Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... system. (b) Remote pickup mobile or base stations may be used for communications related to production... pickup mobile or base stations may communicate with any other station licensed under this subpart. (d... additional frequency is limited to 2.5 watts. (f) Remote pickup base and mobile stations in Alaska, Guam...
47 CFR 90.250 - Meteor burst communications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... frequency 44.20 MHz may be used for base station operation and 45.90 MHz for remote station operation on a primary basis. The frequencies 42.40 and 44.10 MHz may be used by base and remote stations, respectively... transmitter output power shall not exceed 2000 watts for base stations and 500 watts for remote stations. (d...
Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission
Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.
2002-01-01
A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.
Wireless Instrumentation System and Power Management Scheme Therefore
NASA Technical Reports Server (NTRS)
Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)
2007-01-01
A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.
NASA Technical Reports Server (NTRS)
Fielhauer, Karl B. (Inventor); Jensen, James R. (Inventor)
2007-01-01
A system includes a remote station and a local station having a receiver. The receiver operates in an unlocked state corresponding to its best lock frequency (BLF). The local station derives data indicative of a ratio of the BLF to a reference frequency of the receiver, and telemeters the data to the remote station. The remote station estimates the BLF based on (i) the telemetered data, and (ii) a predetermined estimate of the reference frequency.
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
Remote powering platform for implantable sensor systems at 2.45 GHz.
Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine
2014-01-01
Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.
NASA Technical Reports Server (NTRS)
Perry, J. C. (Inventor)
1980-01-01
A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.
Single transmission line interrogated multiple channel data acquisition system
Fasching, George E.; Keech, Jr., Thomas W.
1980-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.
Remote monitoring of a thermal plume
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Talay, T. A.
1979-01-01
A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.
Remote sensing of natural resources: Quarterly literature review
NASA Technical Reports Server (NTRS)
1976-01-01
A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.
NASA Astrophysics Data System (ADS)
Perotti, Jose M.; Lucena, Angel R.; Mullenix, Pamela A.; Mata, Carlos T.
2006-05-01
Current and future requirements of aerospace sensors and transducers demand the design and development of a new family of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors and transducers will possess a certain degree of intelligence in order to provide the end user with critical data in a more efficient manner. Communication between networks of traditional or next-generation sensors can be accomplished by a Wireless Sensor Network (WSN) developed by NASA's Instrumentation Branch and ASRC Aerospace Corporation at Kennedy Space Center (KSC), consisting of at least one central station and several remote stations and their associated software. The central station is application-dependent and can be implemented on different computer hardware, including industrial, handheld, or PC-104 single-board computers, on a variety of operating systems: embedded Windows, Linux, VxWorks, etc. The central stations and remote stations share a similar radio frequency (RF) core module hardware that is modular in design. The main components of the remote stations are an RF core module, a sensor interface module, batteries, and a power management module. These modules are stackable, and a common bus provides the flexibility to stack other modules for additional memory, increased processing, etc. WSN can automatically reconfigure to an alternate frequency if interference is encountered during operation. In addition, the base station will autonomously search for a remote station that was perceived to be lost, using relay stations and alternate frequencies. Several wireless remote-station types were developed and tested in the laboratory to support different sensing technologies, such as resistive temperature devices, silicon diodes, strain gauges, pressure transducers, and hydrogen leak detectors.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Identification coding schemes for modulated reflectance systems
Coates, Don M [Santa Fe, NM; Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Platts, David [Santa Fe, NM; Clark, David D [Santa Fe, NM
2006-08-22
An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.
Dynamic Termination On Radiating Coaxial Cable
NASA Technical Reports Server (NTRS)
Lombardi, Robert; Stern, Jon; Rassweiler, George
1993-01-01
Radiation pattern dithered to reduce adverse effect of nulls. In improved system for radio communication between base station and portable units within building, tunnel, ship, or other large structure, radiating or "leaky" coaxial cable serves as base-station antenna, and radiation pattern of cable dithered by dithering impedance of termination at end of cable remote from base station.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requests to assign rights granted by the authorization or to transfer control of entities holding... in the station's authorization or rules. Control station. A fixed station, the transmissions of which are used to control automatically the emissions or operations of a radio station, or a remote base...
Evolving technologies for Space Station Freedom computer-based workstations
NASA Technical Reports Server (NTRS)
Jensen, Dean G.; Rudisill, Marianne
1990-01-01
Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the left right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
2000-09-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, the Mobile Remote Servicer Base System (MBS) is viewed from the front right side. The MBS is part of the Canadian Space Agency’s (CSA) Space Station Remote Manipulator System (SSRMS), known as the Canadian arm. Scheduled to be launched in February 2002 on flight UF-2 to the International Space Station, the MBS will complete the Canadian Mobile Servicing System, or MSS. The mechanical arm will have the capability to "inchworm" from the U.S. Lab fixture to the MSS and travel along the Truss to work sites on the Space Station
47 CFR 74.433 - Temporary authorizations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...
47 CFR 74.433 - Temporary authorizations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...
47 CFR 74.433 - Temporary authorizations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...
47 CFR 74.433 - Temporary authorizations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... identification number of the associated broadcast station or stations, call letters of remote pickup station (if..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.433 Temporary authorizations. (a) Special temporary authority may be granted for remote pickup station...
Proposal for a remotely manned space station
NASA Technical Reports Server (NTRS)
Minsky, Marvin
1990-01-01
The United States is in trouble in space. The costs of the proposed Space Station Freedom have grown beyond reach, and the present design is obsolete. The trouble has come from imagining that there are only two alternatives: manned vs. unmanned. Both choices have led us into designs that do not appear to be practical. On one side, the United States simply does not possess the robotic technology needed to operate or assemble a sophisticated unmanned space station. On the other side, the manned designs that are now under way seem far too costly and dangerous, with all of its thousands of extravehicular activity (EVA) hours. More would be accomplished at far less cost by proceeding in a different way. The design of a space station made of modular, Erector Set-like parts is proposed which is to be assembled using earth-based remotely-controlled binary-tree telerobots. Earth-based workers could be trained to build the station in space using simulators. A small preassembled spacecraft would be launched with a few telerobots, and then, telerobots could be ferried into orbit along with stocks of additional parts. Trained terrestrial workers would remotely assemble a larger station, and materials for additional power and life support systems could be launched. Finally, human scientists and explorers could be sent to the space station. Other aspects of such a space station program are discussed.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
Single transmission line data acquisition system
Fasching, George E.
1984-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.
Hadfield works robotic controls in the Cupola Module
2013-01-10
ISS034-E-027317 (10 Jan. 2013) --- In the Cupola aboard the Earth-orbiting International Space Station, Canadian Space Agency astronaut Chris Hadfield, Expedition 34 flight engineer, works the controls at the Robotic workstation to maneuver the Space Station Remote Manipulator System (SSRMS) or CanadArm2 from its parked position to grapple the Mobile Remote Servicer (MRS) Base System (MBS) Power and Data Grapple Fixture 4 (PDGF-4).
NASA Astrophysics Data System (ADS)
Song, Yi; Ma, Mingguo; Li, Xin; Wang, Xufeng
2011-11-01
This research dealt with a daytime integration method with the help of Simple Biosphere Model, Version 2 (SiB2). The field observations employed in this study were obtained at the Yingke (YK) oasis super-station, which includes an Automatic Meteorological Station (AMS), an eddy covariance (EC) system and a Soil Moisture and Temperature Measuring System (SMTMS). This station is located in the Heihe River Basin, the second largest inland river basin in China. The remotely sensed data and field observations employed in this study were derived from Watershed Allied Telemetry Experimental Research (WATER). Daily variations of EF in temporal and spatial scale would be detected by using SiB2. An instantaneous midday EF was calculated based on a remote-sensing-based estimation of surface energy budget. The invariance of daytime EF was examined using the instantaneous midday EF calculated from a remote-sensing-based estimation. The integration was carried out using the constant EF method in the intervals with a steady EF. Intervals with an inconsistent EF were picked up and ET in these intervals was integrated separately. The truth validation of land Surface ET at satellite pixel scale was carried out using the measurement of eddy covariance (EC) system.
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...
47 CFR 74.431 - Special rules applicable to remote pickup stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... damaged, stations licensed under Subpart D may be used to provide temporary circuits for a period not... SERVICES Remote Pickup Broadcast Stations § 74.431 Special rules applicable to remote pickup stations. (a..., frequency coordination, establishing microwave links, and operational communications. Operational...
The lid of the container for the Mobile Base System, part of the Canadian arm, is prepared for remov
NASA Technical Reports Server (NTRS)
2000-01-01
Inside the Space Station Processing Facility, workers prepare to remove the lid of a container holding the Mobile Base System (MBS). The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
Worker-specific exposure monitor and method for surveillance of workers
Lovejoy, Michael L.; Peeters, John P.; Johnson, A. Wayne
2000-01-01
A person-specific monitor that provides sensor information regarding hazards to which the person is exposed and means to geolocate the person at the time of the exposure. The monitor also includes means to communicate with a remote base station. Information from the monitor can be downloaded at the base station for long term storage and analysis. The base station can also include means to recharge the monitor.
NASA Astrophysics Data System (ADS)
Yang, Y.
2013-12-01
Since the emerging of ambient noise tomography in 2005, it has become a well-established method and been applied all over the world to imaging crustal and uppermost mantle structures because of its exclusive capability to extract short period surface waves. Most studies of ambient noise tomography performed so far use surface waves at periods shorter than 40/50 sec. There are a few studies of long period surface wave tomography from ambient noise (longer than 50 sec) in continental and global scales. To our knowledge, almost no tomography studies have been performed using long period surface waves (~50-200 sec) from ambient noise in regional scales with an aperture of several hundred kilometres. In this study, we demonstrate the capability of using long period surface waves from ambient noise in regional surface wave tomography by showing a case study of western USA using the USArray Transportable component (TA). We select about 150 TA stations located in a region including northern California, northern Nevada and Oregon as the 'base' stations and about 200 stations from Global Seismographic Network (GSN) and The International Federation of Digital Seismograph Networks (FDSN) as the 'remote' stations. We perform monthly cross-correlations of continuous ambient noise data recorded in 2006-2008 between the 'base' stations and the 'remote' stations and then use a stacking method based on instantaneous phase coherence to stack the monthly cross-correlations to obtain the final cross-correlations. The results show that high signal-to-noise ratio long period Raleigh waves are obtained between the 'base' stations and 'remote' stations located several thousand or even more than ten thousand kilometres away from the 'base' stations. By treating each of the 'remote' station as a 'virtual' teleseismic earthquake and measuring surface wave phases at the 'base' stations, we generate phase velocity maps at 50-200 sec periods in the regions covered by the 'base' stations using an array-based two-plane-wave tomography method. To evaluate the reliability of the resulting phase velocity maps, we compare them with published phase velocity maps using the same tomography method but based on teleseismic data. The comparison shows that long period surface wave phase velocity maps based 'virtual' events from ambient noise and those based on natural earthquakes are very similar with differences within the range of uncertainties. The similarity of phase velocity maps justifies the application of long period surface waves from ambient noise in regional lithosphere imaging. The successful extraction of long period surface waves between station pairs with distances as long as several thousand or ten thousand kilometres can link seismic arrays located in different continents, such as CEArray in China and USArray in USA. With the rapid developments of large scale seismic arrays in different continents, those inter-continental surface waves from ambient noise can be incorporated in both regional- and global-scale surface wave tomography to significantly increase the path coverage in both lateral and azimuthal senses, which is essential to improving imaging of high resolution heterogeneities and azimuthal anisotropy, especially at regions with gaps of azimuthal distributions of earthquakes.
