological evolution. Calculations based on the stability of amino acids lead to the conclusion that remnants of these compounds, if they existed on Mars 3.5 byr ago, might have been preserved buried beneath the surface oxidizing layer. For example, if phenylalanine, an amino acid of average stability, existed on Mars 3.5 byr ago, then 1.6% would remain buried today, or 25 pg-2.5 ng of C g-1 Martian soil may exist from remnants of meteoritic and cometary bombardment, assuming that 1% of the organics survived impact.

  14. Remnant radio-loud AGN in the Herschel-ATLAS field

    NASA Astrophysics Data System (ADS)

    Mahatma, V. H.; Hardcastle, M. J.; Williams, W. L.; Brienza, M.; Brüggen, M.; Croston, J. H.; Gurkan, G.; Harwood, J. J.; Kunert-Bajraszewska, M.; Morganti, R.; Röttgering, H. J. A.; Shimwell, T. W.; Tasse, C.

    2018-04-01

    Only a small fraction of observed active galactic nuclei (AGN) display large-scale radio emission associated with jets, yet these radio-loud AGN have become increasingly important in models of galaxy evolution. In determining the dynamics and energetics of the radio sources over cosmic time, a key question concerns what happens when their jets switch off. The resulting `remnant' radio-loud AGN have been surprisingly evasive in past radio surveys, and therefore statistical information on the population of radio-loud AGN in their dying phase is limited. In this paper, with the recent developments of Low-Frequency Array (LOFAR) and the Very Large Array, we are able to provide a systematically selected sample of remnant radio-loud AGN in the Herschel-ATLAS field. Using a simple core-detection method, we constrain the upper limit on the fraction of remnants in our radio-loud AGN sample to 9 per cent, implying that the extended lobe emission fades rapidly once the core/jets turn off. We also find that our remnant sample has a wide range of spectral indices (-1.5≤slant α ^{1400}_{150}≤slant -0.5), confirming that the lobes of some remnants may possess flat spectra at low frequencies just as active sources do. We suggest that, even with the unprecedented sensitivity of LOFAR, our sample may still only contain the youngest of the remnant population.

  15. Unveiling the spatial structure of the overionized plasma in the supernova remnant W49B

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Miceli, Marco; Bocchino, Fabrizio; Orlando, Salvatore; Chen, Yang

    2011-07-01

    W49B is a mixed-morphology supernova remnant with thermal X-ray emission dominated by the ejecta. In this remnant, the presence of overionized plasma has been directly established, with information about its spatial structure. However, the physical origin of the overionized plasma in W49B has not yet been understood. We investigate this intriguing issue through a 2D hydrodynamic model that takes into account, for the first time, the mixing of ejecta with the inhomogeneous circumstellar and interstellar medium, the thermal conduction, the radiative losses from optically thin plasma and the deviations from equilibrium of ionization induced by plasma dynamics. The model was set up on the basis of the observational results. We found that the thermal conduction plays an important role in the evolution of W49B, inducing the evaporation of the circumstellar ring-like cloud (whose presence has been deduced from previous observations) that mingles with the surrounding hot medium, cooling down the shocked plasma, and pushes the ejecta backwards to the centre of the remnant, forming there a jet-like structure. During the evolution, a large region of overionized plasma forms within the remnant. The overionized plasma originates from the rapid cooling of the hot plasma originally heated by the shock reflected from the dense ring-like cloud. In particular, we found two different ways for the rapid cooling of plasma to appear: (i) the mixing of relatively cold and dense material evaporated from the ring with the hot shocked plasma and (ii) the rapid adiabatic expansion of the ejecta. The spatial distribution of the radiative recombination continuum predicted by the numerical model is in good agreement with that observed.

  16. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions, and 10 re-mergers of the 40% gas remnants. All simulations were run using a version of GADGET-2 [173] that included subresolution models of radiative cooling, star formation, and supernova and AGN feedback. The potential was frozen at the last snapshot of each simulation and the orbits of ~50,000 randomly chosen stars were integrated for ~100 dynamical times, and classified based on their Fourier spectra using the algorithm of [30]. The 40% gas remnants were found to be dominated by minor-axis tube orbits in their inner regions, whereas box orbits were the dominant orbit family in the inner parts of the dissipationless disk-disk and remnant-remnant systems. The phase space available to minor-axis tube orbits in even the 5% gas remnants was much larger than that in the dissipationless remnants, but the 5% gas remnants are not fast rotators because these orbits tend to be isotropically distributed at low gas fractions. Some of the remnants show significant minor axis rotation, due to large orientation twists in their outer parts (in the 40% gas remnants) and asymmetrically rotating major-axis tube orbits throughout the remnants (in the re-mergers).

  17. A high-resolution radio image of a young supernova

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  18. The slow X-ray pulsar SXP 1062 and associated supernova remnant in the Wing of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Guerrero, M. A.; Hénault-Brunet, V.; Sun, W.; Chu, Y.-H.; Evans, C.; Gallagher, J. S.; Gruendl, R. A.; Reyes-Iturbide, J.

    2013-03-01

    SXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.

  19. Evolution and Spectrum of the Radio Emission of Tycho's Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Vinyaikin, E. N.

    2018-02-01

    The radio spectrum of Tycho's Supernova Remnant is constructed at frequencies 12.6-143 000 MHz for epoch 2010.3, taking into account the secular decrease in the radio flux density of the remnant at the rate d = -(0.46 ± 0.03)%/year: S_ν ^{3C10} (t = 2010.3) = (43.1 ± 1.8 Jy)(ν [GHz])^{ - (0.592 ± 0.019) + (0.041 ± 0.012)log (ν [GHz])} . The spectrum has positive curvature. The presence of a low-frequency turnover in the spectrum of the radio source 3C10 with its maximum at 7.7 MHz is predicted, due to absorption in the interstellar medium in the direction toward the source.

  20. Research at the Institute of Astronomy and Astrophysics of the Université Libre de Bruxelles

    NASA Astrophysics Data System (ADS)

    Karinkuzhi, Drisya; Chamel, Nicolas; Goriely, Stéphane; Jorissen, Alain; Pourbaix, Dimitri; Siess, Lionel; Van Eck, Sophie

    2018-04-01

    Over the years, a coherent research strategy has developed in the field of stellar physics at the Institute of Astronomy and Astrophysics (IAA). It involves observational studies (chemical composition of giant stars, binary properties, tomography of stellar atmospheres) that make use of the large ESO telescopes as well as of other major instruments. The presence of a high-resolution spectrograph on the 3.6-m Devasthal Optical Telescope (DOT) would therefore be highly beneficial to IAA research. These observations are complemented and supported by theoretical studies of mass transfer in binary systems, of standard and non-standard stellar evolution (including the modelling of stellar hydrodynamical nuclear burning for application to certain thermonuclear supernovae) and of nuclear astrophysics (a field in which IAA has been recognized for a long time as an international centre of excellence), including the theory of nucleosynthesis. IAA also addresses the end-points of stellar evolution as it is carrying out research on the compact remnants of stellar evolution of massive stars: neutron stars.

  1. Periodic collapse and long-time evolution of strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Cheung, P. Y.; Wong, A. Y.

    1985-10-01

    Experimental measurements on the long-time evolution of strong Langmuir turbulence in a beam-plasma system reveal a picture of periodic, short bursts of Langmuir wave collapse instead of the existence of long-lived solitons. The remnants of density cavities from burnout cavitons are observed to curtail wave growth periodically, creating time intervals of low wave activity between successive cycles of wave collapse, and establishing three regimes of wave evolution.

  2. The impact of different interstellar medium structures on the dynamical evolution of supernova remnants

    NASA Astrophysics Data System (ADS)

    Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li

    2018-05-01

    The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.

  3. Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Miceli, M.; Petruk, O.

    2017-02-01

    Supernova remnants (SNRs) are diffuse extended sources characterized by a complex morphology and a non-uniform distribution of ejecta. Such a morphology reflects pristine structures and features of the progenitor supernova (SN) and the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM). Deciphering the observations of SNRs might open the possibility to investigate the physical properties of both the interacting ejecta and the shocked CSM. This requires accurate numerical models which describe the evolution from the SN explosion to the remnant development and which connect the emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR hydrodynamic models have been very effective in deciphering observations of SNR Cassiopeia A and SN 1987A, thus unveiling the structure of ejecta in the immediate aftermath of the SN explosion and constraining the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.

  4. X-ray studies of supernova remnants: A different view of supernova explosions

    PubMed Central

    Badenes, Carles

    2010-01-01

    The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206

  5. Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Kolb, Christopher; Blondin, John; Hughes, John P.; Bucciantini, Niccolo

    2015-01-01

    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs.

  6. The impact of supernova fragments on the evolution of multisupernova remnants

    NASA Technical Reports Server (NTRS)

    Franco, J.; Ferrara, A.; Rozyczka, M.; Tenorio-Tgale, G.; Cox, D. P.

    1993-01-01

    Analytical approximations and 2D hydrodynamical simulations are used to examine the interaction of supernova fragments with the internal structure of large multisupernova remnants (MSRs). The fragments are thermalized by reverse shocks generated in the interaction with the MSR interior, which is assumed to be hot and rarefied. The evolution is divided into two stages: before and after reaching a reference distance, R(E), from the explosion site. As the density of the expanding fragment drops, the reverse shock accelerates, and, when the distance R(E) is reached, it begins to effectively erode the fragment. At some selected evolutionary times, the X-ray emission from the shocked fragment is also calculated. The direct bombardment of the MRS shell by the shocked fragment has a series of important consequences: it excites, punctures, and deforms the expanding shell.

  7. AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, Matthew D.; Points, S. D.; Smith, R. C.

    2010-12-20

    We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing opticalmore » emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H{alpha} surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.« less

  8. Imagery and spectroscopy of supernova remnants and H-2 regions

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.

    1984-01-01

    Research activities relating to supernova remnants were summarized. The topics reviewed include: progenitor stars of supernova remnants, UV/optical/radio/X-ray imagery of selected regions in the Cygnus Loop, UV/optical spectroscopy of the Cygnus Loop spur, and extragalactic supernova remnant spectra.

  9. Toward Connecting Core-Collapse Supernova Theory with Observations: Nucleosynthetic Yields and Distribution of Elements in a 15 M⊙ Blue Supergiant Progenitor with SN 1987A Energetics

    NASA Astrophysics Data System (ADS)

    Plewa, Tomasz; Handy, Timothy; Odrzywolek, Andrzej

    2014-03-01

    We compute and discuss the process of nucleosynthesis in a series of core-collapse explosion models of a 15 solar mass, blue supergiant progenitor. We obtain nucleosynthetic yields and study the evolution of the chemical element distribution from the moment of core bounce until young supernova remnant phase. Our models show how the process of energy deposition due to radioactive decay modifies the dynamics and the core ejecta structure on small and intermediate scales. The results are compared against observations of young supernova remnants including Cas A and the recent data obtained for SN 1987A. The work has been supported by the NSF grant AST-1109113 and DOE grant DE-FG52-09NA29548. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the U.S. DoE under Contract No. DE-AC02-05CH11231.

  10. Historical Evolution of the Hydrological Functioning of the Old Lake Xochimilco, Southern Mexico Basin

    NASA Astrophysics Data System (ADS)

    Gonzalez, T.; Ruvalcaba, A.

    2012-12-01

    The lacustrian area of Xochimilco is one of the remnants of the old system of lakes located in the Basin of Mexico. After the Spanish conquest, began a series of actions including hydraulic-works that have changed the original landscape of this region. This region had important springs that for more than 50 years supplied water to the Mexico City. Since 1960, the excessive exploitation of the aquifer and urban growth in the region exhausted the springs. Using historical information we were able to characterize the major phenomena that have substantially changed the hydrogeological functioning of the region, in some more than 100 years. Currently, the exploitation of extraction wells has caused a gradual decrease in their static level and the existing remnant of the old lake is maintained with treated water. Observable effects are presented. The topographic gradient has been modified occurs subsidence and fractures are visible besides a severe reduction in the lake area which has been reduced to 15% of its original extent.

  11. Energetics and Birth Rates of Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Leahy, D. A.

    2017-03-01

    Published X-ray emission properties for a sample of 50 supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) are used as input for SNR evolution modeling calculations. The forward shock emission is modeled to obtain the initial explosion energy, age, and circumstellar medium density for each SNR in the sample. The resulting age distribution yields a SNR birthrate of 1/(500 yr) for the LMC. The explosion energy distribution is well fit by a log-normal distribution, with a most-probable explosion energy of 0.5× {10}51 erg, with a 1σ dispersion by a factor of 3 in energy. The circumstellar medium density distribution is broader than the explosion energy distribution, with a most-probable density of ˜0.1 cm-3. The shape of the density distribution can be fit with a log-normal distribution, with incompleteness at high density caused by the shorter evolution times of SNRs.

  12. Searching for the pulsar in SN1987A

    NASA Astrophysics Data System (ADS)

    Staveley-Smith, Lister; Manchester, Dick; Zanardo, Giovanna

    2013-10-01

    We propose to search for a pulsar in the remnant of SN1987A. The existence of a neutron star formed after the explosion of the progenitor, Sk -69-202, is predicted by stellar evolution theory. Early neutrino detection by three separate ground-based detectors appears to confirm the formation of neutrons. Moreover, recent Compact Array observations hint at the presence of a flat-spectrum component near the centre of the remnant, possibly the result of synchrotron emission from a pulsar-powered nebula. However, the initial mass of the SN1987A progenitor is close to the limit where collapse into a black hole is predicted. It is therefore possible that fallback of matter onto the neutron star resulted in later formation of a black hole, or even a quark star. Detection or otherwise of the SN1987A pulsar would make a powerful contribution to stellar evolution theory.

  13. HI Absorption in Merger Remnants

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; Naiman, Jill

    The r -process nuclei are robustly synthesized in the material ejected during neutron star binary mergers (NSBMs). If NSBMs are indeed solely responsible for the solar system r -process abundances, a galaxy like our own would be required to host a few NSBMs per million years, with each event ejecting, on average, about 5 × 10{sup −2} M {sub ⊙} of r -process material. Because the ejecta velocities in the tidal tail are significantly larger than those in ordinary supernovae, NSBMs deposit a comparable amount of energy into the ISM. In contrast to extensive efforts studying spherical models for supernovamore » remnant evolution, calculations quantifying the impact of NSBM ejecta in the ISM have been lacking. To better understand their evolution, we perform a suite of three-dimensional hydrodynamic simulations of isolated NSBM ejecta expanding in environments with conditions adopted from Milky-Way-like galaxy simulations. Although the remnant morphology is highly complex at early times, the subsequent radiative evolution is remarkably similar to that of a standard supernova. This implies that sub-resolution supernova feedback models can be used in galaxy-scale simulations that are unable to resolve the key evolutionary phases of NSBMs. Among other quantities, we examine the radius, mass, and kinetic energy content of the remnant at shell formation. We find that the shell formation epoch is attained when the swept-up mass is about 10{sup 3}( n {sub H}/1 cm{sup −3}){sup −2/7} M {sub ⊙;} at this point, the mass fraction of r -process material is enhanced up to two orders of magnitude in relation to a solar metallicity ISM.« less

  15. Brownian motion of massive black hole binaries and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Spera, M.; Mapelli, M.

    2016-09-01

    Massive black hole binaries (BHBs) are expected to be one of the most powerful sources of gravitational waves in the frequency range of the pulsar timing array and of forthcoming space-borne detectors. They are believed to form in the final stages of galaxy mergers, and then harden by slingshot ejections of passing stars. However, evolution via the slingshot mechanism may be ineffective if the reservoir of interacting stars is not readily replenished, and the binary shrinking may come to a halt at roughly a parsec separation. Recent simulations suggest that the departure from spherical symmetry, naturally produced in merger remnants, leads to efficient loss cone refilling, preventing the binary from stalling. However, current N-body simulations able to accurately follow the evolution of BHBs are limited to very modest particle numbers. Brownian motion may artificially enhance the loss cone refilling rate in low-N simulations, where the binary encounters a larger population of stars due its random motion. Here we study the significance of Brownian motion of BHBs in merger remnants in the context of the final parsec problem. We simulate mergers with various particle numbers (from 8k to 1M) and with several density profiles. Moreover, we compare simulations where the BHB is fixed at the centre of the merger remnant with simulations where the BHB is free to random walk. We find that Brownian motion does not significantly affect the evolution of BHBs in simulations with particle numbers in excess of one million, and that the hardening measured in merger simulations is due to collisionless loss cone refilling.

  16. Chemical evolution and the preservation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1989-01-01

    Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.

  17. A broadband study of the emission from the composite supernova remnant MSH 11-62

    DOE PAGES

    Slane, Patrick; Hughes, John P.; Temim, Tea; ...

    2012-03-30

    MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. Our observations suggest a relatively young system expanding into a low-density region. We present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We also identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses asmore » particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify γ-ray emission originating from MSH 11-62. Furthermore, with density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the γ-ray emission.« less

  18. A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62

    NASA Technical Reports Server (NTRS)

    Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.; hide

    2012-01-01

    MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.

  19. Runaway companions of supernova remnants with Gaia

    NASA Astrophysics Data System (ADS)

    Boubert, Douglas; Fraser, Morgan; Evans, N. Wyn

    2018-04-01

    It is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.

  20. Convective Excitation of Inertial Modes in Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    De Pietri, Roberto; Feo, Alessandra; Font, José A.; Löffler, Frank; Maione, Francesco; Pasquali, Michele; Stergioulas, Nikolaos

    2018-06-01

    We present the first very long-term simulations (extending up to ˜140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that, at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants.

  1. Ghostly Remnant of an Explosive Past

    NASA Image and Video Library

    2007-03-07

    This enhanced image from the far-ultraviolet detector on NASA Galaxy Evolution shows a ghostly shell of ionized gas around Z Camelopardalis, a binary, or double-star system featuring a collapsed, dead star known as a white dwarf, and a companion star.

  2. EVOLUTION OF HIGH-ENERGY PARTICLE DISTRIBUTION IN MATURE SHELL-TYPE SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Houdun; Xin, Yuliang; Liu, Siming

    Multi-wavelength observations of mature supernova remnants (SNRs), especially with recent advances in γ -ray astronomy, make it possible to constrain energy distribution of energetic particles within these remnants. In consideration of the SNR origin of Galactic cosmic rays and physics related to particle acceleration and radiative processes, we use a simple one-zone model to fit the nonthermal emission spectra of three shell-type SNRs located within 2° on the sky: RX J1713.7−3946, CTB 37B, and CTB 37A. Although radio images of these three sources all show a shell (or half-shell) structure, their radio, X-ray, and γ -ray spectra are quite different,more » offering an ideal case to explore evolution of energetic particle distribution in SNRs. Our spectral fitting shows that (1) the particle distribution becomes harder with aging of these SNRs, implying a continuous acceleration process, and the particle distributions of CTB 37A and CTB 37B in the GeV range are harder than the hardest distribution that can be produced at a shock via the linear diffusive shock particle acceleration process, so spatial transport may play a role; (2) the energy loss timescale of electrons at the high-energy cutoff due to synchrotron radiation appears to be always a bit (within a factor of a few) shorter than the age of the corresponding remnant, which also requires continuous particle acceleration; (3) double power-law distributions are needed to fit the spectra of CTB 37B and CTB 37A, which may be attributed to shock interaction with molecular clouds.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx}more » 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.« less

  4. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study

    NASA Astrophysics Data System (ADS)

    Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru

    2018-06-01

    We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.

  5. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  6. General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star

    NASA Astrophysics Data System (ADS)

    Ciolfi, Riccardo; Kastaun, Wolfgang; Giacomazzo, Bruno; Endrizzi, Andrea; Siegel, Daniel M.; Perna, Rosalba

    2017-03-01

    Merging binary neutron stars (BNSs) represent the ultimate targets for multimessenger astronomy, being among the most promising sources of gravitational waves (GWs), and, at the same time, likely accompanied by a variety of electromagnetic counterparts across the entire spectrum, possibly including short gamma-ray bursts (SGRBs) and kilonova/macronova transients. Numerical relativity simulations play a central role in the study of these events. In particular, given the importance of magnetic fields, various aspects of this investigation require general relativistic magnetohydrodynamics (GRMHD). So far, most GRMHD simulations focused the attention on BNS mergers leading to the formation of a hypermassive neutron star (NS), which, in turn, collapses within few tens of ms into a black hole surrounded by an accretion disk. However, recent observations suggest that a significant fraction of these systems could form a long-lived NS remnant, which will either collapse on much longer time scales or remain indefinitely stable. Despite the profound implications for the evolution and the emission properties of the system, a detailed investigation of this alternative evolution channel is still missing. Here, we follow this direction and present a first detailed GRMHD study of BNS mergers forming a long-lived NS. We consider magnetized binaries with different mass ratios and equations of state and analyze the structure of the NS remnants, the rotation profiles, the accretion disks, the evolution and amplification of magnetic fields, and the ejection of matter. Moreover, we discuss the connection with the central engine of SGRBs and provide order-of-magnitude estimates for the kilonova/macronova signal. Finally, we study the GW emission, with particular attention to the post-merger phase.

  7. Spacetime topology change and black hole information

    NASA Astrophysics Data System (ADS)

    Hsu, Stephen D. H.

    2007-01-01

    Topology change-the creation of a disconnected baby universe-due to black hole collapse may resolve the information loss paradox. Evolution from an early time Cauchy surface to a final surface which includes a slice of the disconnected region can be unitary and consistent with conventional quantum mechanics. We discuss the issue of cluster decomposition, showing that any violations thereof are likely to be unobservably small. Topology change is similar to the black hole remnant scenario and only requires assumptions about the behavior of quantum gravity in Planckian regimes. It does not require non-locality or any modification of low-energy physics.

  8. Dance into the fire: dust survival inside supernova remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-06-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will therefore differ for different types of supernovae. I will discuss our models and results and briefly illustrate the impact of the capabilities of the Athena+ X-ray mission on the variety of astrophysical problems involving the processing of dust particles in extreme environments characterized by the presence of shocked X-ray emitting gas.

  9. Disks around stars and the growth of planetary systems.

    PubMed

    Greaves, Jane S

    2005-01-07

    Circumstellar disks play a vital evolutionary role, providing a way to move gas inward and onto a young star. The outward transfer of angular momentum allows the star to contract without breaking up, and the remnant disk of gas and particles is the reservoir for forming planets. High-resolution spectroscopy is uncovering planetary dynamics and motion within the remnant disk, and imaging at infrared to millimeter wavelengths resolves disk structure over billions of years of evolution. Most stars are born with a disk, and models of planet formation need to form such bodies from the disk material within the disk's 10-million-year life-span.

  10. Acceleration of cosmic rays in supernova-remnants

    NASA Technical Reports Server (NTRS)

    Dorfi, E. A.; Drury, L. O.

    1985-01-01

    It is commonly accepted that supernova-explosions are the dominant source of cosmic rays up to an energy of 10 to the 14th power eV/nucleon. Moreover, these high energy particles provide a major contribution to the energy density of the interstellar medium (ISM) and should therefore be included in calculations of interstellar dynamic phenomena. For the following the first order Fermi mechanism in shock waves are considered to be the main acceleration mechanism. The influence of this process is twofold; first, if the process is efficient (and in fact this is the cas) it will modify the dynamics and evolution of a supernova-remnant (SNR), and secondly, the existence of a significant high energy component changes the overall picture of the ISM. The complexity of the underlying physics prevented detailed investigations of the full non-linear selfconsistent problem. For example, in the context of the energy balance of the ISM it has not been investigated how much energy of a SN-explosion can be transfered to cosmic rays in a time-dependent selfconsistent model. Nevertheless, a lot of progress was made on many aspects of the acceleration mechanism.

  11. The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Coyle, Nina M.; Yamaguchi, Hiroya; Depasquale, Joseph; Seitenzahl, Ivo R.; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; hide

    2017-01-01

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 tufts of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.22.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km/s, with a mean of 4430 km/s. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km/s. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  12. SDSS 1240+6710: a partially burnt supernova remnant

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2016-10-01

    We have recently (Kepler et al. 2016, Science 352, 6281, April 1 issue) identified SDSSJ124043.01+671034.68 as a white dwarf with most peculiar characterstics. Instead of the usual hydrogen or helium, its atmosphere is composed almost purely of oxygen, the only other trace elements detected are neon, magnesium, and silicon; and it has a large transverse velocity of 340km/s. The relatively low mass, 0.6Msun, and the non-detection of carbon strongly argue against SDSSJ1240+6710 being a canonical oxygen-neon core formed from the evolution of a single progenitor star with a mass of 6.5-10Msun. The detection of silicon suggests that the progenitor of this white dwarf may have initiated oxygen-burning, and we argue that SDSSJ1240+6710 is the partially burnt remnant of an unusual thermonuclear supernova, of which a variety have been discovered by the ongoing large transient surveys. We propose to obtain COS ultraviolet spectroscopy of SDSSJ1240+6710 to measure (1) the abundances of phosphorus and sulfur, two other products of oxygen-burning, (2) significantly improve the upper limits on hydrogen (from Ly alpha) and carbon (1330/1335A resonance lines), (3) probe for traces of other nuclear burning, including nitrogen, iron, and nickel, and (4) accurately measure its effective temperature and mass. SDSSJ1240+6710 provides so far the unique opportunity to test the predictions of the rapidly growing number of theoretical stellar explosion models producing gravitationally bound remnants.

  13. Cosmic Ray Production in Supernovae

    NASA Astrophysics Data System (ADS)

    Bykov, A. M.; Ellison, D. C.; Marcowith, A.; Osipov, S. M.

    2018-02-01

    We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above 10^{18} eV over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.

  14. The remnant of the European rabbit (Oryctolagus cuniculus) IgD gene

    PubMed Central

    Esteves, Pedro J.; Knight, Katherine L.

    2017-01-01

    Although IgD first appeared, along with IgM, in the cartilaginous fishes and has been retained throughout subsequent vertebrate evolution, it has been lost in a diverse group of vertebrate species. We previously showed that, unlike vertebrates that express IgD, the rabbit lacks an IgD (Cδ) gene within 13.5 kb downstream of the IgM gene. We report here that, by conducting BLAST searches of rabbit Ig heavy chain genomic DNA with known mammalian IgD exons, we identified the remnant of the rabbit Cδ gene approximately 21 kb downstream of the IgM gene. The remnant Cδ locus lacks the δCH1 and hinge exons, but contains truncated δCH2 and δCH3 exons, as well as largely intact, but non-functional, secretory and transmembrane exons. In addition, we report that the Cδ gene probably became non-functional in leporids at least prior to the divergence of rabbits and hares ~12 million years ago. PMID:28832642

  15. Dust Production and Particle Acceleration in Supernova 1987A Revealed with ALMA

    NASA Technical Reports Server (NTRS)

    Indebetouw, R.; Matsuura, M.; Dwek, E.; Zanardo, G.; Barlow, M. J.; Baes, M.; Bouchet, P.; Burrows, D. N.; Chevalier, R.; Clayton, G. C.; hide

    2014-01-01

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/ Submillimeter Array to observe SN1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 µm, 870 µm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 Solar Mass). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  16. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in themore » GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.« less

  17. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  18. The evolving instability of the remnant Larsen B Ice Shelf and its tributary glaciers

    NASA Astrophysics Data System (ADS)

    Khazendar, Ala; Borstad, Christopher P.; Scheuchl, Bernd; Rignot, Eric; Seroussi, Helene

    2015-06-01

    Following the 2002 disintegration of the northern and central parts of the Larsen B Ice Shelf, the tributary glaciers of the southern surviving part initially appeared relatively unchanged and hence assumed to be buttressed sufficiently by the remnant ice shelf. Here, we modify this perception with observations from IceBridge altimetry and InSAR-inferred ice flow speeds. Our analyses show that the surfaces of Leppard and Flask glaciers directly upstream from their grounding lines lowered by 15 to 20 m in the period 2002-2011. The thinning appears to be dynamic as the flow of both glaciers and the remnant ice shelf accelerated in the same period. Flask Glacier started accelerating even before the 2002 disintegration, increasing its flow speed by ∼55% between 1997 and 2012. Starbuck Glacier meanwhile did not change much. We hypothesize that the different evolutions of the three glaciers are related to their dissimilar bed topographies and degrees of grounding. We apply numerical modeling and data assimilation that show these changes to be accompanied by a reduction in the buttressing afforded by the remnant ice shelf, a weakening of the shear zones between its flow units and an increase in its fracture. The fast flowing northwestern part of the remnant ice shelf exhibits increasing fragmentation, while the stagnant southeastern part seems to be prone to the formation of large rifts, some of which we show have delimited successive calving events. A large rift only 12 km downstream from the grounding line is currently traversing the stagnant part of the ice shelf, defining the likely front of the next large calving event. We propose that the flow acceleration, ice front retreat and enhanced fracture of the remnant Larsen B Ice Shelf presage its approaching demise.

  19. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Alternative thermal histories. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Leake, M. A.

    1982-01-01

    Interpretations supporting a differentiated, once active Mercury are listed. Alternative scenarios of the planet's thermal history involve: different distributions of accreted materials, including uranium and thorium-rich materials; variations of early melting; and different modes of plains and scarp formation. Arguments are advanced which strongly favor plains formation by volcanism, lack of a primordial surface, and possible identification of remnant tensional features. Studies of remotely sensed data which strongly suggest a modestly homogeneous surface of silicates imply core separation. Reasons for accepting or rejecting various hypotheses for thermal histories of the planet are mentioned.

  20. Optical Emission Associated with the Galactic Supernova Remnant G179.0+2.6

    NASA Astrophysics Data System (ADS)

    How, Thomas G.; Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Outters, Nicolas

    2018-04-01

    Narrow passband optical images of the large Galactic supernova remnant G179.0+2.6 reveal a faint but nearly complete emission shell dominated by strong [O 3] 4959,5007 Å line emission. The remnant's optical emission, which consists of both diffuse and filamentary features, is brightest along its southern and northeastern limbs. Deep Hα images detect little coincidence emission indicating an unusually high [O 3]/Hα emission ratio for such a large and apparently old remnant. Low-dispersion optical spectra of several regions confirm large [O 3]/Hα line ratios with typical values around 10. The dominance of [O 3] emission for the majority of the remnant's optical filaments suggests shock velocities above 100 km s-1 are present throughout most of the remnant, likely reflecting a relatively low density ambient ISM. The remnant's unusually strong [O 3] emission adds to the remnant's interesting set of properties which include a thick radio emission shell, radial polarization of its radio emission like that typically seen in young supernova remnants, and an unusually slow-rotating gamma-ray pulsar with a characteristic spin-down age ≃ 50 kyr.

  1. The presence of dysplastic nevus remnants in malignant melanomas. A population-based study of 551 malignant melanomas.

    PubMed

    Hastrup, N; Osterlind, A; Drzewiecki, K T; Hou-Jensen, K

    1991-08-01

    We examined 512 malignant melanomas, representing all newly diagnosed cutaneous malignant melanomas, excluding lentigo maligna melanomas, from the period October 1, 1982 to March 31, 1985 occurring in the region of eastern Denmark in patients aged 20-79 years for the presence of dysplastic nevus remnants. Criteria for the diagnosis of a dysplastic nevus remnant include all the following changes (a) lentiginous or epithelioid melanocyte hyperplasia, (b) cytologic melanocyte atypia, (c) eosinophilic fibroplasia, (d) lamellar fibroplasia, and (e) lymphocytic infiltration in the dermis. Dysplastic nevus remnants were found in association with 34 (7%) of the evaluable 512 malignant melanomas. Fourteen (41%) of the remnants were of compound nevus type. In nine (27%) of the remnants, atypia was pronounced. Most (62%) dysplastic nevus remnants were contiguous to thin superficial spreading melanomas. We conclude from this population-based study that about 7% of malignant melanomas arise in prior dysplastic nevi.

  2. Risk of venous congestion in live donors of extended right liver graft

    PubMed Central

    Radtke, Arnold; Sgourakis, George; Molmenti, Ernesto P; Beckebaum, Susanne; Cicinnati, Vito R; Schmidt, Hartmut; Peitgen, Heinz-Otto; Broelsch, Christoph E; Malagó, Massimo; Schroeder, Tobias

    2015-01-01

    AIM: To investigate middle hepatic vein (MHV) management in adult living donor liver transplantation and safer remnant volumes (RV). METHODS: There were 59 grafts with and 12 grafts without MHV (including 4 with MHV-5/8 reconstructions). All donors underwent our five-step protocol evaluation containing a preoperative protocol liver biopsy Congestive vs non-congestive RV, remnant-volume-body-weight ratios (RVBWR) and postoperative outcomes were evaluated in 71 right graft living donors. Dominant vs non-dominant MHV anatomy in total liver volume (d-MHV/TLV vs nd-MHV/TLV) was constellated with large/small congestion volumes (CV-index). Small for size (SFS) and non-SFS remnant considerations were based on standard cut-off- RVBWR and RV/TLV. Non-congestive RVBWR was based on non-congestive RV. RESULTS: MHV and non-MHV remnants showed no significant differences in RV, RV/TLV, RVBWR, total bilirubin, or INR. SFS-remnants with RV/TLV < 30% and non-SFS-remnants with RV/TLV ≥ 30% showed no significant differences either. RV and RVBWR for non-MHV (n = 59) and MHV-containing (n = 12) remnants were 550 ± 95 mL and 0.79 ± 0.1 mL vs 568 ± 97 mL and 0.79 ± 0.13, respectively (P = 0.423 and P = 0.919. Mean left RV/TLV was 35.8% ± 3.9%. Non-MHV (n = 59) and MHV-containing (n = 12) remnants (34.1% ± 3% vs 36% ± 4% respectively, P = 0.148. Eight SFS-remnants with RVBWR < 0.65 had a significantly smaller RV/TLV than 63 non-SFS-remnants with RVBWR ≥ 0.65 [SFS: RV/TLV 32.4% (range: 28%-35.7%) vs non-SFS: RV/TLV 36.2% (range: 26.1%-45.5%), P < 0.009. Six SFS-remnants with RV/TLV < 30% had significantly smaller RVBWR than 65 non-SFS-remnants with RV/TLV ≥ 30% (0.65 (range: 0.6-0.7) vs 0.8 (range: 0.6-1.27), P < 0.01. Two (2.8%) donors developed reversible liver failure. RVBWR and RV/TLV were concordant in 25%-33% of SFS and in 92%-94% of non-SFS remnants. MHV management options including complete MHV vs MHV-4A selective retention were necessary in n = 12 vs n = 2 remnants based on particularly risky congestive and non-congestive volume constellations. CONCLUSION: MHV procurement should consider individual remnant congestive- and non-congestive volume components and anatomy characteristics, RVBWR-RV/TLV constellation enables the identification of marginally small remnants. PMID:26019467

  3. A Chandra X-Ray Survey of Ejecta in the Cassiopeia A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Laming, J. Martin

    2011-01-01

    We present a survey of the X-ray emitting ejecta in the Cassiopeia A supernova remnant based on an extensive analysis of over 6000 spectral regions extracted on 2.5-10" angular scales using the Chandra 1 Ms observation. We interpret these results in the context of hydrodynamical models for the evolution of the remnant. The distributions of fitted temperature and ionization age are highly peaked and suggest that the ejecta were subjected to multiple secondary shocks. Based on the fitted emission measure and element abundances, and an estimate of the emitting volume, we derive masses for the X-ray emitting ejecta as well as showing the distribution of the mass of various elements over the remnant. The total shocked Fe mass appears to be roughly 0.14 Solar Mass, which accounts for nearly all of the mass expected in Fe ejecta. We find two populations of Fe ejecta, that associated with normal Si-burning and that associated with alpha-rich freeze-out, with a mass ratio of approximately 2:1. Surprisingly, essentially all of this Fe (both components) is well outside the central regions of the SNR, presumably having been ejected by hydrodynamic instabilities during the explosion. We discuss this, and its implications for the neutron star kick.

  4. Rotation and magnetism in intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Quentin, Léo G.; Tout, Christopher A.

    2018-06-01

    Rotation and magnetism are increasingly recognized as important phenomena in stellar evolution. Surface magnetic fields from a few to 20 000 G have been observed and models have suggested that magnetohydrodynamic transport of angular momentum and chemical composition could explain the peculiar composition of some stars. Stellar remnants such as white dwarfs have been observed with fields from a few to more than 109 G. We investigate the origin of and the evolution, on thermal and nuclear rather than dynamical time-scales, of an averaged large-scale magnetic field throughout a star's life and its coupling to stellar rotation. Large-scale magnetic fields sustained until late stages of stellar evolution with conservation of magnetic flux could explain the very high fields observed in white dwarfs. We include these effects in the Cambridge stellar evolution code using three time-dependant advection-diffusion equations coupled to the structural and composition equations of stars to model the evolution of angular momentum and the two components of the magnetic field. We present the evolution in various cases for a 3 M_{⊙} star from the beginning to the late stages of its life. Our particular model assumes that turbulent motions, including convection, favour small-scale field at the expense of large-scale field. As a result, the large-scale field concentrates in radiative zones of the star and so is exchanged between the core and the envelope of the star as it evolves. The field is sustained until the end of the asymptotic giant branch, when it concentrates in the degenerate core.

  5. On the diversity of compact objects within supernova remnants - I. A parametric model for magnetic field evolution

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar

    2016-04-01

    A wealth of X-ray and radio observations has revealed in the past decade a growing diversity of neutron stars (NSs) with properties spanning orders of magnitude in magnetic field strength and ages, and with emission processes explained by a range of mechanisms dictating their radiation properties. However, serious difficulties exist with the magneto-dipole model of isolated NS fields and their inferred ages, such as a large range of observed braking indices (n, with values often <3) and a mismatch between the NS and associated supernova remnant (SNR) ages. This problem arises primarily from the assumptions of a constant magnetic field with n = 3, and an initial spin period that is much smaller than the observed current period. It has been suggested that a solution to this problem involves magnetic field evolution, with some NSs having magnetic fields buried within the crust by accretion of fall-back supernova material following their birth. In this work, we explore a parametric phenomenological model for magnetic field growth that generalizes previous suggested field evolution functions, and apply it to a variety of NSs with both secure SNR associations and known ages. We explore the flexibility of the model by recovering the results of previous work on buried magnetic fields in young NSs. Our model fits suggest that apparently disparate classes of NSs may be related to one another through the time evolution of the magnetic field.

  6. Impacto ambiental de los remanentes de supernova

    NASA Astrophysics Data System (ADS)

    Dubner, G. M.

    2015-08-01

    The explosion of a supernovae (SN) represents the sudden injection of about ergs of thermal and mechanical energy in a small region of space, causing the formation of powerful shock waves that propagate through the interstellar medium at speeds of several thousands of km/s. These waves sweep, compress and heat the interstellar material that they encounter, forming the supernova remnants. Their evolution over thousands of years change forever, irreversibly, not only the physical but also the chemical properties of a vast region of space that can span hundreds of parsecs. This contribution briefly analyzes the impact of these explosions, discussing the relevance of some phenomena usually associated with SNe and their remnants in the light of recent theoretical and observational results.

  7. Approximate supernova remnant dynamics with cosmic ray production

    NASA Technical Reports Server (NTRS)

    Voelk, H. J.; Drury, L. O.; Dorfi, E. A.

    1985-01-01

    Supernova explosions are the most violent and energetic events in the galaxy and have long been considered probably sources of Cosmic Rays. Recent shock acceleration models treating the Cosmic Rays (CR's) as test particles nb a prescribed Supernova Remnant (SNR) evolution, indeed indicate an approximate power law momentum distribution f sub source (p) approximation p(-a) for the particles ultimately injected into the Interstellar Medium (ISM). This spectrum extends almost to the momentum p = 1 million GeV/c, where the break in the observed spectrum occurs. The calculated power law index approximately less than 4.2 agrees with that inferred for the galactic CR sources. The absolute CR intensity can however not be well determined in such a test particle approximation.

  8. The surviving companions in type Ia supernova remnants

    NASA Astrophysics Data System (ADS)

    Chen, Li-Qing; Meng, Xiang-Cun; Han, Zhan-Wen

    2017-08-01

    The single-degenerate (SD) model is one of the most popular progenitor models of type Ia supernovae (SNe Ia), in which the companion star can survive after an SN Ia explosion and show peculiar properties. Therefore, searching for the surviving companion in type Ia supernova remnants (SNRs) is a potential method to verify the SD model. In the SN 1604 remnant (Kepler’s SNR), although Chandra X-ray observation suggests that the progenitor is most likely a WD+AGB system, a the surviving companion has not been found. One possible reason is rapid rotation of the white dwarf (WD), causing explosion of the WD to be delayed for a spin-down timescale, and then the companion evolved into a WD before the supernova explosion, so the companion is too dim to be detected. We aim to verify this possible explanation by carrying out binary evolution calculations. In this paper, we use Eggleton’s stellar evolution code to calculate the evolution of binaries consisting of a WD+red giant (RG). We assume that the rapidly rotating WD can continuously increase its mass when its mass exceeds the Chandrasekhar mass limit ({M}{{Ch}}=1.378 {M}⊙ ) until the mass-transfer rate decreases to be lower than a critical value. Eventually, we obtain the final masses of a WD in the range 1.378 M ⊙ to 2.707 M ⊙. We also show that if the spin-down time is less than 106 yr, the companion star will be very bright and easily observed; but if the spin-down time is as long as ˜ 107 yr, the luminosities of the surviving companion would be lower than the detection limit. Our simulation provides guidance in hunting for the surviving companion stars in SNRs, and the fact that no surviving companion has been found in Kepler’s SNR may not be definite evidence disfavoring the SD origin of Kepler’s SN.

  9. An explanation of the formation of the peculiar periphery of Tycho's supernova remnant

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Yu, Huan; Zhang, Li

    2018-02-01

    Tycho's supernova remnant (SNR) has a periphery that clearly deviates from a spherical shape, based on X-ray and radio observations. The forward shock from the south-east to the north of the remnant has a deformed outline with a depression in the east, although in the west it is generally round and smooth. Moreover, at some locations in the shell, the supernova ejecta is located close to the forward shock, resulting in protrusions. Using 3D hydrodynamical simulations, we studied the dynamical evolution of the supernova ejecta in an inhomogeneous medium and the formation process of the profile of the forward shock. In order to reproduce the peculiar periphery of the remnant, we propose a model in which the supernova ejecta has evolved in a cavity blown by a latitude-dependent outflow. The results indicate that the depression to the east and the protrusion to the south-east on the observed periphery of the remnant can be generally reproduced if we assume a wind bubble driven by an anisotropic wind with a mass-loss rate of ˜10-7 M⊙ yr-1, a pole velocity of ˜100 km s-1, a duration of ˜105 yr prior to the supernova explosion, and a spatial velocity of ˜30 km s-1 of the progenitor with respect to the circumstellar medium. In conclusion, an explanation of the peculiar shape of the periphery of Tycho's SNR is that the supernova ejecta evolved in the cavity driven by a latitude-dependent wind.

  10. The Science of Gravitational Waves with Space Observatories

    NASA Technical Reports Server (NTRS)

    Thorpe, James Ira

    2013-01-01

    After decades of effort, direct detection of gravitational waves from astrophysical sources is on the horizon. Aside from teaching us about gravity itself, gravitational waves hold immense promise as a tool for general astrophysics. In this talk I will provide an overview of the science enabled by a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band including the nature and evolution of massive black holes and their host galaxies, the demographics of stellar remnant compact objects in the Milky Way, and the behavior of gravity in the strong-field regime. I will also summarize the current status of efforts in the US and Europe to implement a space-based gravitational wave observatory.

  11. Planetary Magnetism

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.

    2007-01-01

    The chapter on Planetary Magnetism by Connerney describes the magnetic fields of the planets, from Mercury to Neptune, including the large satellites (Moon, Ganymede) that have or once had active dynamos. The chapter describes the spacecraft missions and observations that, along with select remote observations, form the basis of our knowledge of planetary magnetic fields. Connerney describes the methods of analysis used to characterize planetary magnetic fields, and the models used to represent the main field (due to dynamo action in the planet's interior) and/or remnant magnetic fields locked in the planet's crust, where appropriate. These observations provide valuable insights into dynamo generation of magnetic fields, the structure and composition of planetary interiors, and the evolution of planets.

  12. The positive binding energy envelopes of low-mass helium stars

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2018-04-01

    It has been hypothesized that stellar envelopes with positive binding energy may be ejected if the release of recombination energy can be triggered and the calculation of binding energy includes this contribution. The implications of this hypothesis for the evolution of normal hydrogen-rich stars have been investigated, but the implications for helium stars - which may represent mass-transfer or merger remnants in binary star systems - have not. Making a set of model helium stars, we find that those with masses between 0.9 and 2.4 M⊙ evolve to configurations with positive binding energy envelopes. We discuss consequences of the ejection hypothesis for such stars, and possible observational tests of these predictions.

  13. Search for a Radio Pulsar in the Remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Zhang, S.-B.; Dai, S.; Hobbs, G.; Staveley-Smith, L.; Manchester, R. N.; Russell, C. J.; Zanardo, G.; Wu, X.-F.

    2018-06-01

    We have observed the remnant of supernova SN 1987A (SNR 1987A), located in the Large Magellanic Cloud (LMC), to search for periodic and/or transient radio emission with the Parkes 64 m-diameter radio telescope. We found no evidence of a radio pulsar in our periodicity search and derived 8σ upper bounds on the flux density of any such source of 31 μJy at 1.4 GHz and 21 μJy at 3 GHz. Four candidate transient events were detected with greater than 7σ significance, with dispersion measures (DMs) in the range 150 to 840 cm-3 pc. For two of them, we found a second pulse at slightly lower significance. However, we cannot at present conclude that any of these are associated with a pulsar in SNR 1987A. As a check on the system, we also observed PSR B0540-69, a young pulsar which also lies in the LMC. We found eight giant pulses at the DM of this pulsar. We discuss the implications of these results for models of the supernova remnant, neutron star formation and pulsar evolution.

  14. Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case

    NASA Astrophysics Data System (ADS)

    Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta; Shibata, Masaru

    2017-09-01

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.

  15. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P., E-mail: jslavin@cfa.harvard.edu

    2015-04-10

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grainmore » destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s{sup −1} for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM.« less

  16. Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.

  17. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  18. FOC Imaging of the Dusty Envelopes of Mass-Losing Supergiants

    NASA Astrophysics Data System (ADS)

    Kastner, Joel

    1996-07-01

    Stars more massive than 10 M_odot are destined to explode as supernovae {SN}. Pre-SN mass loss can prolong core buildup, and the rate and duration of mass loss therefore largely determines a massive star's post-main sequence evolution and its position in the H-R diagram prior to SN detonation. The envelope ejected by a mass-losing supergiant also plays an important role in the formation and evolution of a SN remnant. We propose to investigate these processes with HST. We will use the FOC to image two massive stars that are in different stages of post-main sequence evolution: VY CMa, the prototype for a class of heavily mass-losing OH/IR supergiants, and HD 179821, a post-red supergiant that is likely in transition to the Wolf-Rayet phase. Both are known to possess compact reflection nebulae, but ground-based techniques are unable to separate the inner nebulosities from the PSF of the central stars. We will use the unparalleled resolution of the FOC to probe the structure of these nebulae at subarcsecond scales. These data will yield the mass loss histories of the central stars and will demonstrate the presence or absence of axisymmetric mass loss and circumstellar disks. In so doing, our HST/FOC program will define the role of mass loss in determining the fates of SN progenitors and SN remnants.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekki, Kenji

    We propose that there is an evolutionary link between ultra-compact blue dwarf galaxies (UCBDs) with active star formation and nucleated dwarfs based on the results of numerical simulations of dwarf–dwarf merging. We consider the observational fact that low-mass dwarfs can be very gas-rich, and thereby investigate the dynamical and chemical evolution of very gas-rich, dissipative dwarf–dwarf mergers. We find that the remnants of dwarf–dwarf mergers can be dominated by new stellar populations formed from the triggered starbursts and consequently can have blue colors and higher metallicities (Z ∼ [0.2–1]Z{sub ⊙}). We also find that the remnants of these mergers canmore » have rather high mass densities (10{sup 4} M{sub ⊙} pc{sup −3}) within the central 10 pc and small half-light radii (40−100 pc). The radial stellar structures of some merger remnants are similar to those of nucleated dwarfs. Star formation can continue in nuclear gas disks (R < 100 pc) surrounding stellar galactic nuclei (SGNs) so that the SGNs can finally have multiple stellar populations with different ages and metallicities. These very compact blue remnants can be identified as UCBDs soon after merging and as nucleated dwarfs after the young stars fade. We discuss these results in the context of the origins of metal-rich ultra-compact dwarfs and SGNs.« less

  20. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  1. Diffuse remnants of supernova explosions of moving massive stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    The modification of the ambient interstellar medium by the wind of massive stars (the progenitors of most of supernovae) results in that the structure and evolution of diffuse supernova remnants (SNRs) significantly deviate from those derived from standard models of SNRs based of the Sedov-Taylor solution. The stellar proper motion and the regular interstellar magnetic field affect the symmetry of the processed medium and cause the SNR to be non-spherically-symmetric. We show that taking into account these effects allows us to explain the diverse morphologies of the known SNRs (the particular attention is paid to the elongated axisymmetric SNRs and the SNRs consisting of two partially overlapping shells) and to infer the ``true" supernova explosion sites in some peculiar SNRs (therefore to search for new neutron stars associated with them).

  2. Gravitational wave signals and cosmological consequences of gravitational reheating

    NASA Astrophysics Data System (ADS)

    Artymowski, Michał; Czerwińska, Olga; Lalak, Zygmunt; Lewicki, Marek

    2018-04-01

    Reheating after inflation can proceed even if the inflaton couples to Standard Model (SM) particles only gravitationally. However, particle production during the transition between de-Sitter expansion and a decelerating Universe is rather inefficient and the necessity to recover the visible Universe leads to a non-standard cosmological evolution initially dominated by remnants of the inflaton field. We remain agnostic to the specific dynamics of the inflaton field and discuss a generic scenario in which its remnants behave as a perfect fluid with a general barotropic parameter w. Using CMB and BBN constraints we derive the allowed range of inflationary scales. We also show that this scenario results in a characteristic primordial Gravitational Wave (GW) spectrum which gives hope for observation in upcoming runs of LIGO as well as in other planned experiments.

  3. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  4. Volatile inventory and early evolution of the planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marov, Mikhail Ya.; Ipatov, Sergei I.

    Formation of atmospheres of the inner planets involved the concurrent processes of mantle degassing and collisions that culminated during the heavy bombardment. Volatile-rich icy planetesimals impacting on the planets as a late veneer strongly contributed to the volatile inventory. Icy remnants of the outer planet accretion significantly complemented the accumulation of the lithophile and atmophile elements forced out onto the surface of the inner planets from silicate basaltic magma enriched in volatiles. Orbital dynamics of small bodies, including near-Earth asteroids, comets, and bodies from the Edgeworth-Kuiper belt evolving to become inner planet crossers, is addressed to examine different plausible amounts of volatile accretion. The relative importance of comets and chondrites in the delivery of volatiles is constrained by the observed fractionation pattern of noble gas abundances in the atmospheres of inner planets. The following development of the early atmospheres depended on the amount of volatiles expelled from the interiors and deposited by impactors, while the position of the planet relative to the Sun and its mass affected its climatic evolution.

  5. Supernova Explosions Stay In Shape

    NASA Astrophysics Data System (ADS)

    2009-12-01

    At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. A new study of images from NASA's Chandra X-ray Observatory on supernova remnants - the debris from exploded stars - shows that the symmetry of the remnants, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed. "It's almost like the supernova remnants have a 'memory' of the original explosion," said Laura Lopez of the University of California at Santa Cruz, who led the study. "This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way." Astronomers sort supernovas into several categories, or "types", based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas. Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud. For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion - the so-called Type Ia - left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as "standard candles" for measuring cosmic distances. On the other hand, the remnants tied to the "core-collapse" supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes. "If we can link supernova remnants with the type of explosion", said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, "then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off." Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed. Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an "oddball". This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant. "We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight," said Lopez. "But we'll definitely be looking at that one again." While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them. The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  6. Evolution of Supernova Remnants Near the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalinewich, A.; Piran, T.; Sari, R.

    Supernovae near the Galactic center (GC) evolve differently from regular Galactic supernovae. This is mainly due to the environment into which the supernova remnants (SNRs) propagate. SNRs near the GC propagate into a wind swept environment with a velocity directed away from the GC, and a graded density profile. This causes these SNRs to be non-spherical, and to evolve faster than their Galactic counterparts. We develop an analytic theory for the evolution of explosions within a stellar wind, and verify it using a hydrodynamic code. We show that such explosions can evolve in one of three possible morphologies. Using thesemore » results we discuss the association between the two SNRs (SGR East and SGR A’s bipolar radio/X-ray lobes) and the two neutron stars (the Cannonball and SGR J1745-2900) near the GC. We show that, given the morphologies of the SNR and positions of the neutron stars, the only possible association is between SGR A’s bipolar radio/X-ray lobes and SGR J1745-2900. If a compact object was created in the explosion of SGR East, it remains undetected, and the SNR of the supernova that created the Cannonball has already disappeared.« less

  7. REVIEWS OF TOPICAL PROBLEMS: Birth and life of massive black holes

    NASA Astrophysics Data System (ADS)

    Dokuchaev, V. I.

    1991-06-01

    The problems of massive black holes in galactic nuclei of different types are reviewed. The dynamical evolution of compact star systems ends naturally in a gigantic concentrated mass of gas, containing an admixture of surviving stars, that unavoidably collapses into a black hole. The subsequent joint evolution of the remnant star system with a massive black hole at the center leads either to the phenomenon of a bright central source in the nuclei of active galaxies and quasars or to the opposite case of a "dead" frozen black hole in the nucleus of a normal galaxy.

  8. Dosimetry in differentiated thyroid carcinoma (12-1402R)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minguez, Pablo; Genolla, Jose; Celeiro, Jose Javier

    2013-01-15

    Purpose: The aim of this study has been to perform a dosimetric study in the treatments of differentiated thyroid cancer (DTC) performed in our center in order to find a dose-effect correlation. Methods: Thirty patients treated for DTC with 3700 MBq of {sup 131}I have been included in this study. For reasons of radiological protection all of them spent two nights as inpatients. Dose rate at 1 m from all patients was measured approximately 20 and 44 h after the administration of the radioiodine and a whole body scan in the gamma camera was performed approximately 1 week later. Withmore » those measurements and by using a model of two compartments the activities in thyroid bed remnants and in the whole body were calculated as a function of time. The integration of both activities yields the corresponding cumulated activities. Absorbed doses to thyroid bed remnants and to the whole body can be calculated following the MIRDOSE method-that is, by multiplying the corresponding cumulated activities by the corresponding S factors. Results: The absorbed doses to thyroid bed remnants calculated in this study fall into a very wide range (13-1161 Gy) and showed the highest correlation factors with the following parameters: the absorbed dose rate to thyroid bed remnants, the cumulated activity in thyroid bed remnants, and the maximum radioiodine uptake in thyroid bed remnants. The absorbed doses to the whole body range from 0.12 to 0.23 Gy. The ablation was successful in all patients, and in spite of the wide range of absorbed doses to thyroid bed remnants obtained, no dose-effect correlation could be obtained. Conclusions: Facing DTC treatments from a dosimetric viewpoint in which a predosimetry to calculate the activity of {sup 131}I to be administered is performed is a subject difficult to handle. This statement is based on the fact that although a very wide range of absorbed doses to thyroid bed remnants was obtained (including several absorbed doses well below some dose thresholds previously published to achieve ablation of thyroid bed remnants), ablation of thyroid bed remnants was successful for all patients and therefore no dose-effect correlation could be determined.« less

  9. A mid-life crisis? Sudden changes in radio and X-ray emission from supernova 1970G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittmann, J. A.; Soderberg, A. M.; Margutti, R.

