Science.gov

Sample records for remodeled nucleosomes reveals

  1. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  2. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  3. Drosophila Brahma complex remodels nucleosome organizations in multiple aspects.

    PubMed

    Shi, Jiejun; Zheng, Meizhu; Ye, Youqiong; Li, Min; Chen, Xiaolong; Hu, Xinjie; Sun, Jin; Zhang, Xiaobai; Jiang, Cizhong

    2014-09-01

    ATP-dependent chromatin remodeling complexes regulate nucleosome organizations. In Drosophila, gene Brm encodes the core Brahma complex, the ATPase subunit of SWI/SNF class of chromatin remodelers. Its role in modulating the nucleosome landscape in vivo is unclear. In this study, we knocked down Brm in Drosophila third instar larvae to explore the changes in nucleosome profiles and global gene transcription. The results show that Brm knockdown leads to nucleosome occupancy changes throughout the entire genome with a bias in occupancy decrease. In contrast, the knockdown has limited impacts on nucleosome position shift. The knockdown also alters another important physical property of nucleosome positioning, fuzziness. Nucleosome position shift, gain or loss and fuzziness changes are all enriched in promoter regions. Nucleosome arrays around the 5' ends of genes are reorganized in five patterns as a result of Brm knockdown. Intriguingly, the concomitant changes in the genes adjacent to the Brahma-dependent remodeling regions have important roles in development and morphogenesis. Further analyses reveal abundance of AT-rich motifs for transcription factors in the remodeling regions.

  4. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  5. Genome-Wide Mapping Targets of the Metazoan Chromatin Remodeling Factor NURF Reveals Nucleosome Remodeling at Enhancers, Core Promoters and Gene Insulators

    PubMed Central

    Kwon, So Yeon; Grisan, Valentina; Jang, Boyun; Herbert, John; Badenhorst, Paul

    2016-01-01

    NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of Bithorax (E(bx)) has defined NURF as a critical regulator of homeotic, heat-shock and steroid-responsive gene transcription. It has been speculated that NURF controls pathway specific transcription by co-operating with sequence-specific transcription factors to remodel chromatin at dedicated enhancers. However, conclusive in vivo demonstration of this is lacking and precise regulatory elements targeted by NURF are poorly defined. To address this, we have generated a comprehensive map of in vivo NURF activity, using MNase-sequencing to determine at base pair resolution NURF target nucleosomes, and ChIP-sequencing to define sites of NURF recruitment. Our data show that, besides anticipated roles at enhancers, NURF interacts physically and functionally with the TRF2/DREF basal transcription factor to organize nucleosomes downstream of active promoters. Moreover, we detect NURF remodeling and recruitment at distal insulator sites, where NURF functionally interacts with and co-localizes with DREF and insulator proteins including CP190 to establish nucleosome-depleted domains. This insulator function of NURF is most apparent at subclasses of insulators that mark the boundaries of chromatin domains, where multiple insulator proteins co-associate. By visualizing the complete repertoire of in vivo NURF chromatin targets, our data provide new insights into how chromatin remodeling can control genome organization and regulatory interactions. PMID:27046080

  6. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  7. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  8. Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast

    PubMed Central

    Patrick, Kristin L.; Ryan, Colm J.; Xu, Jiewei; Lipp, Jesse J.; Nissen, Kelly E.; Roguev, Assen; Shales, Michael; Krogan, Nevan J.; Guthrie, Christine

    2015-01-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. PMID:25825871

  9. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.

    PubMed

    Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei; Lipp, Jesse J; Nissen, Kelly E; Roguev, Assen; Shales, Michael; Krogan, Nevan J; Guthrie, Christine

    2015-03-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects--and is affected by--co-transcriptional splicing.

  10. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    PubMed

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-04

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  11. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  12. Dynamic regulation of transcription factors by nucleosome remodeling.

    PubMed

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  13. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    PubMed

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  14. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters.

    PubMed

    Tolkunov, Denis; Zawadzki, Karl A; Singer, Cara; Elfving, Nils; Morozov, Alexandre V; Broach, James R

    2011-06-15

    Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.

  15. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence.

    PubMed

    Parmar, Jyotsana J; Marko, John F; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.

  16. Nucleosome remodelers in double-strand break repair.

    PubMed

    Seeber, Andrew; Hauer, Michael; Gasser, Susan M

    2013-04-01

    ATP-dependent nucleosome remodelers use ATP hydrolysis to shift, evict and exchange histone dimers or octamers and have well-established roles in transcription. Earlier work has suggested a role for nucleosome remodelers such as INO80 in double-strand break (DSB) repair. This review will begin with an update on recent studies that explore how remodelers are recruited to DSBs. We then examine their impact on various steps of repair, focusing on resection and the formation of the Rad51-ssDNA nucleofilament. Finally, we will explore new studies that implicate remodelers in the physical movement of chromatin in response to damage.

  17. Chromatin remodeller Fun30Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation

    PubMed Central

    Lee, Junwoo; Shik Choi, Eun; David Seo, Hogyu; Kang, Keunsoo; Gilmore, Joshua M.; Florens, Laurence; Washburn, Michael P.; Choe, Joonho; Workman, Jerry L.; Lee, Daeyoup

    2017-01-01

    Previous studies have revealed that nucleosomes impede elongation of RNA polymerase II (RNAPII). Recent observations suggest a role for ATP-dependent chromatin remodellers in modulating this process, but direct in vivo evidence for this is unknown. Here using fission yeast, we identify Fun30Fft3 as a chromatin remodeller, which localizes at transcribing regions to promote RNAPII transcription. Fun30Fft3 associates with RNAPII and collaborates with the histone chaperone, FACT, which facilitates RNAPII elongation through chromatin, to induce nucleosome disassembly at transcribing regions during RNAPII transcription. Mutants, resulting in reduced nucleosome-barrier, such as deletion mutants of histones H3/H4 themselves and the genes encoding components of histone deacetylase Clr6 complex II suppress the defects in growth and RNAPII occupancy of cells lacking Fun30Fft3. These data suggest that RNAPII utilizes the chromatin remodeller, Fun30Fft3, to overcome the nucleosome barrier to transcription elongation. PMID:28218250

  18. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  19. Structure of a RSC-nucleosome complex and insights into chromatin remodeling.

    PubMed

    Chaban, Yuriy; Ezeokonkwo, Chukwudi; Chung, Wen-Hsiang; Zhang, Fan; Kornberg, Roger D; Maier-Davis, Barbara; Lorch, Yahli; Asturias, Francisco J

    2008-12-01

    ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.

  20. The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.

    PubMed

    Byeon, Boseon; Wang, Wei; Barski, Artem; Ranallo, Ryan T; Bao, Kan; Schones, Dustin E; Zhao, Keji; Wu, Carl; Wu, Wei-Hua

    2013-08-09

    The evolutionarily conserved ATP-dependent chromatin remodeling enzyme Fun30 has recently been shown to play important roles in heterochromatin silencing and DNA repair. However, how Fun30 remodels nucleosomes is not clear. Here we report a nucleosome sliding activity of Fun30 and its role in transcriptional repression. We observed that Fun30 repressed the expression of genes involved in amino acid and carbohydrate metabolism, the stress response, and meiosis. In addition, Fun30 was localized at the 5' and 3' ends of genes and within the open reading frames of its targets. Consistent with its role in gene repression, we observed that Fun30 target genes lacked histone modifications often associated with gene activation and showed an increased level of ubiquitinated histone H2B. Furthermore, a genome-wide nucleosome mapping analysis revealed that the length of the nucleosome-free region at the 5' end of a subset of genes was changed in Fun30-depleted cells. In addition, the positions of the -1, +2, and +3 nucleosomes at the 5' end of target genes were shifted significantly, whereas the position of the +1 nucleosome remained largely unchanged in the fun30Δ mutant. Finally, we demonstrated that affinity-purified, single-component Fun30 exhibited a nucleosome sliding activity in an ATP-dependent manner. These results define a role for Fun30 in the regulation of transcription and indicate that Fun30 remodels chromatin at the 5' end of genes by sliding promoter-proximal nucleosomes.

  1. Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution.

    PubMed

    Korber, Philipp

    2012-04-01

    Genome-wide nucleosome maps revealed well-positioned nucleosomes as a major theme in eukaryotic genome organization. Promoter regions often show a conserved pattern with an NDR (nucleosome-depleted region) from which regular nucleosomal arrays emanate. Three mechanistic contributions to such NDR-array-organization and nucleosome positioning in general are discussed: DNA sequence, DNA binders and DNA-templated processes. Especially, intrinsic biophysics of DNA sequence preferences for nucleosome formation was prominently suggested to explain the majority of nucleosome positions ('genomic code for nucleosome positioning'). Nonetheless, non-histone factors that bind DNA with high or low specificity, such as transcription factors or remodelling enzymes respectively and processes such as replication, transcription and the so-called 'statistical positioning' may be involved too. Recently, these models were tested for yeast by genome-wide reconstitution. DNA sequence preferences as probed by SGD (salt gradient dialysis) reconstitution generated many NDRs, but only few individual nucleosomes, at their proper positions, and no arrays. Addition of a yeast extract and ATP led to dramatically more in vivo-like nucleosome positioning, including regular arrays for the first time. This improvement depended essentially on the extract and ATP but not on transcription or replication. Nucleosome occupancy and close spacing were maintained around promoters, even at lower histone density, arguing for active packing of nucleosomes against the 5' ends of genes rather than statistical positioning. A first extract fractionation identified a direct, specific, necessary, but not sufficient role for the RSC (remodels the structure of chromatin) remodelling enzyme. Collectively, nucleosome positioning in yeast is actively determined by factors beyond intrinsic biophysics, and in steady-state rather than at equilibrium.

  2. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes.

    PubMed

    Yen, Kuangyu; Vinayachandran, Vinesh; Pugh, B Franklin

    2013-09-12

    SWR-C/SWR1 and INO80 are multisubunit complexes that catalyze the deposition and removal, respectively, of histone variant H2A.Z from the first nucleosome at the start of genes. How they target and engage these +1 nucleosomes is unclear. Using ChIP-exo, we identified the subnucleosomal placement of 20 of their subunits across the yeast genome. The Swc2 subunit of SWR-C bound a narrowly defined region in the adjacent nucleosome-free region (NFR), where it positioned the Swr1 subunit over one of two sites of H2A.Z deposition at +1. The genomic binding maps suggest that many subunits have a rather plastic organization that allows subunits to exchange between the two complexes. One outcome of promoting H2A/H2A.Z exchange was an enhanced turnover of entire nucleosomes, thereby creating dynamic chromatin at the start of genes. Our findings provide unifying concepts on how these two opposing chromatin remodeling complexes function selectively at the +1 nucleosome of nearly all genes.

  3. Kinetic Control of Nucleosome Displacement by ISWI/ACF Chromatin Remodelers

    NASA Astrophysics Data System (ADS)

    Florescu, Ana-Maria; Schiessel, Helmut; Blossey, Ralf

    2012-09-01

    Chromatin structure is dynamically organized by chromatin remodelers, motor protein complexes which move and remove nucleosomes. The regulation of remodeler action has recently been proposed to underlie a kinetic proofreading scheme which combines the recognition of histone-tail states and the ATP-dependent loosening of DNA around nucleosomes. Members of the ISWI-family of remodelers additionally recognize linker length between nucleosomes. Here, we show that the additional proofreading step involving linker length alone is sufficient to promote the formation of regular arrays of nucleosomes. ATP-dependent remodeling by bidirectional motors is shown to reinforce positioning as compared to statistical positioning.

  4. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.

    PubMed

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-18

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  5. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes

    NASA Astrophysics Data System (ADS)

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-01

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  6. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium

    PubMed Central

    Platt, James L.; Kent, Nicholas A.; Kimmel, Alan R.

    2017-01-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. PMID:28330902

  7. Tension-dependent nucleosome remodeling at the pericentromere in yeast.

    PubMed

    Verdaasdonk, Jolien S; Gardner, Ryan; Stephens, Andrew D; Yeh, Elaine; Bloom, Kerry

    2012-07-01

    Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis.

  8. Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes

    PubMed Central

    Martinez-Zamudio, Ricardo

    2012-01-01

    The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation. PMID:22547677

  9. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler

    PubMed Central

    Bowman, Gregory D.

    2016-01-01

    ATP-dependent chromatin remodelers regulate chromatin dynamics by modifying nucleosome positions and occupancy. DNA-dependent processes such as replication and transcription rely on chromatin to faithfully regulate DNA accessibility, yet how chromatin remodelers achieve well-defined nucleosome positioning in vivo is poorly understood. Here, we report a simple method for site-specifically altering nucleosome positions in live cells. By fusing the Chd1 remodeler to the DNA binding domain of the Saccharomyces cerevisiae Ume6 repressor, we have engineered a fusion remodeler that selectively positions nucleosomes on top of adjacent Ume6 binding motifs in a highly predictable and reproducible manner. Positioning of nucleosomes by the fusion remodeler recapitulates closed chromatin structure at Ume6-sensitive genes analogous to the endogenous Isw2 remodeler. Strikingly, highly precise positioning of single founder nucleosomes by either chimeric Chd1-Ume6 or endogenous Isw2 shifts phased chromatin arrays in cooperation with endogenous chromatin remodelers. Our results demonstrate feasibility of engineering precise nucleosome rearrangements through sequence-targeted chromatin remodeling and provide insight into targeted action and cooperation of endogenous chromatin remodelers in vivo. PMID:26993344

  10. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  11. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    PubMed

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  12. A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription

    PubMed Central

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R.; Nislow, Corey

    2013-01-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. PMID:23658529

  13. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a.

    PubMed

    Richmond, Timothy J

    2012-04-01

    Nucleosomes are actively positioned along DNA by ATP-dependent, chromatin remodelling factors. A structural model for the ISW1a chromatin remodelling factor from Saccharomyces cerevisiae in complex with a dinucleosome substrate was constructed from the X-ray structures of ISW1a (ΔATPase) with and without DNA bound, two different cryo-EM (cryo-electron microscopy) structures of ISW1a (ΔATPase) bound to a nucleosome, and site-directed photo-cross-linking analyses in solution. The X-ray structure of ISW1a (ΔATPase) with DNA bound suggests that DNA sequence may be involved in nucleosome recognition and thereby specificity of promoter interaction. The model suggests how the highly ordered nucleosome arrays observed by mapping nucleosomes in genes and their promoter regions could be generated by a chromatin remodelling factor.

  14. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1.

    PubMed

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A-H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.

  15. Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1

    PubMed Central

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. PMID:24086160

  16. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study

    PubMed Central

    Montel, Fabien; Castelnovo, Martin; Menoni, Hervé; Angelov, Dimitar; Dimitrov, Stefan; Faivre-Moskalenko, Cendrine

    2011-01-01

    The ‘remodels structure of chromatin’ (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes. PMID:21138962

  17. Genome-Wide Chromatin Remodeling Identified at GC-Rich Long Nucleosome-Free Regions

    PubMed Central

    Hochreiter, Sepp

    2012-01-01

    To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale. PMID:23144837

  18. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility

    PubMed Central

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K.; Mueller, Britta; Alver, Burak H.; Kundu, Sharmistha; Deaton, Aimee M.; Urban, Jennifer A.; Larschan, Erica; Park, Peter J.; Kingston, Robert E.; Tolstorukov, Michael Y.

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  19. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.

    PubMed

    Hwang, William L; Deindl, Sebastian; Harada, Bryan T; Zhuang, Xiaowei

    2014-08-14

    Imitation switch (ISWI)-family remodelling enzymes regulate access to genomic DNA by mobilizing nucleosomes. These ATP-dependent chromatin remodellers promote heterochromatin formation and transcriptional silencing by generating regularly spaced nucleosome arrays. The nucleosome-spacing activity arises from the dependence of nucleosome translocation on the length of extranucleosomal linker DNA, but the underlying mechanism remains unclear. Here we study nucleosome remodelling by human ATP-dependent chromatin assembly and remodelling factor (ACF), an ISWI enzyme comprising a catalytic subunit, Snf2h, and an accessory subunit, Acf1 (refs 2, 11 - 13). We find that ACF senses linker DNA length through an interplay between its accessory and catalytic subunits mediated by the histone H4 tail of the nucleosome. Mutation of AutoN, an auto-inhibitory domain within Snf2h that bears sequence homology to the H4 tail, abolishes the linker-length sensitivity in remodelling. Addition of exogenous H4-tail peptide or deletion of the nucleosomal H4 tail also diminishes the linker-length sensitivity. Moreover, Acf1 binds both the H4-tail peptide and DNA in an amino (N)-terminal domain dependent manner, and in the ACF-bound nucleosome, lengthening the linker DNA reduces the Acf1-H4 tail proximity. Deletion of the N-terminal portion of Acf1 (or its homologue in yeast) abolishes linker-length sensitivity in remodelling and leads to severe growth defects in vivo. Taken together, our results suggest a mechanism for nucleosome spacing where linker DNA sensing by Acf1 is allosterically transmitted to Snf2h through the H4 tail of the nucleosome. For nucleosomes with short linker DNA, Acf1 preferentially binds to the H4 tail, allowing AutoN to inhibit the ATPase activity of Snf2h. As the linker DNA lengthens, Acf1 shifts its binding preference to the linker DNA, freeing the H4 tail to compete AutoN off the ATPase and thereby activating ACF.

  20. Fokker-Planck description of single nucleosome repositioning by dimeric chromatin remodelers

    NASA Astrophysics Data System (ADS)

    Vandecan, Yves; Blossey, Ralf

    2013-07-01

    Recent experiments have demonstrated that the ATP-utilizing chromatin assembly and remodeling factor (ACF) is a dimeric, processive motor complex which can move a nucleosome more efficiently towards longer flanking DNA than towards shorter flanking DNA strands, thereby centering an initially ill-positioned nucleosome on DNA substrates. We give a Fokker-Planck description for the repositioning process driven by transitions between internal chemical states of the remodelers. In the chemical states of ATP hydrolysis during which the repositioning takes place a power stroke is considered. The slope of the effective driving potential is directly related to ATP hydrolysis and leads to the unidirectional motion of the nucleosome-remodeler complex along the DNA strand. The Einstein force relation allows us to deduce the ATP-concentration dependence of the diffusion constant of the nucleosome-remodeler complex. We have employed our model to study the efficiency of positioning of nucleosomes as a function of the ATP sampling rate between the two motors which shows that the synchronization between the motors is crucial for the remodeling mechanism to work.

  1. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI.

    PubMed

    Grüne, Tim; Brzeski, Jan; Eberharter, Anton; Clapier, Cedric R; Corona, Davide F V; Becker, Peter B; Müller, Christoph W

    2003-08-01

    Energy-dependent nucleosome remodeling emerges as a key process endowing chromatin with dynamic properties. However, the principles by which remodeling ATPases interact with their nucleosome substrate to alter histone-DNA interactions are only poorly understood. We have identified a substrate recognition domain in the C-terminal half of the remodeling ATPase ISWI and determined its structure by X-ray crystallography. The structure comprises three domains, a four-helix domain with a novel fold and two alpha-helical domains related to the modules of c-Myb, SANT and SLIDE, which are linked by a long helix. An integrated structural and functional analysis of these domains provides insight into how ISWI interacts with the nucleosomal substrate.

  2. Atomic Force Microscopy Imaging of SWI/SNF Action: Mapping the Nucleosome Remodeling and Sliding

    PubMed Central

    Montel, Fabien; Fontaine, Emeline; St-Jean, Philippe; Castelnovo, Martin; Faivre-Moskalenko, Cendrine

    2007-01-01

    We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies. PMID:17468167

  3. Atomic force microscopy imaging of SWI/SNF action: mapping the nucleosome remodeling and sliding.

    PubMed

    Montel, Fabien; Fontaine, Emeline; St-Jean, Philippe; Castelnovo, Martin; Faivre-Moskalenko, Cendrine

    2007-07-15

    We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies.

  4. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity.

    PubMed

    Small, Eliza C; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan; Licht, Jonathan D

    2014-06-17

    Nucleosomes, the basic unit of chromatin, have a critical role in the control of gene expression. Nucleosome positions have generally been determined by examining bulk populations of cells and then correlated with overall gene expression. Here, we describe a technique to determine nucleosome positioning in single cells by virtue of the ability of the nucleosome to protect DNA from GpC methylation. In the acid phosphatase inducible PHO5 gene, we find that there is significant cell-to-cell variation in nucleosome positions and shifts in nucleosome positioning correlate with changes in gene expression. However, nucleosome positioning is not absolute, and even with major shifts in gene expression, some cells fail to change nucleosome configuration. Mutations of the PHO5 promoter that introduce a poly(dA:dT) tract-stimulated gene expression under nonpermissive conditions led to shifts of positioned nucleosomes similar to induction of PHO5. By contrast, mutations that altered AA/TT/AT periodicity reduced gene expression upon PHO5 induction and stabilized nucleosomes in most cells, suggesting that enhanced nucleosome affinity for DNA antagonizes chromatin remodelers. Finally, we determined nucleosome positioning in two regions described as "fuzzy" or nucleosome-free when examined in a bulk assay. These regions consisted of distinct nucleosomes with a larger footprint for potential location and an increase population of cells lacking a nucleosome altogether. These data indicate an underlying complexity of nucleosome positioning that may contribute to the flexibility and heterogeneity of gene expression.

  5. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends.

    PubMed

    Chen, Xuefeng; Cui, Dandan; Papusha, Alma; Zhang, Xiaotian; Chu, Chia-Dwo; Tang, Jiangwu; Chen, Kaifu; Pan, Xuewen; Ira, Grzegorz

    2012-09-27

    Chromosomal double-strand breaks (DSBs) are resected by 5' nucleases to form 3' single-stranded DNA substrates for binding by homologous recombination and DNA damage checkpoint proteins. Two redundant pathways of extensive resection have been described both in cells and in vitro, one relying on Exo1 exonuclease and the other on Sgs1 helicase and Dna2 nuclease. However, it remains unknown how resection proceeds within the context of chromatin, where histones and histone-bound proteins represent barriers for resection enzymes. Here we identify the yeast nucleosome-remodelling enzyme Fun30 as a factor promoting DSB end resection. Fun30 is the major nucleosome remodeller promoting extensive Exo1- and Sgs1-dependent resection of DSBs. The RSC and INO80 chromatin-remodelling complexes and Fun30 have redundant roles in resection adjacent to DSB ends. ATPase and helicase domains of Fun30, which are needed for nucleosome remodelling, are also required for resection. Fun30 is robustly recruited to DNA breaks and spreads along the DSB coincident with resection. Fun30 becomes less important for resection in the absence of the histone-bound Rad9 checkpoint adaptor protein known to block 5' strand processing and in the absence of either histone H3 K79 methylation or γ-H2A, which mediate recruitment of Rad9 (refs 9, 10). Together these data suggest that Fun30 helps to overcome the inhibitory effect of Rad9 on DNA resection.

  6. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    PubMed

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.

  7. Using Atomic Force Microscopy To Study Chromatin Structure and Nucleosome Remodeling

    PubMed Central

    Lohr, D.; Bash, R.; Wang, H.; Yodh, J.; Lindsay, S.

    2007-01-01

    Atomic Force Microscopy (AFM) is a technique that can directly image single molecules in solution and it therefore provides a powerful tool for obtaining unique insights into the basic properties of biological materials and the functional processes in which they are involved. We have used AFM to analyze basic features of nucleosomes in arrays, such as DNA-histone binding strength, cooperativity in template occupation, nucleosome stabilities, nucleosome locations and the effects of acetylation, to compare these features in different types of arrays and to track the response of array nucleosomes to the action of the human Swi-Snf ATP-dependent nucleosome remodeling complex. These experiments required several specific adaptations of basic AFM methods, such as repetitive imaging of the same fields of molecules in liquid, the ability to change the environmental conditions of the sample being imaged and detection of specific types of molecules within compositionally complex samples. Here we describe the techniques that allowed such analyses to be carried out. PMID:17309844

  8. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes

    PubMed Central

    Angelov, Dimitar; Bondarenko, Vladimir A; Almagro, Sébastien; Menoni, Hervé; Mongélard, Fabien; Hans, Fabienne; Mietton, Flore; Studitsky, Vasily M; Hamiche, Ali; Dimitrov, Stefan; Bouvet, Philippe

    2006-01-01

    Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription. PMID:16601700

  9. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

    PubMed

    Hainer, Sarah J; Fazzio, Thomas G

    2015-10-06

    Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  10. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays

    PubMed Central

    Angelov, Dimitar; Verdel, André; An, Woojin; Bondarenko, Vladimir; Hans, Fabienne; Doyen, Cécile-Marie; Studitsky, Vassily M; Hamiche, Ali; Roeder, Robert G; Bouvet, Philippe; Dimitrov, Stefan

    2004-01-01

    A histone variant H2ABbd was recently identified, but its function is totally unknown. Here we have studied the structural and functional properties of nucleosome and nucleosomal arrays reconstituted with this histone variant. We show that H2ABbd can replace the conventional H2A in the nucleosome, but this replacement results in alterations of the nucleosomal structure. The remodeling complexes SWI/SNF and ACF are unable to mobilize the variant H2ABbd nucleosome. However, SWI/SNF was able to increase restriction enzyme access to the variant nucleosome and assist the transfer of variant H2ABbd–H2B dimer to a tetrameric histone H3–H4 particle. In addition, the p300- and Gal4-VP16-activated transcription appeared to be more efficient for H2ABbd nucleosomal arrays than for conventional H2A arrays. The intriguing mechanisms by which H2ABbd affects both nucleosome remodeling and transcription are discussed. PMID:15372075

  11. Dependence of the Sperm/Oocyte Decision on the Nucleosome Remodeling Factor Complex Was Acquired during Recent Caenorhabditis briggsae Evolution

    PubMed Central

    Chen, Xiangmei; Shen, Yongquan; Ellis, Ronald E.

    2014-01-01

    The major families of chromatin remodelers have been conserved throughout eukaryotic evolution. Because they play broad, pleiotropic roles in gene regulation, it was not known if their functions could change rapidly. Here, we show that major alterations in the use of chromatin remodelers are possible, because the nucleosome remodeling factor (NURF) complex has acquired a unique role in the sperm/oocyte decision of the nematode Caenorhabditis briggsae. First, lowering the activity of C. briggsae NURF-1 or ISW-1, the core components of the NURF complex, causes germ cells to become oocytes rather than sperm. This observation is based on the analysis of weak alleles and null mutations that were induced with TALENs and on RNA interference. Second, qRT–polymerase chain reaction data show that the C. briggsae NURF complex promotes the expression of Cbr-fog-1 and Cbr-fog-3, two genes that control the sperm/oocyte decision. This regulation occurs in the third larval stage and affects the expression of later spermatogenesis genes. Third, double mutants reveal that the NURF complex and the transcription factor TRA-1 act independently on Cbr-fog-1 and Cbr-fog-3. TRA-1 binds both promoters, and computer analyses predict that these binding sites are buried in nucleosomes, so we suggest that the NURF complex alters chromatin structure to allow TRA-1 access to Cbr-fog-1 and Cbr-fog-3. Finally, lowering NURF activity by mutation or RNA interference does not affect this trait in other nematodes, including the sister species C. nigoni, so it must have evolved recently. We conclude that altered chromatin remodeling could play an important role in evolutionary change. PMID:24987105

  12. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    PubMed

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2016-12-20

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?

  13. Relationship between periodic dinucleotides and the nucleosome structure revealed by alpha shape modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Weiqiang; Yan, Hong

    2010-04-01

    As the fundamental repeating units in eukaryotic chromatin, nucleosomes play an important role in many biological processes. For this reason, the study of the structure of nucleosomes may help to reveal some of the crucial principals of these processes. In our research, we have used alpha shapes to model nucleosome structure and discovered that the periodic DNA dinucleotides AA, TT and GC occupy special positions in nucleosome structure with one nucleotide inside and the other outside the nucleosome surface. This structural feature and other dinucleotide characteristics can provide useful information for the study of nucleosome positioning.

  14. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation.

    PubMed

    Attema, Joanne L; Reeves, Raymond; Murray, Vincent; Levichkin, Ilya; Temple, Mark D; Tremethick, David J; Shannon, M Frances

    2002-09-01

    Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.

  15. Robustness of nucleosome patterns in the presence of DNA sequence-specific free energy landscapes and active remodeling

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Obermayer, Benedikt; Möbius, Wolfram; Wolff, Michael; Gerland, Ulrich

    Proper positioning of nucleosomes in eukaryotic cells is important for transcription regulation. When averaged over many genes, nucleosome positions in coding regions follow a simple oscillatory pattern, which is described to a surprising degree of accuracy by a simple one-dimensional gas model for particles interacting via a soft-core repulsion. The quantitative agreement is surprising given that nucleosome positions are known to be determined by a complex interplay of mechanisms including DNA sequence-specific nucleosome stability and active repositioning of nucleosomes by remodeling enzymes. We rationalize the observed robustness of the simple oscillatory pattern by showing that the main effect of several known nucleosome positioning mechanisms is a renormalization of the particle interaction. For example, ``disorder'' from sequence-specific affinities leads to an apparent softening, while active remodeling can result in apparent softening for directional sliding or apparent stiffening for clamping mechanisms. We suggest that such parameter renormalization can explain the apparent difference of nucleosome properties in two yeast species, S. cerevisiae and S. pombe.

  16. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

    PubMed

    Zawadzki, Karl A; Morozov, Alexandre V; Broach, James R

    2009-08-01

    Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

  17. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  18. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling

    PubMed Central

    Brzezinka, Krzysztof; Altmann, Simone; Czesnick, Hjördis; Nicolas, Philippe; Gorka, Michal; Benke, Eileen; Kabelitz, Tina; Jähne, Felix; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-01-01

    Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. DOI: http://dx.doi.org/10.7554/eLife.17061.001 PMID:27680998

  19. Revealing remodeler function: Varied and unique

    NASA Astrophysics Data System (ADS)

    Eastlund, Allen

    Chromatin remodelers perform a necessary and required function for the successful expression of our genetic code. By modifying, shifting, or ejecting nucleosomes from the chromatin structure they allow access to the underlying DNA to the rest of the cell's machinery. This research has focused on two major remodeler motors from major families of chromatin remodelers: the trimeric motor domain of RSC and the motor domain of the ISWI family, ISWI. Using primarily stopped-flow spectrofluorometry, I have categorized the time-dependent motions of these motor domains along their preferred substrate, double-stranded DNA. Combined with collected ATP utilization data, I present the subsequent analysis and associated conclusions that stem from the underlying assumptions and models. Interestingly, there is little in common between the investigated proteins aside from their favored medium. While RSC exhibits modest translocation characteristics and highly effective motion with the ability for large molecular forces, ISWI is not only structurally different but highly inefficient in its motion leading to difficulties in determining its specific translocation mechanics. While chromatin remodeling is a ubiquitous facet of eukaryotic life, there remains much to be understood about their general mechanisms.

  20. The relationship between periodic dinucleotides and the nucleosomal DNA deformation revealed by normal mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Debby D.; Yan, Hong

    2011-12-01

    Nucleosomes, which contain DNA and proteins, are the basic unit of eukaryotic chromatins. Polymers such as DNA and proteins are dynamic, and their conformational changes can lead to functional changes. Periodic dinucleotide patterns exist in nucleosomal DNA chains and play an important role in the nucleosome structure. In this paper, we use normal mode analysis to detect significant structural deformations of nucleosomal DNA and investigate the relationship between periodic dinucleotides and DNA motions. We have found that periodic dinucleotides are usually located at the peaks or valleys of DNA and protein motions, revealing that they dominate the nucleosome dynamics. Also, a specific dinucleotide pattern CA/TG appears most frequently.

  1. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo

    PubMed Central

    Ocampo, Josefina; Chereji, Răzvan V.; Eriksson, Peter R.; Clark, David J.

    2016-01-01

    Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo. We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure. PMID:26861626

  2. Scanning force microscopy reveals ellipsoid shape of chicken erythrocyte nucleosomes.

    PubMed Central

    Fritzsche, W; Henderson, E

    1996-01-01

    Scanning force microscopy was used to investigate the conformation of hypotonic spread chicken erythrocyte nucleosomes. Nucleosomal chains were prepared in low-salt conditions and fixed before centrifugation onto glass coverslips and air drying. The images of single nucleosomes were isolated by image processing, and the height and geometry of the resulting three-dimensional structures were investigated. An average nucleosome height of 4.2 +/- 1.1 nm was determined. A virtual cross section at half-maximum height of the nucleosome structure was used for a characterization of the nucleosome geometry. The shape of this cross section was best described by an ellipse with an aspect ratio (major/minor axis) of approximately 1.30. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:8889198

  3. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  4. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  5. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    PubMed

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes.

  6. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF

    PubMed Central

    Prochasson, Philippe; Florens, Laurence; Swanson, Selene K.; Washburn, Michael P.; Workman, Jerry L.

    2005-01-01

    The histone regulatory (HIR) and histone promoter control (HPC) repressor proteins regulate three of the four histone gene loci during the Saccharomyces cerevisiae cell cycle. Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 proteins form a stable HIR repressor complex. The HIR complex promotes histone deposition onto DNA in vitro and constitutes a novel nucleosome assembly complex. The HIR complex stably binds to DNA and nucleosomes. Furthermore, HIR complex binding to nucleosomes forms a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Thus, the HIR complex is a novel nucleosome assembly complex which functions with SWI/SNF to regulate transcription. PMID:16264190

  7. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences.

    PubMed

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-03-18

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.

  8. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  9. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. chromatin modeling | irregular 3D zig-zag | Discrete Surface Charge Optimization model

  10. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    PubMed Central

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended “beads-on-a-string” conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA–nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. PMID:15919827

  11. Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast High Mobility Group Box (HMGB) proteins

    PubMed Central

    Hepp, Matias I.; Alarcon, Valentina; Dutta, Arnob; Workman, Jerry L.; Gutiérrez, José L.