USDA-ARS?s Scientific Manuscript database
Remotely sensed and in-situ data were used to investigate dynamics of root zone soil moisture and evapotranspiration (ET) at four Mesonet stations in north-central Oklahoma over an 11-year period (2000-2010). Two moisture deficit indicators based on soil matric potential had spatial and temporal pat...
NASA Technical Reports Server (NTRS)
Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.
1986-01-01
The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Wireless Orbiter Hang-Angle Inclinometer System
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman
2011-01-01
A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
The Mobile Base System, part of the Canadian arm, is revealed inside the container
NASA Technical Reports Server (NTRS)
2000-01-01
With the lid removed, the wrapped Mobile Base System (MBS) is revealed inside its transport container. The MBS is part of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS), which is part of the payload on mission STS-100 to the International Space Station.
47 CFR 74.482 - Station identification.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Station identification. 74.482 Section 74.482..., AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup Broadcast Stations § 74.482 Station identification. (a) Each remote pickup broadcast station shall be identified by the...
Space station mobile transporter
NASA Technical Reports Server (NTRS)
Renshall, James; Marks, Geoff W.; Young, Grant L.
1988-01-01
The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.
Manned remote work station development article, executive summary
NASA Technical Reports Server (NTRS)
1979-01-01
The mission requirements for the manned remote work station (MRWS) flight article and the manned remote work station open cherry picker development test article is defined. Considerations are given for the near, mid, and far term use of the MRWS with emphasis on its ultimate application: constructing the Solar Power Satellite.
1996-04-08
Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.
On developing the local research environment of the 1990s - The Space Station era
NASA Technical Reports Server (NTRS)
Chase, Robert; Ziel, Fred
1989-01-01
A requirements analysis for the Space Station's polar platform data system has been performed. Based upon this analysis, a cluster, layered cluster, and layered-modular implementation of one specific module within the Eos Data and Information System (EosDIS), an active data base for satellite remote sensing research has been developed. It is found that a distributed system based on a layered-modular architecture and employing current generation work station technologies has the requisite attributes ascribed by the remote sensing research community. Although, based on benchmark testing, probabilistic analysis, failure analysis and user-survey technique analysis, it is found that this architecture presents some operational shortcomings that will not be alleviated with new hardware or software developments. Consequently, the potential of a fully-modular layered architectural design for meeting the needs of Eos researchers has also been evaluated, concluding that it would be well suited to the evolving requirements of this multidisciplinary research community.
BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.
Seeley, Robert L.; Daniels, Jeffrey J.
1984-01-01
A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
Quantification of Local Warming Trend: A Remote Sensing-Based Approach
Rahaman, Khan Rubayet; Hassan, Quazi K.
2017-01-01
Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857
Wireless Headset Communication System
NASA Technical Reports Server (NTRS)
Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.
1995-01-01
System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.
Remote Observing and Automatic FTP on Kitt Peak
NASA Astrophysics Data System (ADS)
Seaman, Rob; Bohannan, Bruce
As part of KPNO's Internet-based observing services we experimented with the publically available audio, video and whiteboard MBONE clients (vat, nv, wb and others) in both point-to-point and multicast modes. While bandwidth is always a constraint on the Internet, it is less of a constraint to operations than many might think. These experiments were part of two new Internet-based observing services offered to KPNO observers beginning with the Fall 1995 semester: a remote observing station and an automatic FTP data queue. The remote observing station seeks to duplicate the KPNO IRAF/ICE observing environment on a workstation at the observer's home institution. The automatic FTP queue is intended to support those observing programs that require quick transport of data back to the home institution, for instance, for near real time reductions to aid in observing tactics. We also discuss the early operational results of these services.
Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1985-01-01
The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.
U.S. Space Station platform - Configuration technology for customer servicing
NASA Technical Reports Server (NTRS)
Dezio, Joseph A.; Walton, Barbara A.
1987-01-01
Features of the Space Station coorbiting and polar orbiting platforms (COP and POP, respectively) are described that will allow them to be configured optimally to meet mission requirements and to be assembled, serviced, and modified on-orbit. Both of these platforms were designed to permit servicing at the Shuttle using the remote manipulator system with teleoperated end effectors; EVA was planned as a backup and for unplanned payload failure modes. Station-based servicing is discussed as well as expendable launch vehicle-based servicing concepts.
Literature review of the remote sensing of natural resources. [bibliography
NASA Technical Reports Server (NTRS)
Fears, C. B. (Editor); Inglis, M. H. (Editor)
1977-01-01
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided.
47 CFR 74.432 - Licensing requirements and procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EXPERIMENTAL RADIO, AUXILIARY, SPECIAL BROADCAST AND OTHER PROGRAM DISTRIBUTIONAL SERVICES Remote Pickup... transmitter or points of any intercity relay system on frequencies in Groups I and J. (d) Base stations may be... at the control point of the station. (k) In case of permanent discontinuance of operations of a...
Virtual instrument: remote control and monitoring of an artificial heart driver
NASA Astrophysics Data System (ADS)
Nguyen, An H.; Farrar, David
1993-07-01
A development of a virtual instrument based on the top-down model approach for an artificial heart driver is presented. Driver parameters and status were being dynamically updated on the virtual system at the remote station. The virtual system allowed the remote operator to interact with the physical heart driver as if he/she were at the local station. Besides use as an effective training tool, the system permits an expert operator to monitor and also control the Thoratec heart driver from a distant location. We believe that the virtual instrument for biomedical devices in general and for the Thoratec heart driver in particular, not only improves system reliability but also opens up a real possibility in reducing medical cost. Utilizing the top-down scheme developed recently for telerobotics, realtime operation in both instrument display and remote communication were possible via a low bandwidth telephone medium.
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers prepare the Remote Manipulator System, or robotic arm, for installation on the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
NASA Technical Reports Server (NTRS)
Delombard, R.
1984-01-01
A photovoltaic power system which will be installed at a remote location in Indonesia to provide power for a satellite Earth station and a classroom for video and audio teleconferences are described. The Earth station may also provide telephone service to a nearby village. The use of satellite communications for development assistance applications and the suitability of a hybrid photovoltaic engine generator power system for remote satellite Earth stations are demonstrated. The Indonesian rural satellite project is discussed and the photovoltaic power system is described.
Using Spacelab as a precursor of science operations for the Space Station
NASA Technical Reports Server (NTRS)
Marmann, R. A.
1997-01-01
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.
Overall view from south to north of remote sprint launch ...
Overall view from south to north of remote sprint launch sprint launch site #3. Remote launch operations building on left, exclusion area sentry station at distant center, and limited area sentry station on right - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 3, North of State Route 5, approximately 10 miles Southwest of Walhalla, ND, Nekoma, Cavalier County, ND
ERIC Educational Resources Information Center
Lin, Kuanyuh Tony
2009-01-01
A two-stage mixed methods approach was used to examine how foreign correspondents stationed in the United States use World Wide Web technology to maintain their news perspectives remotely. Despite emerging technology playing an increasingly significant role in the production of international journalism, the subject under investigation has been…
FAST at MACH 20: clinical ultrasound aboard the International Space Station.
Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A
2005-01-01
Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.
47 CFR 74.464 - Frequency tolerance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating... chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following: Frequency range...
47 CFR 74.464 - Frequency tolerance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating... chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following: Frequency range...
NASA Astrophysics Data System (ADS)
Bitterlin, Ian F.
The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the "anti-wind" lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called "3G" technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its "2G" counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an interesting solution for the more rural and remote applications - particularly those where an electrical supply is not available or practical - and this paper attempts to explore the current practicalities of such a power generation solution for those cellular phone base stations.
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, a worker helps to attach the Remote Manipulator System, or robotic arm, to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
DOT National Transportation Integrated Search
2005-11-01
In order to extend commercial vehicle enforcement coverage to routes that are not monitored by fixed weigh stations, Kentucky has developed and implemented a Remote Monitoring System (RMS) and a Virtual Weight Station (VWS). The RMS captures images o...
46 CFR 153.296 - Emergency shutdown stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shutdown station must contain a single remote actuator for all quick closing shutoff valves required by... on the tankship. (f) Any remote emergency actuator, such as that for a quick closing shut-off valve... remote emergency actuators. The emergency action must occur whether one or several actuators are operated...
Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara
2006-01-01
A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.
Web Information Systems for Monitoring and Control of Indoor Air Quality at Subway Stations
NASA Astrophysics Data System (ADS)
Choi, Gi Heung; Choi, Gi Sang; Jang, Joo Hyoung
In crowded subway stations indoor air quality (IAQ) is a key factor for ensuring the safety, health and comfort of passengers. In this study, a framework for web-based information system in VDN environment for monitoring and control of IAQ in subway stations is suggested. Since physical variables that describing IAQ need to be closely monitored and controlled in multiple locations in subway stations, concept of distributed monitoring and control network using wireless media needs to be implemented. Connecting remote wireless sensor network and device (LonWorks) networks to the IP network based on the concept of VDN can provide a powerful, integrated, distributed monitoring and control performance, making a web-based information system possible.
Hydrologic Observatory Data Telemetry Network in an Extreme Environment
NASA Astrophysics Data System (ADS)
Irving, K.; Kane, D.
2007-12-01
A network of hydrological research data stations on the North Slope of Alaska using radio telemetry to gather data in "near real time" will be described. The network consists of approximately 25 research stations, 10 repeater stations, and 3 Internet-connected base stations (though data is also collected at repeater stations and research stations may also function as repeaters). With this operational network, radio link redundancy is sufficient to reach any research station from any base station. The data network is driven in "pull" mode using software running on computers in Fairbanks, and emphasis is placed on reliably collecting and storing data as found on the remote data loggers. Work is underway to deploy dynamic routing software on the controlling computers, at which point the network will be capable of automatically working around problems which may include icing on antennas, satellite sun outages, animal damage, and many others.
Computer networks for remote laboratories in physics and engineering
NASA Technical Reports Server (NTRS)
Starks, Scott; Elizandro, David; Leiner, Barry M.; Wiskerchen, Michael
1988-01-01
This paper addresses a relatively new approach to scientific research, telescience, which is the conduct of scientific operations in locations remote from the site of central experimental activity. A testbed based on the concepts of telescience is being developed to ultimately enable scientific researchers on earth to conduct experiments onboard the Space Station. This system along with background materials are discussed.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers use a hoisting device to move the Remote Manipulator System, or robotic arm, toward the Japanese Experiment Module for installation and testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008.The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-19
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers use a hoisting device to move the Remote Manipulator System, or robotic arm, toward the Japanese Experiment Module for installation and testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008.The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers attach the Remote Manipulator System, or robotic arm, to a hoisting device to prepare for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Manned remote work station development article
NASA Technical Reports Server (NTRS)
1978-01-01
The two prime objectives of the Manned Remote Work Station (MRWS) Development Article Study are to first, evaluate the MRWS flight article roles and associated design concepts for fundamental requirements and embody key technology developments into a simulation program; and to provide detail manufacturing drawings and schedules for a simulator development test article. An approach is outlined which establishes flight article requirements based on past studies of Solar Power Satellite, orbital construction support equipments, construction bases and near term shuttle operations. Simulation objectives are established for those technology issues that can best be addressed on a simulator. Concepts for full-scale and sub-scale simulators are then studied to establish an overall approach to studying MRWS requirements. Emphasis then shifts to design and specification of a full-scale development test article.
2002-03-13
Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.
Charter for Systems Engineer Working Group
NASA Technical Reports Server (NTRS)
Suffredini, Michael T.; Grissom, Larry
2015-01-01
This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.
Multi-sources data fusion framework for remote triage prioritization in telehealth.