    2014-06-10

    Supernovae (SNe) provide a backdrop from which we can probe the end state of stellar evolution in the final years before the progenitor star explodes. As the shock from the SN expands, the timespan of mass-loss history we are able to probe also extends, providing insight to rapid timescale processes that govern the end state of massive stars. While SNe transition into remnants on timescales of decades to centuries, observations of this phase are currently limited. Here, we present observations of SN 1970G, serendipitously observed during the monitoring campaign of SN 2011fe, which shares the same host galaxy. Utilizing themore » new Jansky Very Large Array (VLA) upgrade and a deep X-ray exposure taken by Chandra, we are able to recover this middle-aged SN and distinctly resolve it from the H II cloud with which it is associated. We find that the flux density of SN 1970G has changed significantly since it was last observed—the X-ray luminosity has increased by a factor of ∼3, while we observe a significantly lower radio flux of only 27.5 μJy at 6.75 GHz, a level only detectable through the upgrades now in operation at the Jansky VLA. These changes suggest that SN 1970G has entered a new stage of evolution toward an SN remnant, and we may be detecting the turn-on of the pulsar wind nebula. Deep radio observations of additional middle-aged SNe with the improved radio facilities will provide a statistical census of the delicate transition period between SN and remnant.« less

  10. Fast and Luminous Transients from the Explosions of Long-lived Massive White Dwarf Merger Remnants

    NASA Astrophysics Data System (ADS)

    Brooks, Jared; Schwab, Josiah; Bildsten, Lars; Quataert, Eliot; Paxton, Bill; Blinnikov, Sergei; Sorokina, Elena

    2017-12-01

    We study the evolution and final outcome of long-lived (≈ {10}5 years) remnants from the merger of an He white dwarf (WD) with a more massive C/O or O/Ne WD. Using Modules for Experiments in Stellar Astrophysics ({\\mathtt{MESA}}), we show that these remnants have a red giant configuration supported by steady helium burning, adding mass to the WD core until it reaches {M}{core}≈ 1.12{--}1.20 {M}⊙ . At that point, the base of the surface convection zone extends into the burning layer, mixing the helium-burning products (primarily carbon and magnesium) throughout the convective envelope. Further evolution depletes the convective envelope of helium and dramatically slows the mass increase of the underlying WD core. The WD core mass growth re-initiates after helium depletion, as then an uncoupled carbon-burning shell is ignited and proceeds to burn the fuel from the remaining metal-rich extended envelope. For large enough initial total merger masses, O/Ne WD cores would experience electron-capture triggered collapse to neutron stars (NSs) after growing to near Chandrasekhar mass ({M}{Ch}). Massive C/O WD cores could suffer the same fate after a carbon-burning flame converts them to ONe. The NS formation would release ≈ {10}50 erg into the remaining extended low mass envelope. Using the STELLA radiative transfer code, we predict the resulting optical light curves from these exploded envelopes. Reaching absolute magnitudes of {M}V≈ -17, these transients are bright for about one week and have many features of the class of luminous, rapidly evolving transients studied by Drout and collaborators.

  11. Supernova 1987A: The Supernova of a Lifetime

    NASA Astrophysics Data System (ADS)

    Kirshner, Robert

    2017-01-01

    Supernova 1987A, the brightest supernova since Kepler's in 1604, was detected 30 years ago at a distance of 160 000 light years in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. Visible with the naked eye and detected with the full range of technology constructed since Kepler's time, SN 1987A has continued to be a rich source of empirical information to help understand supernova explosions and their evolution into supernova remnants. While the light output has faded by a factor of 10 000 000 over those 30 years, instrumentation, like the Hubble Space Telescope, the Chandra X-ray Observatory, and the Atacama Large Millimeter Array has continued to improve so that this supernova continues to be visible in X-rays, ultraviolet light, visible light, infrared light and in radio emission. In this review, I will sketch what has been learned from these observations about the pre-supernova star and its final stages of evolution, the explosion physics, the energy sources for emission, and the shock physics as the expanding debris encounters the circumstellar ring that was created about 20 000 years before the explosion. Today, SN 1987A is making the transition to a supernova remnant- the energetics are no longer dominated by the radioactive elements produced in the explosion, but by the interaction of the expanding debris with the surrounding gas. While we are confident that the supernova explosion had its origin in gravitational collapse, careful searches for a compact object at the center of the remnant place upper limits of a few solar luminosities on that relic. Support for HST GO programs 13401 and 13405 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  12. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  13. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Geier, S.; Marsh, T. R.; Wang, B.; Dunlap, B.; Barlow, B. N.; Schaffenroth, V.; Chen, X.; Irrgang, A.; Maxted, P. F. L.; Ziegerer, E.; Kupfer, T.; Miszalski, B.; Heber, U.; Han, Z.; Shporer, A.; Telting, J. H.; Gänsicke, B. T.; Østensen, R. H.; O'Toole, S. J.; Napiwotzki, R.

    2013-06-01

    Type Ia supernovae (SN Ia) are the most important standard candles for measuring the expansion history of the universe. The thermonuclear explosion of a white dwarf can explain their observed properties, but neither the progenitor systems nor any stellar remnants have been conclusively identified. Underluminous SN Ia have been proposed to originate from a so-called double-detonation of a white dwarf. After a critical amount of helium is deposited on the surface through accretion from a close companion, the helium is ignited causing a detonation wave that triggers the explosion of the white dwarf itself. We have discovered both shallow transits and eclipses in the tight binary system CD-30°11223 composed of a carbon/oxygen white dwarf and a hot helium star, allowing us to determine its component masses and fundamental parameters. In the future the system will transfer mass from the helium star to the white dwarf. Modelling this process we find that the detonation in the accreted helium layer is sufficiently strong to trigger the explosion of the core. The helium star will then be ejected at such high velocity that it will escape the Galaxy. The predicted properties of this remnant are an excellent match to the so-called hypervelocity star US 708, a hot, helium-rich star moving at more than 750 km s-1, sufficient for it to leave the Galaxy. The identification of both progenitor and remnant provides a consistent picture of the formation and evolution of underluminous SNIa.

  14. PROPER MOTIONS AND BRIGHTNESS VARIATIONS OF NONTHERMAL X-RAY FILAMENTS IN THE CASSIOPEIA A SUPERNOVA REMNANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patnaude, Daniel J.; Fesen, Robert A.

    2009-05-20

    We present Chandra ACIS X-ray observations of the Galactic supernova remnant Cassiopeia A taken in 2007 December. Combining these data with previous archival Chandra observations taken in 2000, 2002, and 2004, we estimate the remnant's forward shock velocity at various points around the outermost shell to range between 4200 and 5200 {+-} 500 km s{sup -1}. Using these results together with previous analyses of Cas A's X-ray emission, we present a model for the evolution of Cas A and find that it's expansion is well fit by a {rho}{sub ej} {proportional_to} r {sup -(7-9)} ejecta profile running into a circumstellarmore » wind. We further find that while the position of the reverse shock in this model is consistent with that measured in the X-rays, in order to match the forward shock velocity and radius we had to assume that {approx} 30% of the explosion energy has gone into accelerating cosmic rays at the forward shock. The new X-ray images also show that brightness variations can occur for some forward shock filaments like that seen for several nonthermal filaments seen projected in the interior of the remnant. Spectral fits to exterior forward shock filaments and interior nonthermal filaments show that they exhibit similar spectra. This together with similar flux variations suggests that interior nonthermal filaments might be simply forward shock filaments seen in projection and not located at the reverse shock as has been recently proposed.« less

  15. Observations of (S III) emission from Galactic radio sources - The detection of distant planetary nebulae and a search for supernova remnant emission

    NASA Technical Reports Server (NTRS)

    Kistiakowsky, V.; Helfand, D. J.

    1993-01-01

    Narrow-band near-infrared imaging observations at wavelengths corresponding to forbidden S III 9069,9532 A have been carried out at the MDM 1.3 m telescope for 23 radio sources near the Galactic plane in an attempt to detect emission associated with nebulae marking the endpoints of stellar evolution. While none of the known remnants or remnant candidates were detected, 10 of the 11 PN candidates from a new radio imaging survey of the Galactic plane were clearly seen in the forbidden S III 9532 A line. We present a calculation of the relative efficacy of searching for PNe in the forbidden O III and forbidden S III lines; for the majority of all PNe, the observed forbidden S III 9532 A line is predicted to be stronger than forbiden O III 5007 A whenever the visual extinction exceeds 3 magnitudes. This makes forbidden S III the superior tracer of PNe at distances exceeding a few kpc. We briefly comment on the significance of this approach to defining the spatial distribution of the PN population of the Galaxy.

  16. VLBI of supernovae and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Bartel, N.; Karimi, B.; Bietenholz, M. F.

    2017-04-01

    Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.

  17. Molecular environment and an X-ray study of the double-shell supernova remnant Kes 79

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Chen, Yang; Safi-Harb, Samar; Ming, Sun

    Kes 79 is a remarkable middle-age supernova remnant (SNR) with double shells in radio band and many structures in X-rays, harbouring a CCO and with a transient magnetar to the south. We have performed new 12CO J=1-0, 13CO J=1-0, 12CO J=2-1 observations towards this remnant to investigate its molecular environment. SNR Kes 79 is found to be associated with the molecular cloud in LSR velocity 100-115 km/s, which deformed the SNR's shell in the east. The inner radio shell appears to be well confined by a molecular shell at V_{LSR}˜113 km/s. We also revisited the 380 ks XMM-Newton data of Kes 79, which reveal many bright filamentary structures well coincident with infrared features and an X-ray faint halo confined by the outer radio shell. We performed a spatially resolved spectroscopic analysis for the X-ray filaments and the halo emission. We also studied the spatial distribution of the overabundant metal species that may be related to the asymmetric ejecta. Finally, we will discuss the evolution of Kes 79 combining the molecular line and X-ray properties.

  18. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    NASA Astrophysics Data System (ADS)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  19. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  20. Supernova Remnant Science with AXIS

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Yamaguchi, Hiroya; AXIS Science Team

    2018-01-01

    We present an overview of the supernova remnant (SNR) science that will be achieved with the Advanced X-ray Imaging Satellite (AXIS). AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band. These capabilities enable major advances in several areas of SNR science. These include, but are not limited to: 1) a more thorough spatial mapping of the ejecta products of both intermediate-mass and iron-group elements in core-collapse and Type Ia SNRs, particularly in remnants with a small diameter. The iron-group elements, specifically Cr, Mn, and Ni, are extremely important for constraining the explosion mechanism for SNe, but are generally weak and difficult to detect with Chandra, XMM-Newton, and Suzaku. 2) Studying the interface of a shock wave with the ambient ISM/CSM to constrain the degree of particle heating and acceleration at shock fronts. Chandra has only provided upper limits on shock precursor emission, and a detailed study of the thermal and nonthermal emission at the shock with greatly increased photon count rates will constrain the properties of the immediate post-shock plasma. 3) A high spatial resolution X-ray observatory will continue to build on the legacy begun by Chandra of studying the proper motion of young remnants. Directly measuring the dynamics of an SNR's evolution is crucial for understanding the explosion mechanism, and with the order of magnitude increase collecting area, we can measure the expansion of individual elemental species in the ejecta. 4) We will greatly increase the statistics of SNRs in nearby galaxies, going much faster and deeper than Chandra's observations. The increased depth of coverage would allow us to do spectroscopy in places where it was previously possible only to do rudimentary statistics. We can compare the local SNR population with the local star-formation rates for galaxies, important for supernova progenitor models. Finally, there is significant ancillary science that can be achieved by surveying nearby galaxies.

  1. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  2. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys

    NASA Astrophysics Data System (ADS)

    Metcalfe, I.

    2013-04-01

    Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian-west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian-Triassic), Meso-Tethys (late Early Permian-Late Cretaceous) and Ceno-Tethys (Late Triassic-Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning-Menglian, Chiang Mai/Inthanon and Bentong-Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China-Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan-Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java-West Sulawesi (now identified as the missing "Banda" and "Argoland" blocks) separated from NW Australia in the Late Triassic-Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.

  3. Analyzing Data Remnant Remains on User Devices to Determine Probative Artifacts in Cloud Environment.

    PubMed

    Ahmed, Abdulghani Ali; Xue Li, Chua

    2018-01-01

    Cloud storage service allows users to store their data online, so that they can remotely access, maintain, manage, and back up data from anywhere via the Internet. Although helpful, this storage creates a challenge to digital forensic investigators and practitioners in collecting, identifying, acquiring, and preserving evidential data. This study proposes an investigation scheme for analyzing data remnants and determining probative artifacts in a cloud environment. Using pCloud as a case study, this research collected the data remnants available on end-user device storage following the storing, uploading, and accessing of data in the cloud storage. Data remnants are collected from several sources, including client software files, directory listing, prefetch, registry, network PCAP, browser, and memory and link files. Results demonstrate that the collected remnants data are beneficial in determining a sufficient number of artifacts about the investigated cybercrime. © 2017 American Academy of Forensic Sciences.

  4. Evolution of the magnetized, neutrino-cooled accretion disk in the aftermath of a black hole-neutron star binary merger

    NASA Astrophysics Data System (ADS)

    Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela

    2018-04-01

    Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.

  5. Viable Cancer Cells in the Remnant Stomach are a Potential Source of Peritoneal Metastasis after Curative Distal Gastrectomy for Gastric Cancer.

    PubMed

    Murata, Satoshi; Yamamoto, Hiroshi; Yamaguchi, Tsuyoshi; Kaida, Sachiko; Ishida, Mitsuaki; Kodama, Hirokazu; Takebayashi, Katsushi; Shimizu, Tomoharu; Miyake, Toru; Tani, Tohru; Kushima, Ryoji; Tani, Masaji

    2016-09-01

    The mechanisms underlying peritoneal metastasis (PM) after curative gastrectomy for gastric cancer (GC) are not well elucidated. This study assessed whether viable cancer cells, including cancer stemlike cells (CSCs), were present in the remnant stomach immediately before gastrointestinal (GI) tract reconstruction because these could be a source of PM after gastrectomy. Saline fluid used for remnant stomach lumen irrigation before GI reconstruction was prospectively collected from 142 consecutive patients undergoing distal gastrectomy for GC and cytologically examined. Proliferative activity (Ki67 staining) and stemness (expression of the CSC surface markers CD44s or CD44v6) were evaluated in detected cancer cells. Viable cancer cells were detected in 33 (23.2 %) of the 142 remnant stomachs. These cells formed clusters and stained positively for Ki67, indicating proliferation. Cancer cells in remnant stomachs and surface cancer cells in primary GCs from 10 (30.3 %) of these 33 cases also stained positively for CD44s or CD44v6. In a multiple logistic regression analysis, advanced cancer (odds ratio [OR], 4.65; 95 % confidence interval [CI], 1.32-16.4; P = 0.017), tumor size of 40 mm or larger (OR, 3.78; 95 % CI, 1.12-12.8; P = 0.033), and histologic differentiation (OR, 3.10; 95 % CI, 1.30-7.40; P = 0.011) were associated independently with the presence of cancer cells in the remnant stomach. Viable, proliferative, and clustered cancer cells, including CSCs, were found in remnant gastric lumens immediately before GI reconstruction, indicating a possible cellular source of PM after curative gastrectomy for GC. Dissemination of gastric contents into the peritoneal cavity should be avoided during GI reconstruction.

  6. Wolf-Rayet stars, black holes and the first detected gravitational wave source

    NASA Astrophysics Data System (ADS)

    Bogomazov, A. I.; Cherepashchuk, A. M.; Lipunov, V. M.; Tutukov, A. V.

    2018-01-01

    The recently discovered burst of gravitational waves GW150914 provides a good new chance to verify the current view on the evolution of close binary stars. Modern population synthesis codes help to study this evolution from two main sequence stars up to the formation of two final remnant degenerate dwarfs, neutron stars or black holes (Masevich and Tutukov, 1988). To study the evolution of the GW150914 predecessor we use the ;Scenario Machine; code presented by Lipunov et al. (1996). The scenario modeling conducted in this study allowed to describe the evolution of systems for which the final stage is a massive BH+BH merger. We find that the initial mass of the primary component can be 100÷140M⊙ and the initial separation of the components can be 50÷350R⊙. Our calculations show the plausibility of modern evolutionary scenarios for binary stars and the population synthesis modeling based on it.

  7. Rayleigh-Taylor-instability evolution in colliding-plasma-jet experiments with magnetic and viscous stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Colin Stuart

    The Rayleigh-Taylor instability causes mixing in plasmas throughout the universe, from micron-scale plasmas in inertial confinement fusion implosions to parsec-scale supernova remnants. The evolution of this interchange instability in a plasma is influenced by the presence of viscosity and magnetic fields, both of which have the potential to stabilize short-wavelength modes. Very few experimental observations of Rayleigh-Taylor growth in plasmas with stabilizing mechanisms are reported in the literature, and those that are reported are in sub-millimeter scale plasmas that are difficult to diagnose. Experimental observations in well-characterized plasmas are important for validation of computational models used to make design predictionsmore » for inertial confinement fusion efforts. This dissertation presents observations of instability growth during the interaction between a high Mach-number, initially un-magnetized plasma jet and a stagnated, magnetized plasma. A multi-frame fast camera captures Rayleigh-Taylor-instability growth while interferometry, spectroscopy, photodiode, and magnetic probe diagnostics are employed to estimate plasma parameters in the vicinity of the collision. As the instability grows, an evolution to longer mode wavelength is observed. Comparisons of experimental data with idealized magnetohydrodynamic simulations including a physical viscosity model suggest that the observed instability evolution is consistent with both magnetic and viscous stabilization. These data provide the opportunity to benchmark computational models used in astrophysics and fusion research.« less

  8. Clinical outcome of using gastric remnant or jejunum or colon conduit in surgery for esophageal carcinoma with previous gastrectomy.

    PubMed

    Jun, Wang; Wei, Wen; Weibing, Wu; Jing, Xu; Fuxi, Zhen; Xiaoxiang, Xi; Bihong, Lu; Tong, Zhou; Liang, Chen; Jinhua, Luo

    2017-05-01

    For esophageal carcinoma patients with early gastrectomy, individualized surgical plans-including selection of replacement conduit and operation route based on patient's new lesion and surgical history-can achieve the desired therapeutic effect and improve postoperative life quality. We investigated the outcomes at our institution. The clinical data of 42 esophageal carcinoma patients with early gastrectomy were analyzed retrospectively. Esophagectomy was performed combining replacement with remnant stomach in 16 patients, jejunum in 17, and colon in 9. Esophagectomy combining replacement with gastric remnant got advantages of shorter operation time and less bleeding over that of replacement with jejunum or colon. Gastric remnant group scored higher on the QLQ-C30 questionnaire than jejunum or colon group with respect to overall quality of life, physical function, and social relationships. In QLQ-OES18 questionnaire, the scores of appetite recovery and reflux mitigation were more favorable in remnant stomach group than those in jejunum or colon group. Survival analysis showed no significant difference in survival rate among the patients undergoing replacement with gastric remnant, jejunum, or colon. For esophageal carcinoma patients with early gastrectomy, esophagus-gastric remnant anastomosis possesses advantages of shorter operation time, less surgical trauma, and greater life quality after surgery. © 2017 Wiley Periodicals, Inc.

  9. X-Ray Emission from Supernova Remnants.

    NASA Astrophysics Data System (ADS)

    Sackville Hamilton, Andrew James

    1984-12-01

    This thesis deals with the x-ray spectra of supernova remnants (SNRs), and in particular the x-ray spectra of the two young Type I SNRs SN1006 and Tycho. Firstly an extensive grid of nonequilibrium model spectra of SNRs in the adiabatic blast wave stage of evolution is computed, and numerous diagnostics of the state and composi- tion of the blast wave plasma are plotted over parameter space. It is demonstrated that the spectrum of an adiabatic blast wave is a good approximation to several other model SNR structures in which emission is dominated by gas undergoing quasi steady state ioni- zation near a shock front, including the one-fluid isothermal blast wave similarity solution, and the reverse shock similarity solution advocated by Chevalier for the early evolution of Type I SNe. None of these structures appears able to account for the observed spectra of SN1006 or Tycho. A new similarity solution for the early time evolution of uniform ejecta moving into an external medium is presented. It is argued that the x-ray spectra of SN1006 and Tycho are consistent with emission mainly from a reverse shock into 1.4M(,o) of initially uniform density SN ejecta consisting of pure heavy elements, moving into a uniform medium. Satisfactory fits to the observed spectra are obtained with a two layer structure of ejecta, an outer layer of unprocessed material, and an inner layer of mixed processed heavy elements. The structure of ejecta inferred is similar for both SN1006 and Tycho, the marked difference between the two spectra being attributed largely to the lower density of the ambient medium around SN1006. The results are consistent with the theory of Type I SNe as exploded white dwarfs, and resolve the apparent problems of too little iron, and too much total mass, deduced by other authors from earlier analyses of the x-ray emission of SN1006 and Tycho. Various salient aspects of the physics of a shock-heated pure heavy element plasma are discussed.

  10. Completing the evolution of supernova remnants and their bubbles

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Cox, Donald P.

    1992-01-01

    The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.

  11. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  12. 1051 Ergs: The Evolution of Shell Supernova Remnants

    DTIC Science & Technology

    1997-11-15

    progress in these matters . For convenience, and also to avoid conventional labels (e.g., “Sedov”), most of the workshop was organized around chron...setting the stage,” so that many preliminary matters had been resolved or focused. The web site continues to be acces- sible for review of the...acting with circumstellar matter (Chevalier 1982b). The inter- action between the supernova ejecta and circumstellar matter generates a double-shock

  13. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  14. Massive stars in advanced evolutionary stages, and the progenitor of GW150914

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Oskinova, Lidia; Todt, Helge; Sander, Andreas; Hainich, Rainer; Shenar, Tomer; Ramachandran, Varsha

    2017-11-01

    The recent discovery of a gravitational wave from the merging of two black holes of about 30 solar masses each challenges our incomplete understanding of massive stars and their evolution. Critical ingredients comprise mass-loss, rotation, magnetic fields, internal mixing, and mass transfer in close binary systems. The imperfect knowledge of these factors implies large uncertainties for models of stellar populations and their feedback. In this contribution we summarize our empirical studies of Wolf-Rayet populations at different metallicities by means of modern non-LTE stellar atmosphere models, and confront these results with the predictions of stellar evolution models. At the metallicity of our Galaxy, stellar winds are probably too strong to leave remnant masses as high as ~30 M⊙, but given the still poor agreement between evolutionary tracks and observation even this conclusion is debatable. At the low metallicity of the Small Magellanic Cloud, all WN stars which are (at least now) single are consistent with evolving quasi-homogeneously. O and B-type stars, in contrast, seem to comply with standard evolutionary models without strong internal mixing. Close binaries which avoided early merging could evolve quasi-homogeneously and lead to close compact remnants of relatively high masses that merge within a Hubble time.

  15. Hot subdwarfs formed from the merger of two He white dwarfs

    NASA Astrophysics Data System (ADS)

    Schwab, Josiah

    2018-06-01

    We perform stellar evolution calculations of the remnant of the merger of two He white dwarfs (WDs). Our initial conditions are taken from hydrodynamic simulations of double WD mergers and the viscous disc phase that follows. We evolve these objects from shortly after the merger into their core He-burning phase, when they appear as hot subdwarf stars. We use our models to quantify the amount of H that survives the merger, finding that it is difficult for ≳ 10^{-4} M_{⊙} of H to survive, with even less being concentrated in the surface layers of the object. We also study the rotational evolution of these merger remnants. We find that mass-loss over the {˜ } 10^4 yr following the merger can significantly reduce the angular momentum of these objects. As hot subdwarfs, our models have moderate surface rotation velocities of 30-100 km s-1. The properties of our models are not representative of many apparently isolated hot subdwarfs, suggesting that those objects may form via other channels or that our modelling is incomplete. However, a sub-population of hot subdwarfs are moderate-to-rapid rotators and/or have He-rich atmospheres. Our models help to connect the observed properties of these objects to their progenitor systems.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessandrini, Emiliano; Lanzoni, Barbara; Ferraro, Francesco R.

    We present the results of a set of N -body simulations aimed at exploring how the process of mass segregation (as traced by the spatial distribution of blue straggler stars, BSSs) is affected by the presence of a population of heavy dark remnants (as neutron stars and black holes (BHs)). To this end, clusters characterized by different initial concentrations and different fractions of dark remnants have been modeled. We find that an increasing fraction of stellar-mass BHs significantly delay the mass segregation of BSSs and the visible stellar component. In order to trace the evolution of BSS segregation, we introducemore » a new parameter ( A {sup +}), which can be easily measured when the cumulative radial distribution of these stars and a reference population are available. Our simulations show that A {sup +} might also be used as an approximate indicator of the time remaining to the core collapse of the visible component.« less

  17. Hidden Markov model tracking of continuous gravitational waves from young supernova remnants

    NASA Astrophysics Data System (ADS)

    Sun, L.; Melatos, A.; Suvorova, S.; Moran, W.; Evans, R. J.

    2018-02-01

    Searches for persistent gravitational radiation from nonpulsating neutron stars in young supernova remnants are computationally challenging because of rapid stellar braking. We describe a practical, efficient, semicoherent search based on a hidden Markov model tracking scheme, solved by the Viterbi algorithm, combined with a maximum likelihood matched filter, the F statistic. The scheme is well suited to analyzing data from advanced detectors like the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO). It can track rapid phase evolution from secular stellar braking and stochastic timing noise torques simultaneously without searching second- and higher-order derivatives of the signal frequency, providing an economical alternative to stack-slide-based semicoherent algorithms. One implementation tracks the signal frequency alone. A second implementation tracks the signal frequency and its first time derivative. It improves the sensitivity by a factor of a few upon the first implementation, but the cost increases by 2 to 3 orders of magnitude.

  18. Observations and Analysis of the GK Persei Nova Shell and its "Jet-like" Feature

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Redman, M. P.; Boumis, P.; Akras, S.

    2015-12-01

    GK Persei (1901, the "Firework Nebula") is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the SHAPE software. New imaging from the Aristarchos telescope continues to track the proper motion, extinction and structural evolution of the knots, which have been observed intermittently over several decades. We present for the first time, kinematical constraints on a large faint "jet" feature, that was previously detected beyond the shell boundary. These observational constraints allow for the generation of models for individual knots, interactions within knot complexes, and the "jet" feature. Put together, and taking into account dwarf-nova accelerated winds emanating from the central source, these data and models give a deeper insight into the GK Per nova remnant as a whole.

  19. Helicity coherence in binary neutron star mergers and nonlinear feedback

    NASA Astrophysics Data System (ADS)

    Chatelain, Amélie; Volpe, Cristina

    2017-02-01

    Neutrino flavor conversion studies based on astrophysical environments usually implement neutrino mixings, neutrino interactions with matter, and neutrino self-interactions. In anisotropic media, the most general mean-field treatment includes neutrino mass contributions as well, which introduce a coupling between neutrinos and antineutrinos termed helicity or spin coherence. We discuss resonance conditions for helicity coherence for Dirac and Majorana neutrinos. We explore the role of these mean-field contributions on flavor evolution in the context of a binary neutron star merger remnant. We find that resonance conditions can be satisfied in neutron star merger scenarios while adiabaticity is not sufficient for efficient flavor conversion. We analyze our numerical findings by discussing general conditions to have multiple Mikheyev-Smirnov-Wolfenstein-like resonances, in the presence of nonlinear feedback, in astrophysical environments.

  20. Black Hole Grabs Starry Snack

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Poster Version

    This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end.

    The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light.

    The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.

  1. Neutron stars: Observational diversity and evolution

    NASA Astrophysics Data System (ADS)

    Safi-Harb, S.

    2017-12-01

    Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.

  2. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  3. Exploring the Hot and Energetic Universe: The first scientific conference dedicated to the Athena X-ray observatory

    NASA Astrophysics Data System (ADS)

    Ehle, Matthias

    2015-09-01

    The Advanced Telescope for High Energy Astrophysics (Athena) is a large-class mission of the European Space Agency (ESA). It is currently entering an assessment study phase, with launch planned for 2028. Athena has been designed to address the science theme "The Hot and Energetic Universe", which poses two key questions: - How does ordinary matter assemble into the large-scale structures we see today? - How do black holes grow and influence the Universe? The mission will employ a variety of techniques to address these topics in a comprehensive matter, including spatially-resolved high resolution spectroscopy, sensitive wide field imaging, high throughput spectral-timing, and fast follow-up of transient phenomena. The purpose of this conference is to gather together all members of the astronomical community worldwide who have an interest in Athena. The main focus of the meeting is to discuss the key science questions which will be addressed by the mission. A significant portion of the programme is devoted to presenting the status of the project and discussing the synergies with other future large multi-wavelength facilities and missions. Scientific topics include: - Formation, evolution and physical properties of clusters of galaxies - Cosmic feedback - The missing baryons and the WHIM - Supermassive black hole evolution - Accretion physics and strong gravity - High energy transient phenomena - Solar system and exoplanets - Star formation and evolution - The physics of compact object - Supernovae, supernova remnants and the ISM - Multiwavelength synergies

  4. The History of Radio Astronomy and the National Radio Astronomy Observatory: Evolution Toward Big Science

    NASA Astrophysics Data System (ADS)

    Malphrus, Benjamin Kevin

    1990-01-01

    The purpose of this study is to examine the sequence of events that led to the establishment of the NRAO, the construction and development of instrumentation and the contributions and discovery events and to relate the significance of these events to the evolution of the sciences of radio astronomy and cosmology. After an overview of the resources, a brief discussion of the early days of the science is given to set the stage for an examination of events that led to the establishment of the NRAO. The developmental and construction phases of the major instruments including the 85-foot Tatel telescope, the 300-foot telescope, the 140-foot telescope, and the Green Bank lnterferometer are examined. The technical evolution of these instruments is traced and their relevance to scientific programs and discovery events is discussed. The history is told in narrative format that is interspersed with technical and scientific explanations. Through the use of original data technical and scientific information of historical concern is provided to elucidate major developments and events. An interpretive discussion of selected programs, events and technological developments that epitomize the contributions of the NRAO to the science of radio astronomy is provided. Scientific programs conducted with the NRAO instruments that were significant to galactic and extragalactic astronomy are presented. NRAO research programs presented include continuum and source surveys, mapping, a high precision verification of general relativity, and SETI programs. Cosmic phenomena investigated in these programs include galactic and extragalactic HI and HII, emission nebula, supernova remnants, cosmic masers, giant molecular clouds, radio stars, normal and radio galaxies, and quasars. Modern NRAO instruments including the VLA and VLBA and their scientific programs are presented in the final chapter as well as plans for future NRAO instruments such as the GBT.

  5. CHARACTERISTICS OF EPIRETINAL MEMBRANE REMNANT EDGE BY OPTICAL COHERENCE TOMOGRAPHY AFTER PARS PLANA VITRECTOMY.

    PubMed

    Gaber, Raouf; You, Qi Sheng; Muftuoglu, Ilkay Kilic; Alam, Mostafa; Tsai, Frank F; Mendoza, Nadia; Freeman, William R

    2017-11-01

    To evaluate the incidence, characteristics, and the progression of epiretinal membrane (ERM) remnant edge seen by optical coherence tomography after ERM peeling. A retrospective chart review was conducted for 86 eyes of 85 consecutive patients who were diagnosed with ERM and underwent pars plana vitrectomy for epiretinal membrane peeling between 2013 and 2014. Data collected and analyzed included age, gender, preoperative and postoperative visual acuity, use of indocyanine green dye to stain internal limiting membrane, tamponade used after vitrectomy, ERM edge boundaries, presence of cystoid macular edema, and central foveal thickness. An ERM remnant edge was detected in 33/86 study eyes (38.4%) at the first postoperative optical coherence tomography scan. Compared with those without an ERM remnant, patients with an ERM remnant after surgery were significantly older at baseline and had a higher incidence of ERM recurrence at their last visit. They were not significantly different in terms of gender, preoperative and postoperative visual acuity, reduction of central foveal thickness from baseline, proportion of eyes with preoperative ERM elevation on optical coherence tomography, presence of macular edema before surgery, intraoperative use of indocyanine green staining for ILM peeling, or tamponade used. Based on the edge morphology, we classified the ERM remnant into three types: Type 1 was flat and blended with the retina (14/33 eyes, 42.4%), Type 2 was flat but stepped (17/33 eyes, 51.5%), and Type 3 was elevated (2/33 eyes, 6.0%). A significantly higher risk of ERM recurrence was seen in Type 2 and Type 3 ERM remnants (75% and 100%, respectively) than Type 1 ERM remnants (10%). An ERM remnant edge was detected by optical coherence tomography after ERM peeling in 38.4% of eyes. The presence of a postoperative ERM edge was associated with a higher risk of ERM recurrence, particularly in Type 2 and Type 3 ERM remnants.

  6. Morphologic evaluation of remnant anterior cruciate ligament bundles after injury with three-dimensional computed tomography.

    PubMed

    Adachi, Nobuo; Ochi, Mitsuo; Takazawa, Kobun; Ishifuro, Minoru; Deie, Masataka; Nakamae, Atsuo; Kamei, Goki

    2016-01-01

    This study aimed to investigate the morphological patterns of remnant anterior cruciate ligament bundles after injury (ACL remnant) on three-dimensional computed tomography (3DCT) and compare them with those on arthroscopy. Sixty-three patients (33 males and 30 females; mean age 25.2 ± 10.1 years) who had undergone primary ACL reconstruction between March 2011 and December 2012 were included in this study. The average durations between traumas and 3DCT and between 3DCT and surgery were 101.7 ± 87.2 and 38.2 ± 38.7 days, respectively. ACL remnants were classified into four morphological patterns on 3DCT. 3DCT findings were compared with arthroscopic findings with and without probing. The morphological patterns of the ACL remnants on 3DCT were well matched with those on arthroscopy without probing (the concordance rate was 77.8%). However, the concordance rate was reduced to 49.2% when arthroscopic probing was used to confirm the femoral attachment of ACL remnants (p ≤ 0.05). This study demonstrates that the morphological patterns of ACL remnants on 3DCT were well matched with those on arthroscopy without probing. Therefore, the technique can be useful for preoperative planning of the ACL reconstruction or informed consent to the patients. However, for definitive diagnosis, arthroscopic probing is required. IV.

  7. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  8. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  9. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  10. The crust and upper mantle of central East Greenland - implications for continental accretion and rift evolution

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Balling, Niels; Ebbing, Jörg; Holm Jacobsen, Bo; Bom Nielsen, Søren

    2016-04-01

    The geological evolution of the North Atlantic Realm during the past 450 Myr, which has shaped the present-day topographic, crustal and upper mantle features, was dominated by the Caledonian orogeny and the formation of the North Atlantic and associated igneous activity. The distinct high altitude-low relief landscapes that accompany the North Atlantic rifted passive margins are the focus of a discussion of whether they are remnant and modified Caledonian features or, alternatively, recently uplifted peneplains. Teleseismic receiver function analysis of 11 broadband seismometers in the Central Fjord Region in East Greenland indicates the presence of a fossil subduction complex, including a slab of eclogitised mafic crust and an overlying wedge of hydrated mantle peridotite. This model is generally consistent with gravity and topography. It is shown that the entire structure including crustal thickness variations and sub-Moho heterogeneity gives a superior gravity and isostatic topographic fit compared to a model with a homogeneous lithospheric layer (1). The high topography of >1000 m in the western part of the area is supported by the c. 40 km thick crust. The eastern part requires buoyancy from the low velocity/low density mantle wedge. The geometry, velocities and densities are consistent with structures associated with a fossil subduction zone. The spatial relations with Caledonian structures suggest a Caledonian origin. The results indicate that topography is isostatically compensated by density variations within the lithosphere and that significant present-day dynamic topography seems not to be required. Further, this structure is suggested to be geophysically very similar to the Flannan reflector imaged north of Scotland, and that these are the remnants of the same fossil subduction zone, broken apart and separated during the formation of the North Atlantic in the early Cenozoic (2). 1) Schiffer, C., Jacobsen, B.H., Balling, N., Ebbing, J. and Nielsen, S.B., 2015. The East Greenland Caledonides - teleseismic signature, gravity and isostasy. Geophysical Journal International, 203, 1400-1418. 2) Schiffer, C., Stephenson, R.A., Petersen, K.D., Nielsen, S.B., Jacobsen, B.H., Balling, N. and Macdonald, D.I.M., 2015. A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 43, 1087-1090.

  11. Anatomic partial nephrectomy: technique evolution.

    PubMed

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  12. Is Remnant Preservation Truly Beneficial to Anterior Cruciate Ligament Reconstruction Healing? Clinical and Magnetic Resonance Imaging Evaluations of Remnant-Preserved Reconstruction.

    PubMed

    Naraoka, Takuya; Kimura, Yuka; Tsuda, Eiichi; Yamamoto, Yuji; Ishibashi, Yasuyuki

    2017-04-01

    Remnant-preserved anterior cruciate ligament (ACL) reconstruction was introduced to improve clinical outcomes and biological healing. However, the effects of remnant preservation and the influence of the delay from injury until reconstruction on the outcomes of this technique are still uncertain. Purpose/Hypothesis: The purposes of this study were to evaluate whether remnant preservation improved the clinical outcomes and graft incorporation of ACL reconstruction and to examine the influence of the delay between ACL injury and reconstruction on the usefulness of remnant preservation. We hypothesized that remnant preservation improves clinical results and accelerates graft incorporation and that its effect is dependent on the delay between ACL injury and reconstruction. Cohort study; Level of evidence, 2. A total of 151 consecutive patients who underwent double-bundle ACL reconstruction using a semitendinosus graft were enrolled in this study: 74 knees underwent ACL reconstruction without a remnant (or the remnant was <25% of the intra-articular portion of the graft; NR group), while 77 knees underwent ACL reconstruction with remnant preservation (RP group). These were divided into 4 subgroups based on the time from injury to surgery: phase 1 was <3 weeks (n = 24), phase 2 was 3 to less than 8 weeks (n = 70), phase 3 was 8 to 20 weeks (n = 32), and phase 4 was >20 weeks (n = 25). Clinical measurements, including KT-1000 arthrometer side-to-side anterior tibial translation measurements, were assessed at 3, 6, 12, and 24 months after reconstruction. Magnetic resonance imaging evaluations of graft maturation and graft-tunnel integration of the anteromedial and posterolateral bundles were assessed at 3, 6, and 12 months after reconstruction. There was no difference in side-to-side anterior tibial translation between the NR and RP groups. There was also no difference in graft maturation between the 2 groups. Furthermore, the time from ACL injury until reconstruction did not affect graft maturation, except in the case of very long delays before reconstruction (phase 4). Graft-tunnel integration was significantly increased in both groups in a time-dependent manner. However, there was no difference between the NR and RP groups. Remnant preservation did not improve knee stability at 2 years after ACL reconstruction. Furthermore, remnant preservation did not accelerate graft incorporation, especially during the acute and subacute injury phases.

  13. OXYGEN-RICH SUPERNOVA REMNANT IN THE LARGE MAGELLANIC CLOUD

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a NASA Hubble Space Telescope image of the tattered debris of a star that exploded 3,000 years ago as a supernova. This supernova remnant, called N132D, lies 169,000 light-years away in the satellite galaxy, the Large Magellanic Cloud. A Hubble Wide Field Planetary Camera 2 image of the inner regions of the supernova remnant shows the complex collisions that take place as fast moving ejecta slam into cool, dense interstellar clouds. This level of detail in the expanding filaments could only be seen previously in much closer supernova remnants. Now, Hubble's capabilities extend the detailed study of supernovae out to the distance of a neighboring galaxy. Material thrown out from the interior of the exploded star at velocities of more than four million miles per hour (2,000 kilometers per second) plows into neighboring clouds to create luminescent shock fronts. The blue-green filaments in the image correspond to oxygen-rich gas ejected from the core of the star. The oxygen-rich filaments glow as they pass through a network of shock fronts reflected off dense interstellar clouds that surrounded the exploded star. These dense clouds, which appear as reddish filaments, also glow as the shock wave from the supernova crushes and heats the clouds. Supernova remnants provide a rare opportunity to observe directly the interiors of stars far more massive than our Sun. The precursor star to this remnant, which was located slightly below and left of center in the image, is estimated to have been 25 times the mass of our Sun. These stars 'cook' heavier elements through nuclear fusion, including oxygen, nitrogen, carbon, iron etc., and the titanic supernova explosions scatter this material back into space where it is used to create new generations of stars. This is the mechanism by which the gas and dust that formed our solar system became enriched with the elements that sustain life on this planet. Hubble spectroscopic observations will be used to determine the exact chemical composition of this nuclear- processed material, and thereby test theories of stellar evolution. The image shows a region of the remnant 50 light-years across. The supernova explosion should have been visible from Earth's southern hemisphere around 1,000 B.C., but there are no known historical records that chronicle what would have appeared as a 'new star' in the heavens. This 'true color' picture was made by superposing images taken on 9-10 August 1994 in three of the strongest optical emission lines: singly ionized sulfur (red), doubly ionized oxygen (green), and singly ionized oxygen (blue). Photo credit: Jon A. Morse (STScI) and NASA Investigating team: William P. Blair (PI; JHU), Michael A. Dopita (MSSSO), Robert P. Kirshner (Harvard), Knox S. Long (STScI), Jon A. Morse (STScI), John C. Raymond (SAO), Ralph S. Sutherland (UC-Boulder), and P. Frank Winkler (Middlebury). Image files in GIF and JPEG format may be accessed via anonymous ftp from oposite.stsci.edu in /pubinfo: GIF: /pubinfo/GIF/N132D.GIF JPEG: /pubinfo/JPEG/N132D.jpg The same images are available via World Wide Web from links in URL http://www.stsci.edu/public.html.

  14. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China

    Treesearch

    Liujing Huang; Hongfeng Chen; Hai Ren; Jun Wang; Qinfeng Guo

    2013-01-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of...

  15. A New Suggestion for the Radiation Target Volume After a Subtotal Gastrectomy in Patients With Stomach Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Heerim; Lim, Do Hoon; Kim, Sung

    2008-06-01

    Purpose: To compare treatment results between the use of two different radiation fields including and excluding remnant stomach and suggest new target volumes excluding remnant stomach after subtotal gastrectomy (STG) in patients with stomach cancer. Methods and Materials: We retrospectively analyzed 291 patients treated with adjuvant chemoradiotherapy after STG and D2 dissection at the Samsung Medical Center, Seoul, South Korea. Eighty-three patients registered from 1995 to 1997 underwent irradiation according to the INT 0116 protocol that recommended the inclusion of remnant stomach within the target volume (Group A). After this period, we excluded remnant stomach from the target volume formore » 208 patients (Group B). Median follow-up was 67 months. Results: Treatment failure developed in 93 patients (32.0%). Local and regional recurrence rates for Group A vs. Group B were 10.8% vs. 5.3% (p = not significant) and 9.6% vs. 6.3% (p = not significant), and recurrence rates for remnant stomach were 7.2% vs. 1.4% (p = 0.018), respectively. Overall and disease-free survival rates were not different between the two groups. Grade 3 or 4 vomiting and diarrhea developed more frequently in Group A than Group B (4.8% vs. 1.4% and 6.0% vs. 1.9%, respectively; p = 0.012; p < 0.001). Conclusion: Exclusion of remnant stomach from the radiation field had no effect on failure rates or survival, and a low complication rate occurred in patients treated excluding remnant stomach. We suggest that remnant stomach be excluded from the radiation target volume for patients with stomach cancer who undergo STG and D2 dissection.« less

  16. Maximum Energies of Shock-Accelerated Electrons in Young Shell Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Reynolds, Stephen P.; Keohane, Jonathan W.; White, Nicholas E. (Technical Monitor)

    1999-01-01

    Young supernova remnants (SNRs) are often assumed to be the source of cosmic rays up to energies approaching the slight steepening in the cosmic ray spectrum at around 1000 TeV, known as the "knee." We show that the observed X-ray emission of 14 radio-bright shell remnants, including all five historical shells, can be used to put limits on E(sub max), the energy at which the electron energy distribution must steepen from its slope at radio-emitting energies. Most of the remnants show thermal spectra, so any synchrotron component must fall below the observed X-ray fluxes. We obtain upper limits on E(sub max) by considering the most rapid physically plausible cutoff in the relativistic electron distribution, an exponential, which is as sharp or sharper than found in any more elaborate models. This maximally curved model then gives us the highest possible E(sub max) consistent with not exceeding observed X-rays. Our results are thus independent of particular models for the electron spectrum in SNRs. Assuming homogeneous emitting volumes with a constant magnetic field strength of 10 uG, no object could reach 1000 TeV, and only one, Kes 73, has an upper limit on E(sub max), above 100 TeV. All the other remnants have limits at or below 80 TeV. E(sub max) is probably set by the finite remnant lifetime rather than by synchrotron losses for remnants younger than a few thousand years, so that an observed electron steepening should be accompanied by steepening at the same energy for protons. More complicated, inhomogeneous models could allow higher values of E(sub max) in parts of the remnant, but the emission-weighted average value, that characteristic of typical electrons, should obey these limits. The young remnants are not expected to improve much over their remaining lives at producing the highest energy Galactic cosmic rays; if they cannot, this picture of cosmic-ray origin may need major alteration.

  17. Evolution of Dust in Primordial Supernova Remnants and Its Influence on the Elemental Composition of Hyper-Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Nozawa, Takaya; Kozasa, Takashi; Habe, Asao; Dwek, Eli; Umeda, Hideyuki; Tominaga, Nozomu; Maeda, Keiichi; Nomoto, Ken'ichi

    2008-05-01

    The calculations for the evolution of dust within Population III supernova remnants (SNRs) are presented, based on the models of dust formed in the unmixed ejecta of Type II SNe. We show that once dust grains collide with the reverse shock penetrating into the ejecta, their fates strongly depend on the initial radius aini. For SNRs expanding into the interstellar medium (ISM) with nH,0 = 1 cm-3, grains of aini<0.05 μm are trapped in the hot gas to be completely destroyed; grains of aini = 0.05-0.2 μm are piled up in the dense shell formed behind the forward shock; grains of aini>0.2 μm are injected into the ISM without being eroded significantly. The total mass of surviving dust is 0.01 to 0.8 Msolar for nH,0 = 10 to 0.1 cm-3. We also investigate the influence of the piled-up dust on the elemental abundances of the second-generation stars formed in the dense shell of Population III SNRs. The comparison of the calculated elemental abundances with those observed in hyper-metal-poor (HMP) and ultra-metal-poor (UMP) stars indicates that the transport of dust separated from metal-rich gas can be an important process in determining the abundance patterns of Mg and Si in HMP and UMP stars.

  18. Evolution models of helium white dwarf-main-sequence star merger remnants: the mass distribution of single low-mass white dwarfs

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Hall, Philip D.; Jeffery, C. Simon; Bi, Shaolan

    2018-02-01

    It is not known how single white dwarfs with masses less than 0.5Msolar -- low-mass white dwarfs -- are formed. One way in which such a white dwarf might be formed is after the merger of a helium-core white dwarf with a main-sequence star that produces a red giant branch star and fails to ignite helium. We use a stellar-evolution code to compute models of the remnants of these mergers and find a relation between the pre-merger masses and the final white dwarf mass. Combining our results with a model population, we predict that the mass distribution of single low-mass white dwarfs formed through this channel spans the range 0.37 to 0.5Msolar and peaks between 0.45 and 0.46Msolar. Helium white dwarf--main-sequence star mergers can also lead to the formation of single helium white dwarfs with masses up to 0.51Msolar. In our model the Galactic formation rate of single low-mass white dwarfs through this channel is about 8.7X10^-3yr^-1. Comparing our models with observations, we find that the majority of single low-mass white dwarfs (<0.5Msolar) are formed from helium white dwarf--main-sequence star mergers, at a rate which is about $2$ per cent of the total white dwarf formation rate.

  19. Chandra Observations and Models of the Mixed Morphology Supernova Remnant W44: Global Trends

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    We report on the Chandra observations of the archetypical mixed morphology (or thermal composite) supernova remnant, W44. As with other mixed morphology remnants, W44's projected center is bright in thermal X-rays. It has an obvious radio shell, but no discernable X-ray shell. In addition, X-ray bright knots dot W44's image. The spectral analysis of the Chandra data show that the remnant s hot, bright projected center is metal-rich and that the bright knots are regions of comparatively elevated elemental abundances. Neon is among the affected elements, suggesting that ejecta contributes to the abundance trends. Furthermore, some of the emitting iron atoms appear to be underionized with respect to the other ions, providing the first potential X-ray evidence for dust destruction in a supernova remnant. We use the Chandra data to test the following explanations for W44's X-ray bright center: 1.) entropy mixing due to bulk mixing or thermal conduction, 2.) evaporation of swept up clouds, and 3.) a metallicity gradient, possibly due to dust destruction and ejecta enrichment. In these tests, we assume that the remnant has evolved beyond the adiabatic evolutionary stage, which explains the X-ray dimness of the shell. The entropy mixed model spectrum was tested against the Chandra spectrum for the remnant's projected center and found to be a good match. The evaporating clouds model was constrained by the finding that the ionization parameters of the bright knots are similar to those of the surrounding regions. While both the entropy mixed and the evaporating clouds models are known to predict centrally bright X-ray morphologies, their predictions fall short of the observed brightness gradient. The resulting brightness gap can be largely filled in by emission from the extra metals in and near the remnant's projected center. The preponderance of evidence (including that drawn from other studies) suggests that W44's remarkable morphology can be attributed to dust destruction and ejecta enrichment within an entropy mixed, adiabatic phase supernova remnant. The Chandra data prompts a new question - by what astrophysical mechanisms are the metals distributed so inhomogeneously in the supernova remnant.

  20. Linking Dynamical and Stellar Evolution in the Metal-Poor Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason

    2017-08-01

    We propose a 5 orbit HST program to acquire UV imaging at the center of the ancient, metal-poor globular cluster NGC 6341 (M92). Our program is designed to achieve two science goals with a single data set, 1.) to directly measure the diffusion of stars through the massive cluster's core, 2.) to pinpoint the phase of post main-sequence evolution at which [Fe/H] = -2.3 stars lose their mass. Our novel technique will achieve these goals by using the full power of WFC3's exquisite UV sensitivity at <0.3 microns combined with its high spatial resolution. We will uncover 1000 newly-formed white dwarfs in the center of M92 and track how their spatial distribution changes as they get older on the cooling sequence. Having just experienced significant mass loss, the youngest remnants with ages <10s of Myr will still be moving slowly like their 0.8 Msun progenitors, whereas the older remnants with t_cool > 100s Myr will be fully relaxed. Using the methodology we developed and successfully applied to 47 Tuc (Heyl et al. 2015a; 2015b), we will watch this dynamical evolution to measure the diffusion coefficient due to gravitational relaxation in the cluster's core and the past timing of stellar mass loss that was responsible for the current cluster mass segregation profile. M92 is the ideal target for this study as it complements our existing study of the relatively metal-rich cluster 47 Tuc; it has an extremely low metallicity of [Fe/H] = -2.3, very low foreground reddening (E(B-V) = 0.02), moderate concentration index, and a theoretically-expected relaxation timescale in its core of 90 Myr, which nicely splits the young and old white dwarfs that can be observed with Hubble.

  1. Nucleosynthesis in Supernovae

    NASA Astrophysics Data System (ADS)

    Thielemann, Friedrich-Karl; Isern, Jordi; Perego, Albino; von Ballmoos, Peter

    2018-04-01

    We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in β+-decays, as e.g. from ^{26}Al, ^{44}Ti, ^{56,57}Ni and possibly further isotopes of their decay chains (in competition with the production of e+e- pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the ^{55}Mn puzzle), plus (d) further constraints from galactic evolution, γ-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.

  2. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  3. How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants

    DOE PAGES

    Kuranz, Carolyn C.; Park, Hye -Sook; Huntington, Channing M.; ...

    2018-04-19

    Here, energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh–Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh–Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger thanmore » the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.« less

  4. Endoscopic submucosal dissection for early gastric cancer in the remnant stomach after gastrectomy.

    PubMed

    Nonaka, Satoru; Oda, Ichiro; Makazu, Makomo; Haruyama, Shin; Abe, Seiichiro; Suzuki, Haruhisa; Yoshinaga, Shigetaka; Nakajima, Takeshi; Kushima, Ryoji; Saito, Yutaka

    2013-07-01

    Endoscopic submucosal dissection (ESD) for early gastric cancer (EGC) after surgical gastrectomy is a technically difficult procedure because of the limited working space in the remnant stomach as well as the presence of severe gastric fibrosis and staples under the suture line. We evaluated clinical results including long-term outcomes to determine the feasibility and effectiveness of ESD for EGC in the remnant stomach of patients after gastrectomy. Retrospective study. National Cancer Center Hospital, Tokyo, Japan. We investigated patients undergoing ESD for EGC in the remnant stomach from 1997 to 2011. We examined the patient characteristics, endoscopic findings, technical results, adverse events, and histopathologic results including curability and evaluations of Helicobacter pylori gastritis in addition to the rates of local recurrence, metachronous gastric cancer, overall survival, and cause-specific survival. A total of 128 consecutive patients with 139 lesions had previously undergone 87 distal (68%), 25 proximal (19.5%) and 16 pylorus-preserving gastrectomies (12.5%). The median period from the original gastrectomy to the subsequent ESD for EGC in the remnant stomach was 5.7 years (range 0.6-51 years), the median tumor size was 13 mm (range 1-60 mm), and the median procedure time was 60 minutes (range 15-310 minutes). There were 131 en bloc resections (94%), with curative resections achieved for 109 lesions (78%); 22 lesions (16%) resulted in non-curative resections, and 8 lesions (6%) had only a horizontal margin positive or had inconclusive results. A total of 118 patients (92%) were assessed as H pylori gastritis-positive, with 7 patients (5%) negative. Adverse events included 2 cases of delayed bleeding (1.4%) and 2 perforations (1.4%), with 1 patient requiring emergency surgery. The 5-year overall and cause-specific survival rates were 87.3% and 100%, respectively, during a median follow-up period of 4.5 years (range 0-13.7 years), with no deaths from EGC in the remnant stomach. Single-center, retrospective study. ESD for EGC in the remnant stomach of patients after gastrectomy was a feasible and effective therapeutic method and should become the standard treatment in such cases, based on the favorable long-term outcomes. Copyright © 2013 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  5. Future remnant liver function as predictive factor for the hypertrophy response after portal vein embolization.

    PubMed

    Cieslak, Kasia P; Huisman, Floor; Bais, Thomas; Bennink, Roelof J; van Lienden, Krijn P; Verheij, Joanne; Besselink, Marc G; Busch, Olivier R C; van Gulik, Thomas M

    2017-07-01

    Preoperative portal vein embolization is widely used to increase the future remnant liver. Identification of nonresponders to portal vein embolization is essential because these patients may benefit from associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), which induces a more powerful hypertrophy response. 99m Tc-mebrofenin hepatobiliary scintigraphy is a quantitative method for assessment of future remnant liver function with a calculated cutoff value for the prediction of postoperative liver failure. The aim of this study was to analyze future remnant liver function before portal vein embolization to predict sufficient functional hypertrophy response after portal vein embolization. Sixty-three patients who underwent preoperative portal vein embolization and computed tomography imaging were included. Hepatobiliary scintigraphy was performed to determine pre-portal vein embolization and post-portal vein embolization future remnant liver function. Receiver operator characteristic analysis of pre-portal vein embolization future remnant liver function was performed to identify patients who would meet the post-portal vein embolization cutoff value for sufficient function (ie, 2.7%/min/m 2 ). Mean pre-portal vein embolization future remnant liver function was 1.80% ± 0.45%/min/m 2 and increased to 2.89% ± 0.97%/min/m 2 post-portal vein embolization. Receiver operator characteristic analysis in 33 patients who did not receive chemotherapy revealed that a pre-portal vein embolization future remnant liver function of ≥1.72%/min/m 2 was able to identify patients who would meet the safe future remnant liver function cutoff value 3 weeks after portal vein embolization (area under the curve = 0.820). The predictive value was less pronounced in 30 patients treated with neoadjuvant chemotherapy (area under the curve = 0.618). A total of 45 of 63 patients underwent liver resection, of whom 5 of 45 developed postoperative liver failure; 4 of 5 patients had a post-portal vein embolization future remnant liver function below the cutoff value for safe resection. When selecting patients for portal vein embolization, future remnant liver function assessed with hepatobiliary scintigraphy can be used as a predictor of insufficient functional hypertrophy after portal vein embolization, especially in nonchemotherapy patients. These patients are potential candidates for ALPPS. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hangup effect in unequal mass binary black hole mergers and further studies of their gravitational radiation and remnant properties

    NASA Astrophysics Data System (ADS)

    Healy, James; Lousto, Carlos O.