    2014-01-01

    Regulation of gene expression at the level of transcription involves the concerted action of several proteins and protein complexes committed to dynamically alter the surrounding chromatin environment of a gene being activated or repressed. ATP-dependent chromatin remodeling complexes are key actors in chromatin remodeling, and the SWI/SNF complex is the founding member. While many studies have linked the action of these complexes to specific transcriptional regulation of a large number of genes and much is known about their catalytic activity, less is known about the nuclear elements that can enhance or modulate their activity. A number of studies have found that certain High Mobility Group (HMG) proteins are able to stimulate ATP-dependent chromatin remodeling activity, but their influence on the different biochemical outcomes of this activity is still unknown. In this work we studied the influence of the yeast Nhp6A, Nhp6B and Hmo1 proteins (HMGB family members) on different biochemical outcomes of yeast SWI/SNF remodeling activity. We found that all these HMG proteins stimulate the sliding activity of ySWI/SNF, while transient exposure of nucleosomal DNA and octamer transfer catalyzed by this complex are only stimulated by Hmo1. Consistently, only Hmo1 stimulates SWI/SNF binding to the nucleosome. Additionally, the sliding activity of another chromatin remodeling complex, ISW1a, is only stimulated by Hmo1. Further analyses show that these differential stimulatory effects of Hmo1 are dependent on the presence of its C-terminal tail, which contains a stretch of acidic and basic residues. PMID:24972368

  12. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex

    PubMed Central

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz

    2016-01-01

    Abstract Transcriptional regulation can be established by various post‐translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O‐GlcNAcylation (O‐GlcNAc=O‐linked β‐N‐acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post‐translational modification. Mass‐spectrometry‐based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the “facilitates chromatin transcription” (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O‐GlcNAcylation as one of the triggers for FACT‐driven transcriptional control. PMID:27272618

  13. Lupus nephritis: the central role of nucleosomes revealed.

    PubMed

    Mortensen, Elin S; Fenton, Kristin A; Rekvig, Ole P

    2008-02-01

    Systemic lupus erythematosus (SLE) is an autoimmune syndrome characterized by autoantibodies to nuclear constituents. Some of these antibodies are diagnostically important, whereas others act as disease-modifying factors. One clinically important factor is autoantibodies against dsDNA and nucleosomes, which have overlapping diagnostic and nephritogenic impact in SLE. Although a scientific focus for 5 decades, the molecular and cellular origin of these antibodies, and why they are associated with lupus nephritis, is still not fully understood. A consensus has, however, evolved that antibodies to dsDNA and nucleosomes are central pathogenic factors in the development of lupus nephritis. In contrast, no agreement has been reached as to which glomerular structures are bound by nephritogenic anti-nucleosome antibodies in vivo. Mutually contradictory paradigms and models have evolved simply because we still lack precise and conclusive data to provide definitive insight into how autoantibodies induce lupus nephritis and which specificity is critical in the nephritic process(es). In this review, data demonstrating the central role of nucleosomes in inducing and binding potentially nephritogenic antibodies to DNA and nucleosomes are presented and discussed. These autoimmune-inducing processes are discussed in the context of Matzinger's danger model (Matzinger P: Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007, 8:11-13; Matzinger P: The danger model: a renewed sense of self. Science 2002, 296:301-305; Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994, 12:991-1045) and Medzhitov's and Janeway's (Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300; Medzhitov R, Janeway CA Jr: How does the immune system distinguish self from nonself? Semin Immunol 2000, 12:185-188; Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20

  14. Moderate increase in histone acetylation activates the mouse mammary tumor virus promoter and remodels its nucleosome structure.

    PubMed Central

    Bartsch, J; Truss, M; Bode, J; Beato, M

    1996-01-01

    The mouse mammary tumor virus (MMTV) promoter is regulated by steroid hormones through a hormone-responsive region that is organized in a positioned nucleosome. Hormone induction leads to a structural change of this nucleosome which makes its DNA more sensitive to cleavage by DNase I and enables simultaneous binding of all relevant transcription factors. In cells carrying either episomal or chromosomally integrated MMTV promoters, moderate acetylation of core histones, generated by treatment with low concentrations of the histone deacetylase inhibitors sodium butyrate or trichostatin A, enhances transcription from the MMTV promoter in the absence of hormone and potentiates transactivation by either glucocorticoids or progestins. At higher concentrations, histone deacetylase inhibitors reduce basal and hormone induced MMTV transcription. Inducing inhibitor concentrations lead to the same type of nucleosomal DNase I hypersensitivity as hormone treatment, suggesting that moderate acetylation of core histone activates the MMTV promoter by mechanisms involving chromatin remodeling similar to that generated by the inducing hormones. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855250

  15. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    PubMed

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  16. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition

    PubMed Central

    Visnapuu, Mari-Liis; Greene, Eric C.

    2009-01-01

    Here we use single-molecule imaging to determine coarse-grained intrinsic energy landscapes for nucleosome deposition on model DNA substrates. Our results reveal distributions that are correlated with recent in silico predictions, reinforcing the hypothesis that DNA contains some intrinsic positioning information. We also show that cis-regulatory sequences in human DNA coincide with peaks in the intrinsic landscape, whereas valleys correspond to non-regulatory regions, and we present evidence arguing that nucleosome deposition in vertebrates is influenced by factors not accounted for by current theory. Finally, we demonstrate that intrinsic landscapes of nucleosomes containing the centromere-specific variant CenH3 are correlated with patterns observed for canonical nucleosomes, arguing that CenH3 does not alter sequence preferences of centromeric nucleosomes. However, the non-histone protein Scm3 alters the intrinsic landscape of CenH3-containing nucleosomes, enabling them to overcome the otherwise exclusionary effects of poly(dA–dT) tracts, which are enriched in centromeric DNA. PMID:19734899

  17. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    PubMed

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  18. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  19. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1

    PubMed Central

    Ye, Zhenqing; Chen, Zhong; Sunkel, Benjamin; Frietze, Seth; Huang, Tim H.-M.; Wang, Qianben; Jin, Victor X.

    2016-01-01

    The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis. PMID:27458208

  20. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome

    PubMed Central

    Wei, Sijie; Falk, Samantha J.; Black, Ben E.; Lee, Tae-Hee

    2015-01-01

    Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution. PMID:26013809

  1. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

    PubMed Central

    Bantele, Susanne CS; Ferreira, Pedro; Gritenaite, Dalia; Boos, Dominik; Pfander, Boris

    2017-01-01

    DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice. DOI: http://dx.doi.org/10.7554/eLife.21687.001 PMID:28063255

  2. Epigenetic regulation of stem cell maintenance in the Drosophila testis via the nucleosome-remodeling factor NURF.

    PubMed

    Cherry, Christopher M; Matunis, Erika L

    2010-06-04

    Regulation of stem cells depends on both tissue-specific transcriptional regulators and changes in chromatin organization, yet the coordination of these events in endogenous niches is poorly understood. In the Drosophila testis, local JAK-STAT signaling maintains germline and somatic stem cells (GSCs and cyst progenitor cells, or CPCs) in a single niche. Here we show that epigenetic regulation via the nucleosome-remodeling factor (NURF) complex ensures GSC and CPC maintenance by positively regulating JAK-STAT signaling, thereby preventing premature differentiation. Conversely, NURF is not required in early differentiating daughter cells of either lineage. Because three additional ATP-dependent chromatin remodelers (ACF, CHRAC, and dMi-2/NuRD) are dispensable for stem cell maintenance in the testis, epigenetic regulation of stem cells within this niche may rely primarily on NURF. Thus, local signals cooperate with specific chromatin-remodeling complexes in intact niches to coordinately regulate a common set of target genes to prevent premature stem cell differentiation.

  3. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.

    PubMed

    Chen, Kaifu; Wilson, Marenda A; Hirsch, Calley; Watson, Anjanette; Liang, Shoudan; Lu, Yue; Li, Wei; Dent, Sharon Y R

    2013-02-01

    The yeast Cyc8 (also known as Ssn6)-Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Cyc8-Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of CYC8 or TUP1 and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of CYC8 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at -1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Cyc8 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of CYC8 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Cyc8-Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.

  4. Monitoring Conformational Dynamics with Single-Molecule Fluorescence Energy Transfer: Applications in Nucleosome Remodeling

    PubMed Central

    Deindl, Sebastian; Zhuang, Xiaowei

    2016-01-01

    Due to its ability to track distance changes within individual molecules or molecular complexes on the nanometer scale and in real time, single-molecule fluorescence resonance energy transfer (single-molecule FRET) is a powerful tool to tackle a wide range of important biological questions. Using our recently developed single-molecule FRET assay to monitor nucleosome translocation as an illustrative example, we describe here in detail how to set up, carry out, and analyze single-molecule FRET experiments that provide time-dependent information on biomolecular processes. PMID:22929765

  5. A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis.

    PubMed

    Börner, Kenneth; Jain, Dhawal; Vazquez-Pianzola, Paula; Vengadasalam, Sandra; Steffen, Natascha; Fyodorov, Dmitry V; Tomancak, Pavel; Konev, Alexander; Suter, Beat; Becker, Peter B

    2016-03-15

    The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf1(7) allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf1(1) allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf1(1) deletion--despite disruption of the Acf1 reading frame--expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis.

  6. A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis

    PubMed Central

    Börner, Kenneth; Jain, Dhawal; Vazquez-Pianzola, Paula; Vengadasalam, Sandra; Steffen, Natascha; Fyodorov, Dmitry V.; Tomancak, Pavel; Konev, Alexander; Suter, Beat; Becker, Peter B.

    2016-01-01

    The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf17 allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf11 allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf11 deletion – despite disruption of the Acf1 reading frame – expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis. PMID:26851213

  7. Ubiquitous nucleosome crowding in the yeast genome.

    PubMed

    Chereji, Răzvan V; Morozov, Alexandre V

    2014-04-08

    Nucleosomes may undergo a conformational change in which a stretch of DNA peels off the histone octamer surface as a result of thermal fluctuations or interactions with chromatin remodelers. Thus, neighboring nucleosomes may invade each other's territories by DNA unwrapping and translocation, or through initial assembly in partially wrapped states. A recent high-resolution map of distances between dyads of neighboring nucleosomes in Saccharomyces cerevisiae reveals that nucleosomes frequently overlap DNA territories of their neighbors. This conclusion is supported by lower-resolution maps of S. cerevisiae nucleosome lengths based on micrococcal nuclease digestion and paired-end sequencing. The average length of wrapped DNA follows a stereotypical pattern in genes and promoters, correlated with the well-known distribution of nucleosome occupancy: nucleosomal DNA tends to be shorter in promoters and longer in coding regions. To explain these observations, we have developed a biophysical model that uses a 10-11-bp periodic histone-DNA binding energy profile. The profile is based on the pattern of histone-DNA contacts in nucleosome crystal structures, as well as the idea of linker length discretization caused by higher-order chromatin structure. Our model is in agreement with the observed genome-wide distributions of interdyad distances, wrapped DNA lengths, and nucleosome occupancies. Furthermore, our approach explains in vitro measurements of the accessibility of nucleosome-covered target sites and nucleosome-induced cooperativity between DNA-binding factors. We rule out several alternative scenarios of histone-DNA interactions as inconsistent with the genomic data.

  8. BAF53b, a Neuron-Specific Nucleosome Remodeling Factor, Is Induced after Learning and Facilitates Long-Term Memory Consolidation.

    PubMed

    Yoo, Miran; Choi, Kwang-Yeon; Kim, Jieun; Kim, Mujun; Shim, Jaehoon; Choi, Jun-Hyeok; Cho, Hye-Yeon; Oh, Jung-Pyo; Kim, Hyung-Su; Kaang, Bong-Kiun; Han, Jin-Hee

    2017-03-29

    Although epigenetic mechanisms of gene expression regulation have recently been implicated in memory consolidation and persistence, the role of nucleosome-remodeling is largely unexplored. Recent studies show that the functional loss of BAF53b, a postmitotic neuron-specific subunit of the BAF nucleosome-remodeling complex, results in the deficit of consolidation of hippocampus-dependent memory and cocaine-associated memory in the rodent brain. However, it is unclear whether BAF53b expression is regulated during memory formation and how BAF53b regulates fear memory in the amygdala, a key brain site for fear memory encoding and storage. To address these questions, we used viral vector approaches to either decrease or increase BAF53b function specifically in the lateral amygdala of adult mice in auditory fear conditioning paradigm. Knockdown of Baf53b before training disrupted long-term memory formation with no effect on short-term memory, basal synaptic transmission, and spine structures. We observed in our qPCR analysis that BAF53b was induced in the lateral amygdala neurons at the late consolidation phase after fear conditioning. Moreover, transient BAF53b overexpression led to persistently enhanced memory formation, which was accompanied by increase in thin-type spine density. Together, our results provide the evidence that BAF53b is induced after learning, and show that such increase of BAF53b level facilitates memory consolidation likely by regulating learning-related spine structural plasticity.SIGNIFICANCE STATEMENT Recent works in the rodent brain begin to link nucleosome remodeling-dependent epigenetic mechanism to memory consolidation. Here we show that BAF53b, an epigenetic factor involved in nucleosome remodeling, is induced in the lateral amygdala neurons at the late phase of consolidation after fear conditioning. Using specific gene knockdown or overexpression approaches, we identify the critical role of BAF53b in the lateral amygdala neurons for memory

  9. Sall4 controls differentiation of pluripotent cells independently of the Nucleosome Remodelling and Deacetylation (NuRD) complex

    PubMed Central

    Miller, Anzy; Ralser, Meryem; Kloet, Susan L.; Loos, Remco; Nishinakamura, Ryuichi; Bertone, Paul; Vermeulen, Michiel

    2016-01-01

    Sall4 is an essential transcription factor for early mammalian development and is frequently overexpressed in cancer. Although it is reported to play an important role in embryonic stem cell (ESC) self-renewal, whether it is an essential pluripotency factor has been disputed. Here, we show that Sall4 is dispensable for mouse ESC pluripotency. Sall4 is an enhancer-binding protein that prevents precocious activation of the neural gene expression programme in ESCs but is not required for maintenance of the pluripotency gene regulatory network. Although a proportion of Sall4 protein physically associates with the Nucleosome Remodelling and Deacetylase (NuRD) complex, Sall4 neither recruits NuRD to chromatin nor influences transcription via NuRD; rather, free Sall4 protein regulates transcription independently of NuRD. We propose a model whereby enhancer binding by Sall4 and other pluripotency-associated transcription factors is responsible for maintaining the balance between transcriptional programmes in pluripotent cells. PMID:27471257

  10. The NuRD nucleosome remodelling complex and NHK-1 kinase are required for chromosome condensation in oocytes.

    PubMed

    Nikalayevich, Elvira; Ohkura, Hiroyuki

    2015-02-01

    Chromosome condensation during cell division is one of the most dramatic events in the cell cycle. Condensin and topoisomerase II are the most studied factors in chromosome condensation. However, their inactivation leads to only mild defects and little is known about the roles of other factors. Here, we took advantage of Drosophilaoocytes to elucidate the roles of potential condensation factors by performing RNA interference (RNAi). Consistent with previous studies, depletion of condensin I subunits or topoisomerase II in oocytes only mildly affected chromosome condensation. In contrast, we found severe undercondensation of chromosomes after depletion of the Mi-2-containing NuRD nucleosome remodelling complex or the protein kinase NHK-1 (also known as Ballchen in Drosophila). The further phenotypic analysis suggests that Mi-2 and NHK-1 are involved in different pathways of chromosome condensation. We show that the main role of NHK-1 in chromosome condensation is to phosphorylate Barrier-to-autointegration factor (BAF) and suppress its activity in linking chromosomes to nuclear envelope proteins. We further show that NHK-1 is important for chromosome condensation during mitosis as well as in oocytes.

  11. The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions.

    PubMed

    Xie, Wenbing; Ling, Te; Zhou, Yonggang; Feng, Weijun; Zhu, Qiaoyun; Stunnenberg, Henk G; Grummt, Ingrid; Tao, Wei

    2012-05-22

    rRNA genes (rDNA) exist in two distinct epigenetic states, active promoters being unmethylated and marked by euchromatic histone modifications, whereas silent ones are methylated and exhibit heterochromatic features. Here we show that the nucleosome remodeling and deacetylation (NuRD) complex establishes a specific chromatin structure at rRNA genes that are poised for transcription activation. The promoter of poised rRNA genes is unmethylated, associated with components of the preinitiation complex, marked by bivalent histone modifications and covered by a nucleosome in the "off" position, which is refractory to transcription initiation. Repression of rDNA transcription in growth-arrested and differentiated cells correlates with elevated association of NuRD and increased levels of poised rRNA genes. Reactivation of transcription requires resetting the promoter-bound nucleosome into the "on" position by the DNA-dependent ATPase CSB (Cockayne syndrome protein B). The results uncover a unique mechanism by which ATP-dependent chromatin remodeling complexes with opposing activities establish a specific chromatin state and regulate transcription.

  12. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.

    PubMed

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-12-10

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.

  13. What controls nucleosome positions?

    PubMed

    Segal, Eran; Widom, Jonathan

    2009-08-01

    The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.

  14. Genome-wide cooperation by HAT Gcn5, remodeler SWI/SNF, and chaperone Ydj1 in promoter nucleosome eviction and transcriptional activation

    PubMed Central

    Qiu, Hongfang; Chereji, Răzvan V.; Hu, Cuihua; Cole, Hope A.; Rawal, Yashpal; Clark, David J.; Hinnebusch, Alan G.

    2016-01-01

    Chaperones, nucleosome remodeling complexes, and histone acetyltransferases have been implicated in nucleosome disassembly at promoters of particular yeast genes, but whether these cofactors function ubiquitously, as well as the impact of nucleosome eviction on transcription genome-wide, is poorly understood. We used chromatin immunoprecipitation of histone H3 and RNA polymerase II (Pol II) in mutants lacking single or multiple cofactors to address these issues for about 200 genes belonging to the Gcn4 transcriptome, of which about 70 exhibit marked reductions in H3 promoter occupancy on induction by amino acid starvation. Examining four target genes in a panel of mutants indicated that SWI/SNF, Gcn5, the Hsp70 cochaperone Ydj1, and chromatin-associated factor Yta7 are required downstream from Gcn4 binding, whereas Asf1/Rtt109, Nap1, RSC, and H2AZ are dispensable for robust H3 eviction in otherwise wild-type cells. Using ChIP-seq to interrogate all 70 exemplar genes in single, double, and triple mutants implicated Gcn5, Snf2, and Ydj1 in H3 eviction at most, but not all, Gcn4 target promoters, with Gcn5 generally playing the greatest role and Ydj1 the least. Remarkably, these three cofactors cooperate similarly in H3 eviction at virtually all yeast promoters. Defective H3 eviction in cofactor mutants was coupled with reduced Pol II occupancies for the Gcn4 transcriptome and the most highly expressed uninduced genes, but the relative Pol II levels at most genes were unaffected or even elevated. These findings indicate that nucleosome eviction is crucial for robust transcription of highly expressed genes but that other steps in gene activation are more rate-limiting for most other yeast genes. PMID:26602697

  15. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy

    PubMed Central

    Valieva, Maria E.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Kozlova, Anastasia L.; Kirpichnikov, Mikhail P.; Hu, Qi; Botuyan, Maria Victoria; Mer, Georges; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription) is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET) microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD) and the high mobility group (HMG) domain of the structure-specific recognition protein 1 (SSRP1) subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16) and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes) nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3). Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar. PMID:28067802

  16. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation

    PubMed Central

    Wakamori, Masatoshi; Fujii, Yoshifumi; Suka, Noriyuki; Shirouzu, Mikako; Sakamoto, Kensaku; Umehara, Takashi; Yokoyama, Shigeyuki

    2015-01-01

    Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 Å and 2.2 Å resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs. PMID:26607036

  17. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  18. The yeast prefoldin-like URI-orthologue Bud27 associates with the RSC nucleosome remodeler and modulates transcription

    PubMed Central

    Mirón-García, María Carmen; Garrido-Godino, Ana Isabel; Martínez-Fernández, Verónica; Fernández-Pevida, Antonio; Cuevas-Bermúdez, Abel; Martín-Expósito, Manuel; Chávez, Sebastián; de la Cruz, Jesús; Navarro, Francisco

    2014-01-01

    Bud27, the yeast orthologue of human URI/RMP, is a member of the prefoldin-like family of ATP-independent molecular chaperones. It has recently been shown to mediate the assembly of the three RNA polymerases in an Rpb5-dependent manner. In this work, we present evidence of Bud27 modulating RNA pol II transcription elongation. We show that Bud27 associates with RNA pol II phosphorylated forms (CTD-Ser5P and CTD-Ser2P), and that its absence affects RNA pol II occupancy of transcribed genes. We also reveal that Bud27 associates in vivo with the Sth1 component of the chromatin remodeling complex RSC and mediates its association with RNA pol II. Our data suggest that Bud27, in addition of contributing to Rpb5 folding within the RNA polymerases, also participates in the correct assembly of other chromatin-associated protein complexes, such as RSC, thereby modulating their activity. PMID:25081216

  19. High-density nucleosome occupancy map of human chromosome 9p21-22 reveals chromatin organization of the type I interferon gene cluster.

    PubMed

    Freaney, Jonathan E; Zhang, Quanwei; Yigit, Erbay; Kim, Rebecca; Widom, Jonathan; Wang, Ji-Ping; Horvath, Curt M

    2014-09-01

    Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21-22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome-DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection.

  20. The Chromodomains of the Chd1 Chromatin Remodeler Regulate DNA Access to the ATPase Motor

    SciTech Connect

    Hauk, G.; McKnight, J; Nodelman, I; Bowman, G

    2010-01-01

    Chromatin remodelers are ATP-driven machines that assemble, slide, and remove nucleosomes from DNA, but how the ATPase motors of remodelers are regulated is poorly understood. Here we show that the double chromodomain unit of the Chd1 remodeler blocks DNA binding and activation of the ATPase motor in the absence of nucleosome substrates. The Chd1 crystal structure reveals that an acidic helix joining the chromodomains can pack against a DNA-binding surface of the ATPase motor. Disruption of the chromodomain-ATPase interface prevents discrimination between nucleosomes and naked DNA and reduces the reliance on the histone H4 tail for nucleosome sliding. We propose that the chromodomains allow Chd1 to distinguish between nucleosomes and naked DNA by physically gating access to the ATPase motor, and we hypothesize that related ATPase motors may employ a similar strategy to discriminate among DNA-containing substrates.

  1. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization

    PubMed Central

    Tsankov, Alex; Yanagisawa, Yoshimi; Rhind, Nicholas; Regev, Aviv; Rando, Oliver J.

    2011-01-01

    The packaging of eukaryotic genomes into nuclesomes plays critical roles in chromatin organization and gene regulation. Studies in Saccharomyces cerevisiae indicate that nucleosome occupancy is partially encoded by intrinsic antinucleosomal DNA sequences, such as poly(A) sequences, as well as by binding sites for trans-acting factors that can evict nucleosomes, such as Reb1 and the Rsc3/30 complex. Here, we use genome-wide nucleosome occupancy maps in 13 Ascomycota fungi to discover large-scale evolutionary reprogramming of both intrinsic and trans determinants of chromatin structure. We find that poly(G)s act as intrinsic antinucleosomal sequences, comparable to the known function of poly(A)s, but that the abundance of poly(G)s has diverged greatly between species, obscuring their antinucleosomal effect in low-poly(G) species such as S. cerevisiae. We also develop a computational method that uses nucleosome occupancy maps for discovering trans-acting general regulatory factor (GRF) binding sites. Our approach reveals that the specific sequences bound by GRFs have diverged substantially across evolution, corresponding to a number of major evolutionary transitions in the repertoire of GRFs. We experimentally validate a proposed evolutionary transition from Cbf1 as a major GRF in pre-whole-genome duplication (WGD) yeasts to Reb1 in post-WGD yeasts. We further show that the mating type switch-activating protein Sap1 is a GRF in S. pombe, demonstrating the general applicability of our approach. Our results reveal that the underlying mechanisms that determine in vivo chromatin organization have diverged and that comparative genomics can help discover new determinants of chromatin organization. PMID:21914852

  2. Nucleosome Switches

    NASA Astrophysics Data System (ADS)

    Schwab, David J.; Bruinsma, Robijn F.; Rudnick, Joseph; Widom, Jonathan

    2008-06-01

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  3. Nucleosome switches.

    PubMed

    Schwab, David J; Bruinsma, Robijn F; Rudnick, Joseph; Widom, Jonathan

    2008-06-06

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  4. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes.

    PubMed

    Dechassa, Mekonnen Lemma; Sabri, Abdellah; Pondugula, Santhi; Kassabov, Stefan R; Chatterjee, Nilanjana; Kladde, Michael P; Bartholomew, Blaine

    2010-05-28

    The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays, however, has not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced, and then, in a slower reaction, an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved toward the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome.

  5. Functional roles of nucleosome stability and dynamics.

    PubMed

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  6. Review fifteen years of search for strong nucleosomes.

    PubMed

    Trifonov, Edward N; Nibhani, Reshma

    2015-08-01

    Don Crothers, Mikael Kubista, Jon Widom, and their teams have been first to look for strong nucleosomes, in a bid to reveal the nucleosome positioning pattern(s) carried by the nucleosome DNA sequences. They were first to demonstrate that the nucleosome stability correlates with 10-11 base sequence periodicity, and that the strong nucleosomes localize preferentially in centromeres. This review describes these findings and their connection to recent discovery of the strong nucleosomes (SNs) with visibly periodic nucleosome DNA sequences.

  7. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  8. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation

    PubMed Central

    Kawashima, Satoshi; Nakabayashi, Yu; Matsubara, Kazuko; Sano, Norihiko; Enomoto, Takemi; Tanaka, Kozo; Seki, Masayuki; Horikoshi, Masami

    2011-01-01

    The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I–III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function. PMID:21772248

  9. Nucleosome Positioning in Saccharomyces cerevisiae

    PubMed Central

    Jansen, An; Verstrepen, Kevin J.

    2011-01-01

    Summary: The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena. PMID:21646431

  10. Structural constraints in collaborative competition of transcription factors against the nucleosome.

    PubMed

    Moyle-Heyrman, Georgette; Tims, Hannah S; Widom, Jonathan

    2011-09-30

    Cooperativity in transcription factor (TF) binding is essential in eukaryotic gene regulation and arises through diverse mechanisms. Here, we focus on one mechanism, collaborative competition, which is of interest because it arises both automatically (with no requirement for TF coevolution) and spontaneously (with no requirement for ATP-dependent nucleosome remodeling factors). Previous experimental studies of collaborative competition analyzed cases in which target sites for pairs of cooperating TFs were contained within the same side of the nucleosome. Here, we utilize new assays to measure cooperativity in protein binding to pairs of nucleosomal DNA target sites. We focus on the cases that are of greatest in vivo relevance, in which one binding site is located close to the end of a nucleosome and the other binding site is located at diverse positions throughout the nucleosome. Our results reveal energetically significant positive (favorable) cooperativity for pairs of sites on the same side of the nucleosome but, for the cases examined, energetically insignificant cooperativity between sites on opposite sides of the nucleosome. These findings imply a special significance for TF binding sites that are spaced within one-half nucleosome length (74 bp) or less along the genome and may prove useful for prediction of cooperatively acting TFs genome wide.

  11. Friend of GATA (FOG) interacts with the nucleosome remodeling and deacetylase complex (NuRD) to support primitive erythropoiesis in Xenopus laevis.

    PubMed

    Mimoto, Mizuho S; Christian, Jan L

    2012-01-01

    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect.

  12. Nucleosome signalling; an evolving concept.

    PubMed

    Turner, Bryan M

    2014-08-01

    The nucleosome core particle is the first stage of DNA packaging in virtually all eukaryotes. It both organises nuclear DNA and protects it from adventitious binding of transcription factors and the consequent deregulation of gene expression. Both properties are essential to allow the genome expansion characteristic of complex eukaryotes. The nucleosome is a flexible structure in vivo, allowing selective relaxation of its intrinsically inhibitory effects in response to external signals. Structural changes are brought about by dedicated remodelling enzymes and by posttranslational modifications of the core histones. Histone modifications occasionally alter nucleosome structure directly, but their more usual roles are to act as receptors on the nucleosome surface that are recognised by specific protein domains. The bound proteins, in turn, affect nucleosome structure and function. This strategy enormously expands the signalling capacity of the nucleosome and its ability to influence both the initiation and elongation stages of transcription. The enzymes responsible for placing and removing histone modifications, and the modification-binding proteins themselves, are ubiquitous, numerous and conserved amongst eukaryotes. Like the nucleosome, they date back to the earliest eukaryotes and may have played integral and essential roles in eukaryotic evolution. The present properties and epigenetic functions of the nucleosome reflect its evolutionary past and the selective pressures to which it has responded and can be better understood in this context. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.

  13. SWI/SNF-dependent chromatin remodeling of RNR3 requires TAFIIs and the general transcription machinery

    PubMed Central

    Sharma, Vishva Mitra; Li, Bing; Reese, Joseph C.

    2003-01-01

    Gene expression requires the recruitment of chromatin remodeling activities and general transcription factors (GTFs) to promoters. Whereas the role of activators in recruiting chromatin remodeling activities has been clearly demonstrated, the contributions of the transcription machinery have not been firmly established. Here we demonstrate that the remodeling of the RNR3 promoter requires a number of GTFs, mediator and RNA polymerase II. We also show that remodeling is dependent upon the SWI/SNF complex, and that TFIID and RNA polymerase II are required for its recruitment to the promoter. In contrast, Gcn5p-dependent histone acetylation occurs independently of TFIID and RNA polymerase II function, and we provide evidence that acetylation increases the extent of nucleosome remodeling, but is not required for SWI/SNF recruitment. Thus, the general transcription machinery can contribute to nucleosome remodeling by mediating the association of SWI/SNF with promoters, thereby revealing a novel pathway for the recruitment of chromatin remodeling activities. PMID:12600943

  14. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation

    PubMed Central

    Lercher, Lukas; Raj, Ritu; Patel, Nisha A.; Price, Joshua; Mohammed, Shabaz; Robinson, Carol V.; Schofield, Christopher J.; Davis, Benjamin G.

    2015-01-01

    O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an ‘open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription. PMID:26305776

  15. Generation of a synthetic GlcNAcylated nucleosome reveals regulation of stability by H2A-Thr101 GlcNAcylation

    NASA Astrophysics Data System (ADS)

    Lercher, Lukas; Raj, Ritu; Patel, Nisha A.; Price, Joshua; Mohammed, Shabaz; Robinson, Carol V.; Schofield, Christopher J.; Davis, Benjamin G.

    2015-08-01

    O-GlcNAcylation is a newly discovered histone modification implicated in transcriptional regulation, but no structural information on the physical effect of GlcNAcylation on chromatin exists. Here, we generate synthetic, pure GlcNAcylated histones and nucleosomes and reveal that GlcNAcylation can modulate structure through direct destabilization of H2A/H2B dimers in the nucleosome, thus promoting an `open' chromatin state. The results suggest that a plausible molecular basis for one role of histone O-GlcNAcylation in epigenetic regulation is to lower the barrier for RNA polymerase passage and hence increase transcription.

  16. Mechanisms of ATP Dependent Chromatin Remodeling

    PubMed Central

    Gangaraju, Vamsi K.; Bartholomew, Blaine

    2007-01-01

    The inter-relationship between DNA repair and ATP dependent chromatin remodeling has begun to become very apparent with recent discoveries. ATP dependent remodeling complexes mobilize nucleosomes along DNA, promote the exchange of histones, or completely displace nucleosomes from DNA. These remodeling complexes are often categorized based on the domain organization of their catalytic subunit. The biochemical properties and structural information of several of these remodeling complexes are reviewed. The different models for how these complexes are able to mobilize nucleosomes and alter nucleosome structure are presented incorporating several recent findings. Finally the role of histone tails and their respective modifications in ATP-dependent remodeling are discussed. PMID:17306844

  17. Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    NASA Astrophysics Data System (ADS)

    Karau, Kelly L.; Molthen, Robert C.; Johnson, Roger H.; Dhyani, Anita H.; Haworth, Steven T.; Dawson, Christopher A.

    2001-05-01

    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This 'self-consistency' property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns.

  18. Changing chromatin fiber conformation by nucleosome repositioning.

    PubMed

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-11-04

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ?10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.

  19. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  20. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.

    2005-03-01

    The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. conformational transitions | evanescent field fluorescence microscope | nucleosome dynamics | nucleosome opening

  1. Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein.

    PubMed

    Zalckvar, Einat; Paulus, Christina; Tillo, Desiree; Asbach-Nitzsche, Alexandra; Lubling, Yaniv; Winterling, Carla; Strieder, Nicholas; Mücke, Katrin; Goodrum, Felicia; Segal, Eran; Nevels, Michael

    2013-08-06

    Human CMV (hCMV) establishes lifelong infections in most of us, causing developmental defects in human embryos and life-threatening disease in immunocompromised individuals. During productive infection, the viral >230,000-bp dsDNA genome is expressed widely and in a temporal cascade. The hCMV genome does not carry histones when encapsidated but has been proposed to form nucleosomes after release into the host cell nucleus. Here, we present hCMV genome-wide nucleosome occupancy and nascent transcript maps during infection of permissive human primary cells. We show that nucleosomes occupy nuclear viral DNA in a nonrandom and highly predictable fashion. At early times of infection, nucleosomes associate with the hCMV genome largely according to their intrinsic DNA sequence preferences, indicating that initial nucleosome formation is genetically encoded in the virus. However, as infection proceeds to the late phase, nucleosomes redistribute extensively to establish patterns mostly determined by nongenetic factors. We propose that these factors include key regulators of viral gene expression encoded at the hCMV major immediate-early (IE) locus. Indeed, mutant virus genomes deficient for IE1 expression exhibit globally increased nucleosome loads and reduced nucleosome dynamics compared with WT genomes. The temporal nucleosome occupancy differences between IE1-deficient and WT viruses correlate inversely with changes in the pattern of viral nascent and total transcript accumulation. These results provide a framework of spatial and temporal nucleosome organization across the genome of a major human pathogen and suggest that an hCMV major IE protein governs overall viral chromatin structure and function.

  2. A Genetic Screen and Transcript Profiling Reveal a Shared Regulatory Program for Drosophila Linker Histone H1 and Chromatin Remodeler CHD1

    PubMed Central

    Kavi, Harsh; Lu, Xingwu; Xu, Na; Bartholdy, Boris A.; Vershilova, Elena; Skoultchi, Arthur I.; Fyodorov, Dmitry V.

    2015-01-01

    Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression. PMID:25628309

  3. A split personality for nucleosomes.

    PubMed

    McKay, Daniel J; Lieb, Jason D

    2014-12-04

    A high-resolution look at where histones touch DNA reveals a surprisingly intricate, dynamic, and modular nucleosome. Three advances in the study by Rhee et al. include unexpected interactions between the H3 tail and linker DNA, new evidence for existence of subnucleosomal particles, and asymmetric patterns of histone modification within a single nucleosome that correspond to the direction of transcription.