Salman, O H; Rasid, M F A; Saripan, M I; Subramaniam, S K
2014-09-01
The healthcare industry is streamlining processes to offer more timely and effective services to all patients. Computerized software algorithm and smart devices can streamline the relation between users and doctors by providing more services inside the healthcare telemonitoring systems. This paper proposes a multi-sources framework to support advanced healthcare applications. The proposed framework named Multi Sources Healthcare Architecture (MSHA) considers multi-sources: sensors (ECG, SpO2 and Blood Pressure) and text-based inputs from wireless and pervasive devices of Wireless Body Area Network. The proposed framework is used to improve the healthcare scalability efficiency by enhancing the remote triaging and remote prioritization processes for the patients. The proposed framework is also used to provide intelligent services over telemonitoring healthcare services systems by using data fusion method and prioritization technique. As telemonitoring system consists of three tiers (Sensors/ sources, Base station and Server), the simulation of the MSHA algorithm in the base station is demonstrated in this paper. The achievement of a high level of accuracy in the prioritization and triaging patients remotely, is set to be our main goal. Meanwhile, the role of multi sources data fusion in the telemonitoring healthcare services systems has been demonstrated. In addition to that, we discuss how the proposed framework can be applied in a healthcare telemonitoring scenario. Simulation results, for different symptoms relate to different emergency levels of heart chronic diseases, demonstrate the superiority of our algorithm compared with conventional algorithms in terms of classify and prioritize the patients remotely.
Overview (northeast to southwest) of remote sprint launch site #4. ...
Overview (northeast to southwest) of remote sprint launch site #4. In center is limited area sentry station, just behind it can be seen the exhaust and intake shafts for the remote launch operations building, and to the far right is the exclusion area sentry station - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
Detecting urban warming signals in climate records
NASA Astrophysics Data System (ADS)
He, Yuting; Jia, Gensuo; Hu, Yonghong; Zhou, Zijiang
2013-07-01
Determining whether air temperatures recorded at meteorological stations have been contaminated by the urbanization process is still a controversial issue at the global scale. With support of historical remote sensing data, this study examined the impacts of urban expansion on the trends of air temperature at 69 meteorological stations in Beijing, Tianjin, and Hebei Province over the last three decades. There were significant positive relations between the two factors at all stations. Stronger warming was detected at the meteorological stations that experienced greater urbanization, i.e., those with a higher urbanization rate. While the total urban area affects the absolute temperature values, the change of the urban area (urbanization rate) likely affects the temperature trend. Increases of approximately 10% in urban area around the meteorological stations likely contributed to the 0.13°C rise in air temperature records in addition to regional climate warming. This study also provides a new approach to selecting reference stations based on remotely sensed urban fractions. Generally, the urbanization-induced warming contributed to approximately 44.1% of the overall warming trends in the plain region of study area during the past 30 years, and the regional climate warming was 0.30°C (10 yr)-1 in the last three decades.
Remote sensing of natural resources
NASA Technical Reports Server (NTRS)
1976-01-01
Quarterly literature review compiles citations and abstracts from eight major abstracting and indexing services. Each issue contains author/keyword index. Includes data obtained or techniques used from space, aircraft, or ground-based stations.
47 CFR 74.1290 - FM translator and booster station information available on the Internet.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Transmissions, Permissible (Low Power Auxiliaries) 74.831 Transmitter power (Remote Pickup) 74.461 Transmitters... equipment— Aural Auxiliary 74.550 Remote Pickup 74.451 TV Auxiliaries 74.655 Lw Power Auxiliaries 74.851... stations 74.537 Remote Pickup 74.433 TV Auxiliaries 74.633 Low Power Auxiliaries 74.833 Authorized emission...
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 2 2010-10-01 2010-10-01 false Use of mobile channel for remote control of...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Paging and Radiotelephone Service One-Way Or Two-Way Mobile Operation § 22.575 Use of mobile channel for remote control of station functions. Carriers may...
Remote sensing and skywave digital communication from antarctica.
Bergadà, Pau; Deumal, Marc; Vilella, Carles; Regué, Joan R; Altadill, David; Marsal, Santi
2009-01-01
This paper presents an overview of the research activities undertaken by La Salle and the Ebro Observatory in the field of remote sensing. On 2003 we started a research project with two main objectives: implement a long-haul oblique ionospheric sounder and transmit the data from remote sensors located at the Spanish Antarctic station Juan Carlos I to Spain. The paper focuses on a study of feasibility of two possible physical layer candidates for the skywave link between both points. A DS-SS based solution and an OFDM based solution are considered to achieve a reliable low-power low-rate communication system between Antarctica and Spain.
Remote Sensing and Skywave Digital Communication from Antarctica
Bergadà, Pau; Deumal, Marc; Vilella, Carles; Regué, Joan R.; Altadill, David; Marsal, Santi
2009-01-01
This paper presents an overview of the research activities undertaken by La Salle and the Ebro Observatory in the field of remote sensing. On 2003 we started a research project with two main objectives: implement a long-haul oblique ionospheric sounder and transmit the data from remote sensors located at the Spanish Antarctic station Juan Carlos I to Spain. The paper focuses on a study of feasibility of two possible physical layer candidates for the skywave link between both points. A DS-SS based solution and an OFDM based solution are considered to achieve a reliable low-power low-rate communication system between Antarctica and Spain. PMID:22303166
Mapping the Educational Work of Governesses on Australia's Remote Stations
ERIC Educational Resources Information Center
Newman, Sally
2014-01-01
This article is about the educational work of governesses on Australia's remote cattle and sheep stations. These stations occupy vast tracts of land in the outback, and form part of global food supply chains exporting meat to countries around the world. The article explores the nature of governesses' work, the boundaries they negotiate to perform…
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.
1975-01-01
The remote sensing studies of (a) cultivated peanut areas in Southeastern Virginia; (b) studies at the Virginia Truck and Ornamentals Research Station near Painter, Virginia, the Eastern Virginia Research Station near Warsaw, Virginia, the Tidewater Research and Continuing Education Center near Suffolk, Virginia, and the Southern Piedmont Research and Continuing Education Center Blackstone, Virginia; and (c) land use classification studies at Virginia Beach, Virginia are presented. The practical feasibility of using false color infrared imagery to detect and determine the areal extent of peanut disease infestation of Cylindrocladium black rot and Sclerotinia blight is demonstrated. These diseases pose a severe hazard to this major agricultural food commodity. The value of remote sensing technology in terrain analyses and land use classification of diverse land areas is also investigated. Continued refinement of spectral signatures of major agronomic crops and documentation of pertinent environmental variables have provided a data base for the generation of an agricultural-environmental prediction model.
Frequency division multiplex technique
NASA Technical Reports Server (NTRS)
Brey, H. (Inventor)
1973-01-01
A system for monitoring a plurality of condition responsive devices is described. It consists of a master control station and a remote station. The master control station is capable of transmitting command signals which includes a parity signal to a remote station which transmits the signals back to the command station so that such can be compared with the original signals in order to determine if there are any transmission errors. The system utilizes frequency sources which are 1.21 multiples of each other so that no linear combination of any harmonics will interfere with another frequency.
Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery
NASA Astrophysics Data System (ADS)
King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.
2018-02-01
Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (<50 m wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substantial portion of the river bed. Topography of the exposed river bed was photogrammetrically extracted from high-resolution aerial imagery while the geometry of the remaining inundated portion of the channel was approximated based on adjacent bank topography and maximum depth assumptions. Full channel bathymetry was used to create hydraulic models that encompassed virtual gauging stations. Discharge for each aerial survey was estimated with the hydraulic model by matching modeled and remotely sensed wetted widths. Based on these results, synthetic width-discharge rating curves were produced for each virtual gauging station. In situ observations were used to determine the accuracy of wetted widths extracted from imagery (mean error 0.36 m), extracted bathymetry (mean vertical RMSE 0.23 m), and discharge (mean percent error 7% with a standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.
Manned spacecraft automation and robotics
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1987-01-01
The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.
NASA Technical Reports Server (NTRS)
Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce
1989-01-01
A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.
Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems
NASA Technical Reports Server (NTRS)
Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.
2011-01-01
The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.
A PDA-based flexible telecommunication system for telemedicine applications.
Nazeran, Homer; Setty, Sunil; Haltiwanger, Emily; Gonzalez, Virgilio
2004-01-01
Technology has been used to deliver health care at a distance for many years. Telemedicine is a rapidly growing area and recently there are studies devoted to prehospital care of patients in emergency cases. In this work we have developed a compact, reliable, and low cost PDA-based telecommunication device for telemedicine applications to transmit audio, still images, and vital signs from a remote site to a fixed station such as a clinic or a hospital in real time. This was achieved based on a client-server architecture. A Pocket PC, a miniature camera, and a hands-free microphone were used at the client site and a desktop computer running the Windows XP operating system was used as a server. The server was located at a fixed station. The system was implemented on TCP/IP and HTTP protocol. Field tests have shown that the system can reliably transmit still images, audio, and sample vital signs from a simulated remote site to a fixed station either via a wired or wireless network in real time. The Pocket PC was used at the client site because of its compact size, low cost and processing capabilities.
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-01-01
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region. PMID:27869668
Li, Xiuhong; Cheng, Xiao; Yang, Rongjin; Liu, Qiang; Qiu, Yubao; Zhang, Jialin; Cai, Erli; Zhao, Long
2016-11-17
Of the modern technologies in polar-region monitoring, the remote sensing technology that can instantaneously form large-scale images has become much more important in helping acquire parameters such as the freezing and melting of ice as well as the surface temperature, which can be used in the research of global climate change, Antarctic ice sheet responses, and cap formation and evolution. However, the acquirement of those parameters is impacted remarkably by the climate and satellite transit time which makes it almost impossible to have timely and continuous observation data. In this research, a wireless sensor-based online monitoring platform (WSOOP) for the extreme polar environment is applied to obtain a long-term series of data which is site-specific and continuous in time. Those data are compared and validated with the data from a weather station at Zhongshan Station Antarctica and the result shows an obvious correlation. Then those data are used to validate the remote sensing products of the freezing and melting of ice and the surface temperature and the result also indicated a similar correlation. The experiment in Antarctica has proven that WSOOP is an effective system to validate remotely sensed data in the polar region.
Remote control radioactive-waste removal system uses modulated laser transmitter
NASA Technical Reports Server (NTRS)
Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.
1971-01-01
Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-06-01
We present the development considerations and design for ground based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space weather related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as dual-frequency gps receiver and an HF radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
NASA Astrophysics Data System (ADS)
Clauer, C. R.; Kim, H.; Deshpande, K.; Xu, Z.; Weimer, D.; Musko, S.; Crowley, G.; Fish, C.; Nealy, R.; Humphreys, T. E.; Bhatti, J. A.; Ridley, A. J.
2014-10-01
We present the development considerations and design for ground-based instrumentation that is being deployed on the East Antarctic Plateau along a 40° magnetic meridian chain to investigate interhemispheric magnetically conjugate geomagnetic coupling and other space-weather-related phenomena. The stations are magnetically conjugate to geomagnetic stations along the west coast of Greenland. The autonomous adaptive low-power instrument platforms being deployed in the Antarctic are designed to operate unattended in remote locations for at least 5 years. They utilize solar power and AGM storage batteries for power, two-way Iridium satellite communication for data acquisition and program/operation modification, support fluxgate and induction magnetometers as well as a dual-frequency GPS receiver and a high-frequency (HF) radio experiment. Size and weight considerations are considered to enable deployment by a small team using small aircraft. Considerable experience has been gained in the development and deployment of remote polar instrumentation that is reflected in the present generation of instrumentation discussed here. We conclude with the lessons learned from our experience in the design, deployment and operation of remote polar instrumentation.