    2018-04-01

    We present the results of 74 new simulations of nonprecessing spinning black hole binaries with mass ratios q =m1/m2 in the range 1 /7 ≤q ≤1 and individual spins covering the parameter space -0.95 ≤α1 ,2≤0.95 . We supplement those runs with 107 previous simulations to study the hangup effect in black hole mergers, i.e. the delay or prompt merger of spinning holes with respect to nonspinning binaries. We perform the numerical evolution for typically the last ten orbits before the merger and down to the formation of the final remnant black hole. This allows us to study the hangup effect for unequal mass binaries leading us to identify the spin variable that controls the number of orbits before merger as S→ hu.L ^ , where S→ hu=(1 +1/2 m/2 m1 )S→ 1+(1 +1/2 m/1 m2 )S→ 2 . We also combine the total results of those 181 simulations to obtain improved fitting formulas for the remnant final black hole mass, spin and recoil velocity as well as for the peak luminosity and peak frequency of the gravitational strain, and find new correlations among them. This accurate new set of simulations enhances the number of available numerical relativity waveforms available for parameter estimation of gravitational wave observations.

  7. Chemistry of Diogenites and Evolution of their Parent Asteroid

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D.W.; Beck, A.W.; McSween, H.Y.; Lee, C-T A.

    2009-01-01

    Diogenites are orthopyroxenite meteorites [1]. Most are breccias, but remnant textures indicate they were originally coarse-grained rocks, with grain sizes of order of cm. Their petrography, and major and trace element chemistry support an origin as crustal cumulates from a differentiated asteroid. Diogenites are genetically related to the basaltic and cumulate-gabbro eucrites, and the polymict breccias known as howardites, collectively, the HED suite. Spectroscopic observations, orbit data and dynamical arguments strongly support the hypothesis that asteroid 4 Vesta is the parent object for HED meteorites [2]. Here we discuss our new trace element data for a suite of diogenites and integrate these into the body of literature data. We use the combined data set to discuss the petrologic evolution of diogenites and 4 Vesta.

  8. Magnetic white dwarfs: Observations, theory and future prospects

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Kilic, Mukremin; Kepler, Souza Oliveira

    2016-01-01

    Isolated magnetic white dwarfs have field strengths ranging from 103G to 109G, and constitute an interesting class of objects. The origin of the magnetic field is still the subject of a hot debate. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of the progenitor of white dwarfs, or on the contrary, are the result of binary interactions or, finally, other physical mechanisms that could produce such large magnetic fields during the evolution of the white dwarf itself, remains to be elucidated. In this work, we review the current status and paradigms of magnetic fields in white dwarfs, from both the theoretical and observational points of view.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujibayashi, Sho; Sekiguchi, Yuichiro; Kiuchi, Kenta

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating playsmore » an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.« less

  10. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2012-09-01

    Recent observations show evidence that high-z (z ~ 2 - 3) early-type galaxies (ETGs) are quite compact than that with comparable mass at z ~ 0. Dry merger scenario is one of the most probable one that can explain such size evolution. However, previous studies based on this scenario do not succeed to explain both properties of high-z compact massive ETGs and local ETGs, consistently. We investigate effects of sequential, multiple dry minor (stellar mass ratio M2/M1<1/4) mergers on the size evolution of compact massive ETGs. We perform N-body simulations of the sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. We show that the sequential minor mergers of compact satellite galaxies are the most efficient in the size growth and in decrease of the velocity dispersion of the compact massive ETGs. The change of stellar size and density of the merger remnant is consistent with the recent observations. Furthermore, we construct the merger histories of candidates of high-z compact massive ETGs using the Millennium Simulation Database, and estimate the size growth of the galaxies by dry minor mergers. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained in the case of the sequential minor mergers in our simulations.

  11. Kinetic analysis of contralateral liver hypertrophy after radioembolization of primary and metastatic liver tumors.

    PubMed

    Orcutt, Sonia T; Abuodeh, Yazan; Naghavi, Arash; Frakes, Jessica; Hoffe, Sarah; Kis, Bela; Anaya, Daniel A

    2018-05-01

    Radioembolization induces liver hypertrophy, although the extent and rate of hypertrophy are unknown. Our goal was to examine the kinetics of contralateral liver hypertrophy after transarterial radioembolization. A retrospective study (2010-2014) of treatment-naïve patients with primary/secondary liver malignancies undergoing right lobe radioembolization was performed. Computed tomography volumetry was performed before and 1, 3, and 6 months after radioembolization. Outcomes of interest were left lobe (standardized future liver remnant) degree of hypertrophy, kinetic growth rate, and ability to reach goal standardized future liver remnant ≥40%. Medians were compared with the Kruskall-Wallis test. Time to event analysis was used to estimate time to reach goal standardized future liver remnant. In the study, 25 patients were included. At 1, 3, and 6 months, median degree of hypertrophy was 4%, 8%, and 12% (P < .001), degree of hypertrophy relative to baseline future liver remnants was 11%, 17%, and 31% (P = .015), and kinetic growth rate was 0.8%, 0.5%, and 0.4%/week (P = .002). In patients with baseline standardized future liver remnant <40% (N= 16), median time to reach standardized future liver remnant ≥40% was 7.3 months, with 75% accomplishing standardized future liver remnant ≥40% at 8.2 months. Radioembolization induces hypertrophy of the contralateral lobe to a similar extent as existing methods, although at a lower rate. The role of radioembolization as a dual therapy (neoadjuvant and hypetrophy-inducing) for selected patients needs to be studied. (Surgery 2017;160:XXX-XXX.). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Columbia University Participation in the Infrared Space Observatory (ISO) Guest Obs. Program: Evolution of Near-Infrared Lines from the Formation of Supernova Remnant 1987A

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.

    2000-01-01

    The goal of this project is to determine the mass loss history of a sample of seven mass losing Asymptotic Giant Branch stars. This is done by observing their circumstellar dust shells which contain a record of the most recent mass loss history. The further away from the star we are able to detect this increasingly fainter dust emission the further back we can look into the mass loss history.

  13. Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Chen, Howard

    2018-01-01

    A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.

  14. COS Spectroscopy of White Dwarf Companions to Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leiner, Emily; Leigh, Nathan

    2017-01-01

    Complete membership studies of open stellar clusters reveal that 25% of the evolved stars follow alternative pathways in stellar evolution, meaning something in the history of these stars changed their composition or mass (or both). In order to draw a complete picture of stellar evolution we must include these canonically "strange" stars in our definition of standard stellar populations. The formation mechanism of blue straggler stars, traditionally defined to be brighter and bluer than the main sequence turnoff in a star cluster, has been an outstanding question for almost six decades. Recent Hubble Space Telescope (HST) far-ultraviolet (far-UV) observations directly reveal that the blue straggler stars in the old (7 Gyr) open cluster NGC 188 are predominantly formed through mass transfer. We will present HST far-UV COS spectroscopy of white dwarf companions to blue stragglers. These white dwarfs are the remnants of the mass transfer formation process. The effective temperatures and surface gravities of the white dwarfs delineate the timeline of blue straggler formation in this cluster. The existence of these binaries in a well-studied cluster environment provides an unprecedented opportunity to observationally constrain mass transfer models and inform our understanding of many other alternative pathway stellar products.

  15. White Dwarfs in the UKIRT Infrared Deep Sky Survey Data Release 9

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Leggett, S. K.; Lodieu, N.; Freytag, B.; Bergeron, P.; Kalirai, J. S.; Ludwig, H.-G.

    2014-06-01

    We have identified 8 to 10 new cool white dwarfs from the Large Area Survey (LAS) Data Release 9 of the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS). The data set was paired with the Sloan Digital Sky Survey to obtain proper motions and a broad ugrizYJHK wavelength coverage. Optical spectroscopic observations were secured at Gemini Observatory and confirm the degenerate status for eight of our targets. The final sample includes two additional white dwarf candidates with no spectroscopic observations. We rely on improved one-dimensional model atmospheres and new multi-dimensional simulations with CO5BOLD to review the stellar parameters of the published LAS white dwarf sample along with our additional discoveries. Most of the new objects possess very cool atmospheres with effective temperatures below 5000 K, including two pure-hydrogen remnants with a cooling age between 8.5 and 9.0 Gyr, and tangential velocities in the range 40 km s-1 <=v tan <= 60 km s-1. They are likely thick disk 10-11 Gyr old objects. In addition, we find a resolved double degenerate system with v tan ~ 155 km s-1 and a cooling age between 3.0 and 5.0 Gyr. These white dwarfs could be disk remnants with a very high velocity or former halo G stars. We also compare the LAS sample with earlier studies of very cool degenerates and observe a similar deficit of helium-dominated atmospheres in the range 5000 < T eff (K) < 6000. We review the possible explanations for the spectral evolution from helium-dominated toward hydrogen-rich atmospheres at low temperatures.

  16. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew

    2000-01-01

    The observation by the CANGAROO experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  17. Infrared spectroscopy of the remnant of Nova Sco 2014: a symbiotic star with too little circumstellar matter to decelerate the ejecta

    NASA Astrophysics Data System (ADS)

    Munari, U.; Banerjee, D. P. K.

    2018-03-01

    Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.

  18. Effectiveness of a decontamination method for donor corneas.

    PubMed

    Badenoch, P R; Alfrich, S J; Wedding, T R; Coster, D J

    1988-03-01

    A retrospective study was made of the effectiveness of an eye bank decontamination and storage method. A comparison was made between microbial cultures taken from the limbus at enucleation and from scleral remnants recovered after surgery. Organisms were isolated from the limbus of 73% of donor eyes and from 4% of remnants. Standard eye bank procedures were found to eradicate gut and skin organisms, including candida, from donor tissue.

  19. Basement Fracturing and Weathering On- and Offshore Norway - Genesis, Age, and Landscape Development

    NASA Astrophysics Data System (ADS)

    Knies, J.; van der Lelij, R.; Faust, J.; Scheiber, T.; Broenner, M.; Fredin, O.; Mueller, A.; Viola, G.

    2014-12-01

    Saprolite remnants onshore Scandinavia have been investigated only sporadically. The nature and age of the deeply weathered material thus remains only loosely constrained. The type and degree of weathering of in situ weathered soils are indicative of the environmental conditions during their formation. When external forcing changes, properties related to previous weathering conditions are usually preserved, for example in clay mineral assemblages. By constraining the age and rate of weathering onshore and by isotopically dating selected faults determined to be intimately linked to weathered basement blocks, the influence of climate development, brittle deformation and landscape processes on weathering can be quantified. The "BASE" project aims to establish a temporal and conceptual framework for brittle tectonics, weathering patterns and landscape evolution affecting the basement onshore and offshore Norway. We will study the formation of saprolite in pre-Quaternary times, the influence of deep weathering on landscape development and establish a conceptual structural template of the evolution of the brittle deformational features that are exposed on onshore (weathered) basement blocks. Moreover, saprolitic material may have been eroded and preserved along the Norwegian continental margin during Cenozoic times. By studying both the onshore remnants and offshore erosional products deposited during periods of extreme changes of climate and tectonic boundary conditions (e..g Miocene-Pliocene), new inferences on the timing and controlling mechanisms of denudation, and on the relevance of deep weathering on Late Cenozoic global cooling can be drawn.

  20. On the Foundation of Equipartition in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Urošević, Dejan; Pavlović, Marko Z.; Arbutina, Bojan

    2018-03-01

    A widely accepted paradigm is that equipartition (eqp) between the energy density of cosmic rays (CRs) and the energy density of the magnetic field cannot be sustained in supernova remnants (SNRs). However, our 3D hydrodynamic supercomputer simulations, coupled with a nonlinear diffusive shock acceleration model, provide evidence that eqp may be established at the end of the Sedov phase of evolution in which most SNRs spend the longest portions of their lives. We introduce the term “constant partition” for any constant ratio between the CR energy density and the energy density of the magnetic field in an SNR, while the term “equipartition” should be reserved for the case of approximately the same values of the energy density (also, it is constant partition in the order of magnitude) of ultra-relativistic electrons only (or CRs in total) and the energy density of the magnetic field. Our simulations suggest that this approximate constant partition exists in all but the youngest SNRs. We speculate that since evolved SNRs at the end of the Sedov phase of evolution can reach eqp between CRs and magnetic fields, they may be responsible for initializing this type of eqp in the interstellar medium. Additionally, we show that eqp between the electron component of CRs and the magnetic field may be used for calculating the magnetic field strength directly from observations of synchrotron emission from SNRs. The values of magnetic field strengths in SNRs given here are approximately 2.5 times lower than values calculated by Arbutina et al.

  1. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Stefano, R.; Kilic, Mukremin, E-mail: rd@cfa.harvard.edu, E-mail: kilic@ou.edu

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitormore » white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.« less

  2. Galactic cannibalism. III. The morphological evolution of galaxies and clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hausman, M.A.; Ostriker, J.P.

    1978-09-01

    We present a numerical simulation for the evolution of massive cluster galaxies due to the accretion of other galaxies, finding that after several accretions a bright ''normal'' galaxy begins to resemble a cD giant, with a bright core and large core radius. Observable quantities such as color, scale size, and logarithmic intensity gradient ..cap alpha.. are calculated and are consistent with observations. The multiple nuclei sometimes found in cD galaxies may be understood as the undigested remnants of cannibalized companions. A cluster's bright galaxies are selectively depleted, an effect which can transform the cluster's luminosity function from a power lawmore » to the observed form with a steep high-luminosity falloff and which pushes the turnover point to lower luminosities with time. We suggest that these effects may account for apparent nonstatistical features observed in the luminosity distribution of bright cluster galaxies, and that the sequence of cluster types discovered by Bautz and Morgan and Oemler is essentially one of increasing dynamical evolution, the rate of evolution depending inversely on the cluster's central relaxation time.« less

  3. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  4. Cascade of Solitonic Excitations in a Superfluid Fermi Gas: From Solitons and Vortex Rings to Solitonic Vortices

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.

  5. Onion-shell model of cosmic ray acceleration in supernova remnants

    NASA Technical Reports Server (NTRS)

    Bogdan, T. J.; Volk, H. J.

    1983-01-01

    A method is devised to approximate the spatially averaged momentum distribution function for the accelerated particles at the end of the active lifetime of a supernova remnant. The analysis is confined to the test particle approximation and adiabatic losses are oversimplified, but unsteady shock motion, evolving shock strength, and non-uniform gas flow effects on the accelerated particle spectrum are included. Monoenergetic protons are injected at the shock front. It is found that the dominant effect on the resultant accelerated particle spectrum is a changing spectral index with shock strength. High energy particles are produced in early phases, and the resultant distribution function is a slowly varying power law over several orders of magnitude, independent of the specific details of the supernova remnant.

  6. Modelling Hard Gamma-Ray Emission from Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1999-01-01

    The observation by the CANGAROO (Collaboration of Australia and Nippon Gamma Ray Observatory at Outback) experiment of TeV emission from SN 1006, in conjunction with several instances of non-thermal X-ray emission from supernova remnants, has led to inferences of super-TeV electrons in these extended sources. While this is sufficient to propel the theoretical community in their modelling of particle acceleration and associated radiation, the anticipated emergence in the next decade of a number of new experiments probing the TeV and sub-TeV bands provides further substantial motivation for modellers. In particular, the quest for obtaining unambiguous gamma-ray signatures of cosmic ray ion acceleration defines a "Holy Grail" for observers and theorists alike. This review summarizes theoretical developments in the prediction of MeV-TeV gamma-rays from supernova remnants over the last five years, focusing on how global properties of models can impact, and be impacted by, hard gamma-ray observational programs, thereby probing the supernova remnant environment. Properties of central consideration include the maximum energy of accelerated particles, the density of the unshocked interstellar medium, the ambient magnetic field, and the relativistic electron-to-proton ratio. Criteria for determining good candidate remnants for observability in the TeV band are identified.

  7. Three-phase Interstellar Medium in Galaxies Resolving Evolution with Star Formation and Supernova Feedback (TIGRESS): Algorithms, Fiducial Model, and Convergence

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Goo; Ostriker, Eve C.

    2017-09-01

    We introduce TIGRESS, a novel framework for multi-physics numerical simulations of the star-forming interstellar medium (ISM) implemented in the Athena MHD code. The algorithms of TIGRESS are designed to spatially and temporally resolve key physical features, including: (1) the gravitational collapse and ongoing accretion of gas that leads to star formation in clusters; (2) the explosions of supernovae (SNe), both near their progenitor birth sites and from runaway OB stars, with time delays relative to star formation determined by population synthesis; (3) explicit evolution of SN remnants prior to the onset of cooling, which leads to the creation of the hot ISM; (4) photoelectric heating of the warm and cold phases of the ISM that tracks the time-dependent ambient FUV field from the young cluster population; (5) large-scale galactic differential rotation, which leads to epicyclic motion and shears out overdense structures, limiting large-scale gravitational collapse; (6) accurate evolution of magnetic fields, which can be important for vertical support of the ISM disk as well as angular momentum transport. We present tests of the newly implemented physics modules, and demonstrate application of TIGRESS in a fiducial model representing the solar neighborhood environment. We use a resolution study to demonstrate convergence and evaluate the minimum resolution {{Δ }}x required to correctly recover several ISM properties, including the star formation rate, wind mass-loss rate, disk scale height, turbulent and Alfvénic velocity dispersions, and volume fractions of warm and hot phases. For the solar neighborhood model, all these ISM properties are converged at {{Δ }}x≤slant 8 {pc}.

  8. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution.

    PubMed

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D; García-Rodríguez, Fernando M; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti , the nitrogen-fixing endosymbiont of legumes of genus Medicago , harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation.

  9. Contribution of Mobile Group II Introns to Sinorhizobium meliloti Genome Evolution

    PubMed Central

    Toro, Nicolás; Martínez-Abarca, Francisco; Molina-Sánchez, María D.; García-Rodríguez, Fernando M.; Nisa-Martínez, Rafael

    2018-01-01

    Mobile group II introns are ribozymes and retroelements that probably originate from bacteria. Sinorhizobium meliloti, the nitrogen-fixing endosymbiont of legumes of genus Medicago, harbors a large number of these retroelements. One of these elements, RmInt1, has been particularly successful at colonizing this multipartite genome. Many studies have improved our understanding of RmInt1 and phylogenetically related group II introns, their mobility mechanisms, spread and dynamics within S. meliloti and closely related species. Although RmInt1 conserves the ancient retroelement behavior, its evolutionary history suggests that this group II intron has played a role in the short- and long-term evolution of the S. meliloti genome. We will discuss its proposed role in genome evolution by controlling the spread and coexistence of potentially harmful mobile genetic elements, by ectopic transposition to different genetic loci as a source of early genomic variation and by generating sequence variation after a very slow degradation process, through intron remnants that may have continued to evolve, contributing to bacterial speciation. PMID:29670598

  10. Presence of Tablet Remnants of Nevirapine Extended-Release in Stools and Its Impact on Virological Outcome in HIV-1-Infected Patients: A Prospective Cohort Study

    PubMed Central

    Lee, Yi-Chieh; Lin, Shu-Wen; Chen, Mao-Yuan; Chang, Sui-Yuan; Kuo, Ching-Hua; Sheng, Wang-Huei; Hsieh, Szu-Min; Sun, Hsin-Yun; Chang, Hsi-Yen; Wu, Mon-Ro; Liu, Wen-Chun; Wu, Pei-Ying; Yang, Shang-Ping; Zhang, Jun-Yu; Su, Yi-Ching; Luo, Yi-Zhen; Hung, Chien-Ching; Chang, Shan-Chwen

    2015-01-01

    Background Nevirapine extended-release (NVP-XR) taken once daily remains an effective antiretroviral agent for patients infected with HIV-1 strains that do not harbor resistance mutations. Presence of tablet remnants of NVP XR in stools was reported in 1.19% and 3.05% of subjects in two clinical trials. However, the prevalence may have been underestimated because the information was retrospectively collected in the studies. Methods Between April and December 2014, we prospectively inquired about the frequency of noticing tablet remnants of NVP XR in stools in HIV-1-infected patients who switched to antiretroviral regimens containing NVP XR plus 2 nucleos(t)ide reverse-transcriptase inhibitors. Patients were invited to participate in therapeutic drug monitoring of plasma concentrations of NVP 12 or 24 hours after taking the previous dose (C12 and C24, respectively) of NVP XR using high-performance liquid chromatography. The information on clinical characteristics, including plasma HIV RNA load and CD4 lymphocyte count, at baseline and during follow-up was recorded. Results During the 9-month study period, 272 patients switched to NVP XR-based regimens and 60 (22.1%) noticed tablet remnants of NVP XR in stools, in whom 54.2% reported noticing the tablet remnants at least once weekly. Compared with patients who did not notice tablet remnants, those who noticed tablet remnants had a higher mean CD4 lymphocyte count (629 vs 495 cells/mm3, P = 0.0002) and a similar mean plasma HIV RNA load (1.57 vs 1.61 log10 copies/mL, P = 0.76) on switch. At about 12 and 24 weeks after switch, patients who noticed tablet remnants continued to have a similar mean plasma HIV RNA load (1.39 vs 1.43 log10 copies/mL, P = 0.43; and 1.30 vs 1.37 log10 copies/mL, P = 0.26, respectively), but had a lower median NVP C12 (3640 vs 4730 ng/mL, P = 0.06), and a similar median NVP C24 (3220 vs 3330 ng/ml, P = 0.95) when compared with those who did not notice tablet remnants. Conclusions The presence of tablet remnants of NVP XR in stools is not uncommon in HIV-1-infected Taiwanese patients receiving NVP XR-based antiretroviral regimens, which does not have an adverse impact on the virological and immunological outcomes. PMID:26465325

  11. Paternity analysis of pollen-mediated gene flow for Fraxinus excelsior L. in a chronically fragmented landscape.

    PubMed

    Bacles, C F E; Ennos, R A

    2008-10-01

    Paternity analysis based on microsatellite marker genotyping was used to infer contemporary genetic connectivity by pollen of three population remnants of the wind-pollinated, wind-dispersed tree Fraxinus excelsior, in a deforested Scottish landscape. By deterministically accounting for genotyping error and comparing a range of assignment methods, individual-based paternity assignments were used to derive population-level estimates of gene flow. Pollen immigration into a 300 ha landscape represents between 43 and 68% of effective pollination, mostly depending on assignment method. Individual male reproductive success is unequal, with 31 of 48 trees fertilizing one seed or more, but only three trees fertilizing more than ten seeds. Spatial analysis suggests a fat-tailed pollen dispersal curve with 85% of detected pollination occurring within 100 m, and 15% spreading between 300 and 1900 m from the source. Identification of immigrating pollen sourced from two neighbouring remnants indicates further effective dispersal at 2900 m. Pollen exchange among remnants is driven by population size rather than geographic distance, with larger remnants acting predominantly as pollen donors, and smaller remnants as pollen recipients. Enhanced wind dispersal of pollen in a barren landscape ensures that the seed produced within the catchment includes genetic material from a wide geographic area. However, gene flow estimates based on analysis of non-dispersed seeds were shown to underestimate realized gene immigration into the remnants by a factor of two suggesting that predictive landscape conservation requires integrated estimates of post-recruitment gene flow occurring via both pollen and seed.

  12. No hot and luminous progenitor for Tycho's supernova

    NASA Astrophysics Data System (ADS)

    Woods, T. E.; Ghavamian, P.; Badenes, C.; Gilfanov, M.

    2017-11-01

    Type Ia supernovae have proven vital to our understanding of cosmology, both as standard candles and for their role in galactic chemical evolution; however, their origin remains uncertain. The canonical accretion model implies a hot and luminous progenitor that would ionize the surrounding gas out to a radius of 10-100 pc for 100,000 years after the explosion. Here, we report stringent upper limits on the temperature and luminosity of the progenitor of Tycho's supernova (SN 1572), determined using the remnant itself as a probe of its environment. Hot, luminous progenitors that would have produced a greater hydrogen ionization fraction than that measured at the radius of the present remnant ( 3 pc) can thus be excluded. This conclusively rules out steadily nuclear-burning white dwarfs (supersoft X-ray sources), as well as disk emission from a Chandrasekhar-mass white dwarf accreting approximately greater than 10-8 M⊙ yr-1 (recurrent novae; M⊙ is equal to one solar mass). The lack of a surrounding Strömgren sphere is consistent with the merger of a double white dwarf binary, although other more exotic scenarios may be possible.

  13. Impacts of the Detection of Cassiopeia A Point Source.

    PubMed

    Umeda; Nomoto; Tsuruta; Mineshige

    2000-05-10

    Very recently the Chandra first light observation discovered a point-like source in the Cassiopeia A supernova remnant. This detection was subsequently confirmed by the analyses of the archival data from both ROSAT and Einstein observations. Here we compare the results from these observations with the scenarios involving both black holes (BHs) and neutron stars (NSs). If this point source is a BH, we offer as a promising model a disk-corona type model with a low accretion rate in which a soft photon source at approximately 0.1 keV is Comptonized by higher energy electrons in the corona. If it is an NS, the dominant radiation observed by Chandra most likely originates from smaller, hotter regions of the stellar surface, but we argue that it is still worthwhile to compare the cooler component from the rest of the surface with cooling theories. We emphasize that the detection of this point source itself should potentially provide enormous impacts on the theories of supernova explosion, progenitor scenario, compact remnant formation, accretion to compact objects, and NS thermal evolution.

  14. LDL receptor-related protein mediates cell-surface clustering and hepatic sequestration of chylomicron remnants in LDLR-deficient mice.

    PubMed

    Yu, K C; Chen, W; Cooper, A D

    2001-06-01

    It has been proposed that in the liver, chylomicron remnants (lipoproteins carrying dietary lipid) may be sequestered before being internalized by hepatocytes. To study this, chylomicron remnants labeled with a fluorescent dye were perfused into isolated livers of LDL receptor-deficient (LDLR-deficient) mice (Ldlr(-/-)) and examined by confocal microscopy. In contrast to livers from normal mice, there was clustering of the chylomicron remnants on the cell surface in the space of DISSE: These remnant clusters colocalized with clusters of LDLR-related protein (LRP) and could be eliminated by low concentrations of receptor-associated protein, an inhibitor of LRP. When competed with ligands of heparan sulfate proteoglycans (HSPGs), the remnant clusters still appeared but were fewer in number, although syndecans (membrane HSPGs) colocalized with the remnant clusters. This suggests that the clustering of remnants is not dependent on syndecans but that the syndecans may modify the binding of remnants. These results establish that sequestration is a novel process, the clustering of remnants in the space of DISSE: The clustering involves remnants binding to the LRP, and this may be stabilized by binding with syndecans, eventually followed by endocytosis.

  15. Cervical Chondrocutaneous Branchial Remnants.

    PubMed

    Ginat, Daniel T; Johnson, Daniel N; Shogan, Andrea; Cipriani, Nicole A

    2018-06-01

    Cervical chondrocutaneous branchial remnants are rare congenital choristomas. These lesions contain a cartilage core surrounded by skin with adnexal structures and subcutaneous fat. Correspondingly, on ultrasound there is a tubular hypoechoic core surrounded by hyperechoic, while on CT there is central intermediate attenuation surrounded by fat attenuation tissues. These features are exemplified in this sine qua non radiology-pathology correlation article. Management includes complete surgical resection and evaluating for potential associated anomalies, such as other branchial apparatus anomalies, as well as cardiac anomalies.

  16. Hepatic venous pressure gradient after portal vein embolization: An accurate predictor of future liver remnant hypertrophy.

    PubMed

    Mohkam, Kayvan; Rode, Agnès; Darnis, Benjamin; Manichon, Anne-Frédérique; Boussel, Loïc; Ducerf, Christian; Merle, Philippe; Lesurtel, Mickaël; Mabrut, Jean-Yves

    2018-05-09

    The impact of portal hemodynamic variations after portal vein embolization on liver regeneration remains unknown. We studied the correlation between the parameters of hepatic venous pressure measured before and after portal vein embolization and future hypertrophy of the liver remnant after portal vein embolization. Between 2014 and 2017, we reviewed patients who were eligible for major hepatectomy and who had portal vein embolization. Patients had undergone simultaneous measurement of portal venous pressure and hepatic venous pressure gradient before and after portal vein embolization by direct puncture of portal vein and inferior vena cava. We assessed these parameters to predict future liver remnant hypertrophy. Twenty-six patients were included. After portal vein embolization, median portal venous pressure (range) increased from 15 (9-24) to 19 (10-27) mm Hg and hepatic venous pressure gradient increased from 5 (0-12) to 8 (0-14) mm Hg. Median future liver remnant volume (range) was 513 (299-933) mL before portal vein embolization versus 724 (499-1279) mL 3 weeks after portal vein embolization, representing a 35% (7.4-83.6) median hypertrophy. Post-portal vein embolization hepatic venous pressure gradient was the most accurate parameter to predict failure of future liver remnant to reach a 30% hypertrophy (c-statistic: 0.882 [95% CI: 0.727-1.000], P < 0.001). A cut-off value of post-portal vein embolization hepatic venous pressure gradient of 8 mm Hg showed a sensitivity of 91% (95% CI: 57%-99%), specificity of 80% (95% CI: 52%-96%), positive predictive value of 77% (95% CI: 46%-95%) and negative predictive value of 92.3% (95% CI: 64.0%-99.8%). On multivariate analysis, post-portal vein embolization hepatic venous pressure gradient and previous chemotherapy were identified as predictors of impaired future liver remnant hypertrophy. Post-portal vein embolization hepatic venous pressure gradient is a simple and reproducible tool which accurately predicts future liver remnant hypertrophy after portal vein embolization and allows early detection of patients who may benefit from more aggressive procedures inducing future liver remnant hypertrophy. (Surgery 2018;143:1-2.). Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Shocks in Dense Clouds in the Vela Supernova Remnant: FUSE

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Sonneborn, George (Technical Monitor)

    2002-01-01

    We have obtained 8 LWRS FUSE spectra to study a recently identified interaction of the Vela supernova remnant with a dense cloud region along its western edge. The goal is to quantify the temperature, ionization, density, and abundance characteristics associated with this shock/dense cloud interface by means of UV absorption line studies. Our detection of high-velocity absorption line C I at +90 to +130 km/s with IUE toward a narrow region interior to the Vela SNR strongly suggests the Vela supernova remnant is interacting with a dense ISM or molecular cloud. The shock/dense cloud interface is suggested by (1) the rarity of detection of high-velocity C I seen in IUE spectra, (2) its very limited spatial distribution in the remnant, and (3) a marked decrease in X-ray emission in the region immediately west of the position of these stars where one also finds a 100 micron emission ridge in IRAS images. We have investigated the shock physics and general properties of this interaction region through a focussed UV absorption line study using FUSE spectra. We have FUSE data on OVI absorption lines observed toward 8 stars behind the Vela supernova remnant (SNR). We compare the OVI observations with IUE observations of CIV absorption toward the same stars. Most of the stars, which are all B stars, have complex continua making the extraction of absorption lines difficult. Three of the stars, HD 72088, HD 72089 and HD 72350, however, are rapid rotators (v sin i less than 100 km/s) making the derivation of absorption column densities much easier. We have measured OVI and CIV column densities for the "main component" (i.e. the low velocity component) for these stars. In addition, by removing the H2 line at 1032.35A (121.6 km/s relative to OVI), we find high velocity components of OVI at approximately 150 km/s that we attribute to the shock in the Vela SNR. The column density ratios and magnitudes are compared to both steady shock models and results of hydrodynamical SNR modeling. We find that the models require the shock to be relatively slow (approximately 100 - 170 km/s) to match the FUSE data. We discuss the implications of our results for models of the evolution of the Vela SNR.

  18. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  19. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.; Depasquale, Joseph; Coyle, Nina M.

    2017-06-10

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods givemore » consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s{sup −1}, with a mean of 4430 km s{sup −1}. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s{sup −1}. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLeod, Morgan; Ramirez-Ruiz, Enrico; Trenti, Michele

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 10{sup 5} or 2 × 10{sup 5} stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6–10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has amore » companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ∼10{sup 7} years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.« less

  1. The Close Stellar Companions to Intermediate-mass Black Holes

    NASA Astrophysics Data System (ADS)

    MacLeod, Morgan; Trenti, Michele; Ramirez-Ruiz, Enrico

    2016-03-01

    When embedded in dense cluster cores, intermediate-mass black holes (IMBHs) acquire close stellar or stellar-remnant companions. These companions are not only gravitationally bound, but also tend to hierarchically isolate from other cluster stars through series of multibody encounters. In this paper we study the demographics of IMBH companions in compact star clusters through direct N-body simulations. We study clusters initially composed of 105 or 2 × 105 stars with IMBHs of 75 and 150 solar masses, and we follow their evolution for 6-10 Gyr. A tight, innermost binary pair of IMBH and stellar object rapidly forms. The IMBH has a companion with an orbital semimajor axis at least three times tighter than the second-most-bound object over 90% of the time. These companionships have typical periods on the order of years and are subject to cycles of exchange and destruction. The most frequently observed, long-lived pairings persist for ˜107 years. The demographics of IMBH companions in clusters are diverse: they include both main-sequence, giant stars and stellar remnants. Companion objects may reveal the presence of an IMBH in a cluster in one of several ways. The most-bound companion stars routinely suffer grazing tidal interactions with the IMBH, offering a dynamical mechanism to produce repeated flaring episodes like those seen in the IMBH candidate HLX-1. The stellar winds of companion stars provide a minimum quiescent accretion rate for IMBHs, with implications for radio searches for IMBH accretion in globular clusters. Finally, gravitational wave inspirals of compact objects occur with promising frequency.

  2. Malignant transformation of a residual cerebellopontine angle epidermoid cyst.

    PubMed

    Pikis, Stylianos; Margolin, Emil

    2016-11-01

    Malignant transformation is a rare but devastating complication following partial resection of an intracranial epidermoid cyst (EC). Time to malignant transformation is highly variable and optimal management is unclear. A literature search from 1965 to January 2016 identified manuscripts discussing clinical presentation, management, and outcome of malignant transformation of a remnant intracranial EC. One male patient diagnosed with malignant transformation of a remnant intracranial EC in our institution was also included in the study. There were 21 patients with malignant transformation of a remnant intracranial EC, including the current patient. Mean age was 51.4years (range 36 to 77) and there was a female predominance (12 women, 9 men, ratio 1.33:1). The mean time interval from partial resection of a benign intracranial EC to malignant transformation was 7.74years (range from 3months to 33years). Surgical resection of the tumor alone was the treatment of choice in 10 patients with one of them requiring a second operation and radiotherapy 2months following the first operation. Adjuvant treatment modalities were employed in 11 patients and included radiotherapy (n=4), stereotactic radiosurgery (SRS) (n=3), chemotherapy (n=1), chemotherapy combined with SRS (n=1) and with radiotherapy (n=1) and radiotherapy combined with SRS and followed by a second tumor resection (n=1). Follow-up period ranged from 1 day to 5years and 11/19 patients (57.8%) were reported dead on follow-up. Prospective studies are required to define the optimal management of malignant transformation of remnant intracranial EC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Tectonic Tilting and Reorganization of an Aluvial Fan to a Dendritic, Erosional River Network: the Example of the Ogallala Gravels

    NASA Astrophysics Data System (ADS)

    Willett, S.; McCoy, S. W.; Beeson, H. W.

    2016-12-01

    Deposition of the Mio-Pliocene Ogallala gravels in the foreland of the Rocky Mountains represents a great natural experiment in landscape evolution. Starting about 20 million years ago the flux of sediment shed off the Rocky Mountains increased, likely in response to dynamic uplift of the Rockies and tilting of the High Plains. This event shifted the high plains from a state of erosion to deposition. The flux of sediment formed huge alluvial megafans, burying the pre-existing river network and effectively "repaving" the western High Plains. Today we are witnessing the re-establishment of a new river network that is dissecting, capturing and eroding these sediment fans. By mapping the modern drainage basins and noting the channel gradient with respect to the normalized length parameter, χ, we identify two types of basins in the high plains. The remnants of the alluvial megafans are drained by long narrow basins with low normalized steepness and nearly no concavity, reflecting little incision since formation. In contrast, the fan remnants are surrounded by basins with a dendritic structure and efficient water and sediment routing, resulting in low values of chi and correspondingly low elevation. The boundary between these two basin types is commonly an erosional escarpment, demonstrating that the trellis basins are consuming the fan deposits by lateral divide migration and successive river capture. We present scaling arguments that show that lateral escarpment advance is nearly an order of magnitude faster than the upstream (knickpoint) propagation of channel entrenchment. This process of landscape evolution has important implications for water in the high plains. Deprived of an efficient channel network, fan surfaces remain uneroded, preserving the Ogallala sediments, and the poorly-drained, poorly integrated surface retains ephemeral water for wetland habitat and aquifer recharge, illustrating how the surface hydrology reflects landscape evolution on million year timescales.

  4. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  5. Remnants of an ancient forest provide ecological context for Early Miocene fossil apes.

    PubMed

    Michel, Lauren A; Peppe, Daniel J; Lutz, James A; Driese, Steven G; Dunsworth, Holly M; Harcourt-Smith, William E H; Horner, William H; Lehmann, Thomas; Nightingale, Sheila; McNulty, Kieran P

    2014-01-01

    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes.

  6. Evolution of the staminode in a representative sample of Scrophularia and its role as nectar safeguard in three widespread species

    NASA Astrophysics Data System (ADS)

    Rodríguez-Riaño, Tomás; Valtueña, Francisco J.; López, Josefa; Navarro-Pérez, María Luisa; Pérez-Bote, José Luis; Ortega-Olivencia, Ana

    2015-06-01

    Approximately 30 % of the genera of Scrophulariaceae s.str. have a staminode, which is the remnant of a sterile stamen. However, there are no studies of the functionality or evolutionary pattern of staminodes in that family. This paper investigates three Scrophularia species with different staminode sizes to determine if the staminode safeguards nectar from dilution by rainwater and if it influences pollinator behavior. We also study staminode evolution and ancestral state reconstruction onto a phylogeny containing 71 species and subspecies with four different staminode developmental stages: tiny, large, enormous, and absent. The results showed that large staminodes did not hinder nectar collection or modify pollinator-visiting time but acted as a barrier to reduce rainwater entry. The latter reduced the dilution of nectar, which did not occur with tiny staminodes. The phylogenetic study revealed that the ancestral state in the genus corresponds with the presence of a large staminode vs. the tiny and enormous staminodes that are considered as derived. The complete disappearance of the staminode has occurred independently at least twice. Events occurred that increased or reduced the staminode size in one of the clades (Clade II), which includes species of sect. Caninae; most of these events occurred during the Pleistocene (0.6-2.7 Ma).

  7. Self-similar dynamic converging shocks - I. An isothermal gas sphere with self-gravity

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Shi, Chun-Hui

    2014-07-01

    We explore novel self-similar dynamic evolution of converging spherical shocks in a self-gravitating isothermal gas under conceivable astrophysical situations. The construction of such converging shocks involves a time-reversal operation on feasible flow profiles in self-similar expansion with a proper care for the increasing direction of the specific entropy. Pioneered by Guderley since 1942 but without self-gravity so far, self-similar converging shocks are important for implosion processes in aerodynamics, combustion, and inertial fusion. Self-gravity necessarily plays a key role for grossly spherical structures in very broad contexts of astrophysics and cosmology, such as planets, stars, molecular clouds (cores), compact objects, planetary nebulae, supernovae, gamma-ray bursts, supernova remnants, globular clusters, galactic bulges, elliptical galaxies, clusters of galaxies as well as relatively hollow cavity or bubble structures on diverse spatial and temporal scales. Large-scale dynamic flows associated with such quasi-spherical systems (including collapses, accretions, fall-backs, winds and outflows, explosions, etc.) in their initiation, formation, and evolution are likely encounter converging spherical shocks at times. Our formalism lays an important theoretical basis for pertinent astrophysical and cosmological applications of various converging shock solutions and for developing and calibrating numerical codes. As examples, we describe converging shock triggered star formation, supernova explosions, and void collapses.

  8. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  9. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  10. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  11. Genetically elevated non-fasting triglycerides and calculated remnant cholesterol as causal risk factors for myocardial infarction.

    PubMed

    Jørgensen, Anders Berg; Frikke-Schmidt, Ruth; West, Anders Sode; Grande, Peer; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2013-06-01

    Elevated non-fasting triglycerides mark elevated levels of remnant cholesterol. Using a Mendelian randomization approach, we tested whether genetically increased remnant cholesterol in hypertriglyceridaemia due to genetic variation in the apolipoprotein A5 gene (APOA5) associates with an increased risk of myocardial infarction (MI). We resequenced the core promoter and coding regions of APOA5 in individuals with the lowest 1% (n = 95) and highest 2% (n = 190) triglyceride levels in the Copenhagen City Heart Study (CCHS, n = 10 391). Genetic variants which differed in frequency between the two extreme triglyceride groups (c.-1131T > C, S19W, and c.*31C > T; P-value: 0.06 to <0.001), thus suggesting an effect on triglyceride levels, were genotyped in the Copenhagen General Population Study (CGPS), the CCHS, and the Copenhagen Ischemic Heart Disease Study (CIHDS), comprising a total of 5705 MI cases and 54 408 controls. Genotype combinations of these common variants associated with increases in non-fasting triglycerides and calculated remnant cholesterol of, respectively, up to 68% (1.10 mmol/L) and 56% (0.40 mmol/L) (P < 0.001), and with a corresponding odds ratio for MI of 1.87 (95% confidence interval: 1.25-2.81). Using APOA5 genotypes in instrumental variable analysis, the observational hazard ratio for a doubling in non-fasting triglycerides was 1.57 (1.32-2.68) compared with a causal genetic odds ratio of 1.94 (1.40-1.85) (P for comparison = 0.28). For calculated remnant cholesterol, the corresponding values were 1.67(1.38-2.02) observational and 2.23(1.48-3.35) causal (P for comparison = 0.21). These data are consistent with a causal association between elevated levels of remnant cholesterol in hypertriglyceridaemia and an increased risk of MI. Limitations include that remnants were not measured directly, and that APOA5 genetic variants may influence other lipoprotein parameters.

  12. Cotton rats (Sigmodon hispidus) possess pharyngeal pouch remnants originating from different primordia.

    PubMed

    Nakamura, Teppei; Ichii, Osamu; Irie, Takao; Mizoguchi, Tatsuya; Shinohara, Akio; Kouguchi, Hirokazu; Sunden, Yuji; Otsuka-Kanazawa, Saori; Ali Elewa, Yaser Hosny; Koshimoto, Chihiro; Nagasaki, Ken-Ichi; Kon, Yasuhiro

    2018-06-01

    Pharyngeal pouches in mammals develop into specific derivatives. If the differentiation of the pharyngeal pouches is anomalous, their remnants can result in cysts, sinuses, and fistulae in the differentiated organs or around the neck. In the present study, we found several pharyngeal pouch remnants, such as cystic structures in thymus and parathyroid gland and fossulae extended from the piriform fossa, in the inbred cotton rats maintained at Hokkaido Institute of Public Health (HIS/Hiph) and University of Miyazaki (HIS/Mz). In HIS/Hiph, the fossulae extended from the apex of the piriform fossa into the thyroid glands and were lined with stratified squamous and cuboidal epithelium. Calcitonin-positive C-cells were present within their epithelium in HIS/Hiph. In contrast, the fossulae of HIS/Mz ran outside the thyroid glands toward the parathyroid glands; they were lined with columnar ciliated epithelium and a few goblet cells, but had no C-cells, which was consistent with the cystic structures in the thymus and the parathyroid gland. These results indicated that the fossulae were a remnant of the ultimobranchial body in HIS/Hiph and of the thymopharyngeal duct in HIS/Mz. Thus, the fossulae of the piriform fossa resembled the piriform sinus fistula in human. In conclusion, cotton rats frequently possessed pharyngeal pouch remnants, including the piriform sinus fistula, and therefore, might serve as a novel model to elucidate the mechanisms of pharyngeal pouch development.

  13. [Interpretation on Chinese surgeons' consensus opinion for the definition of gastric stump cancer (version 2018)].

    PubMed

    Gao, Zhidong; Jiang, Kewei; Ye, Yingjiang; Wang, Shan

    2018-05-25

    Gastric stump cancer(GSC) is defined as newly developed remnant stomach cancer following gastrectomy. This definition initially referred to carcinoma detected in the remnant stomach more than 5 years after the primary surgery for a benign disease. Subsequently, this timeframe was extended to 10 years after the primary surgery for a malignant disease. Recently, the concept of "carcinoma in the remnant stomach(CRS)" proposed by the Japanese Gastric Cancer Association was introduced in China. The new definition encompasses all carcinomas arising in the remnant stomach following gastrectomy, irrespective of the histology of the primary lesion, extent of resection, or reconstruction method. It includes all carcinoma types that have developed in the remnant stomach, such as newly developed cancer, recurrent cancer, remaining cancer, and multiple cancers. Considering the current diagnosis and treatment status of gastric cancer in China, if CRS is to be used as a direct equivalent to GSC in clinical practice, confusion may arise concerning disease identification and diagnosis. Following several discussion rounds, a meta-analysis of the literatures at home and abroad, and a multicenter national retrospective study with a large sample population, the "Chinese surgeons' consensus opinion for the definition of gastric stump cancer (version 2018)" was completed. By reviewing the detailed evidence-based medicine supporting the consensus document, this paper aims to assist clinical diagnosis and enhance future academic exchange.

  14. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  15. Cool DZ white dwarfs II: compositions and evolution of old remnant planetary systems

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Gänsicke, B. T.; Koester, D.

    2018-06-01

    In a previous study, we analysed the spectra of 230 cool (Teff < 9000 K) white dwarfs exhibiting strong metal contamination, measuring abundances for Ca, Mg, Fe and in some cases Na, Cr, Ti, or Ni. Here, we interpret these abundances in terms of the accretion of debris from extrasolar planetesimals, and infer parent body compositions ranging from crust-like (rich in Ca and Ti) to core-like (rich in Fe and Ni). In particular, two white dwarfs, SDSS J0823+0546 and SDSS J0741+3146, which show log [Fe/Ca] > 1.9 dex, and Fe to Ni ratios similar to the bulk Earth, have accreted by far the most core-like exoplanetesimals discovered to date. With cooling ages in the range 1-8 Gyr, these white dwarfs are among the oldest stellar remnants in the Milky Way, making it possible to probe the long-term evolution of their ancient planetary systems. From the decrease in maximum abundances as a function of cooling age, we find evidence that the arrival rate of material on to the white dwarfs decreases by three orders of magnitude over a ≃ 6.5 Gyr span in white dwarf cooling ages, indicating that the mass-reservoirs of post-main sequence planetary systems are depleted on a ≃ 1 Gyr e-folding time-scale. Finally, we find that two white dwarfs in our sample are members of wide binaries, and both exhibit atypically high abundances, thus providing strong evidence that distant binary companions can dynamically perturb white dwarf planetary systems.

  16. CE-MRA for follow-up of aneurysms post stent-assisted coiling.

    PubMed

    Agid, R; Schaaf, M; Farb, Ri

    2012-09-01

    This study compared the accuracy of contrast-enhanced MR angiography (CE-MRA) to intra-arterial cerebral angiography (IA-DSA) for assessment of intracranial aneurysms after stent-assisted coiling and to check if the presence of a stent in the parent artery diminishes the accuracy of CE-MRA. Consecutive patients with cerebral aneurysms treated by stent-assisted coiling were evaluated retrospectively. Matching follow-up CE-MRA and IA-DSA were evaluated separately. Evaluation included the presence of aneurysmal remnant, patency and stenosis of parent artery. Twenty-seven patients with 28 aneurysms and 33 matched CE-MRA and IA-DSA studies were evaluated. Nineteen aneurysmal remnants were seen on CE-MRA and 16 on IA-DSA. CE-MRA diagnosed three aneurysmal remnants not appreciated on IA-DSA. Five other remnants were larger on CE-MRA than IA-DSA. None of the remnants were missed on CE-MRA. Parent arteries were patent on both modalities. CE-MRA showed false stenosis of the stented artery in six cases and exaggerated stenosis in two. In 18 cases, CE-MRA showed a short focal "pseudo-stenosis" where the stent's marker bands were located. This was noted whenever the stent's marker bands were located in an artery with luminal diameter ≤2 mm and was called "marker band effect". CE-MRA is an accurate technique for follow-up of aneurysms post stent-assisted coiling with excellent depiction of remnants in spite of the presence of a stent. Apparent stenosis of the stented parent artery on CE-MRA is often false or exaggerated. "Marker band effect" should be recognized as an artifact that appears when stent's marker bands are in a small artery.

  17. CE-MRA for Follow-up of Aneurysms Post Stent-Assisted Coiling

    PubMed Central

    Agid, R.; Schaaf, M.; Farb, RI.

    2012-01-01

    Summary This study compared the accuracy of contrast-enhanced MR angiography (CE-MRA) to intra-arterial cerebral angiography (IA-DSA) for assessment of intracranial aneurysms after stent-assisted coiling and to check if the presence of a stent in the parent artery diminishes the accuracy of CE-MRA. Consecutive patients with cerebral aneurysms treated by stent-assisted coiling were evaluated retrospectively. Matching follow-up CE-MRA and IA-DSA were evaluated separately. Evaluation included the presence of aneurysmal remnant, patency and stenosis of parent artery. Twenty-seven patients with 28 aneurysms and 33 matched CE-MRA and IA-DSA studies were evaluated. Nineteen aneurysmal remnants were seen on CE-MRA and 16 on IA-DSA. CE-MRA diagnosed three aneurysmal remnants not appreciated on IA-DSA. Five other remnants were larger on CE-MRA than IA-DSA. None of the remnants were missed on CE-MRA. Parent arteries were patent on both modalities. CE-MRA showed false stenosis of the stented artery in six cases and exaggerated stenosis in two. In 18 cases, CE-MRA showed a short focal “pseudo-stenosis” where the stent’s marker bands were located. This was noted whenever the stent’s marker bands were located in an artery with luminal diameter ≤2 mm and was called “marker band effect”. CE-MRA is an accurate technique for follow-up of aneurysms post stent-assisted coiling with excellent depiction of remnants in spite of the presence of a stent. Apparent stenosis of the stented parent artery on CE-MRA is often false or exaggerated. “Marker band effect” should be recognized as an artifact that appears when stent’s marker bands are in a small artery. PMID:22958765

  18. The Transition of a Type IIL Supernova into a Supernova Remnant: Late-time Observations of SN 2013by

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, C. S.; Fesen, R. A.; Milisavljevic, D.

    2017-10-10

    We present early-time Swift and Chandra X-ray data along with late-time optical and near-infrared observations of SN 2013by, a Type IIL supernova (SN) that occurred in the nearby spiral galaxy ESO 138−G10 ( D ∼ 14.8 Mpc). Optical and NIR photometry and spectroscopy follow the late-time evolution of the SN from days +89 to +457 post maximum brightness. The optical spectra and X-ray light curves are consistent with the picture of an SN having prolonged interaction with circumstellar material (CSM) that accelerates the transition from SN to supernova remnant (SNR). Specifically, we find SN 2013by’s H α profile exhibits significantmore » broadening (∼10,000 km s{sup −1}) on day +457, the likely consequence of high-velocity, H-rich material being excited by a reverse shock. A relatively flat X-ray light curve is observed that cannot be modeled using Inverse Compton scattering processes alone, but requires an additional energy source most likely originating from the SN-CSM interaction. In addition, we see the first overtone of CO emission near 2.3 μ m on day +152, signaling the formation of molecules and dust in the SN ejecta and is the first time CO has been detected in a Type IIL SN. We compare SN 2013by with Type IIP SNe, whose spectra show the rarely observed SN-to-SNR transition in varying degrees and conclude that Type IIL SNe may enter the remnant phase at earlier epochs than their Type IIP counterparts.« less

  19. X-ray study of the supernova remnant G337.2-0.7

    NASA Astrophysics Data System (ADS)

    Takata, Akihiro; Nobukawa, Masayoshi; Uchida, Hiroyuki; Tsuru, Takeshi Go; Tanaka, Takaaki; Koyama, Katsuji

    2016-06-01

    This paper reports on the Suzaku result of the Galactic supernova remnant (SNR) G337.2-0.7. The X-ray spectrum is well explained by three components in ionizing phase. One is a plasma with a low temperature kT = 0.70_{-0.03}^{+0.02}keV, solar abundances, and an ionization parameter n_et = 5.7^{+0.7}_{-0.4}× 10^{11}s cm-3. The second is a middle-temperature plasma with kT = 1.54^{+0.13}_{-0.02}keV and high metal abundances in a highly ionized state of n_et = 3.6^{+0.2}_{-0.5}× 10^{11}s cm-3, and the third is a high-temperature plasma with kT = 3.1^{+0.2}_{-0.1}keV and high metal abundances in a low-ionized state of n_et=2.1^{+0.4}_{-0.2}× 10^{10}s cm-3. The high metal-abundance plasmas are likely to be of an ejecta origin, while the solar abundance plasma would be of an interstellar-gas origin. The abundance pattern and mass of the ejecta confirm that G337.2-0.7 is a remnant of a Type Ia supernova (SN). The derived Fe mass of ejecta MFe = 0.025-0.039 M⊙ is far smaller than that expected from any Type Ia model, suggesting that most Fe has not yet been heated by the reverse shock. The ejecta has enhanced distribution in the northeastern region compared to the central region, and therefore the SN explosion or SNR evolution would be asymmetric.

  20. Identifying the TeV gamma-ray source MGRO J2228+61, FINALLY!

    NASA Astrophysics Data System (ADS)

    Aliu, Ester

    2012-09-01

    New VERITAS observations of MGRO J2228+61 allow us to associate its TeV emission with the enigmatic radio supernova remnant SNR G106.3+2.7. This remnant is part of a large complex that includes the Boomerang pulsar and nebula. The reduced field suggests that the TeV emission is not powered by the Boomerang, but instead associated with a much larger remnant. A recent SUZAKU X-ray observation of the smaller gamma-ray error box reveals two possible pulsar candidates. We propose short ACIS exposures to identify these sources to determine if one or both can be responsible for the gamma-ray emission. This will allow us to address the long standing problem on the nature of both MGRO J2228+61 and SNR G106.3+2.7.

  1. Neutron stars in supernova remnants and beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the supernova remnants can be products of an off-centered supernova explosion in a preexisting bubble created by the wind of a moving massive star. A cavity supernova explosion of a moving star results in a considerable offset of the neutron star birth-place from the geometrical center of the supernova remnant. Therefore: a) the high transverse velocities inferred for a number of neutron stars through their association with supernova remnants can be reduced; b) the proper motion vector of a neutron star should not necessarily point away from the geometrical center of the associated supernova remnant. Taking into account these two facts allow us to enlarge the circle of possible neutron star/supernova remnant associations, and could significantly affect the results of previous studies of associations. The possibilities of our approach are illustrated with some examples. We also show that the concept of an off-centered cavity supernova explosion could be used to explain the peculiar structures of a number of supernova remnants and for searches for stellar remnants possibly associated with them.

  2. Pancreatic Cancer Arising From the Remnant Pancreas: Is It a Local Recurrence or New Primary Lesion?

    PubMed

    Hashimoto, Daisuke; Chikamoto, Akira; Masuda, Toshiro; Nakagawa, Shigeki; Imai, Katsunori; Yamashita, Yo-Ichi; Reber, Howard A; Baba, Hideo

    2017-10-01

    Local recurrence of pancreatic cancer (PC) can occur in the pancreatic remnant. In addition, new primary PC can develop in the remnant. There are limited data available regarding this so-called remnant PC. The aim of this review was to describe the characteristics and therapeutic strategy regarding remnant PC. A literature search was performed using Medline published in English according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The incidence of remnant PC has been reported to be 3% to 5%. It is difficult to distinguish local recurrence from new primary PC. Genetic diagnosis such as Kirsten rat sarcoma viral oncogene homolog mutation may resolve this problem. For patients with remnant PC, repeated pancreatectomy can be performed. Residual total pancreatectomy is the most common procedure. Recent studies have described the safety of the operation because of recent surgical progress and perioperative care. The patients with remnant PC without distant metastasis have shown good long-term outcomes, especially those who underwent repeated pancreatectomy. Adjuvant chemotherapy may contribute to longer survival. In conclusion, this review found that both local recurrence and new primary PC can develop in the pancreatic remnant. Repeated pancreatectomy for the remnant PC is a feasible procedure and can prolong patient survival.