  4. Canonical nucleosome organization at promoters forms during genome activation.

    PubMed

    Zhang, Yong; Vastenhouw, Nadine L; Feng, Jianxing; Fu, Kai; Wang, Chenfei; Ge, Ying; Pauli, Andrea; van Hummelen, Paul; Schier, Alexander F; Liu, X Shirley

    2014-02-01

    The organization of nucleosomes influences transcriptional activity by controlling accessibility of DNA binding proteins to the genome. Genome-wide nucleosome binding profiles have identified a canonical nucleosome organization at gene promoters, where arrays of well-positioned nucleosomes emanate from nucleosome-depleted regions. The mechanisms of formation and the function of canonical promoter nucleosome organization remain unclear. Here we analyze the genome-wide location of nucleosomes during zebrafish embryogenesis and show that well-positioned nucleosome arrays appear on thousands of promoters during the activation of the zygotic genome. The formation of canonical promoter nucleosome organization is independent of DNA sequence preference, transcriptional elongation, and robust RNA polymerase II (Pol II) binding. Instead, canonical promoter nucleosome organization correlates with the presence of histone H3 lysine 4 trimethylation (H3K4me3) and affects future transcriptional activation. These findings reveal that genome activation is central to the organization of nucleosome arrays during early embryogenesis.

  5. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning.

    PubMed

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M

    2008-07-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome.

  6. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes.

    PubMed

    Liu, Ning; Peterson, Craig L; Hayes, Jeffrey J

    2011-10-01

    The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.

  7. Nucleosome Organization in Human Embryonic Stem Cells.

    PubMed

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  8. Chromatin remodelling: the industrial revolution of DNA around histones.

    PubMed

    Saha, Anjanabha; Wittmeyer, Jacqueline; Cairns, Bradley R

    2006-06-01

    Chromatin remodellers are specialized multi-protein machines that enable access to nucleosomal DNA by altering the structure, composition and positioning of nucleosomes. All remodellers have a catalytic ATPase subunit that is similar to known DNA-translocating motor proteins, suggesting DNA translocation as a unifying aspect of their mechanism. Here, we explore the diversity and specialization of chromatin remodellers, discuss how nucleosome modifications regulate remodeller activity and consider a model for the exposure of nucleosomal DNA that involves the use of directional DNA translocation to pump 'DNA waves' around the nucleosome.

  9. Visible periodicity of strong nucleosome DNA sequences.

    PubMed

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  10. Structure of nucleosome-HMG complexes

    SciTech Connect

    Paton, A.E.

    1982-12-01

    This dissertation concentrates on the structure of HMG-nucleosome complexes, and how they differ from nucleosomes alone. The first chapter provides an introduction to chromatin and an overview of the field. The second and third chapters describe what kinds of nucleosome-HMG protein complexes form in solution, and where the HMG proteins may bind on the nucleosome. A model is proposed that locates the HMG binding sites on the nucleosome core particle. The fourth chapter describes the biophysical characterization of the complex. The methods include thermal denaturation, circular dichroism and sedimentation velocity, all done under variety of solvent conditions. These methods reveal a great deal of information on the stability and interactions of the complex. The fifth chapter describes conformational probes of the complex. These results reveal the structural transitions that occur when HMG protein binds to the nucleosome as well as the parts of the nucleosome essential for the binding reaction.

  11. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    PubMed

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  12. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays.

    PubMed

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-12-16

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the 'softness' of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to 'hard' particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.

  13. Histone-DNA contacts in structure/function relationships of nucleosomes as revealed by crosslinking

    SciTech Connect

    Usachenko, S.I.; Bradbury, E.M. |

    1998-12-31

    The magnitude of the problem of understanding the structure/function relationships of eukaryotic chromosomes can be appreciated from the fact that the human diploid genome contains more than 2 meters of DNA packaged into 46 chromosomes, each at metaphase being several microns in length. Each chromatid of a chromosome contains a single DNA molecule several centimeters in length. In addition to the DNA, chromosomes contain an equal weight of histones and an equal weight of non-histone chromosomal proteins. These histones are the major chromosomal structural proteins. The non-histone chromosomal proteins are involved in the DNA processes of transcription and replication, in chromosome organization and in nuclear architecture. Polytene chromosomes with their bands and interbands and puffs of active genetic loci provide visual evidence for long range order as do the bands and interbands of mammalian metaphase chromosomes. The gentle removal of histones and all but the most tightly bound 2--3% of non-histone proteins from metaphase chromosomes revealed by electron microscopy a residual protein scaffold constraining a halo of DNA loops extending out from the scaffold.

  14. A physical analysis of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  15. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome

    PubMed Central

    González, Sara; García, Alicia; Vázquez, Enrique; Serrano, Rebeca; Sánchez, Mar; Quintales, Luis; Antequera, Francisco

    2016-01-01

    In the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae. This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open the possibility of designing coding and noncoding DNA molecules capable of directing their own nucleosomal organization. PMID:27662899

  16. Dynamics of nucleosome invasion by DNA binding proteins.

    PubMed

    Tims, Hannah S; Gurunathan, Kaushik; Levitus, Marcia; Widom, Jonathan

    2011-08-12

    Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.

  17. The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF.

    PubMed

    Kukimoto, Iwao; Elderkin, Sarah; Grimaldi, Margaret; Oelgeschläger, Thomas; Varga-Weisz, Patrick D

    2004-01-30

    The histone fold is a structural motif with which two related proteins interact and is found in complexes involved in wrapping DNA, the nucleosome, and transcriptional regulation, as in NC2. We reveal a novel function for histone-fold proteins: facilitation of nucleosome remodeling. ACF1-ISWI complex (ATP-dependent chromatin assembly and remodeling factor [ACF]) associates with histone-fold proteins (CHRAC-15 and CHRAC-17 in the human chromatin accessibility complex [CHRAC]) whose functional relevance has been unclear. We show that these histone-fold proteins facilitate ATP-dependent nucleosome sliding by ACF. Direct interaction of the CHRAC-15/17 complex with the ACF1 subunit is essential for this process. CHRAC-17 interacts with another histone-fold protein, p12, in DNA polymerase epsilon, but CHRAC-15 is essential for interaction with ACF and enhancement of nucleosome sliding. Surprisingly, CHRAC-15/17, p12/CHRAC-17, and NC2 complexes facilitate ACF-mediated chromatin assembly by a mechanism different from nucleosome sliding enhancement, suggesting a general activity of H2A/H2B type histone-fold complexes in chromatin assembly.

  18. A role for Snf2 related nucleosome spacing enzymes in genome-wide nucleosome organization

    PubMed Central

    Gkikopoulos, Triantaffyllos; Schofield, Pieta; Singh, Vijender; Pinskaya, Marina; Mellor, Jane; Smolle, Michaela; Workman, Jerry L.; Barton, Geoffrey; Owen-Hughes, Tom

    2012-01-01

    The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here we show that the combined action of Isw1 and Chd1 nucleosome spacing enzymes is required to maintain this organization. In the absence of these enzymes regular positioning of the majority of nucleosomes is lost. Exceptions include the region upstream of the promoter, the +1 nucleosome and a subset of locations distributed throughout coding regions where other factors are likely to be involved. These observations indicated that ATP-dependent remodeling enzymes are responsible for directing the positioning of the majority of nucleosomes within the Saccharomyces cerevisiae genome. PMID:21940898

  19. Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability.

    PubMed

    Wippo, Christian J; Krstulovic, Bojana Silic; Ertel, Franziska; Musladin, Sanja; Blaschke, Dorothea; Stürzl, Sabrina; Yuan, Guo-Cheng; Hörz, Wolfram; Korber, Philipp; Barbaric, Slobodan

    2009-06-01

    We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.

  20. Genomic Nucleosome Organization Reconstituted with Pure Proteins.

    PubMed

    Krietenstein, Nils; Wal, Megha; Watanabe, Shinya; Park, Bongsoo; Peterson, Craig L; Pugh, B Franklin; Korber, Philipp

    2016-10-20

    Chromatin remodelers regulate genes by organizing nucleosomes around promoters, but their individual contributions are obfuscated by the complex in vivo milieu of factor redundancy and indirect effects. Genome-wide reconstitution of promoter nucleosome organization with purified proteins resolves this problem and is therefore a critical goal. Here, we reconstitute four stages of nucleosome architecture using purified components: yeast genomic DNA, histones, sequence-specific Abf1/Reb1, and remodelers RSC, ISW2, INO80, and ISW1a. We identify direct, specific, and sufficient contributions that in vivo observations validate. First, RSC clears promoters by translating poly(dA:dT) into directional nucleosome removal. Second, partial redundancy is recapitulated where INO80 alone, or ISW2 at Abf1/Reb1sites, positions +1 nucleosomes. Third, INO80 and ISW2 each align downstream nucleosomal arrays. Fourth, ISW1a tightens the spacing to canonical repeat lengths. Such a minimal set of rules and proteins establishes core mechanisms by which promoter chromatin architecture arises through a blend of redundancy and specialization.

  1. Quantitative analysis of the chromatin proteome in disease reveals remodeling principles and identifies high mobility group protein B2 as a regulator of hypertrophic growth.

    PubMed

    Franklin, Sarah; Chen, Haodong; Mitchell-Jordan, Scherise; Ren, Shuxun; Wang, Yibin; Vondriska, Thomas M

    2012-06-01

    A fundamental question in biology is how genome-wide changes in gene expression are enacted in response to a finite stimulus. Recent studies have mapped changes in nucleosome localization, determined the binding preferences for individual transcription factors, and shown that the genome adopts a nonrandom structure in vivo. What remains unclear is how global changes in the proteins bound to DNA alter chromatin structure and gene expression. We have addressed this question in the mouse heart, a system in which global gene expression and massive phenotypic changes occur without cardiac cell division, making the mechanisms of chromatin remodeling centrally important. To determine factors controlling genomic plasticity, we used mass spectrometry to measure chromatin-associated proteins. We have characterized the abundance of 305 chromatin-associated proteins in normal cells and measured changes in 108 proteins that accompany the progression of heart disease. These studies were conducted on a high mass accuracy instrument and confirmed in multiple biological replicates, facilitating statistical analysis and allowing us to interrogate the data bioinformatically for modules of proteins involved in similar processes. Our studies reveal general principles for global shifts in chromatin accessibility: altered linker to core histone ratio; differing abundance of chromatin structural proteins; and reprogrammed histone post-translational modifications. Using small interfering RNA-mediated loss-of-function in isolated cells, we demonstrate that the non-histone chromatin structural protein HMGB2 (but not HMGB1) suppresses pathologic cell growth in vivo and controls a gene expression program responsible for hypertrophic cell growth. Our findings reveal the basis for alterations in chromatin structure necessary for genome-wide changes in gene expression. These studies have fundamental implications for understanding how global chromatin remodeling occurs with specificity and

  2. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes

    PubMed Central

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin

    2016-01-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae. Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1. PMID:27273866

  3. Reading sequence-directed computational nucleosome maps.

    PubMed

    Nibhani, Reshma; Trifonov, Edward N

    2015-01-01

    Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.

  4. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response.

    PubMed

    Sexton, Brittany S; Druliner, Brooke R; Vera, Daniel L; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H

    2016-02-09

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response.

  5. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites.

  6. Nucleosome structure and conformational changes

    SciTech Connect

    McGhee, J.D.; Felsenfeld, G.; Eisenberg, H.

    1980-10-01

    We have used a variety of chemical probes to measure the accessibility of DNA on the surface of the nucleosome. We review these results, and describe new experiments which show that T4 phage DNA can form complexes with the core histones, possessing the properties of normal nucleosomes. Since T4 DNA is largely occupied by glucose residues in the major groove, this suggests that the major groove is not filled with histone amino acid side chains. We also report results of recent measurements which appear to show that only a few strong charge interactions are involved in the attachment of the terminal 20 nucleotide pairs at each end of nucleosome core DNA. We speculate on the possible functional significance of the accessibility of DNA revealed by all of these experiments. We have also examined conformational changes induced in nucleosomes at high ionic strength (0.5 to 0.7M NaCl). The frictional coefficient is found to undergo a small increase in this region, not consistent with models in which the nucleosome is completely unfolded, but possibly reflecting the dissociation of terminal DNA from the nucleosome surface.

  7. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  8. Featuring the nucleosome surface as a therapeutic target.

    PubMed

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  9. Unwrapping of Nucleosomal DNA Ends: A Multiscale Molecular Dynamics Study

    PubMed Central

    Voltz, Karine; Trylska, Joanna; Calimet, Nicolas; Smith, Jeremy C.; Langowski, Jörg

    2012-01-01

    To permit access to DNA-binding proteins involved in the control and expression of the genome, the nucleosome undergoes structural remodeling including unwrapping of nucleosomal DNA segments from the nucleosome core. Here we examine the mechanism of DNA dissociation from the nucleosome using microsecond timescale coarse-grained molecular dynamics simulations. The simulations exhibit short-lived, reversible DNA detachments from the nucleosome and long-lived DNA detachments not reversible on the timescale of the simulation. During the short-lived DNA detachments, 9 bp dissociate at one extremity of the nucleosome core and the H3 tail occupies the space freed by the detached DNA. The long-lived DNA detachments are characterized by structural rearrangements of the H3 tail including the formation of a turn-like structure at the base of the tail that sterically impedes the rewrapping of DNA on the nucleosome surface. Removal of the H3 tails causes the long-lived detachments to disappear. The physical consistency of the CG long-lived open state was verified by mapping a CG structure representative of this state back to atomic resolution and performing molecular dynamics as well as by comparing conformation-dependent free energies. Our results suggest that the H3 tail may stabilize the nucleosome in the open state during the initial stages of the nucleosome remodeling process. PMID:22385856

  10. Kinetics and thermodynamics of phenotype: unwinding and rewinding the nucleosome.

    PubMed

    Mack, Andrew H; Schlingman, Daniel J; Ilagan, Robielyn P; Regan, Lynne; Mochrie, Simon G J

    2012-11-09

    Chromatin "remodeling" is widely accepted as the mechanism that permits access to DNA by the transcription machinery. To date, however, there has been no experimental measurement of the changes in the kinetics and thermodynamics of the DNA-histone octamer association that are required to remodel chromatin so that transcription may occur. Here, we present the results of optical tweezer measurements that compare the kinetic and thermodynamic properties of nucleosomes composed of unmodified histones with those of nucleosomes that contain a mutant histone H4 (H4-R45H), which has been shown to allow SWI/SNF remodeling factor-independent transcription from the yeast HO promoter in vivo. Our measurements, carried out in a force-clamp mode, determine the force-dependent unwinding and rewinding rates of the nucleosome inner turn. At each force studied, nucleosomes containing H4-R45H unwind more rapidly and rewind more slowly than nucleosomes containing unmodified H4, indicating that the latter are the more stable. Extrapolation to forces at which the winding and unwinding rates are equal determines the absolute free energy of the nucleosome inner turn to be -32k(B)T for nucleosomes containing unmodified H4 and -27k(B)T for nucleosomes containing H4-R45H. Thus, the "loosening" or "remodeling" caused by this point mutation, which is demonstrated to be sufficient to allow transcriptional machinery access to the HO promoter (in the absence of other remodeling factors), is 5k(B)T. The correlation between the free energy of the nucleosome inner turn and the sin (SWI/SNF-independent) transcription suggests that, beyond partial unwinding, complete histone unwinding may play a role in transcriptional activation.

  11. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis.

    PubMed

    Li, Guang; Liu, Shujing; Wang, Jiawei; He, Jianfeng; Huang, Hai; Zhang, Yijing; Xu, Lin

    2014-05-01

    Chromatin is a highly organized structure with repetitive nucleosome subunits. Nucleosome distribution patterns, which contain information on epigenetic controls, are dynamically affected by ATP-dependent chromatin remodeling factors (remodelers). However, whether plants have specific nucleosome distribution patterns and how plant remodelers contribute to the pattern formation are not clear. In this study we used the micrococcal nuclease digestion followed by deep sequencing (MNase-seq) assay to show the genome-wide nucleosome pattern in Arabidopsis thaliana. We demonstrated that the nucleosome distribution patterns of Arabidopsis are associated with the gene expression level, and have several specific characteristics that are different from those of animals and yeast. In addition, we found that remodelers in the A. thaliana imitation switch (AtISWI) subfamily are important for the formation of the nucleosome distribution pattern. Double mutations in the AtISWI genes, CHROMATIN REMODELING 11 (CHR11) and CHR17, resulted in the loss of the evenly spaced nucleosome pattern in gene bodies, but did not affect nucleosome density, supporting a previous idea that the primary role of ISWI is to slide nucleosomes in gene bodies for pattern formation.

  12. Remodelers Organize Cellular Chromatin by Counteracting Intrinsic Histone-DNA Sequence Preferences in a Class-Specific Manner

    PubMed Central

    Chalkley, Gillian E.; Kan, Tsung Wai; Reddy, B. Ashok; Ozgur, Zeliha; van Ijcken, Wilfred F. J.; Dekkers, Dick H. W.; Demmers, Jeroen A.; Travers, Andrew A.

    2012-01-01

    The nucleosome is the fundamental repeating unit of eukaryotic chromatin. Here, we assessed the interplay between DNA sequence and ATP-dependent chromatin-remodeling factors (remodelers) in the nucleosomal organization of a eukaryotic genome. We compared the genome-wide distribution of Drosophila NURD, (P)BAP, INO80, and ISWI, representing the four major remodeler families. Each remodeler has a unique set of genomic targets and generates distinct chromatin signatures. Remodeler loci have characteristic DNA sequence features, predicted to influence nucleosome formation. Strikingly, remodelers counteract DNA sequence-driven nucleosome distribution in two distinct ways. NURD, (P)BAP, and INO80 increase histone density at their target sequences, which intrinsically disfavor positioned nucleosome formation. In contrast, ISWI promotes open chromatin at sites that are propitious for precise nucleosome placement. Remodelers influence nucleosome organization genome-wide, reflecting their high genomic density and the propagation of nucleosome redistribution beyond remodeler binding sites. In transcriptionally silent early embryos, nucleosome organization correlates with intrinsic histone-DNA sequence preferences. Following differential expression of the genome, however, this relationship diminishes and eventually disappears. We conclude that the cellular nucleosome landscape is the result of the balance between DNA sequence-driven nucleosome placement and active nucleosome repositioning by remodelers and the transcription machinery. PMID:22124157

  13. Vitamin D receptor (VDR) promoter targeting through a novel chromatin remodeling complex.

    PubMed

    Kato, Shigeaki; Fujiki, Ryoji; Kitagawa, Hirochika

    2004-05-01

    We have purified nuclear complexes for Vitamin D receptor (VDR), and identified one of them as a novel ATP-dependent chromatine remodeling containing Williams syndrome transcription factor (WSTF), that is supposed to be responsible for Williams syndrome. This complex (WSTF including nucleosome assembly complex (WINAC)) exhibited an ATP-dependent chromatin remodeling activity in vitro. Transient expression assays revealed that WINAC potentiates ligand-induced function of VDR in gene activation and repression. Thus, this study describes a molecular basis of the VDR function on chromosomal DNA through chromatine remodeling.

  14. Control of nucleosome movement: to space or not to space nucleosomes?

    PubMed

    Prasad, Punit; Bartholomew, Blaine

    2010-05-16

    A key feature of ATP-dependent chromatin remodeling complexes is how they control the ability of the complex to translocate along DNA within the context of a nucleosome. Although these complexes generally initiate DNA translocation near the dyad axis of the nucleosome, the progression and eventual termination is regulated in quite distinct ways. The best studied examples of these are the ISWI type which has strong extranucleosomal DNA dependent activity or the SWI/SNF type which has no linker DNA requirement. Recent data provide insights into the mechanism of regulation of DNA translocation by the ISWI type complexes and how the structure of the ISWI-nucleosome complex changes during chromatin remodeling.

  15. A positioned +1 nucleosome enhances promoter-proximal pausing.

    PubMed

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C

    2015-03-31

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5'-3' exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.

  16. A positioned +1 nucleosome enhances promoter-proximal pausing

    PubMed Central

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C.

    2015-01-01

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression. PMID:25735750

  17. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data.

    PubMed

    Chen, Weizhong; Liu, Yi; Zhu, Shanshan; Green, Christopher D; Wei, Gang; Han, Jing-Dong Jackie

    2014-09-18

    Accurate determination of genome-wide nucleosome positioning can provide important insights into global gene regulation. Here, we describe the development of an improved nucleosome-positioning algorithm-iNPS-which achieves significantly better performance than the widely used NPS package. By determining nucleosome boundaries more precisely and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can unambiguously detect 60% more nucleosomes. The detected nucleosomes display better nucleosome 'widths' and neighbouring centre-centre distance distributions, giving rise to sharper patterns and better phasing of average nucleosome profiles and higher consistency between independent data subsets. In addition to its unique advantage in classifying nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher significance and lower false positive rates than previously published methods. The application of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of nucleosome repositioning, uncovering additional biological features underlying the activation process.

  18. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites.

    PubMed

    Möbius, Wolfram; Gerland, Ulrich

    2010-08-19

    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in Saccharomyces cerevisiae is qualitatively consistent with a "barrier nucleosome model," in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to approximately 1,000 bp to each side.

  19. Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos

    PubMed Central

    Ye, Youqiong; Gu, Liang; Chen, Xiaolong; Shi, Jiejun; Zhang, Xiaobai; Jiang, Cizhong

    2016-01-01

    Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased in the glial cells compared to the neural progenitor cells. However, H3K9ac signals are increased in a group of genes that are up-regulated in glial cells and involved in gliogenesis. There occurs extensive nucleosome remodeling including shift, loss, and gain. Nucleosome depletion regions (NDRs) form in both promoters and enhancers. As a result, the associated genes are up-regulated. Intriguingly, NDRs form in two fashions: nucleosome shift and eviction. Moreover, the mode of NDR formation is independent of the original chromatin state of enhancers in the neural progenitor cells. PMID:27634414

  20. Structure and function of human histone H3.Y nucleosome

    PubMed Central

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes. PMID:27016736

  1. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy

    PubMed Central

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis. PMID:27200348

  2. The Molecular Architecture of Cell Adhesion: Dynamic Remodeling Revealed by Videonanoscopy.

    PubMed

    Sergé, Arnauld

    2016-01-01

    The plasma membrane delimits the cell, which is the basic unit of living organisms, and is also a privileged site for cell communication with the environment. Cell adhesion can occur through cell-cell and cell-matrix contacts. Adhesion proteins such as integrins and cadherins also constitute receptors for inside-out and outside-in signaling within proteolipidic platforms. Adhesion molecule targeting and stabilization relies on specific features such as preferential segregation by the sub-membrane cytoskeleton meshwork and within membrane proteolipidic microdomains. This review presents an overview of the recent insights brought by the latest developments in microscopy, to unravel the molecular remodeling occurring at cell contacts. The dynamic aspect of cell adhesion was recently highlighted by super-resolution videomicroscopy, also named videonanoscopy. By circumventing the diffraction limit of light, nanoscopy has allowed the monitoring of molecular localization and behavior at the single-molecule level, on fixed and living cells. Accessing molecular-resolution details such as quantitatively monitoring components entering and leaving cell contacts by lateral diffusion and reversible association has revealed an unexpected plasticity. Adhesion structures can be highly specialized, such as focal adhesion in motile cells, as well as immune and neuronal synapses. Spatiotemporal reorganization of adhesion molecules, receptors, and adaptors directly relates to structure/function modulation. Assembly of these supramolecular complexes is continuously balanced by dynamic events, remodeling adhesions on various timescales, notably by molecular conformation switches, lateral diffusion within the membrane and endo/exocytosis. Pathological alterations in cell adhesion are involved in cancer evolution, through cancer stem cell interaction with stromal niches, growth, extravasation, and metastasis.

  3. An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length.

    PubMed

    Wong, Hua; Victor, Jean-Marc; Mozziconacci, Julien

    2007-09-12

    In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties.

  4. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.

    PubMed

    Svensson, J Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C; Allshire, Robin C; Ekwall, Karl

    2015-06-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.

  5. Structural basis for retroviral integration into nucleosomes.

    PubMed

    Maskell, Daniel P; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N; Costa, Alessandro; Cherepanov, Peter

    2015-07-16

    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

  6. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates

    PubMed Central

    Anné, Jennifer; Edwards, Nicholas P.; Wogelius, Roy A.; Tumarkin-Deratzian, Allison R.; Sellers, William I.; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M.; Manning, Phillip L.

    2014-01-01

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning–X-ray fluorescence (SRS–XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20–100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS–XRF combined with microfocus elemental mapping (2–20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue. PMID:24806709

  7. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates.

    PubMed

    Anné, Jennifer; Edwards, Nicholas P; Wogelius, Roy A; Tumarkin-Deratzian, Allison R; Sellers, William I; van Veelen, Arjen; Bergmann, Uwe; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Ignatyev, Konstantin; Egerton, Victoria M; Manning, Phillip L

    2014-07-06

    Current understanding of bone healing and remodelling strategies in vertebrates has traditionally relied on morphological observations through the histological analysis of thin sections. However, chemical analysis may also be used in such interpretations, as different elements are known to be absorbed and used by bone for different physiological purposes such as growth and healing. These chemical signatures are beyond the detection limit of most laboratory-based analytical techniques (e.g. scanning electron microscopy). However, synchrotron rapid scanning-X-ray fluorescence (SRS-XRF) is an elemental mapping technique that uniquely combines high sensitivity (ppm), excellent sample resolution (20-100 µm) and the ability to scan large specimens (decimetre scale) approximately 3000 times faster than other mapping techniques. Here, we use SRS-XRF combined with microfocus elemental mapping (2-20 µm) to determine the distribution and concentration of trace elements within pathological and normal bone of both extant and extinct archosaurs (Cathartes aura and Allosaurus fragilis). Results reveal discrete chemical inventories within different bone tissue types and preservation modes. Chemical inventories also revealed detail of histological features not observable in thin section, including fine structures within the interface between pathological and normal bone as well as woven texture within pathological tissue.

  8. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates.

    PubMed

    Krajewski, Wladyslaw A

    2014-03-15

    Nucleosome remodeling studies in vitro have primarily focused on the use of mononucleosome templates, which, however, can provide only limited information on how nucleosome mobilization occurs in the context of chromatin, in which internucleosome interactions might influence remodeling. We tried to evaluate whether nucleosome mobilization by yeast Isw1a, Isw1b and Isw2 could be affected by neighboring nucleosomes. We compared mono- and dinucleosomes positioned by the '601' sequence, the studied constructs contain variation in linker length between nucleosomes and variation in the length of flanking sequences. The data characterizing the remodeling were based on gel retardation of the mono and dinucleosomes, keeping in mind the observation that the relative position of the nucleosome will change the mobility of the complex in well defined ways. We found that Isw1a, Isw1b and Isw2 process nucleosomes differently whether they exist as mononucleosomes or dinucleosomes, such as, the Isw1a and Isw1b nucleosome repositioning patterns, which were very similar for mononucleosomes, appeared to be profoundly different in case of dinucleosome templates. We also examined the DNase I protection patterns of remodeled mono- and dinucleosomes. The data suggest that nucleosome mobilizing activity of Isw1a, Isw1b and Isw2 complexes could be significantly influenced by neighboring nucleosomes.

  9. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  10. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

  11. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.

    PubMed

    Kono, Hidetoshi; Shirayama, Kazuyoshi; Arimura, Yasuhiro; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2015-01-01

    The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.

  12. Balancing chromatin remodeling and histone modifications in transcription

    PubMed Central

    Petty, Emily; Pillus, Lorraine

    2013-01-01

    Chromatin remodelers use the energy of ATP hydrolysis to reposition or evict nucleosomes or to replace canonical histones with histone variants. By regulating nucleosome dynamics, remodelers gate access to the underlying DNA for replication, repair, and transcription. Nucleosomes are subject to extensive post-translational modifications that can recruit regulatory proteins or alter the local chromatin structure. Just as extensive cross-talk has been observed between different histone post-translational modifications, there is growing evidence for both coordinated and antagonistic functional relationships between nucleosome remodeling and modifying machineries. Defining the combined functions of the complexes that alter nucleosome interactions, position, and stability is key to understanding processes that require access to DNA, particularly with growing appreciation of their contributions to human health and disease. Here, we highlight recent advances in the interactions between histone modifications and the ISWI and CHD1 chromatin remodelers from studies in budding yeast, fission yeast, flies, and mammalian cells, with a focus on yeast. PMID:23870137

  13. Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities.

    PubMed

    Krajewski, Wladyslaw A

    2013-10-08

    The three Saccharomyces cerevisiae ISWI chromatin remodeling complexes, Isw1a, Isw1b, and Isw2, are implicated in the regularization of arrayed nucleosomes and regulation of gene activity. Although Isw1a and Isw1b are based on the same catalytic unit, in general, their functions in vivo do not overlap. To better understand the structural consequences of these complexes, we compared the putative nucleosome disrupting activities of the purified Isw1a, Isw1b, and Isw2. To account for the putative effects of nucleosomal environment, we employed reconstituted dinucleosomes in which the histone octamers were specifically positioned by the 146 base pair high-affinity nucleosome sequence "601". We have compared the MNase and deoxyribonuclease I protection patterns of remodeled nucleosome templates and evaluated the nucleosome destabilizing abilities of the Isw1a/b and Isw2 using restriction endonucleases. Although the Isw2 showed little evidence of nucleosome disassembly, the Isw1b remodeled dinucleosomes exhibited some common features with the ySwi-Snf remodeling products. The nuclease digestion data suggest that Isw1a can also promote ATP-dependent distortion of nucleosome structure, although less efficiently than the Isw1b complex.

  14. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing

    PubMed Central

    Fennessy, Ross T.; Owen-Hughes, Tom

    2016-01-01

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. PMID:27106059

  15. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM

    PubMed Central

    Lyubchenko, Yuri L.

    2013-01-01

    A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics. PMID:24839467

  16. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  17. Nucleosome phasing - new insights

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    2014-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs of DNA are wrapped around octameric histones. Recently, a new method of mapping nucleosome positions was developed, which gives a much higher accuracy than the typical MNase-seq method. I present a statistical mechanics model which is able to reproduce the high-resolution nucleosome positioning data. I show that the DNA sequence is not the main cause of the nucleosome phasing which is observed genome-wide, and I present the major nucleosome phasing elements. The statistical mechanics framework is general enough to be useful in explaining different experimental observations, and I present a few results of this model.

  18. An rtt109-independent role for vps75 in transcription-associated nucleosome dynamics.

    PubMed

    Selth, Luke A; Lorch, Yahli; Ocampo-Hafalla, Maria T; Mitter, Richard; Shales, Michael; Krogan, Nevan J; Kornberg, Roger D; Svejstrup, Jesper Q

    2009-08-01

    The histone chaperone Vps75 forms a complex with, and stimulates the activity of, the histone acetyltransferase Rtt109. However, Vps75 can also be isolated on its own and might therefore possess Rtt109-independent functions. Analysis of epistatic miniarray profiles showed that VPS75 genetically interacts with factors involved in transcription regulation whereas RTT109 clusters with genes linked to DNA replication/repair. Additional genetic and biochemical experiments revealed a close relationship between Vps75 and RNA polymerase II. Furthermore, Vps75 is recruited to activated genes in an Rtt109-independent manner, and its genome-wide association with genes correlates with transcription rate. Expression microarray analysis identified a number of genes whose normal expression depends on VPS75. Interestingly, histone H2B dynamics at some of these genes are consistent with a role for Vps75 in histone H2A/H2B eviction/deposition during transcription. Indeed, reconstitution of nucleosome disassembly using the ATP-dependent chromatin remodeler Rsc and Vps75 revealed that these proteins can cooperate to remove H2A/H2B dimers from nucleosomes. These results indicate a role for Vps75 in nucleosome dynamics during transcription, and importantly, this function appears to be largely independent of Rtt109.

  19. Preferential Nucleosome Occupancy at High Values of DNA Helical Rise

    PubMed Central

    Pedone, Francesco; Santoni, Daniele

    2012-01-01

    Nucleosomes are the basic structural units of eukaryotic chromatin and play a key role in the regulation of gene expression. Nucleosome formation depends on several factors, including properties of the sequence itself, but also physical constraints and epigenetic factors such as chromatin-remodelling enzymes. In this view, a sequence-dependent approach is able to capture a general tendency of a region to bind a histone octamer. A reference data set of positioned nucleosomes of Saccharomyces cerevisiae was used to study the role of DNA helical rise in histone–DNA interaction. Genomic sequences were transformed into arrays of helical rise values by a tetranucleotide code and then turned into profiles of mean helical rise values. These profiles resemble maps of nucleosome occupancy, suggesting that intrinsic histone–DNA interactions are linked to helical rise. The obtained results show that preferential nucleosome occupancy occurs where the mean helical rise reaches its largest values. Mean helical rise profiles obtained by using maps of positioned nucleosomes of the Drosophila melanogaster and Plasmodium falciparum genomes, as well as Homo sapiens chromosome 20 confirm that nucleosomes are mainly located where the mean helical rise reaches its largest values. PMID:22233711

  20. Mechanism(s) of SWI/SNF-induced nucleosome mobilization.

    PubMed

    Liu, Ning; Balliano, Angela; Hayes, Jeffrey J

    2011-01-24

    Impediments to DNA access due to assembly of the eukaryotic genome into chromatin are in part overcome by the activity of ATP-dependent chromatin-remodeling complexes. These complexes employ energy derived from ATP hydrolysis to destabilize histone-DNA interactions and alter nucleosome positions, thereby increasing the accessibility of DNA-binding factors to their targets. However, the mechanism by which theses complexes accomplish this task remains unresolved. We review aspects of nucleosome alteration by the SWI/SNF complex, the archetypal remodeling enzyme. We focus on experiments that provide insights into how SWI/SNF induces nucleosome movement along DNA. Numerous biochemical activities have been characterized for this complex, all likely providing clues as to the molecular mechanism of translocation.

  1. Statistical mechanics of nucleosomes

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  2. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling

    PubMed Central

    Oka, Toru; Xu, Jian; Kaiser, Robert A.; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A.; Lorts, Angela; Brunskill, Eric W.; Dorn, Gerald W.; Conway, Simon J.; Aronow, Bruce J.; Robbins, Jeffrey; Molkentin, Jeffery D.