NASA Astrophysics Data System (ADS)
Kunwar, Samridha
The detection of ultra-high energy cosmic rays is constrained by their flux, requiring detectors with apertures of hundreds or even thousands of square kilometers and close to one hundred percent duty cycle. The sheer scale that would be required of conventional detectors, to acquire sufficient statistics for energy, composition or anisotropy studies, means that new techniques that reduce manpower and financial resources are continually being sought. In this dissertation, the development of a remote sensing technique based observatory known as bistatic radar, which aims to achieve extensive coverage of the Earth's surface, cf. Telescope Array's 700 km2 surface detector, is discussed. Construction of the radar projects transmitter station was completed in the summer of 2013, and remote receiver stations were deployed in June and November of 2014. These stations accomplish radar echo detection using an analog signal chain. Subject to less radio interference, the remote stations add stereoscopic measurement capabilities that theoretically allow unique determination of cosmic ray geometry and core location. An FPGA is used as a distributed data processing node within the project. The FPGA provides triggering logic for data sampled at 200 MSa/s, detecting Cosmic Ray shower echoes chirping at -1 to -10 Megahertz/microsecond (depending on the geometry) for several microseconds. The data acquisition system with low power consumption at a cost that is also comparatively inexpensive is described herein.
NASA Technical Reports Server (NTRS)
Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert
2015-01-01
Assist with the evaluation and measuring of wetlands hydroperiod at the Plum Brook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: (1) Show the relative length of hydroperiod using available remote sensing datasets, (2) Date linked table of wetlands extent over time for all feasible non-forested wetlands, (3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables (4), A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment; and (5) A MTRI style report summarizing year 2 results.
Deep Space Station (DSS-13) automation demonstration
NASA Technical Reports Server (NTRS)
Remer, D. S.; Lorden, G.
1980-01-01
The data base collected during a six month demonstration of an automated Deep Space Station (DSS 13) run unattended and remotely controlled is summarized. During this period, DSS 13 received spacecraft telemetry data from Voyager, Pioneers 10 and 11, and Helios projects. Corrective and preventive maintenance are reported by subsystem including the traditional subsystems and those subsystems added for the automation demonstration. Operations and maintenance data for a comparable manned Deep Space Station (DSS 11) are also presented for comparison. The data suggests that unattended operations may reduce maintenance manhours in addition to reducing operator manhours. Corrective maintenance for the unmanned station was about one third of the manned station, and preventive maintenance was about one half.
2007-02-16
KENNEDY SPACE CENTER, FLA. -- Inside the Space Station Processing Facility at Kennedy Space Center, workers from the Japan Aerospace Exploration Agency watch from a control area as the Remote Manipulator System, or robotic arm, is attached to a hoisting device to prepare it for installation to the Japanese Experiment Module for testing. The RMS is one of the payloads scheduled to be delivered to the station on a future mission tentatively scheduled for 2008. The RMS is similar to the robotic arm already installed on the station's mobile base system. Photo credit: NASA/Amanda Diller
Use of telemedicine in the remote programming of cochlear implants.
Ramos, Angel; Rodriguez, Carina; Martinez-Beneyto, Paz; Perez, Daniel; Gault, Alexandre; Falcon, Juan Carlos; Boyle, Patrick
2009-05-01
Remote cochlear implant (CI) programming is a viable, safe, user-friendly and cost-effective procedure, equivalent to standard programming in terms of efficacy and user's perception, which can complement the standard procedures. The potential benefits of this technique are outlined. We assessed the technical viability, risks and difficulties of remote CI programming; and evaluated the benefits for the user comparing the standard on-site CI programming versus the remote CI programming. The Remote Programming System (RPS) basically consists of completing the habitual programming protocol in a regular CI centre, assisted by local staff, although guided by a remote expert, who programs the CI device using a remote programming station that takes control of the local station through the Internet. A randomized prospective study has been designed with the appropriate controls comparing RPS to the standard on-site CI programming. Study subjects were implanted adults with a HiRes 90K(R) CI with post-lingual onset of profound deafness and 4-12 weeks of device use. Subjects underwent two daily CI programming sessions either remote or standard, on 4 programming days separated by 3 month intervals. A total of 12 remote and 12 standard sessions were completed. To compare both CI programming modes we analysed: program parameters, subjects' auditory progress, subjects' perceptions of the CI programming sessions, and technical aspects, risks and difficulties of remote CI programming. Control of the local station from the remote station was carried out successfully and remote programming sessions were achieved completely and without incidents. Remote and standard program parameters were compared and no significant differences were found between the groups. The performance evaluated in subjects who had been using either standard or remote programs for 3 months showed no significant difference. Subjects were satisfied with both the remote and standard sessions. Safety was proven by checking emergency stops in different conditions. A very small delay was noticed that did not affect the ease of the fitting. The oral and video communication between the local and the remote equipment was established without difficulties and was of high quality.
NASA Astrophysics Data System (ADS)
Brown, Robert Douglas
Several components of a system for quantitative application of climatic statistics to landscape planning and design (CLIMACS) have been developed. One component model (MICROSIM) estimated the microclimate at the top of a remote crop using physically-based models and inputs of weather station data. Temperatures at the top of unstressed, uniform crops on flat terrain within 1600 m of a recording weather station were estimated within 1.0 C 96% of the time for a corn crop and 92% of the time for a soybean crop. Crop top winds were estimated within 0.4 m/s 92% of the time for corn and 100% of the time for soybean. This is of sufficient accuracy for application in landscape planning and design models. A physically-based model (COMFA) was developed for the determination of outdoor human thermal comfort from microclimate inputs. Estimated versus measured comfort levels in a wide range of environments agreed with a correlation coefficient of r = 0.91. Using these components, the CLIMACS concept has been applied to a typical planning example. Microclimate data were generated from weather station information using MICROSIM, then input to COMFA and to a house energy consumption model called HOTCAN to derive quantitative climatic justification for design decisions.
Deployment and early experience with remote-presence patient care in a community hospital.
Petelin, J B; Nelson, M E; Goodman, J
2007-01-01
The introduction of the RP6 (InTouch Health, Santa Barbara, CA, USA) remote-presence "robot" appears to offer a useful telemedicine device. The authors describe the deployment and early experience with the RP6 in a community hospital and provided a live demonstration of the system on April 16, 2005 during the Emerging Technologies Session of the 2005 SAGES Meeting in Fort Lauderdale, Florida. The RP6 is a 5-ft 4-in. tall, 215-pound robot that can be remotely controlled from an appropriately configured computer located anywhere on the Internet (i.e., on this planet). The system is composed of a control station (a computer at the central station), a mechanical robot, a wireless network (at the remote facility: the hospital), and a high-speed Internet connection at both the remote (hospital) and central locations. The robot itself houses a rechargeable power supply. Its hardware and software allows communication over the Internet with the central station, interpretation of commands from the central station, and conversion of the commands into mechanical and nonmechanical actions at the remote location, which are communicated back to the central station over the Internet. The RP6 system allows the central party (e.g., physician) to control the movements of the robot itself, see and hear at the remote location (hospital), and be seen and heard at the remote location (hospital) while not physically there. Deployment of the RP6 system at the hospital was accomplished in less than a day. The wireless network at the institution was already in place. The control station setup time ranged from 1 to 4 h and was dependent primarily on the quality of the Internet connection (bandwidth) at the remote locations. Patients who visited with the RP6 on their discharge day could be discharged more than 4 h earlier than with conventional visits, thereby freeing up hospital beds on a busy med-surg floor. Patient visits during "off hours" (nights and weekends) were three times more efficient than conventional visits during these times (20 min per visit vs 40-min round trip travel + 20-min visit). Patients and nursing personnel both expressed tremendous satisfaction with the remote-presence interaction. The authors' early experience suggests a significant benefit to patients, hospitals, and physicians with the use of RP6. The implications for future development are enormous.
International Space Station Remote Sensing Pointing Analysis
NASA Technical Reports Server (NTRS)
Jacobson, Craig A.
2007-01-01
This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.
Operator Station Design System - A computer aided design approach to work station layout
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1979-01-01
The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.
International Space Station (ISS)
2001-04-23
The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) "Raffaello". This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.
Utilization of Internet Protocol-Based Voice Systems in Remote Payload Operations
NASA Technical Reports Server (NTRS)
Best, Susan; Nichols, Kelvin; Bradford, Robert
2003-01-01
This viewgraph presentation provides an overview of a proposed voice communication system for use in remote payload operations performed on the International Space Station. The system, Internet Voice Distribution System (IVoDS), would make use of existing Internet protocols, and offer a number of advantages over the system currently in use. Topics covered include: system description and operation, system software and hardware, system architecture, project status, and technology transfer applications.
NASA Astrophysics Data System (ADS)
Gershenzon, V.; Gershenzon, O.; Sergeeva, M.; Ippolitov, V.; Targulyan, O.
2012-04-01
Keywords: Remote Sensing, UniScan ground station, Education, Monitoring. Remote Sensing Centers allowing real-time imagery acquisition from Earth observing satellites within the structure of Universities provides proper environment for innovative education. It delivers the efficient training for scientific and academic and teaching personnel, secure the role of the young professionals in science, education and hi-tech, and maintain the continuity of generations in science and education. Article is based on experience for creation such centers in more than 20 higher education institutions in Russia, Kazakhstan, and Spain on the base of UniScan ground station by R&D Center ScanEx. These stations serve as the basis for Earth monitoring from space providing the training and advanced training to produce the specialists having the state-of-the-art knowledge in Earth Remote Sensing and GIS, as well as the land-use monitoring and geo-data service for the economic operators in such diverse areas as the nature resource management, agriculture, land property management, disasters monitoring, etc. Currently our proposal of UniScan for universities all over the world allows to receive low resolution free of charge MODIS data from Terra and Aqua satellites, VIIRS from the NPP mission, and also high resolution optical images from EROS A and radar images from Radarsat-1 satellites, including the telemetry for the first year of operation, within the footprint of up to 2,500 kilometers in radius. Creation remote sensing centers at universities will lead to a new quality level for education and scientific studies and will enable to make education system in such innovation institutions open to modern research work and economy.
STS-100 Onboard Photograph-International Space Station Remote Manipulator System
NASA Technical Reports Server (NTRS)
2001-01-01
This is a Space Shuttle STS-100 mission onboard photograph. Astronaut Scott Parazynski totes a Direct Current Switching Unit while anchored on the end of the Canadian-built Remote Manipulator System (RMS) robotic arm. The RMS is in the process of moving Parazynski to the exterior of the Destiny laboratory (right foreground), where he will secure the spare unit, a critical part of the station's electrical system, to the stowage platform in case future crews will need it. Also in the photograph are the Italian-built Raffaello multipurpose Logistics Module (center) and the new Canadarm2 (lower right) or Space Station Remote Manipulator System.
47 CFR 101.813 - Remote control operation of mobile television pickup stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 5 2010-10-01 2010-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...
47 CFR 101.813 - Remote control operation of mobile television pickup stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 5 2014-10-01 2014-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...
47 CFR 101.813 - Remote control operation of mobile television pickup stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 5 2013-10-01 2013-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...
47 CFR 101.813 - Remote control operation of mobile television pickup stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 5 2011-10-01 2011-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...
47 CFR 101.813 - Remote control operation of mobile television pickup stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Remote control operation of mobile television pickup stations. 101.813 Section 101.813 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Local Television Transmission Service § 101...
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is lowered toward the base for installation. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, S.; Lucero, R.; Glidewell, D.
1997-08-01
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less
Using remote underwater video to estimate freshwater fish species richness.