  3. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  4. Spirals, Bridges and Tails: Star Formation and the Disturbed ISM in Colliding Galaxies before Merger.

    NASA Astrophysics Data System (ADS)

    Struck, Curtis; Appleton, Philip; Charmandaris, Vassilis; Reach, William; Smith, Beverly

    2004-09-01

    We propose to use Spitzer's unprecedented sensitivity and wide spatial and spectral evolution to study the distribution of star formation in a sample of colliding galaxies with a wide range of tidal and splash structures. Star forming environments like those in strong tidal spirals, and in extra-disk structures like tails were probably far more common in the early stages of galaxy evolution, and important contributors to the net star formation. Using the Spitzer data and data from other wavebands, we will compare the pattern of SF to maps of gas and dust density and phase distribution. With the help of dynamical modeling, we will relate these in turn to dynamical triggers, to better understand the trigger mechanisms. We expect our observations to complement both the SINGS archive and the archives produced by other GO programs, such as those looking at merger remnants or tidal dwarf formation.

  5. Neutrino Emission from Supernovae

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    Supernovae are the most powerful cosmic sources of MeV neutrinos. These elementary particles play a crucial role when the evolution of a massive star is terminated by the collapse of its core to a neutron star or a black hole and the star explodes as supernova. The release of electron neutrinos, which are abundantly produced by electron captures, accelerates the catastrophic infall and causes a gradual neutronization of the stellar plasma by converting protons to neutrons as dominant constituents of neutron star matter. The emission of neutrinos and antineutrinos of all flavors carries away the gravitational binding energy of the compact remnant and drives its evolution from the hot initial to the cold final state. The absorption of electron neutrinos and antineutrinos in the surroundings of the newly formed neutron star can power the supernova explosion and determines the conditions in the innermost supernova ejecta, making them an interesting site for the nucleosynthesis of iron-group elements and trans-iron nuclei.

  6. Probing the neutron star spin evolution in the young Small Magellanic Cloud Be/X-ray binary SXP 1062

    NASA Astrophysics Data System (ADS)

    Popov, S. B.; Turolla, R.

    2012-03-01

    The newly discovered Be/X-ray binary in the Small Magellanic Cloud, SXP 1062, provides the first example of a robust association with a supernova remnant (SNR). The short age estimated for the SNR qualifies SXP 1062 as the youngest known source in its class, ?. As such, it allows us to test current models of magnetorotational evolution of neutron stars in a still unexplored regime. Here we discuss possible evolutionary scenarios for SXP 1062 in an attempt to reconcile its long spin period, ?, and short age. Although several options can be considered, like an anomalously long initial period or the presence of a fossil disc, our results indicate that SXP 1062 may host a neutron star born with a large initial magnetic field, typically in excess of ˜ 1014 G, which then decayed to ˜ 1013 G.

  7. Wetting and Spreading of Molten Volcanic Ash in Jet Engines.

    PubMed

    Song, Wenjia; Lavallée, Yan; Wadsworth, Fabian B; Hess, Kai-Uwe; Dingwell, Donald B

    2017-04-20

    A major hazard to jet engines posed by volcanic ash is linked to the wetting and spreading of molten ash droplets on engine component surfaces. Here, using the sessile drop method, we study the evolution of the wettability and spreading of volcanic ash. We employ rapid temperature changes up to 1040-1450 °C, to replicate the heating conditions experienced by volcanic ash entering an operating jet engine. In this scenario, samples densify as particles coalesce under surface tension until they form a large system-sized droplet (containing remnant gas bubbles and crystals), which subsequently spreads on the surface. The data exhibit a transition from a heterogeneous to a homogeneous wetting regime above 1315 °C as crystals in the drops are dissolved in the melt. We infer that both viscosity and microstructural evolution are key controls on the attainment of equilibrium in the wetting of molten volcanic ash droplets.

  8. Origin of the Elements

    NASA Astrophysics Data System (ADS)

    Truran, J. W., Jr.; Heger, A.

    2003-12-01

    Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).

  9. High Velocity Gas in the Line of Sight to the Vela SNR

    NASA Technical Reports Server (NTRS)

    Nichols, Joy S.; Slavin, Jonathan D.

    2004-01-01

    One of the best objects for study of the structure, kinematics, and evolutionary status of a middle-aged supernova remnant (SNR) is the VELA SNR, due to its proximity, extensive optical filamentary structure, and an abundance of hot background stars for absorption line research. The VELA remnant is 7.3 degrees in diameter, based on x-ray imagery with ROSAT, with the pulsar nearly centered in the remnant. The western region of the remnant has much lower x-ray surface brightness than the remainder of the remnant and in fact escaped earlier detection with previous instrumentation. The remnant is believed to be about 11,000 years old.

  10. An X-Ray and Radio Study of the Varying Expansion Velocities in Tycho's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2016-01-01

    We present newly obtained X-ray and radio observations of Tycho's supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12-15 year in the X-rays and 30 year in the radio. The remnant's large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. We find, consistent with earlier measurements, a clear gradient in the expansion velocity of the remnant, despite its round shape. The proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is approximately 23'' towards the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.

  11. Evolution of Turbulence in the Expanding Solar Wind, a Numerical Study

    NASA Astrophysics Data System (ADS)

    Dong, Yue; Verdini, Andrea; Grappin, Roland

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k -1, we observe a steepening toward a k -5/3 scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expanding solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f -1 range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.

  12. Investigation of photolithography process on SPOs for the Athena mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Girou, D. A.; Ferreira, D. D. M.; Christensen, F. E.; Jakobsen, A. C.; Shortt, B.; Collon, M.; Landgraf, B.

    2015-09-01

    As part of the ongoing effort to optimize the throughput of the Athena optics we have produced mirrors with a state-of-the-art cleaning process. We report on the studies related to the importance of the photolithographic process. Pre-coating characterization of the mirrors has shown and still shows photoresist remnants on the SiO2- rib bonding zones, which influences the quality of the metallic coating and ultimately the mirror performance. The size of the photoresist remnants is on the order of 10 nm which is about half the thickness of final metallic coating. An improved photoresist process has been developed including cleaning with O2 plasma in order to remove the remaining photoresist remnants prior to coating. Surface roughness results indicate that the SiO2-rib bonding zones are as clean as before the photolithography process is performed.

  13. Structure of merger remnants. I - Bulgeless progenitors

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1992-01-01

    The study examines mergers of identical galaxies consisting of self-gravitating disks and halos in the context of the suggestion that such events may form elliptical galaxies. It is shown that the luminous remnants of such mergers do indeed share many common properties with observed ellipticals. Specifically, the end states of the simulations considered rotate slowly in regions of relatively high surface density, having typical values of less than about 0.2 there. Morphologically, the remnants display a variety of structures, including shells and loops comprising loosely bound material and boxy and disky isophotes. The luminous matter is well-fitted by ellipsoidal generalizations of Hernquists's (1990, 1992) model for elliptical galaxies, implying that the surface brightness profiles are essentially de Vaucouleurs-like over a large radial interval. It is proposed that mergers of pure stellar disks do not represent an attractive mechanism for the production of massive elliptical galaxies.

  14. High Energy Observational Investigations of Supernova Remnants and their Interactions with Surroundings

    NASA Astrophysics Data System (ADS)

    Hui, Chung-Yue

    2013-09-01

    Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.

  15. High-Resolution X-Ray Spectroscopy of the Galactic Supernova Remnant Puppis A with the XMM-Newton RGS

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shinya; Akamatsu, Hiroki; Konami, Saori; Tamagawa, Toru

    2012-01-01

    We present high-resolution X-ray spectra of cloud-shock interaction regions in the eastern and northern rims of the Galactic supernova remnant Puppis A, using the Reflection Grating Spectrometer onboard the XMM-Newton satellite. A number of emission lines including K(alpha) triplets of He-like N, O , and Ne are clearly resolved for the first time. Intensity ratios of forbidden to resonance lines in the triplets are found to be higher than predictions by thermal emission models having plausible plasma parameters. The anomalous line ratios cannot be reproduced by effects of resonance scattering, recombination, or inner-shell ionization processes, but could be explained by charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. Our observations thus provide observational support for charge-exchange X-ray emission in supernova remnants.

  16. Does remnant gastric cancer really differ from primary gastric cancer? A systematic review of the literature by the Task Force of Japanese Gastric Cancer Association.

    PubMed

    Shimada, Hideaki; Fukagawa, Takeo; Haga, Yoshio; Oba, Koji

    2016-04-01

    Remnant gastric cancer, most frequently defined as cancer detected in the remnant stomach after distal gastrectomy for benign disease and those cases after surgery of gastric cancer at least 5 years after the primary surgery, is often reported as a tumor with poor prognosis. The Task Force of Japanese Gastric Cancer Association for Research Promotion evaluated the clinical impact of remnant gastric cancer by systematically reviewing publications focusing on molecular carcinogenesis, lymph node status, patient survival, and surgical complications. A systematic literature search was performed using PubMed/MEDLINE with the keywords "remnant," "stomach," and "cancer," revealing 1154 relevant reports published up to the end of December 2014. The mean interval between the initial surgery and the diagnosis of remnant gastric cancer ranged from 10 to 30 years. The incidence of lymph node metastases at the splenic hilum for remnant gastric cancer is not significantly higher than that for primary proximal gastric cancer. Lymph node involvement in the jejunal mesentery is a phenomenon peculiar to remnant gastric cancer after Billroth II reconstruction. Prognosis and postoperative morbidity and mortality rates seem to be comparable to those for primary proximal gastric cancer. The crude 5-year mortality for remnant gastric cancer was 1.08 times higher than that for primary proximal gastric cancer, but this difference was not statistically significant. In conclusion, although no prospective cohort study has yet evaluated the clinical significance of remnant gastric cancer, our literature review suggests that remnant gastric cancer does not adversely affect patient prognosis and postoperative course.

  17. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  18. MERGERS OF UNEQUAL-MASS GALAXIES: SUPERMASSIVE BLACK HOLE BINARY EVOLUTION AND STRUCTURE OF MERGER REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fazeel Mahmood; Preto, Miguel; Berentzen, Ingo

    Galaxy centers are residing places for supermassive black holes (SMBHs). Galaxy mergers bring SMBHs close together to form gravitationally bound binary systems, which, if able to coalesce in less than a Hubble time, would be one of the most promising sources of gravitational waves (GWs) for the Laser Interferometer Space Antenna. In spherical galaxy models, SMBH binaries stall at a separation of approximately 1 pc, leading to the 'final parsec problem' (FPP). On the other hand, it has been shown that merger-induced triaxiality of the remnant in equal-mass mergers is capable of supporting a constant supply of stars on themore » so-called centrophilic orbits that interact with the binary and thus avoid the FPP. In this paper, using a set of direct N-body simulations of mergers of initially spherically symmetric galaxies with different mass ratios, we show that the merger-induced triaxiality is also able to drive unequal-mass SMBH binaries to coalescence. The binary hardening rates are high and depend only weakly on the mass ratios of SMBHs for a wide range of mass ratios q. There is, however, an abrupt transition in the hardening rates for mergers with mass ratios somewhere between q {approx} 0.05 and 0.1, resulting from the monotonic decrease of merger-induced triaxiality with mass ratio q, as the secondary galaxy becomes too small and light to significantly perturb the primary, i.e., the more massive one. The hardening rates are significantly higher for galaxies having steep cusps in comparison with those having shallow cups at centers. The evolution of the binary SMBH leads to relatively shallower inner slopes at the centers of the merger remnants. The stellar mass displaced by the SMBH binary on its way to coalescence is {approx}1-5 times the combined mass of binary SMBHs. The coalescence timescales for SMBH binary with mass {approx}10{sup 6} M{sub Sun} are less than 1 Gyr and for those at the upper end of SMBH masses 10{sup 9} M{sub Sun} are 1-2 Gyr for less eccentric binaries whereas they are less than 1 Gyr for highly eccentric binaries. SMBH binaries are thus expected to be promising sources of GWs at low and high redshifts.« less

  19. Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma.

    PubMed

    Park, Shin-Young; Park, Keun-Myoung; Shin, Woo Young; Choe, Yun-Mee; Hur, Yoon-Seok; Lee, Keon-Young; Ahn, Seung-Ik

    2017-07-01

    Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma is investigated.The medical records of 45 patients who had undergone radical resection for pancreatic adenocarcinoma from March 2010 to September 2013 were reviewed retrospectively. There were 34 patients in the pancreaticoduodenectomy (PD) group and 10 patients in the distal pancreatectomy (DP) group. One patient received total pancreatectomy. The endocrine function was measured using the glucose tolerance index (GTI), which was derived by dividing daily maximum serum glucose fluctuation by daily minimum glucose. Remnant pancreas volume (RPV) was estimated by considering pancreas body and tail as a column, and head as an ellipsoid, respectively. The pancreatic atrophic index (PAI) was defined as the ratio of pancreatic duct width to total pancreas width. Representative indices of each patient were compared before and after resection up to 2 years postoperatively.The area under receiver operating characteristic curve of GTI for diagnosing DM was 0.823 (95% confidence interval, 0.699-0.948, P < .001). Overall, GTI increased on postoperative day 1 (POD#1, mean ± standard deviation, 1.79 ± 1.40 vs preoperative, 1.02 ± 1.41; P = .001), and then decreased by day 7 (0.89 ± 1.16 vs POD#1, P < .001). In the PD group, the GTI on POD#14 became lower than preoperative (0.51 ± 0.38 vs 0.96 ± 1.37; P = .03). PAI in the PD group was significantly lower at 1 month postoperatively (0.22 ± 0.12 vs preoperative, 0.38 ± 0.18; P < .001). In the PD group, RPV was significantly lower at 1 month postoperatively (25.3 ± 18.3 cm vs preoperative, 32.4 ± 20.1 cm; P = .02), due to the resolution of pancreatic duct dilatation. RPV of the DP group showed no significant change. GTI was negatively related to RPV preoperatively (r = -0.317, P = .04), but this correlation disappeared postoperatively (r = -0.044, P = .62).Pancreatic endocrine functional deterioration in pancreatic adenocarcinoma patients may in part be due to pancreatic duct obstruction and dilatation caused by the tumor. After resection, this proportion of endocrine insufficiency is corrected.

  20. The evolution of supernova remnants in different galactic environments, and its effects on supernova statistics

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Sofia, S.; Bruhweiler, F.; Gull, T. R.

    1980-01-01

    Examination of the interaction between supernova (SN) ejecta and the various environments in which the explosive event might occur shows that only a small fraction of the many SNs produce observable supernova remnants (SNRs). This fraction, which is found to depend weakly upon the lower mass limit of the SN progenitors, and more strongly on the specfic characteristics of the associated interstellar medium, decreases from approximately 15 percent near the galctic center to 10 percent at Rgal approximately 10 kpc and drops nearly to zero for Rgal 15 kpc. Generally, whether a SNR is detectable is determined by the density of the ambient interstellar medium in which it is embeeede. The presence of large, low density cavities arpund stellar associations due to the combined effects of stellar winds and supernova shells strongly suggests that a large portion of the detectable SNRs have runway stars as their progenitors. These results explain the differences between the substantially larger SN rates in the galaxy derived both from pulsar statistics and from observations of SN events in external galaxies, when compared to the substantially smaller SN rates derived form galactic SNR statistics.

  1. A continuous record of tectonic evolution from 3.5 Ga to 2.6 Ga in Swaziland and northern Natal

    NASA Technical Reports Server (NTRS)

    Hunter, D. R.; Wilson, A. H.; Versfeld, J. A.; Allen, A. R.; Smith, R. G.; Sleigh, D. W. W.; Groenewald, P. B.; Chutter, G. M.; Preston, V. A.

    1986-01-01

    The approx. 3.5 Ga-old bimodal suite underlying an extensive area in southwestern Swaziland comprises the oldest-dated sialic rocks in the Kaapvaal structural province. The suite consists of leucocratic, layered tonalitic-trondhjemitic gneisses and amphibolites characterized by the effects of repeated high strains. This suite is considered to represent a sialic basement on which metavolcanic and metasedimentary rocks, now preserved as scattered greenstone remnants, accumulated. Direct evidence to confirm this temporal relationship is lacking, but structural data from the Dwalile, Assegaai and Commondale areas indicate that (1) the bimodal gneisses experienced a complex structural history prior to the first recognizable deformation in the supracrustal rocks (i.e., D1 in the supracrustals is equivalent to Dn + 1 in the gneisses) and (2) scattered remnants of the Dwalile rocks infolded with the bimodal suite structurally overlie the gneisses and are preserved in synformal keels. Significant proportions of metaquartzites and metapelites are present in the Assegaai greenstone sequence, the presence of which implies the existence of felsic crust in the source area from which these sediments were derived, a conclusion that is consistent with the structural data.

  2. Micrometeoroids and debris on LDEF

    NASA Technical Reports Server (NTRS)

    Mandeville, Jean-Claude

    1993-01-01

    Two experiments within the French Cooperative Payload (FRECOPA) and devoted to the detection of cosmic dust were flown on the Long Duration Exposure Facility (LDEF). A variety of sensors and collecting devices have made possible the study of impact processes on dedicated sensors and on materials of technological interest. Examination of hypervelocity impact features on these experiments gives valuable information on the size distribution and nature of interplanetary dust particles in low-Earth orbit (LEO), within the 0.5-300 micrometer size range. However no crater smaller than 1.5 microns has been observed, thus suggesting a cut-off in the near Earth particle distribution. Chemical investigation of craters by EDX clearly shows evidence of elements (Na, Mg, Si, S, Ca, and Fe) consistent with cosmic origin. However, remnants of orbital debris have been found in a few craters; this can be the result of particles in eccentric orbits about the Earth and of the 8 deg offset in the orientation of LDEF. Crater size distribution is compared with results from other dust experiments flown on LDEF and with current models. Possible origin and orbital evolution of micrometeoroids is discussed. Use of thin foil detectors for the chemical study of particle remnants looks promising for future experiments.

  3. Neutrino-Driven Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.

  4. Point X-ray sources in the SNR G 315.4-2.30 (MSH 14-63, RCW 86)

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Vikhlinin, A. A.

    2003-04-01

    We report the results of a search for a point X-ray source (stellar remnant) in the southwest protrusion of the supernova remnant G 315.4-2.30 (MSH 14-63, RCW 86) using the archival data of the Chandra X-ray Observatory. The search was motivated by a hypothesis that G 315.4-2.30 is the result of an off-centered cavity supernova explosion of a moving massive star, which ended its evolution just near the edge of the main-sequence wind-driven bubble. This hypothesis implies that the southwest protrusion in G 315.4-2.30 is the remainder of a pre-existing bow shock-like structure created by the interaction of the supernova progenitor's wind with the interstellar medium and that the actual location of the supernova blast center is near the center of this hemispherical structure. We have discovered two point X-ray sources in the ``proper" place. One of the sources has an optical counterpart with the photographic magnitude 13.38+/-0.40, while the spectrum of the source can be fitted with an optically thin plasma model. We interpret this source as a foreground active star of late spectral type. The second source has no optical counterpart to a limiting magnitude ~ 21. The spectrum of this source can be fitted almost equally well with several simple models (power law: photon index =1.87; two-temperature blackbody: kT1 =0.11 keV, R1 =2.34 km and kT2 =0.71 keV, R2 =0.06 km; blackbody plus power law: kT =0.07 keV, photon index =2.3). We interpret this source as a candidate stellar remnant (neutron star), while the photon index and non-thermal luminosity of the source (almost the same as those of the Vela pulsar and the recently discovered pulsar PSR J 0205+6449 in the supernova remnant 3C 58) suggest that it can be a young ``ordinary" pulsar.

  5. A Comparative Study of Clinical Outcomes and Second-Look Arthroscopic Findings between Remnant-Preserving Tibialis Tendon Allograft and Hamstring Tendon Autograft in Anterior Cruciate Ligament Reconstruction: Matched-Pair Design.

    PubMed

    Kim, You Keun; Ahn, Jong Hyun; Yoo, Jae Doo

    2017-12-01

    This study aimed to compare stability, functional outcome, and second-look arthroscopic findings after anterior cruciate ligament reconstruction between remnant-preserving tibialis tendon allograft and remnant-sacrificing hamstring tendon autograft. We matched two groups (remnant-preserving tibialis tendon allograft group and hamstring tendon autograft group) in terms of demographic characteristics, associated injury, and knee characteristics. Each group consisted of 25 patients. Operation time was longer in the remnant-preserving tibialis tendon allograft group, but there was no significant intergroup difference in stability, clinical outcome, and second-look arthroscopic findings. When an autograft is not feasible in anterior cruciate ligament reconstruction, the remnant-preserving technique can produce comparable results in terms of restoration of function, stability of the knee, and degree of synovium coverage at second-look arthroscopy compared to remnant-sacrificing hamstring autograft.

  6. 16 CFR 303.13 - Sale of remnants and products made of remnants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.13... information as “remnants of undetermined fiber content.” (2) Where such remnants of fabrics are displayed for... conjunction with such display, stating with respect to required fiber content disclosure that the goods are...

  7. Importance of riparian remnants for frog species diversity in a highly fragmented rainforest.

    PubMed

    Rodríguez-Mendoza, Clara; Pineda, Eduardo

    2010-12-23

    Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.

  8. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J., E-mail: stacy.h.teng@nasa.gov

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%)more » in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.« less

  9. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  10. The Ninole Basalt - Implications for the structural evolution of Mauna Loa volcano, Hawaii

    USGS Publications Warehouse

    Lipman, P.W.; Rhodes, J.M.; Dalrymple, G.B.

    1990-01-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1-0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1-0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa. ?? 1990 Springer-Verlag.

  11. The Ninole Basalt — Implications for the structural evolution of Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Lipman, Peter W.; Rhodes, J. M.; Dalrymple, G. Brent

    1990-12-01

    Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1 0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1 0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.

  12. On extreme transient events from rotating black holes and their gravitational wave emission

    NASA Astrophysics Data System (ADS)

    van Putten, Maurice H. P. M.; Della Valle, Massimo

    2017-01-01

    The super-luminous object ASASSN-15lh (SN2015L) is an extreme event with a total energy Erad ≃ 1.1 × 1052 erg in blackbody radiation on par with its kinetic energy Ek in ejecta and a late time plateau in the UV, which defies a nuclear origin. It likely presents a new explosion mechanism for hydrogen-deprived supernovae. With no radio emission and no H-rich environment, we propose to identify Erad with dissipation of a baryon-poor outflow in the optically thick remnant stellar envelope produced by a central engine. By negligible time-scales of light crossing and radiative cooling of the envelope, SN2015L's light curve closely tracks the evolution of this engine. We here model its light curve by the evolution of black hole spin during angular momentum loss in Alvén waves to matter at the Inner Most Stable Circular Orbit (ISCO). The duration is determined by σ = MT/M of the torus mass MT around the black hole of mass M: σ ˜ 10-7 and σ ˜ 10-2 for SN2015L and, respectively, a long GRB. The observed electromagnetic radiation herein represents a minor output of the rotational energy Erot of the black hole, while most is radiated unseen in gravitational radiation. This model explains the high-mass slow-spin binary progenitor of GWB150914, as the remnant of two CC-SNe in an intra-day binary of two massive stars. This model rigorously predicts a change in magnitude Δm ≃ 1.15 in the light curve post-peak, in agreement with the light curve of SN2015L with no fine-tuning.

  13. Effects of Main-Sequence Mass Loss on Stellar and Galactic Chemical Evolution.

    NASA Astrophysics Data System (ADS)

    Guzik, Joyce Ann

    1988-06-01

    L. A. Willson, G. H. Bowen and C. Struck -Marcell have proposed that 1 to 3 solar mass stars may experience evolutionarily significant mass loss during the early part of their main-sequence phase. The suggested mass-loss mechanism is pulsation, facilitated by rapid rotation. Initial mass-loss rates may be as large as several times 10^{-9}M o/yr, diminishing over several times 10^8 years. We attempted to test this hypothesis by comparing some theoretical implications with observations. Three areas are addressed: Solar models, cluster HR diagrams, and galactic chemical evolution. Mass-losing solar models were evolved that match the Sun's luminosity and radius at its present age. The most extreme viable models have initial mass 2.0 M o, and mass-loss rates decreasing exponentially over 2-3 times 10^8 years. Compared to a constant -mass model, these models require a reduced initial ^4He abundance, have deeper envelope convection zones and higher ^8B neutrino fluxes. Early processing of present surface layers at higher interior temperatures increases the surface ^3He abundance, destroys Li, Be and B, and decreases the surface C/N ratio following first dredge-up. Evolution calculations incorporating main-sequence mass loss were completed for a grid of models with initial masses 1.25 to 2.0 Mo and mass loss timescales 0.2 to 2.0 Gyr. Cluster HR diagrams synthesized with these models confirm the potential for the hypothesis to explain observed spreads or bifurcations in the upper main sequence, blue stragglers, anomalous giants, and poor fits of main-sequence turnoffs by standard isochrones. Simple closed galactic chemical evolution models were used to test the effects of main-sequence mass loss on the F and G dwarf distribution. Stars between 3.0 M o and a metallicity -dependent lower mass are assumed to lose mass. The models produce a 30 to 60% increase in the stars to stars-plus -remnants ratio, with fewer early-F dwarfs and many more late-F dwarfs remaining on the main sequence to the present. The ratio of stars to stellar remnants and the white dwarf age distribution may prove valuable in distinguishing between explanations for the observed bimodal present-day stellar mass function.

  14. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  15. A distance estimate to the Cygnus Loop based on the distances to two stars located within the remnant

    NASA Astrophysics Data System (ADS)

    Fesen, Robert A.; Neustadt, Jack M. M.; Black, Christine S.; Milisavljevic, Dan

    2018-04-01

    Underlying nearly every quantitative discussion of the Cygnus Loop supernova remnant is uncertainty about its distance. Here, we present optical images and spectra of nebulosities around two stars whose mass-loss material appears to have interacted with the remnant's expanding shock front and thus can be used to estimate the Cygnus Loop's distance. Narrow passband images reveal a small emission-line nebula surrounding an M4 red giant near the remnant's eastern nebula NGC 6992. Optical spectra of the nebula show it to be shock-heated with significantly higher electron densities than seen in the remnant's filaments. This along with a bow-shaped morphology suggests it is likely red giant mass-loss material shocked and accelerated by passage of the Cygnus Loop's blast wave. We also identify a B7 V star located along the remnant's northwestern limb, which also appears to have interacted with the remnant's shock wave. It lies within a small arc of nebulosity in an unusually complex region of curved and distorted filaments along the remnant's northern shock front suggestive of a localized disturbance of the shock front due to the B star's stellar winds. Based on the assumption that these two stars lie inside the remnant, combined with an estimated distance to a molecular cloud situated along the remnant's western limb, we propose a distance to the Cygnus Loop of 1.0 ± 0.2 kpc. Although larger than several recent estimates of 500-800 pc, a distance ≃1 kpc helps resolve difficulties with the remnant's postshock cosmic ray and gas pressure ratio and estimated supernova explosion energy.

  16. Multi-year X-Ray Variations of Iron-K and Continuum Emissions in the Young Supernova Remnant Cassiopeia A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Toshiki; Masai, Kuniaki; Maeda, Yoshitomo

    2017-02-20

    We found a simultaneous decrease of the Fe–K line and 4.2–6 keV continuum of Cassiopeia A with the monitoring data taken by the Chandra X-ray Observatory in 2000–2013. The flux change rates in the whole remnant are −0.65 ± 0.02% yr{sup −1} in the 4.2–6.0 keV continuum and −0.6 ± 0.1% yr{sup −1} in the Fe–K line. In the eastern region where the thermal emission is considered to dominate, the variations show the largest values: −1.03 ± 0.05% yr{sup −1} (4.2–6 keV band) and −0.6 ± 0.1% yr{sup −1} (Fe–K line). In this region, the time evolution of the emissionmore » measure and the temperature have a decreasing trend. This could be interpreted as adiabatic cooling with the expansion of m = 0.66. On the other hand, in the non-thermal emission dominated regions, variations of the 4.2–6 keV continuum show smaller rates: −0.60 ± 0.04% yr{sup −1} in the southwestern region, −0.46 ± 0.05% yr{sup −1} in the inner region, and +0.00 ± 0.07% yr{sup −1} in the forward shock region. In particular, flux does not show significant change in the forward shock region. These results imply that strong braking in shock velocity has not been occurring in Cassiopeia A (<5 km s{sup −1} yr{sup −1}). All of our results support the idea that X-ray flux decay in the remnant is mainly caused by thermal components.« less

  17. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  18. Relative impacts of insolation changes, meltwater fluxes and ice sheets on African and Asian monsoons during the Holocene

    NASA Astrophysics Data System (ADS)

    Marzin, Charline; Braconnot, Pascale; Kageyama, Masa

    2013-11-01

    In order to better understand the evolution of the Afro-Asian monsoon in the early Holocene, we investigate the impact on boreal summer monsoon characteristics of (1) a freshwater flux in the North Atlantic from the surrounding melting ice sheets and (2) a remnant ice sheet over North America and Europe. Sensitivity experiments run with the IPSL_CM4 model show that both the meltwater flux and the remnant ice sheets induce a cooling of similar amplitude of the North Atlantic leading to a southward shift of the Inter-Tropical Convergence Zone over the tropical Atlantic and to a reduction of the African monsoon. The two perturbations have different impacts in the Asian sector. The meltwater flux results in a weakening of the Indian monsoon and no change in the East Asian monsoon, whereas the remnant ice sheets induce a strengthening of the Indian monsoon and a strong weakening of the East Asian monsoon. Despite the similar coolings in the Atlantic Ocean, the ocean heat transport is reduced only in the meltwater flux experiment, which induces slight differences between the two experiments in the role of the surface latent heat flux in the tropical energetics. In the meltwater experiment, the southward shift of the subtropical jet acts to cool the upper atmosphere over the Tibetan Plateau and hence to weaken the Indian monsoon. In the ice sheet experiment this effect is overwhelmed by the changes in extratropical stationary waves induced by the ice sheets, which are associated with a larger cooling over the Eurasian continent than in the meltwater experiment. However these sensitivity experiments suggest that insolation is the dominant factor explaining the relative changes of the African, Indian and East Asian monsoons from the early to the mid-Holocene.

  19. New Candidate Supernova Remnants in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Winkler, P. F.; Lewinter, R.

    1992-12-01

    We have surveyed six 30(') times 30(') fields in the Small Magellanic Cloud, using the Curtis Schmidt telescope at CTIO with a Thomson CCD, to search for previously undetected supernova remnants (SNRs). Narrow-band images are obtained in lines of [S II] (lambda lambda \\ 6716,31), Hα , and a nearby continuum band. The ratio of [S II]/Hα \\ emission discriminates well between shock-heated material charcteristic of SNRs and photo-ionized material such as H II regions. This technique has proved highly effective in surveys of other galaxies (e.g. Long et al., Ap J Supp, 72, 61). Deep emission-line images and a continuum band closely matched in wavelength enable us to subtract virtually the entire stellar contribution and thus achieve high sensitivity to faint, diffuse emission. We have identified 13 objects, all of which have [S II]/Hα \\ ratios > 0.4\\ and a full or partial shell-like morphology, making them extremely strong SNR candidates. Several other diffuse objects have high [S II]/Hα \\ ratios, and many of these may also be SNRs. Compared with the 12 previously known remnants of Mathewson et al., (Ap J Supp 51, 345; 55, 189), the new candidates are generally larger and have lower surface brightness. An investigation of the cumulative number vs diameter relation for our larger sample indicates a slope significantly steeper than the value near unity originally found by Mathewson et al., and is more consistent with standard models for SNR evolution. Selection effects may well have led to an excess of small, bright objects in the earlier samples. This work was supported in part by NSF grant AST-9114935 and by the W.M. Keck Foundation through the Keck Northeast Astronomy Consortium.

  20. Convergent evolution of Y chromosome gene content in flies.

    PubMed

    Mahajan, Shivani; Bachtrog, Doris

    2017-10-04

    Sex-chromosomes have formed repeatedly across Diptera from ordinary autosomes, and X-chromosomes mostly conserve their ancestral genes. Y-chromosomes are characterized by abundant gene-loss and an accumulation of repetitive DNA, yet the nature of the gene repertoire of fly Y-chromosomes is largely unknown. Here we trace gene-content evolution of Y-chromosomes across 22 Diptera species, using a subtraction pipeline that infers Y genes from male and female genome, and transcriptome data. Few genes remain on old Y-chromosomes, but the number of inferred Y-genes varies substantially between species. Young Y-chromosomes still show clear evidence of their autosomal origins, but most genes on old Y-chromosomes are not simply remnants of genes originally present on the proto-sex-chromosome that escaped degeneration, but instead were recruited secondarily from autosomes. Despite almost no overlap in Y-linked gene content in different species with independently formed sex-chromosomes, we find that Y-linked genes have evolved convergent gene functions associated with testis expression. Thus, male-specific selection appears as a dominant force shaping gene-content evolution of Y-chromosomes across fly species.While X-chromosome gene content tends to be conserved, Y-chromosome evolution is dynamic and difficult to reconstruct. Here, Mahajan and Bachtrog use a subtraction pipeline to identify Y-linked genes in 22 Diptera species, revealing patterns of Y-chromosome gene-content evolution.

  1. Astrobiology: The Search for Life in the Universe

    NASA Technical Reports Server (NTRS)

    Pacchioli, David

    2003-01-01

    Each of the 11 lead members of NASA's Astrobiology Institute has a specific mission. According to Hiroshi Ohmoto, director of Penn State s Astrobiology Research Center, Here we are mainly concerned with the origin of life and the evolution and extinction of important organisms. These include bacteria that live on methane, cyanobacteria (the inventors of photosynthesis), eukaryotes (a big category, covering anything with a nucleus, from single-celled organisms to humans), land-dwelling organisms, and early animals. Penn State astrobiologists are studying the environment before there was life on Earth, the origin of oxygen in the atmosphere, the chemical and thermal structures of oceans, and the role of metals in the evolution of life. Overall, they want to understand the connection between changes in environment and changes in life forms in the early Earth. PSARC offers research assistantships for graduate and undergraduate students, fellowships for graduate students and post-doctoral fellows, and an undergraduate minor in astrobiology. The minor covers 18 credits in earth sciences, geochemistry, geophysics, astronomy, biology, biochemistry, meteorology, and microbiology. The goal, says Ohmoto, is to teach students to critically evaluate claims related to this field that they encounter well after their college education has ended. Under a scanning electron microscope, Martian meteorite ALH84001 yields tube-like structures that look a lot like remnants of Earthly bacteria except smaller by a factor of ten.

  2. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  3. Targeted DNA Sequencing Reveals Patterns of Local Progression in the Pancreatic Remnant Following Resection of Intraductal Papillary Mucinous Neoplasm (IPMN) of the Pancreas

    PubMed Central

    Pea, Antonio; Yu, Jun; Rezaee, Neda; Luchini, Claudio; He, Jin; Molin, Marco Dal; Griffin, James F.; Fedor, Helen; Fesharakizadeh, Shahriar; Salvia, Roberto; Weiss, Matthew J.; Bassi, Claudio; Cameron, John L.; Zheng, Lei; Scarpa, Aldo; Hruban, Ralph H.; Lennon, Anne Marie; Goggins, Michael

    2016-01-01

    Objective The aim of this study was to characterize patterns of local progression following resection for pancreatic intraductal papillary mucinous neoplasms (IPMN) using targeted next-generation sequencing (NGS). Background Progression of neoplastic disease in the remnant pancreas following resection of IPMN may include development of a new IPMN or ductal adenocarcinoma (PDAC). However, it is not clear whether this progression represents recurrence of the same neoplasm or an independent second neoplasm. Methods Targeted-NGS on genes commonly mutated in IPMN and PDAC was performed on tumors from (1) 13 patients who developed disease progression in the remnant pancreas following resection of IPMN; and (2) 10 patients who underwent a resection for PDAC and had a concomitant IPMN. Mutations in the tumors were compared in order to determine the relationship between neoplasms. In parallel, clinical and pathological characteristics of 260 patients who underwent resection of noninvasive IPMN were reviewed to identify risk factors associated with local progression. Results We identified 3 mechanisms underlying local progression in the remnant pancreas: (1) residual microscopic disease at the resection margin, (2) intraparenchymal spread of neoplastic cells, leading to an anatomically separate but genetically related recurrence, and (3) multifocal disease with genetically distinct lesions. Analysis of the 260 patients with noninvasive IPMNs showed that family history of pancreatic cancer (P = 0.027) and high-grade dysplasia (HGD) (P = 0.003) were independent risk factors for the development of an IPMN with HGD or an invasive carcinoma in the remnant pancreas. Conclusions Using NGS, we identify distinct mechanisms for development of metachronous or synchronous neoplasms in patients with IPMN. Patients with a primary IPMN with HGD or with positive family history are at an increased risk to develop subsequent high-risk neoplasms in the remnant pancreas. PMID:27433916

  4. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species.

    PubMed

    Mason, A S; Snowdon, R J

    2016-11-01

    Oilseed rape (Brassica napus) is one of our youngest crop species, arising several times under cultivation in the last few thousand years and completely unknown in the wild. Oilseed rape originated from hybridisation events between progenitor diploid species B. rapa and B. oleracea, both important vegetable species. The diploid progenitors are also ancient polyploids, with remnants of two previous polyploidisation events evident in the triplicated genome structure. This history of polyploid evolution and human agricultural selection makes B. napus an excellent model with which to investigate processes of genomic evolution and selection in polyploid crops. The ease of de novo interspecific hybridisation, responsiveness to tissue culture, and the close relationship of oilseed rape to the model plant Arabidopsis thaliana, coupled with the recent availability of reference genome sequences and suites of molecular cytogenetic and high-throughput genotyping tools, allow detailed dissection of genetic, genomic and phenotypic interactions in this crop. In this review we discuss the past and present uses of B. napus as a model for polyploid speciation and evolution in crop species, along with current and developing analysis tools and resources. We further outline unanswered questions that may now be tractable to investigation. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Chylomicron remnants and nonesterified fatty acids differ in their ability to inhibit genes involved in lipogenesis in rats.

    PubMed

    Kohan, Alison B; Qing, Yang; Cyphert, Holly A; Tso, Patrick; Salati, Lisa M

    2011-02-01

    Primary hepatocytes treated with nonesterified PUFA have been used as a model for analyzing the inhibitory effects of dietary polyunsaturated fats on lipogenic gene expression. Although nonesterified fatty acids play an important signaling role in starvation, they do not completely recapitulate the mechanism of dietary fat presentation to the liver, which is delivered via chylomicron remnants. To test the effect of remnant TG on lipogenic enzyme expression, chylomicron remnants were generated from the lymph of rats intubated with either safflower oil or lard. The remnants were added to the medium of primary rat hepatocytes in culture and the accumulation of mRNA for genes involved in carbohydrate and lipid metabolism was measured. Both PUFA-enriched remnants and nonesterified PUFA inhibited the expression and maturation of sterol response element binding protein-1c (SREBP-1c) and the expression of lipogenic genes regulated by this transcription factor. These remnants also inhibited the expression of glucose-6-phosphate dehydrogenase (G6PD), a gene regulated at post-transcriptional steps. In contrast, PUFA-enriched remnants did not inhibit the accumulation of mRNA for malic enzyme, glucokinase, and L-pyruvate kinase, whereas nonesterified fatty acids caused a decrease in these mRNA. These genes are regulated independently of SREBP-1c. SFA-enriched remnants did not inhibit lipogenic gene expression, which is consistent with a lack of inhibition of lipogenesis by dietary saturated fats. Thus, the inhibitory action of dietary polyunsaturated fats on lipogenesis involves a direct action of chylomicron remnants on the liver.

  6. Influence of the Roof Movement Control Method on the Stability of Remnant

    NASA Astrophysics Data System (ADS)

    Adach-Pawelus, Karolina

    2017-12-01

    In the underground mines, there are geological and mining situations that necessitate leaving behind remnants in the mining field. Remnants, in the form of small, irregular parcels, are usually separated in the case of: significant problems with maintaining roof stability, high rockburst hazard, the occurrence of complex geological conditions and for random reasons (ore remnants), as well as for economic reasons (undisturbed rock remnants). Remnants left in the mining field become sites of high stress values concentration and may affect the rock in their vicinity. The values of stress inside the remnant and its vicinity, as well as the stability of the remnant, largely depend on the roof movement control method used in the mining field. The article presents the results of the numerical analysis of the influence of roof movement control method on remnant stability and the geomechanical situation in the mining field. The numerical analysis was conducted for the geological and mining conditions characteristic of Polish underground copper mines owned by KGHM Polska Miedz S.A. Numerical simulations were performed in a plane strain state by means of Phase 2 v. 8.0 software, based on the finite element method. The behaviour of remnant and rock mass in its vicinity was simulated in the subsequent steps of the room and pillar mining system for three types of roof movement control method: roof deflection, dry backfill and hydraulic backfill. The parameters of the rock mass accepted for numerical modelling were calculated by means of RocLab software on the basis of the Hoek-Brown classification. The Mohr-Coulomb strength criterion was applied.

  7. Premium campground with lake view - pingo remnants as preferred Mesolithic settlement sites?

    NASA Astrophysics Data System (ADS)

    Hüser, Andreas; Enters, Dirk; Wolters, Steffen

    2016-04-01

    Pingo remnants are typical but not always easily visible landscape features in northwestern Germany and the Netherlands. Some of them are still small lakes but present-day land-use mostly disguises the existence of formerly water-filled depressions. In addition the circular wall structures have often been leveled by agricultural activities in modern times. However, according to estimates several hundreds pingo remnants bearing witness to Weichselian periglacial conditions can still be found in East Frisia and in the area between the rivers Elbe and Weser. Preliminary paleoecological investigations have shown that the majority of them were water-filled until Neolithic times making them a potential campground of preference for the Mesolithic population. In addition to wind shelter behind wall structures or dunes, Mesolithic hunter-gatherer communities could have used here both aquatic and terrestrial food resources. We investigated three of these pingo remnants in northwestern Germany using a multi-proxy approach combining an iterative archaeological site analysis with sediment core studies including geochemical and biological proxies. Our results show that Mesolithic artifacts are often concentrated close to open water bodies. The sediment cores obtained cover the time span from the late Palaeolithic to modern times. Excellent preservation conditions and a moderate sedimentation rate during the Mesolithic enables environmental change to be reconstructed.

  8. G65.2+5.7: A Thermal Composite Supernova Remnant with a Cool Shell

    NASA Technical Reports Server (NTRS)

    Shelton, R. L.; Kuntz, K. D.; Petre, R.

    2004-01-01

    This paper presents archival ROSAT PSPC observations of the G65.2+5.7 supernova remnant (also known as G65.3+5.7). Little material obscures this remnant and so it was well observed, even at the softest end of ROSATs bandpass (approx. 0.11 to 0.28 keV). These soft X-ray images reveal the remnant s centrally-filled morphology which, in combination with existing radio frequency observations, places G65.2+5.7 in the thermal composite (mixed morphology) class of supernova remnants. Not only might G65.2+5.7 be the oldest known thermal composite supernova remnant, but owing to its optically revealed cool, dense shell, this remnant supports the proposal that thermal composite supernova remnants lack X-ray bright shells because they have evolved beyond the adiabatic phase. These observations also reveal a slightly extended point source centered on RA = l9(sup h) 36(sup m) 46(sup s). dec = 30 deg.40 min.07 sec.and extending 6.5 arc min in radius in the band 67 map. The source of this emission has yet to be discovered, as there is no known pulsar at this location.

  9. Effect of Hashimoto thyroiditis on low-dose radioactive-iodine remnant ablation.

    PubMed

    Kwon, Hyungju; Choi, June Young; Moon, Jae Hoon; Park, Hyo Jin; Lee, Won Woo; Lee, Kyu Eun

    2016-04-01

    Radioactive-iodine remnant ablation is an integral part of the papillary thyroid carcinoma (PTC) treatment. Although a minimum dose is usually recommended, there is controversy as to whether the low-dose (1100 MBq) radioactive-iodine remnant ablation is adequate for selected patients. A retrospective cohort study was conducted on 691 patients. Patients with no remnant thyroid on the follow-up whole body scan and low stimulated thyroglobulin (sTg) level (<2.0 ng/mL) were deemed as successful treatment cases. Initial low-dose radioactive-iodine remnant ablation was successful in 431 patients (62.3%). Multivariate analysis demonstrated a negative correlation between successful radioactive-iodine remnant ablation and coexisting Hashimoto thyroiditis based on histopathology diagnosis (odds ratio [OR] = 3.23; p < .001) as well as elevated preablation sTg (OR = 1.24; p < .001). Our data suggest that coexisting Hashimoto thyroiditis and elevated sTg are negative predictive factors for successful low-dose radioactive-iodine remnant ablation treatment. An appropriate risk-adjusted approach may improve the efficacy of radioactive-iodine remnant ablation treatment. © 2015 Wiley Periodicals, Inc. Head Neck 38: E730-E735, 2016. © 2015 Wiley Periodicals, Inc.

  10. The role of surface-to-bed meltwater transfer events on the evolution of the Scandinavian Ice Sheet during the Weichselian

    NASA Astrophysics Data System (ADS)

    Clason, C.; Holmlund, P.; Applegate, P. J.; Strömberg, B.

    2012-12-01

    Inclusion of surface-to-bed meltwater transfer in the ice sheet model SICOPOLIS may help explain enigmatic erosional features, remnant of the last-glacial Scandinavian Ice Sheet (SIS), off Sweden's east coast. Modelling of ice sheets has largely neglected specific transfer of meltwater from the ice surface to the subglacial system, yet numerous studies on Greenland reveal dynamic response to surface meltwater generation and lake drainages, alluding to the importance of meltwater transfer for ice sheet response to climate change. Geologic evidence suggests the SIS experienced a number of oscillations during its evolution, characterised by variability in areas of fast flow, likely driven by changes in the thermal regime and fluctuating basal water pressure. SICOPOLIS accounts for polythermal conditions by applying a Weertman-type sliding law where basal ice is temperate. Furthermore, a first approximation of the surface meltwater effect on basal sliding is implemented within the SICOPOLIS Greenland domain, dependent on ice thickness and runoff. Field studies within the Swedish Archipelago have revealed numerous meltwater erosion features, including polished flutes. These flutes are deeper than the glacial striations in the area, and are both younger than and oriented differently to the youngest striae. Significant quantities of meltwater would have been necessary to erode such features, and large deposits of silt and clay in the surrounding area reinforce that meltwater was in good supply. Given the scattered distribution of polished fluting sites, access of meltwater to the bed through fracture penetration and lake drainage may have been instrumental in the localised nature of the sites. Driven by the geological evidence, SICOPOLIS is modified to include the surface meltwater effect within the Scandinavian domain. We aim to evaluate the role of meltwater transfer on the evolution of the SIS during the Weichselian, with particular focus on the area of the theorised Baltic Ice Stream.

  11. Polyphase tectono-magmatic and fluid history related to mantle exhumation in an ultra-distal rift domain: example of the fossil Platta domain, SE Switzerland

    NASA Astrophysics Data System (ADS)

    Epin, Marie-Eva; Manatschal, Gianreto; Amann, Méderic; Lescanne, Marc

    2017-04-01

    Despite the fact that many studies have investigated mantle exhumation at magma-poor rifted margins, there are still numerous questions concerning the 3D architecture, magmatic, fluid and thermal evolution of these ultra-distal domains that remain unexplained. Indeed, it has been observed in seismic data from ultra-distal magma-poor rifted margins that top basement is heavily structured and complex, however, the processes controlling the morpho-tectonic and magmatic evolution of these domains remain unknown. The aim of this study is to describe the 3D top basement morphology of an exhumed mantle domain, exposed over 200 km2 in the fossil Platta domain in SE Switzerland, and to define the timing and processes controlling its evolution. The examined Platta nappe corresponds to a remnant of the former ultra-distal Adriatic margin of the Alpine Tethys. The rift-structures are relatively well preserved due to the weak Alpine tectonic and metamorphic overprint during the emplacement in the Alpine nappe stack. Detailed mapping of parts of the Platta nappe enabled us to document the top basement architecture of an exhumed mantle domain and to investigate its link to later, rift/oceanic structures, magmatic additions and fluids. Our observations show a polyphase and/or complex: 1) deformation history associated with mantle exhumation along low-angle exhumation faults overprinted by later high-angle normal faults, 2) top basement morphology capped by magmato-sedimentary rocks, 3) tectono-magmatic evolution that includes gabbros, emplaced at deeper levels and subsequently exhumed and overlain by younger extrusive magmatic additions, and 4) fluid history including serpentinization, calcification, hydrothermal vent, rodingitization and spilitization affecting exhumed mantle and associated magmatic rocks. The overall observations provide important information on the temporal and spatial evolution of the tectonic, magmatic and fluid systems controlling the formation of ultra-distal magma-poor rifted margins as well as the processes controlling lithospheric breakup. In this context, our field observations can help to better understand the tectono-magmatic processes associated to these, not yet drilled domains that may form in young, narrow rifted margins (e.g. Red Sea, Gulf of Aden) or may represent the Ocean-Continent Transition in more mature, magma-poor Atlantic type systems.

  12. Analysis of LAC Observations of Clusters of Galaxies and Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J.

    1996-01-01

    The following publications are included and serve as the final report: The X-ray Spectrum of Abell 665; Clusters of Galaxies; Ginga Observation of an Oxygen-rich Supernova Remnant; Ginga Observations of the Coma Cluster and Studies of the Spatial Distribution of Iron; A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-Zel'dovich Effect of Abell 2218; Non-polytropic Model for the Coma Cluster; and Abundance Gradients in Cooling Flow Clusters: Ginga LAC (Large Area Counter) and Einstein SSS (Solid State Spectrometer) Spectra of A496, A1795, A2142, and A2199.

  13. Hot spot abundance, ridge subduction and the evolution of greenstone belts

    NASA Technical Reports Server (NTRS)

    Abbott, D.; Hoffman, S.

    1986-01-01

    A number of plate tectonic hypotheses have been proposed to explain the origin of Archaean and Phanerozoic greenstone/ophiolite terranes. In these models, ophiolites or greenstone belts represent the remnants of one or more of the following: island arcs, rifted continental margins, oceanic crustal sections, and hot spot volcanic products. If plate tectonics has been active since the creation of the Earth, it is logical to suppose that the same types of tectonic processes which form present day ophiolites also formed Archaean greenstone belts. However, the relative importance of the various tectonic processes may well have been different and are discussed.

  14. Dynamical evolution of spectator systems produced in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mazurek, K.; Szczurek, A.; Schmitt, C.; Nadtochy, P. N.

    2018-02-01

    In peripheral heavy-ion collisions at ultrarelativistic energies, usually only parts of the colliding nuclei effectively interact with each other. In the overlapping zone, a fireball or quark-gluon plasma is produced. The excitation energy of the heavy remnant can range from a few tens to several hundreds of MeV, depending on the impact parameter. The decay of these excited spectators is investigated in this work for the first time within a dynamical approach based on the multidimensional stochastic Langevin equation. The potential of this exploratory work to understand the connection between electromagnetic fields generated by the heavy spectators and measured pion distributions is discussed.

  15. Intrinsic subpicosecond magnetization reversal driven by femtosecond laser pulses in GdFeCo amorphous films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shufa; Gao, Ruixin; Cheng, Chuyuan

    2013-12-09

    Ultrafast magnetization dynamics in GdFeCo films triggered by femtosecond laser pulses with and without an external field applied is studied experimentally for different excitation fluence. It is found that subpicosecond magnetization reversal occurs simultaneously in the ultrafast dynamics of both saturation and remnant magnetization states and almost identical within 13 ps, whereas relatively slow magnetization reversal across compensation point appears only in the dynamics of saturation magnetization state. It shows the subpicosecond magnetization reversal is external field independent, and originates from intrinsic magnetic evolution in ferrimagnetic system. The intrinsic subpicosecond reversal is qualitatively explained by linear reversal.

  16. No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox

    NASA Astrophysics Data System (ADS)

    Perez, Alejandro

    2015-04-01

    In an approach to quantum gravity where space-time arises from coarse graining of fundamentally discrete structures, black hole formation and subsequent evaporation can be described by a unitary evolution without the problems encountered by the standard remnant scenario or the schemes where information is assumed to come out with the radiation during evaporation (firewalls and complementarity). The final state is purified by correlations with the fundamental pre-geometric structures (in the sense of Wheeler), which are available in such approaches, and, like defects in the underlying space-time weave, can carry zero energy.

  17. G29.7-0.3: another supernova remnant with an identity crisis

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Helfand, D. J.; Szymkowiak, A. E.

    1983-01-01

    New radio and X-ray observations of the galactic supernova remnant G29.7-0.3 show that it is composed of two spectrally distinct components: a steep-spectrum, incomplete shell 3 arcmin in extent enclosing a flat-spectrum, X-ray emitting region 30 arcsec across. Thus, G29.7-0.3 joins the ranks of supernova remnants which exhibit a combination of Crab-like and shell remnant attributes. The Crab-like core has the highest ratio of X-ray radio luminosity of all the Crab-like remnants observed to date, suggesting that it is an extremely young object.

  18. The quest for blue supergiants : The evolution of the progenitor of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira; Heger, Alexander

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  19. Neutron Stars in Supernova Remnants and Beyond

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    We discuss a concept of off-centred cavity supernova explosion as applied to neutron star/supernova remnant associations and show how this concept could be used to preclude the anti-humane decapitating the Duck (G5.4-1.2 + G5.27-0.9) and dismembering the Swan (Cygnus Loop), as well as to search for a stellar remnant associated with the supernova remnant RCW86.

  20. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph; Slane, Patrick; Hughes, John; Temim, Tea; Castro, Daniel; Rakowski, Cara

    Supernova remnant are believed to be the dominant source of cosmic rays protons below the "knee" in the energy spectrum. However, relatively few supernova remnants have been identified as efficient producers of cosmic ray protons. In this talk, I will present evidence that the production of cosmic ray protons is required to explain the broadband non-thermal spectrum of supernova remnant Kes 17 (SNR G304.6+0.1). Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 and similar sources are important for understanding how cosmic rays are accelerated in supernova remnants.

  1. Oceanic Remnants In The Caribbean Plate: Origin And Loss Of Related LIPs.

    NASA Astrophysics Data System (ADS)

    Giunta, G.

    2005-12-01

    The modern Caribbean Plate is an independent lithospheric entity, occupying more than 4 Mkm2 and consisting of the remnants of little deformed Cretaceous oceanic plateau of the Colombia and Venezuela Basins (almost 1 Mkm2) and the Palaeozoic-Mesozoic Chortis continental block (about 700,000 km2), both bounded by deformed marginal belts. The northern (Guatemala and Greater Antilles) and the southern (northern Venezuela) plate margins are marked by collisional zones, whereas the western (Central America Isthmus) and the eastern (Lesser Antilles) margins are represented by convergent boundaries and their magmatic arcs, all involving ophiolitic terranes. The evolutionary history of the Caribbean Plate since the Jurassic-Early Cretaceous encompasses plume, accretionary, and collisional tectonics, the evidence of which has been recorded in the oceanic remnants of lost LIPs, as revealed in: i) the MORB to OIB thickened crust of the oceanic plateau, including its un-deformed or little deformed main portion, and scattered deformed tectonic units; ii) ophiolitic tectonic units of MORB affinity and the rock blocks in ophiolitic melanges; iii) intra-oceanic, supra subduction magmatic sequences with IAT and CA affinities. The Mesozoic oceanic LIPs, from which the remnants of the Caribbean Plate have been derived, have been poorly preserved during various episodes of the intra-oceanic convergence, either those related to the original proto-Caribbean oceanic realm or those connected with two eo-Caribbean stages of subduction. The trapped oceanic plateau of the Colombia and Venezuela Basins is likely to be an unknown portion of a bigger crustal element of a LIP, similar to the Ontong-Java plateau. The Jurassic-Early Cretaceous proto-Caribbean oceanic domain consists of oceanic crust generated at multiple spreading centres; during the Cretaceous, part of this crust was thickened to form an oceanic plateau with MORB and OIB affinities. At the same time, both South and North American continental margins, inferred to be close to the oceanic realm, were affected by rifting and within-plate tholeiitic magmatism (WPT); this interpretation supports a near mid-America original location of the "proto-Caribbean" LIP. The MORB magmatic sections and rock blocks in the ophiolitic melanges are interpreted as exhumed tectonic sheets of the normal proto-Caribbean oceanic lithosphere, or part of a back-arc crust, both deformed in the eo-Caribbean stages. The SSZ complexes, considered as Cordilleran-type deformed ophiolites, were derived from a LIP that experienced two superimposed eo-Caribbean stages of intra-oceanic subduction. The older (Mid-Cretaceous) stage involved the eastward subduction of the un-thickened proto-Caribbean lithosphere, resulting in IAT and CA magmatism accompanied by HP-LT metamorphism and melange formation. The second, Late Cretaceous stage involved a westward dipping intra-oceanic subduction, which generated tonalitic arc magmatism. The eastward wedging of the Caribbean Plateau between the North and South American plates progressively trapped remnants of the Colombia and Venezuela Basins between the Atlantic and Pacific subduction zones and their new volcanic arcs (Aves-Lesser Antilles and Central American Isthmus). Unlike the proto-Caribbean, it appears that this LIP did not involve the main continental margins, even though the northern and southern Caribbean borders experienced different evolutionary paths. It was largely lost by superimposed accretionary and collisional events producing the marginal belts of the Caribbean Plate; its evolution has been dominated by a strongly oblique tectonic regime, constraining seafloor spreading, subduction, crustal exhumation, emplacement, and dismembering processes.