    2009-01-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults the adult heart re-expresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn−/− mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn−/− hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn−/− hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  3. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  4. Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes

    PubMed Central

    Rizzo, Jason M.; Mieczkowski, Piotr A.; Buck, Michael J.

    2011-01-01

    Despite technical advances, the future of chromatin mapping studies requires an ability to draw accurate comparisons between different chromatin states to enhance our understanding of genome biology. In this study, we used matched chromatin preparations to enable specific and accurate comparisons of Saccharomyces cerevisiae chromatin structures in the presence and absence of the co-repressor protein Tup1. Analysis of wild-type and tup1 Δ chromatin data sets revealed unique organizational themes relating to the function of Tup1. Regulatory regions bound by Tup1 assumed a distinct chromatin architecture composed of a wide nucleosome-depleted region, low occupancy/poorly positioned promoter nucleosomes, a larger number and wider distribution of transcription factor-binding sites and downstream genes with enhanced transcription plasticity. Regions of Tup1-dependent chromatin structure were defined for the first time across the entire yeast genome and are shown to strongly overlap with activity of the chromatin remodeler Isw2. Additionally, Tup1-dependent chromatin structures are shown to relate to distinct biological processes and transcriptional states of regulated genes, including Tup1 stabilization of Minus 1 and Minus 2 promoter nucleosomes at actively repressed genes. Together these results help to enhance our mechanistic understanding of Tup1 regulation of chromatin structure and gene expression. PMID:21785133

  5. Using DNA mechanics to predict intrinsic and extrinsic nucleosome positioning signals

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2008-03-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. We developed a biophysical, DNA mechanics-based model for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a nucleosome crystal structure; we also successfully designed both strong and poor histone binding sequences ab initio. For in vivo data from S.cerevisiae, the strongest positioning signal came from the competition with other factors rather than intrinsic nucleosome sequence preferences. Based on sequence alone, our model predicts that functional transcription factor binding sites tend to be covered by nucleosomes, yet are uncovered in vivo because functional sites cluster within a single nucleosome footprint and thus make transcription factors bind cooperatively. Similarly a weak enhancement of nucleosome binding in the TATA region becomes a strong depletion when the TATA-binding protein is included, in quantitative agreement with experiment. Our model distinguishes multiple ways in which genomic sequence influences nucleosome positions, and thus provides alternative explanations for several genome-wide experimental findings. In the future our approach will be used to rationally alter gene expression levels in model systems through redesign of nucleosome occupancy profiles.

  6. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    PubMed

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  7. Regulation of the Nucleosome Repeat Length In Vivo by the DNA Sequence, Protein Concentrations and Long-Range Interactions

    PubMed Central

    Beshnova, Daria A.; Cherstvy, Andrey G.; Vainshtein, Yevhen; Teif, Vladimir B.

    2014-01-01

    The nucleosome repeat length (NRL) is an integral chromatin property important for its biological functions. Recent experiments revealed several conflicting trends of the NRL dependence on the concentrations of histones and other architectural chromatin proteins, both in vitro and in vivo, but a systematic theoretical description of NRL as a function of DNA sequence and epigenetic determinants is currently lacking. To address this problem, we have performed an integrative biophysical and bioinformatics analysis in species ranging from yeast to frog to mouse where NRL was studied as a function of various parameters. We show that in simple eukaryotes such as yeast, a lower limit for the NRL value exists, determined by internucleosome interactions and remodeler action. For higher eukaryotes, also the upper limit exists since NRL is an increasing but saturating function of the linker histone concentration. Counterintuitively, smaller H1 variants or non-histone architectural proteins can initiate larger effects on the NRL due to entropic reasons. Furthermore, we demonstrate that different regimes of the NRL dependence on histone concentrations exist depending on whether DNA sequence-specific effects dominate over boundary effects or vice versa. We consider several classes of genomic regions with apparently different regimes of the NRL variation. As one extreme, our analysis reveals that the period of oscillations of the nucleosome density around bound RNA polymerase coincides with the period of oscillations of positioning sites of the corresponding DNA sequence. At another extreme, we show that although mouse major satellite repeats intrinsically encode well-defined nucleosome preferences, they have no unique nucleosome arrangement and can undergo a switch between two distinct types of nucleosome positioning. PMID:24992723

  8. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics.

    PubMed

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I; Jiang, Yi

    2017-01-03

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics.

  9. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics

    PubMed Central

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi

    2017-01-01

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069

  10. Nucleosome Free Regions in Yeast Promoters Result from Competitive Binding of Transcription Factors That Interact with Chromatin Modifiers

    PubMed Central

    Ozonov, Evgeniy A.; van Nimwegen, Erik

    2013-01-01

    Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs), unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positiong using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10–20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interations with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers. PMID:23990766

  11. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression.

    PubMed

    Kharerin, Hungyo; Bhat, Paike J; Marko, John F; Padinhateeri, Ranjith

    2016-02-04

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non-histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different "promoter states" having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions-Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  12. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    NASA Astrophysics Data System (ADS)

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-02-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  13. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  14. Activation domains drive nucleosome eviction by SWI/SNF

    PubMed Central

    Gutiérrez, José L; Chandy, Mark; Carrozza, Michael J; Workman, Jerry L

    2007-01-01

    ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans from gene promoters. In this study, we have found that the chimeric transcription factor Gal4-VP16 can enhance SWI/SNF histone octamer transfer activity, resulting in targeted histone eviction from a nucleosome probe. This effect is dependent on the presence of the activation domain. We observed that under conditions mimicking the in vivo relative abundance of SWI/SNF with respect to the total number of nucleosomes in a cell nucleus, the accessibility of the transcription factor binding site is the first determinant in the sequence of events leading to nucleosome remodeling. We propose a model mechanism for this transcription factor-mediated enhancement of SWI/SNF octamer transfer activity. PMID:17235287

  15. Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning.

    PubMed

    Silberhorn, Elisabeth; Schwartz, Uwe; Löffler, Patrick; Schmitz, Samuel; Symelka, Anne; de Koning-Ward, Tania; Merkl, Rainer; Längst, Gernot

    2016-12-01

    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome.

  16. Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning

    PubMed Central

    Silberhorn, Elisabeth; Schwartz, Uwe; Symelka, Anne; de Koning-Ward, Tania; Längst, Gernot

    2016-01-01

    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. PMID:28033404

  17. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    PubMed

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  18. Modeling the dynamics of the nucleosome at various levels.

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey; Fenley, Andrew; Zmuda-Ruscio, Jory; Adams, David

    2007-03-01

    The primary level of DNA compaction in eukaryotic organisms is the nucleosome, yet details of its dynamics are not fully understood. While the whole nucleosome must be highly stable, protective of its genetic material, at the same time its tightly wrapped DNA should be highly accessible, easily revealing its information content. A combination of atom-level classical molecular dynamics and a course-grained continuum description provide insights into the functioning of the system. In particular, the nucleosomal DNA appears to be considerably more flexible than what can be expected based on its canonical persistence length. A coarse-grained electrostatic model of the nucleosome explains how its stability can be modulated with small environmental changes as well as post-translational modifications. Implications for the nucleosome assembly process in vivo are discussed.

  19. Dynamics and function of compact nucleosome arrays.

    PubMed

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  20. Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns

    PubMed Central

    Chiquet, Matthias; Blumer, Susan; Angelini, Manuela; Mitsiadis, Thimios A.; Katsaros, Christos

    2016-01-01

    During formation of the secondary palate in mammalian embryos, two vertically oriented palatal shelves rapidly elevate into a horizontal position above the tongue, meet at the midline, and fuse to form a single entity. Previous observations suggested that elevation occurs by a simple 90° rotation of the palatal shelves. More recent findings showed that the presumptive midline epithelial cells are not located at the tips of palatal shelves before elevation, but mostly toward their medial/lingual part. This implied extensive tissue remodeling during shelf elevation. Nevertheless, it is still not known how the shelf mesenchyme reorganizes during this process, and what mechanism drives it. To address this question, we mapped the distinct and restricted expression domains of certain extracellular matrix components within the developing palatal shelves. This procedure allowed to monitor movements of entire mesenchymal regions relative to each other during shelf elevation. Consistent with previous notions, our results confirm a flipping movement of the palatal shelves anteriorly, whereas extensive mesenchymal reorganization is observed more posteriorly. There, the entire lingual portion of the vertical shelves moves close to the midline after elevation, whereas the mesenchyme at the original tip of the shelves ends up ventrolaterally. Moreover, we observed that the mesenchymal cells of elevating palatal shelves substantially align their actin cytoskeleton, their extracellular matrix, and their nuclei in a ventral to medial direction. This indicates that, like in other morphogenetic processes, actin-dependent cell contractility is a major driving force for mesenchymal tissue remodeling during palatogenesis. PMID:27656150

  1. Uncovering the forces between nucleosomes using DNA origami.

    PubMed

    Funke, Jonas J; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-11-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami-based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of -1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques.

  2. Uncovering the forces between nucleosomes using DNA origami

    PubMed Central

    Funke, Jonas J.; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-01-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami–based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of −1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques. PMID:28138524

  3. Tension-dependent free energies of nucleosome unwrapping

    SciTech Connect

    Lequieu, Joshua; Cordoba, Andres; Schwartz, David C.; de Pablo, Juan J.

    2016-08-23

    Here, nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently.

  4. Tension-dependent free energies of nucleosome unwrapping

    DOE PAGES

    Lequieu, Joshua; Cordoba, Andres; Schwartz, David C.; ...

    2016-08-23

    Here, nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrapmore » the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently.« less

  5. Tension-Dependent Free Energies of Nucleosome Unwrapping

    PubMed Central

    2016-01-01

    Nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently. PMID:27725965

  6. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  7. Dynamics of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Poirier, Michael

    2007-03-01

    DNA sites wrapped into chromatin are sterically occluded from proteins that must bind for processes such as RNA transcription and DNA repair. However, the role of chromatin compaction in biological function is poorly understood. To understand the biological functions of chromatin compaction, we constructed nucleosome arrays that are built with a tandem repeat of high affinity nucleosome positioning sequences, which contain probes for DNA accessibility and chromatin structure. I will describe our results that use restriction enzyme digestion and fluorescence resonance energy transfer to determine the probability for DNA site exposure within compacted nucleosome arrays and the time scale for changes in chromatin compaction. I will then discuss how these results help explain how proteins gain access to DNA sites buried within chromatin.

  8. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element.

    PubMed

    Salih, F; Salih, B; Kogan, S; Trifonov, E N

    2008-08-01

    Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.

  9. Transcription initiation in vivo without classical transactivators: DNA kinks flanking the core promoter of the housekeeping yeast adenylate kinase gene, AKY2, position nucleosomes and constitutively activate transcription.

    PubMed

    Angermayr, Michaela; Oechsner, Ulrich; Gregor, Kerstin; Schroth, Gary P; Bandlow, Wolfhard

    2002-10-01

    The housekeeping gene of the major adenylate kinase in Saccharomyces cerevisiae (AKY2, ADK1) is constitutively transcribed at a moderate level. The promoter has been dissected in order to define elements that effect constitutive transcription. Initiation of mRNA synthesis at the AKY2 promoter is shown to be mediated by a non-canonic core promoter, (TA)(6). Nucleotide sequences 5' of this element only marginally affect transcription suggesting that promoter activation can dispense with transactivators and essentially involves basal transcription. We show that the core promoter of AKY2 is constitutively kept free of nucleosomes. Analyses of permutated AKY2 promoter DNA revealed the presence of bent DNA. DNA structure analysis by computer and by mutation identified two kinks flanking an interstitial stretch of 65 bp of moderately bent core promoter DNA. Kinked DNA is likely incompatible with packaging into nucleosomes and responsible for positioning nucleosomes at the flanks allowing unimpeded access of the basal transcription machinery to the core promoter. The data show that in yeast, constitutive gene expression can dispense with classical transcriptional activator proteins, if two prerequisites are met: (i) the core promoter is kept free of nucleosomes; this can be due to structural properties of the DNA as an alternative to chromatin remodeling factors; and (ii) the core promoter is pre-bent to allow a high rate of basal transcription initiation.

  10. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  11. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes

    PubMed Central

    Bintu, Lacramioara; Kopaczynska, Marta; Hodges, Courtney; Lubkowska, Lucyna; Kashlev, Mikhail; Bustamante, Carlos

    2011-01-01

    Upon transcription, histones can either detach from DNA or transfer behind the polymerase through a process believed to involve template looping. The details governing nucleosomal fate during transcription are not well understood. Our atomic force microscopy images of RNA polymerase II-nucleosome complexes confirm the presence of looped transcriptional intermediates and provide mechanistic insight into the histone-transfer process via the distribution of transcribed nucleosome positions. Significantly, we find that a fraction of the transcribed nucleosomes are remodeled to hexasomes, and that this fraction depends on the transcription elongation rate. A simple model involving the kinetic competition between transcription elongation, histone transfer, and histone-histone dissociation quantitatively rationalizes our observations and unifies results obtained with other polymerases. Factors affecting the relative magnitude of these processes provide the physical basis for nucleosomal fate during transcription and, therefore, for the regulation of gene expression. PMID:22081017

  12. Dynamical DNA accessibility induced by chromatin remodeling and protein binding

    NASA Astrophysics Data System (ADS)

    Montel, F.; Faivre-Moskalenko, C.; Castelnovo, M.

    2014-11-01

    Chromatin remodeling factors are enzymes being able to alter locally chromatin structure at the nucleosomal level and they actively participate in the regulation of gene expression. Using simple rules for individual nucleosome motion induced by a remodeling factor, we designed simulations of the remodeling of oligomeric chromatin, in order to address quantitatively collective effects in DNA accessibility upon nucleosome mobilization. Our results suggest that accessibility profiles are inhomogeneous thanks to borders effects like protein binding. Remarkably, we show that the accessibility lifetime of DNA sequence is roughly doubled in the vicinity of borders as compared to its value in bulk regions far from the borders. These results are quantitatively interpreted as resulting from the confined diffusion of a large nucleosome depleted region.

  13. Temporal proteomic analysis of HIV infection reveals remodelling of the host phosphoproteome by lentiviral Vif variants

    PubMed Central

    Greenwood, Edward JD; Matheson, Nicholas J; Wals, Kim; van den Boomen, Dick JH; Antrobus, Robin; Williamson, James C; Lehner, Paul J

    2016-01-01

    Viruses manipulate host factors to enhance their replication and evade cellular restriction. We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a comprehensive time course analysis of >6500 viral and cellular proteins during HIV infection. To enable specific functional predictions, we categorized cellular proteins regulated by HIV according to their patterns of temporal expression. We focussed on proteins depleted with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and conserved Vif function. DOI: http://dx.doi.org/10.7554/eLife.18296.001 PMID:27690223

  14. A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT

    PubMed Central

    Miller, Thomas C. R.; Simon, Bernd; Rybin, Vladimir; Grötsch, Helga; Curtet, Sandrine; Khochbin, Saadi; Carlomagno, Teresa; Müller, Christoph W.

    2016-01-01

    Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain–DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition. PMID:27991587

  15. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution

    PubMed Central

    Zhou, Xu; Blocker, Alexander W; Airoldi, Edoardo M; O'Shea, Erin K

    2016-01-01

    Understanding chromatin function requires knowing the precise location of nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions. Here we develop a computational approach leveraging digestion variability to determine nucleosome positions at a base-pair resolution from MNase-seq data. We generate a variability template as a simple error model for how MNase digestion affects the mapping of individual nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively positioned nucleosomes near transcription start sites likely represent different states of promoter nucleosomes during transcription initiation. Our method can be applied to map nucleosome positions in diverse organisms at base-pair resolution. DOI: http://dx.doi.org/10.7554/eLife.16970.001 PMID:27623011

  16. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  17. Whole transcriptome analysis reveals a role for OGG1-initiated DNA repair signaling in airway remodeling

    PubMed Central

    Aguilera-Aguirre, Leopoldo; Hosoki, Koa; Bacsi, Attila; Radák, Zsolt; Sur, Sanjiv; Hegde, Muralidhar L.; Tian, Bing; Saavedra-Molina, Alfredo; Brasier, Allan R.; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Reactive oxygen species (ROS) generated by environmental exposures, and endogenously as by-products of respiration, oxidatively modify biomolecules including DNA. Accumulation of ROS-induced DNA damage has been implicated in various diseases that involve inflammatory processes, and efficient DNA repair is considered critical in preventing such diseases. One of the most abundant DNA base lesions is 7,8-dihydro-8-oxoguanine (8-oxoG), which is repaired by the 8-oxoguanine DNA glycosylase 1 (OGG1)-initiated base-excision repair (OGG1-BER) pathway. Recent studies have shown that the OGG1-BER byproduct 8-oxoG base forms a complex with cytosolic OGG1, activating small GTPases and downstream cell signaling in cultured cells and lungs. This implies that persistent OGG1-BER could result in signaling leading to histological changes in airways. To test this, we mimicked OGG1-BER by repeatedly challenging airways with its repair product 8-oxoG base. Gene expression was analyzed by RNA sequencing (RNA-Seq) and qRT-PCR, and datasets were evaluated by gene ontology and statistical tools. RNA-Seq analysis identified 3252 differentially expressed transcripts (2435 up- and 817 downregulated, Z3-fold change). Among the upregulated transcripts, 2080 mRNAs were identified whose encoded protein products were involved in modulation of the actin family cytoskeleton, extracellular matrix, cell adhesion, cadherin, and cell junctions, affecting biological processes such as tissue development, cell-to-cell adhesion, cell communication, and the immune system. These data are supported by histological observations showing epithelial alterations, subepithelial fibrosis, and collagen deposits in the lungs. These data imply that continuous challenge by the environment and consequent OGG1-BER-driven signaling trigger gene expression consistent with airway remodeling. PMID:26187872

  18. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.

  19. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  20. Activator control of nucleosome occupancy in activation and repression of transcription.

    PubMed

    Bryant, Gene O; Prabhu, Vidya; Floer, Monique; Wang, Xin; Spagna, Dan; Schreiber, David; Ptashne, Mark

    2008-12-23

    The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI

  1. New insights into nucleosome unwrapping

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan; Morozov, Alexandre

    2013-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs (bp) of DNA are wrapped around octameric histones. Recently, a new approach for direct mapping of nucleosome centers at bp resolution was developed [Brogaard et al., Nature 486, 496-501 (2012)] and some intriguing results appeared. About 40% of the inter-dyad distances are smaller than 147 bp, which imply massive nucleosome unwrapping, genome-wide, in vivo. The histogram of the inter-dyad distances presents small oscillations which indicate a step-wise unwrapping of the nucleosomal DNA from the histone. We present a statistical mechanics model for the nucleosome unwrapping, which is able to take into account sequence-dependent binding energies, sequence-independent potential barriers and wells, effective two-body interactions between the nucleosomes, competition between different species, cooperative-binding, and other important factors which dictate the nucleosome distribution along the DNA. We are able to reproduce the distribution of the inter-dyad distances, which cannot be obtained if there is no nucleosome unwrapping. The nucleosome unwrapping model can explain also the variable DNA accessibility and the nucleosome-induced cooperativity, which were observed experimentally.

  2. Sequence-dependent nucleosome positioning.

    PubMed

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  3. Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling

    PubMed Central

    Tambalo, Stefano; Peruzzotti-Jametti, Luca; Rigolio, Roberta; Fiorini, Silvia; Bontempi, Pietro; Mallucci, Giulia; Balzarotti, Beatrice; Marmiroli, Paola; Sbarbati, Andrea; Cavaletti, Guido

    2015-01-01

    encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS. PMID:26157006

  4. Nucleosome positioning patterns derived from human apoptotic nucleosomes.

    PubMed

    Frenkel, Zakharia M; Trifonov, Edward N; Volkovich, Zeev; Bettecken, Thomas

    2011-12-01

    This communication reports on the nucleosome positioning patterns (bendability matrices) for the human genome, derived from over 8_million nucleosome DNA sequences obtained from apoptotically digested lymphocytes. This digestion procedure is used here for the first time for the purpose of extraction and sequencing of the nucleosome DNA fragments. The dominant motifs suggested by the matrices of DNA bendability calculated for light and heavy isochores are significantly different. Both, however, are in full agreement with the linear description YRRRRRYYYYYR, and with earlier derivations by N-gram extensions. Thus, the choice of the nucleosome positioning patterns crucially depends on the G + C composition of the analyzed sequences.

  5. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    PubMed

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  6. Quantitative proteomic changes during post myocardial infarction remodeling reveals altered cardiac metabolism and Desmin aggregation in the infarct region.

    PubMed

    Datta, Kaberi; Basak, Trayambak; Varshney, Swati; Sengupta, Shantanu; Sarkar, Sagartirtha

    2017-01-30

    Myocardial infarction is one of the leading causes of cardiac dysfunction, failure and sudden death. Post infarction cardiac remodeling presents a poor prognosis, with 30%-45% of patients developing heart failure, in a period of 5-25years. Oxidative stress has been labelled as the primary causative factor for cardiac damage during infarction, however, the impact it may have during the process of post infarction remodeling has not been well probed. In this study, we have implemented iTRAQ proteomics to catalogue proteins and functional processes, participating both temporally (early and late phases) and spatially (infarct and remote zones), during post myocardial infarction remodeling of the heart as functions of the differential oxidative stress manifest during the remodeling process. Cardiac metabolism was the dominant network to be affected during infarction and the remodeling time points considered in this study. A distinctive expression pattern of cytoskeletal proteins was also observed with increased remodeling time points. Further, it was found that the cytoskeletal protein Desmin, aggregated in the infarct zone during the remodeling process, mediated by the protease Calpain1. Taken together, all of these data in conjunction may lay the foundation to understand the effects of oxidative stress on the remodeling process and elaborate the mechanism behind the compromised cardiac function observed during post myocardial infarction remodeling.

  7. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form

    PubMed Central

    Sandoz, Kelsi M.; Popham, David L.; Beare, Paul A.; Sturdevant, Daniel E.; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A.

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3–3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3–3 cross-links as opposed to 16% 3–3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella’s environmental resistance. PMID:26909555

  8. Transcriptional Profiling of Coxiella burnetii Reveals Extensive Cell Wall Remodeling in the Small Cell Variant Developmental Form.

    PubMed

    Sandoz, Kelsi M; Popham, David L; Beare, Paul A; Sturdevant, Daniel E; Hansen, Bryan; Nair, Vinod; Heinzen, Robert A

    2016-01-01

    A hallmark of Coxiella burnetii, the bacterial cause of human Q fever, is a biphasic developmental cycle that generates biologically, ultrastructurally, and compositionally distinct large cell variant (LCV) and small cell variant (SCV) forms. LCVs are replicating, exponential phase forms while SCVs are non-replicating, stationary phase forms. The SCV has several properties, such as a condensed nucleoid and an unusual cell envelope, suspected of conferring enhanced environmental stability. To identify genetic determinants of the LCV to SCV transition, we profiled the C. burnetii transcriptome at 3 (early LCV), 5 (late LCV), 7 (intermediate forms), 14 (early SCV), and 21 days (late SCV) post-infection of Vero epithelial cells. Relative to early LCV, genes downregulated in the SCV were primarily involved in intermediary metabolism. Upregulated SCV genes included those involved in oxidative stress responses, arginine acquisition, and cell wall remodeling. A striking transcriptional signature of the SCV was induction (>7-fold) of five genes encoding predicted L,D transpeptidases that catalyze nonclassical 3-3 peptide cross-links in peptidoglycan (PG), a modification that can influence several biological traits in bacteria. Accordingly, of cross-links identified, muropeptide analysis showed PG of SCV with 46% 3-3 cross-links as opposed to 16% 3-3 cross-links for LCV. Moreover, electron microscopy revealed SCV with an unusually dense cell wall/outer membrane complex as compared to LCV with its clearly distinguishable periplasm and inner and outer membranes. Collectively, these results indicate the SCV produces a unique transcriptome with a major component directed towards remodeling a PG layer that likely contributes to Coxiella's environmental resistance.

  9. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization

    PubMed Central

    Bouazoune, Karim; Mitterweger, Angelika; Längst, Gernot; Imhof, Axel; Akhtar, Asifa; Becker, Peter B.; Brehm, Alexander

    2002-01-01

    Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein–DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity. PMID:12006495

  10. Electrophoresis of Positioned Nucleosomes

    PubMed Central

    Castelnovo, Martin; Grauwin, Sébastian

    2007-01-01

    We present in this article an original approach to compute the electrophoretic mobility of rigid nucleo-protein complexes like nucleosomes. This model allows us to address theoretically the influence of complex position along DNA, as well as wrapped length of DNA on the electrophoretic mobility of the complex. The predictions of the model are in qualitative agreement with experimental results on mononucleosomes assembled on short DNA fragments (<400 bp). Influences of additional experimental parameters like gel concentration, ionic strength, and effective charges are also discussed in the framework of the model, and are found to be qualitatively consistent with experiments when available. Based on the present model, we propose a simple semi-empirical formula describing positioning of nucleosomes as seen through electrophoresis. PMID:17277181

  11. The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit.

    PubMed

    Zraly, Claudia B; Dingwall, Andrew K

    2012-07-01

    Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.

  12. SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation

    PubMed Central

    Doiguchi, Masamichi; Nakagawa, Takeya; Imamura, Yuko; Yoneda, Mitsuhiro; Higashi, Miki; Kubota, Kazuishi; Yamashita, Satoshi; Asahara, Hiroshi; Iida, Midori; Fujii, Satoshi; Ikura, Tsuyoshi; Liu, Ziying; Nandu, Tulip; Kraus, W. Lee; Ueda, Hitoshi; Ito, Takashi

    2016-01-01

    Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network. PMID:26888216

  13. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  14. Genome-scale identification of nucleosome organization by using 1000 porcine oocytes at different developmental stages

    PubMed Central

    Tao, Chenyu; Li, Juan; Chen, Baobao; Chi, Daming; Zeng, Yaqiong

    2017-01-01

    The nucleosome is the basic structural unit of chromosomes, and its occupancy and distribution in promoters are crucial for the regulation of gene expression. During the growth process of porcine oocytes, the “growing” oocytes (SF) have a much higher transcriptional activity than the “fully grown” oocytes (BF). However, the chromosome status of the two kinds of oocytes remains poorly understood. In this study, we profiled the nucleosome distributions of SF and BF with as few as 1000 oocytes. By comparing the altered regions, we found that SF tended toward nucleosome loss and more open chromosome architecture than BF did. BF had decreased nucleosome occupancy in the coding region and increased nucleosome occupancy in the promoter compared to SF. The nucleosome occupancy of SF was higher than that of BF in the GC-poor regions, but lower than that of BF in the GC-rich regions. The nucleosome distribution around the transcriptional start site (TSS) of all the genes of the two samples was basically the same, but the nucleosome occupancy around the TSS of SF was lower than that of BF. GO functional annotation of genes with different nucleosome occupancy in promoter showed the genes were mainly involved in cell, cellular process, and metabolic process biological process. The results of this study revealed the dynamic reorganization of porcine oocytes in different developmental stages and the critical role of nucleosome arrangement during the oocyte growth process. PMID:28333987

  15. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending

    PubMed Central

    Bebel, Aleksandra; Karaca, Ezgi; Kumar, Banushree; Stark, W Marshall; Barabas, Orsolya

    2016-01-01

    Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division. DOI: http://dx.doi.org/10.7554/eLife.19706.001 PMID:28009253

  16. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors.

    PubMed

    Wight, Andrew; Yang, Doo; Ioshikhes, Ilya; Makrigiannis, Andrew P

    2016-04-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general.

  17. Chloroplast remodeling during state transitions in Chlamydomonas reinhardtii as revealed by noninvasive techniques in vivo

    PubMed Central

    Nagy, Gergely; Ünnep, Renáta; Zsiros, Ottó; Tokutsu, Ryutaro; Takizawa, Kenji; Porcar, Lionel; Moyet, Lucas; Petroutsos, Dimitris; Garab, Győző; Finazzi, Giovanni; Minagawa, Jun

    2014-01-01

    Plants respond to changes in light quality by regulating the absorption capacity of their photosystems. These short-term adaptations use redox-controlled, reversible phosphorylation of the light-harvesting complexes (LHCIIs) to regulate the relative absorption cross-section of the two photosystems (PSs), commonly referred to as state transitions. It is acknowledged that state transitions induce substantial reorganizations of the PSs. However, their consequences on the chloroplast structure are more controversial. Here, we investigate how state transitions affect the chloroplast structure and function using complementary approaches for the living cells of Chlamydomonas reinhardtii. Using small-angle neutron scattering, we found a strong periodicity of the thylakoids in state 1, with characteristic repeat distances of ∼200 Å, which was almost completely lost in state 2. As revealed by circular dichroism, changes in the thylakoid periodicity were paralleled by modifications in the long-range order arrangement of the photosynthetic complexes, which was reduced by ∼20% in state 2 compared with state 1, but was not abolished. Furthermore, absorption spectroscopy reveals that the enhancement of PSI antenna size during state 1 to state 2 transition (∼20%) is not commensurate to the decrease in PSII antenna size (∼70%), leading to the possibility that a large part of the phosphorylated LHCIIs do not bind to PSI, but instead form energetically quenched complexes, which were shown to be either associated with PSII supercomplexes or in a free form. Altogether these noninvasive in vivo approaches allow us to present a more likely scenario for state transitions that explains their molecular mechanism and physiological consequences. PMID:24639515

  18. Retinal remodeling.

    PubMed

    Jones, B W; Kondo, M; Terasaki, H; Lin, Y; McCall, M; Marc, R E

    2012-07-01

    Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and

  19. Nucleosomes impede Cas9 access to DNA in vivo and in vitro

    PubMed Central

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001 PMID:26987018

  20. Spatially Directed Proteomics of the Human Lens Outer Cortex Reveals an Intermediate Filament Switch Associated With the Remodeling Zone

    PubMed Central

    Wenke, Jamie L.; McDonald, W. Hayes; Schey, Kevin L.

    2016-01-01

    Purpose To quantify protein changes in the morphologically distinct remodeling zone (RZ) and adjacent regions of the human lens outer cortex using spatially directed quantitative proteomics. Methods Lightly fixed human lens sections were deparaffinized and membranes labeled with fluorescent wheat germ agglutinin (WGA-TRITC). Morphology directed laser capture microdissection (LCM) was used to isolate tissue from four distinct regions of human lens outer cortex: differentiating zone (DF), RZ, transition zone (TZ), and inner cortex (IC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of the plasma membrane fraction from three lenses (21-, 22-, and 27-year) revealed changes in major cytoskeletal proteins including vimentin, filensin, and phakinin. Peptides from proteins of interest were quantified using multiple reaction monitoring (MRM) mass spectrometry and isotopically-labeled internal peptide standards. Results Results revealed an intermediate filament switch from vimentin to beaded filament proteins filensin and phakinin that occurred at the RZ. Several other cytoskeletal proteins showed significant changes between regions, while most crystallins remained unchanged. Targeted proteomics provided accurate, absolute quantification of these proteins and confirmed vimentin, periplakin, and periaxin decrease from the DF to the IC, while filensin, phakinin, and brain acid soluble protein 1 (BASP1) increase significantly at the RZ. Conclusions Mass spectrometry-compatible fixation and morphology directed laser capture enabled proteomic analysis of narrow regions in the human lens outer cortex. Results reveal dramatic cytoskeletal protein changes associated with the RZ, suggesting that one role of these proteins is in membrane deformation and/or the establishment of ball and socket joints in the human RZ. PMID:27537260

  1. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy.

    PubMed

    Brown, Alice C N; Oddos, Stephane; Dobbie, Ian M; Alakoskela, Juha-Matti; Parton, Richard M; Eissmann, Philipp; Neil, Mark A A; Dunsby, Christopher; French, Paul M W; Davis, Ilan; Davis, Daniel M

    2011-09-01

    Natural Killer (NK) cells are innate immune cells that secrete lytic granules to directly kill virus-infected or transformed cells across an immune synapse. However, a major gap in understanding this process is in establishing how lytic granules pass through the mesh of cortical actin known to underlie the NK cell membrane. Research has been hampered by the resolution of conventional light microscopy, which is too low to resolve cortical actin during lytic granule secretion. Here we use two high-resolution imaging techniques to probe the synaptic organisation of NK cell receptors and filamentous (F)-actin. A combination of optical tweezers and live cell confocal microscopy reveals that microclusters of NKG2D assemble into a ring-shaped structure at the centre of intercellular synapses, where Vav1 and Grb2 also accumulate. Within this ring-shaped organisation of NK cell proteins, lytic granules accumulate for secretion. Using 3D-structured illumination microscopy (3D-SIM) to gain super-resolution of ~100 nm, cortical actin was detected in a central region of the NK cell synapse irrespective of whether activating or inhibitory signals dominate. Strikingly, the periodicity of the cortical actin mesh increased in specific domains at the synapse when the NK cell was activated. Two-colour super-resolution imaging revealed that lytic granules docked precisely in these domains which were also proximal to where the microtubule-organising centre (MTOC) polarised. Together, these data demonstrate that remodelling of the cortical actin mesh occurs at the central region of the cytolytic NK cell immune synapse. This is likely to occur for other types of cell secretion and also emphasises the importance of emerging super-resolution imaging technology for revealing new biology.

  2. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector

    PubMed Central

    2014-01-01

    Background Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. Methods RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. Results Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. Conclusions The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies. PMID:24751137

  3. CILAIR-Based Secretome Analysis of Obese Visceral and Subcutaneous Adipose Tissues Reveals Distinctive ECM Remodeling and Inflammation Mediators

    PubMed Central

    Roca-Rivada, Arturo; Belen Bravo, Susana; Pérez-Sotelo, Diego; Alonso, Jana; Isabel Castro, Ana; Baamonde, Iván; Baltar, Javier; Casanueva, Felipe F.; Pardo, María

    2015-01-01

    In the context of obesity, strong evidences support a distinctive pathological contribution of adipose tissue depending on its anatomical site of accumulation. Therefore, subcutaneous adipose tissue (SAT) has been lately considered metabolically benign compared to visceral fat (VAT), whose location is associated to the risk of developing cardiovascular disease, insulin resistance, and other associated comorbidities. Under the above situation, the chronic local inflammation that characterizes obese adipose tissue, has acquired a major role on the pathogenesis of obesity. In this work, we have analyzed for the first time human obese VAT and SAT secretomes using an improved quantitative proteomic approach for the study of tissue secretomes, Comparison of Isotope-Labeled Amino acid Incorporation Rates (CILAIR). The use of double isotope-labeling-CILAIR approach to analyze VAT and SAT secretomes allowed the identification of location-specific secreted proteins and its differential secretion. Additionally to the very high percentage of identified proteins previously implicated in obesity or in its comorbidities, this approach was revealed as a useful tool for the study of the obese adipose tissue microenvironment including extracellular matrix (ECM) remodeling and inflammatory status. The results herein presented reinforce the fact that VAT and SAT depots have distinct features and contribute differentially to metabolic disease. PMID:26198096

  4. Thermodynamics of Intragenic Nucleosome Ordering

    NASA Astrophysics Data System (ADS)

    Chevereau, G.; Palmeira, L.; Thermes, C.; Arneodo, A.; Vaillant, C.