Ebner, B C; Morgan, D L
2013-05-01
Species richness records from replicated deployments of baited remote underwater video stations (BRUVS) and unbaited remote underwater video stations (UBRUVS) in shallow (<1 m) and deep (>1 m) water were compared with those obtained from using fyke nets, gillnets and beach seines. Maximum species richness (14 species) was achieved through a combination of conventional netting and camera-based techniques. Chanos chanos was the only species not recorded on camera, whereas Lutjanus argentimaculatus, Selenotoca multifasciata and Gerres filamentosus were recorded on camera in all three waterholes but were not detected by netting. BRUVSs and UBRUVSs provided versatile techniques that were effective at a range of depths and microhabitats. It is concluded that cameras warrant application in aquatic areas of high conservation value with high visibility. Non-extractive video methods are particularly desirable where threatened species are a focus of monitoring or might be encountered as by-catch in net meshes. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
Very Portable Remote Automatic Weather Stations
John R. Warren
1987-01-01
Remote Automatic Weather Stations (RAWS) were introduced to Forest Service and Bureau of Land Management field units in 1978 following development, test, and evaluation activities conducted jointly by the two agencies. The original configuration was designed for semi-permanent installation. Subsequently, a need for a more portable RAWS was expressed, and one was...
46 CFR 154.1335 - Pressure and vacuum protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... audible and visual alarm at the cargo control station, and a remote group alarm in the wheelhouse. (c) If... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...) Has remote readouts at the cargo control station. (2) If vacuum protection is required under § 154.804...
46 CFR 154.1335 - Pressure and vacuum protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... audible and visual alarm at the cargo control station, and a remote group alarm in the wheelhouse. (c) If... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...) Has remote readouts at the cargo control station. (2) If vacuum protection is required under § 154.804...
46 CFR 154.1335 - Pressure and vacuum protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... audible and visual alarm at the cargo control station, and a remote group alarm in the wheelhouse. (c) If... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...) Has remote readouts at the cargo control station. (2) If vacuum protection is required under § 154.804...
46 CFR 154.1335 - Pressure and vacuum protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... audible and visual alarm at the cargo control station, and a remote group alarm in the wheelhouse. (c) If... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and...) Has remote readouts at the cargo control station. (2) If vacuum protection is required under § 154.804...
Intelligent Virtual Station (IVS)
NASA Technical Reports Server (NTRS)
2002-01-01
The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.
Alternative strategies for space station financing
NASA Technical Reports Server (NTRS)
Walklet, D. C.; Heenan, A. T.
1983-01-01
The attributes of the proposed space station program are oriented toward research activities and technologies which generate long term benefits for mankind. Unless such technologies are deemed of national interest and thus are government funded, they must stand on their own in the market place. Therefore, the objectives of a United States space station should be based on commercial criteria; otherwise, such a project attracts no long term funding. There is encouraging evidence that some potential space station activities should generate revenues from shuttle related projects within the decade. Materials processing concepts as well as remote sensing indicate substantial potential. Futhermore, the economics and thus the commercial feasibility of such projects will be improved by the operating efficiencies available with an ongoing space station program.
Legleiter, Carl; Kinzel, Paul J.; Nelson, Jonathan M.
2017-01-01
Although river discharge is a fundamental hydrologic quantity, conventional methods of streamgaging are impractical, expensive, and potentially dangerous in remote locations. This study evaluated the potential for measuring discharge via various forms of remote sensing, primarily thermal imaging of flow velocities but also spectrally-based depth retrieval from passive optical image data. We acquired thermal image time series from bridges spanning five streams in Alaska and observed strong agreement between velocities measured in situ and those inferred by Particle Image Velocimetry (PIV), which quantified advection of thermal features by the flow. The resulting surface velocities were converted to depth-averaged velocities by applying site-specific, calibrated velocity indices. Field spectra from three clear-flowing streams provided strong relationships between depth and reflectance, suggesting that, under favorable conditions, spectrally-based bathymetric mapping could complement thermal PIV in a hybrid approach to remote sensing of river discharge; this strategy would not be applicable to larger, more turbid rivers, however. A more flexible and efficient alternative might involve inferring depth from thermal data based on relationships between depth and integral length scales of turbulent fluctuations in temperature, captured as variations in image brightness. We observed moderately strong correlations for a site-aggregated data set that reduced station-to-station variability but encompassed a broad range of depths. Discharges calculated using thermal PIV-derived velocities were within 15% of in situ measurements when combined with depths measured directly in the field or estimated from field spectra and within 40% when the depth information also was derived from thermal images. The results of this initial, proof-of-concept investigation suggest that remote sensing techniques could facilitate measurement of river discharge.
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved toward the base, in the background. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians aid with the lowering of the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, toward the base. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
CommServer: A Communications Manager For Remote Data Sites
NASA Astrophysics Data System (ADS)
Irving, K.; Kane, D. L.
2012-12-01
CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.
Integration Of An MR Image Network Into A Clinical PACS
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Mankovich, Nicholas J.; Taira, Ricky K.; Cho, Paul S.; Huang, H. K.
1988-06-01
A direct link between a clinical pediatric PACS module and a FONAR MRI image network was implemented. The original MR network combines together the MR scanner, a remote viewing station and a central archiving station. The pediatric PACS directly connects to the archiving unit through an Ethernet TCP-IP network adhering to FONAR's protocol. The PACS communication software developed supports the transfer of patient studies and the patient information directly from the MR archive database to the pediatric PACS. In the first phase of our project we developed a package to transfer data between a VAX-111750 and the IBM PC I AT-based MR archive database through the Ethernet network. This system served as a model for PACS-to-modality network communication. Once testing was complete on this research network, the software and network hardware was moved to the clinical pediatric VAX for full PACS integration. In parallel to the direct transmission of digital images to the Pediatric PACS, a broadband communication system in video format was developed for real-time broadcasting of images originating from the MR console to 8 remote viewing stations distributed in the radiology department. These analog viewing stations allow the radiologists to directly monitor patient positioning and to select the scan levels during a patient examination from remote locations in the radiology department. This paper reports (1) the technical details of this implementation, (2) the merits of this network development scheme, and (3) the performance statistics of the network-to-PACS interface.
Davis, Matthew Christopher; Can, Dang D; Pindrik, Jonathan; Rocque, Brandon G; Johnston, James M
2016-02-01
Technology allowing a remote, experienced surgeon to provide real-time guidance to local surgeons has great potential for training and capacity building in medical centers worldwide. Virtual interactive presence and augmented reality (VIPAR), an iPad-based tool, allows surgeons to provide long-distance, virtual assistance wherever a wireless internet connection is available. Local and remote surgeons view a composite image of video feeds at each station, allowing for intraoperative telecollaboration in real time. Local and remote stations were established in Ho Chi Minh City, Vietnam, and Birmingham, Alabama, as part of ongoing neurosurgical collaboration. Endoscopic third ventriculostomy with choroid plexus coagulation with VIPAR was used for subjective and objective evaluation of system performance. VIPAR allowed both surgeons to engage in complex visual and verbal communication during the procedure. Analysis of 5 video clips revealed video delay of 237 milliseconds (range, 93-391 milliseconds) relative to the audio signal. Excellent image resolution allowed the remote neurosurgeon to visualize all critical anatomy. The remote neurosurgeon could gesture to structures with no detectable difference in accuracy between stations, allowing for submillimeter precision. Fifteen endoscopic third ventriculostomy with choroid plexus coagulation procedures have been performed with the use of VIPAR between Vietnam and the United States, with no significant complications. 80% of these patients remain shunt-free. Evolving technologies that allow long-distance, intraoperative guidance, and knowledge transfer hold great potential for highly efficient international neurosurgical education. VIPAR is one example of an inexpensive, scalable platform for increasing global neurosurgical capacity. Efforts to create a network of Vietnamese neurosurgeons who use VIPAR for collaboration are underway. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Webster, W., Jr.; Frawley, J. J.; Stefanik, M.
1984-01-01
Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.
Complex Neurological and Oto-Neurological Remote Care: From Space Station to Clinic
NASA Astrophysics Data System (ADS)
Marchbanks, Robert J.; Good, Edward F.
2013-02-01
The main aim of this paper is to highlight the synergy between the remote care requirements for NASA and community/rural based medicine. It demonstrates the appropriateness of applying similar health-care models for space-based medicine, as for ‘2020 vision’ community-based medicine, and the common use of screening devices with telemedicine capabilities. There is a requirement to diagnose and manage complex cases remotely and the need to empower on-site medically trained personnel to undertake the physiological measurements and decision-making. For space exploration at greater distances, the telemedicine systems will require additional sophistication to support autonomous crew medical diagnosis and interventions.1 Non-invasive intracranial pressure measurement is a priority both for terrestrial and space medicine. Arguably it is the most important neurological physiological measurement yet to be mastered and to be routinely used.
Station Astronaut Drives Rover from Space During Telerobotics Test (Reporter Pkg for Web)
2013-07-26
During a technology demonstration test, an astronaut onboard the International Space Station will remotely control a rover at NASA's Ames Research Center, Moffett Field, Calif. The test is designed to identify the technology and skills needed to remotely operate rovers on the surface of the moon, Mars or an asteroid.
47 CFR 74.1290 - FM translator and booster station information available on the Internet.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Additional orders by FCC (All Services) 74.28 Antenna, Directional (Aural STL/Relays) 74.536 Antenna location... frequencies (remote broadcast pickup) 74.402 Automatic relay stations (Remote pickup) 74.436 Avoidance of....1201 Directional antenna required (Aural STL/Relays) 74.536 E Emergency information Broadcasting (All...
Buried waste integrated demonstration human engineered control station. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
An Architectural Framework for Describing Supervisory Control and Data Acquisition (SCADA) Systems
2004-09-01
having one of two possible values, described as 0 or 1. Boundary A logical segregation of related components in a system. The segregation may be based ...Depending on the sophistication of the microcontroller in the RTU, it can be configured to act as a relay station for other RTUs which cannot...communicate directly with a master station, or the microcontroller can communicate on a peer-to-peer basis with other RTUs. RTUs are generally remotely
Using Remote Sensing and Radar MET Data to Support Watershed Assessments Comprising IEM
Meteorological (MET) data required by watershed assessments that comprise Integrated Environmental Modeling (IEM) have traditionally been provided by land-based weather (gauge) stations; although these data may not be most appropriate for describing adequate spatial and temporal...
NASA Technical Reports Server (NTRS)
Otto, Christian
2010-01-01
The Amundsen-Scott South Pole Research station located at the geographic South Pole, is the most isolated, permanently inhabited human outpost on Earth. Medical care is provided to station personnel by a non-surgeon crew medical officer (CMO). During the winter-over period from February to October, the station is isolated, with no incoming or outgoing flights due to severe weather conditions. In late June, four months after the station had closed for the austral winter, a 31 year old meteorologist suffered a complete rupture of his patellar tendon while sliding done an embankment. An evacuation was deemed to be too risky to aircrews due to the extreme cold and darkness. A panel of physicians from Massachusetts General Hospital, Johns Hopkins University and the University of Texas Medical Branch were able to assess the patient remotely via telemedicine and agreed that surgery was the only means to restore mobility and prevent long term disability. The lack of a surgical facility and a trained surgical team were overcome by conversion of the clinic treatment area, and intensive preparation of medical laypersons as surgical assistants. The non-surgeon CMO and CMO assistant at South Pole, were guided through the administration of spinal anesthetic, and the two-hour operative repair by medical consultants at Massachusetts General Hospital. Real-time video of the operative field, directions from the remote consultants and audio communication were provided by videoconferencing equipment, operative cameras, and high bandwidth satellite communications. In real-time, opening incision/exposure, tendon relocation, hemostatsis, and operative closure by the CMO was closely monitored and guided and by the remote consultants. The patient s subsequent physical rehabilitation over the ensuing months of isolation was also monitored remotely via telemedicine. This was the first time in South Pole s history that remote teleguidance had been used for surgery and represents a model for real-time guidance of CMO s working at remote duty stations.
47 CFR 74.6 - Licensing of broadcast auxiliary and low power auxiliary stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Licensing of broadcast auxiliary and low power... low power auxiliary stations. Applicants for and licensees of remote pickup broadcast stations, aural broadcast auxiliary stations, television broadcast auxiliary stations, and low power auxiliary stations...