  2. Precombination Cloud Collapse and Baryonic Dark Matter

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1993-01-01

    A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.

  3. The effects of sleeve gastectomy on gastro-esophageal reflux and gastro-esophageal motility.

    PubMed

    Hayat, Jamal O; Wan, Andrew

    2014-05-01

    Sleeve gastrectomy is an increasingly performed bariatric procedure associated with low morbidity and good short to medium term effects on weight loss and comorbid conditions. Studies assessing the prevalence of post-operative gastro-esophageal reflux disease (GERD), show sleeve gastrectomy may provoke de novo GERD symptoms or worsening of pre-existing GERD. Pathophysiological mechanisms of GERD after sleeve gastrectomy include a hypotensive lower esophageal sphincter, increased gastro-esophageal pressure gradient and intra-thoracic migration of the remnant stomach. A reduction in the compliance of the gastric remnant may provoke an increase in transient lower esophageal sphincter relaxations. Time-resolved MRI suggests relative gastric stasis in the proximal remnant and increased emptying from the antrum. A lack of standardisation of technique, along with heterogeneity of studies assessing GERD may explain the wide variability in reported results. Simultaneous and careful repair of an associated hiatus hernia may result in a reduction in the prevalence of post-operative GERD.

  4. AN X-RAY AND RADIO STUDY OF THE VARYING EXPANSION VELOCITIES IN TYCHO’S SUPERNOVA REMNANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian J.; Chomiuk, Laura; Hewitt, John W.

    2016-06-01

    We present newly obtained X-ray and radio observations of Tycho’s supernova remnant using Chandra and the Karl G. Jansky Very Large Array in 2015 and 2013/14, respectively. When combined with earlier epoch observations by these instruments, we now have time baselines for expansion measurements of the remnant of 12–15 years in the X-rays and 30 years in the radio. The remnant’s large angular size allows for proper motion measurements at many locations around the periphery of the blast wave. Consistent with earlier measurements, we find a clear gradient in the expansion velocity of the remnant, despite its round shape. Themore » proper motions on the western and southwestern sides of the remnant are about a factor of two higher than those in the east and northeast. We showed in an earlier work that this is related to an offset of the explosion site from the geometric center of the remnant due to a density gradient in the ISM, and using our refined measurements reported here, we find that this offset is ∼23″ toward the northeast. An explosion center offset in such a circular remnant has implications for searches for progenitor companions in other remnants.« less

  5. How large is large enough for insects? Forest fragmentation effects at three spatial scales

    NASA Astrophysics Data System (ADS)

    Ribas, C. R.; Sobrinho, T. G.; Schoereder, J. H.; Sperber, C. F.; Lopes-Andrade, C.; Soares, S. M.

    2005-02-01

    Several mechanisms may lead to species loss in fragmented habitats, such as edge and shape effects, loss of habitat and heterogeneity. Ants and crickets were sampled in 18 forest remnants in south-eastern Brazil, to test whether a group of small remnants maintains the same insect species richness as similar sized large remnants, at three spatial scales. We tested hypotheses about alpha and gamma diversity to explain the results. Groups of remnants conserve as many species of ants as a single one. Crickets, however, showed a scale-dependent pattern: at small scales there was no significant or important difference between groups of remnants and a single one, while at the larger scale the group of remnants maintained more species. Alpha diversity (local species richness) was similar in a group of remnants and in a single one, at the three spatial scales, both for ants and crickets. Gamma diversity, however, varied both with taxa (ants and crickets) and spatial scale, which may be linked to insect mobility, remnant isolation, and habitat heterogeneity. Biological characteristics of the organisms involved have to be considered when studying fragmentation effects, as well as spatial scale at which it operates. Mobility of the organisms influences fragmentation effects, and consequently conservation strategies.

  6. Structural determination of glucosylceramides in the distillation remnants of shochu, the Japanese traditional liquor, and its production by Aspergillus kawachii.

    PubMed

    Hirata, Miyo; Tsuge, Keisuke; Jayakody, Lahiru N; Urano, Yoshitaka; Sawada, Kazutaka; Inaba, Shigeki; Nagao, Koji; Kitagaki, Hiroshi

    2012-11-21

    Shochu is traditional Japanese liquor produced from various crops and fungi Aspergillus kawachi or A. awamorii . The amount of unutilized shochu distillation remnants is increasing because of the recent prohibition of ocean dumping of these remnants. In this Article, we first describe the structures of glucosylceramides contained in shochu distillation remnants by fragment ion analysis using ESI-tandem mass spectrometry. Shochu distillation remnant produced from barley contained glucosylceramides d18:2/C16:0h, d18:2/C20:0h, d19:2/C18:1h, and d18:2/C18:0h. Koji (barley fermented with A. kawachii) contained the same glucosylceramides. Shochu distillation remnants produced from rice contained glucosylceramides d18:2/C18:0h and d19:2/C18:1h. The culture broth of A. kawachii contained glucosylceramides d19:2/C18:1h and d19:2/C18:0h. These results indicate that the glucosylceramides contained in crops and those produced by A. kawachii transfer through the processes of fermentation with yeast and distillation to the shochu distillation remnant. This information will enable utilization of shochu distillation remnants and koji as novel sources of sphingolipids.

  7. Science with the VLA Sky Survey (VLASS)

    NASA Astrophysics Data System (ADS)

    Murphy, Eric J.; Baum, Stefi Alison; Brandt, W. Niel; Chandler, Claire J.; Clarke, Tracy E.; Condon, James J.; Cordes, James M.; Deustua, Susana E.; Dickinson, Mark; Gugliucci, Nicole E.; Hallinan, Gregg; Hodge, Jacqueline; Lang, Cornelia C.; Law, Casey J.; Lazio, Joseph; Mao, Sui Ann; Myers, Steven T.; Osten, Rachel A.; Richards, Gordon T.; Strauss, Michael A.; White, Richard L.; Zauderer, Bevin; Extragalactic Science Working Group, Galactic Science Working Group, Transient Science Working Group

    2015-01-01

    The Very Large Array Sky Survey (VLASS) was initiated to develop and carry out a new generation large radio sky survey using the recently upgraded Karl G. Jansky Very Large Array. The proposed VLASS is a modern, multi-tiered survey with the VLA designed to provide a broad, cohesive science program with forefront scientific impact, capable of generating unexpected scientific discoveries, generating involvement from all astronomical communities, and leaving a lasting legacy value for decades.VLASS will observe from 2-4 GHz and is structured to combine comprehensive all sky coverage with sequentially deeper coverage in carefully identified parts of the sky, including the Galactic plane, and will be capable of informing time domain studies. This approach enables both focused and wide ranging scientific discovery through the coupling of deeper narrower tiers with increasing sky coverage at shallower depths, addressing key science issues and providing a statistical interpretational framework. Such an approach provides both astronomers and the citizen scientist with information for every accessible point of the radio sky, while simultaneously addressing fundamental questions about the nature and evolution of astrophysical objects.VLASS will follow the evolution of galaxies and their central black hole engines, measure the strength and topology of cosmic magnetic fields, unveil hidden explosions throughout the Universe, and chart our galaxy for stellar remnants and ionized bubbles. Multi-wavelength communities studying rare objects, the Galaxy, radio transients, or galaxy evolution out to the peak of the cosmic star formation rate density will equally benefit from VLASS.Early drafts of the VLASS proposal are available at the VLASS website (https://science.nrao.edu/science/surveys/vlass/vlass), and the final proposal will be posted in early January 2015 for community comment before undergoing review in March 2015. Upon approval, VLASS would then be on schedule to start observing in 2016.

  8. Evolution of turbulence in the expanding solar wind, a numerical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yue; Grappin, Roland; Verdini, Andrea, E-mail: Yue.Dong@lpp.polytechnique.fr, E-mail: verdini@arcetri.astro.it, E-mail: grappin@lpp.polytechnique.fr

    2014-10-01

    We study the evolution of turbulence in the solar wind by solving numerically the full three-dimensional (3D) magnetohydrodynamic (MHD) equations embedded in a radial mean wind. The corresponding equations (expanding box model or EBM) have been considered earlier but never integrated in 3D simulations. Here, we follow the development of turbulence from 0.2 AU up to about 1.5 AU. Starting with isotropic spectra scaling as k {sup –1}, we observe a steepening toward a k {sup –5/3} scaling in the middle of the wave number range and formation of spectral anisotropies. The advection of a plasma volume by the expandingmore » solar wind causes a non-trivial stretching of the volume in directions transverse to radial and the selective decay of the components of velocity and magnetic fluctuations. These two effects combine to yield the following results. (1) Spectral anisotropy: gyrotropy is broken, and the radial wave vectors have most of the power. (2) Coherent structures: radial streams emerge that resemble the observed microjets. (3) Energy spectra per component: they show an ordering in good agreement with the one observed in the solar wind at 1 AU. The latter point includes a global dominance of the magnetic energy over kinetic energy in the inertial and f {sup –1} range and a dominance of the perpendicular-to-the-radial components over the radial components in the inertial range. We conclude that many of the above properties are the result of evolution during transport in the heliosphere, and not just the remnant of the initial turbulence close to the Sun.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{supmore » 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.« less

  10. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins

    PubMed Central

    2013-01-01

    Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications. PMID:24053117

  11. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins.

    PubMed

    Mühlhausen, Stefanie; Kollmar, Martin

    2013-09-22

    The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.

  12. Liver remnant regeneration in donors after living donor liver transplantation: long-term follow-up using CT and MR imaging.

    PubMed

    Klink, T; Simon, P; Knopp, C; Ittrich, H; Fischer, L; Adam, G; Koops, A

    2014-06-01

    To assess liver remnant volume regeneration and maintenance, and complications in the long-time follow-up of donors after living donor liver transplantation using CT and MRI. 47 donors with a mean age of 33.5 years who donated liver tissue for transplantation and who were available for follow-up imaging were included in this retrospective study. Contrast-enhanced CT and MR studies were acquired for routine follow-up. Two observers evaluated pre- and postoperative images regarding anatomy and pathological findings. Volumes were manually measured on contrast-enhanced images in the portal venous phase, and potential postoperative complications were documented. Pre- and postoperative liver volumes were compared for evaluating liver remnant regeneration. 47 preoperative and 89 follow-up studies covered a period of 22.4 months (range: 1 - 84). After right liver lobe (RLL) donation, the mean liver remnant volume was 522.0 ml (± 144.0; 36.1 %; n = 18), after left lateral section (LLS) donation 1,121.7 ml (± 212.8; 79.9 %; n = 24), and after left liver lobe (LLL) donation 1,181.5 ml (± 279.5; 72.0 %; n = 5). Twelve months after donation, the liver remnant volume were 87.3 % (RLL; ± 11.8; n = 11), 95.0 % (LS; ± 11.6; n = 18), and 80.1 % (LLL; ± 2.0; n = 2 LLL) of the preoperative total liver volume. Rapid initial regeneration and maintenance at 80 % of the preoperative liver volume were observed over the total follow-up period.  Minor postoperative complications were found early in 4 patients. No severe or late complications or mortality occurred. Rapid regeneration of liver remnant volumes in all donors and volume maintenance over the long-term follow-up period of up to 84 months without severe or late complications are important observations for assessing the safety of LDLT donors. Liver remnant volumes of LDLT donors rapidly regenerated after donation and volumes were maintained over the long-term follow-up period of up to 84 months without severe or late complications. © Georg Thieme Verlag KG Stuttgart · New York.

  13. High mortality after ALPPS for perihilar cholangiocarcinoma: case-control analysis including the first series from the international ALPPS registry

    PubMed Central

    Olthof, Pim B.; Coelen, Robert J.S.; Wiggers, Jimme K.; Koerkamp, Bas Groot; Malago, Massimo; Hernandez-Alejandro, Roberto; Topp, Stefan A.; Vivarelli, Marco; Aldrighetti, Luca A.; Campos, Ricardo Robles; Oldhafer, Karl J.; Jarnagin, William R.; van Gulik, Thomas M.

    2017-01-01

    Introduction Resection of perihilar cholangiocarcinoma (PHC) entails high-risk surgery with substantial postoperative mortality reported up to 18%, even in specialized centers. The aim of this study was to compare outcomes of PHC patients who underwent associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) to patients with a small functional liver remnant who underwent resection without ALPSS. Methods All patients who underwent ALPPS for PHC were identified from the international ALPPS registry and matched controls were selected from a standard resection cohort from two centers based on future remnant liver size. Outcomes included morbidity, mortality, and overall survival. Results Of the 37 patients who had undergone ALPPS for PHC in the registry, 29 had sufficient data for analyses. ALPPS for PHC was associated with a 48% (14/29) 90-day mortality and median OS of 6 months. A total of 257 patients underwent major liver resection for PHC without ALPPS. The 90-day mortality was 13% and median OS 46 months. The 29 ALPPS patients were matched to 29 patients resected without ALPPS, with similar future liver remnant volume (P=0.480). Mortality in the matched control group was 24% (P=0.100) and median OS was 27 months (P = 0.064). Discussion Outcomes of ALPPS for PHC appear inferior when compared to standard extended resections in high-risk patients. Considering these outcomes, portal vein embolization should remain the preferred method to increase future remnant liver volume in PHC patients. ALPPS is not recommended for PHC due to the 48% 90-day mortality in expert centers. PMID:28279621

  14. Stability and Evolution of Supernova Fallback Disks

    NASA Astrophysics Data System (ADS)

    Menou, Kristen; Perna, Rosalba; Hernquist, Lars

    2001-10-01

    We show that thin accretion disks made of carbon or oxygen are subject to the same thermal ionization instability as hydrogen and helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 103 to 104 yr), compact in size (a few 109 to 1011 cm) and generally accreting at sub-Eddington rates (M~a few 1014-1018 g s-1). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets at ~1011 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because its remnant disk has a rather large initial angular momentum, which allows it to spread beyond the Roche limit before becoming neutral. The early super-Eddington phase of accretion is a source of uncertainty for the disk evolution models presented here.

  15. Chinese Data of Efficacy of Low- and High-Dose Iodine-131 for the Ablation of Thyroid Remnant.

    PubMed

    Ma, Chao; Feng, Fang; Wang, Shaoyan; Fu, Hongliang; Wu, Shuqi; Ye, Zhiyi; Chen, Suyun; Wang, Hui

    2017-06-01

    Chinese data on the efficacy of low- and high-dose radioiodine for thyroid remnant are still absent. The aim of the study was to investigate whether a low dose of radioiodine is as effective as a high dose for remnant ablation in Chinese patients. Patients presenting for radioiodine ablation in the authors' department were included. Inclusion criteria were aged ≥16 years, total or near-total thyroidectomy, tumor-node-metastasis (TNM) stage of pT1-3, any N stage, and M0. All patients were randomly allocated to either the high-dose group of 3700 MBq or the low-dose group of 1850 MBq for remnant ablation. The response to treatment was defined as successful or unsuccessful after a six- to nine-month interval. Ablation was considered to be successful if patients fulfilled the following criteria: no tracer uptake in the thyroid bed on diagnosis whole-body scanning and a negative level of serum thyroglobulin. There were 327 patients enrolled between January 2013 and December 2014. More than 95% had papillary thyroid cancer. Data could be analyzed for 278 cases (M age  = 44 years; 71.6% women), 155 in the low-dose group and 123 in the high-dose group. The rate of initial successful ablation was 84.2% in all patients, 82.6% in the low-dose group, and 86.2% in the high-dose group. There was no difference between the two groups (p = 0.509). In Chinese patients with differentiated thyroid carcinoma, the low dose of 1850 MBq radioiodine activity is as effective as a high dose of 3700 MBq for thyroid remnant ablation.

  16. The U.S. Geological Survey coal quality (COALQUAL) database version 3.0

    USGS Publications Warehouse

    Palmer, Curtis A.; Oman, Charles L.; Park, Andy J.; Luppens, James A.

    2015-12-21

    Because of database size limits during the development of COALQUAL Version 1.3, many analyses of individual bench samples were merged into whole coal bed averages. The methodology for making these composite intervals was not consistent. Size limits also restricted the amount of georeferencing information and forced removal of qualifier notations such as "less than detection limit" (<) information, which can cause problems when using the data. A review of the original data sheets revealed that COALQUAL Version 2.0 was missing information that was needed for a complete understanding of a coal section. Another important database issue to resolve was the USGS "remnant moisture" problem. Prior to 1998, tests for remnant moisture (as-determined moisture in the sample at the time of analysis) were not performed on any USGS major, minor, or trace element coal analyses. Without the remnant moisture, it is impossible to convert the analyses to a usable basis (as-received, dry, etc.). Based on remnant moisture analyses of hundreds of samples of different ranks (and known residual moisture) reported after 1998, it was possible to develop a method to provide reasonable estimates of remnant moisture for older data to make it more useful in COALQUAL Version 3.0. In addition, COALQUAL Version 3.0 is improved by (1) adding qualifiers, including statistical programming to deal with the qualifiers; (2) clarifying the sample compositing problems; and (3) adding associated samples. Version 3.0 of COALQUAL also represents the first attempt to incorporate data verification by mathematically crosschecking certain analytical parameters. Finally, a new database system was designed and implemented to replace the outdated DOS program used in earlier versions of the database.

  17. Former food products safety: microbiological quality and computer vision evaluation of packaging remnants contamination.

    PubMed

    Tretola, M; Di Rosa, A R; Tirloni, E; Ottoboni, M; Giromini, C; Leone, F; Bernardi, C E M; Dell'Orto, V; Chiofalo, V; Pinotti, L

    2017-08-01

    The use of alternative feed ingredients in farm animal's diets can be an interesting choice from several standpoints, including safety. In this respect, this study investigated the safety features of selected former food products (FFPs) intended for animal nutrition produced in the framework of the IZS PLV 06/14 RC project by an FFP processing plant. Six FFP samples, both mash and pelleted, were analysed for the enumeration of total viable count (TVC) (ISO 4833), Enterobacteriaceae (ISO 21528-1), Escherichia coli (ISO 16649-1), coagulase-positive Staphylococci (CPS) (ISO 6888), presumptive Bacillus cereus and its spores (ISO 7932), sulphite-reducing Clostridia (ISO 7937), yeasts and moulds (ISO 21527-1), and the presence in 25 g of Salmonella spp. (ISO 6579). On the same samples, the presence of undesired ingredients, which can be identified as remnants of packaging materials, was evaluated by two different methods: stereomicroscopy according to published methods; and stereomicroscopy coupled with a computer vision system (IRIS Visual Analyzer VA400). All FFPs analysed were safe from a microbiological point of view. TVC was limited and Salmonella was always absent. When remnants of packaging materials were considered, the contamination level was below 0.08% (w/w). Of note, packaging remnants were found mainly from the 1-mm sieve mesh fractions. Finally, the innovative computer vision system demonstrated the possibility of rapid detection for the presence of packaging remnants in FFPs when combined with a stereomicroscope. In conclusion, the FFPs analysed in the present study can be considered safe, even though some improvements in FFP processing in the feeding plant can be useful in further reducing their microbial loads and impurity.

  18. Effect of urbanization on the structure and functional traits of remnant subtropical evergreen broad-leaved forests in South China.

    PubMed

    Huang, Liujing; Chen, Hongfeng; Ren, Hai; Wang, Jun; Guo, Qinfeng

    2013-06-01

    We investigated the effects of major environmental drivers associated with urbanization on species diversity and plant functional traits (PFTs) in the remnant subtropical evergreen broad-leaved forests in Metropolitan Guangzhou (Guangdong, China). Twenty environmental factors including topography, light, and soil properties were used to quantify the effects of urbanization. Vegetation data and soil properties were collected from 30 400-m(2) plots at 6 study sites in urban and rural areas. The difference of plant species diversity and PFTs of remnant forests between urban and rural areas were analyzed. To discern the complex relationships, multivariate statistical analyses (e.g., canonical correspondence analysis and regression analysis) were employed. Pioneer species and stress-tolerant species can survive and vigorously establish their population dominance in the urban environment. The native herb diversity was lower in urban forests than in rural forests. Urban forests tend to prefer the species with Mesophanerophyte life form. In contrast, species in rural forests possessed Chamaephyte and Nanophanerophyte life forms and gravity/clonal growth dispersal mode. Soil pH and soil nutrients (K, Na, and TN) were positively related to herb diversity, while soil heavy metal concentrations (Cu) were negatively correlated with herb diversity. The herb plant species diversity declines and the species in the remnant forests usually have stress-tolerant functional traits in response to urbanization. The factors related to urbanization such as soil acidification, nutrient leaching, and heavy metal pollution were important in controlling the plant diversity in the forests along the urban-rural gradients. Urbanization affects the structure and functional traits of remnant subtropical evergreen broad-leaved forests.

  19. A Novel Selective PPARα Modulator (SPPARMα), K-877 (Pemafibrate), Attenuates Postprandial Hypertriglyceridemia in Mice.

    PubMed

    Sairyo, Masami; Kobayashi, Takuya; Masuda, Daisaku; Kanno, Koutaro; Zhu, Yinghong; Okada, Takeshi; Koseki, Masahiro; Ohama, Tohru; Nishida, Makoto; Sakata, Yasushi; Yamashita, Shizuya

    2018-02-01

    Fasting and postprandial hypertriglyceridemia (PHTG) are caused by the accumulation of triglyceride (TG)-rich lipoproteins and their remnants, which have atherogenic effects. Fibrates can improve fasting and PHTG; however, reduction of remnants is clinically needed to improve health outcomes. In the current study, we investigated the effects of a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα), K-877 (Pemafibrate), on PHTG and remnant metabolism. Male C57BL/6J mice were fed a high-fat diet (HFD) only, or an HFD containing 0.0005% K-877 or 0.05% fenofibrate, from 8 to 12 weeks of age. After 4 weeks of feeding, we measured plasma levels of TG, free fatty acids (FFA), total cholesterol (TC), HDL-C, and apolipoprotein (apo) B-48/B-100 during fasting and after oral fat loading (OFL). Plasma lipoprotein profiles after OFL, which were assessed by high performance liquid chromatography (HPLC), and fasting lipoprotein lipase (LPL) activity were compared among the groups. Both K-877 and fenofibrate suppressed body weight gain and fasting and postprandial TG levels and enhanced LPL activity in mice fed an HFD. As determined by HPLC, K-877 and fenofibrate significantly decreased the abundance of TG-rich lipoproteins, including remnants, in postprandial plasma. Both K-877 and fenofibrate decreased intestinal mRNA expression of ApoB and Npc1l1; however, hepatic expression of Srebp1c and Mttp was increased by fenofibrate but not by K-877.Hepatic mRNA expression of apoC-3 was decreased by K-877 but not by fenofibrate. K-877 may attenuate PHTG by suppressing the postprandial increase of chylomicrons and the accumulation of chylomicron remnants more effectively than fenofibrate.

  20. Double-bundle anterior cruciate ligament reconstruction with and without remnant preservation - Comparison of early postoperative outcomes and complications.

    PubMed

    Nakayama, Hiroshi; Kambara, Syunichiro; Iseki, Tomoya; Kanto, Ryo; Kurosaka, Kenji; Yoshiya, Shinichi

    2017-10-01

    To compare the early postoperative outcomes and complications of double-bundle anterior cruciate ligament (ACL) reconstruction with and without remnant preservation. The study population comprised 125 consecutive knees that underwent double-bundle ACL reconstruction using hamstring autograft. Among the 125 knees, remnant preservation was indicated for 50 knees, while standard double-bundle reconstruction was performed in the remaining 75 knees. Postoperative evaluations included heel-height difference (HHD) at periodical follow-ups, number of knees requiring arthroscopic debridement due to problematic extension loss within six months, re-injury within one year, graft status upon second-look arthroscopy, and clinical examinations by Lysholm score and KT measurement at one year. All patients could be followed up for a minimum of one year after surgery. When the results obtained from both groups were compared, HHD values were significantly larger in the preservation group at three and six months, and the rate of knees requiring arthroscopic debridement was also higher in this group (12% versus 4.0%). Graft status on second-look arthroscopy was considered to be good for 92% of the knees in the preservation group versus 59% in the non-preservation group. Re-injury rates within one year were 2.0% in the preservation group and 5.3% in the non-preservation group. No significant differences in clinical examinations were found between the groups at one year. Remnant preservation in double-bundle hamstring autograft ACL reconstruction may enhance tissue healing; however, retention of the remnant with its full volume resulted in an increased incidence of postoperative problematic extension loss. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Recurrent neck abscess due to a branchial cleft remnant].

    PubMed

    Kruijff, Schelto; Mastboom, Walter J; Vriens, Menno R; Sidhu, Stan B; Delbridge, Leigh W

    2013-01-01

    Abscesses arising from a third or fourth branchial cleft remnant are uncommon clinical entities and are often not recognised in a timely manner. In a 33-year-old female patient with a recurrent abscess in the left side of her neck, the cause turned out to be a fistula in the third branchial cleft remnant. She was treated initially with antibiotics and prednisone without adequate results. When the abscess was finally surgically drained, she became very ill and was admitted to the ICU with sepsis and multiple organ failure. She was discharged from hospital after six weeks. Four months later, a third-branchial cleft remnant was found during pharyngoscopy, immediately after which the cleft remnant fistula was excised and an ipsilateral hemi-thyroidectomy was performed. In young patients with recurring peri-thyroidal abscesses, a branchial cleft remnant should be considered a causative factor; this could avoid high morbidity and a delay in the appropriate treatment.

  2. The ribosome as a missing link in the evolution of life.

    PubMed

    Root-Bernstein, Meredith; Root-Bernstein, Robert

    2015-02-21

    Many steps in the evolution of cellular life are still mysterious. We suggest that the ribosome may represent one important missing link between compositional (or metabolism-first), RNA-world (or genes-first) and cellular (last universal common ancestor) approaches to the evolution of cells. We present evidence that the entire set of transfer RNAs for all twenty amino acids are encoded in both the 16S and 23S rRNAs of Escherichia coli K12; that nucleotide sequences that could encode key fragments of ribosomal proteins, polymerases, ligases, synthetases, and phosphatases are to be found in each of the six possible reading frames of the 16S and 23S rRNAs; and that every sequence of bases in rRNA has information encoding more than one of these functions in addition to acting as a structural component of the ribosome. Ribosomal RNA, in short, is not just a structural scaffold for proteins, but the vestigial remnant of a primordial genome that may have encoded a self-organizing, self-replicating, auto-catalytic intermediary between macromolecules and cellular life. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison.

    PubMed

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species.

  4. The effect of remnant forest on insect successional response in tropical fire-impacted peatland: A bi-taxa comparison

    PubMed Central

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2017-01-01

    Fire has become a common feature in tropical drained peatlands, and it may have detrimental impacts on the overall biodiversity of the forest ecosystem. We investigated the effect of fire on termite and ant assemblages and the importance of remnant forest in restoring species diversity in fire-impacted tropical peat swamp forests. The species loss of both termites and ants was as high as 50% in some fire-impacted peats compared to remnant forests, but in most cases the species richness for termites and ants was statistically equal along the land uses surveyed. However, a pronounced difference in functional group composition of termites was detected. In particular, sites close to remnant forests contained two additional termite feeding groups so that they shared a similar composition structure with remnant forests but were significantly different from sites distant from remnant forests. In general, ants were resilient to fire, and the similarity index showed a high degree of similarity among ant communities in all land uses surveyed. The Shannon diversity index for termites and ants decreased with increasing distance from the remnant forests and level of ecological degradation. Peat vegetation variables and ecological degradation were important in shaping termite and ant communities in the tropical peatlands, but their relative importance was not significant in fire-impacted peats regardless of distance from the remnant forests. This study highlights the importance of remnant forests as a biodiversity repository and natural buffer that can enhance species diversity and recolonization of forest-adapted species. PMID:28334021

  5. Phylogenetics of Lophotrochozoan bHLH Genes and the Evolution of Lineage-Specific Gene Duplicates.

    PubMed

    Bao, Yongbo; Xu, Fei; Shimeld, Sebastian M

    2017-04-01

    The gain and loss of genes encoding transcription factors is of importance to understanding the evolution of gene regulatory complexity. The basic helix-loop-helix (bHLH) genes encode a large superfamily of transcription factors. We systematically classify the bHLH genes from five mollusc, two annelid and one brachiopod genomes, tracing the pattern of bHLH gene evolution across these poorly studied Phyla. In total, 56-88 bHLH genes were identified in each genome, with most identifiable as members of previously described bilaterian families, or of new families we define. Of such families only one, Mesp, appears lost by all these species. Additional duplications have also played a role in the evolution of the bHLH gene repertoire, with many new lophotrochozoan-, mollusc-, bivalve-, or gastropod-specific genes defined. Using a combination of transcriptome mining, RT-PCR, and in situ hybridization we compared the expression of several of these novel genes in tissues and embryos of the molluscs Crassostrea gigas and Patella vulgata, finding both conserved expression and evidence for neofunctionalization. We also map the positions of the genes across these genomes, identifying numerous gene linkages. Some reflect recent paralog divergence by tandem duplication, others are remnants of ancient tandem duplications dating to the lophotrochozoan or bilaterian common ancestors. These data are built into a model of the evolution of bHLH genes in molluscs, showing formidable evolutionary stasis at the family level but considerable within-family diversification by tandem gene duplication. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Difficulties in deciding whether to ablate patients with putatively "low-intermediate-risk" differentiated thyroid carcinoma: do guidelines mainly apply in the centres that produce them? Results of a retrospective, two-centre quality assurance study.

    PubMed

    Frangos, Savvas; Iakovou, Ioannis P; Marlowe, Robert J; Eftychiou, Nicolaos; Patsali, Loukia; Vanezi, Anna; Savva, Androulla; Mpalaris, Vassilis; Giannoula, Evanthia I

    2015-12-01

    We determined the reasons for radioiodine thyroid remnant ablation, and the procedure's necessity based on postsurgical remnant size, in patients with putatively "low-intermediate-risk" differentiated thyroid carcinoma (DTC). We identified key clinicopathological, treatment and remnant characteristics, and factors associated with remnant size in 336 patients with pT1/2, M0 DTC ablated during the period September 2010 to October 2013 at one Cypriot or one Greek referral centre. Clinicopathological/treatment characteristics were compiled from charts. Experienced nuclear medicine physicians rated the numbers/intensities of uptake foci in the thyroid bed on postablation planar scintigrams using scales of 0-4 points and 0-3 points, respectively. The product of these scores was taken as the "remnant score" that ranged from 0 (no remnant) to 12 (multiple remnants, intense uptake). DTC was predominantly papillary. The median [25th-75th percentile] longest primary tumour diameter was 1.0 cm [0.7-1.5 cm]. Despite favourable histotypes and primary tumour classifications, patients often had preablation characteristics suggesting elevated or uncertain risk: 31.0% of patients (104 of 336) had primary tumour multifocality, 22.0% (74) had confirmed cervical lymph node metastases, 37.2% (125) had unknown nodal status, and 38.1% (128) had antithyroglobulin antibody seropositivity. The median [25th-75th percentile] remnant score was 4 [2-6]; 39.9% of patients (134 of 336) had scores ≥6. For the entire cohort, T or N stages (r ≤ 0.174, P ≤ 0.05) correlated positively with the remnant score in a univariate Spearman analysis. The numbers of patients referred by the surgeon, cervical lymph nodes excised and metastatic nodes excised correlated negatively (r ≤ 0.243, P ≤ 0.038) with the remnant score, and the first two factors independently predicted the remnant score (P ≤ 0.037) in a multivariate analysis. Patients with putatively "low-intermediate-risk" DTC frequently had disease characteristics denoting high or uncertain risk, suggesting that "selective" radioiodine ablation in such patients may seldom be applicable outside international centres of excellence. Proxies for surgeon experience and surgical completeness correlated with remnant number/uptake intensity and may aid ablation-related decision-making.

  7. Tectonic evolution of the Caribbean and northwestern South America: The case for accretion of two Late Cretaceous oceanic plateaus

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew C.; Tarney, John

    2005-04-01

    It is widely accepted that the thickened oceanic crust of the Caribbean plate, its basaltic accreted margins, and accreted mafic terranes in northwestern South America represent the remnants of a single ca. 90 Ma oceanic plateau. We review geologic, geochemical, and paleomagnetic evidence that suggests that the Caribbean-Colombian oceanic plateau in fact represents the remnants of two different oceanic plateaus, both dated as ca. 90 Ma. The first of these plateaus, the Caribbean Plateau, formed ca. 90 Ma in the vicinity of the present-day Galapagos hotspot. Northeastward movement of the Farallon plate meant that this plateau collided with the proto Caribbean arc and northwestern South America <10 m.y. after the plateau's main phase of formation. Paleomagnetic evidence suggests that the second of these plateaus, the Gorgona Plateau, formed at 26° 30°S, possibly at the site of the present-day Sala y Gomez hotspot. Over the next ˜45 m.y., this plateau was carried progressively northeastward on the Farallon plate and collided in the middle Eocene with the proto Andean subduction zone in northwestern South America. The recognition of a second ca. 90 Ma Pacific oceanic plateau strengthens the link between plateau formation and global oceanic anoxic events.

  8. Iron meteorites as remnants of planetesimals formed in the terrestrial planet region.

    PubMed

    Bottke, William F; Nesvorný, David; Grimm, Robert E; Morbidelli, Alessandro; O'Brien, David P

    2006-02-16

    Iron meteorites are core fragments from differentiated and subsequently disrupted planetesimals. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there. This view is also difficult to reconcile with the fact that the parent bodies of iron meteorites were as small as 20 km in diameter and that they formed 1-2 Myr earlier than the parent bodies of the ordinary chondrites. Here we show that the iron-meteorite parent bodies most probably formed in the terrestrial planet region. Fast accretion times there allowed small planetesimals to melt early in Solar System history by the decay of short-lived radionuclides (such as 26Al, 60Fe). The protoplanets emerging from this population not only induced collisional evolution among the remaining planetesimals but also scattered some of the survivors into the main belt, where they stayed for billions of years before escaping via a combination of collisions, Yarkovsky thermal forces, and resonances. We predict that some asteroids are main-belt interlopers (such as (4) Vesta). A select few may even be remnants of the long-lost precursor material that formed the Earth.

  9. Type II supernovae as a significant source of interstellar dust.

    PubMed

    Dunne, Loretta; Eales, Stephen; Ivison, Rob; Morgan, Haley; Edmunds, Mike

    2003-07-17

    Large amounts of dust (>10(8)M(o)) have recently been discovered in high-redshift quasars and galaxies corresponding to a time when the Universe was less than one-tenth of its present age. The stellar winds produced by stars in the late stages of their evolution (on the asymptotic giant branch of the Hertzsprung-Russell diagram) are thought to be the main source of dust in galaxies, but they cannot produce that dust on a short enough timescale (&<1 Gyr) to explain the results in the high-redshift galaxies. Supernova explosions of massive stars (type II) are also a potential source, with models predicting 0.2-4M(o) of dust. As massive stars evolve rapidly, on timescales of a few Myr, these supernovae could be responsible for the high-redshift dust. Observations of supernova remnants in the Milky Way, however, have hitherto revealed only 10(-7)-10(-3)M(o) each, which is insufficient to explain the high-redshift data. Here we report the detection of approximately 2-4M(o) of cold dust in the youngest known Galactic supernova remnant, Cassiopeia A. This observation implies that supernovae are at least as important as stellar winds in producing dust in our Galaxy and would have been the dominant source of dust at high redshifts.

  10. Preheating of the Universe by cosmic rays from primordial supernovae at the beginning of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Sazonov, S.; Sunyaev, R.

    2015-12-01

    The 21-cm signal from the cosmic reionization epoch can shed light on the history of heating of the primordial intergalactic medium (IGM) at z ˜ 30-10. It has been suggested that X-rays from the first accreting black holes could significantly heat the Universe at these early epochs. Here we propose another IGM heating mechanism associated with the first stars. As known from previous work, the remnants of powerful supernovae (SNe) ending the lives of massive Population III stars could readily expand out of their host dark matter minihaloes into the surrounding IGM, aided by the preceding photo-evaporation of the halo's gas by the UV radiation from the progenitor star. We argue that during the evolution of such a remnant, a significant fraction of the SN kinetic energy can be put into low-energy (E ≲ 30 MeV) cosmic rays that will eventually escape into the IGM. These subrelativistic cosmic rays could propagate through the Universe and heat the IGM by ˜10-100 K by z ˜ 15, before more powerful reionization/heating mechanisms associated with the first galaxies and quasars came into play. Future 21-cm observations could thus constrain the energetics of the first SNe and provide information on the magnetic fields in the primordial IGM.

  11. Simulation of Cosmic Ray Acceleration, Propagation and Interaction in SNR Environment

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kamae, T.; Ellison, D. C.

    2007-07-01

    Recent studies of young supernova remnants (SNRs) with Chandra, XMM, Suzaku and HESS have revealed complex morphologies and spectral features of the emission sites. The critical question of the relative importance of the two competing gamma-ray emission mechanisms in SNRs; inverse-Compton scattering by high-energy electrons and pion production by energetic protons, may be resolved by GLAST-LAT. To keep pace with the improved observations, we are developing a 3D model of particle acceleration, diffusion, and interaction in a SNR where broad-band emission from radio to multi-TeV energies, produced by shock accelerated electrons and ions, can be simulated for a given topology of shock fronts, magnetic field, and ISM densities. The 3D model takes as input, the particle spectra predicted by a hydrodynamic simulation of SNR evolution where nonlinear diffusive shock acceleration is coupled to the remnant dynamics (e.g., Ellison, Decourchelle & Ballet; Ellison & Cassam-Chenai Ellison, Berezhko & Baring). We will present preliminary models of the Galactic Ridge SNR RX J1713-3946 for selected choices of SNR parameters, magnetic field topology, and ISM density distributions. When constrained by broad-band observations, our models should predict the extent of coupling between spectral shape and morphology and provide direct information on the acceleration efficiency of cosmic-ray electrons and ions in SNRs.

  12. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  13. Forward jet and particle production at HERA

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J. C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E. A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kästli, H. K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, K.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikochi, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nikitin, D.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zurNedden, M.; H1 Collaboration

    1999-01-01

    Single particles and jets in deeply inelastic scattering at low x are measured with the H1 detector in the region away from the current jet and towards the proton remnant, known as the forward region. Hadronic final state measurements in this region are expected to be particularly sensitive to QCD evolution effects. Jet cross sections are presented as a function of Bjorken- x for forward jets produced with a polar angle to the proton direction, θjet, in the range 7° < θjet < 20°. Azimuthal correlations are studied between the forward jet and the scattered lepton. Charged and neutral single particle production in the forward region are measured as a function of Bjorken- x, in the range 5° < θ < 25°, for particle transverse momenta larger than 1 GeV. QCD based Monte Carlo predictions and analytical calculations based on BFKL, CCFM and DGLAP evolution are compared to the data. Predictions based on the DGLAP approach fail to describe the data, except for those which allow for a resolved photon contribution.

  14. Accretion and Outflow from a Magnetized, Neutrino Cooled Torus around the Gamma Ray Burst Central Engine

    NASA Astrophysics Data System (ADS)

    Janiuk, Agnieszka; Moscibrodzka, Monika

    Gamma Ray Bursts (GRB) are the extremely energetic transient events, visible from the most distant parts of the Universe. They are most likely powered by accretion on the hyper-Eddington rates that proceeds onto a newly born stellar mass black hole. This central engine gives rise to the most powerful, high Lorentz factor jets that are responsible for energetic gamma ray emission. We investigate the accretion flow evolution in GRB central engine, using the 2D MHD simulations in General Relativity. We compute the structure and evolution of the extremely hot and dense torus accreting onto the fast spinning black hole, which launches the magnetized jets. We calculate the chemical structure of the disk and account for neutrino cooling. Our preliminary runs apply to the short GRB case (remnant torus accreted after NS-NS or NS-BH merger). We estimate the neutrino luminosity of such an event for chosen disk and central BH mass.

  15. Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2/Si films

    NASA Astrophysics Data System (ADS)

    Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong

    2011-01-01

    High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.

  16. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    NASA Technical Reports Server (NTRS)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  17. Structure and function of a compound eye, more than half a billion years old.

    PubMed

    Schoenemann, Brigitte; Pärnaste, Helje; Clarkson, Euan N K

    2017-12-19

    Until now, the fossil record has not been capable of revealing any details of the mechanisms of complex vision at the beginning of metazoan evolution. Here, we describe functional units, at a cellular level, of a compound eye from the base of the Cambrian, more than half a billion years old. Remains of early Cambrian arthropods showed the external lattices of enormous compound eyes, but not the internal structures or anything about how those compound eyes may have functioned. In a phosphatized trilobite eye from the lower Cambrian of the Baltic, we found lithified remnants of cellular systems, typical of a modern focal apposition eye, similar to those of a bee or dragonfly. This shows that sophisticated eyes already existed at the beginning of the fossil record of higher organisms, while the differences between the ancient system and the internal structures of a modern apposition compound eye open important insights into the evolution of vision. Copyright © 2017 the Author(s). Published by PNAS.

  18. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  19. PADME (Phobos And Deimos and Mars Environment): A Proposed NASA Discovery Mission to Investigate the Two Moons of Mars

    NASA Technical Reports Server (NTRS)

    Lee, Pascal; Benna, Mehdi; Britt, Daniel; Colaprete, Anthony; Davis, Warren; Delory, Greg; Elphic, Richard; Fulsang, Ejner; Genova, Anthony; Glavin, Daniel; hide

    2015-01-01

    After 40 years of solar system exploration by spacecraft, the origin of Mars's satellites, remains vexingly unknown. There are three prevailing hypotheses concerning their origin: H1: They are captured small bodies from the outer main belt or beyond; H2: They are reaccreted Mars impact ejecta; H3: They are remnants of Mars' formation. There are many variants of these hypotheses, but as stated, these three capture the key ideas and constraints on their nature. So far, data and modeling have not allowed any one of these hypotheses to be verified or excluded. Each one of these hypotheses has important implications for the evolution of the solar system, the formation and evolution of planets and satellites, and the delivery of water and organics to Early Mars and Early Earth. Determining the origin of Phobos and Deimos is identified by the NASA and the NRC Decadal Survey as the most important science goal at these bodies.

  20. Probing Black Holes With Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Cornish, Neil J.

    2006-09-01

    Gravitational radiation can provide unique insights into the dynamics and evolution of black holes. Gravitational waveforms encode detailed information about the spacetime geometry, much as the sounds made by a musical instrument reflect the geometry of the instrument. The LISA gravitational wave observatory will be able to record black holes colliding out to the edge of the visible Universe, with an expected event rate of tens to thousands per year. LISA has unmatched capabilities for studying the role of black holes in galactic evolution, in particular, by studying the mergers of seed black holes at very high redshift, z > 5. Merger events at lower redshift will be detected at extremely high signal-to-noise, allowing for precision tests of the black hole paradigm. Below z=1 LISA will be able to record stellar remnants falling into supermassive black holes. These extreme mass ratio inspiral events will yield insights into the dynamics of galactic cusps, and the brighter events will provide incredibly precise tests of strong field, dynamical gravity.

  1. The first Fermi LAT supernova remnant catalog

    DOE PAGES

    Acero, F.

    2016-05-16

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude, allows us to determine an upper limit of 22% on the number of GeV candidatesmore » falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, demonstrates the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. As a result, we model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  2. THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identifiedmore » as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.« less

  3. Portal Vein Embolization: State-of-the-Art Technique and Options to Improve Liver Hypertrophy.

    PubMed

    Huang, Steven Y; Aloia, Thomas A

    2017-12-01

    Portal vein embolization (PVE) is associated with a high technical and clinical success rate for induction of future liver remnant hypertrophy prior to surgical resection. The degree of hypertrophy is variable and depends on multiple factors, including technical aspects of the procedure and underlying chronic liver disease. For patients with insufficient liver volume following PVE, adjunctive techniques, such as intra-portal administration of stem cells, dietary supplementation, transarterial embolization, and hepatic vein embolization, are available. Our purpose is to review the state-of-the-art technique associated with high-quality PVE and to discuss options to improve hypertrophy of the future liver remnant.

  4. Update on the Notochord Including its Embryology, Molecular Development, and Pathology: A Primer for the Clinician

    PubMed Central

    Ramesh, Tushar; Nagula, Sai V; Saker, Erfanul; Shoja, Mohammadali; Loukas, Marios; Oskouian, Rod J; Tubbs, R. Shane

    2017-01-01

    The notochord is a rod-like embryological structure, which plays a vital role in the development of the vertebrate. Though embryological, remnants of this structure have been observed in the nucleus pulposus of the intervertebral discs of normal adults. Pathologically, these remnants can give rise to slow-growing and recurrent notochord-derived tumors called chordomas. Using standard search engines, the literature was reviewed regarding the anatomy, embryology, molecular development, and pathology of the human notochord. Clinicians who interpret imaging or treat patients with pathologies linked to the notochord should have a good working knowledge of its development and pathology. PMID:28480155

  5. Explaining Leibniz equivalence as difference of non-inertial appearances: Dis-solution of the Hole Argument and physical individuation of point-events

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca; Pauri, Massimo

    "The last remnant of physical objectivity of space-time" is disclosed in the case of a continuous family of spatially non-compact models of general relativity (GR). The physical individuation of point-events is furnished by the autonomous degrees of freedom of the gravitational field (viz., the Dirac observables) which represent-as it were-the ontic part of the metric field. The physical role of the epistemic part (viz. the gauge variables) is likewise clarified as embodying the unavoidable non-inertial aspects of GR. At the end the philosophical import of the Hole Argument is substantially weakened and in fact the Argument itself dissolved, while a specific four-dimensional holistic and structuralist view of space-time (called point-structuralism) emerges, including elements common to the tradition of both substantivalism and relationism. The observables of our models undergo real temporal change: this gives new evidence to the fact that statements like the frozen-time character of evolution, as other ontological claims about GR, are model dependent.

  6. Remnant Cholesterol Elicits Arterial Wall Inflammation and a Multilevel Cellular Immune Response in Humans.

    PubMed

    Bernelot Moens, Sophie J; Verweij, Simone L; Schnitzler, Johan G; Stiekema, Lotte C A; Bos, Merijn; Langsted, Anne; Kuijk, Carlijn; Bekkering, Siroon; Voermans, Carlijn; Verberne, Hein J; Nordestgaard, Børge G; Stroes, Erik S G; Kroon, Jeffrey

    2017-05-01

    Mendelian randomization studies revealed a causal role for remnant cholesterol in cardiovascular disease. Remnant particles accumulate in the arterial wall, potentially propagating local and systemic inflammation. We evaluated the impact of remnant cholesterol on arterial wall inflammation, circulating monocytes, and bone marrow in patients with familial dysbetalipoproteinemia (FD). Arterial wall inflammation and bone marrow activity were measured using 18 F-FDG PET/CT. Monocyte phenotype was assessed with flow cytometry. The correlation between remnant levels and hematopoietic activity was validated in the CGPS (Copenhagen General Population Study). We found a 1.2-fold increase of 18 F-FDG uptake in the arterial wall in patients with FD (n=17, age 60±8 years, remnant cholesterol: 3.26 [2.07-5.71]) compared with controls (n=17, age 61±8 years, remnant cholesterol 0.29 [0.27-0.40]; P <0.001). Monocytes from patients with FD showed increased lipid accumulation (lipid-positive monocytes: Patients with FD 92% [86-95], controls 76% [66-81], P =0.001, with an increase in lipid droplets per monocyte), and a higher expression of surface integrins (CD11b, CD11c, and CD18). Patients with FD also exhibited monocytosis and leukocytosis, accompanied by a 1.2-fold increase of 18 F-FDG uptake in bone marrow. In addition, we found a strong correlation between remnant levels and leukocyte counts in the CGPS (n=103 953, P for trend 5×10-276). In vitro experiments substantiated that remnant cholesterol accumulates in human hematopoietic stem and progenitor cells coinciding with myeloid skewing. Patients with FD have increased arterial wall and cellular inflammation. These findings imply an important inflammatory component to the atherogenicity of remnant cholesterol, contributing to the increased cardiovascular disease risk in patients with FD. © 2017 American Heart Association, Inc.

  7. Healing Potential of the Anterior Cruciate Ligament Remnant Stump.

    PubMed

    Trocan, Ilie; Ceausu, Raluca A; Jitariu, Andreea A; Haragus, Horia; Damian, Gratian; Raica, Marius

    2016-01-01

    The aim of this study was to analyze the microstructural architecture and cellular differentiation of the anterior cruciate ligament (ACL) stumps in different stages after injury, as this could augment graft biointegration. The histological appearance and immunoreaction for cluster of differentiation 34 antigen (CD34) of 54 biopsies from 27 remnants were compared to 10 biopsies from 5 normal cruciate ligaments. CD34 reaction in endothelial cells, fibroblasts and fibrocytes was consistently positive in small synovial vessels. Remnants also exhibited CD34(+) cells among collagen fibers. Blood vessel density varied between specimens. The mean vascular microdensity was 43 per ×200 field in remnants compared to 15.2 in controls. A total of 94.44% of remnant ACL samples had significant hyperplasia of stellate and fusiform stromal cells, CD34(+); 22.4% had developed capillary vessels inside the ligament; 33% exhibited ongoing angiogenesis. Significant differences exist between torn and intact ACL regarding microvascularization. The remnants contain stellate stromal cells and CD34(+) fibrocytes, and display angiogenesis both at synovia as well as in the ligament itself. These findings underline the potential contribution to neoligament healing when remnants are preserved. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma

    PubMed Central

    Park, Shin-Young; Park, Keun-Myoung; Shin, Woo Young; Choe, Yun-Mee; Hur, Yoon-Seok; Lee, Keon-Young; Ahn, Seung-Ik

    2017-01-01

    Abstract Functional and morphological evolution of remnant pancreas after resection for pancreatic adenocarcinoma is investigated. The medical records of 45 patients who had undergone radical resection for pancreatic adenocarcinoma from March 2010 to September 2013 were reviewed retrospectively. There were 34 patients in the pancreaticoduodenectomy (PD) group and 10 patients in the distal pancreatectomy (DP) group. One patient received total pancreatectomy. The endocrine function was measured using the glucose tolerance index (GTI), which was derived by dividing daily maximum serum glucose fluctuation by daily minimum glucose. Remnant pancreas volume (RPV) was estimated by considering pancreas body and tail as a column, and head as an ellipsoid, respectively. The pancreatic atrophic index (PAI) was defined as the ratio of pancreatic duct width to total pancreas width. Representative indices of each patient were compared before and after resection up to 2 years postoperatively. The area under receiver operating characteristic curve of GTI for diagnosing DM was 0.823 (95% confidence interval, 0.699–0.948, P < .001). Overall, GTI increased on postoperative day 1 (POD#1, mean ± standard deviation, 1.79 ± 1.40 vs preoperative, 1.02 ± 1.41; P = .001), and then decreased by day 7 (0.89 ± 1.16 vs POD#1, P < .001). In the PD group, the GTI on POD#14 became lower than preoperative (0.51 ± 0.38 vs 0.96 ± 1.37; P = .03). PAI in the PD group was significantly lower at 1 month postoperatively (0.22 ± 0.12 vs preoperative, 0.38 ± 0.18; P < .001). In the PD group, RPV was significantly lower at 1 month postoperatively (25.3 ± 18.3 cm3 vs preoperative, 32.4 ± 20.1 cm3; P = .02), due to the resolution of pancreatic duct dilatation. RPV of the DP group showed no significant change. GTI was negatively related to RPV preoperatively (r = –0.317, P = .04), but this correlation disappeared postoperatively (r = –0.044, P = .62). Pancreatic endocrine functional deterioration in pancreatic adenocarcinoma patients may in part be due to pancreatic duct obstruction and dilatation caused by the tumor. After resection, this proportion of endocrine insufficiency is corrected. PMID:28700497

  9. Remnant field detector

    DOEpatents

    Visser, Age T.

    1988-05-03

    A method apparatus for qualitatively detecting remnant magnetic fields in matched pairs of magnet cores. Equal magnitude and oppositely oriented magnetic flux is induced in the magnet cores by oppositely wound primary windings and current source. Identically wound secondary windings generate output voltages in response to the induced flux. The output voltages generated should be of equal magnitude and opposite polarity if there is no remnant field in the cores. The output voltages will be unequal which is detected if either core has a remnant field.

  10. Remnant field detector

    DOEpatents

    Visser, Age T.

    1988-01-01

    A method apparatus for qualitatively detecting remnant magnetic fields in matched pairs of magnet cores. Equal magnitude and oppositely oriented magnetic flux is induced in the magnet cores by oppositely wound primary windings and current source. Identically wound secondary windings generate output voltages in response to the induced flux. The output voltages generated should be of equal magnitude and opposite polarity if there is no remnant field in the cores. The output voltages will be unequal which is detected if either core has a remnant field.

  11. Factors affecting poor nutritional status after small bowel resection in patients with Crohn disease.

    PubMed

    Jang, Ki Ung; Yu, Chang Sik; Lim, Seok-Byung; Park, In Ja; Yoon, Yong Sik; Kim, Chan Wook; Lee, Jong Lyul; Yang, Suk-Kyun; Ye, Byong Duk; Kim, Jin Cheon

    2016-07-01

    In Crohn disease, bowel-preserving surgery is necessary to prevent short bowel syndrome due to repeated operations. This study aimed to determine the remnant small bowel length cut-off and to evaluate the clinical factors related to nutritional status after small bowel resection in Crohn disease.We included 394 patients (69.3% male) who underwent small bowel resection for Crohn disease between 1991 and 2012. Patients who were classified as underweight (body mass index < 17.5) or at high risk of nutrition-related problems (modified nutritional risk index < 83.5) were regarded as having a poor nutritional status. Preliminary remnant small bowel length cut-offs were determined using receiver operating characteristic curves. Variables associated with poor nutritional status were assessed retrospectively using Student t tests, chi-squared tests, Fisher exact tests, and logistic regression analyses.The mean follow-up period was 52.9 months and the mean patient ages at the time of the last bowel surgery and last follow-up were 31.2 and 35.7 years, respectively. The mean remnant small bowel length was 331.8 cm. Forty-three patients (10.9%) underwent ileostomy, 309 (78.4%) underwent combined small bowel and colon resection, 111 (28.2%) had currently active disease, and 105 (26.6%) underwent at least 2 operations for recurrent disease. The mean body mass index and modified nutritional risk index were 20.6 and 100.8, respectively. The independent factors affecting underweight status were remnant small bowel length ≤240 cm (odds ratio: 4.84, P < 0.001), ileostomy (odds ratio: 4.70, P < 0.001), and currently active disease (odds ratio: 4.16, P < 0.001). The independent factors affecting high nutritional risk were remnant small bowel length ≤230 cm (odds ratio: 2.84, P = 0.012), presence of ileostomy (odds ratio: 3.36, P = 0.025), and currently active disease (odds ratio: 4.90, P < 0.001).Currently active disease, ileostomy, and remnant small bowel length ≤230 cm are risk factors affecting the poor nutritional status of patients with Crohn disease after small bowel resection.