    2009-10-01

    The nucleosome ordering observed in vivo along yeast genes is described by a thermodynamical model of nonuniform fluid of 1D hard rods confined by two excluding energy barriers at gene extremities. For interbarrier distances L≲1.5kbp, nucleosomes equilibrate into a crystal-like configuration with a nucleosome repeat length (NRL) L/ñ165bp, where n is the number of regularly positioned nucleosomes. We also observe “bistable” genes with a fuzzy chromatin resulting from a statistical mixing of two crystal states, one with an expanded chromatin (NRL ˜L/n) and the other with a compact one (NRL ˜L/(n+1)). By means of single nucleosome switching, bistable genes may drastically alter their expression level as suggested by their higher transcriptional plasticity. These results enlighten the role of the intragenic chromatin on gene expression regulation.

  5. Structural basis for recognition and remodeling of the TBP:DNA:NC2 complex by Mot1

    PubMed Central

    Butryn, Agata; Schuller, Jan M; Stoehr, Gabriele; Runge-Wollmann, Petra; Förster, Friedrich; Auble, David T; Hopfner, Karl-Peter

    2015-01-01

    Swi2/Snf2 ATPases remodel substrates such as nucleosomes and transcription complexes to control a wide range of DNA-associated processes, but detailed structural information on the ATP-dependent remodeling reactions is largely absent. The single subunit remodeler Mot1 (modifier of transcription 1) dissociates TATA box-binding protein (TBP):DNA complexes, offering a useful system to address the structural mechanisms of Swi2/Snf2 ATPases. Here, we report the crystal structure of the N-terminal domain of Mot1 in complex with TBP, DNA, and the transcription regulator negative cofactor 2 (NC2). Our data show that Mot1 reduces DNA:NC2 interactions and unbends DNA as compared to the TBP:DNA:NC2 state, suggesting that Mot1 primes TBP:NC2 displacement in an ATP-independent manner. Electron microscopy and cross-linking data suggest that the Swi2/Snf2 domain of Mot1 associates with the upstream DNA and the histone fold of NC2, thereby revealing parallels to some nucleosome remodelers. This study provides a structural framework for how a Swi2/Snf2 ATPase interacts with its substrate DNA:protein complex. DOI: http://dx.doi.org/10.7554/eLife.07432.001 PMID:26258880

  6. "Anticipated" nucleosome positioning pattern in prokaryotes.

    PubMed

    Rapoport, Alexandra E; Trifonov, Edward N

    2011-11-15

    Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.

  7. Routes to DNA accessibility: alternative pathways for nucleosome unwinding.

    PubMed

    Schlingman, Daniel J; Mack, Andrew H; Kamenetska, Masha; Mochrie, Simon G J; Regan, Lynne

    2014-07-15

    The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.

  8. Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin

    PubMed Central

    Xiong, Jie; Gao, Shan; Dui, Wen; Yang, Wentao; Chen, Xiao; Taverna, Sean D.; Pearlman, Ronald E.; Ashlock, Wendy; Miao, Wei; Liu, Yifan

    2016-01-01

    The ciliate protozoan Tetrahymena thermophila contains two types of structurally and functionally differentiated nuclei: the transcriptionally active somatic macronucleus (MAC) and the transcriptionally silent germ-line micronucleus (MIC). Here, we demonstrate that MAC features well-positioned nucleosomes downstream of transcription start sites and flanking splice sites. Transcription-associated trans-determinants promote nucleosome positioning in MAC. By contrast, nucleosomes in MIC are dramatically delocalized. Nucleosome occupancy in MAC and MIC are nonetheless highly correlated with each other, as well as with in vitro reconstitution and predictions based upon DNA sequence features, revealing unexpectedly strong contributions from cis-determinants. In particular, well-positioned nucleosomes are often matched with GC content oscillations. As many nucleosomes are coordinately accommodated by both cis- and trans-determinants, we propose that their distribution is shaped by the impact of these nucleosomes on the mutational and transcriptional landscape, and driven by evolutionary selection. PMID:27488188

  9. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles

    SciTech Connect

    Paton, A.E.; Wilkinson-Singley, E.; Olins, D.W.

    1983-11-10

    Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly (dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.

  10. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder.

    PubMed

    Zhao, Z; Xu, J; Chen, J; Kim, S; Reimers, M; Bacanu, S-A; Yu, H; Liu, C; Sun, J; Wang, Q; Jia, P; Xu, F; Zhang, Y; Kendler, K S; Peng, Z; Chen, X

    2015-05-01

    Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q⩽0.01, 53 genes; q⩽0.05, 213 genes; q⩽0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (P<10(-7)) and BPD (P=0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing data set of the hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD.

  11. Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer

    PubMed Central

    McAnena, Peter; Brown, James A. L.; Kerin, Michael J.

    2017-01-01

    Traditionally the stratification of many cancers involves combining tumour and clinicopathological features (e.g., patient age; tumour size, grade, receptor status and location) to inform treatment options and predict recurrence risk and survival. However, current biomarkers often require invasive excision of the tumour for profiling, do not allow monitoring of the response to treatment and stratify patients into broad heterogeneous groups leading to inconsistent treatment responses. Here we explore and describe the benefits of using circulating biomarkers (nucleosomes and/or modifications to nucleosomes) as a non-invasive method for detecting cancer and monitoring response to treatment. Nucleosomes (DNA wound around eight core histone proteins) are responsible for compacting our genome and their composition and post-translational modifications are responsible for regulating gene expression. Here, we focus on breast and colorectal cancer as examples where utilizing circulating nucleosomes as biomarkers hold real potential as liquid biopsies. Utilizing circulating nucleosomes as biomarkers is an exciting new area of research that promises to allow both the early detection of cancer and monitoring of treatment response. Nucleosome-based biomarkers combine with current biomarkers, increasing both specificity and sensitivity of current tests and have the potential to provide individualised precision-medicine based treatments for patients. PMID:28075351

  12. DNA looping mediates nucleosome transfer

    PubMed Central

    Brennan, Lucy D.; Forties, Robert A.; Patel, Smita S.; Wang, Michelle D.

    2016-01-01

    Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication. PMID:27808093

  13. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  14. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.

    PubMed

    Winter, Deborah R; Song, Lingyun; Mukherjee, Sayan; Furey, Terrence S; Crawford, Gregory E

    2013-07-01

    DNase-seq is primarily used to identify nucleosome-depleted DNase I hypersensitive (DHS) sites genome-wide that correspond to active regulatory elements. However, ≈ 40 yr ago it was demonstrated that DNase I also digests with a ≈ 10-bp periodicity around nucleosomes matching the exposure of the DNA minor groove as it wraps around histones. Here, we use DNase-seq data from 49 samples representing diverse cell types to reveal this digestion pattern at individual loci and predict genomic locations where nucleosome rotational positioning, the orientation of DNA with respect to the histone surface, is stably maintained. We call these regions DNase I annotated regions of nucleosome stability (DARNS). Compared to MNase-seq experiments, we show DARNS correspond well to annotated nucleosomes. Interestingly, many DARNS are positioned over only one side of annotated nucleosomes, suggesting that the periodic digestion pattern attenuates over the nucleosome dyad. DARNS reproduce the arrangement of nucleosomes around transcription start sites and are depleted at ubiquitous DHS sites. We also generated DARNS from multiple lymphoblast cell line (LCL) samples. We found that LCL DARNS were enriched at DHS sites present in most of the original 49 samples but absent in LCLs, while multi-cell-type DARNS were enriched at LCL-specific DHS sites. This indicates that variably open DHS sites are often occupied by rotationally stable nucleosomes in cell types where the DHS site is closed. DARNS provide additional information about precise DNA orientation within individual nucleosomes not available from other nucleosome positioning assays and contribute to understanding the role of chromatin in gene regulation.

  15. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system.

  16. Chemical physics of DNA packaging in a nucleosome core particle

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew; Sudhanshu, Bariz

    2008-03-01

    The fundamental unit of packaged DNA, the nucleosome core particle, contains 146 base pairs of DNA wrapped 1.7 times around a cationic protein complex called the histone octamer. A string of nucleosomes is organized into higher-order structures at several hierarchical levels to form chromatin, a remarkable complex that is compact yet maintains accessibility for gene expression. We develop a theoretical model of the nucleosome core particle in order to extract detailed quantitative information from single-molecule measurements of a single nucleosome under tension. We employ the wormlike chain model to describe the DNA strand as a thermally fluctuating polymer chain. The chain adsorbs on a spool that represents the histone octamer. This model is directly compared to single-molecule experiments conducted in Carlos Bustamante's lab; we find good agreement between our theory and the experimental data. Our model reveals the mechanism that underlies structural transitions that are apparent in the experimental measurements and predicts the conditions where these transitions occur. We proceed to construct a free energy surface to predict the dynamic response in a single-molecule experiment with a time-dependent rate of unwinding the nucleosome. The combination of single-molecule experiments and our theoretical modeling gives detailed information about the specific interactions between DNA and histone proteins.

  17. From chaos to split-ups--SHG microscopy reveals a specific remodelling mechanism in ageing dystrophic muscle.

    PubMed

    Buttgereit, Andreas; Weber, Cornelia; Garbe, Christoph S; Friedrich, Oliver

    2013-02-01

    Duchenne muscular dystrophy (DMD) is a common inherited muscle disease showing chronic inflammation and progressive muscle weakness. Absent dystrophin renders sarcolemma more Ca(2+) -permeable, disturbs signalling and triggers inflammation. Sustained degeneration/regeneration cycles render muscle cytoarchitecture susceptible to remodelling. Quantitative morphometry was introduced in living cells using second-harmonic generation (SHG) microscopy of myosin. As the time course of cellular remodelling is not known, we used SHG microscopy in mdx muscle fibres over a wide age range for three-dimensional (3D) rendering and detection of verniers and cosine angle sums (CASs). Wild-type (wt) and transgenic mini-dystrophin mice (MinD) were also studied. Vernier densities (VDs) declined in wt and MinD fibres until adulthood, while in mdx fibres, VDs remained significantly elevated during the life span. CAS values were close to unity in adult wt and MinD fibres, in agreement with tight regular myofibril orientation, while always smaller in mdx fibres. Using SHG 3D morphometry, we identified two types of altered ultrastructure: branched fibres and a novel, previously undetected 'chaotic' fibre type, both of which can be classified by distinct CAS and VD combinations. We present a novel model of tissue remodelling in dystrophic progression with age that involves the transition from normal to chaotic to branched fibres. Our model predicts a ~50% contribution of altered cytoarchitecture to progressive force loss with age. We also provide an improved automated image algorithm that is suitable for future ageing studies in human myopathies.

  18. Conditions for positioning of nucleosomes on DNA

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  19. Conditions for positioning of nucleosomes on DNA.

    PubMed

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  20. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability.

    PubMed

    Langecker, Martin; Ivankin, Andrey; Carson, Spencer; Kinney, Shannon R M; Simmel, Friedrich C; Wanunu, Meni

    2015-01-14

    Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.

  1. Closing the gap between single molecule and bulk FRET analysis of nucleosomes.

    PubMed

    Gansen, Alexander; Hieb, Aaron R; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation.

  2. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    PubMed Central

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  3. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  4. The Chd1 chromatin remodeler shifts hexasomes unidirectionally

    PubMed Central

    Levendosky, Robert F; Sabantsev, Anton; Deindl, Sebastian; Bowman, Gregory D

    2016-01-01

    Despite their canonical two-fold symmetry, nucleosomes in biological contexts are often asymmetric: functionalized with post-translational modifications (PTMs), substituted with histone variants, and even lacking H2A/H2B dimers. Here we show that the Widom 601 nucleosome positioning sequence can produce hexasomes in a specific orientation on DNA, providing a useful tool for interrogating chromatin enzymes and allowing for the generation of nucleosomes with precisely defined asymmetry. Using this methodology, we demonstrate that the Chd1 chromatin remodeler from Saccharomyces cerevisiae requires H2A/H2B on the entry side for sliding, and thus, unlike the back-and-forth sliding observed for nucleosomes, Chd1 shifts hexasomes unidirectionally. Chd1 takes part in chromatin reorganization surrounding transcribing RNA polymerase II (Pol II), and using asymmetric nucleosomes we show that ubiquitin-conjugated H2B on the entry side stimulates nucleosome sliding by Chd1. We speculate that biased nucleosome and hexasome sliding due to asymmetry contributes to the packing of arrays observed in vivo. DOI: http://dx.doi.org/10.7554/eLife.21356.001 PMID:28032848

  5. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant.

    PubMed

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-05-20

    Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.

  6. Analysis of DNA deformation patterns in nucleosome core particles based on isometric feature mapping and continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Yan, Hong

    2012-09-01

    Based on the anisotropic deformation of DNA structure in nucleosomes, the non-linear dimensionality reduction algorithm Isomap is used to derive a structural signal accounting for most structural variances from the DNA structural data of nucleosome crystals. The analysis of this structural signal by continuous wavelet transform has successfully revealed the common regularity of nucleosome DNA deformation and also the peculiarity of structural configurations in nucleosomes with particular histone or DNA composition, or special ligands. The relationship between the constituent dinucleotides and the signal energy distribution shows that the fluctuation of a structural signal is sensitive to certain dinucleotide types.

  7. Lipidomics reveals mitochondrial membrane remodeling associated with acute thermoregulation in a rodent with a wide thermoneutral zone.

    PubMed

    Pan, Qian; Li, Min; Shi, Yao-Long; Liu, Huwei; Speakman, John R; Wang, De-Hua

    2014-07-01

    Mongolian gerbils (Meriones unguiculatus) have high physiological flexibility in response to acute temperature changes, and have the widest thermoneutral zone (TNZ, 26.5-38.9 °C) reported among small mammals. At the upper critical temperature (T(uc), 38.9 °C), body temperatures of gerbils were significantly increased (39-41 °C) while metabolic rates were maintained at the basal level. In contrast, below the lower critical temperature (T(lc), 26.5 °C), metabolism was elevated and body temperature stable. Rapid changes in mitochondrial membrane lipidome were hypothesized to play an important role during acute thermoregulation of gerbils. Taking advantage of a recent lipidomic technique, we examined changes in the membrane phospholipids environment and free fatty acids (FFA) production in mitochondria between 38 and 27 °C (in the TNZ), and between 27 and 16 °C (below the TNZ). At 38 °C, acute heat stress elicited distinct remodeling in mitochondrial membrane lipidome which related to a potential decrease in mitochondrial respiration and membrane fluidity compared to 27 °C. At 16 °C, a sharply decreased unsaturation index and increased chain lengths were detected in mitochondrial FFA production both in muscle and brown adipose tissue. Our results suggest that mitochondrial membrane lipid remodeling may stabilize membrane function and activity of respiration related membrane protein to maintain a stable metabolic rate at T(uc), and improve heat production by decomposing less fluid fatty acid conjugates of membrane lipids under acute cold exposure. These data therefore imply an important role of membrane remodeling during acute thermoregulation in a non-hibernating endotherm.

  8. In vitro chromatin remodelling by chromatin accessibility complex (CHRAC) at the SV40 origin of DNA replication.

    PubMed Central

    Alexiadis, V; Varga-Weisz, P D; Bonte, E; Becker, P B; Gruss, C

    1998-01-01

    DNA replication is initiated by binding of initiation factors to the origin of replication. Nucleosomes are known to inhibit the access of the replication machinery to origin sequences. Recently, nucleosome remodelling factors have been identified that increase the accessibility of nucleosomal DNA to transcription regulators. To test whether the initiation of DNA replication from an origin covered by nucleosomes would also benefit from the action of nucleosome remodelling factors, we reconstituted SV40 DNA into chromatin in Drosophila embryo extracts. In the presence of T-antigen and ATP, a chromatin-associated cofactor allowed efficient replication from a nucleosomal origin in vitro. In search of the energy-dependent cofactor responsible we found that purified 'chromatin accessibility complex' (CHRAC) was able to alter the nucleosomal structure at the origin allowing the binding of T-antigen and efficient initiation of replication. These experiments provide evidence for the involvement of a nucleosome remodelling machine in structural changes at the SV40 origin of DNA replication in vitro. PMID:9628878

  9. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene.

    PubMed

    Riffo-Campos, Ángela L; Castillo, Josefa; Tur, Gema; González-Figueroa, Paula; Georgieva, Elena I; Rodríguez, José L; López-Rodas, Gerardo; Rodrigo, M Isabel; Franco, Luis

    2015-01-02

    Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.

  10. Transcriptomic profiling revealed an important role of cell wall remodeling and ethylene signaling pathway during salt acclimation in Arabidopsis.

    PubMed

    Shen, Xiaoyan; Wang, Zenglan; Song, Xiaofeng; Xu, Jiajia; Jiang, Chunyun; Zhao, Yanxiu; Ma, Changle; Zhang, Hui

    2014-10-01

    Plants can successfully improve their resistance to previously lethal salinity stress by a short exposure to low levels of salt stress, a process known as salt acclimation (SA). In spite of its fundamental significance in theoretical study and agricultural practice, the molecular mechanisms underlying plant SA remain elusive. In this study, we found that salt acclimated Arabidopsis young seedlings can survive subsequent 200 mM NaCl stress. RNA-seq was performed to analyze the genome-wide transcriptional response under SA conditions. Among 518 differentially expressed genes (DEGs) under SA, 366 up-regulated genes were enriched for cell wall biosynthesis, osmoregulation, oxidative stress, or transcription factors. Seven DEGs participate in the synthesis of lignin and 24 DEGs encode plant cell wall proteins, suggesting the importance of cell wall remodeling under SA. Furthermore, in comparison to non-acclimated salt stress, 228 of 245 DEGs were repressed by acclimated salt stress, including many genes related to ethylene biosynthesis and signaling pathway. In addition, MAPK6, a major component of the ethylene signaling pathway, was found to play a crucial role in SA. Our transcriptomic analysis has provided important insight on the roles of transcription factors, cell wall remodeling, and the ethylene biosynthesis and signaling pathways during SA in Arabidopsis.

  11. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures.

    PubMed

    Uchida, Chiharu

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.

  12. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures

    PubMed Central

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors. PMID:28101510

  13. The RSC Complex Exploits Histone Acetylation to Abrogate the Nucleosomal Barrier to RNA Polymerase II Elongation

    PubMed Central

    Carey, Michael; Li, Bing; Workman, Jerry L.

    2007-01-01

    Summary The coordinated action of histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling enzymes in promoter-dependent transcription initiation represents a paradigm for how epigenetic information regulates gene expression. However, little is known about how such enzymes function during transcription elongation. Here we investigated the role of RSC, a bromodomain-containing ATPase, in nucleosome transcription in vitro. Purified S. cerevisiae RNA polymerase II (pol II) arrests at two primary locations on a positioned mononucleosome. RSC stimulates passage of pol II through these sites. The function of RSC in elongation requires the energy of ATP hydrolysis. Moreover, the SAGA and NuA4 HATs strongly stimulated RSC’s effect on elongation. The stimulation correlates closely with Acetyl-CoA-dependent recruitment of RSC to nucleosomes. Thus, RSC can recognize acetylated nucleosomes and facilitate passage of pol II through them. These data support the view that histone modifications regulate accessibility of the coding region to pol II. PMID:17081996

  14. Relationship between nucleosome positioning and DNA methylation

    PubMed Central

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  15. Genetic variants in chromatin-remodeling pathway associated with lung cancer risk in a Chinese population.

    PubMed

    Geng, Liguo; Zhu, Meng; Wang, Yuzhuo; Cheng, Yang; Liu, Jia; Shen, Wei; Li, Zhihua; Zhang, Jiahui; Wang, Cheng; Jin, Guangfu; Ma, Hongxia; Shen, Hongbing; Hu, Zhibin; Dai, Juncheng

    2016-08-10

    Chromatin remodeling complexes utilize the energy of ATP hydrolysis to remodel nucleosomes and have essential roles in transcriptional modulation. Increasing evidences indicate that these complexes directly interact with numerous proteins and regulate the formation of cancer. However, few studies reported the association of polymorphisms in chromatin remodeling genes and lung cancer. We hypothesized that variants in critical genes of chromatin remodeling pathway might contribute to the susceptibility of lung cancer. To validate this hypothesis, we systematically screened 40 polymorphisms in six key chromatin remodeling genes (SMARCA5, SMARCC2, SMARCD2, ARID1A, NR3C1 and SATB1) and evaluated them with a case-control study including 1341 cases and 1982 controls. Logistic regression revealed that four variants in NR3C1 and SATB1 were significantly associated with lung cancer risk after false discovery rate (FDR) correction [For NR3C1, rs9324921: odds ratio (OR)=1.23, P for FDR=0.029; rs12521436: OR=0.85, P for FDR=0.040; rs4912913: OR=1.17, P for FDR=0.040; For SATB1, rs6808523: OR=1.33, P for FDR=0.040]. Combing analysis presented a significant allele-dosage tendency for the number of risk alleles and lung cancer risk (Ptrend<0.001). Moreover, expression quantitative trait loci (eQTL) analysis revealed that these two genes were differently expressed between lung tumor and adjacent normal tissues in the database of The Cancer Genome Atlas (TCGA) (P=0.009 for rs6808523). These findings suggested that genetic variants in key chromatin remodeling genes may contribute to lung cancer risk in Chinese population. Further large and well-designed studies are warranted to validate our results.

  16. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    PubMed

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  17. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants

    PubMed Central

    Labonne, Jonathan D. J.; Dorweiler, Jane E.; McGinnis, Karen M.

    2013-01-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1–1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1–1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression. PMID:23538550

  18. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants.

    PubMed

    Labonne, Jonathan D J; Dorweiler, Jane E; McGinnis, Karen M

    2013-04-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1-1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1-1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression.

  19. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.

    PubMed

    Cui, Feng; Zhurkin, Victor B

    2010-06-01

    Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken beta-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the '601' nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp - an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning 'rules' they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL+/- 3.5 and +/- 5.5, which is similar to the alpha-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the '601' clone) the

  20. Structure-based Analysis of DNA Sequence Patterns Guiding Nucleosome Positioning in vitro

    PubMed Central

    Cui, Feng; Zhurkin, Victor B.

    2010-01-01

    Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp — an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone

  1. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling

    PubMed Central

    Li, Bing; Pattenden, Samantha G.; Lee, Daeyoup; Gutiérrez, José; Chen, Jie; Seidel, Chris; Gerton, Jennifer; Workman, Jerry L.

    2005-01-01

    The yeast histone variant H2AZ (Htz1) is implicated in transcription activation, prevention of the ectopic spread of heterochromatin, and genome integrity. Our genome-wide localization analysis revealed that Htz1 is widely, but nonrandomly, distributed throughout the genome in an SWR1-dependent manner. We found that Htz1 is enriched in intergenic regions compared with coding regions. Its occupancy is inversely proportional to transcription rates and the enrichment of the RNA polymerase II under different growth conditions. However, Htz1 does not seem to directly regulate transcription repression genome-wide; instead, the presence of Htz1 under the inactivated condition is essential for optimal activation of a subset of genes. In addition, Htz1 is not generally responsible for nucleosome positioning, even at those promoters where Htz1 is highly enriched. Finally, using a biochemical approach, we demonstrate that incorporation of Htz1 into nucleosomes inhibits activities of histone modifiers associated with transcription, Dot1, Set2, and NuA4 and reduces the nucleosome mobilization driven by chromatin remodeling complexes. These lines of evidence collectively suggest that Htz1 may serve to mark quiescent promoters for proper activation. PMID:16344463

  2. Nucleosome architecture throughout the cell cycle.

    PubMed

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  3. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  4. Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae.

    PubMed

    Yarrington, Robert M; Goodrum, Jenna M; Stillman, David J

    2016-02-01

    Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.

  5. Hormone activation induces nucleosome positioning in vivo

    PubMed Central

    Belikov, Sergey; Gelius, Birgitta; Almouzni, Geneviève; Wrange, Örjan

    2000-01-01

    The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishment of specific translational positioning of nucleosomes despite the lack of significant positioning in the inactive state; and, in the active promoter, a subnucleosomal particle encompassing the glucocorticoid receptor (GR)-binding region was detected. The presence of only a single GR-binding site was sufficient for the structural transition to occur. Both basal promoter elements and ongoing transcription were dispensable. These data reveal a stepwise process in the transcriptional activation by glucocorticoid hormone. PMID:10698943

  6. Transcription of nucleosomes from human chromatin.

    PubMed Central

    Shaw, P A; Sahasrabuddhe, C G; Hodo, H G; Saunders, G F

    1978-01-01

    Nucleosomes (chromatin subunits) prepared by micrococcal nuclease digestion of human nuclei are similar in histone content but substantially reduced in non-histone proteins as compared to undigested chromatin. Chromatin transcription experiments indicate that the DNA in the nucleosomes is accessible to DNA-dependent RNA polymerase in vitro. The template capacities of chromatin and nucleosomes are 1.5 and 10%, respectively, relative to high molecular weight DNA, with intermediate values for oligonucleosomes. Three distinct sizes of transcripts, 150, 120 and 95 nucleotides in length, are obtained when nucleosomes are used as templates. However, when nucleosomal DNA is used as a template, the predominant size of transcripts is 150 nucleotides. When oligonucleosomes are used as templates longer transcripts are obtained. This indicates that RNA polymerase can transcribe the DNA contained in the nucleosomes. PMID:693325

  7. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi

    PubMed Central

    Greif, Gonzalo; Rodriguez, Matias; Alvarez-Valin, Fernando

    2017-01-01

    American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions. PMID:28286708

  8. Metabolic profiling reveals that PNPLA3 induces widespread effects on metabolism beyond triacylglycerol remodeling in Huh-7 hepatoma cells

    PubMed Central

    Min, Hae-Ki; Sookoian, Silvia; Pirola, Carlos J.; Cheng, Jianfeng; Mirshahi, Faridoddin

    2014-01-01

    PNPLA3 was recently associated with the susceptibility to nonalcoholic fatty liver disease, a common cause of chronic liver disease characterized by abnormal triglyceride accumulation. Although it is established that PNPLA3 has both triacylglycerol lipase and acylglycerol O-acyltransferase activities, is still unknown whether the gene has any additional role in the modulation of the human liver metabolome. To uncover the functional role of PNPLA3 on liver metabolism, we performed high-throughput metabolic profiling of PNPLA3 siRNA-silencing and overexpression of wild-type and mutant Ile148Met variants (isoleucine/methionine substitution at codon 148) in Huh-7 cells. Metabolomic analysis was performed by using GC/MS and LC/MS platforms. Silencing of PNPLA3 was associated with a global perturbation of Huh-7 hepatoma cells that resembled a catabolic response associated with protein breakdown. A significant decrease in amino- and γ-glutamyl-amino acids and dipeptides and a significant increase in cysteine sulfinic acid, myo-inositol, lysolipids, sphingolipids, and polyunsaturated fatty acids were observed. Overexpression of the PNPLA3 Met148 variant mirrored many of the metabolic changes observed during gene silencing, but in the opposite direction. These findings were replicated by the exploration of canonical pathways associated with PNPLA3 silencing and Met148 overexpression. Overexpression of the PNPLA3 Met148 variant was associated with a 1.75-fold increase in lactic acid, suggesting a shift to anaerobic metabolism and mitochondrial dysfunction. Together, these results suggest a critical role of PNPLA3 in the modulation of liver metabolism beyond its classical participation in triacylglycerol remodeling. PMID:24763554

  9. Integrative network analysis reveals time-dependent molecular events underlying left ventricular remodeling in post-myocardial infarction patients.

    PubMed

    Pinet, Florence; Cuvelliez, Marie; Kelder, Thomas; Amouyel, Philippe; Radonjic, Marijana; Bauters, Christophe

    2017-02-03

    To elucidate the time-resolved molecular events underlying the LV remodeling (LVR) process, we developed a large-scale network model that integrates the 24 molecular variables (plasma proteins and non-coding RNAs) collected in the REVE-2 study at four time points (baseline, 1month, 3months and 1year) after MI. The REVE-2 network model was built by extending the set of REVE-2 variables with their mechanistic context based on known molecular interactions (1310 nodes and 8639 edges). Changes in the molecular variables between the group of patients with high LVR (>20%) and low LVR (<20%) were used to identify active network modules within the clusters associated with progression of LVR, enabling assessment of time-resolved molecular changes. Although the majority of molecular changes occur at the baseline, two network modules specifically show an increasing number of active molecules throughout the post-MI follow up: one involved in muscle filament sliding, containing the major troponin forms and tropomyosin proteins, and the other associated with extracellular matrix disassembly, including matrix metalloproteinases, tissue inhibitors of metalloproteinases and laminin proteins. For the first time, integrative network analysis of molecular variables collected in REVE-2 patients with known molecular interactions allows insight into time-dependent mechanisms associated with LVR following MI, linking specific processes with LV structure alteration. In addition, the REVE-2 network model provides a shortlist of prioritized putative novel biomarker candidates for detection of LVR after MI event associated with a high risk of heart failure and is a valuable resource for further hypothesis generation.

  10. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi.

    PubMed

    Berná, Luisa; Chiribao, Maria Laura; Greif, Gonzalo; Rodriguez, Matias; Alvarez-Valin, Fernando; Robello, Carlos

    2017-01-01

    American trypanosomiasis is a chronic and endemic disease which affects millions of people. Trypanosoma cruzi, its causative agent, has a life cycle that involves complex morphological and functional transitions, as well as a variety of environmental conditions. This requires a tight regulation of gene expression, which is achieved mainly by post-transcriptional regulation. In this work we conducted an RNAseq analysis of the three major life cycle stages of T. cruzi: amastigotes, epimastigotes and trypomastigotes. This analysis allowed us to delineate specific transcriptomic profiling for each stage, and also to identify those biological processes of major relevance in each state. Stage specific expression profiling evidenced the plasticity of T. cruzi to adapt quickly to different conditions, with particular focus on membrane remodeling and metabolic shifts along the life cycle. Epimastigotes, which replicate in the gut of insect vectors, showed higher expression of genes related to energy metabolism, mainly Krebs cycle, respiratory chain and oxidative phosphorylation related genes, and anabolism related genes associated to nucleotide and steroid biosynthesis; also, a general down-regulation of surface glycoprotein coding genes was seen at this stage. Trypomastigotes, living extracellularly in the bloodstream of mammals, express a plethora of surface proteins and signaling genes involved in invasion and evasion of immune response. Amastigotes mostly express membrane transporters and genes involved in regulation of cell cycle, and also express a specific subset of surface glycoprotein coding genes. In addition, these results allowed us to improve the annotation of the Dm28c genome, identifying new ORFs and set the stage for construction of networks of co-expression, which can give clues about coded proteins of unknown functions.

  11. Synaptoproteomic Analysis of a Rat Gene-Environment Model of Depression Reveals Involvement of Energy Metabolism and Cellular Remodeling Pathways

    PubMed Central

    Failler, Marion; Corna, Stefano; Racagni, Giorgio; Mathé, Aleksander A.; Popoli, Maurizio

    2015-01-01

    Background: Major depression is a severe mental illness that causes heavy social and economic burdens worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse, or parental loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress. Methods: The Flinders Sensitive Line rats (FSL), a validated genetic animal model of depression, and the Flinders Resistant Line (FRL) rats, their controls, were subjected to a standard protocol of maternal separation (MS) from postnatal days 2 to 14. A basal comparison between the two lines for the outcome of the environmental manipulation was performed at postnatal day 73, when the rats were into adulthood. We carried out a global proteomic analysis of purified synaptic terminals (synaptosomes), in order to study a subcellular compartment enriched in proteins involved in synaptic function. Two-dimensional gel electrophoresis (2-DE), mass spectrometry, and bioinformatic analysis were used to analyze proteins and related functional networks that were modulated by genetic susceptibility (FSL vs. FRL) or by exposure to early-life stress (FRL + MS vs. FRL and FSL + MS vs. FSL). Results: We found that, at a synaptic level, mainly proteins and molecular pathways related to energy metabolism and cellular remodeling were dysregulated. Conclusions: The present results, in line with previous works, suggest that dysfunction of energy metabolism and cytoskeleton dynamics at a synaptic level could be features of stress-related pathologies, in particular major depression. PMID:25522407

  12. The Genomic Code for Nucleosome Positioning

    NASA Astrophysics Data System (ADS)

    Widom, Jonathan

    2008-03-01

    Eukaryotic genomes encode an additional layer of genetic information, superimposed on top of the regulatory and coding information, that controls the organization of the genomic DNA into arrays of nucleosomes. We have developed a partial ability to read this nucleosome positioning code and predict the in vivo locations of nucleosomes. Our results suggest that genomes utilize the nucleosome positioning code to facilitate specific chromosome functions including to delineate functional versus nonfunctional binding sites for key gene regulatory proteins, and to define the next higher level of chromosome structure itself.

  13. Effects of DNA methylation on nucleosome stability.

    PubMed

    Collings, Clayton K; Waddell, Peter J; Anderson, John N

    2013-03-01

    Methylation of DNA at CpG dinucleotides represents one of the most important epigenetic mechanisms involved in the control of gene expression in vertebrate cells. In this report, we conducted nucleosome reconstitution experiments in conjunction with high-throughput sequencing on 572 KB of human DNA and 668 KB of mouse DNA that was unmethylated or methylated in order to investigate the effects of this epigenetic modification on the positioning and stability of nucleosomes. The results demonstrated that a subset of nucleosomes positioned by nucleotide sequence was sensitive to methylation where the modification increased the affinity of these sequences for the histone octamer. The features that distinguished these nucleosomes from the bulk of the methylation-insensitive nucleosomes were an increase in the frequency of CpG dinucleotides and a unique rotational orientation of CpGs such that their minor grooves tended to face toward the histones in the nucleosome rather than away. These methylation-sensitive nucleosomes were preferentially associated with exons as compared to introns while unmethylated CpG islands near transcription start sites became enriched in nucleosomes upon methylation. The results of this study suggest that the effects of DNA methylation on nucleosome stability in vitro can recapitulate what has been observed in the cell and provide a direct link between DNA methylation and the structure and function of chromatin.