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is ready to be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians help guide the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, into place for installation on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, is moved across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station (ISS). Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
Direct Satellite Data Acquisition and its Application for Large -scale Monitoring Projects in Russia
NASA Astrophysics Data System (ADS)
Gershenzon, O.
2011-12-01
ScanEx RDC created an infrastructure (ground stations network) to acquire and process remote sensing data from different satellites: Terra, Aqua, Landsat, IRS-P5/P6, SPOT 4/5, FORMOSAT-2, EROS A/B, RADARSAT-1/2, ENVISAT-1. It owns image archives from these satellites as well as from SPOT-2 and CARTOSAT-2. ScanEx RDC builds and delivers remote sensing ground stations (working with up to 15 satellites); and owns the ground stations network to acquire data for Russia and surrounding territory. ScanEx stations are the basic component in departmental networks of remote sensing data acquisition for different state authorities (Roshydromet, Ministry of Natural Recourses, Emercom) and University- based remote sensing data acquisition and processing centers in Russia and abroad. ScanEx performs large-scale projects in collaboration with government agencies to monitor forests, floods, fires, sea surface pollution, and ice situation in Northern Russia. During 2010-2011 ScanEx conducted daily monitoring of wild fires in Russia detecting and registering thermal anomalies using data from Terra, Aqua, Landsat and SPOT satellites. Detailed SPOT 4/5 data is used to analyze burnt areas and to assess damage caused by fire. Satellite data along with other information about fire situation in Russia was daily updated and published via free-access Internet geoportal. A few projects ScanEx conducted together with environmental NGO. Project "Satellite monitoring of Especially Protected Natural Areas of Russia and its results visualization on geoportal was conducted in cooperation with NGO "Transparent World". The project's goal was to observe natural phenomena and economical activity, including illegal, by means of Earth remote sensing data. Monitoring is based on multi-temporal optical space imagery of different spatial resolution. Project results include detection of anthropogenic objects that appeared in the vicinity or even within the border of natural territories, that have never been touched by civilization before. "Satellite based technology for monitoring ship ice navigation and its influence on seal population in the White Sea" project was conducted in cooperation with IFAW. Results of the near real-time satellite monitoring were published on specially designed open web source. This allows project team to put image interpretation results in near real-time mode for on-line access to all interesting external stakeholders. During project realization Envisat, Radarsat, SPOT, EROS space images were used. In addition the methodology to locate seal population using EROS space images was developed. This methodology is based on detection of vital functions and displacement traces. Environmental satellite monitoring of Northern Russian territory and Arctic seas projects where the results are published via free-access Internet geoportal has a significant social importance.
NASA Technical Reports Server (NTRS)
1987-01-01
The use of orbital spacecraft consumables resupply system (OSCRS) at the Space Station is investigated, its use with the orbital maneuvering vehicle, and launch of the OSCRS on an expendable launch vehicles. A system requirements evaluation was performed initially to identify any unique requirements that would impact the design of OSCRS when used at the Space Station. Space Station documents were reviewed to establish requirements and to identify interfaces between the OSCRS, Shuttle, and Space Station, especially the Servicing Facility. The interfaces between OSCRS and the Shuttle consists of an avionics interface for command and control and a structural interface for launch support and for grappling with the Shuttle Remote Manipulator System. For use of the OSCRS at the Space Station, three configurations were evaluated using the results of the interface definition to increase the efficiency of OSCRS and to decrease the launch weight by Station-basing specific OSCRS subsystems. A modular OSCRS was developed in which the major subsystems were Station-based where possible. The configuration of an OSCRS was defined for transport of water to the Space Station.
Modernization of the Slovenian National Seismic Network
NASA Astrophysics Data System (ADS)
Vidrih, R.; Godec, M.; Gosar, A.; Sincic, P.; Tasic, I.; Zivcic, M.
2003-04-01
The Environmental Agency of the Republic of Slovenia, the Seismology Office is responsible for the fast and reliable information about earthquakes, originating in the area of Slovenia and nearby. In the year 2000 the project Modernization of the Slovenian National Seismic Network started. The purpose of a modernized seismic network is to enable fast and accurate automatic location of earthquakes, to determine earthquake parameters and to collect data of local, regional and global earthquakes. The modernized network will be finished in the year 2004 and will consist of 25 Q730 remote broadband data loggers based seismic station subsystems transmitting in real-time data to the Data Center in Ljubljana, where the Seismology Office is located. The remote broadband station subsystems include 16 surface broadband seismometers CMG-40T, 5 broadband seismometers CMG-40T with strong motion accelerographs EpiSensor, 4 borehole broadband seismometers CMG-40T, all with accurate timing provided by GPS receivers. The seismic network will cover the entire Slovenian territory, involving an area of 20,256 km2. The network is planned in this way; more seismic stations will be around bigger urban centres and in regions with greater vulnerability (NW Slovenia, Krsko Brezice region). By the end of the year 2002, three old seismic stations were modernized and ten new seismic stations were built. All seismic stations transmit data to UNIX-based computers running Antelope system software. The data is transmitted in real time using TCP/IP protocols over the Goverment Wide Area Network . Real-time data is also exchanged with seismic networks in the neighbouring countries, where the data are collected from the seismic stations, close to the Slovenian border. A typical seismic station consists of the seismic shaft with the sensor and the data acquisition system and, the service shaft with communication equipment (modem, router) and power supply with a battery box. which provides energy in case of mains failure. The data acquisition systems are recording continuous time-series sampled at 200 sps, 20 sps and 1sps.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
Meteorological (MET) data required by watershed assessments comprising Integrated Environmental Modeling (IEM) traditionally have been provided by land-based weather (gauge) stations, although these data may not be the most appropriate for adequate spatial and temporal resolution...
47 CFR 74.12 - Notification of filing of applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
....1030 “Notification concerning interference to Radio Astronomy, Research, and Receiving Installations... remote pickup stations (subpart D). (b) TV pickup stations (subpart F). (c) Low power auxiliary stations...
Perrin near the S0 (S-zero) Truss during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5241 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, photographed near the S0 (S-Zero) Truss on the International Space Station (ISS), participates in the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. During the 5-hour spacewalk, Perrin and Chang-Diaz completed installation of the Mobile Remote Servicer Base System (MBS) on the stations railcar, the Mobile Transporter. Perrin represents CNES, the French Space Agency.
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
Application of ZigBee sensor network to data acquisition and monitoring
NASA Astrophysics Data System (ADS)
Terada, Mitsugu
2009-01-01
A ZigBee sensor network for data acquisition and monitoring is presented in this paper. It is configured using a commercially available ZigBee solution. A ZigBee module is connected via a USB interface to a Microsoft Windows PC, which works as a base station in the sensor network. Data collected by remote devices are sent to the base station PC, which is set as a data sink. Each remote device is built of a commercially available ZigBee module product and a sensor. The sensor is a thermocouple connected to a cold junction compensator amplifier. The signal from the amplifier is input to an AD converter port on the ZigBee module. Temperature data are transmitted according to the ZigBee protocol from the remote device to the data sink PC. The data sampling rate is one sampling per second; the highest possible rate is four samplings per second. The data are recorded in the hexadecimal number format by device control software, and the data file is stored in text format on the data sink PC. Time-dependent data changes can be monitored using the macro function of spreadsheet software. The system is considered a useful tool in the field of education, based on the results of trial use for measurement in an undergraduate laboratory class at a university.
NASA Astrophysics Data System (ADS)
Hubert, G.; Federico, C. A.; Pazianotto, M. T.; Gonzales, O. L.
2016-02-01
In this paper are described the ACROPOL and OPD high-altitude stations devoted to characterize the atmospheric radiation fields. The ACROPOL platform, located at the summit of the Pic du Midi in the French Pyrenees at 2885 m above sea level, exploits since May 2011 some scientific equipment, including a BSS neutron spectrometer, detectors based on semiconductor and scintillators. In the framework of a IEAv and ONERA collaboration, a second neutron spectrometer was simultaneously exploited since February 2015 at the summit of the Pico dos Dias in Brazil at 1864 m above the sea level. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation of cosmic-ray- induced neutron and effects of local and seasonal changes, but also the short term dynamics during solar flare events. This paper presents long and short-term analyses, including measurement and modeling investigations considering the both high altitude stations data. The modeling approach, based on ATMORAD computational platform, was used to link the both station measurements.
47 CFR 25.271 - Control of transmitting stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... station. (b) The licensee of a transmitting earth station licensed under this part shall ensure that a trained operator is present on the earth station site, or at a designated remote control point for the earth station, at all times that transmissions are being conducted. No operator's license is required...
47 CFR 25.271 - Control of transmitting stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... station. (b) The licensee of a transmitting earth station licensed under this part shall ensure that a trained operator is present on the earth station site, or at a designated remote control point for the earth station, at all times that transmissions are being conducted. No operator's license is required...
47 CFR 25.271 - Control of transmitting stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... station. (b) The licensee of a transmitting earth station licensed under this part shall ensure that a trained operator is present on the earth station site, or at a designated remote control point for the earth station, at all times that transmissions are being conducted. No operator's license is required...
47 CFR 25.271 - Control of transmitting stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... station. (b) The licensee of a transmitting earth station licensed under this part shall ensure that a trained operator is present on the earth station site, or at a designated remote control point for the earth station, at all times that transmissions are being conducted. No operator's license is required...
47 CFR 25.271 - Control of transmitting stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... station. (b) The licensee of a transmitting earth station licensed under this part shall ensure that a trained operator is present on the earth station site, or at a designated remote control point for the earth station, at all times that transmissions are being conducted. No operator's license is required...
An analysis of spatial representativeness of air temperature monitoring stations
NASA Astrophysics Data System (ADS)
Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen
2018-05-01
Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.
MBS grappled to the Canadarm2 SSRMS during STS-111 UF-2 installation OPS on the ISS truss structure
2002-06-10
STS111-E-5139 (10 June 2002) --- Backdropped by the blackness of space and Earths horizon, the Mobile Remote Servicer Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Astronauts Peggy A. Whitson, Expedition Five flight engineer, and Carl E. Walz, Expedition Four flight engineer, attached the MBS to the Mobile Transporter on the S0 (S-zero) Truss at 8:03 a.m. (CDT) on June 10, 2002. The MBS is an important part of the stations Mobile Servicing System, which will allow the stations robotic arm to travel the length of the station to perform construction tasks.
MBS grappled to the Canadarm2 SSRMS during STS-111 UF-2 installation OPS on the ISS truss structure
2002-06-10
STS111-E-5142 (10 June 2002) --- Backdropped by the blackness of space and Earths horizon, the Mobile Remote Servicer Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Astronauts Peggy A. Whitson, Expedition Five flight engineer, and Carl E. Walz, Expedition Four flight engineer, attached the MBS to the Mobile Transporter on the S0 (S-zero) Truss at 8:03 a.m. (CDT) on June 10, 2002. The MBS is an important part of the stations Mobile Servicing System, which will allow the stations robotic arm to travel the length of the station to perform construction tasks.
Using Remote Sensing and Radar MET Data to Support Watershed Assessments Comprising IEM
USDA-ARS?s Scientific Manuscript database
Meteorological (MET) data required by watershed assessments that comprise Integrated Environmental Modeling (IEM) have traditionally been provided by land-based weather (gauge) stations; although these data may not be most appropriate for describing adequate spatial and temporal resolution if the ME...
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... overriding transmissions from subscriber-operated transmitters if necessary. Subscriber-operated transmitters... the station. (b) The licensee must implement measures designed to prevent station functions from being...
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... overriding transmissions from subscriber-operated transmitters if necessary. Subscriber-operated transmitters... the station. (b) The licensee must implement measures designed to prevent station functions from being...