  12. Cervical Chondrocutaneous Branchial Remnants.

    PubMed

    Klockars, Tuomas; Kajosaari, Lauri

    2017-03-01

      Cervical chondrocutaneous branchial remnants are rare malformations usually found in the lower neck. As high as 76% of patients have been reported to have associated anomalies. We review the literature and report a case series of seven patients with cervical cartilaginous remnants.   A retrospective case series of seven patients identified from the electronic hospital records.   Seven patients with cervical chondrocutaneous branchial remnants were identified (six boys and one girl). Only one of the patients had associated anomalies.   A review of the literature revealed no evidence for sinuses or cysts related to cervical chondrocutaneous branchial remnants. Operative treatment can be postponed to a suitable and safe age. There is marked variation in the reported prevalence of associated anomalies, ranging from 11% to 76%.

  13. 44Ti Nucleosynthesis Lines and Hard X-ray Continuum in Young SNRs: from INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Terrier, R.; Trap, G.; Lebrun, F.; Decourchelle, A.; Vink, J.

    2009-05-01

    Supemovae and their remnants are the main Galactic nucleosynthesis sites and the privileged sources of Galactic cosmic rays. The youngest of such remnants can be studied through two distinct observational features: 44Ti γ-ray lines and the hard X-ray nonthermal continuum emission. The former gives unique information on the nucleosynthesis conditions occuring during the first stages of the explosion, while the latter provides clues on acceleration processes at supernova remnant shocks. In this contribution, we present new INTEGRAL results on Tycho, the remnant of a historical supernova, and on G1.9+0.3, which has been recently unveiled as the youngest Galactic supernova remnant. Expectations with Simbol-X are also addressed.

  14. Bluff evolution along coastal drumlins: Boston Harbor Islands, Massachusetts

    USGS Publications Warehouse

    Himmelstoss, E.A.; FitzGerald, D.M.; Rosen, P.S.; Allen, J.R.

    2006-01-01

    A series of partially drowned drumlins forms the backbone of the inner islands within Boston Harbor. The shoreline of these rounded glacial deposits is composed of actively retreating bluffs formed by continual wave attack. Comparisons of bluffs reveal variability in their height and lateral extent, as well as in the dominant mechanism causing their retreat. Two processes are responsible for bluff erosion and yield distinct bluff morphologies: (1) wave attack undercuts the bluff and causes episodic slumping, yielding planar bluff slopes, and (2) subaerial processes such as rainfall create irregular slopes characterized by rills and gullies. We propose a model of drumlin bluff evolution that is based on processes of erosion and physical characteristics such as bluff height, slope morphology, and the orientation of the bluff with respect to the long axis of the drumlin and its topographic crest. The four phases of drumlin bluff evolution consist of (1) initial formation of bluff, with retreat dominated by wave notching and slumping processes; (2) rill and gully development as bluff heights exceed 10 m and slumped sediment at bluff base inhibits wave attack; (3) return of wave notching and slumping as bluff heights decrease; and (4) final development of boulder retreat lag as last remnants of drumlin are eroded by wave action. These phases capture the important physical processes of drumlin evolution in Boston Harbor and could apply to other eroding coastal drumlin deposits.

  15. Nasal anatomy of the non-mammaliaform cynodont Brasilitherium riograndensis (Eucynodontia, Therapsida) reveals new insight into mammalian evolution.

    PubMed

    Ruf, Irina; Maier, Wolfgang; Rodrigues, Pablo G; Schultz, Cesar L

    2014-11-01

    The mammalian nasal cavity is characterized by a unique anatomy with complex internal features. The evolution of turbinals was correlated with endothermic and macrosmatic adaptations in therapsids and in early mammals, which is still apparent in their twofold function (warming and moistening of air, olfaction). Fossil evidence for the transformation from the nonmammalian to the mammalian nasal cavity pattern has been poor and inadequate. Ossification of the cartilaginous nasal capsule and turbinals seems to be a feature that occurred only very late in synapsid evolution but delicate ethmoidal bones are rarely preserved. Here we provide the first µCT investigation of the nasal cavity of the advanced non-mammaliaform cynodont Brasilitherium riograndensis from the Late Triassic of Southern Brazil, a member of the sister-group of mammaliaforms, in order to elucidate a critical anatomical transition in early mammalian evolution. Brasilitherium riograndensis already had at least partially ossified turbinals as remnants of the nasoturbinal and the first ethmoturbinal are preserved. The posterior nasal septum is partly ossified and contributes to a mesethmoid. The nasal cavity is posteriorly expanded and forms a distinctive pars posterior (ethmoidal recess) that is ventrally separated from the nasopharyngeal duct by a distinct lamina terminalis. Thus, our observations clearly demonstrate that principal features of the mammalian nasal cavity were already present in the sister-group of mammaliaforms. © 2014 Wiley Periodicals, Inc.

  16. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    NASA Technical Reports Server (NTRS)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  17. Eastern Indian 3800-million-year-old crust and early mantle differentiation

    USGS Publications Warehouse

    Basu, A.R.; Ray, S.L.; Saha, A.K.; Sarkar, S.N.

    1981-01-01

    Samarium-neodymium data for nine granitic and tonalite gneisses occurring as remnants within the Singhbhum granite batholith in eastern India define an isochron of age 3775 ?? 89 ?? 106 years with an initial 143Nd/144Nd ratio of 0.50798 ?? 0.00007. This age contrasts with the rubidium-strontium age of 3200 ?? 106 years for the same suite of rocks. On the basis of the new samarium-neodynium data, field data, and petrologic data, a scheme of evolution is proposed for the Archean crust in eastern India. The isotopic data provide evidence that parts of the earth's mantle were already differentiated with respect to the chondritic samarium-neodymium ratio 3800 ?? 106 years ago.

  18. Yellow Hypergiants as Dynamically Unstable Post-Red-supergiant Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen; Hansen, James E. (Technical Monitor)

    2001-01-01

    According to recent theoretical studies, the majority of single stars more massive than 30 solar mass successfully evolve into red supergiants, but then lose most of their hydrogen envelopes and metamorphose into hot blue remnants. While they are cool, they become dynamically unstable as a result of high radiation pressure and partial ionization of the gases in their outer layers. It is shown here that these unstable red-supergiant models repeatedly shrink and re-expand on a thermal time scale when perturbed by heavy bursts of mass loss. Consequently, they fill up the domain of yellow hypergiants on the Hertzsprung-Russell diagram and display very fast rates of evolution there, as observed.

  19. Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrows, Adam

    Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe and their investigation draws on particle and nuclear physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related astrophysicalmore » phenomena.« less

  20. White dwarfs in the Gaia era

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Gentile-Fusillo, N.; Cummings, J.; Jordan, S.; Gänsicke, B. T.; Kalirai, J. S.

    2018-04-01

    The vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M ⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.

  1. Origin and evolution of the layered deposits in the Valles Marineris, Mars

    NASA Technical Reports Server (NTRS)

    Nedell, Susan S.; Squyres, Steven W.; Andersen, David W.

    1987-01-01

    Four hypotheses are discussed concerning the origin of the layered deposits in the Martian Valles Marineris, whose individual thicknesses range from about 70 to 300 m. The hypothesized processes are: (1) aeolian deposition; (2) deposition of remnants of the material constituting the canyon walls; (3) deposition of volcanic eruptions; and (4) deposition in standing bodies of water. The last process is chosen as most consistent with the rhythm and lateral continuity of the layers, as well as their great thickness and stratigraphic relationship with other units in the canyons. Attention is given to ways in which the sediments could have entered an ice-covered lake; several geologically feasible mechanisms are identified.

  2. Kepler Supernova Remnant: A View from Hubble Space Telescope

    NASA Image and Video Library

    2004-10-06

    This image represents a view of NASA Kepler supernova remnant taken in X-rays, visible light, and infrared radiation, indicating that the bubble of gas that makes up the supernova remnant appears different in various types of light. http://photojournal.jpl.nasa.gov/catalog/PIA06909

  3. 27 CFR 19.389 - Remnants.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Remnants. 19.389 Section 19.389 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF... Manufacture of Articles Bottling, Packaging, and Removal of Products § 19.389 Remnants. Where incident to...

  4. Investigating the Origin of the Supernova Remnant W49B

    NASA Astrophysics Data System (ADS)

    Crum, Ryan Matthew; Frank, Kari A.; Dwarkadas, Vikram; Burrows, David N.

    2018-01-01

    W49B is a Galactic supernova remnant whose origin is still debated. Is it the remains of an unusual asymmetric Type 1a supernova or of a jet-driven core collapse supernova? Using the X-ray analysis method, Smoothed Particle Inference (SPI), we dig deeper into understanding the complex properties of SNR W49B. We do this by characterizing the temperatures and abundance ratios throughout the remnant. We will compare the results with a wide variety of supernova nucleosynthesis models in order to constrain the mechanism behind this unusual supernova remnant.

  5. OT2_jhewitt_2: Understanding Shock Oxygen Chemistry in Interacting Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Hewitt, J.

    2011-09-01

    Supernova remnants interacting with dense moelcular clouds provide astrochemical laboratories to study heating and cooling of the dense ISM, shock chemistry, destruction and sputtering of dust, and the reformation of molecules. Water is expected to be a major coolant for shocks into dense gas, yet the number of remnants in which IR lines of hydroxyl and water are detected is very limited. We propose Herschel PACS, SPIRE and HIFI observations of three remnants with particularly high shocked gas densities, high dust and IR line luinosities, and extreme ionization environments. The scientific objectives of this proposal are: (1) to determine the abundance and excitation of oxygen-bearing molecules, and (2) to study the effects of variable ionization sources on oxygen chemistry in dense molecular gas shocked by powerful supernova remnant blast waves.

  6. Are supernova remnants quasi-parallel or quasi-perpendicular accelerators

    NASA Technical Reports Server (NTRS)

    Spangler, S. R.; Leckband, J. A.; Cairns, I. H.

    1989-01-01

    Observations of shock waves in the solar system which show a pronounced difference in the plasma wave and particle environment depending on whether the shock is propagating along or perpendicular to the interplanetary magnetic field are discussed. Theories for particle acceleration developed for quasi-parallel and quasi-perpendicular shocks, when extended to the interstellar medium suggest that the relativistic electrons in radio supernova remnants are accelerated by either the Q parallel or Q perpendicular mechanisms. A model for the galactic magnetic field and published maps of supernova remnants were used to search for a dependence of structure on the angle Phi. Results show no tendency for the remnants as a whole to favor the relationship expected for either mechanism, although individual sources resemble model remnants of one or the other acceleration process.

  7. Evidence of a higher late-Holocene treeline along the Continental Divide in central Colorado

    USGS Publications Warehouse

    Carrara, Paul E.; McGeehin, John

    2015-01-01

    Using a combination of 23 radiocarbon ages and annual ring counts from 18 Rocky Mountain bristlecone pine (Pinus aristata) remnants above the local present-day limits, a period of higher treeline has been determined for two sites near the Continental Divide in central Colorado. The highest remnants were found about 30 m above live bristlecone pines of similar size. The majority of the remnants, consisting of standing snags, large logs, and smaller remains, are highly eroded, such that the innermost annual rings of all but one are missing. The radiocarbon ages obtained from the oldest wood recovered from each remnant indicate that the majority were established above the present-day limit of bristlecone pine from prior to 2700 cal. yr BP to no later than about 1200 cal. yr BP. These radiocarbon ages combined with the annual ring count from the corresponding remnant indicate that the majority of the sampled remnants grew above the present-day limit of bristlecone pine from sometime before 2700 cal. yr BP to about 800 cal. yr BP. Evidence of recent climatic warming is demonstrated at one of the sites by young bristlecone pine saplings growing next to the highest remnants; the saplings were established after AD 1965 and represent the highest advance of treeline in at least 1200 years.

  8. Planck intermediate results: XXXI. Microwave survey of Galactic supernova remnants

    DOE PAGES

    Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; ...

    2016-02-09

    The all-sky Planck survey in 9 frequency bands was used in this paper to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evidentmore » for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, S ν ∝ ν -α, with the spectral index, α, increasing by 0.5–1 above a break frequency in the range 10–60 GHz. Finally, the break could be due to synchrotron losses.« less

  9. High accuracy binary black hole simulations with an extended wave zone

    NASA Astrophysics Data System (ADS)

    Pollney, Denis; Reisswig, Christian; Schnetter, Erik; Dorband, Nils; Diener, Peter

    2011-02-01

    We present results from a new code for binary black hole evolutions using the moving-puncture approach, implementing finite differences in generalized coordinates, and allowing the spacetime to be covered with multiple communicating nonsingular coordinate patches. Here we consider a regular Cartesian near-zone, with adapted spherical grids covering the wave zone. The efficiencies resulting from the use of adapted coordinates allow us to maintain sufficient grid resolution to an artificial outer boundary location which is causally disconnected from the measurement. For the well-studied test case of the inspiral of an equal-mass nonspinning binary (evolved for more than 8 orbits before merger), we determine the phase and amplitude to numerical accuracies better than 0.010% and 0.090% during inspiral, respectively, and 0.003% and 0.153% during merger. The waveforms, including the resolved higher harmonics, are convergent and can be consistently extrapolated to r→∞ throughout the simulation, including the merger and ringdown. Ringdown frequencies for these modes (to (ℓ,m)=(6,6)) match perturbative calculations to within 0.01%, providing a strong confirmation that the remnant settles to a Kerr black hole with irreducible mass Mirr=0.884355±20×10-6 and spin Sf/Mf2=0.686923±10×10-6.

  10. The Case of the Neutron Star With a Wayward Wake

    NASA Astrophysics Data System (ADS)

    2006-06-01

    A long observation with NASA's Chandra X-ray Observatory has revealed important new details of a neutron star that is spewing out a wake of high-energy particles as it races through space. The deduced location of the neutron star on the edge of a supernova remnant, and the peculiar orientation of the neutron star wake, pose mysteries that remain unresolved. "Like a kite flying in the wind, the behavior of this neutron star and its wake tell us what sort of gas it must be plowing through," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper accepted to The Astrophysical Journal. "Yet we're still not sure how the neutron star got to its present location." Animation: Sequence of images of J0617 in IC 443 Animation: Sequence of images of J0617 in IC 443 The neutron star, known as CXOU J061705.3+222127, or J0617 for short, appears to lie near the outer edge of an expanding bubble of hot gas associated with the supernova remnant IC 443. Presumably, J0617 was created at the time of the supernova -- approximately 30,000 years ago -- and propelled away from the site of the explosion at about 500,000 miles per hour. However, the neutron star's wake is oriented almost perpendicularly to the direction expected if the neutron star were moving away from the center of the supernova remnant. This apparent misalignment had previously raised doubts about the association of the speeding neutron star with the supernova remnant. Gaensler and his colleagues provide strong evidence that J0617 was indeed born in the same explosion that created the supernova remnant. First, the shape of the neutron star's wake indicates it is moving a little faster than the speed of sound in Composite Images of SNR IC 443 Composite Images of SNR IC 443 the remnant's multimillion-degree gas. The velocity that one can then calculate from this conclusion closely matches the predicted pace of the neutron star. In contrast, if the neutron star were outside the confines of the remnant, its inferred speed would be a sluggish 20,000 miles per hour. Also, the measured temperature of the neutron star matches that of one born at the same time of the supernova remnant. What then, could cause the misaligned, or wayward, neutron star wake? The authors speculate that perhaps the doomed progenitor star was moving at a high speed before it exploded, so that the explosion site was not at the observed center of the supernova remnant. Fast moving gusts of gas inside the supernova remnant have further pushed the neutron star's wake out of alignment. Observations of J0617 in the next 10 years should put this idea to the test. "If the neutron star was born off-center and if the wake is being pushed around by cross-winds, the neutron star should be moving close to vertically, away from the center of the supernova remnant. Now we wait and see," said Gaensler. Chandra X-ray Image of J0617 in IC 443 Chandra X-ray Image of J0617 in IC 443 Another group, led by Margarita Karovska, also of the CfA, has concentrated on other, previously unnoticed intriguing features of J0617. At a recent conference on neutron stars in London, England, they announced their findings, which include a thin filament of cooler gas that appears to extend from the neutron star along the long axis of its wake, and a second point-like feature embedded in the X-ray nebula around the neutron star. "There are a number of puzzling observational features associated with this system crying out for longer observations," said Karovska. Other members of the Gaensler team were S. Chatterjee and P. O. Slane (CfA), E. van der Swaluw (Royal Netherlands Meteorological Institute), F. Camilo (Columbia University), and J. P. Hughes (Rutgers University). Karovska's team included T. Clarke (Naval Research Laboratory), G. Pavlov (Penn State University), and M.C. Weisskopf and V. Zavlin of the Marshall Space Flight Center, Huntsville, Ala. which also manages the Chandra program for NASA's Science Mission Directorate. The Smithsonian Astrophysical Observatory provides science support and controls flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov

  11. A deep optical imaging study of the nebular remnants of classical novae

    NASA Astrophysics Data System (ADS)

    Slavin, A. J.; O'Brien, T. J.; Dunlop, J. S.

    1995-09-01

    An optical imaging study of old nova remnants has revealed previously unobserved features in the shells of 13 classical novae - DQ Her, FH Ser, HR Del, GK Per, V1500 Cyg, T Aur, V533 Her, NQ Vul, V476 Cyg, DK Lac, LV Vul, RW UMi and V450 Cyg. These data indicate a possible correlation between nova speed class and the ellipticity of the resulting remnants - those of faster novae tend to comprise randomly distributed clumps of ejecta superposed on spherically symmetric diffuse material, whilst slower novae produce more structured ellipsoidal remnants with at least one and sometimes several rings of enhanced emission. By measuring the extent of the resolved shells and combining this information with previously published ejection speeds, we use expansion parallax to estimate distances for the 13 novae. Whilst we are able to deduce new information about every nova, it is notable that these observations include the first detections of shells around the old novae V450 Cyg and NQ Vul, and that velocity-resolved images of FH Ser and DQ Her have enabled us to estimate their orbital inclinations. Our observations of DQ Her also show that the main ellipsoidal shell is constricted by three rings and surrounded by a faint halo; this halo contains long tails extending outwards from bright knots, perhaps indicating that during or after outburst a fast inner wind has broken through the fractured principal shell.

  12. MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlando, S.; Miceli, M.; Pumo, M. L.

    The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the supernova remnant Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim of deriving the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described bymore » small-scale clumping of material and larger-scale anisotropies. The hydrodynamic multi-species simulations consider an appropriate post-explosion isotopic composition of the ejecta. The observed average expansion rate and shock velocities can be well reproduced by models with ejecta mass M {sub ej} ≈ 4 M {sub ⊙} and explosion energy E {sub SN} ≈ 2.3 × 10{sup 51} erg. The post-explosion anisotropies (pistons) reproduce the observed distributions of Fe and Si/S if they had a total mass of ≈0.25 M {sub ⊙} and a total kinetic energy of ≈1.5 × 10{sup 50} erg. The pistons produce a spatial inversion of ejecta layers at the epoch of Cas A, leading to the Si/S-rich ejecta physically interior to the Fe-rich ejecta. The pistons are also responsible for the development of the bright rings of Si/S-rich material which form at the intersection between the reverse shock and the material accumulated around the pistons during their propagation. Our result supports the idea that the bulk of asymmetries observed in Cas A are intrinsic to the explosion.« less

  13. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  14. A Search for High-Energy Gamma Rays from Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Waldron, Liam Edwin

    1993-01-01

    The Australian Defense Force Academy (ADFA) balloon-borne gamma-ray astronomy telescope was flown successfully from Alice Springs, Australia, twice during 1987 and 1988 (Flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50-500 MeV, from Supernova 1987A in the Large Magellanic Cloud. The two flights correspond to day 55 and 407, respectively, of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati, Italy, and sensitive to the 10-250 keV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma rays in astrophysical environments and their relation to supernovae and cosmic rays. A description is then given of main features of the gamma-ray telescope and its principles of operation, the most important part of the telescope being a spark chamber used to determine the direction of arrival of incident gamma rays. Data obtained during each flight were recorded as spark-chamber tracks on the photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, is given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from SN 1987A of 2.2 and 3.4 X 10^-5 photons cm^-2s^-1 were obtained for days 55 and 407 of remnant evolution, respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with SN 1987A being an atypical Type II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type II supernovae. (SECTION: Dissertation Abstracts)

  15. Evolution of the X-ray luminosity in young HII galaxies

    NASA Astrophysics Data System (ADS)

    Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.

    2009-10-01

    In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.

  16. Laboratory simulation to support the search for organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars’ exploration. Understanding the chemical evolution of organic molecules under current Martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013

  17. 30 Dor B - A supernova remnant in a star formation region

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kennicutt, Robert C., Jr.; Schommer, Robert A.; Laff, Joshua

    1992-01-01

    The supernova remnant 30 Dor B is embedded in an H II region around the OB association LH 99, and has been suggested to be a Crab-type remnant. To determine the spatial extent and kinematic properties of this supernova remnant, long-slit echelle observations were obtained in the H-alpha and forbidden N II lines, along with imaging Fabry-Perot observations in the H-alpha line. It is found that 30 Dor B is partially obscured by a dark cloud with which the supernova remnant also interacts. The size of 30 Dor B is much larger than previously thought, making it much older than the Crab Nebula. If the progenitor of the supernova was formed coevally with LH 99, then it would have been more massive than the O3 members of the OB association.

  18. Congenital esophageal stenosis owing to tracheobronchial remnants.

    PubMed

    Rebelo, Priscila Guyt; Ormonde, João Victor C; Ormonde Filho, João Baptista C

    2013-09-01

    OBJECTIVE To emphasize the need of an accurate diagnosis of congenital esophageal stenosis due to tracheobronchial remnants, since its treatment differs from other types of congenital narrowing. CASE DESCRIPTION Four cases of lower congenital esophageal stenosis due to tracheobronchial remnants, whose definitive diagnosis was made by histopathology. Except for the last case, in which a concomitant anti-reflux surgery was not performed, all had a favorable outcome after resection and anastomosis of the esophagus. COMMENTS The congenital esophageal stenosis is an intrinsic narrowing of the organ's wall associated with its structural malformation. The condition can be caused by tracheobronchial remnants, fibromuscular stenosis or membranous diaphragm and the first symptom is dysphagia after the introduction of solid food in the diet. The first-choice treatment to tracheobronchial remnants cases is the surgical resection and end-to-end anastomosis of the esophagus.

  19. APOC3 Loss-of-Function Mutations, Remnant Cholesterol, Low-Density Lipoprotein Cholesterol, and Cardiovascular Risk: Mediation- and Meta-Analyses of 137 895 Individuals.

    PubMed

    Wulff, Anders B; Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2018-03-01

    Loss-of-function mutations in APOC3 associate with low remnant cholesterol levels and low risk of ischemic vascular disease (IVD). Because some studies show an additional association with low levels of low-density lipoprotein cholesterol (LDL-C), low LDL-C may explain the low risk of IVD in APOC3 loss-of-function heterozygotes. We tested to what extent the low risk of IVD in APOC3 loss-of-function heterozygotes is mediated by low plasma remnant cholesterol and LDL-C. In APOC3 loss-of-function heterozygotes versus noncarriers, we first determined remnant cholesterol and LDL-C levels in meta-analyses of 137 895 individuals. Second, we determined whether the association with LDL-C was masked by lipid-lowering therapy. Finally, using mediation analysis, we determined the fraction of the low risk of IVD and ischemic heart disease mediated by remnant cholesterol and LDL-C. In meta-analyses, remnant cholesterol was 43% lower (95% confidence interval, 40%-47%), and LDL-C was 4% lower (1%-6%) in loss-of-function heterozygotes (n=776) versus noncarriers. In the general population, LDL-C was 3% lower in loss-of-function heterozygotes versus noncarriers, 4% lower when correcting for lipid-lowering therapy, and 3% lower in untreated individuals ( P values, 0.06-0.008). Remnant cholesterol mediated 37% of the observed 41% lower risk of IVD and 54% of the observed 36% lower risk of ischemic heart disease; corresponding values mediated by LDL-C were 1% and 2%. The low risk of IVD observed in APOC3 loss-of-function heterozygotes is mainly mediated by the associated low remnant cholesterol and not by low LDL-C. Furthermore, the contribution of LDL-C to IVD risk was not masked by lipid-lowering therapy. This suggests APOC3 and remnant cholesterol as important new targets for reducing cardiovascular risk. © 2018 American Heart Association, Inc.

  20. Bile reflux of the remnant stomach following Roux-en-Y gastric bypass: an etiology of chronic abdominal pain treated with remnant gastrectomy.

    PubMed

    Vella, Erika La; Hovorka, Zach; Yarbrough, Donald E; McQuitty, Elizabeth

    2017-08-01

    Bile reflux gastritis of the remnant stomach following Roux-en-Y gastric bypass (RYGB) causing chronic abdominal pain has not been reported. We report a series of symptomatic patients with remnant gastritis treated effectively with remnant gastrectomy (RG). The objective was to report our experience with bile reflux remnant gastritis after RYGB and our outcomes following RG. Community teaching hospital. All patients undergoing RG were retrospectively reviewed for presenting symptoms, diagnostic workup, pathology, complications, and symptom resolution. Nineteen patients underwent RG for bile reflux gastritis at a mean of 4.4 years (52.3 mo, range 8.5-124 mo) after RYGB. All patients were female and presented with pain, primarily epigastric (18/19; 95%), and described as burning (11/19; 58%), with 10 (53%) reporting nausea. Endoscopy was performed preoperatively on all patients with successful remnant inspection in 13 (68%), using push endoscopy (n = 10) or operative assist (n = 3), with 12 (of 13; 92%) biopsy-positive for reactive gastropathy. Seventeen (90%) completed a hepatobiliary scintigraphy scan with 100% positivity demonstrating bile reflux across the pylorus. Surgical approach was laparoscopic or robotic in 18 (95%) with a hospital length of stay of 2.7 days (range 0-12 d), with no major complications or readmissions. Pathology of the remnant confirmed reactive gastropathy in 90% (n = 17). Ninety percent of patients (n = 17) reported sustained symptom resolution, and 11% of patients (n = 2) remained symptomatic at last follow-up. We followed all patients for a mean of 6.6 years (1-194 mo). Bile reflux gastritis of the remnant stomach is a new consideration for chronic abdominal pain months to years following RYGB. Hepatobiliary scintigraphy imaging and endoscopic biopsy are highly suggestive. RG is safe and effective treatment. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  1. A Comparative Animal Study of Tendon Grafts Healing After Remnant-Preserving Versus Conventional Anterior Cruciate Ligament Reconstruction

    PubMed Central

    Zhang, Lei; Jiang, Kan; Chai, Hao; Zhou, Mei; Bai, Jingping

    2016-01-01

    Background The aim of this study was to determine if anterior cruciate ligament (ACL) reconstruction by remnant preservation promotes cell proliferation, vascularization, proprioception recovery, and improved biomechanical properties of the tendon grafts. Material/Methods 75 New Zealand rabbits were randomly assigned into the control group (group A), conventional ACL reconstruction group (group B), ACL reconstruction using remnant preservation and graft through remnant sleeve technique group (group C), and ACL reconstruction using remnant preservation and remnant tensioning technique group (group D). The remnant and healing of tendon grafts in groups C and D were observed at 3, 6, and 12 weeks after surgery, and the mRNA expression levels of VEGF, NT-3 and GAP-43 in ACL (group A) or tendon graft samples (groups B, C, and D) were determined by real-time PCR. Tendon graft cell count, microvessel density (MVD), and proprioceptors were determined by H&E staining, CD34, and S-100 immunohistochemical staining. The biomechanical properties of the tendon graft at week 12 in groups B, C, and D were examined by using a tensile strength test. Results Remnant and tendon grafts were not healed at 3, 6, and 12 weeks after the operation in groups C and D. VEGF, NT-3, and GAP-43 mRNA expressions in groups B, C, and D were higher than those in group A (P<0.05), but no significant difference was observed between groups B, C, and D (P>0.05). Furthermore, tendon graft cell count, MVD, proprioception, and biomechanical properties showed no significant differences (P>0.05) among groups B, C, and D at various time points. Conclusions There was no significant difference in cell proliferation, vascularization, proprioception recovery, or biomechanical properties of the tendon grafts between remnant-preserving and conventional ACL reconstruction methods. PMID:27669454

  2. Mucocele of the cystic duct remnant after orthotopic liver transplant: a problem revisited.

    PubMed

    Chatterjee, Suvadip; Das, Debasish; Hudson, Mark; Bassendine, Margaret Fiona; Scott, John; Oppong, Kofi Ernest; Sen, Gourab; French, Jeremy J

    2011-06-01

    Mucocele of the cystic duct remnant is an uncommon hepatobiliary complication of a liver transplant. Current practice usually involves either excising the cystic duct, or incorporating the distal end of the transected cystic duct into the suture line of the biliary anastomosis to ensure drainage. We report a patient who developed cystic duct remnant mucocele after the latter approach was adopted. We believe that this is likely related to delayed anastomotic stricturing, which prevented draining from the remnant cystic duct. We also discuss the incidence, pathology, investigations, and treatment of this condition.

  3. Orchid Bee (Apidae: Euglossini) Communities in Atlantic Forest Remnants and Restored Areas in Paraná State, Brazil.

    PubMed

    Ferronato, M C F; Giangarelli, D C; Mazzaro, D; Uemura, N; Sofia, S H

    2018-06-01

    In this study, we compare orchid bee communities surveyed in four forest remnants of the Atlantic Forest and four reforested areas characterized by seasonal semi-deciduous forest vegetation in different successional stages (mature and secondary vegetation), located in southern Brazil. The sizes of forest remnants and reforested areas varied from 32.1 to 583.9 ha and from 11.3 to 33.3 ha, respectively. All reforested areas were located near one forest remnant. During samplings, totaling nine per study area, euglossine males were attracted to eight scent baits and captured with bait trap and entomological nets. Each forest remnant and its respective reforested area were sampled simultaneously by two collectors. We collected 435 males belonging to nine species of orchid bees distributed in four genera. The number of individuals and species did not differ significantly between different areas, except for a reforested area (size 33.3 ha), which was located far from its respective forest remnant. Our findings also revealed an apparent association between an orchid bee species (Euglossa annectans Dressler 1982) and the most preserved area surveyed in our study, suggesting that this bee is a potential indicator of good habitat quality in recuperating or preserved areas. Our results suggest that reforested habitats located near forest remnants have a higher probability of having reinstated their euglossine communities.

  4. ROSAT PSPC and HRI Observations of Supernova Remnant G292.0+1.8

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1999-01-01

    The supernova remnant G292.0+1.8 was observed by the ROSAT PSPC for 18 ksec as part of this grant. Considerable effort was put into the analysis of the PSPC spectra. The major work went into nonequilibrium ionization joint spectral fits with the Einstein SSS and EXOSAT ME data which indicated that the two spatial regions of this remnant (a central bar and a plateau region covering a larger extent) had similar abundances, but different excitation conditions (temperature and ionization state), an important conclusion, if true. Unfortunately as this work was being finished, new ASCA data revealed the presence of a previously unknown, spectrally hard X-ray source near the center of the remnant which contaminated the SSS and ME data and as a consequence made our detailed spectral analysis done up until then un-publishable. We searched for evidence of this hard source in the PSPC data both spectrally and using timing searches (for a pulsar), but found nothing significant. ROSAT HRI data were also obtained on this remnant. These data were compared to the Einstein HRI data to search for evidence of spectral variations with position and possible expansion of the X-ray remnant. One feature in the remnant appears to have changed in brightness although it is not clear what is the cause of the change. No evidence for the hard ASCA source was apparent in the HRI data.

  5. Chandra Detection of a Pulsar Wind Nebula Associated With Supernova Remnant 3C 396

    NASA Technical Reports Server (NTRS)

    Olbert, C. M.; Keohane, J. W.; Arnaud, K. A.; Dyer, K. K.; Reynolds, S. P.; Safi-Harb, S.

    2003-01-01

    We present a 100 ks observation of the Galactic supernova remnant 3C396 (G39.2-0.3) with the Chandra X-Ray Observatory that we compare to a 20cm map of the remnant from the Very Large Array. In the Chandra images, a nonthermal nebula containing an embedded pointlike source is apparent near the center of the remnant which we interpret as a synchrotron pulsar wind nebula surrounding a yet undetected pulsar. From the 2-10 keV spectrum for the nebula (N(sub H) = 5.3 plus or minus 0.9 x 10(exp 22) per square centimeter, GAMMA =1.5 plus or minus 0.3) we derive an unabsorbed x-ray flux of S(sub z)=1.62 x 10(exp -12) erg per square centimeter per second, and from this we estimate the spin-down power of the neutron star to be E(sup dot) = 7.2 x 10(exp 36) ergs per second. The central nebula is morphologically complex, showing bent, extended structure. The radio and X-ray shells of the remnant correlate poorly on large scales, particularly on the eastern half of the remnant, which appears very faint in X-ray images. At both radio and X-ray wavelengths the western half of the remnant is substantially brighter than the east.

  6. BK Lyncis: the oldest old nova and a Bellwether for cataclysmic variable evolution

    NASA Astrophysics Data System (ADS)

    Patterson, Joseph; Uthas, Helena; Kemp, Jonathan; de Miguel, Enrique; Krajci, Thomas; Foote, Jerry; Hambsch, Franz-Josef; Campbell, Tut; Roberts, George; Cejudo, David; Dvorak, Shawn; Vanmunster, Tonny; Koff, Robert; Skillman, David; Harvey, David; Martin, Brian; Rock, John; Boyd, David; Oksanen, Arto; Morelle, Etienne; Ulowetz, Joseph; Kroes, Anthony; Sabo, Richard; Jensen, Lasse

    2013-09-01

    We summarize the results of a 20-yr campaign to study the light curves of BK Lyn, a nova-like star strangely located below the 2 to 3 h orbital-period gap in the family of cataclysmic variables (CVs). Two apparent superhumps dominate the nightly light curves, with periods 4.6 per cent longer, and 3.0 per cent shorter, than the orbital period. The first appears to be associated with the star's brighter states (V ˜ 14), while the second appears to be present throughout and becomes very dominant in the low state (V ˜ 15.7). It is plausible that these arise, respectively, from a prograde apsidal precession and a retrograde nodal precession of the star's accretion disc. Starting in the year 2005, the star's light curve became indistinguishable from that of a dwarf nova - in particular, that of the ER UMa subclass. No such clear transition has ever been observed in a CV before. Reviewing all the star's oddities, we speculate: (a) BK Lyn is the remnant of the probable nova on 101 December 30, and (b) it has been fading ever since, but it has taken ˜2000 yr for the accretion rate to drop sufficiently to permit dwarf-nova eruptions. If such behaviour is common, it can explain other puzzles of CV evolution. One: why the ER UMa class even exists (because all members can be remnants of recent novae). Two: why ER UMa stars and short-period nova-likes are rare (because their lifetimes, which are essentially cooling times, are short). Three: why short-period novae all decline to luminosity states far above their true quiescence (because they are just getting started in their post-nova cooling). Four: why the orbital periods, accretion rates and white dwarf temperatures of short-period CVs are somewhat too large to arise purely from the effects of gravitational radiation (because the unexpectedly long interval of enhanced post-nova brightness boosts the mean mass-transfer rate). And maybe even five: why very old, post-period-bounce CVs are hard to find (because the higher mass-loss rates have `burned them out'). These are substantial rewards in return for one investment of hypothesis: that the second parameter in CV evolution, besides orbital period, is time since the last classical-nova eruption.

  7. Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra).

    PubMed

    Mess, Andrea M; Favaron, Phelipe O; Pfarrer, Christiane; Osmann, Christine; Melo, Allan P F; Rodrigues, Rosangela F; Ambrósio, Carlos E; Bevilacqua, Estela; Miglino, Maria A

    2012-11-30

    Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occurred near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans.

  8. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    PubMed

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  9. Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra)

    PubMed Central

    2012-01-01

    Background Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Methods Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Results Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Conclusions Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans. PMID:23199198

  10. Hydrology of the Poverty Bay flats aquifers, New Zealand: recharge mechanisms, evolution of the isotopic composition of dissolved inorganic carbon, and ground-water ages

    NASA Astrophysics Data System (ADS)

    Taylor, C. B.

    1994-06-01

    With the exception of water-bearing remnants of earlier fluvial gravels overlying basement, the sediments of the Poverty Bay flats have accumulated during the postglacial period of the past 14 000 years, and have been tilted and deformed by recent tectonism. A sequence of gravel aquifers, separated by poorly permeable silt layers, lies between surface and basement, which is at depths varying between 50 and 200 m. A shallow sand/silt aquifer is situated near the coast. This study applies evidence of chemical and isotopic properties of river and ground water to clarify the recharge mechanisms, chemical evolution and age of the ground water in the aquifers. Particular attention is paid to the evolution of dissolved inorganic carbon content, applying carbon-14 data measured by accelerator mass spectrometry. Most of the ground water is recharged from the Waipaoa River, which flows across the flats and discharges into Poverty Bay. The two deepest aquifers (Matokitoki and Makauri) are both tritium-free; the deeper Matokitoki Gravels yield water of age about 4300 years since recharge (possibly up to 1300 years greater), but the Makauri water is no older than 100-200 years, discharging slowly through overlying aquitards near the limit of closest approach to the present coast.

  11. Observations of TeV Gamma Rays from Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Buckley, James H.

    1994-12-01

    Measurements of the gamma ray flux from a number of supernova remnants (SNRs) at energies above 250 GeV have been made with the Whipple Imaging air \\v Cerenkov detector. Observation of the gamma ray emission of SNRs at energies above 1 GeV should provide a sensitive test of shock acceleration models of particle acceleration in SNRs. Gamma-ray luminosities of supernova remnants are well constrained by the observed supernova rate and the cosmic ray flux if supernovae are indeed the source of cosmic rays. Drury et al. (Astron. Astrophys. 287, 959 (1994)) predict that the luminosity of nearby Sedov-phase SNRs should be observable by the Whipple telescope. In this model, diffusive shock acceleration produces energetic charged particles which interact with the ambient medium forming gamma rays. There is an indication that a number of unidentified EGRET sources may correspond to supernova remnants (G. Kanbach, private communication), although at these energies (>100 MeV) the diffuse background is somewhat uncertain. Measurements of the gamma-ray flux with the Whipple instrument have a similar sensitivity to the EGRET detector for a source spectral index of 2.15, and less sensitivity to diffuse background. A number of observations of SNRs including: Tycho, W66, IC443, and others have been made. Currently for Tycho an upper limit of 9times 10(-12) cm(-2) sec(-1) is obtained. The status of these observations will be presented, and it will be shown that these measurements combined with the EGRET observations are beginning to provide a useful constraint on models of cosmic ray origin. Gamma-ray observations may also be used to constrain models of particle acceleration in SNRs exhibiting pulser-powered synchrotron nebula (plerions). The status of observations of this class of objects, including the Crab nebula, will also be presented. Supported in part by the U.S. Dept. of Energy.

  12. Survival and surgical outcomes of cardiac cancer of the remnant stomach in comparison with primary cardiac cancer

    PubMed Central

    2014-01-01

    Background Although cardiac cancer of the remnant stomach and primary cardiac cancer both occur in the same position, their clinical characteristics and outcomes have not been compared previously. The objective of this study was designed to evaluate the prognosis of cardiac cancer of the remnant stomach in comparison with primary cardiac cancer. Methods In this retrospective comparative study, clinical data and prognosis were compared in 48 patients with cardiac cancer of the remnant stomach and 96 patients with primary cardiac cancer who underwent radical resection from January 1995 to June 2007. Clinicopathologic characteristics, survival times, mortality, and complications were analyzed. Results The 5-year survival rate was significantly higher in patients with primary cardiac cancer than in those with cardiac cancer of the remnant stomach (28.4% vs. 16.7%, P = 0.035). Serosal invasion, lymph node metastasis and tumor location were independent prognostic factors for survival. Subgroup analysis, however, showed similar survival rates in patients with primary cardiac cancer and cardiac cancer of the remnant stomach without serosal invasion (25.0% vs. 43.8%, P = 0.214) and without lymph node metastasis (25.0% vs. 38.8%, P = 0.255), as well as similar complication rates (20.8% vs. 11.5%, P = 0.138). Conclusion Although the survival rates after radical resection in patients with cardiac cancer of the remnant stomach were poorer than in those with primary cardiac cancer, they were similar in survival rates when patients without serosal invasion or lymph node metastasis. Therefore, early detection is an important way to improve overall survival in cardiac cancer of the remnant stomach. PMID:24468299

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yang; Fang, Min; Yang, Ji

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant'smore » radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.« less

  14. CSI in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2017-02-01

    Supernovae (SNe) explode in environments that have been significantly modified by the SN progenitors. For core-collapse SNe, the massive progenitors ionize the ambient interstellar medium (ISM) via UV radiation and sweep the ambient ISM via fast stellar winds during the main sequence phase, replenish the surroundings with stellar material via slow winds during the luminous blue variable (LBV) or red supergiant (RSG) phase, and sweep up the circumstellar medium (CSM) via fast winds during the Wolf-Rayet (WR) phase. If a massive progenitor was in a close binary system, the binary interaction could have caused mass ejection in certain preferred directions, such as the orbital plane, and even bipolar outflow/jet. As a massive star finally explodes, the SN ejecta interacts first with the CSM that was ejected and shaped by the star itself. As the newly formed supernova remnant (SNR) expands further, it encounters interstellar structures that were shaped by the progenitor from earlier times. Therefore, the structure and evolution of a SNR is largely dependent on the initial mass and close binarity of the SN progenitor. The Large Magellanic Cloud (LMC) has an excellent sample of over 50 confirmed SNRs that are well resolved by Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope. These multi-wavelength observations allow us to conduct stellar forensics in SNRs and understand the wide variety of morphologies and physical properties of SNRs observed.

  15. Longevity and progressive abandonment of the Rocky Flats surface, Front Range, Colorado

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Anderson, Robert S.; Safran, Elizabeth B.; Dethier, David P.; Finkel, Robert C.; Bierman, Paul R.

    2006-08-01

    The post-orogenic evolution of the Laramide landscape of the western U.S. has been characterized by late Cenozoic channel incision of basins and their adjacent ranges. One means of constraining the incision history of basins is dating the remnants of gravel-capped surfaces above modern streams. Here, we focus on an extensive remnant of the Rocky Flats surface between Golden and Boulder, Colorado, and use in situ-produced 10Be and 26Al concentrations in terrace alluvium to constrain the Quaternary history of this surface. Coal and Ralston Creeks, both tributaries of the South Platte River, abandoned the Rocky Flats surface and formed the Verdos and Slocum pediments, which are cut into Cretaceous bedrock between Rocky Flats and the modern stream elevations. Rocky Flats alluvium ranges widely in age, from > 2 Ma to ˜ 400 ka, with oldest ages to the east and younger ages closer to the mountain front. Numerical modeling of isotope concentration depth profiles suggests that individual sites have experienced multiple resurfacing events. Preliminary results indicate that Verdos and Slocum alluvium along Ralston Creek, which is slightly larger than Coal Creek, is several hundred thousand years old. Fluvial incision into these surfaces appears therefore to progress headward in response to downcutting of the South Platte River. The complex ages of these surfaces call into question any correlation of such surfaces based solely on their elevation above the modern channel.

  16. Spatial distribution of radionuclides in 3D models of SN 1987A and Cas A

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas; Gabler, Michael; Wongwathanarat, Annop

    2017-02-01

    Fostered by the possibilities of multi-dimensional computational modeling, in particular the advent of three-dimensional (3D) simulations, our understanding of the neutrino-driven explosion mechanism of core-collapse supernovae (SNe) has experienced remarkable progress over the past decade. First self-consistent, first-principle models have shown successful explosions in 3D, and even failed cases may be cured by moderate changes of the microphysics inside the neutron star (NS), better grid resolution, or more detailed progenitor conditions at the onset of core collapse, in particular large-scale perturbations in the convective Si and O burning shells. 3D simulations have also achieved to follow neutrino-driven explosions continuously from the initiation of the blast wave, through the shock breakout from the progenitor surface, into the radioactively powered evolution of the SN, and towards the free expansion phase of the emerging remnant. Here we present results from such simulations, which form the basis for direct comparisons with observations of SNe and SN remnants in order to derive constraints on the still disputed explosion mechanism. It is shown that predictions based on hydrodynamic instabilities and mixing processes associated with neutrino-driven explosions yield good agreement with measured NS kicks, light-curve properties of SN 1987A and asymmetries of iron and 44Ti distributions observed in SN 1987A and Cassiopeia A.

  17. Tori sequences as remnants of multiple accreting periods of Kerr SMBHs

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Stuchlík, Z.

    2018-03-01

    Super-massive black holes (SMBHs) hosted in active galactic nuclei (AGNs) can be characterized by multi-accreting periods as the attractors interact with the environment during their life-time. These multi-accretion episodes should leave traces in the matter orbiting the attractor. Counterrotating and even misaligned structures orbiting around the SMBHs would be consequences of these episodes. Our task in this work is to consider situations where such accretions occur and to trace their remnants represented by several toroidal accreting fluids, corotating or counterrotating relative to the central Kerr attractor, and created in various regimes during the evolution of matter configurations around SMBHs. We focus particularly on the emergence of matter instabilities, i.e., tori collisions, accretion onto the central Kerr black hole, or creation of jet-like structures (proto-jets). Each orbiting configuration is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluid. We prove that sequences of configurations and hot points, where an instability occurs, characterize the Kerr SMBHs, depending mainly on their spin-mass ratios. The occurrence of tori accretion or collision are strongly constrained by the fluid rotation with respect to the central black hole and the relative rotation with respect to each other. Our investigation provides characteristic of attractors where traces of multi-accreting episodes can be found and observed.

  18. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  19. Supernova Remnant Kes 17: An Efficient Cosmic Ray Accelerator inside a Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Gelfand, Joseph D.; Castro, Daniel; Slane, Patrick O.; Temim, Tea; Hughes, John P.; Rakowski, Cara

    2013-11-01

    The supernova remnant Kes 17 (SNR G304.6+0.1) is one of a few but growing number of remnants detected across the electromagnetic spectrum. In this paper, we analyze recent radio, X-ray, and γ-ray observations of this object, determining that efficient cosmic ray acceleration is required to explain its broadband non-thermal spectrum. These observations also suggest that Kes 17 is expanding inside a molecular cloud, though our determination of its age depends on whether thermal conduction or clump evaporation is primarily responsible for its center-filled thermal X-ray morphology. Evidence for efficient cosmic ray acceleration in Kes 17 supports recent theoretical work concluding that the strong magnetic field, turbulence, and clumpy nature of molecular clouds enhance cosmic ray production in supernova remnants. While additional observations are needed to confirm this interpretation, further study of Kes 17 is important for understanding how cosmic rays are accelerated in supernova remnants.

  20. The nature of the Vela X-ray ``jet". The Rayleigh-Taylor instability and the origin of filamentary structures in the Vela supernova remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    1999-12-01

    The nature of the Vela X-ray ``jet", recently discovered by Markwardt & Ögelman (1995), is examined. It is suggested that the ``jet" arises along the interface of domelike deformations of the Rayleigh-Taylor unstable shell of the Vela supernova remnant; thereby the ``jet" is interpreted as a part of the general shell of the remnant. The origin of deformations as well as the general structure of the remnant are discussed in the framework of a model based on a cavity explosion of a supernova star. It is suggested that the shell deformations viewed at various angles appear as filamentary structures visible throughout the Vela supernova remnant at radio, optical, and X-ray wavelengths. A possible origin of the nebula of hard X-ray emission detected by Willmore et al. (1992) around the Vela pulsar is proposed.

  1. Congenital esophageal stenosis owing to tracheobronchial remnants

    PubMed Central

    Rebelo, Priscila Guyt; Ormonde, João Victor C.; Ormonde, João Baptista C.

    2013-01-01

    OBJECTIVE To emphasize the need of an accurate diagnosis of congenital esophageal stenosis due to tracheobronchial remnants, since its treatment differs from other types of congenital narrowing. CASE DESCRIPTION Four cases of lower congenital esophageal stenosis due to tracheobronchial remnants, whose definitive diagnosis was made by histopathology. Except for the last case, in which a concomitant anti-reflux surgery was not performed, all had a favorable outcome after resection and anastomosis of the esophagus. COMMENTS The congenital esophageal stenosis is an intrinsic narrowing of the organâ€(tm)s wall associated with its structural malformation. The condition can be caused by tracheobronchial remnants, fibromuscular stenosis or membranous diaphragm and the first symptom is dysphagia after the introduction of solid food in the diet. The first-choice treatment to tracheobronchial remnants cases is the surgical resection and end-to-end anastomosis of the esophagus. PMID:24142326

  2. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  3. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  4. Collapse of magnetized hypermassive neutron stars in general relativity.

    PubMed

    Duez, Matthew D; Liu, Yuk Tung; Shapiro, Stuart L; Shibata, Masaru; Stephens, Branson C

    2006-01-27

    Hypermassive neutron stars (HMNSs)--equilibrium configurations supported against collapse by rapid differential rotation--are possible transient remnants of binary neutron-star mergers. Using newly developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular angular momentum transport due to magnetic braking and the magnetorotational instability results in the collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of short gamma-ray bursts.

  5. SHADOWS OF OUR FORMER COMPANIONS: HOW THE SINGLE-DEGENERATE BINARY TYPE IA SUPERNOVA SCENARIO AFFECTS REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, William J.; Raskin, Cody; Owen, J. Michael

    2016-12-10

    Here we present three-dimensional high-resolution simulations of Type Ia supernova in the presence of a non-degenerate companion. We find that the presence of a nearby companion leaves a long-lived hole in the supernova ejecta. In particular, we aim to study the long-term evolution of this hole as the supernova ejecta interacts with the surrounding interstellar medium (ISM). Using estimates for the X-ray emission, we find that the hole generated by the companion remains for many centuries after the interaction between the ejecta and the ISM. We also show that the hole is discernible over a wide range of viewing anglesmore » and companion masses.« less

  6. Taking the Radio Blinders Off of M83: A Wide Spectrum Analysis of the Historical Point Source Population

    NASA Astrophysics Data System (ADS)

    Stockdale, Christopher; Keefe, Clayton; Nichols, Michael; Rujevcan, Colton; Blair, William P.; Cowan, John J.; Godfrey, Leith; Miller-Jones, James; Kuntz, K. D.; Long, Knox S.; Maddox, Larry A.; Plucinsky, Paul P.; Pritchard, Tyler A.; Soria, Roberto; Whitmore, Bradley C.; Winkler, P. Frank

    2015-01-01

    We present low frequency observations of the grand design spiral galaxy, M83, using the C and L bands of the Karl G. Jansky Very Large Array (VLA). With recent optical (HST) and X-ray (Chandra) observations and utilizing the newly expanded bandwidth of the VLA, we are exploring the radio spectral properties of the historical radio point sources in M83. These observations allow us to probe the evolution of supernova remnants (SNRs) and to find previously undiscovered SNRs. These observations represent the fourth epoch of deep VLA observations of M83. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities.

  7. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.

    PubMed

    Sun, Cheng; Feschotte, Cédric; Wu, Zhiqiang; Mueller, Rachel Lockridge

    2015-06-12

    Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Our discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms.

  8. DEM L241, A SUPERNOVA REMNANT CONTAINING A HIGH-MASS X-RAY BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, F. D.; Charles, P. A.; Foster, D. L.

    2012-11-10

    A Chandra observation of the Large Magellanic Cloud supernova remnant DEM L241 reveals an interior unresolved source which is probably an accretion-powered binary. The optical counterpart is an O5III(f) star making this a high-mass X-ray binary with an orbital period likely to be of the order of tens of days. Emission from the remnant interior is thermal and spectral information is used to derive density and mass of the hot material. Elongation of the remnant is unusual and possible causes of this are discussed. The precursor star probably had mass >25 M {sub Sun}.

  9. Nonthermal X-Ray Emission from the Shell-Type Supernova Remnant G347.3-0.5

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.; Gaensler, Bryan M.; Dame, T. M.; Hughes, John P.; Plucinsky, Paul P.; Green, Anne

    2002-01-01

    Recent Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations of G347.3-0.5, a supernova remnant (SNR) discovered in the ROSAT All-Sky Survey, reveal nonthermal emission from a region along the northwestern shell. Here we report on new pointed ASCA observations of G347.3-0.5 that confirm this result for all the bright shell regions and also reveal similar emission, although with slightly different spectral properties, from the remainder of the SNR. Curiously, no thermal X-ray emission is detected anywhere in the remnant. We derive limits on the amount of thermal emitting material present in G347.3-0.5 and present new radio continuum, CO, and infrared results that indicate that the remnant is distant and of moderate age. We show that our observations are broadly consistent with a scenario that has most of the supernova remnant shock wave still within the stellar wind bubble of its progenitor star, while part of it appears to be interacting with denser material. A point source at the center of the remnant has spectral properties similar to those expected for a neutron star and may represent the compact relic of the supernova progenitor.

  10. A CHANDRA OBSERVATION OF SNR 0540 - 697

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seward, F. D.; Williams, R. M.; Chu, Y.-H.

    2010-07-15

    This paper describes a Chandra observation of SNR 0540 - 697 within the H II complex N159 in the Large Magellanic Cloud (LMC). Scattering from the nearby bright source LMC X-1, which obscures the western edge of the remnant, has been removed. Larger than previously believed, the 2.'0 x 2.'8 remnant is defined by optical filaments and two lobes of X-ray emission. A band of intervening material absorbs X-rays from the central part of the remnant. The N Lobe of the remnant is relatively bright and well defined, while emission from the S Lobe is much weaker. There is structuremore » within the N Lobe but no clear X-ray emission from an outer shell indicating a shock in the interstellar medium. The X-ray spectrum is thermal with emission lines from Fe, Mg, and Si. The observed temperature and luminosity of the hot gas are 0.6 keV and 6 x 10{sup 35} erg s{sup -1}, respectively. These are consistent with characteristics expected for older remnants. There is also diffuse thermal X-ray emission north of N159 extending into N160, evidence for a larger remnant or bubble.« less

  11. The Role of Small Woodland Remnants on Ground Dwelling Insect Conservation in Chaco Serrano, Central Argentina

    PubMed Central

    Moreno, María Laura; Fernández, María Guadalupe; Molina, Silvia Itati; Valladares, Graciela

    2013-01-01

    Many terrestrial ecosystems are changing due to extensive land use and habitat fragmentation, posing a major threat to biodiversity. In this study, the effects of patch size, isolation, and edge/interior localization on the ground dwelling insect communities in the Chaco Serrano woodland remnants in central Argentina were examined. Sampling was carried out in December 2003 and March 2004 in nine remnants (0.57 to 1000 hectares) using pitfall traps. In total, 7071 individuals representing 12 orders and 79 families were recorded. The taxonomic composition of these communities was linked to remnant size. Insect abundance increased (as did their richness, albeit marginally) as remnant area decreased, with no significant effects of isolation or edge/interior localization on abundance, richness, or diversity. No differential area effects were observed when abundance and richness of predators, scavengers, and herbivores were compared. Thus, ground insect communities in fragmented Chaco Serrano seem to respond mainly to patch level, rather than to within-patch (edge effects) or landscape (isolation) level variables. These results suggest that small Chaco Serrano remnants, by supporting larger ground-dwelling insect assemblages, may play an important role from a conservation viewpoint. PMID:23902409

  12. The role of small woodland remnants on ground dwelling insect conservation in Chaco Serrano, Central Argentina.

    PubMed

    Moreno, María Laura; Fernández, María Guadalupe; Molina, Silvia Itati; Valladares, Graciela

    2013-01-01

    Many terrestrial ecosystems are changing due to extensive land use and habitat fragmentation, posing a major threat to biodiversity. In this study, the effects of patch size, isolation, and edge/interior localization on the ground dwelling insect communities in the Chaco Serrano woodland remnants in central Argentina were examined. Sampling was carried out in December 2003 and March 2004 in nine remnants (0.57 to 1000 hectares) using pitfall traps. In total, 7071 individuals representing 12 orders and 79 families were recorded. The taxonomic composition of these communities was linked to remnant size. Insect abundance increased (as did their richness, albeit marginally) as remnant area decreased, with no significant effects of isolation or edge/interior localization on abundance, richness, or diversity. No differential area effects were observed when abundance and richness of predators, scavengers, and herbivores were compared. Thus, ground insect communities in fragmented Chaco Serrano seem to respond mainly to patch level, rather than to within-patch (edge effects) or landscape (isolation) level variables. These results suggest that small Chaco Serrano remnants, by supporting larger ground-dwelling insect assemblages, may play an important role from a conservation viewpoint.