  14. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  15. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo.

    PubMed Central

    Truss, M; Bartsch, J; Schelbert, A; Haché, R J; Beato, M

    1995-01-01

    Hormonal induction of the mouse mammary tumour virus (MMTV) promoter is mediated by interactions between hormone receptors and other transcription factors bound to a complex array of sites. Previous results suggested that access to these sites is modulated by their precise organization into a positioned regulatory nucleosome. Using genomic footprinting, we show that MMTV promoter DNA is rotationally phased in intact cells containing either episomal or chromosomally integrated proviral fragments. Prior to induction there is no evidence for factors bound to the promoter. Following progesterone induction of cells with high levels of receptor, genomic footprinting detects simultaneous protection over the binding sites for hormone receptors, NF-I and the octamer binding proteins. Glucocorticoid or progestin induction leads to a characteristic chromatin remodelling that is independent of ongoing transcription. The centre of the regulatory nucleosome becomes more accessible to DNase I and restriction enzymes, but the limits of the nucleosome are unchanged and the 145 bp core region remains protected against micrococcal nuclease digestion. Thus, the nucleosome covering the MMTV promoter is neither removed nor shifted upon hormone induction, and all relevant transcription factors bind to the surface of the rearranged nucleosome. Since these factors cannot bind simultaneously to free DNA, maintainance of the nucleosome may be required for binding of factors to contiguous sites. Images PMID:7737125

  16. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA.

    PubMed

    Osakabe, Akihisa; Adachi, Fumiya; Arimura, Yasuhiro; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2015-10-01

    DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.

  17. Dynamic Changes in Nucleosome Occupancy Are Not Predictive of Gene Expression Dynamics but Are Linked to Transcription and Chromatin Regulators

    PubMed Central

    Huebert, Dana J.; Kuan, Pei-Fen; Keleş, Sündüz

    2012-01-01

    The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression. PMID:22354995

  18. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding.

    PubMed

    Joshi, Sachindra R; Sarpong, Yaw C; Peterson, Ronald C; Scovell, William M

    2012-11-01

    High mobility group protein 1 (HMGB1) interacts with DNA and chromatin to influence the regulation of transcription, DNA repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, ATP-independent manner. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N' and N″) remain stable and exhibit characteristics distinctly different from the canonical nucleosome. These findings complement previous studies that showed (i) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (ii) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that one aspect of the mechanism of HMGB1 action involves a restructuring of the nucleosome that appears to relax structural constraints within the nucleosome.

  19. Multiple functions of nucleosomes and regulatory factors in transcription.

    PubMed

    Workman, J L; Buchman, A R

    1993-03-01

    The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.

  20. Chromatin remodeling in DNA double-strand break repair.

    PubMed

    Bao, Yunhe; Shen, Xuetong

    2007-04-01

    ATP-dependent chromatin remodeling complexes use ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. However, emerging lines of evidence suggest that chromatin remodeling complexes are important players in DNA double-strand break (DSB) repair as well. The INO80 and SWI2 subfamilies of chromatin remodeling complexes have been found to be recruited to the double-strand lesions and to function directly in both homologous recombination and non-homologous end-joining, the two major conserved DSB repair pathways. Improperly repaired DSBs are implicated in cancer development in higher organisms. Understanding how chromatin remodeling complexes contribute to DSB repair should provide new insights into the mechanisms of carcinogenesis and might suggest new targets for cancer treatment.

  1. Exploring Nucleosome Unwrapping Using DNA Origami.

    PubMed

    Funke, Jonas J; Ketterer, Philip; Lieleg, Corinna; Korber, Philipp; Dietz, Hendrik

    2016-12-14

    We establish a DNA origami based tool for quantifying conformational equilibria of biomolecular assemblies as a function of environmental conditions. As first application, we employed the tool to study the salt-induced disassembly of nucleosome core particles. To extract binding constants and energetic penalties, we integrated nucleosomes in the spectrometer such that unwrapping of the nucleosomal template DNA, leading from bent to more extended states was directly coupled to the conformation of the spectrometer. Nucleosome unwrapping was induced by increasing the ionic strength. The corresponding shifts in conformation equilibrium of the spectrometer were followed by direct conformation imaging using negative staining TEM and by FRET read out after gel electrophoretic separation of conformations. We find nucleosome dissociation constants in the picomolar range at low ionic strength (11 mM MgCl2), in the nanomolar range at intermediate ionic strength (11 mM MgCl2 with 0.5-1 M NaCl) and in the micromolar range at larger ionic strength (11 mM MgCl2 with ≥1.5 M NaCl). Integration of up to four nucleosomes stacked side-by-side, as it might occur within chromatin fibers, did not appear to affect the salt-induced unwrapping of nucleosomes. Presumably, such stacking interactions are already effectively screened at the nucleosome unwrapping conditions. Our spectrometer provides a modular platform with a direct read out to study conformational equilibria for targets from small biomolecules up to large macromolecular assemblies.

  2. A brief review of nucleosome structure.

    PubMed

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-07

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.

  3. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  4. Crystal structure of the human centromeric nucleosome containing CENP-A.

    PubMed

    Tachiwana, Hiroaki; Kagawa, Wataru; Shiga, Tatsuya; Osakabe, Akihisa; Miya, Yuta; Saito, Kengo; Hayashi-Takanaka, Yoko; Oda, Takashi; Sato, Mamoru; Park, Sam-Yong; Kimura, Hiroshi; Kurumizaka, Hitoshi

    2011-07-10

    In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.

  5. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

    PubMed

    Prescott, Eugenia T; Safi, Alexias; Rusche, Laura N

    2011-07-01

    Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.

  6. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    PubMed

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  7. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility

    PubMed Central

    Riedmann, Caitlyn; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Chromatin architectural proteins (CAPs) bind the entry/exit DNA of nucleosomes and linker DNA to form higher order chromatin structures with distinct transcriptional outcomes. How CAPs mediate nucleosome dynamics is not well understood. We hypothesize that CAPs regulate DNA target site accessibility through alteration of the rate of spontaneous dissociation of DNA from nucleosomes. We investigated the effects of histone H1, high mobility group D1 (HMGD1), and methyl CpG binding protein 2 (MeCP2), on the biophysical properties of nucleosomes and chromatin. We show that MeCP2, like the repressive histone H1, traps the nucleosome in a more compact mononucleosome structure. Furthermore, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding to its cognate DNA site within the nucleosomal DNA. These results demonstrate that MeCP2 behaves like a repressor even in the absence of methylation. Additionally, MeCP2 behaves similarly to histone H1 and HMGD1 in creating a higher-order chromatin structure, which is susceptible to chromatin remodeling by ISWI. Overall, we show that CAP binding results in unique changes to nucleosome structure and dynamics. PMID:27624769

  8. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.

    PubMed

    Mavrich, Travis N; Ioshikhes, Ilya P; Venters, Bryan J; Jiang, Cizhong; Tomsho, Lynn P; Qi, Ji; Schuster, Stephan C; Albert, Istvan; Pugh, B Franklin

    2008-07-01

    Most nucleosomes are well-organized at the 5' ends of S. cerevisiae genes where "-1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the -1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3' NFR that is present at >95% of all genes. 3' NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3' NFRs in gene looping.

  9. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-01-01

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. PMID:25999344

  10. Stability of nucleosome placement in newly repaired regions of DNA

    SciTech Connect

    Nissen, K.A.; Lan, S.Y.; Smerdon, M.J.

    1986-07-05

    Rearrangements of chromatin structure during excision repair of UV-damaged DNA appear to involve unfolding of nucleosomal DNA while repair is taking place, followed by refolding of this DNA into a native nucleosome structure. Recently, we found that repair patches are not distributed uniformly along the DNA in nucleosome core particles immediately following their refolding into nucleosomes. Therefore, the distribution of repair patches in nucleosome core DNA was used to monitor the stability of nucleosome placement in these regions. Our results indicate that in nondividing human cells undergoing excision repair there is a slow change in the positioning of nucleosomes in newly repaired regions of chromatin, resulting in the eventual randomization of repair patches in nucleosome core DNA. Furthermore, the nonrandom placement of nucleosomes observed just after the refolding event is not re-established during DNA replication. Possible mechanisms for this change in nucleosome placement along the DNA are discussed.

  11. Regulation of the nucleosome unwrapping rate controls DNA accessibility

    PubMed Central

    North, Justin A.; Shimko, John C.; Javaid, Sarah; Mooney, Alex M.; Shoffner, Matthew A.; Rose, Sean D.; Bundschuh, Ralf; Fishel, Richard; Ottesen, Jennifer J.; Poirier, Michael G.

    2012-01-01

    Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequence within the nucleosome entry-exit region additively influence nucleosomal DNA accessibility by increasing the unwrapping rate without impacting rewrapping. These combined epigenetic and genetic factors influence transcription factor (TF) occupancy within the nucleosome by at least one order of magnitude and enhance nucleosome disassembly by the DNA mismatch repair complex, hMSH2–hMSH6. Our results combined with the observation that ∼30% of Saccharomyces cerevisiae TF-binding sites reside in the nucleosome entry–exit region suggest that modulation of nucleosome unwrapping is a mechanism for regulating transcription and DNA repair. PMID:22965129

  12. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  13. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  14. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.

    PubMed

    Rogge, Ryan A; Kalashnikova, Anna A; Muthurajan, Uma M; Porter-Goff, Mary E; Luger, Karolin; Hansen, Jeffrey C

    2013-09-10

    Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.

  15. Regulatory motifs on ISWI chromatin remodelers: molecular mechanisms and kinetic proofreading

    NASA Astrophysics Data System (ADS)

    Brysbaert, Guillaume; Lensink, Marc F.; Blossey, Ralf

    2015-02-01

    Recently, kinetic proofreading scenarios have been proposed for the regulation of chromatin remodeling, first on purely theoretical grounds (Blossey and Schiessel 2008 HFSP J. 2 167-70) and deduced from experiments on the ISWI/ACF system (Narlikar 2010 Curr. Opin. Chem. Biol. 14 660). In the kinetic proofreading scenario of chromatin remodeling, the combination of the recognition of a histone tail state and ATP-hydrolysis in the remodeler motor act together to select (i.e. proofread) a nucleosomal substrate. ISWI remodelers have recently been shown to have an additional level of regulation as they contain auto-inhibitory motifs which need to be inactivated through an interaction with the nucleosome. In this paper we show that the auto-regulatory effect enhances substrate recognition in kinetic proofreading. We further report some suggestive additional insights into the molecular mechanism underlying ISWI-autoregulation.

  16. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair.

    PubMed

    Fournier, Joëlle; Teillet, Alice; Chabaud, Mireille; Ivanov, Sergey; Genre, Andrea; Limpens, Erik; de Carvalho-Niebel, Fernanda; Barker, David G

    2015-04-01

    In many legumes, root entry of symbiotic nitrogen-fixing rhizobia occurs via host-constructed tubular tip-growing structures known as infection threads (ITs). Here, we have used a confocal microscopy live-tissue imaging approach to investigate early stages of IT formation in Medicago truncatula root hairs (RHs) expressing fluorescent protein fusion reporters. This has revealed that ITs only initiate 10 to 20 h after the completion of RH curling, by which time major modifications have occurred within the so-called infection chamber, the site of bacterial entrapment. These include the accumulation of exocytosis (M. truncatula Vesicle-Associated Membrane Protein721e)- and cell wall (M. truncatula EARLY NODULIN11)-associated markers, concomitant with radial expansion of the chamber. Significantly, the infection-defective M. truncatula nodule inception-1 mutant is unable to create a functional infection chamber. This underlines the importance of the NIN-dependent phase of host cell wall remodeling that accompanies bacterial proliferation and precedes IT formation, and leads us to propose a two-step model for rhizobial infection initiation in legume RHs.

  17. Mechanisms of ATP-Dependent Chromatin Remodeling Motors.

    PubMed

    Zhou, Coral Y; Johnson, Stephanie L; Gamarra, Nathan I; Narlikar, Geeta J

    2016-07-05

    Chromatin remodeling motors play essential roles in all DNA-based processes. These motors catalyze diverse outcomes ranging from sliding the smallest units of chromatin, known as nucleosomes, to completely disassembling chromatin. The broad range of actions carried out by these motors on the complex template presented by chromatin raises many stimulating mechanistic questions. Other well-studied nucleic acid motors provide examples of the depth of mechanistic understanding that is achievable from detailed biophysical studies. We use these studies as a guiding framework to discuss the current state of knowledge of chromatin remodeling mechanisms and highlight exciting open questions that would continue to benefit from biophysical analyses.

  18. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks.

    PubMed

    Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D

    2016-05-08

    The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.

  19. Nucleosome

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication.

  20. Roles and activities of chromatin remodeling ATPases in plants.

    PubMed

    Han, Soon-Ki; Wu, Miin-Feng; Cui, Sujuan; Wagner, Doris

    2015-07-01

    Chromatin remodeling ATPases and their associated complexes can alter the accessibility of the genome in the context of chromatin by using energy derived from the hydrolysis of ATP to change the positioning, occupancy and composition of nucleosomes. In animals and plants, these remodelers have been implicated in diverse processes ranging from stem cell maintenance and differentiation to developmental phase transitions and stress responses. Detailed investigation of their roles in individual processes has suggested a higher level of selectivity of chromatin remodeling ATPase activity than previously anticipated, and diverse mechanisms have been uncovered that can contribute to the selectivity. This review summarizes recent advances in understanding the roles and activities of chromatin remodeling ATPases in plants.

  1. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes.

  2. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism.

    PubMed

    Collino, Sebastiano; Montoliu, Ivan; Martin, François-Pierre J; Scherer, Max; Mari, Daniela; Salvioli, Stefano; Bucci, Laura; Ostan, Rita; Monti, Daniela; Biagi, Elena; Brigidi, Patrizia; Franceschi, Claudio; Rezzi, Serge

    2013-01-01

    The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic (1)H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.

  3. Transcription through the HIV-1 nucleosomes: Effects of the PBAF complex in Tat activated transcription

    PubMed Central

    Easley, Rebecca; Carpio, Lawrence; Dannenberg, Luke; Choi, Soyun; Alani, Dowser; Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Agbottah, Emmanuel; Kehn-Hall, Kylene; Kashanchi, Fatah

    2010-01-01

    The SWI/SNF complex remodels nucleosomes, allowing RNA Polymerase II access to the HIV-1 proviral DNA. It has not been determined which SWI/SNF complex (BAF or PBAF) remodels nucleosomes at the transcription start site. These complexes differ in only three subunits and determining which subunit(s) is required could explain the regulation of Tat activated transcription. We show that PBAF is required for chromatin remodeling at the nuc-1 start site and transcriptional elongation. We find that Baf200 is required to ensure activation at the LTR level and for viral production. Interestingly, the BAF complex was observed on the LTR whereas PBAF was present on both LTR and Env regions. We found that Tat activated transcription facilitates removal of histones H2A and H2B at the LTR, and that the FACT complex may be responsible for their removal. Finally, the BAF complex may play an important role in regulating splicing of the HIV-1 genome. PMID:20599239

  4. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates

    SciTech Connect

    Knezetic, J.A.; Jacob, G.A.; Luse, D.S.

    1988-08-01

    The authors have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, they demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that the observations are not the result of slow displacemnt of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.

  5. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Bowerman, Samuel; Wereszczynski, Jeff

    2016-01-01

    Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. Here, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that post-translational modifications are enriched at key locations in these networks. Taken together, these results provide new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodelling factors.

  6. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations.

    PubMed

    Bowerman, Samuel; Wereszczynski, Jeff

    2016-01-19

    Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. In this study, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that posttranslational modifications are enriched at key locations in these networks. Taken together, these results provide, to our knowledge, new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodeling factors.

  7. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.

    PubMed

    Vlijm, Rifka; Lee, Mina; Lipfert, Jan; Lusser, Alexandra; Dekker, Cees; Dekker, Nynke H

    2015-01-13

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length of single DNA molecules, we monitor the real-time loading of tetramers or complete histone octamers onto DNA by Nucleosome Assembly Protein-1 (NAP1). Remarkably, we find that tetrasomes exhibit spontaneous flipping between a preferentially occupied left-handed state (ΔLk = -0.73) and a right-handed state (ΔLk = +1.0), separated by a free energy difference of 2.3 kBT (1.5 kcal/mol). This flipping occurs without concomitant changes in DNA end-to-end length. The application of weak positive torque converts left-handed tetrasomes into right-handed tetrasomes, whereas nucleosomes display more gradual conformational changes. Our findings reveal unexpected dynamical rearrangements of the nucleosomal structure, suggesting that chromatin can serve as a "twist reservoir," offering a mechanistic explanation for the regulation of DNA supercoiling in chromatin.

  8. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.

    PubMed

    McGinty, Robert K; Henrici, Ryan C; Tan, Song

    2014-10-30

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.

  9. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  10. Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly

    PubMed Central

    Li, Qing; Zhou, Hui; Wurtele, Hugo; Davies, Brian; Horazdovsky, Bruce; Verreault, Alain; Zhang, Zhiguo

    2008-01-01

    SUMMARY Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. PMID:18662540

  11. The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation

    PubMed Central

    Yao, Wei; King, Devin A.; Beckwith, Sean L.; Gowans, Graeme J.; Yen, Kuangyu; Zhou, Coral

    2016-01-01

    ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability. PMID:26755556

  12. Visualization and analysis of unfolded nucleosomes associated with transcribing chromatin.

    PubMed Central

    Bazett-Jones, D P; Mendez, E; Czarnota, G J; Ottensmeyer, F P; Allfrey, V G

    1996-01-01

    We have characterized the structure of transcriptionally active nucleosome subunits using electron spectroscopic imaging. Individual nucleosomes were analyzed in terms of total mass, DNA and protein content, while the ensemble of images of active nucleosomes was used to calculate a three-dimensional reconstruction. Transcriptionally active nucleosomes were separated from inactive nucleosomes by mercury-affinity chromatography thus making it possible to compare their structures. The chromatographic results combined with electron spectroscopic imaging confirm that active nucleosomes unfold to form extended U-shaped particles. Phosphorus mapping indicated that the nucleosomal DNA also underwent a conformational change consistent with particle unfolding. The three-dimensional structure of the Hg-affinity purified nucleosomes determined using quaternion-assisted angular reconstitution methods unites and resolves the different electron microscopic views of the particle and is concordant with a sulphydryl-exposing disruption of the H3-H4 tetramer. PMID:8628657

  13. The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin

    PubMed Central

    Zocco, Manuel; Marasovic, Mirela; Pisacane, Paola; Bilokapic, Silvija; Halic, Mario

    2016-01-01

    To maintain genome stability, cells pack large portions of their genome into silent chromatin or heterochromatin. Histone H3 lysine 9 methylation, a hallmark of heterochromatin, is recognized by conserved readers called chromodomains. But how chromodomains interact with their actual binding partner, the H3K9 methylated nucleosome, remains elusive. We have determined the structure of a nucleosome trimethylated at lysine 9 of histone H3 (H3K9me3 Nucleosome) in a complex with the chromodomain of Chp1, a protein required for RNA interference-dependent heterochromatin formation in fission yeast. The cryo-electron microscopy structure reveals that the chromodomain of Chp1 binds the histone H3 lysine 9 methylated tail and the core of the nucleosome, primarily histones H3 and H2B. Mutations in chromodomain of Chp1 loops, which interact with the nucleosome core, abolished this interaction in vitro. Moreover, fission yeast cells with Chp1 loop mutations have a defect in Chp1 recruitment and heterochromatin formation. This study reveals the structural basis for heterochromatic silencing and suggests that chromodomains could read histone code in the H3 tail and the nucleosome core, which would provide an additional layer of regulation. PMID:27462451

  14. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122.

    PubMed

    Suzuki, Yuya; Horikoshi, Naoki; Kato, Daiki; Kurumizaka, Hitoshi

    2016-01-15

    The crotonylation of histones is an important post-translational modification, and epigenetically functions in the regulation of genomic DNA activity. The histone modifications in the structured "histone-fold" domains are considered to have an especially important impact on the nucleosome structure and dynamics. In the present study, we reconstituted the human nucleosome containing histone H3.2 crotonylated at the Lys122 residue, and determined its crystal structure at 2.56 Å resolution. We found that the crotonylation of the H3 Lys122 residue does not affect the overall nucleosome structure, but locally impedes the formation of the water-mediated hydrogen bond with the DNA backbone. Consistently, thermal stability assays revealed that the H3 Lys122 crotonylation, as well as the H3 Lys122 acetylation, clearly reduced the histone-DNA association.

  15. Predicting Nucleosome Positioning Using Multiple Evidence Tracks

    NASA Astrophysics Data System (ADS)

    Reynolds, Sheila M.; Weng, Zhiping; Bilmes, Jeff A.; Noble, William Stafford

    We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

  16. The photomorphogenesis regulator DET1 binds the amino-terminal tail of histone H2B in a nucleosome context.

    PubMed

    Benvenuto, Giovanna; Formiggini, Fabio; Laflamme, Pierre; Malakhov, Mikhail; Bowler, Chris

    2002-09-03

    Light provides a major source of information from the environment during plant growth and development. Recent results suggest that the key events controlling light-regulated gene expression in plants are translocation of the phytochrome photoreceptors into the nucleus, followed by their binding to transcription factors such as PIF3. Coupled with this, the degradation of positively acting intermediates such as the transcription factor HY5 by COP1 and the COP9 signalosome appears to be an important process whereby photomorphogenesis is repressed in darkness (e.g., ). Genetic analyses in Arabidopsis and tomato have revealed that the nuclear protein DET1 also plays a key role in the repression of photomorphogenesis. However, the function of this protein has remained a mystery. In a series of in vitro experiments, we provide persuasive evidence that DET1 binds to nonacetylated amino-terminal tails of the core histone H2B in the context of the nucleosome. Furthermore, we have utilized FRET (fluorescence resonance energy transfer) imaging with GFP variants to demonstrate this interaction within the nucleus of living plant cells. Given the dramatic photomorphogenic phenotypes of det1 mutants, we propose that chromatin remodeling plays a heretofore unsuspected role in regulating gene expression during photomorphogenesis.

  17. Distal chromatin structure influences local nucleosome positions and gene expression.

    PubMed

    Jansen, An; van der Zande, Elisa; Meert, Wim; Fink, Gerald R; Verstrepen, Kevin J

    2012-05-01

    The positions of nucleosomes across the genome influence several cellular processes, including gene transcription. However, our understanding of the factors dictating where nucleosomes are located and how this affects gene regulation is still limited. Here, we perform an extensive in vivo study to investigate the influence of the neighboring chromatin structure on local nucleosome positioning and gene expression. Using truncated versions of the Saccharomyces cerevisiae URA3 gene, we show that nucleosome positions in the URA3 promoter are at least partly determined by the local DNA sequence, with so-called 'anti-nucleosomal elements' like poly(dA:dT) tracts being key determinants of nucleosome positions. In addition, we show that changes in the nucleosome positions in the URA3 promoter strongly affect the promoter activity. Most interestingly, in addition to demonstrating the effect of the local DNA sequence, our study provides novel in vivo evidence that nucleosome positions are also affected by the position of neighboring nucleosomes. Nucleosome structure may therefore be an important selective force for conservation of gene order on a chromosome, because relocating a gene to another genomic position (where the positions of neighboring nucleosomes are different from the original locus) can have dramatic consequences for the gene's nucleosome structure and thus its expression.

  18. Global nucleosome distribution and the regulation of transcription in yeast

    PubMed Central

    Ercan, Sevinc; Carrozza, Michael J; Workman, Jerry L

    2004-01-01

    Recent studies show that active regulatory regions of the yeast genome have a lower density of nucleosomes than other regions, and that there is an inverse correlation between nucleosome density and the transcription rate of a gene. This may be the result of transcription factors displacing nucleosomes. PMID:15461807

  19. Essential Role of Chromatin Remodeling Protein Bptf in Early Mouse Embryos and Embryonic Stem Cells

    PubMed Central

    Landry, Joseph; Sharov, Alexei A.; Piao, Yulan; Sharova, Lioudmila V.; Xiao, Hua; Southon, Eileen; Matta, Jennifer; Tessarollo, Lino; Zhang, Ying E.; Ko, Minoru S. H.; Kuehn, Michael R.; Yamaguchi, Terry P.; Wu, Carl

    2008-01-01

    We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf−/− embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf−/− embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo. PMID:18974875

  20. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    PubMed

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  1. Nucleosomes are depleted at the VSG expression site transcribed by RNA polymerase I in African trypanosomes.

    PubMed

    Figueiredo, Luisa M; Cross, George A M

    2010-01-01

    In most eukaryotes, RNA polymerase I (Pol I) exclusively transcribes long arrays of identical rRNA genes (ribosomal DNA [rDNA]). African trypanosomes have the unique property of using Pol I to also transcribe the variant surface glycoprotein VSG genes. VSGs are important virulence factors because their switching allows trypanosomes to escape the host immune system, a mechanism known as antigenic variation. Only one VSG is transcribed at a time from one of 15 bloodstream-form expression sites (BESs). Although it is clear that switching among BESs does not involve DNA rearrangements and that regulation is probably epigenetic, it remains unknown why BESs are transcribed by Pol I and what roles are played by chromatin structure and histone modifications. Using chromatin immunoprecipitation, micrococcal nuclease digestion, and chromatin fractionation, we observed that there are fewer nucleosomes at the active BES and that these are irregularly spaced compared to silent BESs. rDNA coding regions are also depleted of nucleosomes, relative to the rDNA spacer. In contrast, genes transcribed by Pol II are organized in a more compact, regularly spaced, nucleosomal structure. These observations provide new insight on antigenic variation by showing that chromatin remodeling is an intrinsic feature of BES regulation.

  2. A Simple Model of Nucleosome Localization

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2007-03-01

    It has recently been shown that nucleosomes localize to preferred locations along DNA. This localization is a result of the sequence dependent bending stiffness of dsDNA, which must be wrapped around a histone protein to form a nucleosome. As a simple model of nucleosome localization, we study a one-dimensional hard-core gas in a random potential. We numerically solve for the density profile and other thermodynamic quantities using as input both randomly generated potential profiles and experimental energy landscapes. We compare with the annealed average, inspired by the Random Energy Model, and find that the quenched and annealed averages differ significantly above the localization temperature, implying sequence induced structural organization long before the system has frozen. Although information about the ground state is preserved at higher temperatures, there exist massive structural reorganizations at fixed temperature when the chemical potential is lowered. This offers another perspective on why different cells, with different chemical potentials, have different gene expression.

  3. Nitrogen depletion in the fission yeast Schizosaccharomyces pombe causes nucleosome loss in both promoters and coding regions of activated genes

    PubMed Central

    Kristell, Carolina; Orzechowski Westholm, Jakub; Olsson, Ida; Ronne, Hans; Komorowski, Jan; Bjerling, Pernilla

    2010-01-01

    Gene transcription is associated with local changes in chromatin, both in nucleosome positions and in chemical modifications of the histones. Chromatin dynamics has mostly been studied on a single-gene basis. Those genome-wide studies that have been made primarily investigated steady-state transcription. However, three studies of genome-wide changes in chromatin during the transcriptional response to heat shock in the budding yeast Saccharomyces cerevisiae revealed nucleosome eviction in promoter regions but only minor effects in coding regions. Here, we describe the short-term response to nitrogen starvation in the fission yeast Schizosaccharomyces pombe. Nitrogen depletion leads to a fast induction of a large number of genes in S. pombe and is thus suitable for genome-wide studies of chromatin dynamics during gene regulation. After 20 min of nitrogen removal, 118 transcripts were up-regulated. The distribution of regulated genes throughout the genome was not random; many up-regulated genes were found in clusters, while large parts of the genome were devoid of up-regulated genes. Surprisingly, this up-regulation was associated with nucleosome eviction of equal magnitudes in the promoters and in the coding regions. The nucleosome loss was not limited to induction by nitrogen depletion but also occurred during cadmium treatment. Furthermore, the lower nucleosome density persisted for at least 60 min after induction. Two highly induced genes, urg1+ and urg2+, displayed a substantial nucleosome loss, with only 20% of the nucleosomes being left in the coding region. We conclude that nucleosome loss during transcriptional activation is not necessarily limited to promoter regions. PMID:20086243

  4. Nucleosome structure in chromatin from heated cells

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.; Winward, R.T.

    1980-12-01

    The effect of hyperthermia (40 to 80/sup 0/C) on the nucleosome structure of mammalian chromatin was determined using the enzyme micrococcal nuclease. At equivalent fractional DNA digestion it was found that neither the size of DNA nor the total fraction of cellular DNA associated with nucleosome structure is altered by heat exposure up to 48/sup 0/C for 30 min. It is proposed that this heat-induced reduction in the accessibility to nuclease attack of DNA in chromatin from heated cells is due to the increased protein mass associated with chromatin.

  5. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  6. Assembly of Drosophila Centromeric Nucleosomes Requires CID Dimerization

    PubMed Central

    Zhang, Weiguo; Colmenares, Serafin U.; Karpen, Gary H.

    2012-01-01

    SUMMARY Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four helix bundle, which mediates intra-nucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly. PMID:22209075

  7. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  8. Probing Nucleosome Stability with a DNA Origami Nanocaliper.

    PubMed

    Le, Jenny V; Luo, Yi; Darcy, Michael A; Lucas, Christopher R; Goodwin, Michelle F; Poirier, Michael G; Castro, Carlos E

    2016-07-26

    The organization of eukaryotic DNA into nucleosomes and chromatin undergoes dynamic structural changes to regulate genome processing, including transcription and DNA repair. Critical chromatin rearrangements occur over a wide range of distances, including the mesoscopic length scale of tens of nanometers. However, there is a lack of methodologies that probe changes over this mesoscopic length scale within chromatin. We have designed, constructed, and implemented a DNA-based nanocaliper that probes this mesoscopic length scale. We developed an approach of integrating nucleosomes into our nanocaliper at two attachment points with over 50% efficiency. Here, we focused on attaching the two DNA ends of the nucleosome to the ends of the two nanocaliper arms, so the hinge angle is a readout of the nucleosome end-to-end distance. We demonstrate that nucleosomes integrated with 6, 26, and 51 bp linker DNA are partially unwrapped by the nanocaliper by an amount consistent with previously observed structural transitions. In contrast, the nucleosomes integrated with the longer 75 bp linker DNA remain fully wrapped. We found that the nanocaliper angle is a sensitive measure of nucleosome disassembly and can read out transcription factor (TF) binding to its target site within the nucleosome. Interestingly, the nanocaliper not only detects TF binding but also significantly increases the probability of TF occupancy at its site by partially unwrapping the nucleosome. These studies demonstrate the feasibility of using DNA nanotechnology to both detect and manipulate nucleosome structure, which provides a foundation of future mesoscale studies of nucleosome and chromatin structural dynamics.

  9. Nucleosome structure(s) and stability: variations on a theme.

    PubMed

    Andrews, Andrew J; Luger, Karolin

    2011-01-01

    Chromatin is a highly regulated, modular nucleoprotein complex that is central to many processes in eukaryotes. The organization of DNA into nucleosomes and higher-order structures has profound implications for DNA accessibility. Alternative structural states of the nucleosome, and the thermodynamic parameters governing its assembly and disassembly, need to be considered in order to understand how access to nucleosomal DNA is regulated. In this review, we provide a brief historical account of how the overriding perception regarding aspects of nucleosome structure has changed over the past thirty years. We discuss recent technical advances regarding nucleosome structure and its physical characterization and review the evidence for alternative nucleosome conformations and their implications for nucleosome and chromatin dynamics.

  10. The effect of micrococcal nuclease digestion on nucleosome positioning data.

    PubMed

    Chung, Ho-Ryun; Dunkel, Ilona; Heise, Franziska; Linke, Christian; Krobitsch, Sylvia; Ehrenhofer-Murray, Ann E; Sperling, Silke R; Vingron, Martin

    2010-12-29

    Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.

  11. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    PubMed

    Weicksel, Steven E; Xu, Jia; Sagerström, Charles G

    2013-01-01

    Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  12. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis.

    PubMed

    Zhao, Xiujuan; Pei, Zhiyong; Liu, Jia; Qin, Sheng; Cai, Lu

    2010-11-01

    In this work, a novel method was developed to distinguish nucleosome DNA and linker DNA based on increment of diversity combined with quadratic discriminant analysis (IDQD), using k-mer frequency of nucleotides in genome. When used to predict DNA potential for forming nucleosomes, the model achieved a high accuracy of 94.94%, 77.60%, and 86.81%, respectively, for Saccharomyces cerevisiae, Homo sapiens, and Drosophila melanogaster. The area under the receiver operator characteristics curve of our classifier was 0.982 for S. cerevisiae. Our results indicate that DNA sequence preference is critical for nucleosome formation potential and is likely conserved across eukaryotes. The model successfully identified nucleosome-enriched or nucleosome-depleted regions in S. cerevisiae genome, suggesting nucleosome positioning depends on DNA sequence preference. Thus, IDQD classifier is useful for predicting nucleosome positioning.

  13. Quantifying the role of steric constraints in nucleosome positioning.

    PubMed

    Rube, H Tomas; Song, Jun S

    2014-02-01

    Statistical positioning, the localization of nucleosomes packed against a fixed barrier, is conjectured to explain the array of well-positioned nucleosomes at the 5' end of genes, but the extent and precise implications of statistical positioning in vivo are unclear. We examine this hypothesis quantitatively and generalize the idea to include moving barriers as well as nucleosomes actively packed against a barrier. Early experiments noted a similarity between the nucleosome profile aligned and averaged across genes and that predicted by statistical positioning; however, we demonstrate that aligning random nucleosomes also generates the same profile, calling the previous interpretation into question. New rigorous results reformulate statistical positioning as predictions on the variance structure of nucleosome locations in individual genes. In particular, a quantity termed the variance gradient, describing the change in variance between adjacent nucleosomes, is tested against recent high-throughput nucleosome sequencing data. Constant variance gradients provide support for generalized statistical positioning in ∼ 50% of long genes. Genes that deviate from predictions have high nucleosome turnover and cell-to-cell gene expression variability. The observed variance gradient suggests an effective nucleosome size of 158 bp, instead of the commonly perceived 147 bp. Our analyses thus clarify the role of statistical positioning in vivo.