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... overriding transmissions from subscriber-operated transmitters if necessary. Subscriber-operated transmitters... the station. (b) The licensee must implement measures designed to prevent station functions from being...
47 CFR 22.575 - Use of mobile channel for remote control of station functions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... overriding transmissions from subscriber-operated transmitters if necessary. Subscriber-operated transmitters... the station. (b) The licensee must implement measures designed to prevent station functions from being...
NASA Technical Reports Server (NTRS)
Taylor, Edith C.; Ross, Michael
1989-01-01
The Shuttle Remote Manipulator System is a mature system which has successfully completed 18 flights. Its primary functional design driver was the capability to deploy and retrieve payloads from the Orbiter cargo bay. The Space Station Freedom Mobile Servicing Center is still in the requirements definition and early design stage. Its primary function design drivers are the capabilities: to support Space Station construction and assembly tasks; to provide external transportation about the Space Station; to provide handling capabilities for the Orbiter, free flyers, and payloads; to support attached payload servicing in the extravehicular environment; and to perform scheduled and un-scheduled maintenance on the Space Station. The differences between the two systems in the area of geometric configuration, mobility, sensor capabilities, control stations, control algorithms, handling performance, end effector dexterity, and fault tolerance are discussed.
Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.
Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain
2008-07-10
Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach.
McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.
47 CFR 73.57 - Remote reading antenna and common point ammeters.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote reading antenna and common point... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.57 Remote reading antenna and common point ammeters. Remote reading antenna and common point ammeters may be used without further authority...
47 CFR 73.57 - Remote reading antenna and common point ammeters.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote reading antenna and common point... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.57 Remote reading antenna and common point ammeters. Remote reading antenna and common point ammeters may be used without further authority...
47 CFR 73.57 - Remote reading antenna and common point ammeters.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote reading antenna and common point... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.57 Remote reading antenna and common point ammeters. Remote reading antenna and common point ammeters may be used without further authority...
47 CFR 73.57 - Remote reading antenna and common point ammeters.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote reading antenna and common point... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.57 Remote reading antenna and common point ammeters. Remote reading antenna and common point ammeters may be used without further authority...
47 CFR 73.57 - Remote reading antenna and common point ammeters.
Code of Federal Regulations, 2010 CFR
2010-10-01
... remote leads to the indicating instruments. (2) Inductive coupling to radio frequency current sensing... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote reading antenna and common point... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.57 Remote reading antenna and common...
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians adjust the cables of an overhead crane on the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre. The arm will be moved to and installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
2007-10-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, technicians begin raising the starboard arm of the Special Purpose Dexterous Manipulator, known as Dextre, for its move across the facility. The arm will be installed on the base. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station ISS. Along with Canadarm2, whose technical name is the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System, or MSS. The three components have been designed to work together or independently. Dextre is part of the payload scheduled on mission STS-123, targeted to launch Feb. 14. Photo credit: NASA/George Shelton
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
Practical Applications of a Space Station
NASA Technical Reports Server (NTRS)
1984-01-01
The potential uses of a special station for civil and commercial applications is examined. Five panels of experts representing user-oriented communities, and a sixth panel which dealth with system design considerations, based their studies on the assumption that the station would be a large platform, capable of housing a wide array of diverse instruments, and could be either manned or unmanned. The Earth's Resources Panel dealt with applications of remote sensing for resource assessment. The Earth's Environment Panel dealt with the Earth's atmosphere and its impact on society. The Ocean Operations Panel looked at both science and applications. The Satellite Communications Panel assessed the potential role of a space station in the evolution of commercial telecommunication services up to the year 2000. The Materials Science and Engineering panel focused on the utility of a space station environment for materials processing.
The Remote Analysis Station (RAS) as an instructional system
NASA Technical Reports Server (NTRS)
Rogers, R. H.; Wilson, C. L.; Dye, R. H.; Jaworski, E.
1981-01-01
"Hands-on" training in LANDSAT data analysis techniques can be obtained using a desk-top, interactive remote analysis station (RAS) which consists of a color CRT imagery display, with alphanumeric overwrite and keyboard, as well as a cursor controller and modem. This portable station can communicate via modem and dial-up telephone with a host computer at 1200 baud or it can be hardwired to a host computer at 9600 baud. A Z80 microcomputer controls the display refresh memory and remote station processing. LANDSAT data is displayed as three-band false-color imagery, one-band color-sliced imagery, or color-coded processed imagery. Although the display memory routinely operates at 256 x 256 picture elements, a display resolution of 128 x 128 can be selected to fill the display faster. In the false color mode the computer packs the data into one 8-bit character. When the host is not sending pictorial information the characters sent are in ordinary ASCII code. System capabilities are described.
Real-Time Wireless Data Acquisition System
NASA Technical Reports Server (NTRS)
Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos
2007-01-01
Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time critical applications. Current wireless standards such as Zigbee(TradeMark) and Bluetooth(Registered TradeMark) do not have these capabilities and can not meet the needs that are provided by the SensorNet technology. Additionally, the system has the ability to automatically reconfigure the wireless communication link to a secondary frequency if interference is encountered and can autonomously search for a sensor that was perceived to be lost using the relay capabilities of the sensors and the secondary frequency. The RFHN and the SensorNet designs are based on modular architectures that allow for future increases in capability and the ability to expand or upgrade with relative ease. The RFHN and SensorNet sensors .can also perform data processing which forms a distributed processing architecture allowing the system to pass along information rather than just sending "raw data points" to the next higher level system. With a relatively small size, weight and power consumption, this system has the potential for both spacecraft and aircraft applications as well as ground applications that require time critical data.
Proceedings of the 2nd Annual Conference on NASA/University Advanced Space Design Program
NASA Technical Reports Server (NTRS)
1986-01-01
Topics discussed include: lunar transportation system, Mars rover, lunar fiberglass production, geosynchronous space stations, regenerative system for growing plants, lunar mining devices, lunar oxygen transporation system, mobile remote manipulator system, Mars exploration, launch/landing facility for a lunar base, and multi-megawatt nuclear power system.
Power components for the Space Station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Power components for the space station 20-kHz power distribution system
NASA Technical Reports Server (NTRS)
Renz, David D.
1988-01-01
Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.
Environmental Activities of the U.S. Coast Guard
2010-12-06
scientific efforts of other groups. The Coast Guard operates three icebreakers in the Arctic and Antarctic , and provides supplies to remote stations...and Atmospheric Administration (NOAA). The Coast Guard operates three icebreakers in the Arctic and Antarctic , and provides supplies to remote...stations.17 The Coast Guard also participates in the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the
NASA Technical Reports Server (NTRS)
1979-01-01
The requirements for several configurations of flight articles are presented. These requirements provide the basis to design manned remote work station development test articles and establish tests and simulation objectives for the resolution of development issues. Mission system and subsystem requirements for four MRWS configurations included: open cherry picker; closed cherry picker; crane turret; and free flyer.
Space Station needs, attributes and architectural options: Summary briefing
NASA Technical Reports Server (NTRS)
1983-01-01
Computerized data sorting and analysis techniques were used with a data base accumulated in over 20 years of space station studies to evaluate candidate missions and select a final model of 88 missions. The social, cultural, scientific, technical, and commercial benefits to be accrued from each mission were identified. Requirements were determined for satellite servicing; payload placement and retrieval; refueling; repair; testing; assembly; and construction. Missions drivers determined include crew, remote manipulating system, external parts, instrumentation, extravehicular activity/manned maneuvering unit, and voice/video equipment. User interest for commercial applications were determined. Variable architecture based on a modular concept with multi-use elements is proposed.
NASA Technical Reports Server (NTRS)
Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.
2004-01-01
The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed just-in-time training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This just-in-time concept was used to support real-time remote expert guidance to complete medical examinations using the ISS Human Research Facility (HRF). An American and Russian ISS crewmember received 2-hours of hands on ultrasound training 8 months prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember six days prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. Results of the CD ROM based OPE session were used to modify the instructions during a complete 35 minute real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were excellent and adequate for clinical decision-making. Complex ultrasound experiments with expert guidance were performed with high accuracy following limited pre-flight training and CD-ROM-based in-flight review, despite a 2-second communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, can facilitate the performance of complex demanding tasks.
A Small Lunar Rover for Reconnaissance in the Framework of ExoGeoLab Project, System Level Design
NASA Astrophysics Data System (ADS)
Noroozi, A.; Ha, L.; van Dalen, P.; Maas, A.; de Raedt, S.; Poulakis, P.; Foing, B. H.
2009-04-01
Scientific research is based on accurate measurement and so depends on the possibilities of accurate instruments. In planetary science and exploration it is often difficult or even impossible in some cases to gather accurate and direct information from a specified target. It is important to gather as much information as possible to be able to analyze and extract scientific data from them. One possibility to do so is to send equipments to the target and perform the measurements locally. The measurement data is then sent to base station for further analysis. To send measurement instruments to measurement point it is important to have a good estimation of the environmental situation there. This information can be collected by sending a pilot rover to the area of interest to collect visual information. The aim of this work is to develop a tele-operated small rover, Google Lunar X-Prize (GLXP) class, which is capable of surviving in the Moon environment and perform reconnaissance to provide visual information to base station of ExoGeoLab project of ESA/ESTEC. Using the state of the art developments in electronics, software and communication technologies allows us to achieve increase in accuracy while reducing size and power consumption. Target mass of the rover is lees than 5 kg and its target dimension is 300 x 60 x 80 mm3. The small size of the rover gives the possibility of accessing places which are normally out of reach. The required power for operation and the cost of launch is considerably reduced compared to large rovers which makes the mission more cost effective. The mission of the rover is to capture high resolution images and transmit them to base station. Data link between lover and base station is wireless and rover should supply its own energy. The base station can be either a habitat or a relay station. The navigation of the rover is controlled by an operator in a habitat who has a view from the stereo camera on the rover. This stereo camera gives image information to the base and gives the possibility for future autonomous navigation by using three-dimensional image recognition software. As the navigation view should have minimum delay, the resolution of stereo camera is not very high. The rover design is divided into four work packages. These work packages are remote imaging, remote manual navigation, locomotion and structure, and power system. Remote imaging work package is responsible for capturing high resolution images, transmitting image data to base station via wireless link and store the data for further processing. Remote manual navigation is handling the tele-operation. It collects stereo images and navigation sensor readouts, transmits stereo images and navigation data to base station via wireless link, displays the image and sensor status in a real-time fashion on operator's monitor, receives command from operator's joystick, transfers navigation commands to rover via wireless link, and operates the actuators accordingly. Locomotion and structure takes care of designing the body structure and locomotion system based on the Moon environment specifications. The target specifications of rover locomotion system are maximum speed of 200 m/h, maximum acceleration of 0.554 m/s2, and maximum slope angle of 20Ë . The power system for the rover includes the solar panel, batteries and power electronics mounted on the rover. The energy storage in the rover should be able to survive for minimum 500 m movement on the moon. Subsequently, it should provide energy for other sub-systems to communicate, navigate and transmit the data. Considering the harsh environmental issues on the Moon such as dust, temperature range and radiation, it is vital for the mission that these issues are considered in the design to correctly dimension reliability and if necessary redundancy. Corrosion resistive material should be used to ensure the survival of mechanical structure, moving parts and other sensitive parts such as electronics. High temperature variation should be considered in the design of structure and electronics and finally electronics should be radiation protected.
NASA Astrophysics Data System (ADS)
Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.
2017-12-01
Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.
NASA Astrophysics Data System (ADS)
Hernandez, C.
2010-09-01
The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed over the 30 radiometric stations. As a the result, currently it exist a stable, flexible, safe and economic infrastructure of radiometric stations and telecommunications that allows, on the one hand, to have data in real time from all 30 remote weather stations, and on the other hand allows to communicate with them in order to reprogram them and to carry out maintenance works.