  13. Landscape genomics reveals altered genome wide diversity within revegetated stands of Eucalyptus microcarpa (Grey Box).

    PubMed

    Jordan, Rebecca; Dillon, Shannon K; Prober, Suzanne M; Hoffmann, Ary A

    2016-12-01

    In order to contribute to evolutionary resilience and adaptive potential in highly modified landscapes, revegetated areas should ideally reflect levels of genetic diversity within and across natural stands. Landscape genomic analyses enable such diversity patterns to be characterized at genome and chromosomal levels. Landscape-wide patterns of genomic diversity were assessed in Eucalyptus microcarpa, a dominant tree species widely used in revegetation in Southeastern Australia. Trees from small and large patches within large remnants, small isolated remnants and revegetation sites were assessed across the now highly fragmented distribution of this species using the DArTseq genomic approach. Genomic diversity was similar within all three types of remnant patches analysed, although often significantly but only slightly lower in revegetation sites compared with natural remnants. Differences in diversity between stand types varied across chromosomes. Genomic differentiation was higher between small, isolated remnants, and among revegetated sites compared with natural stands. We conclude that small remnants and revegetated sites of our E. microcarpa samples largely but not completely capture patterns in genomic diversity across the landscape. Genomic approaches provide a powerful tool for assessing restoration efforts across the landscape. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Normalization of pH level and gastric mucosa after eradication of H. pylori in the remnant stomach.

    PubMed

    Kato, Shunji; Matsukura, Norio; Matsuda, Noriko; Tsuchiya, Shinichi; Naito, Zenya; Tajiri, Takashi

    2008-12-01

    The Updated Sydney System (USS) is used to evaluate chronic gastritis and chronic atrophic gastritis (CAG) due to H. pylori infection. Here, we investigated USS scores and gastric juice pH levels in H. pylori infection-positive or -eradicated patients with remnant stomach after surgery. Gastric juice pH levels were measured using pH test-tape in 197 patients (112 H. pylori-positive and 85 H. pylori-negative after eradication) who had undergone distal gastrectomy and conventional H. pylori eradication therapy. In H. pylori infection-positive remnant stomach cases, gastric juice pH showed a reverse correlation with pepsinogen I/II ratio, and H. pylori infection-negative patients following eradication showed associations with the degree of atrophy and intestinal metaplasia at both the anastomosis and in the corpus. Further, pH levels in these patients were normalized time depending after the eradication in the remnant stomach. Eradication therapy for the remnant stomach contributes to the possible improvement of stomach conditions by controlling the pH level of gastric juice. This effect will be protective against the risk of secondary stomach carcinogenesis in the remnant stomach.

  15. Detection of a new extended soft X-ray source H1538-32 - A possible old supernova remnant

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Agrawal, P. C.; Gull, S. F.

    1980-01-01

    The discovery in the Lupus region of a new, extended soft X-ray source, H1538-32, is reported, having a distance of approximately 340 pc, and a luminosity of 1 to 2 x 10 to the 34th ergs/sec. The observed energy spectrum of the source is well fitted either by a thermal bremsstrahlung spectrum with Gaunt factor but without line emission, or by a coronal plasma model which includes the X-ray emission lines of various elements and the continuum as outlined by Raymond and Smith (1977). On the basis of the extended nature of the source and its thermal spectrum, it is suggested that H1538-32 may be an old supernova remnant.

  16. NASA Space Observatories Glimpse Faint Afterglow of Nearby Stellar Explosion

    NASA Astrophysics Data System (ADS)

    2005-10-01

    Intricate wisps of glowing gas float amid a myriad of stars in this image created by combining data from NASA's Hubble Space Telescope and Chandra X-ray Observatory. The gas is a supernova remnant, cataloged as N132D, ejected from the explosion of a massive star that occurred some 3,000 years ago. This titanic explosion took place in the Large Magellanic Cloud, a nearby neighbor galaxy of our own Milky Way. The complex structure of N132D is due to the expanding supersonic shock wave from the explosion impacting the interstellar gas of the LMC. Deep within the remnant, the Hubble visible light image reveals a crescent-shaped cloud of pink emission from hydrogen gas, and soft purple wisps that correspond to regions of glowing oxygen emission. A dense background of colorful stars in the LMC is also shown in the Hubble image. The large horseshoe-shaped gas cloud on the left-hand side of the remnant is glowing in X-rays, as imaged by Chandra. In order to emit X-rays, the gas must have been heated to a temperature of about 18 million degrees Fahrenheit (10 million degrees Celsius). A supernova-generated shock wave traveling at a velocity of more than four million miles per hour (2,000 kilometers per second) is continuing to propagate through the low-density medium today. The shock front where the material from the supernova collides with ambient interstellar material in the LMC is responsible for these high temperatures. Chandra image of N132D Chandra image of N132D, 2002 It is estimated that the star that exploded as a supernova to produce the N132D remnant was 10 to 15 times more massive than our own Sun. As fast-moving ejecta from the explosion slam into the cool, dense interstellar clouds in the LMC, complex shock fronts are created. A supernova remnant like N132D provides a rare opportunity for direct observation of stellar material, because it is made of gas that was recently hidden deep inside a star. Thus it provides information on stellar evolution and the creation of chemical elements such as oxygen through nuclear reactions in their cores. Such observations also help reveal how the interstellar medium (the gas that occupies the vast spaces between the stars) is enriched with chemical elements because of supernova explosions. Later on, these elements are incorporated into new generations of stars and their accompanying planets. Visible only from Earth's southern hemisphere, the LMC is an irregular galaxy lying about 160,000 light-years from the Milky Way. The supernova remnant appears to be about 3,000 years old, but since its light took 160,000 years to reach us, the explosion actually occurred some 163,000 years ago. This composite image of N132D was created by the Hubble Heritage team from visible-light data taken in January 2004 with Hubble's Advanced Camera for Surveys, and X-ray images obtained in July 2000 by Chandra's Advanced CCD Imaging Spectrometer. This marks the first Hubble Heritage image that combines pictures taken by two separate space observatories. The Hubble data include color filters that sample starlight in the blue, green, and red portions of the spectrum, as well as the pink emission from glowing hydrogen gas. The Chandra data are assigned blue in the color composite, in accordance with the much higher energy of the X-rays, emitted from extremely hot gas. This gas does not emit a significant amount of optical light, and was only detected by Chandra. Image Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA) Acknowledgment: J.C. Green (Univ. of Colorado) and the Cosmic Origins Spectrograph (COS) GTO team; NASA/CXO/SAO Electronic image files, video, illustrations and additional information are available at: http://hubblesite.org/news/2005/30 http://heritage.stsci.edu/2005/30 The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).

  17. A Common Origin of Magnetism from Planets to White Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isern, Jordi; Külebi, Baybars; García-Berro, Enrique

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, {sup 12}C and {sup 16}O, and of the impuritiesmore » left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.« less

  18. Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.

  19. The remnants of restinga habitats in the brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance.

    PubMed

    Rocha, C F D; Bergallo, H G; Van Sluys, M; Alves, M A S; Jamel, C E

    2007-05-01

    "Restingas" (herbaceous/shrubby coastal sand-dune habitats) used to cover most of Rio de Janeiro State coast, and have suffered extensive degradation over the last five centuries. Using satellite images and field work, we identified the remaining restingas in the State, recording the factors that might cause their degradation. We used two mosaics of Landsat 7 scenes (spatial resolution 15 and 30 m) to map and evaluate preliminarly the remaining areas and conservation status. Each remnant area was checked in the field, degraded areas within it were mapped and subtracted from the remnants. We identified 21 restinga remnants totalling 105,285 ha. The largest and smallest restinga remnants were Jurubatiba (25,141 ha) and Itaipu (23 ha), respectively. We identified 14 causes of degradation. The most important were vegetation removal for housing developments, establishment of exotic plant species, change of original substrate, and selective removal of species of economic importance for the horticultural industry. All restingas had disturbed parts under strong pressure due to human activities. Due to intense habitat loss, and occurrence of endemic/threatened vertebrate species in restinga habitats, we strongly indicate the implementation of new conservation units to protect these fragile remnants. This habitat is steadily decreasing and most remnants lack legal protection. Therefore, under the current human pressure most of this unique habitat is likely to be lost from the State within the next few years.

  20. Black hole remnants and the information loss paradox

    NASA Astrophysics Data System (ADS)

    Chen, P.; Ong, Y. C.; Yeom, D.-h.

    2015-11-01

    Forty years after the discovery of Hawking radiation, its exact nature remains elusive. If Hawking radiation does not carry any information out from the ever shrinking black hole, it seems that unitarity is violated once the black hole completely evaporates. On the other hand, attempts to recover information via quantum entanglement lead to the firewall controversy. Amid the confusions, the possibility that black hole evaporation stops with a "remnant" has remained unpopular and is often dismissed due to some "undesired properties" of such an object. Nevertheless, as in any scientific debate, the pros and cons of any proposal must be carefully scrutinized. We fill in the void of the literature by providing a timely review of various types of black hole remnants, and provide some new thoughts regarding the challenges that black hole remnants face in the context of the information loss paradox and its latest incarnation, namely the firewall controversy. The importance of understanding the role of curvature singularity is also emphasized, after all there remains a possibility that the singularity cannot be cured even by quantum gravity. In this context a black hole remnant conveniently serves as a cosmic censor. We conclude that a remnant remains a possible end state of Hawking evaporation, and if it contains large interior geometry, may help to ameliorate the information loss paradox and the firewall controversy. We hope that this will raise some interests in the community to investigate remnants more critically but also more thoroughly.

  1. Angiographic and epidemiological characteristics associated with aneurysm remnants after microsurgical clipping

    PubMed Central

    Dellaretti, Marcos; da Silva Martins, Warley Carvalho; Dourado, Jules Carlos; Faglioni, Wilson; Quadros, Ricardo Souza; de Souza Moraes, Vítor Vieira; de Souza Filho, Carlos Batista Alves

    2017-01-01

    Background: Despite new techniques for the treatment of cerebral aneurysms, the percentage of aneurysm remnants after surgical intervention seems to be relatively constant. The objective of this study was to assess angiographic and epidemiological features associated with aneurysm remnants after microsurgical clipping. Methods: This study was conducted from February 2009 to August 2012 on a series of 90 patients with 105 aneurysms referred to the Santa Casa of Belo Horizonte who were surgically treated and angiographically controlled. Results: Surgical clipping was considered incomplete in 13.3% of the aneurysms. The mean age of cases with an aneurysm remnant was 57.5 years, whereas the mean age without aneurysm remnant was 49.7 years (P = 0.02). Aneurysm remnants were detected more frequently on the internal carotid artery, nevertheless, no statistically significant differences were verified when comparing the locations. Aneurysm size in the preoperative angiography verified that the mean size of aneurysms operated was 6.56 mm, such that in cases showing a postoperative remnant, the mean size was 9.7 mm and in cases with complete clipping it was 6.08 mm (P = 0.02). Postoperative angiography showed that, in cases with residual aneurysm, the number of clips used was higher – a mean of 1.8 for complete clipping and 3.1 for incomplete clipping (P < 0.001). Conclusions: Aneurysm size and patient age showed significant correlations with residual intracranial aneurysm. The mean number of clips used was higher in cases with incomplete occlusion. PMID:28904825

  2. A kinematic study of 0509-67.5, the second youngest supernova remnant in the Large Magellanic Cloud, and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Hovey, Luke

    2016-05-01

    Supernova remnants are the lasting interactions of shock waves that develop in the wake of supernovae. These remnants, especially those in our galaxy and our companion galaxies, allow us to study supernovae for thousands of years after the initial stellar explosions. Remnants that are formed from Ia supernovae, which are the explosions and complete annihilation of white dwarf stars, are of particular interest due to the explosions' value as standard candles in cosmological studies. The shock waves in these young supernova remnants offer an unparalleled look into the physical processes that take place there, especially since these shocks are often simpler to study than shocks with strong radiative components that are present in remnants that are formed from the core-collapse supernovae of massive stars. I will detail the work of my kinematic study of the second youngest remnant in the Large Magellanic Cloud, 0509--67.5, which has been confirmed to be the result of a Ia supernova. Chapter 2 details the proper motion measurements made on the forward shock of this remnant, which has led to many key results. I was able to use the results of ii the global shock speed in the remnant to measure the density of neutral hydrogen in the ambient medium into which these shocks expand. In addition, I use the measurements of the shock speed for select portions of the forward shock to search for signatures of efficient cosmic-ray acceleration. Hydrodynamic simulations are then employed to constrain the age and ambient medium density of 0509--67.5, as well as to place limits on the compression factor at the immediate location of the blast wave. Chapter 3 uses the proper motion results from chapter 2 to determine possible asymmetries in the expansion of the remnant for the eastern and western limbs. These measurements are then used as constraints in hydrodynamic simulations to assess the possible dynamical offset of the explosion site compared to the geometric center of 0509?67.5 that we observe today. I find a continuum of possible offsets, which are sensitive to assumptions that are made about the evolutionary history of the remnant, and use the uncertainties in these calculations to determine the area in which to search for a leftover progenitor companion star in the event that the explosion resulted from a single-degenerate system. The stars within this search area are explored with a multi-band photometric study, wherein we determine the mass ranges for these candidates. Chapter four concludes this thesis, recapping the main results from chapters 2 and 3, and highlights the future projects I will carry out that are motivated by my findings in this comprehensive study of the supernova remnant 0509--67.5.

  3. Constraints on Cosmic-ray Acceleration Efficiency in Balmer Shocks of Two Young Type Ia Supernova Remnants in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hovey, Luke; Hughes, John P.; McCully, Curtis; Pandya, Viraj; Eriksen, Kristoffer

    2018-01-01

    We present results from an optical study of two young Balmer-dominated remnants of SNIa in the Large Magellanic Cloud, 0509-67.5 and 0519-69.0, in an attempt to search for signatures of efficient cosmic-ray (CR) acceleration. We combine proper motion measurements from HST with corresponding optical spectroscopic measurements of the Hα line at multiple rim positions from VLT/FORS2 and SALT/RSS and compare our results to published Balmer shock models. Analysis of the optical spectra result in broad Hα widths in the range of 1800-4000 km s-1 for twelve separate Balmer-dominated filaments that show no evidence for forbidden line emission, the corresponding shock speeds from proper motion measurements span a range of 1600-8500 km s-1. Our measured values of shock speeds and broad Hα widths in 0509-67.5 and 0519-69.0 are fit well with a Balmer shock model that does not include effects of efficient CR acceleration. We determine an upper limit of 7%/Χ (95% confidence) on the CR acceleration efficiency for our ensemble of data points, where Χ is the ionization fraction of the pre-shock gas. The upper limits on the individual remnants are 6%/Χ (0509-67.5) and 11%/Χ (0519-69.0). These upper limits are below the integrated CR acceleration efficiency in the Tycho supernova remnant, where the shocks predominantly show little Hα emission, indicating that Balmer-dominated shocks are not efficient CR accelerators.

  4. Treatment of gastric remnant cancer post distal gastrectomy by endoscopic submucosal dissection using an insulation-tipped diathermic knife

    PubMed Central

    Hirasaki, Shoji; Kanzaki, Hiromitsu; Matsubara, Minoru; Fujita, Kohei; Matsumura, Shuji; Suzuki, Seiyuu

    2008-01-01

    AIM: To evaluate the effectiveness of endoscopic submucosal dissection using an insulation-tipped diathermic knife (IT-ESD) for the treatment of patients with gastric remnant cancer. METHODS: Thirty-two patients with early gastric cancer in the remnant stomach, who underwent distal gastrectomy due to gastric carcinoma, were treated with endoscopic mucosal resection (EMR) or ESD at Sumitomo Besshi Hospital and Shikoku Cancer Center in the 10-year period from January 1998 to December 2007, including 17 patients treated with IT-ESD. Retrospectively, patient backgrounds, the one-piece resection rate, complete resection (CR) rate, operation time, bleeding rate, and perforation rate were compared between patients treated with conventional EMR and those treated with IT-ESD. RESULTS: The CR rate (40% in the EMR group vs 82% in the IT-ESD group) was significantly higher in the IT-ESD group than in the EMR group; however, the operation time was significantly longer for the IT-ESD group (57.6 ± 31.9 min vs 21.1 ± 12.2 min). No significant differences were found in the rate of underlying cardiopulmonary disease (IT-ESD group, 12% vs EMR group, 13%), one-piece resection rate (100% vs 73%), bleeding rate (18% vs 6.7%), and perforation rate (0% vs 0%) between the two groups. CONCLUSION: IT-ESD appears to be an effective treatment for gastric remnant cancer post distal gastrectomy because of its high CR rate. It is useful for histological confirmation of successful treatment. The long-term outcome needs to be evaluated in the future. PMID:18442204

  5. Visuo‐manual tracking: does intermittent control with aperiodic sampling explain linear power and non‐linear remnant without sensorimotor noise?

    PubMed Central

    Gawthrop, Peter J.; Lakie, Martin; Loram, Ian D.

    2017-01-01

    Key points A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non‐linearly related to the input, attributed to sensorimotor noise.Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200–500 ms periods of irresponsiveness to sensory input making the control process intrinsically non‐linear.This evidence calls for re‐examination of the extent to which random sensorimotor noise is required to explain the non‐linear remnant.This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds.Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. Abstract The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non‐linear remnant resulting from random sensorimotor noise from multiple sources, and non‐linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non‐linear remnant using noise or non‐linear transformations? (ii) Can non‐linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi‐sine disturbance. Joystick power was analysed using three models, continuous‐linear‐control (CC), continuous‐linear‐control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77–87% vs. 8–48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo‐manual tracking. PMID:28833126

  6. Surgical Outcome and Hepatic Regeneration after Hepatic Resection for Hepatocellular Carcinoma in Elderly Patients.

    PubMed

    Inoue, Yoshihiro; Tanaka, Ryo; Fujii, Kensuke; Kawaguchi, Nao; Ishii, Masatsugu; Masubuchi, Shinsuke; Yamamoto, Masashi; Hirokawa, Fumitoshi; Hayashi, Michihiro; Uchiyama, Kazuhisa

    2018-05-14

    The rising proportion of elderly patients (aged 80 yearsor above) in our population means that more elderly patients are undergoing hepatectomy. Five-hundred and thirty patients who underwent hepatectomy for hepatocellular carcinoma (HCC) were retrospectively analyzed with respect to their preoperative status and perioperative results, including remnant liver regeneration. The remnant liver volume was postoperatively measured with multidetector CT on postoperative day 7 and 1, 2, 5, and 12 months after surgery. An elderly group (aged 80 or older) was compared with a non-elderly group (aged less than 80 years). Underlying diseases of the cardiovascular system were significantly more common in the elderly group (57.8%, p = 0.0008). The postoperative incidence of Clavien-Dindo Grade IIIa or higher complications was 20.0% in the elderly group and 24.3% in the non-elderly group, and this difference was not significant. As for regeneration of the remnant liver after resection, this was not morphologically delayed compared to the non-elderly group. In this study, we have demonstrated that safe, radical hepatectomy, similar to procedures performed on non-elderly patients, can be performed on patients with HCC aged 80 and older with sufficient perioperative care. © 2018 S. Karger AG, Basel.

  7. The Erebus Montes Debris-Apron Population: Investigation of Amazonian Landscape Evolution

    NASA Astrophysics Data System (ADS)

    van Gasselt, S.; Orgel, C.; Schulz, J.

    2014-04-01

    Lobate debris aprons are considered to be indicators for the presence of ice and water reservoirs on Mars and are therefore sensitive to climate variability. The northern hemisphere of Mars is characterized by three major populations of debris aprons (see, e.g. [12]): (1) the Tempe Terra/Mareotis Fossae region [2, 5], (2) the Deuteronilus/Protonilus Mensae [1, 4, 8], and (3) the Phlegra Montes (PM) [3]. The broader PM area can subdivided inro a number of smaller populations dispersed across parts of Arcadia Planitia (see figure 1) of which the Erebus Montes located at 180-195oE, 25-41oN form a well-confined set of features. We here focus on age and erosional characteristics of the northern Erebus Montes (see inset in figure 1). Our study makes use of panchromatic image data obtained by the High Resolution Stereo Camera (HRSC) [9, 6] onboard Mars Express and the Context Camera (CTX) [7] onboard Mars Reconnaissance Orbiter. Image data analyses are supported by digital terrain-model data derived from HRSC based stereo imaging [10] and from Mars Orbiter Laser Altimeter (MOLA) [11]. We performed detailed geologic mapping at a scale of 1:10,000 and analysed age relationships and erosion rates based on a similar approach as outlined in [5] for the northern part of the Erebus Montes. The aim of this study is to compare feature characteristics to other populations in order to assess timing and the overarching control of landforms evolution in the Martian northern hemisphere. The EM compare geologically relatively well with the Phlegra Montes in terms of individual feature morphologies. The concentration based on cluster analysis (figure 1) shows an up to 10 times higher concentration of remnants per 25 km2 area peaking at 3.4×10-3 features for Erebus Montes. Debris aprons show well-defined age signals ranging from 15 Myr up to 145 Myr. Some units even show continuous degradation implying active denudation of the Noachian to Hesperian-aged remnant massifs. Based on the current status of investigations latitudinally dependent age trends cannot be observed which is likely to be related to the small extent of the northern region. Erosion rates determined at selected remnants are comparable to the Tempe Terra region with 0.1-0.3 mm·a-1 (100-300 B) [5], depending on the model that has been used for our calculations. An explanation for such high Amazonian rates could be that much of the apron material has not been accumulated through denudation processes but by atmospheric deposition and removal of material from high-relief areas.

  8. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    A. Hesp, Patrick

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, ‘tree islands' and ‘bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to ‘restore' some perceived loss of ecosystem or dune functioning.

  9. Conceptual models of the evolution of transgressive dune field systems

    NASA Astrophysics Data System (ADS)

    Hesp, Patrick A.

    2013-10-01

    This paper examines the evolutionary paths of some transgressive dune fields that have formed on different coasts of the world, and presents some initial conceptual models of system dynamics for transgressive dune sheets and dune fields. Various evolutionary pathways are conceptualized based on a visual examination of dune fields from around the world. On coasts with high sediment supply, dune sheets and dune fields tend to accumulate as large scale barrier systems with little colonization of vegetation in arid-hyper to arid climate regimes, and as multiple, active discrete phases of dune field and deflation plain couplets in temperate to tropical environments. Active dune fields tend to be singular entities on coasts with low to moderate sediment supply. Landscape complexity and vegetation richness and diversity increases as dune fields evolve from simple active sheets and dunes to single and multiple deflation plains and basins, precipitation ridges, nebkha fields and a host of other dune types associated with vegetation (e.g. trailing ridges, slacks, remnant knobs, gegenwalle ridges and dune track ridges, 'tree islands' and 'bush pockets'). Three principal scenarios of transgressive dune sheet and dune field development are discussed, including dune sheets or dune fields evolving directly from the backshore, development following foredune and/or dune field erosion, and development from the breakdown or merging of parabolic dunes. Various stages of evolution are outlined for each scenario. Knowledge of evolutionary patterns and stages in coastal dune fields is very limited and caution is urged in attempts to reverse, change and/or modify dune fields to 'restore' some perceived loss of ecosystem or dune functioning.

  10. Formation of solar system analogues - I. Looking for initial conditions through a population synthesis analysis

    NASA Astrophysics Data System (ADS)

    Ronco, M. P.; Guilera, O. M.; de Elía, G. C.

    2017-11-01

    Population synthesis models of planetary systems developed during the last ˜15 yr could reproduce several of the observables of the exoplanet population, and also allowed us to constrain planetary formation models. We present our planet formation model, which calculates the evolution of a planetary system during the gaseous phase. The code incorporates relevant physical phenomena for the formation of a planetary system, like photoevaporation, planet migration, gas accretion, water delivery in embryos and planetesimals, a detailed study of the orbital evolution of the planetesimal population, and the treatment of the fusion between embryos, considering their atmospheres. The main goal of this work, unlike other works of planetary population synthesis, is to find suitable scenarios and physical parameters of the disc to form Solar system analogues. We are specially interested in the final planet distributions, and in the final surface density, eccentricity and inclination profiles for the planetesimal population. These final distributions will be used as initial conditions for N-body simulations to study the post-oligarchic formation in a second work. We then consider different formation scenarios, with different planetesimal sizes and different type I migration rates. We find that Solar system analogues are favoured in massive discs, with low type I migration rates, and small planetesimal sizes. Besides, those rocky planets within their habitables zones are dry when discs dissipate. At last, the final configurations of Solar system analogues include information about the mass and semimajor axis of the planets, water contents, and the properties of the planetesimal remnants.

  11. Erosion of volcanic ocean islands: insights from modeling, topographic analyses, and cosmogenic exposure dating

    NASA Astrophysics Data System (ADS)

    Huppert, K.; Perron, J. T.; Ferrier, K.; Mukhopadhyay, S.; Rosener, M.; Douglas, M.

    2016-12-01

    With homogeneous bedrock, dramatic rainfall gradients, paleoshorelines, and datable remnant topography, volcanic ocean islands provide an exceptional natural experiment in landscape evolution. Analyses traversing gradients in island climate and bedrock age have the potential to advance our understanding of landscape evolution in a diverse range of continental settings. However, as small, conical, dominantly subsiding, and initially highly permeable landmasses, islands are unique, and it remains unclear how these properties influence their erosional history. We use a landscape evolution model and observations from the Hawaiian island of Kaua'i and other islands to characterize the topographic evolution of volcanic ocean islands. We present new measurements of helium-3 concentrations in detrital olivine from 20 rivers on Kaua'i. These measurements indicate that minimum erosion rates over the past 3 to 48 kyr are on average 2.6 times faster than erosion rates averaged over the past 3.9 to 4.4 Myr estimated from the volume of river canyons. This apparent acceleration of erosion rates on Kaua'i is consistent with observations on other islands; erosion rates estimated from the volume of river canyons on 31 islands worldwide, combined with observations of minimal incision on young island volcanoes, suggest a progressive increase in erosion rates over the first few million years of island landscape development. Using a landscape evolution model, we perform a set of experiments to quantify the contribution of subsidence, climate change, and initial geometry to changes in island erosion rates through time. We base these experiments on the evolution of Kaua'i, and we use measured erosion rates and the observed topography to calibrate the model. We find that progressive steepening of island topography by canyon incision drives an acceleration of erosion rates over time. Increases in mean channel and hillslope gradient with island age in the global compilation suggest this may be a general trend in the topographic evolution of volcanic ocean islands.

  12. A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements

    PubMed Central

    Elisaphenko, Eugeny A.; Kolesnikov, Nikolay N.; Shevchenko, Alexander I.; Rogozin, Igor B.; Nesterova, Tatyana B.; Brockdorff, Neil; Zakian, Suren M.

    2008-01-01

    X-chromosome inactivation, which occurs in female eutherian mammals is controlled by a complex X-linked locus termed the X-inactivation center (XIC). Previously it was proposed that genes of the XIC evolved, at least in part, as a result of pseudogenization of protein-coding genes. In this study we show that the key XIC gene Xist, which displays fragmentary homology to a protein-coding gene Lnx3, emerged de novo in early eutherians by integration of mobile elements which gave rise to simple tandem repeats. The Xist gene promoter region and four out of ten exons found in eutherians retain homology to exons of the Lnx3 gene. The remaining six Xist exons including those with simple tandem repeats detectable in their structure have similarity to different transposable elements. Integration of mobile elements into Xist accompanies the overall evolution of the gene and presumably continues in contemporary eutherian species. Additionally we showed that the combination of remnants of protein-coding sequences and mobile elements is not unique to the Xist gene and is found in other XIC genes producing non-coding nuclear RNA. PMID:18575625

  13. Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae

    NASA Technical Reports Server (NTRS)

    Sparks, W. M.; Kutter, G. S.

    1973-01-01

    The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed.

  14. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  15. Variation in diel activity of ground beetles (Coleoptera: Carabidae) associated with a soybean field and coal mine remnant

    USGS Publications Warehouse

    Willand, J.E.; McCravy, K.W.

    2006-01-01

    Diel activities of carabids (Coleoptera: Carabidae) associated with a coal mine remnant and surrounding soybean field were studied in west-central Illinois from June through October 2002. A total of 1,402 carabids, representing 29 species and 17 genera, were collected using pitfall traps. Poecilus chalcites (Say) demonstrated roughly equal diurnal and nocturnal activity in June, but greater diurnal activity thereafter. Pterostichus permundus (Say), Cyclotrachelus seximpressus (LeConte), Amara obesa (Say), and Scarites quadriceps Chaudoir showed significant nocturnal activity. Associations between habitat and diel activity were found for three species: P. chalcites associated with the remnant and edge habitats showed greater diurnal activity than those associated with the soybean field; C. seximpressus was most active diurnally in the remnant, and Harpalus pensylvanicus (DeGeer) showed the greatest nocturnal activity in the remnant and edge habitats. We found significant temporal and habitat-related variation in diel activity among carabid species inhabiting agricultural areas in west-central Illinois.

  16. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  17. Exploring the X-ray Morphology of the Supernova Remnant Kes 27 using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram; Dewey, D.

    2013-04-01

    Kesteven 27 is a member of the class of thermal composite or mixed-morphology remnants, which can show thermal X-ray emission extending all the way in towards the center. The Chandra image shows two incomplete shell-like features in the north-eastern half, with brightness fading towards the southwest. The X-ray and radio structure led Chen et al. (2008) to suggest that the morphology represents a supernova remnant expanding in a windblown bubble. The two X-ray rings represent the outer shock of the supernova remnant, and a reflected shock arising from collision with a dense shell. Using numerical simulations followed by a computation of the X-ray emission, we explore this possibility. Our initial modeling suggests that the scenario discussed by Chen et al. (2008) may not work. We suggest and discuss modifications to this scenario that may be able to reproduce the observed morphology, and the implications for thermal composite remnants.

  18. Hot interstellar tunnels. 1: Simulation of interacting supernova remnants

    NASA Technical Reports Server (NTRS)

    Smith, B. W.

    1976-01-01

    The theory required to build a numerical simulation of interacting supernova remnants is developed. The hot cavities within a population of remnants will become connected, with varying ease and speed, for a variety of assumed conditions in the outer shells of old remnants. Apparently neither radiative cooling nor thermal conduction in a large-scale galactic magnetic field can destroy hot cavity regions, if they grow, faster than they are reheated by supernova shock waves, but interstellar mass motions disrupt the contiguity of extensive cavities necessary for the dispersal of these shocks over a wide volume. Monte Carlo simulations show that a quasi-equilibrium is reached in the test space within 10 million yrs of the first supernova and is characterized by an average cavity filling fraction of the interstellar volume. Aspects of this equilibrium are discussed for a range of supernova rates. Two predictions are not confirmed within this range: critical growth of hot regions to encompass the entire medium, and the efficient quenching of a remnant's expansion by interaction with other cavities.

  19. Remnant Geometric Hall Response in a Quantum Quench.

    PubMed

    Wilson, Justin H; Song, Justin C W; Refael, Gil

    2016-12-02

    Out-of-equilibrium systems can host phenomena that transcend the usual restrictions of equilibrium systems. Here, we unveil how out-of-equilibrium states, prepared via a quantum quench in a two-band system, can exhibit a nonzero Hall-type current-a remnant Hall response-even when the instantaneous Hamiltonian is time reversal symmetric (in contrast to equilibrium Hall currents). Interestingly, the remnant Hall response arises from the coherent dynamics of the wave function that retain a remnant of its quantum geometry postquench, and can be traced to processes beyond linear response. Quenches in two-band Dirac systems are natural venues for realizing remnant Hall currents, which exist when either mirror or time-reversal symmetry are broken (before or after the quench). Its long time persistence, sensitivity to symmetry breaking, and decoherence-type relaxation processes allow it to be used as a sensitive diagnostic of the complex out-of-equilibrium dynamics readily controlled and probed in cold-atomic optical lattice experiments.

  20. A Model of the Vela Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    2000-10-01

    A model of the Vela supernova remnant (SNR) based on a cavity explosion of a supernova (SN) star is proposed. It is suggested that the general structure of the remnant is determined by the interaction of the SN blast wave with a massive shell created by the SN progenitor (15-20 M_solar) star. A possible origin of the nebula of hard X-ray emission detected around the Vela pulsar is discussed.

  1. Postprandial lipoprotein metabolism; VLDL vs chylomicrons

    PubMed Central

    Nakajima, Katsuyuki; Nakano, Takamitsu; Tokita, Yoshiharu; Nagamine, Takeaki; Inazu, Akihiro; Kobayashi, Junji; Mabuchi, Hiroshi; Stanhope, Kimber L.; Havel, Peter J.; Okazaki, Mitsuyo; Ai, Masumi; Tanaka, Akira

    2012-01-01

    Since Zilversmit first proposed postprandial lipemia as the most common risk of cardiovascular disease, chylomicrons (CM) and CM remnants have been thought to be the major lipoproteins which are increased in the postprandial hyperlipidemia. However, it has been shown over the last two decades that the major increase in the postprandial lipoproteins after food intake occurs in the very low density lipoprotein (VLDL) remnants (apoB100 particles), not CM or CM remnants (apoB48 particles). This finding was obtained using the following three analytical methods; isolation of remnant-like lipoprotein particles (RLP) with specific antibodies, separation and detection of lipoprotein subclasses by gel permeation HPLC and determination of apoB48 in fractionated lipoproteins by a specific ELISA. The amount of the apoB48 particles in the postprandial RLP is significantly less than the apoB100 particles, and the particle sizes of apoB48 and apoB100 in RLP are very similar when analyzed by HPLC. Moreover, CM or CM remnants having a large amount of TG were not found in the postprandial RLP. Therefore, the major portion of the TG which is increased in the postprandial state is composed of VLDL remnants, which have been recognized as a significant risk for cardiovascular disease. PMID:21531214

  2. Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments

    PubMed Central

    Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634

  3. Matrix intensification alters avian functional group composition in adjacent rainforest fragments.

    PubMed

    Deikumah, Justus P; McAlpine, Clive A; Maron, Martine

    2013-01-01

    Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.

  4. Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria.

    PubMed

    Kellerer-Pirklbauer, Andreas; Kaufmann, Viktor

    2018-04-15

    Glaciers and permafrost are strongly linked to each other in mid-latitude mountain regions particularly with polythermal glaciers. This linkage is not only climatically defined but also in terms of geomorphic and glaciological processes. We studied two adjacent cirques located in the Central Austria. We focussed on the deglaciation since the Little Ice Age (LIA) maximum (c.1850CE) and its relevance for permafrost and rock glacier evolution since then. One cirque is occupied by a glacier remnant whereas the second one is occupied by an active rock glacier which was partly overridden by a glacier during the LIA. We applied a multidisciplinary approach using field-based techniques including geoelectrics, geodetic measurements, and automatic monitoring as well as historic maps and photographs, remote sensing, and digital terrain analysis. Results indicate almost complete deglaciation by the end of the last millennium. Small-scale tongue-shaped landforms of complex origin formed during the last decades at finer-grained slope deposits below the cirque headwalls. Field evidences and geophysics results proved the existence of widespread sedimentary ice beneath a thin veneer of debris at these slopes. The variable thickness of the debris layer has a major impact on differential ablation and landform evolution in both cirques. The comparison of digital elevation models revealed clear mass losses at both cirques with low rates between 1954 and 2002 and significantly higher rates since then. The central and lower part of the rock glacier moves fast transporting sediments and ice downvalley. In contrast, the upper part of the rock glacier is characterised by low debris and ice input rates. Both effects cause a significant decoupling of the main rock glacier body from its nourishment area leading eventually to rock glacier starvation. This study demonstrates the importance of a decadal-scale and multidisciplinary research approach in determining the development of alpine landforms over both space and time. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial magma ocean. Whether such endogenous isotopic heterogeneity would survive as an observable signature in the modern silicate Earth is an open question.

  6. Dry minor mergers and size evolution of high-z compact massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao

    2013-01-01

    Recent observations show evidence that high-z (z ˜ 2-3) early-type galaxies (ETGs) are more compact than those with comparable mass at z ˜ 0. Such size evolution is most likely explained by the `dry merger sceanario'. However, previous studies based on this scenario cannot consistently explain the properties of both high-z compact massive ETGs and local ETGs. We investigate the effect of multiple sequential dry minor mergers on the size evolution of compact massive ETGs. From an analysis of the Millennium Simulation Data Base, we show that such minor (stellar mass ratio M2/M1 < 1/4) mergers are extremely common during hierarchical structure formation. We perform N-body simulations of sequential minor mergers with parabolic and head-on orbits, including a dark matter component and a stellar component. Typical mass ratios of these minor mergers are 1/20 < M2/M1 ≤q 1/10. We show that sequential minor mergers of compact satellite galaxies are the most efficient at promoting size growth and decreasing the velocity dispersion of compact massive ETGs in our simulations. The change of stellar size and density of the merger remnants is consistent with recent observations. Furthermore, we construct the merger histories of candidates for high-z compact massive ETGs using the Millennium Simulation Data Base and estimate the size growth of the galaxies through the dry minor merger scenario. We can reproduce the mean size growth factor between z = 2 and z = 0, assuming the most efficient size growth obtained during sequential minor mergers in our simulations. However, we note that our numerical result is only valid for merger histories with typical mass ratios between 1/20 and 1/10 with parabolic and head-on orbits and that our most efficient size-growth efficiency is likely an upper limit.

  7. Tectonic evolution of the South Fiji Basin: UNCLOS helps tackle regional tectonics

    NASA Astrophysics Data System (ADS)

    Herzer, R.; Roest, W.; Barker, D.; Mortimer, N.; Mauffret, A.; Lafoy, Y.

    2005-12-01

    Marine surveys to study the evolution of remnant arcs and backarc basins north of New Zealand have been complemented by UNCLOS surveys by three countries - France, New Zealand and Australia - with potential extended continental shelf claims in the region. The UNCLOS factor allowed 9 cruises to focus on the region in the past 9 years, collecting approximately 30,000 km of seismic reflection (5,000 deep crustal), 263,700 sq km of swath bathymetry, and 70 dredge samples. Feedback through sharing or publishing data and joint participation allowed efficient planning and deployment of academic and UNCLOS cruises. Two models for South Fiji (SFB) and Norfolk (NB) basin evolution arise from current studies: at the level of the Three Kings Ridge - NB - southern SFB both involve Pacific trench roll-back and southward propagating spreading, but one also uses two subduction systems and arc-continent collision. Linked spreading of the NB and SFB is invoked in both models, but the veracity and geodynamics of the link are not investigated. A growing body of petrological and radiometric evidence and the tectonics of the New Zealand continental margin point to tandem Early Miocene spreading of the SFB and NB despite published magnetic interpretations that would confine SFB spreading to the Oligocene. The Franco-NZ NOUCAPLAC-1 cruise, the last cruise relevant to UNCLOS in this region, included a scientific objective to investigate the SFB-NB link in the critical area bounded by the Loyalty Ridge (LR), the Cook Fracture Zone (CFZ), the Bounty spreading centre (BSC) and the Julia Lineament (JL) with swath mapping, magnetics and seismic reflection. Initial results show a complex bathymetry where a possible link between the BSC and the CFZ involves ridge propagation, overlapping spreading centres, rift blocks and overprinting volcanoes. The link to the JL was not adequately tested due to sparse coverage. Closer to the LR, a thick, faulted sedimentary basin was found.

  8. GW170817 Most Likely Made a Black Hole

    NASA Astrophysics Data System (ADS)

    Pooley, David; Kumar, Pawan; Wheeler, J. Craig; Grossan, Bruce

    2018-06-01

    There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, ∼2.7 {M}ȯ , implies that the remnant could be either a massive rotating neutron star, or a black hole. We report Chandra Director’s Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5–8 keV band with an efficiency of 10‑3, for a dipole magnetic field with 3 × 1011 G < B < 1014 G, a rising X-ray signal would result and would be brighter than that observed by day 107; we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly rotating magnetized neutron star, the total energy in the external shock should rise by a factor ∼102 (to ∼1052 erg) after a few years; therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.

  9. The influence of massive black hole binaries on the morphology of merger remnants

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  10. Safety and Efficacy of Transvenous Lead Extraction Utilizing the Evolution Mechanical Lead Extraction System: A Single-Center Experience.

    PubMed

    Sharma, Saumya; Ekeruo, Ijeoma A; Nand, Nikita P; Sundara Raman, Ajay; Zhang, Xu; Reddy, Sunil K; Hariharan, Ramesh

    2018-02-01

    The goal of this study is to assess the safety and efficacy of mechanical lead extraction utilizing the Evolution system. Compared with other techniques commonly used for lead extraction, data regarding the safety and efficacy of mechanical lead extraction using the Evolution system is limited and needs further evaluation. Between June 1, 2009 and September 30, 2016, we retrospectively analyzed 400 consecutive patients who exclusively underwent mechanical lead extraction utilizing the Evolution system. A total of 400 patients underwent mechanical lead extraction of 683 leads. Mean age of extracted leads was 6.77 ± 4.42 years (range 1 to 31 years). The extracted device system was an implantable cardioverter-defibrillator in 274 patients (68.5%) and a pacemaker system in 126 patients (31.5%). Complete lead removal rate was 97% with a clinical success rate of 99.75%. Incomplete lead removal with <4-cm remnant was associated with older leads (lead age >8 years). Failure to achieve clinical success was noted in 1 patient (0.25%). Cardiac papillary avulsion, system-related infection, and cardiac tamponade were the major complications noted in 6 patients (1.5%). Minor complications were encountered in 24 patients (6%), of which hematoma requiring evacuation was the most common minor complication. There were no patient deaths. In our single-center study, lead extractions utilizing the Evolution mechanical lead extraction system were safe and effective and resulted in high clinical and procedural success, with low complication rates and no fatalities. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. Metal Evolution and TrAnsport in the Large Magellanic Cloud (METAL): Probing Dust Evolution in Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Roman-Duval

    2016-10-01

    METAL is a large spectroscopic and imaging program with HST dedicated to the study of dust evolution in the Large Magellanic Cloud (LMC). The program will obtain FUV and NUV medium-resolution spectra of 33 massive stars in the LMC with STIS and COS complementing existing archival data to measure gas-phase and dust-phase (depletion) elemental abundances. With these spectra, we will subsequently directly measure the dust composition and abundance as a function of environment (surface density, radiation field, dynamical conditions, such as the proximity of supernova remnants or expanding HI shells). The depletion information will be complemented with dust UV extinction curves (i.e., the UV opacity of dust grains as a function of wavelength) derived from either archival IUE, or new COS and low-resolution STIS spectra acquired as part of this program. Together, the depletions and extinction curves will constrain how the dust abundance and properties (composition, size distribution) vary with environment at Z=0.5Zo. In parallel to the spectroscopic observations, we will obtain WFC3 NUV-NIR imaging to map dust extinction parameters (AV, RV) in the vicinity of our targets and calibrate the far-infrared (FIR) emissivity of dust. Our observations we will improve the accuracy of dust mass and extinction estimates in the local and high-redshift universe by up to an order of magnitude.METAL will complement a Cycle 23 HST/STIS program (GO-13778) focused on dust evolution in the Small Magellanic Cloud (SMC) at Z=0.2Zo, and previously published depletion studies in the Milky Way (Jenkins et al. 2009) to provide a comprehensive view of dust evolution as a function of metallicity.

  12. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia

    PubMed Central

    Christian, Daniel; Wacey, David; Hazen, Robert M.

    2013-01-01

    Abstract Microbially induced sedimentary structures (MISS) result from the response of microbial mats to physical sediment dynamics. MISS are cosmopolitan and found in many modern environments, including shelves, tidal flats, lagoons, riverine shores, lakes, interdune areas, and sabkhas. The structures record highly diverse communities of microbial mats and have been reported from numerous intervals in the geological record up to 3.2 billion years (Ga) old. This contribution describes a suite of MISS from some of the oldest well-preserved sedimentary rocks in the geological record, the early Archean (ca. 3.48 Ga) Dresser Formation, Western Australia. Outcrop mapping at the meter to millimeter scale defined five sub-environments characteristic of an ancient coastal sabkha. These sub-environments contain associations of distinct macroscopic and microscopic MISS. Macroscopic MISS include polygonal oscillation cracks and gas domes, erosional remnants and pockets, and mat chips. Microscopic MISS comprise tufts, sinoidal structures, and laminae fabrics; the microscopic laminae are composed of primary carbonaceous matter, pyrite, and hematite, plus trapped and bound grains. Identical suites of MISS occur in equivalent environmental settings through the entire subsequent history of Earth including the present time. This work extends the geological record of MISS by almost 300 million years. Complex mat-forming microbial communities likely existed almost 3.5 billion years ago. Key Words: Archean—Biofilms—Microbial mats—Early Earth—Evolution. Astrobiology 13, 1103–1124. PMID:24205812

  13. G25.5 + 0.2 - A very young galactic supernova remnant

    NASA Technical Reports Server (NTRS)

    Cowan, John J.; Ekers, R. D.; Goss, W. M.; Sramek, R. A.; Roberts, Douglas A.

    1989-01-01

    Radio emission has been detected from a compact source which satisfies the criteria for a very young galactic supernova remnant. The source, G25.5 + 0.2 has a partially-filled shell structure, a total integrated flux density at 20 cm of 315 mJy, and a flat spectrum between 2 and 20 cm. Observations at 843 and 327 MHz indicate thermal absorption at low frequencies with a turnover in the spectrum near 1 GHz. It is suggested that the lower limit for the age of the supernova remnant is 25 yr, while the upper limit is about 100 yr. It is concluded that G25.5 + 0.2 could be the youngest known supernova remnant in the Galaxy.

  14. Three cases of laparoscopic total gastrectomy with intracorporeal esophagojejunostomy for gastric cancer in remnant stomach.

    PubMed

    Pan, Yu; Mou, Yi-Ping; Chen, Ke; Xu, Xiao-Wu; Cai, Jia-Qin; Wu, Di; Zhou, Yu-Cheng

    2014-11-13

    Gastric cancer in remnant stomach is a rare tumor but with poor prognosis. Compared with conventional open surgery, laparoscopic gastrectomy has potential benefits for these patients due to advantages resulting from its minimally invasive approach. Herein, we report on three patients with gastric cancer in remnant stomach who underwent laparoscopic total gastrectomy with intracorporeal esophagojejunostomy successfully. The operative time was 280, 250 and 225 minutes, the estimated blood loss was 100, 80 and 50 ml and the length of postoperative hospital stay was seven, eight and nine days respectively. Our experience has suggested that laparoscopic total gastrectomy with intracorporeal esophagojejunostomy can be a safe, feasible and promising option for patients with gastric cancer in remnant stomach.

  15. SN1987A: The Birth of a Supernova Remnant

    NASA Technical Reports Server (NTRS)

    McCray, Richard

    2003-01-01

    This grant was intended to support the development of theoretical models needed to interpret and understand the observations by the Hubble Space Telescope and the Chandra X-ray telescope of the rapidly developing remnant of Supernova 1987A. In addition, we carried out a few investigations of related topics. The project was spectacularly successful. The models that we developed provide the definitive framework for predicting and interpreting this phenomenon. Following is a list of publications based on our work. Some of these papers include results of both theoretical modeling supported by this project and also analysis of data supported by the Space Telescope Science Institute and the Chandra X-ray Observatory. We first list papers published in refereed journals, then conference proceedings and book chapters, and also an educational web site.

  16. The 25 parsec local white dwarf population

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöstrand, Torbjörn; Ask, Stefan; Christiansen, Jesper R.

    The Pythia program is a standard tool for the generation of events in high-energy collisions, comprising a coherent set of physics models for the evolution from a few-body hard process to a complex multiparticle final state. It contains a library of hard processes, models for initial- and final-state parton showers, matching and merging methods between hard processes and parton showers, multiparton interactions, beam remnants, string fragmentation and particle decays. It also has a set of utilities and several interfaces to external programs. Pythia 8.2 is the second main release after the complete rewrite from Fortran to C++, and now hasmore » reached such a maturity that it offers a complete replacement for most applications, notably for LHC physics studies. Lastly, the many new features should allow an improved description of data.« less

  18. Transverse energy and forward jet production in the low x regime at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Nieberball, F.; Niebuhr, C.; Niedzballa, Ch; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch; Pieuchot, A.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zur Nedden, M.; H1 Collaboration

    1995-02-01

    The production of transverse energy in deep inelastic scattering is measured as a function of the kinematic variables x and Q2 using the H1 detector at the ep collider HERA. The results are compared to the different predictions based upon two alternative QCD evolution equations, namely the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) and the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equations. In a pseudorapidity interval which is central in the hadronic centre of mass system between the current and the proton remnant fragmentation region the produced transverse energy increases with decreasing x for constant Q2. Such a behaviour can be explained with a QCD calculation based upon the BFKL ansatz. The rate of forward jets, proposed as a signature for BFKL dynamics, has been measured.

  19. Supernova signatures of neutrino mass ordering

    NASA Astrophysics Data System (ADS)

    Scholberg, Kate

    2018-01-01

    A suite of detectors around the world is poised to measure the flavor-energy-time evolution of the ten-second burst of neutrinos from a core-collapse supernova occurring in the Milky Way or nearby. Next-generation detectors to be built in the next decade will have enhanced flavor sensitivity and statistics. Not only will the observation of this burst allow us to peer inside the dense matter of the extreme event and learn about the collapse processes and the birth of the remnant, but the neutrinos will bring information about neutrino properties themselves. This review surveys some of the physical signatures that the currently-unknown neutrino mass pattern will imprint on the observed neutrino events at Earth, emphasizing the most robust and least model-dependent signatures of mass ordering.

  20. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    USGS Publications Warehouse

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  1. Potential for the Vishniac instability in ionizing shock waves propagating into cold gases

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Pasley, J.

    2018-05-01

    The Vishniac instability was posited as an instability that could affect supernova remnants in their late stage of evolution when subject to strong radiative cooling, which can drive the effective ratio of specific heats below 1.3. The potential importance of this instability to these astrophysical objects has motivated a number of laser-driven laboratory studies. However, the Vishniac instability is essentially a dynamical instability that should operate independently of whatever physical processes happen to reduce the ratio of specific heats. In this paper, we examine the possibility that ionization and molecular dissociation processes can achieve this, and we show that this is possible for a certain range of shock wave Mach numbers for ionizing/dissociating shock waves propagating into cold atomic and molecular gases.

  2. Talks also presented at the Symposium

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Bray, J. C.; McClelland, L. A. S.; Xiao, L.

    2017-11-01

    Internal rotation and magnetism are key ingredients that largely affect explosive stellar deaths (Supernovae and Gamma Ray Bursts) and the properties of stellar remnants (White Dwarfs, Neutron Stars and Black Holes). However, the study of these subtle internal stellar properties has been limited to very indirect proxies. In the last couple of years, exciting asteroseismic results have been obtained by the Kepler satellite. Among these results are 1) The direct measure of the degree of radial differential rotation in many evolved low-mass stars and in a few massive stars, and 2) The detection of strong (>105 G) internal magnetic fields in thousands of red giant stars that had convective cores during their main sequence. I will discuss the impact of these important findings for our understanding of massive star evolution.

  3. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  4. Formation and Coalescence of Cosmological Supermassive-Black-Hole Binaries in Supermassive-Star Collapse

    NASA Astrophysics Data System (ADS)

    Reisswig, C.; Ott, C. D.; Abdikamalov, E.; Haas, R.; Mösta, P.; Schnetter, E.

    2013-10-01

    We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z≳10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 104-106M⊙. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ˜10% of the initial mass.

  5. A population of compact elliptical galaxies detected with the Virtual Observatory.

    PubMed

    Chilingarian, Igor; Cayatte, Véronique; Revaz, Yves; Dodonov, Serguei; Durand, Daniel; Durret, Florence; Micol, Alberto; Slezak, Eric

    2009-12-04

    Compact elliptical galaxies are characterized by small sizes and high stellar densities. They are thought to form through tidal stripping of massive progenitors. However, only a handful of them were known, preventing us from understanding the role played by this mechanism in galaxy evolution. We present a population of 21 compact elliptical galaxies gathered with the Virtual Observatory. Follow-up spectroscopy and data mining, using high-resolution images and large databases, show that all the galaxies exhibit old metal-rich stellar populations different from those of dwarf elliptical galaxies of similar masses but similar to those of more massive early-type galaxies, supporting the tidal stripping scenario. Their internal properties are reproduced by numerical simulations, which result in compact, dynamically hot remnants resembling the galaxies in our sample.

  6. Two evolved supernova remnants with newly identified Fe-rich cores in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kavanagh, P. J.; Sasaki, M.; Bozzetto, L. M.; Points, S. D.; Crawford, E. J.; Dickel, J.; Filipović, M. D.; Haberl, F.; Maggi, P.; Whelan, E. T.

    2016-02-01

    Aims: We present a multi-wavelength analysis of the evolved supernova remnants MCSNR J0506-7025 and MCSNR J0527-7104 in the Large Magellanic Cloud. Methods: We used observational data from XMM-Newton, the Australian Telescope Compact Array, and the Magellanic Cloud Emission Line Survey to study their broad-band emission and used Spitzer and H I data to gain a picture of the environment into which the remnants are expanding. We performed a multi-wavelength morphological study and detailed radio and X-ray spectral analyses to determine their physical characteristics. Results: Both remnants were found to have bright X-ray cores, dominated by Fe L-shell emission, which is consistent with reverse shock-heated ejecta with determined Fe masses in agreement with Type Ia explosion yields. A soft X-ray shell, which is consistent with swept-up interstellar medium, was observed in MCSNR J0506-7025, suggestive of a remnant in the Sedov phase. Using the spectral fit results and the Sedov self-similar solution, we estimated the age of MCSNR J0506-7025 to be ~16-28 kyr, with an initial explosion energy of (0.07-0.84) × 1051 erg. A soft shell was absent in MCSNR J0527-7104, with only ejecta emission visible in an extremely elongated morphology that extends beyond the optical shell. We suggest that the blast wave has broken out into a low density cavity, allowing the shock heated ejecta to escape. We find that the radio spectral index of MCSNR J0506-7025 is consistent with the standard -0.5 for supernova remnants. Radio polarisation at 6 cm indicates a higher degree of polarisation along the western front and at the eastern knot with a mean fractional polarisation across the remnant of P ≅ (20 ± 6)%. Conclusions: The detection of Fe-rich ejecta in the remnants suggests that both resulted from Type Ia explosions. The newly identified Fe-rich cores in MCSNR J0506-7025 and MCSNR J0527-7104 make them members of the expanding class of evolved Fe-rich remnants in the Magellanic Clouds. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

  7. Intron open reading frames as mobile elements and evolution of a group I intron.

    PubMed

    Sellem, C H; Belcour, L

    1997-05-01

    Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF-containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.

  8. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including gas-rich disks and compact spheroids) and cosmological merger trees, and discuss prospects for comparisons with data from the new generation of IFU surveys like SAMI.

  9. Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease.

    PubMed

    Varbo, Anette; Benn, Marianne; Smith, George Davey; Timpson, Nicholas J; Tybjaerg-Hansen, Anne; Nordestgaard, Børge G

    2015-02-13

    Obesity leads to increased ischemic heart disease (IHD) risk, but the risk is thought to be mediated through intermediate variables and may not be caused by increased weight per se. To test the hypothesis that the increased IHD risk because of obesity is mediated through lipoproteins, blood pressure, glucose, and C-reactive protein. Approximately 90 000 participants from Copenhagen were included in a Mendelian randomization design with mediation analyses. Associations were examined using conventional measurements of body mass index and intermediate variables and using genetic variants associated with these. During ≤22 years of follow-up 13 945 participants developed IHD. The increased IHD risk caused by obesity was partly mediated through elevated levels of nonfasting remnant cholesterol and low-density lipoprotein cholesterol, through elevated blood pressure, and possibly also through elevated nonfasting glucose levels; however, reduced high-density lipoprotein cholesterol and elevated C-reactive protein levels were not mediators in genetic analyses. The 3 intermediate variables that explained the highest excess risk of IHD from genetically determined obesity were low-density lipoprotein cholesterol with 8%, systolic blood pressure with 7%, and remnant cholesterol with 7% excess risk of IHD. Corresponding observational excess risks using conventional body mass index were 21%, 11%, and 20%, respectively. The increased IHD risk because of obesity was partly mediated through elevated levels of nonfasting remnant and low-density lipoprotein cholesterol and through elevated blood pressure. Our results suggest that there may be benefit to gain by reducing levels of these risk factors in obese individuals not able to achieve sustained weight loss. © 2014 American Heart Association, Inc.