  14. Dynamics of interaction of RNA polymerase II with nucleosomes. II. During read-through and elongation.

    PubMed Central

    Bhargava, P.

    1993-01-01

    The sulfhydryl-specific fluorescence probe 1,5-IAEDANS (5-(2-((iodoacetyl)amino)ethyl)amino-naphthalene-1-sulfonic acid) was attached to the single cysteine of H3, and reconstituted fluorescent mononucleosomes were used as the template for in vitro transcription by the yeast RNA polymerase II (pol II). DNase I digestion analysis revealed that transcription of nucleosomes by pol II resulted in an overall loosening of the structure. Monitoring the transcription event by steady-state fluorescence analysis showed that nucleosomes only partially open during transcription. This opening is transient in nature, and nucleosomes close back as soon as the pol II falls off the template. Thus, using the technique of fluorescence spectroscopy, partial opening of nucleosome structure could be differentiated from complete dissociation into free DNA and histone octamer, a distinction that may not be possible by techniques like gel electrophoresis. Time-resolved fluorescence emission spectroscopy suggested that during read-through of the template by the pol II, histone octamers do not fall off the DNA. Only minor conformational changes within the histone octamer take place to accommodate the transcribing polymerase. PMID:8298468

  15. Nucleosome assembly in mammalian cell extracts before and after DNA replication.

    PubMed Central

    Gruss, C; Gutierrez, C; Burhans, W C; DePamphilis, M L; Koller, T; Sogo, J M

    1990-01-01

    Protein-free DNA in a cytosolic extract supplemented with SV40 large T-antigen (T-Ag), is assembled into chromatin structure when nuclear extract is added. This assembly was monitored by topoisomer formation, micrococcal nuclease digestion and psoralen crosslinking of the DNA. Plasmids containing SV40 sequences (ori- and ori+) were assembled into chromatin with similar efficiencies whether T-Ag was present or not. Approximately 50-80% of the number of nucleosomes in vivo could be assembled in vitro; however, the kinetics of assembly differed on replicated and unreplicated molecules. In replicative intermediates, nucleosomes were observed on both the pre-replicated and post-replicated portions. We conclude that the extent of nucleosome assembly in mammalian cell extracts is not dependent upon DNA replication, in contrast to previous suggestions. However, the highly sensitive psoralen assay revealed that DNA replication appears to facilitate precise folding of DNA in the nucleosome. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:2167837

  16. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development

    PubMed Central

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-01-01

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure. PMID:27917953

  17. The Core Subunit of A Chromatin-Remodeling Complex, ZmCHB101, Plays Essential Roles in Maize Growth and Development.

    PubMed

    Yu, Xiaoming; Jiang, Lili; Wu, Rui; Meng, Xinchao; Zhang, Ai; Li, Ning; Xia, Qiong; Qi, Xin; Pang, Jinsong; Xu, Zheng-Yi; Liu, Bao

    2016-12-05

    ATP-dependent chromatin remodeling complexes play essential roles in the regulation of diverse biological processes by formulating a DNA template that is accessible to the general transcription apparatus. Although the function of chromatin remodelers in plant development has been studied in A. thaliana, how it affects growth and development of major crops (e.g., maize) remains uninvestigated. Combining genetic, genomic and bioinformatic analyses, we show here that the maize core subunit of chromatin remodeling complex, ZmCHB101, plays essential roles in growth and development of maize at both vegetative and reproductive stages. Independent ZmCHB101 RNA interference plant lines displayed abaxially curling leaf phenotype due to increase of bulliform cell numbers, and showed impaired development of tassel and cob. RNA-seq-based transcriptome profiling revealed that ZmCHB101 dictated transcriptional reprogramming of a significant set of genes involved in plant development, photosynthesis, metabolic regulation, stress response and gene expressional regulation. Intriguingly, we found that ZmCHB101 was required for maintaining normal nucleosome density and 45 S rDNA compaction. Our findings suggest that the SWI3 protein, ZmCHB101, plays pivotal roles in maize normal growth and development via regulation of chromatin structure.

  18. DNA bending potentials for loop-mediated nucleosome repositioning

    SciTech Connect

    Langowski, Jorg

    2012-01-01

    Nucleosome repositioning is a fundamental process in gene function. DNA elasticity is a key element of loop-mediated nucleosome repositioning. Two analytical models for DNA elasticity have been proposed: the linear sub-elastic chain (SEC), which allows DNA kinking, and the worm-like chain (WLC), with a harmonic bending potential. In vitro studies have shown that nucleosomes reposition in a discontiguous manner on a segment of DNA and this has also been found in ground-state calculations with the WLC analytical model. Here we study using Monte Carlo simulation the dynamics of DNA loop-mediated nucleosome repositioning at physiological temperatures using the SEC and WLC potentials. At thermal energies both models predict nearest-neighbor repositioning of nucleosomes on DNA, in contrast to the repositioning in jumps observed in experiments. This suggests a crucial role of DNA sequence in nucleosome repositioning.

  19. Universal full-length nucleosome mapping sequence probe.

    PubMed

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  20. Nucleosomes suppress spontaneous mutations base-specifically in eukaryotes.

    PubMed

    Chen, Xiaoshu; Chen, Zhidong; Chen, Han; Su, Zhijian; Yang, Jianfeng; Lin, Fangqin; Shi, Suhua; He, Xionglei

    2012-03-09

    It is unknown how the composition and structure of DNA within the cell affect spontaneous mutations. Theory suggests that in eukaryotic genomes, nucleosomal DNA undergoes fewer C→T mutations because of suppressed cytosine hydrolytic deamination relative to nucleosome-depleted DNA. Comparative genomic analyses and a mutation accumulation experiment showed that nucleosome occupancy nearly eliminated cytosine deamination, resulting in an ~50% decrease of the C→T mutation rate in nucleosomal DNA. Furthermore, the rates of G→T and A→T mutations were also about twofold suppressed by nucleosomes. On the basis of these results, we conclude that nucleosome-dependent mutation spectra affect eukaryotic genome structure and evolution and may have implications for understanding the origin of mutations in cancers and in induced pluripotent stem cells.

  1. An enhanced plant lipidomics method based on multiplexed liquid chromatography-mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling.

    PubMed

    Tarazona, Pablo; Feussner, Kirstin; Feussner, Ivo

    2015-11-01

    Within the lipidome of plants a few bulk molecular species hamper the detection of the rest, which are present at relatively low levels. In addition, low-abundance species are often masked by numerous isobaric interferences, such as those caused by isoelemental species and isotopologues. This scenario not only means that minor species are underrepresented, but also leads to potential misidentifications and limits the structural information gathered by lipidomics approaches. In order to overcome these limitations we have developed a multiplexed liquid chromatography-mass spectrometry lipidomics platform able to achieve an enhanced coverage of plant lipidomes. The platform is based on a single extraction step followed by a series of ultra-performance liquid chromatography separations. Post-column flow is then directed to both a triple quadrupole analyzer for targeted profiling and a time-of-flight analyzer for accurate mass analysis. As a proof of concept, plants were subjected to cold or drought, which are known to trigger widespread remodeling events in plant cell membranes. Analysis of the leaf lipidome yielded 393 molecular species within 23 different lipid classes. This enhanced coverage allowed us to identify lipid molecular species and even classes that are altered upon stress, allowing hypotheses on role of glycosylinositolphosphoceramides (GIPC), steryl glycosides (SG) and acylated steryl glycosides (ASG) in drought stress to be addressed and confirming the findings from numerous previous studies with a single, wide-ranging lipidomics approach. This extended our knowledge on membrane remodeling during the drought response, integrating sphingolipids and sterol lipids into the current glycerolipid-based model.

  2. Elastic Correlations in Nucleosomal DNA Structure

    NASA Astrophysics Data System (ADS)

    Mohammad-Rafiee, Farshid; Golestanian, Ramin

    2005-06-01

    The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T. J. Richmond and C. A. Davey, Nature (London), NATUAS, 0028-0836 423, 145 (2003), 10.1038/nature01595], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G=25 nm for the value of the twist-bend coupling constant.

  3. Interaction of influenza virus proteins with nucleosomes

    SciTech Connect

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence . E-mail: baudin@embl-grenoble.fr

    2005-02-05

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed.

  4. The prenucleosome, a stable conformational isomer of the nucleosome.

    PubMed

    Fei, Jia; Torigoe, Sharon E; Brown, Christopher R; Khuong, Mai T; Kassavetis, George A; Boeger, Hinrich; Kadonaga, James T

    2015-12-15

    Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.

  5. The effect of DNA supercoiling on nucleosome structure and stability.

    PubMed

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  6. Assembly of Drosophila centromeric nucleosomes requires CID dimerization.

    PubMed

    Zhang, Weiguo; Colmenares, Serafin U; Karpen, Gary H

    2012-01-27

    Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.

  7. The effect of DNA supercoiling on nucleosome structure and stability

    NASA Astrophysics Data System (ADS)

    Elbel, Tabea; Langowski, Jörg

    2015-02-01

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  8. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2016-11-25

    Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.

  9. ATP-dependent chromatin remodeling and DNA double-strand break repair.

    PubMed

    van Attikum, Haico; Gasser, Susan M

    2005-08-01

    The repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genomic stability. Two pathways for the repair of DBSs, nonhomologous end-joining (NHEJ) and homologous recombination (HR), have evolved in eukaryotes. These pathways, like processes such as transcription and replication, act on DNA that is embedded in nucleosomes. Recent studies have shown that DNA repair, like transcription, is facilitated both by histone tail modification and by ATP-dependent chromatin remodeling. This review emphasizes recent reports that demonstrate a function for the ATP-dependent chromatin remodeling complexes INO80 and RSC in NHEJ and HR. We also discuss the possible role of SWR1- and TIP60-mediated nucleosomal histone exchange in DNA repair.

  10. Teaching resources. Chromatin remodeling.

    PubMed

    Lue, Neal F

    2005-07-26

    This Teaching Resource provides lecture notes and slides for a class covering chromatin remodeling mechanisms and is part of the course "Cell Signaling Systems: a Course for Graduate Students." The lecture begins with a discussion of chromatin organization and then proceeds to describe the process of chromatin remodeling through a review of chromatin remodeling complexes and methods used to study their function.

  11. Polymorphism of apyrimidinic DNA structures in the nucleosome

    PubMed Central

    Osakabe, Akihisa; Arimura, Yasuhiro; Matsumoto, Syota; Horikoshi, Naoki; Sugasawa, Kaoru; Kurumizaka, Hitoshi

    2017-01-01

    Huge amounts (>10,000/day) of apurinic/apyrimidinic (AP) sites are produced in genomes, but their structures in chromatin remain undetermined. We determined the crystal structure of the nucleosome containing AP-site analogs at two symmetric sites, which revealed structural polymorphism: one forms an inchworm configuration without an empty space at the AP site, and the other forms a B-form-like structure with an empty space and the orphan base. This unexpected inchworm configuration of the AP site is important to understand the AP DNA repair mechanism, because it may not be recognized by the major AP-binding protein, APE1, during the base excision repair process. PMID:28139742

  12. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    SciTech Connect

    Persson, Jenna; Ekwall, Karl

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  13. Structural analyses of the chromatin remodeling enzymes INO80-C and SWR-C

    PubMed Central

    Watanabe, Shinya; Tan, Dongyan; Lakshminarasimhan, Mahadevan; Washburn, Michael P.; Hong, Eun-Jin Erica; Walz, Thomas; Peterson, Craig L.

    2015-01-01

    INO80-C and SWR-C are conserved members of a subfamily of ATP-dependent chromatin remodeling enzymes that function in transcription and genome-maintenance pathways. A crucial role for these enzymes is to control chromosomal distribution of the H2A.Z histone variant. Here we use electron microscopy (EM) and two-dimensional (2D) class averaging to demonstrate that these remodeling enzymes have similar overall architectures. Each enzyme is characterized by a dynamic ‘tail’ domain and a compact ‘head’ that contains Rvb1/Rvb2 subunits organized as hexameric rings. EM class averages and mass spectrometry support the existence of single heterohexameric rings in both SWR-C and INO80-C. EM studies define the position of the Arp8/Arp4/Act1 module within INO80-C, and we find that this module enhances nucleosome binding affinity but is largely dispensable for remodeling activities. In contrast, the Ies6/Arp5 module is essential for INO80-C remodeling, and furthermore this module controls conformational changes that may couple nucleosome binding to remodeling. PMID:25964121

  14. Functional Genomic Analysis of Candida albicans Adherence Reveals a Key Role for the Arp2/3 Complex in Cell Wall Remodelling and Biofilm Formation

    PubMed Central

    Ketela, Troy; Cowen, Leah E.

    2016-01-01

    Fungal biofilms are complex, structured communities that can form on surfaces such as catheters and other indwelling medical devices. Biofilms are of particular concern with Candida albicans, one of the leading opportunistic fungal pathogens of humans. C. albicans biofilms include yeast and filamentous cells that are surrounded by an extracellular matrix, and they are intrinsically resistant to antifungal drugs such that resolving biofilm infections often requires surgery to remove the contaminated device. C. albicans biofilms form through a regulated process of adhesion to surfaces, filamentation, maturation, and ultimately dispersion. To uncover new strategies to block the initial stages of biofilm formation, we utilized a functional genomic approach to identify genes that modulate C. albicans adherence. We screened a library of 1,481 double barcoded doxycycline-repressible conditional gene expression strains covering ~25% of the C. albicans genome. We identified five genes for which transcriptional repression impaired adherence, including: ARC18, PMT1, MNN9, SPT7, and orf19.831. The most severe adherence defect was observed upon transcriptional repression of ARC18, which encodes a member of the Arp2/3 complex that is involved in regulation of the actin cytoskeleton and endocytosis. Depletion of components of the Arp2/3 complex not only impaired adherence, but also caused reduced biofilm formation, increased cell surface hydrophobicity, and increased exposure of cell wall chitin and β-glucans. Reduced function of the Arp2/3 complex led to impaired cell wall integrity and activation of Rho1-mediated cell wall stress responses, thereby causing cell wall remodelling and reduced adherence. Thus, we identify important functional relationships between cell wall stress responses and a novel mechanism that controls adherence and biofilm formation, thereby illuminating novel strategies to cripple a leading fungal pathogen of humans. PMID:27870871

  15. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  16. Using deformation energy to analyze nucleosome positioning in genomes.

    PubMed

    Chen, Wei; Feng, Pengmian; Ding, Hui; Lin, Hao; Chou, Kuo-Chen

    2016-03-01

    By modulating the accessibility of genomic regions to regulatory proteins, nucleosome positioning plays important roles in cellular processes. Although intensive efforts have been made, the rules for determining nucleosome positioning are far from satisfaction yet. In this study, we developed a biophysical model to predict nucleosomal sequences based on the deformation energy of DNA sequences, and validated it against the experimentally determined nucleosome positions in the Saccharomyces cerevisiae genome, achieving very high success rates. Furthermore, using the deformation energy model, we analyzed the distribution of nucleosomes around the following three types of DNA functional sites: (1) double strand break (DSB), (2) single nucleotide polymorphism (SNP), and (3) origin of replication (ORI). We have found from the analyzed energy spectra that a remarkable "trough" or "valley" occurs around each of these functional sites, implying a depletion of nucleosome density, fully in accordance with experimental observations. These findings indicate that the deformation energy may play a key role for accurately predicting nucleosome positions, and that it can also provide a quantitative physical approach for in-depth understanding the mechanism of nucleosome positioning.

  17. Nucleosomal arrangement affects single-molecule transcription dynamics

    PubMed Central

    Fitz, Veronika; Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick; Zaburdaev, Vasily; Grill, Stephan W.

    2016-01-01

    In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics. PMID:27791062

  18. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.

    PubMed

    Kepper, Nick; Foethke, Dietrich; Stehr, Rene; Wedemann, Gero; Rippe, Karsten

    2008-10-01

    Based on model structures with atomic resolution, a coarse-grained model for the nucleosome geometry was implemented. The dependence of the chromatin fiber conformation on the spatial orientation of nucleosomes and the path and length of the linker DNA was systematically explored by Monte Carlo simulations. Two fiber types were analyzed in detail that represent nucleosome chains without and with linker histones, respectively: two-start helices with crossed-linker DNA (CL conformation) and interdigitated one-start helices (ID conformation) with different nucleosome tilt angles. The CL conformation was derived from a tetranucleosome crystal structure that was extended into a fiber. At thermal equilibrium, the fiber shape persisted but relaxed into a structure with a somewhat lower linear mass density of 3.1 +/- 0.1 nucleosomes/11 nm fiber. Stable ID fibers required local nucleosome tilt angles between 40 degrees and 60 degrees. For these configurations, much higher mass densities of up to 7.9 +/- 0.2 nucleosomes/11 nm fiber were obtained. A model is proposed, in which the transition between a CL and ID fiber is mediated by relatively small changes of the local nucleosome geometry. These were found to be in very good agreement with changes induced by linker histone H1 binding as predicted from the high resolution model structures.

  19. The split personality of CENP-A nucleosomes.

    PubMed

    Westhorpe, Frederick G; Straight, Aaron F

    2012-07-20

    The composition and structure of centromeric nucleosomes, which contain the histone H3 variant CENP-A, is intensely debated. Two independent studies in this issue, in yeast and human cells, now suggest that CENP-A nucleosomes adopt different structures depending on the stage of the cell cycle.

  20. Training-free atomistic prediction of nucleosome occupancy.

    PubMed

    Minary, Peter; Levitt, Michael

    2014-04-29

    Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical and lack the physics needed to predict subtle epigenetic changes due to DNA methylation. The training-free method presented here uses physical principles and state-of-the-art all-atom force fields to predict both nucleosome occupancy along genomic sequences as well as binding to known positioning sequences. Our method calculates the energy of both nucleosomal and linear DNA of the given sequence. Based on the DNA deformation energy, we accurately predict the in vitro occupancy profile observed experimentally for a 20,000-bp genomic region as well as the experimental locations of nucleosomes along 13 well-established positioning sequence elements. DNA with all C bases methylated at the 5 position shows less variation of nucleosome binding: Strong binding is weakened and weak binding is strengthened compared with normal DNA. Methylation also alters the preference of nucleosomes for some positioning sequences but not others.

  1. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations.

    PubMed

    Engelhardt, Mogens

    2007-01-01

    Eukaryotic DNA is organized into nucleosomes by coiling around core particles of histones, forming a nucleosomal filament. The significance for the conformation of the filament of the DNA entry/exit angle (alpha) at the nucleosome, the angle of rotation (beta) of nucleosomes around their interconnecting DNA (linker DNA) and the length of the linker DNA, has been studied by means of wire models with straight linkers. It is shown that variations in alpha and beta endow the filament with an outstanding conformational freedom when alpha is increased beyond 60-90 degrees, owing to the ability of the filament to change between forward right-handed and backward left-handed coiling. A wealth of different helical and looped conformations are formed in response to repeated beta sequences, and helical conformations are shown to be able to contract to a high density and to associate pairwise into different types of double fibers. Filaments with random beta sequences are characterized by relatively stable loop clusters connected by segments of higher flexibility. Displacement of core particles along the DNA in such fibers, combined with limited twisting of the linkers, can generate the beta sequence necessary for compaction into a regular helix, thus providing a model for heterochromatinization.

  2. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

    PubMed Central

    Chatterjee, Nilanjana; North, Justin A.; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as “readers,” which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  3. The structural basis of modified nucleosome recognition by 53BP1.

    PubMed

    Wilson, Marcus D; Benlekbir, Samir; Fradet-Turcotte, Amélie; Sherker, Alana; Julien, Jean-Philippe; McEwan, Andrea; Noordermeer, Sylvie M; Sicheri, Frank; Rubinstein, John L; Durocher, Daniel

    2016-08-04

    DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain. How 53BP1 interacts with these two histone marks in the nucleosomal context, how it recognizes ubiquitin, and how it discriminates between H2AK13ub and H2AK15ub is unknown. Here we present the electron cryomicroscopy (cryo-EM) structure of a dimerized human 53BP1 fragment bound to a H4K20me2-containing and H2AK15ub-containing nucleosome core particle (NCP-ubme) at 4.5 Å resolution. The structure reveals that H4K20me2 and H2AK15ub recognition involves intimate contacts with multiple nucleosomal elements including the acidic patch. Ubiquitin recognition by 53BP1 is unusual and involves the sandwiching of the UDR segment between ubiquitin and the NCP surface. The selectivity for H2AK15ub is imparted by two arginine fingers in the H2A amino-terminal tail, which straddle the nucleosomal DNA and serve to position ubiquitin over the NCP-bound UDR segment. The structure of the complex between NCP-ubme and 53BP1 reveals the basis of 53BP1 recruitment to DSB sites and illuminates how combinations of histone marks and nucleosomal elements cooperate to produce highly specific chromatin responses, such as those elicited following chromosome breaks.

  4. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome.

    PubMed Central

    Perlmann, T; Wrange, O

    1988-01-01

    We have reconstituted a nucleosome with core histones from rat liver using a restriction fragment containing a sequence from the mouse mammary tumour virus (MTV) long terminal repeat (LTR). This sequence harbours glucocorticoid responsive elements (GREs) which mediate glucocorticoid hormone induction of transcription from the MTV promoter via glucocorticoid receptor (GR) binding. Exonuclease III and DNase I footprinting demonstrated that the reconstituted nucleosome was specifically located between positions -219 and -76. A nucleosome was previously shown to be located at a similar or identical position in the MTV promoter in situ and to be structurally altered upon glucocorticoid hormone induction. We demonstrated, by DNase I footprinting, that GR is able to bind sequence specifically to the DNA in the in vitro assembled nucleosome. No evidence for unfolding of the nucleosome was obtained, but the DNase I footprinting pattern demonstrated GR induced local alterations in the DNA. Images PMID:2846275

  5. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis.

    PubMed

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B; Saunders, Thomas L; Yu, Xiaochun

    2010-03-16

    During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.

  6. Structural insight into the sequence dependence of nucleosome positioning.

    PubMed

    Wu, Bin; Mohideen, Kareem; Vasudevan, Dileep; Davey, Curt A

    2010-03-14

    Nucleosome positioning displays sequence dependency and contributes to genomic regulation in a site-specific manner. We solved the structures of nucleosome core particle composed of strong positioning TTTAA elements flanking the nucleosome center. The positioning strength of the super flexible TA dinucleotide is consistent with its observed central location within minor groove inward regions, where it can contribute maximally to energetically challenging minor groove bending, kinking and compression. The marked preference for TTTAA and positioning power of the site 1.5 double helix turns from the nucleosome center relates to a unique histone protein motif at this location, which enforces a sustained, extremely narrow minor groove via a hydrophobic "sugar clamp." Our analysis sheds light on the basis of nucleosome positioning and indicates that the histone octamer has evolved not to fully minimize sequence discrimination in DNA binding.

  7. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

    PubMed Central

    Newhart, Alyshia; Powers, Sara Lawrence; Shastrula, Prashanth Krishna; Sierra, Isabel; Joo, Lucy M.; Hayden, James E.; Cohen, Andrew R.; Janicki, Susan M.

    2016-01-01

    In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation. PMID:26842893

  8. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  9. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation.

    PubMed

    Laptenko, Oleg; Beckerman, Rachel; Freulich, Ella; Prives, Carol

    2011-06-28

    It is well established that p53 contacts DNA in a sequence-dependent manner in order to transactivate its myriad target genes. Yet little is known about how p53 interacts with its binding site/response element (RE) within such genes in vivo in the context of nucleosomal DNA. In this study we demonstrate that both distal (5') and proximal (3') p53 REs within the promoter of the p21 gene in unstressed HCT116 colon carcinoma cells are localized within a region of relatively high nucleosome occupancy. In the absence of cellular stress, p53 is prebound to both p21 REs within nucleosomal DNA in these cells. Treatment of cells with the DNA-damaging drug doxorubicin or the p53 stabilizing agent Nutlin-3, however, is accompanied by p53-dependent subsequent loss of nucleosomes associated with such p53 REs. We show that in vitro p53 can bind to mononucleosomal DNA containing the distal p21 RE, provided the binding site is not close to the diad center of the nucleosome. In line with this, our data indicate that the p53 distal RE within the p21 gene is located close to the end of the nucleosome. Thus, low- and high-resolution mapping of nucleosome boundaries around p53 REs within the p21 promoter have provided insight into the mechanism of p53 binding to its sites in cells and the consequent changes in nucleosome occupancy at such sites.

  10. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

  11. [Relevance of anti-nucleosome antibodies detected by enzyme-based immunoassays in lupus diagnosis. Comparative analysis of four commercial kits].

    PubMed

    Lepers, S; Hachulla, E; Leleux, E; Hatron, P Y; Prin, L; Dubucquoi, S

    2002-12-01

    Among the biological assays used for the diagnosis of systemic lupus erythematosus (SLE), the detection of anti-double strand DNA antibodies (dsDNA Ab) is regarded as highly specific. However this biological parameter is negative among 20 to 40% of patients. Recent studies have revealed potential interest of the anti-nucleosome antibodies in the diagnosis of the lupus, in particular when any anti-dsDNA antibody activity could be detected. We selected 80 sera in order to evaluate four commercial anti-nucleosome enzyme-based immunoassays (EIA) kits. Their sensitivity and specificity values were compared with those obtained by the detection of anti-dsDNA Ab, carried out with both a Farr assay and two EIA kits. No anti-nucleosome EIA kits reached performances of the Farr assay for the diagnosis of lupus. On the other hand, our results show an higher diagnostic value for some anti-nucleosome EIA kits compared with 2 anti-dsDNA EIA kits. Apart from SLE, anti-nucleosome antibodies can be observed in others auto-immune diseases, in particular Sjögren's syndromes, the primary antiphospholipid syndrome, the systemic sclerosis and the mixed connective tissue disease. Compared results of the four anti-nucleosome EIA kits highlight many discordances. These variations, testifying to the absence of standardization for this new parameter, must encourage with a careful interpretation of results, according to the clinical context.

  12. A Novel Mechanism of Antagonism between ATP-Dependent Chromatin Remodeling Complexes Regulates RNR3 Expression▿

    PubMed Central

    Tomar, Raghuvir S.; Psathas, James N.; Zhang, Hesheng; Zhang, Zhengjian; Reese, Joseph C.

    2009-01-01

    Gene expression depends upon the antagonistic actions of chromatin remodeling complexes. While this has been studied extensively for the enzymes that covalently modify the tails of histones, the mechanism of how ATP-dependent remodeling complexes antagonize each other to maintain the proper level of gene activity is not known. The gene encoding a large subunit of ribonucleotide reductase, RNR3, is regulated by ISW2 and SWI/SNF, complexes that repress and activate transcription, respectively. Here, we studied the functional interactions of these two complexes at RNR3. Deletion of ISW2 causes constitutive recruitment of SWI/SNF, and conditional reexpression of ISW2 causes the repositioning of nucleosomes and reduced SWI/SNF occupancy at RNR3. Thus, ISW2 is required for restriction of access of SWI/SNF to the RNR3 promoter under the uninduced condition. Interestingly, the binding of sequence-specific DNA binding factors and the general transcription machinery are unaffected by the status of ISW2, suggesting that disruption of nucleosome positioning does not cause a nonspecific increase in cross-linking of all factors to RNR3. We provide evidence that ISW2 does not act on SWI/SNF directly but excludes its occupancy by positioning nucleosomes over the promoter. Genetic disruption of nucleosome positioning by other means led to a similar phenotype, linking repressed chromatin structure to SWI/SNF exclusion. Thus, incorporation of promoters into a repressive chromatin structure is essential for prevention of the opportunistic actions of nucleosome-disrupting activities in vivo, providing a novel mechanism for maintaining tight control of gene expression. PMID:19349301

  13. Histone density is maintained during transcription mediated by the chromatin remodeler RSC and histone chaperone NAP1 in vitro

    PubMed Central

    Kuryan, Benjamin G.; Kim, Jessica; Tran, Nancy Nga H.; Lombardo, Sarah R.; Venkatesh, Swaminathan; Workman, Jerry L.; Carey, Michael

    2012-01-01

    ATPases and histone chaperones facilitate RNA polymerase II (pol II) elongation on chromatin. In vivo, the coordinated action of these enzymes is necessary to permit pol II passage through a nucleosome while restoring histone density afterward. We have developed a biochemical system recapitulating this basic process. Transcription through a nucleosome in vitro requires the ATPase remodels structure of chromatin (RSC) and the histone chaperone nucleosome assembly protein 1 (NAP1). In the presence of NAP1, RSC generates a hexasome. Despite the propensity of RSC to evict histones, NAP1 reprograms the reaction such that the hexasome is retained on the template during multiple rounds of transcription. This work has implications toward understanding the mechanism of pol II elongation on chromatin. PMID:22308335

  14. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation

    PubMed Central

    Cauchy, Pierre; Maqbool, Muhammad A.; Zacarias-Cabeza, Joaquin; Vanhille, Laurent; Koch, Frederic; Fenouil, Romain; Gut, Marta; Gut, Ivo; Santana, Maria A.; Griffon, Aurélien; Imbert, Jean; Moraes-Cabé, Carolina; Bories, Jean-Christophe; Ferrier, Pierre; Spicuglia, Salvatore; Andrau, Jean-Christophe

    2016-01-01

    Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity. PMID:26673693

  15. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.

    PubMed

    Zhang, Yong; Moqtaderi, Zarmik; Rattner, Barbara P; Euskirchen, Ghia; Snyder, Michael; Kadonaga, James T; Liu, X Shirley; Struhl, Kevin

    2009-08-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regions, reduced rotational positioning and less translational positioning than obtained by intrinsic histone-DNA interactions. Notably, nucleosomes assembled in vitro have only a limited preference for specific translational positions and do not show the pattern observed in vivo. Our results argue against a genomic code for nucleosome positioning, and they suggest that the nucleosomal pattern in coding regions arises primarily from statistical positioning from a barrier near the promoter that involves some aspect of transcriptional initiation by RNA polymerase II.

  16. Methylation specific targeting of a chromatin remodeling complex from sponges to humans

    PubMed Central

    Cramer, Jason M.; Pohlmann, Deborah; Gomez, Fernando; Mark, Leslie; Kornegay, Benjamin; Hall, Chelsea; Siraliev-Perez, Edhriz; Walavalkar, Ninad M.; Sperlazza, M. Jeannette; Bilinovich, Stephanie; Prokop, Jeremy W.; Hill, April L.; Williams Jr., David C.

    2017-01-01

    DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution. PMID:28094816

  17. Widespread Collaboration of Isw2 and Sin3-Rpd3 Chromatin Remodeling Complexes in Transcriptional Repression

    PubMed Central

    Fazzio, Thomas G.; Kooperberg, Charles; Goldmark, Jesse P.; Neal, Cassandra; Basom, Ryan; Delrow, Jeffrey; Tsukiyama, Toshio

    2001-01-01

    The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-dependent regulation, we performed full genome expression analyses using cDNA microarrays. We find that the Isw2 complex functions mainly in repression of transcription in a parallel pathway with the Sin3-Rpd3 complex. In addition to Ume6 target genes, we find that many Ume6-independent genes are derepressed in mutants lacking functional Isw2 and Sin3-Rpd3 complexes. Conversely, we find that ume6 mutants, but not isw2 sin3 or isw2 rpd3 double mutants, have reduced fidelity of mitotic chromosome segregation, suggesting that one or more functions of Ume6p are independent of Sin3-Rpd3 and Isw2 complexes. Chromatin structure analyses of two nonmeiotic genes reveals increased DNase I sensitivity within their regulatory regions in an isw2 mutant, as seen previously for one meiotic locus. These data suggest that the Isw2 complex functions at Ume6-dependent and -independent loci to create DNase I-inaccessible chromatin structure by regulating the positioning or placement of nucleosomes. PMID:11533234

  18. A chemical approach to mapping nucleosomes at base pair resolution in yeast.

    PubMed

    Brogaard, Kristin R; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-01-01

    Most eukaryotic DNA exists in DNA-protein complexes known as nucleosomes. The exact locations of nucleosomes along the genome play a critical role in chromosome functions and gene regulation. However, the current methods for nucleosome mapping do not provide the necessary accuracy to identify the precise nucleosome locations. Here we describe a new experimental approach that directly maps nucleosome center locations in vivo genome-wide at single base pair resolution.

  19. DNA-histone interactions in nucleosomes

    SciTech Connect

    Van Holde, K.E.; Allen, J.R.; Tatchell, K.; Weischet, W.O.; Lohr, D.

    1980-10-01

    We have utilized micrococcal nuclease digestion and thermal denaturation studies to investigate the binding of DNA to the histone core of the nucleosome. We conclude that a total of approx. 168 base pairs (bp) of DNA can interact with the histone core under appropriate solution conditions, even in the absence of lysine-rich histones. The interactions in this total length of DNA can be divided into three classes: (a) approx. 22 bp at the ends is bound only at moderate ionic strength. It is easily displaced, and its removal yields the 146 bp core particle; (b) approx. 46 bp near the ends of the core DNA are quite weakly bound to the core, and are displaced at quite moderate temperatures; (c) the remaining central 100 bp are strongly bound, and interact with all of the sites on the histones which strongly protect DNA against DNAse I digestion. A theoretical analysis of the cleavage of nucleosomal DNA by DNAse I has been used to develop evidence that the pattern of protection offered by the histone core is very similar in nuclei to that in isolated core particles.

  20. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  1. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes

    PubMed Central

    Behrouzi, Reza; Lu, Chenning; Currie, Mark A; Jih, Gloria; Iglesias, Nahid; Moazed, Danesh

    2016-01-01

    Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading. DOI: http://dx.doi.org/10.7554/eLife.17556.001 PMID:27835568

  2. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    PubMed

    Trifonov, Edward N

    2016-01-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs.

  3. Predicting nucleosome positioning based on geometrically transformed Tsallis entropy.

    PubMed

    Wu, Jing; Zhang, Yusen; Mu, Zengchao

    2014-01-01

    As the fundamental unit of eukaryotic chromatin structure, nucleosome plays critical roles in gene expression and regulation by controlling physical access to transcription factors. In this paper, based on the geometrically transformed Tsallis entropy and two index-vectors, a valid nucleosome positioning information model is developed to describe the distribution of A/T-riched and G/C-riched dimeric and trimeric motifs along the DNA duplex. When applied to train the support vector machine, the model achieves high AUCs across five organisms, which have significantly outperformed the previous studies. Besides, we adopt the concept of relative distance to describe the probability of arbitrary DNA sequence covered by nucleosome. Thus, the average nucleosome occupancy profile over the S.cerevisiae genome is calculated. With our peak detection model, the isolated nucleosomes along genome sequence are located. When compared with some published results, it shows that our model is effective for nucleosome positioning. The index-vector component [Formula in text] is identified to be an important influencing factor of nucleosome organizations.