  10. Values of (99m)Tc-methoxyisobutylisonitrile imaging after first-time large-dose (131)I therapy in treating differentiated thyroid cancer.

    PubMed

    Pan, Xiaomei; Duan, Dong; Zhu, Yuquan; Pang, Hua; Guan, Lili; Lv, Zhixiang

    2016-01-01

    The aim of this study is to investigate the use of (99m)Tc-methoxyisobutylisonitrile (MIBI) imaging for evaluating the treatment response of differentiated thyroid cancer (DTC) after the first administration of a high dose of (131)I. Patients with DTC who received (131)I therapy underwent (99m)Tc-MIBI imaging after successive increases in the therapeutic dose of (131)I, and the serum levels of thyroglobulin (Tg) were measured. A total of 191 patients were enrolled in the final analysis, including 65 metastases and/or thyroid remnant-positive patients (22 patients with metastases and 43 patients with thyroid remnants). The sensitivity of (99m)Tc-MIBI imaging for detecting positive cases and thyroid remnants was 56.9% and 39.5%, respectively, which was significantly lower than that of (131)I imaging (92.3% and 100%, respectively, P<0.01 for both). The sensitivity of (99m)Tc-MIBI imaging for detecting metastases was 90.9%, which was slightly higher than that of (131)I imaging (77.3%, P>0.05). The Tg levels in the positive group were significantly higher than that in the negative group (P<0.01). In addition, the Tg levels in the (99m)Tc-MIBI(+)/(131)I(-) group were significantly higher than that in the (131)I(+)/(99m)Tc-MIBI group (P<0.05). After the first (131)I therapy, although (99m)Tc-MIBI imaging was able to detect the existence of metastatic lesions in patients with DTC better, its assessment for the removal efficiency of thyroid remnants was unsatisfactory. The results of (99m)Tc-MIBI imaging showed good correlations with the Tg level.

  11. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is {h}{rss}50 % =2.1× {10}-22 {{Hz}}-1/2 at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is {h}{rss}50 % =8.4× {10}-22 {{Hz}}-1/2 for a millisecond magnetar model, and {h}{rss}50 % =5.9× {10}-22 {{Hz}}-1/2 for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

  12. Physiological and biochemical basis of clinical liver function tests: a review.

    PubMed

    Hoekstra, Lisette T; de Graaf, Wilmar; Nibourg, Geert A A; Heger, Michal; Bennink, Roelof J; Stieger, Bruno; van Gulik, Thomas M

    2013-01-01

    To review the literature on the most clinically relevant and novel liver function tests used for the assessment of hepatic function before liver surgery. Postoperative liver failure is the major cause of mortality and morbidity after partial liver resection and develops as a result of insufficient remnant liver function. Therefore, accurate preoperative assessment of the future remnant liver function is mandatory in the selection of candidates for safe partial liver resection. A MEDLINE search was performed using the key words "liver function tests," "functional studies in the liver," "compromised liver," "physiological basis," and "mechanistic background," with and without Boolean operators. Passive liver function tests, including biochemical parameters and clinical grading systems, are not accurate enough in predicting outcome after liver surgery. Dynamic quantitative liver function tests, such as the indocyanine green test and galactose elimination capacity, are more accurate as they measure the elimination process of a substance that is cleared and/or metabolized almost exclusively by the liver. However, these tests only measure global liver function. Nuclear imaging techniques ((99m)Tc-galactosyl serum albumin scintigraphy and (99m)Tc-mebrofenin hepatobiliary scintigraphy) can measure both total and future remnant liver function and potentially identify patients at risk for postresectional liver failure. Because of the complexity of liver function, one single test does not represent overall liver function. In addition to computed tomography volumetry, quantitative liver function tests should be used to determine whether a safe resection can be performed. Presently, (99m)Tc-mebrofenin hepatobiliary scintigraphy seems to be the most valuable quantitative liver function test, as it can measure multiple aspects of liver function in, specifically, the future remnant liver.

  13. Deterritorializing Collective Biography

    ERIC Educational Resources Information Center

    Gannon, Susanne; Walsh, Susan; Byers, Michele; Rajiva, Mythili

    2014-01-01

    This paper proposes a new move in the methodological practice of collective biography, by provoking a shift beyond any remnant attachment to the speaking/writing subject towards her dispersal and displacement via textual interventions that stress multivocality. These include the use of photographs, drama, and various genres of writing. Using a…

  14. INTERACTION BETWEEN THE SUPERNOVA REMNANT HB 3 AND THE NEARBY STAR-FORMING REGION W3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xin; Yang, Ji; Fang, Min

    We performed millimeter observations of CO lines toward the supernova remnant (SNR) HB 3. Substantial molecular gas around −45 km s{sup −1} is detected in the conjunction region between the SNR HB 3 and the nearby W3 complex. This molecular gas is distributed along the radio continuum shell of the remnant. Furthermore, the shocked molecular gas indicated by line wing broadening features is also distributed along the radio shell and inside it. By both morphological correspondence and dynamical evidence, we confirm that the SNR HB 3 interacts with the −45 km s{sup −1} molecular cloud (MC), in essence, with the nearby H ii region/MC complexmore » W3. The redshifted line wing broadening features indicate that the remnant is located at the nearside of the MC. With this association, we could place the remnant at the same distance as the W3/W4 complex, which is 1.95 ± 0.04 kpc. The spatial distribution of aggregated young stellar object candidates shows a correlation with the shocked molecular strip associated with the remnant. We also find a binary clump of CO at ( l = 132.°94, b = 1.°12) around −51.5 km s{sup −1} inside the projected extent of the remnant, and it is associated with significant mid-infrared emission. The binary system also has a tail structure resembling the tidal tails of interacting galaxies. According to the analysis of CO emission lines, the larger clump in this binary system is about stable, and the smaller clump is significantly disturbed.« less

  15. XMM-Newton observation of the supernova remnant Kes 78 (G32.8-0.1): Evidence of shock-cloud interaction

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Zhou, P.; Safi-Harb, S.; Chen, Y.; Bocchino, F.

    2017-03-01

    Context. The Galactic supernova remnant Kes 78 is surrounded by dense molecular clouds, whose projected position overlaps with the extended HESS γ-ray source HESS J1852-000. The X-ray emission from the remnant has recently been revealed by Suzaku observations, which have shown indications for a hard X-ray component in the spectra that might be associated with synchrotron radiation. Aims: We describe the spatial distribution of the physical properties of the X-ray emitting plasma and reveal the effects of the interaction of the remnant with the inhomogeneous ambient medium. We also investigate the origin of the γ-ray emission, which may be inverse-Compton radiation associated with X-ray synchrotron-emitting electrons or hadronic emission originating from the impact of high-energy protons on the nearby clouds. Methods: We analyzed an XMM-Newton EPIC observation of Kes 78 by performing image analysis and spatially resolved spectral analysis on a set of three regions. We tested our findings against the observations of the 12CO and 13CO emission in the environment of the remnant. Results: We reveal the complex X-ray morphology of Kes 78 and find variations in the spectral properties of the plasma, with significantly denser and cooler material at the eastern edge of the remnant, which we interpret as a signature of interaction with a molecular cloud. We also exclude that narrow filaments emit the X-ray synchrotron radiation. Conclusions: Assuming that the very high energy γ-ray emission is associated with Kes 78, the lack of synchrotron emission rules out a leptonic origin. A hadronic origin is further supported by evidence of interaction of the remnant with a dense molecular cloud in its eastern limb.

  16. Liver Function Assessment Using Technetium 99m-Galactosyl Single-Photon Emission Computed Tomography/CT Fusion Imaging: A Prospective Trial.

    PubMed

    Okabayashi, Takehiro; Shima, Yasuo; Morita, Sojiro; Shimada, Yasuhiro; Sumiyoshi, Tatsuaki; Sui, Kenta; Iwata, Jun; Iiyama, Tatsuo

    2017-12-01

    The prediction of postoperative liver function remains a largely subjective practice based on CT volumetric analysis. However, future liver volume after a hepatectomy is not the only factor that contributes to postoperative liver function and outcomes. In this prospective trial, 185 consecutive patients who underwent liver operations between 2014 and 2015 were studied. Volumetric and functional rates of remnant liver were measured using technetium 99m-galactosyl human serum albumin single-photon emission computed tomography/CT fusion imaging to evaluate post-hepatectomy remnant liver function. Remnant indocyanine green clearance rate using galactosyl (KGSA) (KGSA × functional rate) was used to predict future remnant liver function. Hepatectomy was considered safe for patients with remnant KGSA values ≥0.05, and the primary end point was to determine the accuracy and reliability of this criteria. The prediction of the 90-day major complication and mortality rates was assessed. Median hospital stay was 9 days and median ICU stay was 1 day, with only 1 in-hospital death (90-day mortality rate 0.5%). Overall morbidity rate evaluated according to the Clavien-Dindo classification was 9%. For post-hepatectomy liver failure definitions, the International Study Group of Liver Surgery definition was fulfilled in 14 patients (8%), with the majority being grade B (50%), compared with 2 patients (1%) fulfilling the "50-50" criteria, and 0 patients (0%) fulfilling the Peak Bili >7 criteria. Results of this study showed that remnant KGSA provided information that allowed us to predict remnant liver function. This information will be important for surgeons when deciding on a treatment plan for patients with liver diseases. (ClinicalTrials.gov ID: NCT02013895). Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  17. ASCA observations of the Large Magellanic Cloud supernova remnant sample: Typing supernovae from their remnants

    NASA Technical Reports Server (NTRS)

    Hughes, John P.; Hayashi, Ichizo; Helfand, David; Hwang, Una; Itoh, Masayuki; Kirshner, Robert; Koyama, Katsuji; Markert, Thomas; Tsunemi, Hiroshi; Woo, Jonathan

    1995-01-01

    We present our first results from a study of the supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) using data from ASCA. The three remnants we have analyzed to date, 0509-67.5, 0519-69.0, and N103B, are among the smallest, and presumably also the youngest, in the Cloud. The X-ray spectra of these SNRs show strong K alpha emission lines of silicon, sulfur, argon, and calcium with no evidence for corresponding lines of oxygen, neon, or magnesium. The dominant feature in the spectra is a broad blend of emission lines around 1 keV which we attribute to L-shell emission lines of iron. Model calculations (Nomoto, Thielemann, & Yokoi 1984) show that the major products of nucleosynthesis in Type Ia supernovae (SNs) are the elements from silicon to iron, as observed here. The calculated nucleosynthetic yields from Type Ib and II SNs are shown to be qualitatively inconsistent with the data. We conclude that the SNs which produced these remnants were of Type Ia. This finding also confirms earlier suggestions that the class of Balmer-dominated remnants arise from Type Ia SN explosions. Based on these early results from the LMC SNR sample, we find that roughly one-half of the SNRs produced in the LMC within the last approximately 1500 yr came from Type Ia SNs.

  18. GBT Observations of Radio Recombination Line Emission Associated with Supernova Remnants W28 and W44

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Yusef-Zadeh, F.

    2006-06-01

    Since the 1970's weak radio recombination line(RRL) emission has been observed toward several supernova remnants. It has remained unclear if this emission is in fact associated with these remnants or due to intervening sources such as extended HII envelopes along the line of sight. To explore the origin of this emitting gas we have recently undertaken Green Bank Telescope (GBT) observations of prominent supernova remnants W28 and W44 which are well-known to be interacting with molecular clouds. Eight alpha and beta RRL transitions were mapped at C-Band (4-6 GHz) with 2.5' resolution. Maps cover 0.5 and 0.25 square degrees of W28 and W44, respectively, permitting comparison with the distribution of X-rays, Radio, and H-alpha emission. Both remnants are observed to have a mixed-morphology: a radio-continuum shell centrally-filled by thermal X-rays. We find the observed velocity of RRL emission is near the systemic velocity of both remnants as traced by OH(1720 MHz) masers. Preliminary results are presented exploring the association of the RRL-emitting gas with these interacting supernova remants and implications for the origins of the hot thermal X-ray plasma that fills their centers. Support for this work was provided by the NSF through The GBT Student Support Program from the NRAO.

  19. Fermi-LAT Observations of Supernova Remnants Kesteven 79

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick; Castro, Daniel

    2014-03-01

    In this paper, we report on the detection of γ-ray emission coincident with the Galactic supernova remnant (SNR) Kesteven 79 (Kes 79). We analyzed approximately 52 months of data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. Kes 79 is thought to be interacting with adjacent molecular clouds, based on the presence of strong 12CO J = 1 → 0 and HCO+ J = 1 → 0 emission and the detection of 1720 MHz line emission toward the east of the remnant. Acceleration of cosmic rays is expected to occur at SNR shocks, and SNRs interacting with dense molecular clouds provide a good testing ground for detecting and analyzing the production of γ-rays from the decay of π0 into two γ-ray photons. This analysis investigates γ-ray emission coincident with Kes 79, which has a detection significance of ~7σ. Additionally, we present an investigation of the spatial and spectral characteristics of Kes 79 using multiple archival XMM-Newton observations of this remnant. We determine the global X-ray properties of Kes 79 and estimate the ambient density across the remnant. We also performed a similar analysis for Galactic SNR Kesteven 78 (Kes 78), but due to large uncertainties in the γ-ray background model, no conclusion can be made about an excess of GeV γ-ray associated with the remnant.

  20. Bumble Bee Fauna of Palouse Prairie: Survey of Native Bee Pollinators in a Fragmented Ecosystem

    PubMed Central

    Hatten, T. D.; Looney, C.; Strange, J. P.; Bosque-Pérez, N. A.

    2013-01-01

    Bumble bees, Bombus Latreille (Hymenoptera: Apidae:), are dominant pollinators in the northern hemisphere, providing important pollination services for commercial crops and innumerable wild plants. Nationwide declines in several bumble bee species and habitat losses in multiple ecosystems have raised concerns about conservation of this important group. In many regions, such as the Palouse Prairie, relatively little is known about bumble bee communities, despite their critical ecosystem functions. Pitfall trap surveys for ground beetles in Palouse prairie remnants conducted in 2002–2003 contained considerable by-catch of bumble bees. The effects of landscape context, remnant features, year, and season on bumble bee community composition were examined. Additionally, bees captured in 2002–2003 were compared with historic records for the region to assess changes in the presence of individual species. Ten species of bumble bee were captured, representing the majority of the species historically known from the region. Few detectable differences in bumble bee abundances were found among remnants. Community composition differed appreciably, however, based on season, landscape context, and elevation, resulting in different bee assemblages between western, low-lying remnants and eastern, higherelevation remnants. The results suggest that conservation of the still species-rich bumble bee fauna should take into account variability among prairie remnants, and further work is required to adequately explain bumble bee habitat associations on the Palouse. PMID:23902138

  1. Sm-Nd and U-Pb isotopic constraints for crustal evolution during Late Neoproterozic from rocks of the Schirmacher Oasis, East Antarctica: geodynamic development coeval with the East African Orogeny

    USGS Publications Warehouse

    Ravikant, V.; Laux, J.H.; Pimentel, M.M.

    2007-01-01

    Recent post-750 Ma continental reconstructions constrain models for East African Orogeny formation and also the scattered remnants of ~640 Ma granulites, whose genesis is controversial. One such Neoproterozoic granulite belt is the Schirmacher Oasis in East Antarctica, isolated from the distinctly younger Pan-African orogen to the south in the central Droning Maud Land. To ascertain the duration of granulite-facies events in these remnants, garnet Sm-Nd and monazite and titanite U-Pb IDTIMS geochronology was carried out on a range of metamorphic rocks. Garnet formation ages from a websterite enclave and gabbro were 660±48 Ma and 587±9 Ma respectively, and those from Stype granites were 598±4 Ma and 577±4 Ma. Monazites from metapelite and metaquartzite yielded lower intercept UPb ages of 629±3 Ma and 639±5 Ma, respectively. U-Pb titanite age from calcsilicate gneiss was 580±5 Ma. These indicate peak metamorphism to have occurred between 640 and 630 Ma, followed by near isobaric cooling to ~580 Ma. Though an origin as an exotic terrane from the East African Orogen cannot be discounted, from the present data there is a greater likelihood that Mesoproterozoic microplate collision between Maud orogen and a northerly Lurio-Nampula block resulted in formation of these granulite belt(s).

  2. Structure and Evolution of the Lunar Procellarum Region as Revealed by GRAIL Gravity Data

    NASA Technical Reports Server (NTRS)

    Andrews-Hanna, Jeffrey C.; Besserer, Jonathan; Head, James W., III; Howett, Carly J. A.; Kiefer, Walter S.; Lucey, Paul J.; McGovern, Patrick J.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; hide

    2014-01-01

    The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The Procellarum region has been interpreted as an ancient impact basin approximately 3200 km in diameter, though supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border the Procellarum region and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dikes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of quasi-rectangular border structures with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the elevated heat flux in the region.

  3. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data.

    PubMed

    Andrews-Hanna, Jeffrey C; Besserer, Jonathan; Head, James W; Howett, Carly J A; Kiefer, Walter S; Lucey, Paul J; McGovern, Patrick J; Melosh, H Jay; Neumann, Gregory A; Phillips, Roger J; Schenk, Paul M; Smith, David E; Solomon, Sean C; Zuber, Maria T

    2014-10-02

    The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter, E-mail: khan@ari.uni-heidelberg.de, E-mail: k.holley@vanderbilt.edu

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC 4889, and NGC 1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the largemore » SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC 1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10 Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.« less

  5. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  6. A Radio Continuum and Polarization Study of SNR G57.2+0.8 Associated with Magnetar SGR 1935+2154

    NASA Astrophysics Data System (ADS)

    Kothes, R.; Sun, X.; Gaensler, B.; Reich, W.

    2018-01-01

    We present a radio continuum and linear polarization study of the Galactic supernova remnant (SNR) G57.2+0.8, which may host the recently discovered magnetar SGR 1935+2154. The radio SNR shows the typical radio continuum spectrum of a mature supernova remnant with a spectral index of α =-0.55+/- 0.02 and moderate polarized intensity. Magnetic field vectors indicate a tangential magnetic field, expected for an evolved SNR, in one part of the SNR, and a radial magnetic field in the other. The latter can be explained by an overlapping arc-like feature, perhaps a pulsar wind nebula, emanating from the magnetar. The presence of a pulsar wind nebula is supported by the low average braking index of 1.2, which we extrapolated for the magnetar, and the detection of diffuse X-ray emission around it. We found a distance of 12.5 kpc for the SNR, which identifies G57.2+0.8 as a resident of the Outer spiral arm of the Milky Way. The SNR has a radius of about 20 pc and could be as old as 41,000 yr. The SNR has already entered the radiative or pressure-driven snowplow phase of its evolution. We compare independently determined characteristics like age and distance for both the SNR and the soft gamma repeater SGR 1935+2154, and conclude that they are physically related.

  7. Detection of X-ray flares from AX J1714.1-3912, the unidentified source near RX J1713.7-3946

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya

    2018-04-01

    Context. Molecular clouds are predicted to emit nonthermal X-rays when they are close to particle-accelerating supernova remnants (SNRs), and the hard X-ray source AX J1714.1-3912, near the SNR RX J1713.7-3946, has long been considered a candidate for diffuse nonthermal emission associated with cosmic rays diffusing from the remnant to a closeby molecular cloud. Aim. We aim at ascertaining the nature of this source by analyzing two dedicated X-ray observations performed with Suzaku and Chandra. Methods: We extracted images from the data in various energy bands, spectra, and light curves and studied the long-term evolution of the X-ray emission on the basis of the 4.5 yr time separation between the two observations. Results: We found that there is no diffuse emission associated with AX J1714.1-3912, which is instead the point-like source CXOU J171343.9-391205. We discovered rapid time variability (timescale 103 s), together with a high intrinsic absorption and a hard nonthermal spectrum (power law with photon index Γ 1.4). We also found that the X-ray flux of the source drops down by 1-2 orders of magnitude on a timescale of a few years. Conclusions: Our results suggest a possible association between AX J1714.1-3912 and a previously unknown supergiant fast X-ray transient, although further follow-up observations are necessary to prove this association definitively.

  8. Quark-nova remnants. I. The leftover debris with applications to SGRs, AXPs, and XDINs

    NASA Astrophysics Data System (ADS)

    Ouyed, R.; Leahy, D.; Niebergal, B.

    2007-10-01

    We explore the formation and evolution of debris ejected around quark stars in the Quark Nova scenario, and the application to Soft Gamma-ray Repeaters (SGRs) and Anomolous X-ray Pulsars (AXPs). If an isolated neutron star explodes as a Quark Nova, an iron-rich shell of degenerate matter forms from its crust. This model can account for many of the observed features of SGRs and AXPs such as: (i) the two types of bursts (giant and regular); (ii) the spin-up and spin-down episodes during and following the bursts with associated increases in dot{P}; (iii) the energetics of the boxing day burst, SGR1806+20; (iv) the presence of an iron line as observed in SGR1900+14; (v) the correlation between the far-infrared and the X-ray fluxes during the bursting episode and the quiescent phase; (vi) the hard X-ray component observed in SGRs during the giant bursts, and (vii) the discrepancy between the ages of SGRs/AXPs and their supernova remnants. We also find a natural evolutionary relationship between SGRs and AXPs in our model which predicts that the youngest SGRs/AXPs are the most likely to exhibit strong bursting. Many features of X-ray Dim Isolated Neutron stars (XDINs) are also accounted for in our model such as, (i) the two-component blackbody spectra; (ii) the absorption lines around 300 eV; and (iii) the excess optical emission. Table 1 is only available in electronic form at http://www.aanda.org

  9. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foight, Dillon R.; Slane, Patrick O.; Güver, Tolga

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) themore » model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.« less

  10. Constraints on black hole remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, S.B.

    1994-01-15

    One possible fate of information lost to black holes is its preservation in black hole remnants. It is argued that a type of effective field theory describes such remnants (generically referred to as informons). The general structure of such a theory is investigated and the infinite pair production problem is revisited. A toy model for remnants clarifies some of the basic issues; in particular, infinite remnant production is not suppressed simply by the large internal volumes as proposed in cornucopion scenarios. Criteria for avoiding infinite production are stated in terms of couplings in the effective theory. Such instabilities remain amore » problem barring what would be described in that theory as a strong coupling conspiracy. The relation to Euclidean calculations of cornucopion production is sketched, and potential flaws in that analysis are outlined. However, it is quite plausible that pair production of ordinary black holes (e.g., Reissner-Noerdstrom or others) is suppressed due to strong effective couplings. It also remains an open possibility that a microsopic dynamics can be found yielding an appropriate strongly coupled effective theory of neutral informons without infinite pair production.« less

  11. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution

    PubMed Central

    Arendt, Detlev; Benito-Gutierrez, Elia; Brunet, Thibaut; Marlow, Heather

    2015-01-01

    Prerequisite for tracing nervous system evolution is understanding of the body plan, feeding behaviour and locomotion of the first animals in which neurons evolved. Here, a comprehensive scenario is presented for the diversification of cell types in early metazoans, which enhanced feeding efficiency and led to the emergence of larger animals that were able to move. Starting from cup-shaped, gastraea-like animals with outer and inner choanoflagellate-like cells, two major innovations are discussed that set the stage for nervous system evolution. First, the invention of a mucociliary sole entailed a switch from intra- to extracellular digestion and increased the concentration of nutrients flowing into the gastric cavity. In these animals, an initial nerve net may have evolved via division of labour from mechanosensory-contractile cells in the lateral body wall, enabling coordinated movement of the growing body that involved both mucociliary creeping and changes of body shape. Second, the inner surface of the animals folded into metameric series of gastric pouches, which optimized nutrient resorption and allowed larger body sizes. The concomitant acquisition of bilateral symmetry may have allowed more directed locomotion and, with more demanding coordinative tasks, triggered the evolution of specialized nervous subsystems. Animals of this organizational state would have resembled Ediacarian fossils such as Dickinsonia and may have been close to the cnidarian–bilaterian ancestor. In the bilaterian lineage, the mucociliary sole was used mostly for creeping, or frequently lost. One possible remnant is the enigmatic Reissner's fibre in the ventral neural tube of cephalochordates and vertebrates. PMID:26554050

  12. Confronting Models of Massive Star Evolution and Explosions with Remnant Mass Measurements

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Sukhbold, Tuguldur; Özel, Feryal

    2018-03-01

    The mass distribution of compact objects provides a fossil record that can be studied to uncover information on the late stages of massive star evolution, the supernova explosion mechanism, and the dense matter equation of state. Observations of neutron star masses indicate a bimodal Gaussian distribution, while the observed black hole mass distribution decays exponentially for stellar-mass black holes. We use these observed distributions to directly confront the predictions of stellar evolution models and the neutrino-driven supernova simulations of Sukhbold et al. We find strong agreement between the black hole and low-mass neutron star distributions created by these simulations and the observations. We show that a large fraction of the stellar envelope must be ejected, either during the formation of stellar-mass black holes or prior to the implosion through tidal stripping due to a binary companion, in order to reproduce the observed black hole mass distribution. We also determine the origins of the bimodal peaks of the neutron star mass distribution, finding that the low-mass peak (centered at ∼1.4 M ⊙) originates from progenitors with M ZAMS ≈ 9–18 M ⊙. The simulations fail to reproduce the observed peak of high-mass neutron stars (centered at ∼1.8 M ⊙) and we explore several possible explanations. We argue that the close agreement between the observed and predicted black hole and low-mass neutron star mass distributions provides new, promising evidence that these stellar evolution and explosion models capture the majority of relevant stellar, nuclear, and explosion physics involved in the formation of compact objects.

  13. Contrast-Enhanced and Time-of-Flight MRA at 3T Compared with DSA for the Follow-Up of Intracranial Aneurysms Treated with the WEB Device.

    PubMed

    Timsit, C; Soize, S; Benaissa, A; Portefaix, C; Gauvrit, J-Y; Pierot, L

    2016-09-01

    Imaging follow-up at 3T of intracranial aneurysms treated with the WEB Device has not been evaluated yet. Our aim was to assess the diagnostic accuracy of 3D-time-of-flight MRA and contrast-enhanced MRA at 3T against DSA, as the criterion standard, for the follow-up of aneurysms treated with the Woven EndoBridge (WEB) system. From June 2011 to December 2014, patients treated with the WEB in our institution, then followed for ≥6 months after treatment by MRA at 3T (3D-TOF-MRA and contrast-enhanced MRA) and DSA within 48 hours were included. Aneurysm occlusion was assessed with a simplified 2-grade scale (adequate occlusion [total occlusion + neck remnant] versus aneurysm remnant). Interobserver and intermodality agreement was evaluated by calculating the linear weighted κ. MRA test characteristics and predictive values were calculated from a 2 × 2 contingency table, by using DSA data as the standard of reference. Twenty-six patients with 26 WEB-treated aneurysms were included. The interobserver reproducibility was good with DSA (κ = 0.71) and contrast-enhanced-MRA (κ = 0.65) compared with moderate with 3D-TOF-MRA (κ = 0.47). Intermodality agreement with DSA was fair with both contrast-enhanced MRA (κ = 0.36) and 3D-TOF-MRA (κ = 0.36) for the evaluation of total occlusion. For aneurysm remnant detection, the prevalence was low (15%), on the basis of DSA, and both MRA techniques showed low sensitivity (25%), high specificity (100%), very good positive predictive value (100%), and very good negative predictive value (88%). Despite acceptable interobserver reproducibility and predictive values, the low sensitivity of contrast-enhanced MRA and 3D-TOF-MRA for aneurysm remnant detection suggests that MRA is a useful screening procedure for WEB-treated aneurysms, but similar to stents and flow diverters, DSA remains the criterion standard for follow-up. © 2016 by American Journal of Neuroradiology.

  14. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes)

    NASA Astrophysics Data System (ADS)

    Elster, J.; Delmas, R. J.; Petit, J.-R.; Řeháková, K.

    2007-06-01

    Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves), micro-fungi (hyphae and spores), bacteria (rod, cocci and red clusters), yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area), Andean snow (Illimani, Bolivia), Antarctic aerosol filters (Dumont d'Urville, Terre Adélie), and Antarctic inland ice (Terre Adélie). Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation). Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi) were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests) showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and biological remnants of analysed samples comprises two communities, without a sharp boundary between them: i) the first community includes ubiquitous organisms including contaminants, ii) the second community represents individuals frequently occurring in remote terrestrial cold or hot desert/semi-desert and/or marginal soil-snow-ice ecosystems.

  15. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    PubMed

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed ways) manually controlled two systems (1st and 2nd order) subject to a periodic multi-sine disturbance. Joystick power was analysed using three models, continuous-linear-control (CC), continuous-linear-control with calculated noise spectrum (CCN), and intermittent control with aperiodic sampling triggered by prediction error thresholds (IC). Unlike the linear mechanism, the intermittent control mechanism explained the majority of total power (linear and remnant) (77-87% vs. 8-48%, IC vs. CC). Between conditions, IC used thresholds and distributions of open loop intervals consistent with, respectively, instructions and previous measured, model independent values; whereas CCN required changes in noise spectrum deviating from broadband, signal dependent noise. We conclude that manual tracking uses open loop predictive control with aperiodic sampling. Because aperiodic sampling is inherent to serial decision making within previously identified, specific frontal, striatal and parietal networks we suggest that these structures are intimately involved in visuo-manual tracking. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  16. A Study of Supernova Remnants with Center-Filled X-Ray Morphology

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    1997-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of x-rays observed with the ROSAT PSPC. Here we report on ASCA observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an x-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  17. The XMM-Newton view of the non-thermal supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Puehlhofer, G.; Doroshenko, V.; Acero, F.; Bamba, A.; Klochkov, D.; Tian, W.

    2017-10-01

    HESS J1731-347 belongs to a small group of supernova remnants that are characterized by a spatially-resolved shell-type TeV morphology and strong synchrotron X-ray emission. We report on XMM-Newton observations of the source that provide for the first time a complete X-ray view of the remnant. The data show an emissivity gradient across the source, which is not observed in the TeV gamma-ray and radio bands. While the broadband spectral analysis is compatible with a pure leptonic emission scenario up to TeV energies, the morphological analysis could be indicative of a blend of hadronic and leptonic TeV emission. We discuss the possibility of an interaction of the supernova remnant with nearby molecular clouds.

  18. A low-protein diet supplemented with ketoacids plays a more protective role against oxidative stress of rat kidney tissue with 5/6 nephrectomy than a low-protein diet alone.

    PubMed

    Gao, Xiang; Wu, Jianxiang; Dong, Zheyi; Hua, Can; Hu, Huimin; Mei, Changlin

    2010-02-01

    Dietary protein restriction is one major therapy in chronic kidney disease (CKD), and ketoacids have been evaluated in CKD patients during restricted-protein diets. The objective of the present study was to compare the efficacy of a low-protein diet supplemented with ketoacids (LPD+KA) and a low-protein diet alone (LPD) in halting the development of renal lesions in CKD. 5/6 Nephrectomy Sprague-Dawley rats were randomly divided into three groups, and fed with either 22 % protein (normal-protein diet; NPD), 6 % protein (LPD) or 5 % protein plus 1 % ketoacids (LPD+KA) for 24 weeks. Sham-operated rats were used as controls. Each 5/6 nephrectomy group included fifteen rats and the control group included twelve rats. Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were found in the remnant kidneys of the NPD group. Protein restriction ameliorated these changes, and the effect was more obvious in the LPD+KA group after 5/6 nephrectomy. Lower body weight and serum albumin levels were found in the LPD group, indicating protein malnutrition. Lipid and protein oxidative products were significantly increased in the LPD group compared with the LPD+KA group. These findings indicate that a LPD supplemented with ketoacids is more effective than a LPD alone in protecting the function of remnant kidneys from progressive injury, which may be mediated by ketoacids ameliorating protein malnutrition and oxidative stress injury in remnant kidney tissue.

  19. LOFAR 150-MHz observations of SS 433 and W 50

    NASA Astrophysics Data System (ADS)

    Broderick, J. W.; Fender, R. P.; Miller-Jones, J. C. A.; Trushkin, S. A.; Stewart, A. J.; Anderson, G. E.; Staley, T. D.; Blundell, K. M.; Pietka, M.; Markoff, S.; Rowlinson, A.; Swinbank, J. D.; van der Horst, A. J.; Bell, M. E.; Breton, R. P.; Carbone, D.; Corbel, S.; Eislöffel, J.; Falcke, H.; Grießmeier, J.-M.; Hessels, J. W. T.; Kondratiev, V. I.; Law, C. J.; Molenaar, G. J.; Serylak, M.; Stappers, B. W.; van Leeuwen, J.; Wijers, R. A. M. J.; Wijnands, R.; Wise, M. W.; Zarka, P.

    2018-04-01

    We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W 50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W 50 is in excellent agreement with previously published higher frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a χ2 probability of a flat light curve of 8.2 × 10-3. By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed ˜0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately 6 months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G 38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes.

  20. The Propagation Distance and Sources of Interstellar Turbulence

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.

    2007-07-01

    Turbulence appears to be widely distributed in the interstellar medium, including regions far from obvious generators of this turbulence such as supernova remnants and star formation regions. This indicates that the turbulence must be transported, most likely by propagation at the Alfvén speed, over distances of hundreds of parsecs. This requirement appears contradicted by estimates that the damping length of magnetohydrodynamic waves and turbulence by ion-neutral collisions in the Diffuse Ionized Gas (DIG, the most pervasive phase of the interstellar medium) is less than a parsec. This damping length estimate is not highly model-dependent, and is consistent with calculations positing a balance between radiative cooling and turbulent dissipative heating of the interstellar gas. This problem is even more severe in the Warm Neutral Medium (WNM) phase, where the neutral density fraction is much higher. Three possible resolutions of this matter are proposed. (1) Interstellar turbulence may be generated by highly distributed, local generators rather than greatly separated, powerful generators such as supernova remnants. (2) The turbulence may be generated by powerful and isolated objects like supernova remnants, but then ``percolate'' through the interstellar medium by propagating through channels with a very high degree of ionization. (3) The dissipation of small-scale turbulence may be balanced by a cascade from larger, less damped fluctuations.

  1. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.

  2. High-energy Emission from the Composite Supernova Remnant MSH 15-56

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Castro, Daniel; Plucinsky, Paul; Gelfand, Joseph; Dickel, John R.

    2013-01-01

    MSH 1556 (G326.3-1.8) is a composite supernova remnant (SNR) that consists of an SNR shell and a displaced pulsar wind nebula (PWN) in the radio. We present XMM-Newton and Chandra X-ray observations of the remnant that reveal a compact source at the tip of the radio PWN and complex structures that provide evidence for mixing of the supernova (SN) ejecta with PWN material following a reverse shock interaction. The X-ray spectra are well fitted by a non-thermal power-law model whose photon index steepens with distance from the presumed pulsar, and a thermal component with an average temperature of 0.55 keV. The enhanced abundances of silicon and sulfur in some regions, and the similar temperature and ionization timescale, suggest that much of the X-ray emission can be attributed to SN ejecta that have either been heated by the reverse shock or swept up by the PWN. We find one region with a lower temperature of 0.3 keV that appears to be in ionization equilibrium.Assuming the Sedov model, we derive a number of SNR properties, including an age of 16,500 yr. Modeling of the gamma-ray emission detected by Fermi shows that the emission may originate from the reverse shock-crushed PWN.

  3. A central compact object in Kes 79: the hypercritical regime and neutrino expectation

    NASA Astrophysics Data System (ADS)

    Bernal, C. G.; Fraija, N.

    2016-11-01

    We present magnetohydrodynamical simulations of a strong accretion on to magnetized proto-neutron stars for the Kesteven 79 (Kes 79) scenario. The supernova remnant Kes 79, observed with the Chandra ACIS-I instrument during approximately 8.3 h, is located in the constellation Aquila at a distance of 7.1 kpc in the galactic plane. It is a galactic and a very young object with an estimate age of 6 kyr. The Chandra image has revealed, for the first time, a point-like source at the centre of the remnant. The Kes 79 compact remnant belongs to a special class of objects, the so-called central compact objects (CCOs), which exhibits no evidence for a surrounding pulsar wind nebula. In this work, we show that the submergence of the magnetic field during the hypercritical phase can explain such behaviour for Kes 79 and others CCOs. The simulations of such regime were carried out with the adaptive-mesh-refinement code FLASH in two spatial dimensions, including radiative loss by neutrinos and an adequate equation of state for such regime. From the simulations, we estimate that the number of thermal neutrinos expected on the Hyper-Kamiokande Experiment is 733 ± 364. In addition, we compute the flavour ratio on Earth for a progenitor model.

  4. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed Central

    Hill, Jane K.; Gray, Michael A.; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C.

    2011-01-01

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species–area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  5. HESS J1818-154, a new composite supernova remnant discovered in TeV gamma rays and X-rays

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-02-01

    Composite supernova remnants (SNRs) constitute a small subclass of the remnants of massive stellar explosions where non-thermal radiation is observed from both the expanding shell-like shock front and from a pulsar wind nebula (PWN) located inside of the SNR. These systems represent a unique evolutionary phase of SNRs where observations in the radio, X-ray, and γ-ray regimes allow the study of the co-evolution of both these energetic phenomena. In this article, we report results from observations of the shell-type SNR G 15.4+0.1 performed with the High Energy Stereoscopic System (H.E.S.S.) and XMM-Newton. A compact TeV γ-ray source, HESS J1818-154, located in the center and contained within the shell of G 15.4+0.1 is detected by H.E.S.S. and featurs a spectrum best represented by a power-law model with a spectral index of -2.3 ± 0.3stat ± 0.2sys and an integral flux of F(> 0.42 TeV) = (0.9 ± 0.3stat ± 0.2sys) × 10-12 cm-2 s-1. Furthermore, a recent observation with XMM-Newton reveals extended X-ray emission strongly peaked in the center of G 15.4+0.1. The X-ray source shows indications of an energy-dependent morphology featuring a compact core at energies above 4 keV and more extended emission that fills the entire region within the SNR at lower energies. Together, the X-ray and VHE γ-ray emission provide strong evidence of a PWN located inside the shell of G 15.4+0.1 and this SNR can therefore be classified as a composite based on these observations. The radio, X-ray, and γ-ray emission from the PWN is compatible with a one-zone leptonic model that requires a low average magnetic field inside the emission region. An unambiguous counterpart to the putative pulsar, which is thought to power the PWN, has been detected neither in radio nor in X-ray observations of G 15.4+0.1.

  6. NASA and Japanese X-ray observatories Clarify Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Recent observations from NASA and Japanese X-ray observatories have helped clarify one of the long-standing mysteries in astronomy -- the origin of cosmic rays. This image from Japan's Suzaku X-ray observatory shows RXJ1713.7-3946. This supernova remnant is the gaseous remnant of a massive star that exploded. The remnant is about 1,600 years old. The contour lines show where gamma-ray intensity is highest, as measured by the High Energy Stereoscopic System (HESS) in Namibia.

  7. Signs of Asymmetry in Exploding Stars

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry

    2018-03-01

    Supernova explosions enrich the interstellar medium and can even briefly outshine their host galaxies. However, the mechanism behind these massive explosions still isnt fully understood. Could probing the asymmetry of supernova remnants help us better understand what drives these explosions?Hubble image of the remnant of supernova 1987A, one of the first remnants discovered to be asymmetrical. [ESA/Hubble, NASA]Stellar Send-OffsHigh-mass stars end their lives spectacularly. Each supernova explosion churns the interstellar medium and unleashes high-energy radiation and swarms of neutrinos. Supernovae also suffuse the surrounding interstellar medium with heavy elements that are incorporated into later generations of stars and the planets that form around them.The bubbles of expanding gas these explosions leave behind often appear roughly spherical, but mounting evidence suggests that many supernova remnants are asymmetrical. While asymmetry in supernova remnants can arise when the expanding material plows into the non-uniform interstellar medium, it can also be an intrinsic feature of the explosion itself.Simulation results clockwise from top left: Mass density, calcium mass fraction, oxygen mass fraction, nickel-56 mass fraction. Click to enlarge. [Adapted from Wollaeger et al. 2017]Coding ExplosionsThe presence or absence of asymmetry in a supernova remnant can hold clues as to what drove the explosion. But how can we best observe asymmetry in a supernova remnant? Modeling lets us explore different observational approaches.A team of scientists led by Ryan T. Wollaeger (Los Alamos National Laboratory) used radiative transfer and radiative hydrodynamics simulations to model the explosion of a core-collapse supernova. Wollaeger and collaborators introduced asymmetry into the explosion by creating a single-lobed, fast-moving outflow along one axis.Their simulations showed that while some chemical elements lingered near the origin of the explosion or were distributed evenly throughout the remnant, calcium was isolated to the asymmetrical region, hinting that spectral lines of calcium may be good tracersof asymmetry.Bolometric (top) and gamma-ray (bottom) synthetic light curves for the authors model for a range of simulated viewing angles. [Adapted from Wollaeger et al. 2017]Synthesizing SpectraWollaeger and collaborators then generated synthetic light curves and spectra from their models to determine which spectral features or characteristics indicated the presence of the asymmetric outflow lobe. They found that when an asymmetric outflow lobe is present, the peak luminosity of the explosion depends on the angle at which you view it; the highest luminosity occurs when the lobe is viewed from the side, while the lowest luminosity nearly40%dimmer is seen when the explosion is viewed down the barrel of the lobe. The dense outflow shades the central radioactive source from view, lowering the luminosity.This effect also plays out in the gamma-ray light curves; when viewed down the barrel, the shading of the central source by ahigh-density lobe slows the rise of the gamma-ray luminosity and changes the shape of the light curve compared to views from other vantage points.Another promising avenue for exploring asymmetry is a near-infrared band encompassing an emission line of singly-ionized calcium near 815 nm. Since calcium is confined within the outflow lobe in the simulation, its emission lines are blueshifted when the lobe points toward the observer.The authors point out that there is much more to be done in their models, such as including the effects of shock heating of circumstellar material, which can contribute strongly to the light curve, but these simulations bring us a step closer to understanding the nature of asymmetrical supernova remnants and the explosions that create them.CitationRyan T. Wollaeger et al 2017ApJ845168. doi:10.3847/1538-4357/aa82bd

  8. The Dynamical Evolution of Stellar-Mass Black Holes in Dense Star Clusters

    NASA Astrophysics Data System (ADS)

    Morscher, Maggie

    Globular clusters are gravitationally bound systems containing up to millions of stars, and are found ubiquitously in massive galaxies, including the Milky Way. With densities as high as a million stars per cubic parsec, they are one of the few places in the Universe where stars interact with one another. They therefore provide us with a unique laboratory for studying how gravitational interactions can facilitate the formation of exotic systems, such as X-ray binaries containing black holes, and merging double black hole binaries, which are produced much less efficiently in isolation. While telescopes can provide us with a snapshot of what these dense clusters look like at present, we must rely on detailed numerical simulations to learn about their evolution. These simulations are quite challenging, however, since dense star clusters are described by a complicated set of physical processes occurring on many different length and time scales, including stellar and binary evolution, weak gravitational scattering encounters, strong resonant binary interactions, and tidal stripping by the host galaxy. Until very recently, it was not possible to model the evolution of systems with millions of stars, the actual number contained in the largest clusters, including all the relevant physics required describe these systems accurately. The Northwestern Group's Henon Monte Carlo code, CMC, which has been in development for over a decade, is a powerful tool that can be used to construct detailed evolutionary models of large star clusters. With its recent parallelization, CMC is now capable of addressing a particularly interesting unsolved problem in astrophysics: the dynamical evolution of stellar black holes in dense star clusters. Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from 20 - 100 Solar masses. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained initially. Using our Monte Carlo code, we have investigated the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. Our study is the first to explore in detail the dynamics of BHs in clusters through a large number of realistic simulations covering a wide range of initial conditions (cluster masses from 105 -- 106 Solar masses, as well as variation in other key parameters, such as the virial radius, central concentration, and metallicity), that also includes all the required physics. In almost all of our models we find that significant numbers of black holes (up to about a 1000) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer "mass segregation instability'') is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously; this is one of the most important results of this dissertation. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  9. Core collapse supernovae from blue supergiant progenitors : The evolutionary history of SN 1987A

    NASA Astrophysics Data System (ADS)

    Menon, Athira

    2015-08-01

    SN 1987A is historically one of the most remarkable supernova explosions to be seen from Earth. Due to the proximity of its location in the LMC, it remains the most well-studied object outside the solar system. It was also the only supernova whose progenitor was observed prior to its explosion.SN 1987A however, was a unique and enigmatic core collapse supernova. It was the first Type II supernova to have been observed to have exploded while its progenitor was a blue supergiant (BSG). Until then Type II supernovae were expected to originate from explosions of red supergiants (RSGs). A spectacular triple-ring nebula structure, rich in helium and nitrogen, was observed around the remnant, indicating a recent RSG phase before becoming a BSG. Even today it is not entirely understood what the evolutionary history may have been to cause a BSG to explode. The most commonly accepted hypothesis for its origin is the merger of a massive binary star system.An evolutionary scenario for such a binary system, was proposed by Podsiadlowski (1992) (P92). Through SPH simulations of the merger and the stellar evolution of the post-merger remnant, Ivanova & Podsiadlowski (2002) and (2003) (I&M) could successfully obtain the RSG to BSG transition of the progenitor.The aim of the present work is to produce the evolutionary history of the progenitor of SN 1987A and its explosion. We construct our models based on the results of P92 and I&M. Here, the secondary (less massive) star is accreted on the primary, while being simultaneously mixed in its envelope over a period of 100 years. The merged star is evolved until the onset of core collapse. For this work we use the 1-dimensional, implicit, hydrodynamical stellar evolution code, KEPLER. A large parameter space is explored, consisting of primary (16-20 Ms) and secondary masses (5-8 Ms), mixing boundaries, and accreting timescales. Those models whose end states match the observed properties of the progenitor of SN 1987A are exploded. The nuclear yields and light curve of the explosion are then compared with the observed data of SN 1987A.

  10. A Search for High-Energy Gamma-Rays from Supernova SN1987A.

    NASA Astrophysics Data System (ADS)

    Waldron, Liam Edwin

    1992-01-01

    The Australian Defence Force Academy (ADFA) balloon -borne gamma-ray astronomy telescope was flown successfully from Alice Springs Australia twice during 1987 and 1988 (flights 87-2-19 and 88-1-5) with the aim of measuring the gamma-ray flux, in the energy range 50 to 500 MeV, from Supernova SN1987A in the Large Magellanic Cloud. The two flights corresponded to day 55 and day 407 respectively of remnant evolution. The instrument was complemented by a hard X-ray proportional counter, designed and constructed by the Istituto di Astrofisica Spaziale, CNR, Frascati Italy, and sensitive to the 10 to 250 KeV energy range. In this thesis, an account is given of the physical processes responsible for the production of gamma-rays astrophysical environments and their relation to supernovae and cosmic-rays. A description is then given of the main features of the gamma-ray telescope and its principle of operation, the most important part of the telescope being a spark-chamber used to determine the direction of arrival of incident gamma-rays. Data obtained during each flight was recorded as spark-chamber tacks on photographic film. A detailed account of the methods of subsequent data reduction and analysis, as carried out by the author, are given. The principal results of this work were that 3-sigma upper limits to the gamma-ray flux from Supernova SN1987A of 2.2 times 10^ {-5} photons cm^{ -2} s^{-1} and 3.4 times 10^{-5} photons cm^{-2} s^ {-1} were obtained for days 55 and 407 of remnant evolution respectively, these limits being somewhat lower than previously reported in the literature from a preliminary analysis of the data. The above two upper limits are consistent with Supernova SN1987A being an atypical Type-II supernova. That is, the progenitor was a blue, rather than a red, supergiant. The limits are compared with theoretical predictions related to current models of gamma-ray emission from young Type -II supernovae.

  11. 31 CFR 100.7 - Treasury's liability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... made when: (1) Fragments and remnants presented are not identifiable as United States currency; or (2) Fragments and remnants presented which represent 50% or less of a note are identifiable as United States...

  12. ANTIMATTER PRODUCTION IN SUPERNOVA REMNANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kachelriess, M.; Ostapchenko, S.; Tomas, R.

    2011-06-01

    We calculate the energy spectra of cosmic rays (CRs) and their secondaries produced in a supernova remnant (SNR) taking into account the time dependence of the SNR shock. We model the trajectories of charged particles as a random walk with a prescribed diffusion coefficient, accelerating the particles at each shock crossing. Secondary production by CRs colliding with gas is included as a Monte Carlo process. We find that SNRs produce less antimatter than suggested previously: the positron/electron ratio F{sub e}{sup +}/F{sub e}{sup +}{sub +e}{sup -} and the antiproton/proton ratio F{sub p-bar/}F{sub p-bar+p} are a few percent and few x 10{supmore » -5}, respectively. Moreover, the obtained positron/electron ratio decreases with energy, while the antiproton/proton ratio rises at most by a factor of two above 10 GeV.« less

  13. Detail, corner pilaster remnant, gable return on facade, Our Corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, corner pilaster remnant, gable return on facade, Our Corner Saloon, view to northeast (210mm lens with electronic flash fill) - Our Corner Saloon, 301 First Street, Eureka, Humboldt County, CA

  14. Optical emission from a fast shock wave - The remnants of Tycho's supernova and SN 1006

    NASA Technical Reports Server (NTRS)

    Chevalier, R. A.; Raymond, J. C.

    1978-01-01

    The faint optical filaments in Tycho's supernova remnant appear to be emission from a shock front moving at 5600 km/s. The intensity of the hydrogen lines, the absence of forbidden lines of heavy elements in the spectrum, and the width of the filaments are explained by a model in which a collisionless shock wave is moving into partially neutral gas. The presence of the neutral gas can be used to set an upper limit of approximately 5 x 10 to the 47th power ergs to the energy in ionizing radiation emitted by a Type I supernova. The patchy neutral gas is probably part of the warm neutral component of the interstellar medium. The existing information on the remnant of SN 1006 indicates that its emission is similar in nature to that from Tycho's remnant.

  15. A HIRES analysis of the FIR emission of supernova remnants

    NASA Technical Reports Server (NTRS)

    Wang, Zhong

    1994-01-01

    The high resolution (HiRes) algorithm has been used to analyze the far infrared emission of shocked gas and dust in supernova remnants. In the case of supernova remnant IC 443, we find a very good match between the resolved features in the deconvolved images and the emissions of shocked gas mapped in other wavelengths (lines of H2, CO, HCO+, and HI). Dust emission is also found to be surrounding hot bubbles of supernova remnants which are seen in soft X-ray maps. Optical spectroscopy on the emission of the shocked gas suggests a close correlation between the FIR color and local shock speed, which is a strong function of the ambient (preshock) gas density. These provide a potentially effective way to identify regions of strong shock interaction, and thus facilitate studies of kinematics and energetics in the interstellar medium.

  16. Small intestinal obstruction by remnants of the omphalomesenteric duct: findings on contrast enema.

    PubMed

    Fenton, L Z; Buonomo, C; Share, J C; Chung, T

    2000-03-01

    We reviewed the contrast enema examinations and medical records of six patients with small intestinal obstruction due to omphalomesenteric duct remnant to evaluate for characteristic imaging findings. In five out of the six patients the point of obstruction was demonstrated on the enema; in three patients, the characteristic "beak" of a volvulus was seen, either in the terminal ileum or cecum. In three patients, there was medial deviation of the cecum. The characteristic radiographic features of volvulus at the cecum or terminal ileum and medial deviation of the cecum should suggest persistence of an omphalomesenteric duct remnant as the etiology of obstruction in a child less than 2 years of age. The appearance of omphalomesenteric duct remnant obstruction on enema examination, though not specific, is characteristic and should be familiar to pediatric radiologists.

  17. On the search for Galactic supernova remnant PeVatrons with current TeV instruments

    NASA Astrophysics Data System (ADS)

    Cristofari, P.; Gabici, S.; Terrier, R.; Humensky, T. B.

    2018-06-01

    The supernova remnant hypothesis for the origin of Galactic cosmic rays has passed several tests, but the firm identification of a supernova remnant pevatron, considered to be a decisive step to prove the hypothesis, is still missing. While a lot of hope has been placed in next-generation instruments operating in the multi-TeV range, it is possible that current gamma-ray instruments, operating in the TeV range, could pinpoint these objects or, most likely, identify a number of promising targets for instruments of next generation. Starting from the assumption that supernova remnants are indeed the sources of Galactic cosmic rays, and therefore must be pevatrons for some fraction of their lifetime, we investigate the ability of current instruments to detect such objects, or to identify the most promising candidates.

  18. A Newly Discovered Supernova Remnant and MSH 11-62 and 3C58

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O.

    2000-01-01

    CTA 1 is a center-filled supernova remnant (SNR) whose morphology and spectrum indicate the presence of a central pulsar, a synchrotron nebula, and a thermal component associated with the expansion of the blast wave into the interstellar medium. The centrally bright emission surrounds the position of a faint point source of X-rays observed with the ROSAT Position Sensitive Proportional Counter (PSPC). Here we report on Advanced Spacecraft for Cosmology Astrophysics (ASCA) observations that confirm the nonthermal nature of the diffuse emission from the central regions of the remnant. We also present evidence for weak thermal emission that appears to increase in strength toward the outer boundary of the SNR. Thus, CTA 1 appears to be an X-ray composite remnant. Both the aftermath of the explosive supernova event and the energetic compact core are observable.

  19. Temperature relaxation in supernova remnants, revisited

    NASA Technical Reports Server (NTRS)

    Itoh, H.

    1984-01-01

    Some supernova remnants are expanding into a partially neutral medium. The neutral atoms which are engulfed by the fast blast shock are collisionally ionized to eject low-energy secondary electrons. Calculations are conducted of the temperature relaxation through Coulomb collisions among the secondary electrons, the shocked electrons, and the ions, assuming that the three species have Maxwellian velocity distributions. The results are applied to a self-similar blast wave. If the efficiency of collisionless electron heating at the shock front is high in young remnants such as Tycho, the secondary electrons may be much cooler than both the shocked electrons and the ions. In this case, the emergent X-ray continuum spectrum will have a two-temperature, or a power-law, appearance. This effect may have been observed in the bright rim of the remnant of SN 1006.

  20. The many sides of RCW 86: a Type Ia supernova remnant evolving in its progenitor's wind bubble

    NASA Astrophysics Data System (ADS)

    Broersen, Sjors; Chiotellis, Alexandros; Vink, Jacco; Bamba, Aya

    2014-07-01

    We present the results of a detailed investigation of the Galactic supernova remnant RCW 86 using the XMM-Newton X-ray telescope. RCW 86 is the probable remnant of SN 185 A.D., a supernova that likely exploded inside a wind-blown cavity. We use the XMM-Newton Reflection Grating Spectrometer to derive precise temperatures and ionization ages of the plasma, which are an indication of the interaction history of the remnant with the presumed cavity. We find that the spectra are well fitted by two non-equilibrium ionization models, which enables us to constrain the properties of the ejecta and interstellar matter plasma. Furthermore, we performed a principal component analysis on EPIC MOS and pn data to find regions with particular spectral properties. We present evidence that the shocked ejecta, emitting Fe K and Si line emission, are confined to a shell of approximately 2 pc width with an oblate spheroidal morphology. Using detailed hydrodynamical simulations, we show that general dynamical and emission properties at different portions of the remnant can be well reproduced by a Type Ia supernova that exploded in a non-spherically symmetric wind-blown cavity. We also show that this cavity can be created using general wind properties for a single degenerate system. Our data and simulations provide further evidence that RCW 86 is indeed the remnant of SN 185, and is the likely result of a Type Ia explosion of single degenerate origin.

Top