  4. Mechanisms for enhanced protein dissociation driven by nucleosomes

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Chen, Cai

    2013-03-01

    When a transcription factor binding site is located within a nucleosome, the DNA in the nucleosome has to unwrap in order for the transcription factor to bind. Thus, it is not surprising that the rate of transcription factor binding is slowed significantly in the presence of a nucleosome. The resulting change in transcription factor binding site occupancy has been known for quite a while as a mechanism for regulation of gene expression via chromatin structure. More surprisingly, recent single molecule experiments have pointed out that not only is the on-rate of transcription factors reduced by the presence of a nucleosome but also is the off-rate increased. There are two possible explanations short of an active role of the nucleosome in pushing the transcription factor off the DNA: (i) the nucleosome can change the equilibrium between binding at the specific binding site and nonspecific binding to the surrounding DNA or (ii) for dimeric transcription factors the nucleosome can change the equilibrium between monomeric and dimeric binding. We explicitly model both scenarios and find that the first mechanism cannot be reconciled with experimental findings. However, we show that the second mechanism can indeed explain increases in off-rate by a factor as high as 100. This material is based upon work supported by the National Science Foundation under Grant No. 1105458.

  5. Chd5 orchestrates chromatin remodeling during sperm development

    PubMed Central

    Li, Wangzhi; Wu, Jie; Kim, Sang-Yong; Zhao, Ming; Hearn, Stephen A.; Zhang, Michael Q.; Meistrich, Marvin L.

    2014-01-01

    One of the most remarkable chromatin remodeling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodeling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men. Chd5 orchestrates a cascade of molecular events required for histone removal and replacement, including histone 4 (H4) hyperacetylation, histone variant expression, nucleosome eviction, and DNA damage repair. Chd5 deficiency also perturbs expression of transition proteins (Tnp1/Tnp2) and protamines (Prm1/2). These findings define Chd5 as a multi-faceted mediator of histone-to-protamine replacement and depict the cascade of molecular events underlying chromatin remodeling during this process of extensive chromatin remodeling. PMID:24818823

  6. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.

    PubMed

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M Vargas; Parker, Brian J; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J; Kelly, Theresa K; Vang, Søren; Andersson, Robin; Jones, Peter A; Hoover, Cindi A; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M; Sandelin, Albin; Gilbert, M Thomas P; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-03-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.

  7. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription.

    PubMed

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-03-25

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.

  8. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  9. A Meier-Gorlin syndrome mutation impairs the ORC1-nucleosome association.

    PubMed

    Zhang, Wei; Sankaran, Saumya; Gozani, Or; Song, Jikui

    2015-05-15

    Recent studies have identified several genetic mutations within the BAH domain of human Origin Recognition Complex subunit 1 (hORC1BAH), including the R105Q mutation, implicated in Meier-Gorlin Syndrome (MGS). However, the pathological role of the hORC1 R105Q mutation remains unclear. In this study, we have investigated the interactions of the hORC1BAH domain with histone H4K20me2, DNA, and the nucleosome core particle labeled with H4Kc20me2, a chemical analog of H4K20me2. Our study revealed a nucleosomal DNA binding site for hORC1BAH. The R105Q mutation reduces the hORC1BAH-DNA binding affinity, leading to impaired hORC1BAH-nucleosome interaction, which likely influences DNA replication initiation and MGS pathogenesis. This study provides an etiologic link between the hORC1 R105Q mutation and MGS.

  10. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility.

    PubMed

    Lorzadeh, Alireza; Bilenky, Misha; Hammond, Colin; Knapp, David J H F; Li, Luolan; Miller, Paul H; Carles, Annaick; Heravi-Moussavi, Alireza; Gakkhar, Sitanshu; Moksa, Michelle; Eaves, Connie J; Hirst, Martin

    2016-11-15

    Nucleosome position, density, and post-translational modification are widely accepted components of mechanisms regulating DNA transcription but still incompletely understood. We present a modified native ChIP-seq method combined with an analytical framework that allows MNase accessibility to be integrated with histone modification profiles. Application of this methodology to the primitive (CD34+) subset of normal human cord blood cells enabled genomic regions enriched in one versus two nucleosomes marked by histone 3 lysine 4 trimethylation (H3K4me3) and/or histone 3 lysine 27 trimethylation (H3K27me3) to be associated with their transcriptional and DNA methylation states. From this analysis, we defined four classes of promoter-specific profiles and demonstrated that a majority of bivalent marked promoters are heterogeneously marked at a single-cell level in this primitive cell type. Interestingly, extension of this approach to human embryonic stem cells revealed an altered relationship between chromatin modification state and nucleosome content at promoters, suggesting developmental stage-specific organization of histone methylation states.

  11. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  12. Bone remodeling as a spatial evolutionary game.

    PubMed

    Ryser, Marc D; Murgas, Kevin A

    2017-04-07

    Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.

  13. Altered promoter nucleosome positioning is an early event in gene silencing.

    PubMed

    Hesson, Luke B; Sloane, Mathew A; Wong, Jason Wh; Nunez, Andrea C; Srivastava, Sameer; Ng, Benedict; Hawkins, Nicholas J; Bourke, Michael J; Ward, Robyn L

    2014-10-01

    Gene silencing in cancer frequently involves hypermethylation and dense nucleosome occupancy across promoter regions. How a promoter transitions to this silent state is unclear. Using colorectal adenomas, we investigated nucleosome positioning, DNA methylation, and gene expression in the early stages of gene silencing. Genome-wide gene expression correlated with highly positioned nucleosomes upstream and downstream of a nucleosome-depleted transcription start site (TSS). Hypermethylated promoters displayed increased nucleosome occupancy, specifically at the TSS. We investigated 2 genes, CDH1 and CDKN2B, which were silenced in adenomas but lacked promoter hypermethylation. Instead, silencing correlated with loss of nucleosomes from the -2 position upstream of the TSS relative to normal mucosa. In contrast, permanent CDH1 silencing in carcinoma cells was characterized by promoter hypermethylation and dense nucleosome occupancy. Our findings suggest that silenced genes transition through an intermediary stage involving altered promoter nucleosome positioning, before permanent silencing by hypermethylation and dense nucleosome occupancy.

  14. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach

    PubMed Central

    Eslami-Mossallam, Behrouz; Schram, Raoul D.; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  15. Nucleosome functions in spindle assembly and nuclear envelope formation

    PubMed Central

    Zierhut, Christian; Funabiki, Hironori

    2016-01-01

    Summary Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance. PMID:26222742

  16. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  17. Chromatin remodeling during in vivo neural stem cells differentiating to neurons in early Drosophila embryos

    PubMed Central

    Ye, Youqiong; Li, Min; Gu, Liang; Chen, Xiaolong; Shi, Jiejun; Zhang, Xiaobai; Jiang, Cizhong

    2017-01-01

    Neurons are a key component of the nervous system and differentiate from multipotent neural stem cells (NSCs). Chromatin remodeling has a critical role in the differentiation process. However, its in vivo epigenetic regulatory role remains unknown. We show here that nucleosome depletion regions (NDRs) form in both proximal promoters and distal enhancers during NSCs differentiating into neurons in the early Drosophila embryonic development. NDR formation in the regulatory regions involves nucleosome shift and eviction. Nucleosome occupancy in promoter NDRs is inversely proportional to the gene activity. Genes with promoter NDR formation during differentiation are enriched for functions related to neuron development and maturation. Active histone-modification signals (H3K4me3 and H3K9ac) in promoters are gained in neurons in two modes: de novo establishment to high levels or increase from the existing levels in NSCs. The gene sets corresponding to the two modes have different neuron-related functions. Dynamic changes of H3K27ac and H3K9ac signals in enhancers and promoters synergistically repress genes associated with neural stem or progenitor cell-related pluripotency and upregulate genes associated with neuron projection morphogenesis, neuron differentiation, and so on. Our results offer new insights into chromatin remodeling during in vivo neuron development and lay a foundation for its epigenetic regulatory mechanism study of other lineage specification. PMID:27858939

  18. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  19. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  20. Omics-based approaches reveal phospholipids remodeling of Rhizopus oryzae responding to furfural stress for fumaric acid-production from xylose.

    PubMed

    Pan, Xinrong; Liu, Huanhuan; Liu, Jiao; Wang, Cheng; Wen, Jianping

    2016-12-01

    In order to relieve the toxicity of furfural on Rhizopus oryzae fermentation, the molecular mechanism of R. oryzae responding to furfural stress for fumaric acid-production was investigated by omics-based approaches. In metabolomics analysis, 29 metabolites including amino acid, sugars, polyols and fatty acids showed significant changes for maintaining the basic cell metabolism at the cost of lowering fumaric acid production. To further uncover the survival mechanism, lipidomics was carried out, revealing that phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and polyunsaturated acyl chains might be closely correlated with R. oryzae's adapting to furfural stress. Based on the above omics analysis, lecithin, inositol and soybean oil were exogenously supplemented separately with an optimized concentration in the presence of furfural, which increased fumaric acid titer from 5.78g/L to 10.03g/L, 10.05g/L and 12.13g/L (increased by 73.5%, 73.8% and 110%, respectively). These findings provide a methodological guidance for hemicellulose-fumaric acid development.

  1. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair.

    PubMed

    Kwon, S-J; Park, J-H; Park, E-J; Lee, S-A; Lee, H-S; Kang, S W; Kwon, J

    2015-01-15

    ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.

  2. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly

    PubMed Central

    1994-01-01

    We find that the remodeling of the condensed Xenopus laevis sperm nucleus into the paternal pronucleus in egg extracts is associated with phosphorylation of the core histones H2A, H2A.X and H4, and uptake of a linker histone B4 and a HMG 2 protein. Histone B4 is required for the assembly of chromatosome structures in the pronucleus. However neither B4 nor core histone phosphorylation are required for the assembly of spaced nucleosomal arrays. We suggest that the spacing of nucleosomal arrays is determined by interaction between adjacent histone octamers under physiological assembly conditions. PMID:8045925

  3. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  4. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation

    PubMed Central

    Klein, Brianna J.; Muthurajan, Uma M.; Lalonde, Marie-Eve; Gibson, Matthew D.; Andrews, Forest H.; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G.; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G.

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  5. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  6. Repertoires of the nucleosome-positioning dinucleotides.

    PubMed

    Bettecken, Thomas; Trifonov, Edward N

    2009-11-02

    It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.

  7. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo.

    PubMed

    Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Conconi, Antonio

    2009-02-01

    The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.

  8. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis.

    PubMed

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M

    2011-08-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.

  9. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    PubMed Central

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-01-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide. PMID:28176797

  10. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  11. Identification of autoreactive B cells with labeled nucleosomes.

    PubMed

    Gies, Vincent; Wagner, Alain; Seifert, Cécile; Guffroy, Aurélien; Fauny, Jean-D; Knapp, Anne-M; Pasquali, Jean-L; Martin, Thierry; Dumortier, Hélène; Korganow, Anne-S; Soulas-Sprauel, Pauline

    2017-04-04

    The pathogenesis of autoimmune diseases has not been completely elucidated yet, and only a few specific treatments have been developed so far. In autoimmune diseases mediated by pathogenic autoantibodies, such as systemic lupus erythematosus, the specific detection and analysis of autoreactive B cells is crucial for a better understanding of the physiopathology. Biological characterization of these cells may help to define new therapeutic targets. Very few techniques allowing the precise detection of autoreactive B cells have been described so far. Herein we propose a new flow cytometry technique for specific detection of anti-nucleosome B cells, which secrete autoantibodies in systemic lupus erythematosus, using labeled nucleosomes. We produced different fluorochrome-labeled nucleosomes, characterized them, and finally tested them in flow cytometry. Nucleosomes labeled via the cysteines present in H3 histone specifically bind to autoreactive B cells in the anti-DNA transgenic B6.56R mice model. The present work validates the use of fluorochrome-labeled nucleosomes via cysteines to identify anti-nucleosome B cells and offers new opportunities for the description of autoreactive B cell phenotype.

  12. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    NASA Astrophysics Data System (ADS)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  13. The universality of nucleosome organization: from yeast to human

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    The basic units of DNA packaging are called nucleosomes. Their locations on the chromosomes play an essential role in gene regulation. We study nucleosome positioning in yeast, fly, mouse, and human, and build biophysical models in order to explain the genome-wide nucleosome organization. We show that DNA sequence alone is not able to generate the phased arrays of nucleosomes observed in vivo near the transcription start sites. We discuss simple models which can account for the formation of nucleosome depleted regions and nucleosome phasing at the gene promoters. We show that the same principles apply to different organisms. References: [1] RV Chereji, D Tolkunov, G Locke, AV Morozov - Phys. Rev. E 83, 050903 (2011) [2] RV Chereji, AV Morozov - J. Stat. Phys. 144, 379 (2011) [3] RV Chereji, AV Morozov - Proc. Natl. Acad. Sci. U.S.A. 111, 5236 (2014) [4] RV Chereji, T-W Kan, et al. - Nucleic Acids Res. (2015) doi: 10.1093/nar/gkv978 [5] RV Chereji, AV Morozov - Brief. Funct. Genomics 14, 50 (2015) [6] HA Cole, J Ocampo, JR Iben, RV Chereji, DJ Clark - Nucleic Acids Res. 42, 12512 (2014) [7] D Ganguli, RV Chereji, J Iben, HA Cole, DJ Clark - Genome Res. 24, 1637 (2014)

  14. Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling*

    PubMed Central

    Liu, Rui; Kenney, Justin W.; Manousopoulou, Antigoni; Johnston, Harvey E.; Kamei, Makoto; Woelk, Christopher H.; Xie, Jianling; Schwarzer, Michael; Proud, Christopher G.

    2016-01-01

    Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory

  15. Remodeling A School Shop?

    ERIC Educational Resources Information Center

    Baker, G. E.

    1970-01-01

    Presents guidelines for remodeling a school shop combining major considerations of funds, program changes, class management, and flexibility, with the needs of wiring, painting, and placement of equipment. (Author)

  16. Genome-wide chromatin remodeling modulates the Alu heat shock response.

    PubMed

    Kim, C; Rubin, C M; Schmid, C W

    2001-10-03

    During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.

  17. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling.

    PubMed

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA-DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx (-/-) pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.

  18. Senataxin controls meiotic silencing through ATR activation and chromatin remodeling

    PubMed Central

    Yeo, Abrey J; Becherel, Olivier J; Luff, John E; Graham, Mark E; Richard, Derek; Lavin, Martin F

    2015-01-01

    Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration. PMID:27462424

  19. Structure of the CENP-A nucleosome and its implications for centromeric chromatin architecture.

    PubMed

    Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2011-01-01

    Centromeres are dictated by the epigenetic inheritance of the centromeric nucleosome containing the centromere-specific histone H3 variant, CENP-A. The structure of the CENP-A nucleosome has been considered to be the fundamental architecture of the centromeric chromatin. Controversy exists in the literature regarding the CENP-A nucleosome structures, with octasome, hemisome, compact octasome, hexasome, and tetrasome models being reported. Some of these CENP-A nucleosome models may correspond to transient intermediates for the assembly of the mature CENP-A nucleosome; however, their significances are still unclear. Therefore, the structure of the mature CENP-A nucleosome has been eagerly awaited. We reconstituted the human CENP-A nucleosome with its cognate centromeric DNA fragment, and determined its crystal structure. In this review, we describe the structure and the physical properties of the CENP-A nucleosome, and discuss their implications for centromeric chromatin architecture.

  20. Crystal structure and stable property of the cancer-associated heterotypic nucleosome containing CENP-A and H3.3.

    PubMed

    Arimura, Yasuhiro; Shirayama, Kazuyoshi; Horikoshi, Naoki; Fujita, Risa; Taguchi, Hiroyuki; Kagawa, Wataru; Fukagawa, Tatsuo; Almouzni, Geneviève; Kurumizaka, Hitoshi

    2014-11-19

    The centromere-specific histone H3 variant, CENP-A, is overexpressed in particular aggressive cancer cells, where it can be mislocalized ectopically in the form of heterotypic nucleosomes containing H3.3. In the present study, we report the crystal structure of the heterotypic CENP-A/H3.3 particle and reveal its "hybrid structure", in which the physical characteristics of CENP-A and H3.3 are conserved independently within the same particle. The CENP-A/H3.3 nucleosome forms an unexpectedly stable structure as compared to the CENP-A nucleosome, and allows the binding of the essential centromeric protein, CENP-C, which is ectopically mislocalized in the chromosomes of CENP-A overexpressing cells.

  1. Akirin: a context-dependent link between transcription and chromatin remodeling.

    PubMed

    Nowak, Scott J; Baylies, Mary K

    2012-01-01

    Embryonic patterning relies upon an exquisitely timed program of gene regulation. While the regulation of this process via the action of transcription factor networks is well understood, new lines of study have highlighted the importance of a concurrently regulated program of chromatin remodeling during development. Chromatin remodeling refers to the manipulation of the chromatin architecture through rearrangement, repositioning, or restructuring of nucleosomes to either favor or hinder the expression of associated genes. While the role of chromatin remodeling pathways during tumor development and cancer progression are beginning to be clarified, the roles of these pathways in the course of tissue specification, morphogenesis and patterning remains relatively unknown. Further, relatively little is understood as to the mechanism whereby developmentally critical transcription factors coordinate with chromatin remodeling factors to optimize target gene loci for gene expression. Such a mechanism might involve direct transcription factor/chromatin remodeling factor interactions, or could likely be mediated via an unknown intermediary. Our group has identified the relatively unknown protein Akirin as a putative member of this latter group: a secondary cofactor that serves as an interface between a developmentally critical transcription factor and the chromatin remodeling machinery. This role for the Akirin protein suggests a novel regulatory mode for regulating gene expression during development.

  2. FACT Assists Base Excision Repair by Boosting the Remodeling Activity of RSC

    PubMed Central

    Ouararhni, Khalid; Roulland, Yohan; Ben Simon, Elsa; Kundu, Tapas; Hamiche, Ali; Angelov, Dimitar; Dimitrov, Stefan

    2016-01-01

    FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER. PMID:27467129

  3. Lipidomics and H218O labeling techniques reveal increased remodeling of DHA-containing membrane phospholipids associated with abnormal locomotor responses in α-tocopherol deficient zebrafish (danio rerio) embryos

    PubMed Central

    McDougall, Melissa Q.; Choi, Jaewoo; Stevens, Jan F.; Truong, Lisa; Tanguay, Robert L.; Traber, Maret G.

    2016-01-01

    We hypothesized that vitamin E (α-tocopherol) is required by the developing embryonic brain to prevent depletion of highly polyunsaturated fatty acids, especially docosahexaenoic acid (DHA, 22:6), the loss of which we predicted would underlie abnormal morphological and behavioral outcomes. Therefore, we fed adult 5D zebrafish (Danio rerio) defined diets without (E−) or with added α-tocopherol (E+, 500 mg RRR-α-tocopheryl acetate/kg diet) for a minimum of 80 days, and then spawned them to obtain E− and E+ embryos. The E− compared with E+ embryos were 82% less responsive (p<0.01) to a light/dark stimulus at 96 h post-fertilization (hpf), demonstrating impaired locomotor behavior, even in the absence of gross morphological defects. Evaluation of phospholipid (PL) and lysophospholipid (lyso-PL) composition using untargeted lipidomics in E− compared with E+ embryos at 24, 48, 72, and 120 hpf showed that four PLs and three lyso-PLs containing docosahexaenoic acid (DHA), including lysophosphatidylcholine (LPC 22:6, required for transport of DHA into the brain, p<0.001), were at lower concentrations in E− at all time-points. Additionally, H218O labeling experiments revealed enhanced turnover of LPC 22:6 (p<0.001) and three other DHA-containing PLs in the E− compared with the E+ embryos, suggesting that increased membrane remodeling is a result of PL depletion. Together, these data indicate that α-tocopherol deficiency in the zebrafish embryo causes the specific depletion and increased turnover of DHA-containing PL and lyso-PLs, which may compromise DHA delivery to the brain and thereby contribute to the functional impairments observed in E− embryos. PMID:26774753

  4. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Mani, Jesrael; Chowdhury, Debashish

    2012-04-01

    Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ˜ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called “footprint.” We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.

  5. Effects of DNA methylation on the structure of nucleosomes.

    PubMed

    Lee, Ju Yeon; Lee, Tae-Hee

    2012-01-11

    Nucleosomes are the fundamental packing units of the eukaryotic genome. Understanding the dynamic structure of a nucleosome is a key to the elucidation of genome packaging in eukaryotes, which is tied to the mechanisms of gene regulation. CpG methylation of DNA is an epigenetic modification associated with the inactivation of transcription and the formation of a repressive chromatin structure. Unraveling the changes in the structure of nucleosomes upon CpG methylation is an essential step toward the understanding of the mechanisms of gene repression and silencing by CpG methylation. Here we report single-molecule and ensemble fluorescence studies showing how the structure of a nucleosome is affected by CpG methylation. The results indicate that CpG methylation induces tighter wrapping of DNA around the histone core accompanied by a topology change. These findings suggest that changes in the physical properties of nucleosomes induced upon CpG methylation may contribute directly to the formation of a repressive chromatin structure.

  6. Flexible and dynamic nucleosome fiber in living mammalian cells.

    PubMed

    Nozaki, Tadasu; Kaizu, Kazunari; Pack, Chan-Gi; Tamura, Sachiko; Tani, Tomomi; Hihara, Saera; Nagai, Takeharu; Takahashi, Koichi; Maeshima, Kazuhiro

    2013-01-01

    Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement/30 ms) caused by Brownian motion. Our in vivo/in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.

  7. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    PubMed

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.

  8. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  9. The Drosophila Mi-2 Chromatin-Remodeling Factor Regulates Higher-Order Chromatin Structure and Cohesin Dynamics In Vivo

    PubMed Central

    Fasulo, Barbara; Deuring, Renate; Murawska, Magdalena; Gause, Maria; Dorighi, Kristel M.; Schaaf, Cheri A.; Dorsett, Dale; Brehm, Alexander; Tamkun, John W.

    2012-01-01

    dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells. PMID:22912596

  10. Widespread signatures of recent selection linked to nucleosome positioning in the human lineage.

    PubMed

    Prendergast, James G D; Semple, Colin A M

    2011-11-01

    In this study we investigated the strengths and modes of selection associated with nucleosome positioning in the human lineage through the comparison of interspecies and intraspecies rates of divergence. We identify significant evidence for both positive and negative selection linked to human nucleosome positioning for the first time, implicating a widespread and important role for DNA sequence in the location of well-positioned nucleosomes. Selection appears to be acting on particular base substitutions to maintain optimum GC compositions in core and linker regions, with, e.g., unexpectedly elevated rates of C→T substitutions during recent human evolution at linker regions 60-90 bp from the nucleosome dyad but significant depletion of the same substitutions within nucleosome core regions. These patterns are strikingly consistent with the known relationships between genomic sequence composition and nucleosome assembly. By stratifying nucleosomes according to the GC content of their genomic neighborhood, we also show that the strength and direction of selection detected is dictated by local GC content. Intriguingly these signatures of selection are not restricted to nucleosomes in close proximity to exons, suggesting the correct positioning of nucleosomes is not only important in and around coding regions. This analysis provides strong evidence that the genomic sequences associated with nucleosomes are not evolving neutrally, and suggests that underlying DNA sequence is an important factor in nucleosome positioning. Recent signatures of selection linked to genomic features as ubiquitous as the nucleosome have important implications for human genome evolution and disease.

  11. A Novel Wavelet-Based Approach for Predicting Nucleosome Positions Using DNA Structural Information.

    PubMed

    Gan, Yanglan; Zou, Guobing; Guan, Jihong; Xu, Guangwei

    2014-01-01

    Nucleosomes are basic elements of chromatin structure. The positioning of nucleosomes along a genome is very important to dictate eukaryotic DNA compaction and access. Current computational methods have focused on the analysis of nucleosome occupancy and the positioning of well-positioned nucleosomes. However, fuzzy nucleosomes require more complex configurations and are more difficult to predict their positions. We analyzed the positioning of well-positioned and fuzzy nucleosomes from a novel structural perspective, and proposed WaveNuc, a computational approach for inferring their positions based on continuous wavelet transformation. The comparative analysis demonstrates that these two kinds of nucleosomes exhibit different propeller twist structural characteristics. Well-positioned nucleosomes tend to locate at sharp peaks of the propeller twist profile, whereas fuzzy nucleosomes correspond to broader peaks. The sharpness of these peaks shows that the propeller twist profile may contain nucleosome positioning information. Exploiting this knowledge, we applied WaveNuc to detect the two different kinds of peaks of the propeller twist profile along the genome. We compared the performance of our method with existing methods on real data sets. The results show that the proposed method can accurately resolve complex configurations of fuzzy nucleosomes, which leads to better performance of nucleosome positioning prediction on the whole genome.

  12. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    PubMed

    Weng, Liwei; Greenberg, Marc M

    2015-09-02

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  13. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Olsen, Kasper

    2012-03-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement for the amount of bending. For the diameter of the coiled DNA we obtain the relatively accurate numerical estimate of 2R=82Å.

  14. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes

    PubMed Central

    Rudnizky, Sergei; Bavly, Adaiah; Malik, Omri; Pnueli, Lilach; Melamed, Philippa; Kaplan, Ariel

    2016-01-01

    The structure and dynamics of promoter chromatin have a profound effect on the expression levels of genes. Yet, the contribution of DNA sequence, histone post-translational modifications, histone variant usage and other factors in shaping the architecture of chromatin, and the mechanisms by which this architecture modulates expression of specific genes are not yet completely understood. Here we use optical tweezers to study the roles that DNA sequence and the histone variant H2A.Z have in shaping the chromatin landscape at the promoters of two model genes, Cga and Lhb. Guided by MNase mapping of the promoters of these genes, we reconstitute nucleosomes that mimic those located near the transcriptional start site and immediately downstream (+1), and measure the forces required to disrupt these nucleosomes, and their mobility along the DNA sequence. Our results indicate that these genes are basally regulated by two distinct strategies, making use of H2A.Z to modulate separate phases of transcription, and highlight how DNA sequence, alternative histone variants and remodelling machinery act synergistically to modulate gene expression. PMID:27653784

  15. Nonuniform distribution of excision repair synthesis in nucleosome core DNA

    SciTech Connect

    Lan, S.Y.; Smerdon, M.J.

    1985-12-17

    We have studied the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. The differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to map the distribution of repair synthesis in these regions. Results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. The 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only internal locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.

  16. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.

    PubMed

    Grigoryev, Sergei A; Bascom, Gavin; Buckwalter, Jenna M; Schubert, Michael B; Woodcock, Christopher L; Schlick, Tamar

    2016-02-02

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access.

  17. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes

    PubMed Central

    Grigoryev, Sergei A.; Bascom, Gavin; Buckwalter, Jenna M.; Schubert, Michael B.; Woodcock, Christopher L.; Schlick, Tamar

    2016-01-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  18. Nucleosomes and neutrophil activation in sickle cell disease painful crisis.

    PubMed

    Schimmel, Marein; Nur, Erfan; Biemond, Bart J; van Mierlo, Gerard J; Solati, Shabnam; Brandjes, Dees P; Otten, Hans-Martin; Schnog, John-John; Zeerleder, Sacha

    2013-11-01

    Activated polymorphonuclear neutrophils play an important role in the pathogenesis of vaso-occlusive painful sickle cell crisis. Upon activation, polymorphonuclear neutrophils can form neutrophil extracellular traps. Neutrophil extracellular traps consist of a meshwork of extracellular DNA, nucleosomes, histones and neutrophil proteases. Neutrophil extracellular traps have been demonstrated to be toxic to endothelial and parenchymal cells. This prospective cohort study was conducted to determine neutrophil extracellular trap formation in sickle cell patients during steady state and painful crisis. As a measure of neutrophil extracellular traps, plasma nucleosomes levels were determined and polymorphonuclear neutrophil activation was assessed measuring plasma levels of elastase-α1-antitrypsin complexes in 74 patients in steady state, 70 patients during painful crisis, and 24 race-matched controls using Enzyme Linked Immunosorbent Assay. Nucleosome levels in steady state sickle cell patients were significantly higher than levels in controls. During painful crisis levels of both nucleosomes and elastase-α1-antitrypsin complexes increased significantly. Levels of nucleosomes correlated significantly to elastase-α1-antitrypsin complex levels during painful crisis, (Sr = 0.654, P<0.001). This was seen in both HbSS/HbSβ(0)-thalassemia (Sr=0.55, P<0.001) and HbSC/HbSβ(+-)thalassemia patients (Sr=0.90, P<0.001) during painful crisis. Levels of nucleosomes showed a correlation with length of hospital stay and were highest in patients with acute chest syndrome. These data support the concept that neutrophil extracellular trap formation and neutrophil activation may play a role in the pathogenesis of painful sickle cell crisis and acute chest syndrome.

  19. Genome-Wide Analysis of Nucleosome Positions, Occupancy, and Accessibility in Yeast: Nucleosome Mapping, High-Resolution Histone ChIP, and NCAM.

    PubMed

    Rodriguez, Jairo; McKnight, Jeffrey N; Tsukiyama, Toshio

    2014-10-01

    Because histones bind DNA very tightly, the location on DNA and the level of occupancy of a given DNA sequence by nucleosomes can profoundly affect accessibility of non-histone proteins to chromatin, affecting virtually all DNA-dependent processes, such as transcription, DNA repair, DNA replication and recombination. Therefore, it is often necessary to determine positions and occupancy of nucleosomes to understand how DNA-dependent processes are regulated. Recent technological advances made such analyses feasible on a genome-wide scale at high resolution. In addition, we have recently developed a method to measure nuclease accessibility of nucleosomes on a global scale. This unit describes methods to map nucleosome positions, to determine nucleosome density, and to determine nuclease accessibility of nucleosomes using deep sequencing.

  20. A map of nucleosome positions in yeast at base-pair resolution.

    PubMed

    Brogaard, Kristin; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-06-28

    The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function. However, existing methods for mapping nucleosomes do not provide the necessary single-base-pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centres on the basis of chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It shows new aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing and the higher-order structure of the chromatin fibre.

  1. Role of the M-loop and reactive center loop domains in the folding and bridging of nucleosome arrays by MENT.

    PubMed

    Springhetti, Evelyn M; Istomina, Natalia E; Whisstock, James C; Nikitina, Tatiana; Woodcock, Chris L; Grigoryev, Sergei A

    2003-10-31

    MENT is a developmentally regulated heterochromatin-associated protein that condenses chromatin in terminally differentiated avian blood cells. Its homology to the serpin protein family suggests that the conserved serpin reactive center loop (RCL) and the unique M-loop are important for its function. To examine the role of these domains, we studied the interaction of wild-type and mutant MENT with naked DNA and biochemically defined nucleosome arrays reconstituted from 12-mer repeats containing nucleosome positioning sequences. Wild-type MENT folded the naked DNA duplexes into closely juxtaposed parallel structures ("tramlines"). Deletion of the M-loop, but not inactivation of the RCL, prevented tramline formation and the cooperative interaction of MENT with DNA. Reconstitution of wild-type MENT with nucleosome arrays caused their tight folding and self-association. M-loop deletion inhibited nucleosome array folding, whereas the inactive RCL mutant was competent to fold the nucleosome arrays, but had a significantly impaired ability to cause their self-association. Bifunctional chemical cross-linking of MENT revealed oligomerization of wild-type MENT in the presence of chromatin and DNA. This oligomerization was severely reduced in the RCL mutant. We propose that the mechanism of MENT-induced heterochromatin formation involves two independent events: bringing together nucleosome linkers within a chromatin fiber and formation of protein bridges between chromatin fibers. Ordered binding of MENT to linker DNA via its unique M-loop domain promotes the folding of chromatin, whereas bridging of chromatin fibers is facilitated by MENT oligomerization mediated by the RCL.

  2. Remodeling the Media Center.

    ERIC Educational Resources Information Center

    Baule, Steven M.

    1998-01-01

    Discusses items that need to be considered when remodeling a school media center. Highlights include space and location for various functions, including projections of print versus electronic media; electrical and data wiring needs; lighting; security and supervision; and reuse of existing furniture and equipment. (LRW)

  3. Transcriptional and genomic mayhem due to aging-induced nucleosome loss in budding yeast

    PubMed Central

    Hu, Zheng; Chen, Kaifu; Li, Wei; Tyler, Jessica K.

    2014-01-01

    All eukaryotic genomes are assembled into a nucleoprotein structure termed chromatin, which is comprised of regular arrays of nucleosomes. Each nucleosome consists of eight core histone protein molecules around which the DNA is wrapped 1.75 times. The ultimate consequence of packaging the genome into chromatin is that the DNA sequences are relatively inaccessible. This allows the cell to use a comprehensive toolbox of chromatin-altering machineries to reveal access to the DNA sequence at the right time and right place in order to allow genomic processes, such as DNA repair, transcription and replication, to occur in a tightly-regulated manner. In other words, chromatin provides the framework that allows the regulation of all genomic processes, because the machineries that mediate transcription, repair and DNA replication themselves are relatively non-sequence specific and if the genome were naked, they would presumably perform their tasks in a random and unregulated manner. We recently provided support for this prediction in Zheng et al., [Genes and Development (2014) 28: 396-408] by investigating a physiologically relevant scenario in which we had found that cells lose half of the core histone proteins, that is, during the mitotic aging (also called replicative aging) of budding yeast. Using new spike-in normalization techniques, we found that the occupancy of nucleosomes at most DNA sequences is reduced by 50%, leading to transcriptional induction of every single gene. This loss of histones during aging was also accompanied by a significantly-increased frequency of genomic instability including DNA breaks, chromosomal translocations, retrotransposition, and transfer of mitochondrial DNA into the nuclear genome (Figure 1).

  4. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.

  5. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.

    PubMed

    Szerlong, Heather J; Hansen, Jeffrey C

    2011-02-01

    Genetic information in eukaryotes is managed by strategic hierarchical organization of chromatin structure. Primary chromatin structure describes an unfolded nucleosomal array, often referred to as "beads on a string". Chromatin is compacted by the nonlinear r