Modelling and simulation of Space Station Freedom berthing dynamics and control
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Garrison, James L., Jr.; Montgomery, Raymond C.; Wu, Shih-Chin; Stockwell, Alan E.; Demeo, Martha E.
1994-01-01
A large-angle, flexible, multibody, dynamic modeling capability has been developed to help validate numerical simulations of the dynamic motion and control forces which occur during berthing of Space Station Freedom to the Shuttle Orbiter in the early assembly flights. This paper outlines the dynamics and control of the station, the attached Shuttle Remote Manipulator System, and the orbiter. The simulation tool developed for the analysis is described and the results of two simulations are presented. The first is a simulated maneuver from a gravity-gradient attitude to a torque equilibrium attitude using the station reaction control jets. The second simulation is the berthing of the station to the orbiter with the station control moment gyros actively maintaining an estimated torque equilibrium attitude. The influence of the elastic dynamic behavior of the station and of the Remote Manipulator System on the attitude control of the station/orbiter system during each maneuver was investigated. The flexibility of the station and the arm were found to have only a minor influence on the attitude control of the system during the maneuvers.
Space teleoperations technology for Space Station evolution
NASA Technical Reports Server (NTRS)
Reuter, Gerald J.
1990-01-01
Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.
NASA Astrophysics Data System (ADS)
Ramírez-Cuesta, J. M.; Cruz-Blanco, M.; Santos, C.; Lorite, I. J.
2017-03-01
Reference evapotranspiration (ETo) is a key component in efficient water management, especially in arid and semi-arid environments. However, accurate ETo assessment at the regional scale is complicated by the limited number of weather stations and the strict requirements in terms of their location and surrounding physical conditions for the collection of valid weather data. In an attempt to overcome this limitation, new approaches based on the use of remote sensing techniques and weather forecast tools have been proposed. Use of the Land Surface Analysis Satellite Application Facility (LSA SAF) tool and Geographic Information Systems (GIS) have allowed the design and development of innovative approaches for ETo assessment, which are especially useful for areas lacking available weather data from weather stations. Thus, by identifying the best-performing interpolation approaches (such as the Thin Plate Splines, TPS) and by developing new approaches (such as the use of data from the most similar weather station, TS, or spatially distributed correction factors, CITS), errors as low as 1.1% were achieved for ETo assessment. Spatial and temporal analyses reveal that the generated errors were smaller during spring and summer as well as in homogenous topographic areas. The proposed approaches not only enabled accurate calculations of seasonal and daily ETo values, but also contributed to the development of a useful methodology for evaluating the optimum number of weather stations to be integrated into a weather station network and the appropriateness of their locations. In addition to ETo, other variables included in weather forecast datasets (such as temperature or rainfall) could be evaluated using the same innovative methodology proposed in this study.
A Space Station tethered orbital refueling facility
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a long tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity driven transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
International Space Station (ISS)
2001-04-24
This is a Space Shuttle STS-100 mission onboard photograph. Astronaut Scott Parazynski totes a Direct Current Switching Unit while anchored on the end of the Canadian-built Remote Manipulator System (RMS) robotic arm. The RMS is in the process of moving Parazynski to the exterior of the Destiny laboratory (right foreground), where he will secure the spare unit, a critical part of the station's electrical system, to the stowage platform in case future crews will need it. Also in the photograph are the Italian-built Raffaello multipurpose Logistics Module (center) and the new Canadarm2 (lower right) or Space Station Remote Manipulator System.
NASA Astrophysics Data System (ADS)
Chinery, G. T.; Wood, J. M.
1985-08-01
This paper describes the Tennessee Valley Authority's (TVA) current photovoltaic (PV) activities. These include four roof-mounted 4 kWp residential arrays (which are also Southeast Residential Station field sites) and two 5-6 kWp commercial sites, all grid connected with no battery storage. Also included are approximately 30 kWp of non-grid-connected remote sites with storage (remote lighting, weather stations, etc.). Monitoring results from the two 'online' residential systems are presented. Finally, TVA's future PV plans are discussed, both with respect to interfacing with a multitude of residential and commercial cogenerators and with regard to possible TVA PV central station plans.
Improvement of Janus Using Pegasus 1-Meter Resolution Database With a Transputer Network
1994-03-01
Figure 4.9 shows the six jacks on the end of the HSI-card. Facing the back of the SPARC Station LINKO LINKI LINK2 LINK3 DOWN UP Figure 4.9: HSI-Card Link...shown in Figure 4.22. Facing the back of the Sun SPARC Station LINK0 LINKI LINK2 LINK3 DOWN UP "b Telephone Cable Facing the front of the Remote Tram...Holder LINKO LINKI LINK2 LINK3 DOWN UPI Figure 4.20: The Connection Between Sun SPARC Station and Remote Tram Holder 58 (3) Se.inu Up t• Link Speed
RADIATION DETECTING AND TELEMETERING SYSTEM
Richards, H.K.
1959-12-15
A system is presented for measuring ionizing radiation at several remote stations and transmitting the measured information by radio to a central station. At each remote station a signal proportioned to the counting rate is applied across an electrical condenser made of ferroelectric material. The voltage across the condenser will vary as a function of the incident radiation and the capacitance of the condenser will vary accordingly. This change in capacitance is used to change the frequency of a crystalcontrolled oscillator. The output of the oscillator is coupled to an antenna for transmitting a signal proportional to the incident radiation.
Remotely-interrogated high data rate free space laser communications link
Ruggiero, Anthony J [Livermore, CA
2007-05-29
A system and method of remotely extracting information from a communications station by interrogation with a low power beam. Nonlinear phase conjugation of the low power beam results in a high power encoded return beam that automatically tracks the input beam and is corrected for atmospheric distortion. Intracavity nondegenerate four wave mixing is used in a broad area semiconductor laser in the communications station to produce the return beam.
NASA Technical Reports Server (NTRS)
1979-01-01
System trades, evaluations, and selection were organized under the appropriate manned remote work station roles and subsystems. Those trades/evaluations that have an impact on simulator fidelity were given emphasis in terms of identifying alternate concepts, making a selection, and defining the system approach. Those trades that do not impact simulator fidelity have the issues delineated and future study requirements identified.
1982-06-01
usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both
Astronaut Voss Peers Into Pressurized Mating Adapter (PMA)
NASA Technical Reports Server (NTRS)
2001-01-01
The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) 'Raffaello'. This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.
STS-111 Onboard Photo of the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
STS-111 Crew Interviews: Franklin Chang-Diaz, Mission Specialist 2
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Mission Specialist 2 Franklin Chang-Diaz is seen during this interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Chang-Diaz outlines his role in the mission in general, and specifically during the extravehicular activities (EVAs). He describes in great detail his duties in the three EVAs which involved preparing the Mobile Remote Servicer Base System (MBS) for installation onto the Space Station's Mobile Transporter, attaching the MBS onto the Space Station and replacing a wrist roll joint on the station's robot arm. Chang-Diaz also discusses the science experiments which are being brought on board the Space Station by the STS-111 mission. He also offers thoughts on how the International Space Station (ISS) fits into NASA's vision and how his previous space mission experience will benefit the STS-111 flight.
International Space Station (ISS)
2002-06-07
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 4 2011-10-01 2011-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 4 2012-10-01 2012-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 4 2014-10-01 2014-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
47 CFR 74.434 - Remote control operation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 4 2013-10-01 2013-10-01 false Remote control operation. 74.434 Section 74.434 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES EXPERIMENTAL RADIO... functions to permit proper operation of the station. (b) A remote control system must be designed, installed...
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
The U.S. Environmental Protection Agency's (EPA) authority for enhanced monitoring activities is provided for in Title I, Section 182 of the Clean Air Act Amendment of 1990. or example, the Photochemical Assessment Monitoring Station (PAMS) network is one such program which requi...
NASA Astrophysics Data System (ADS)
Eberle, Jonas; Urban, Marcel; Hüttich, Christian; Schmullius, Christiane
2014-05-01
Numerous datasets providing temperature information from meteorological stations or remote sensing satellites are available. However, the challenging issue is to search in the archives and process the time series information for further analysis. These steps can be automated for each individual product, if the pre-conditions are complied, e.g. data access through web services (HTTP, FTP) or legal rights to redistribute the datasets. Therefore a python-based package was developed to provide data access and data processing tools for MODIS Land Surface Temperature (LST) data, which is provided by NASA Land Processed Distributed Active Archive Center (LPDAAC), as well as the Global Surface Summary of the Day (GSOD) and the Global Historical Climatology Network (GHCN) daily datasets provided by NOAA National Climatic Data Center (NCDC). The package to access and process the information is available as web services used by an interactive web portal for simple data access and analysis. Tools for time series analysis were linked to the system, e.g. time series plotting, decomposition, aggregation (monthly, seasonal, etc.), trend analyses, and breakpoint detection. Especially for temperature data a plot was integrated for the comparison of two temperature datasets based on the work by Urban et al. (2013). As a first result, a kernel density plot compares daily MODIS LST from satellites Aqua and Terra with daily means from GSOD and GHCN datasets. Without any data download and data processing, the users can analyze different time series datasets in an easy-to-use web portal. As a first use case, we built up this complimentary system with remotely sensed MODIS data and in situ measurements from meteorological stations for Siberia within the Siberian Earth System Science Cluster (www.sibessc.uni-jena.de). References: Urban, Marcel; Eberle, Jonas; Hüttich, Christian; Schmullius, Christiane; Herold, Martin. 2013. "Comparison of Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological Stations on the Pan-Arctic Scale." Remote Sens. 5, no. 5: 2348-2367. Further materials: Eberle, Jonas; Clausnitzer, Siegfried; Hüttich, Christian; Schmullius, Christiane. 2013. "Multi-Source Data Processing Middleware for Land Monitoring within a Web-Based Spatial Data Infrastructure for Siberia." ISPRS Int. J. Geo-Inf. 2, no. 3: 553-576.
Nathan, Brian J; Golston, Levi M; O'Brien, Anthony S; Ross, Kevin; Harrison, William A; Tao, Lei; Lary, David J; Johnson, Derek R; Covington, April N; Clark, Nigel N; Zondlo, Mark A
2015-07-07
A model aircraft equipped with a custom laser-based, open-path methane sensor was deployed around a natural gas compressor station to quantify the methane leak rate and its variability at a compressor station in the Barnett Shale. The open-path, laser-based sensor provides fast (10 Hz) and precise (0.1 ppmv) measurements of methane in a compact package while the remote control aircraft provides nimble and safe operation around a local source. Emission rates were measured from 22 flights over a one-week period. Mean emission rates of 14 ± 8 g CH4 s(-1) (7.4 ± 4.2 g CH4 s(-1) median) from the station were observed or approximately 0.02% of the station throughput. Significant variability in emission rates (0.3-73 g CH4 s(-1) range) was observed on time scales of hours to days, and plumes showed high spatial variability in the horizontal and vertical dimensions. Given the high spatiotemporal variability of emissions, individual measurements taken over short durations and from ground-based platforms should be used with caution when examining compressor station emissions. More generally, our results demonstrate the unique advantages and challenges of platforms like small unmanned aerial vehicles for quantifying local emission sources to the atmosphere.
Remote Control and Monitoring of VLBI Experiments by Smartphones
NASA Astrophysics Data System (ADS)
Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.
2012-12-01
For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.
NASA Technical Reports Server (NTRS)
1979-01-01
The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.
Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station
NASA Technical Reports Server (NTRS)
Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent
2014-01-01
During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.
Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments
NASA Technical Reports Server (NTRS)
Atwell, B. H.; Thomann, G. C.
1973-01-01
A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.
NASA Technical Reports Server (NTRS)
Perrier, R. (Principal Investigator)
1974-01-01
The author has identified the following significant results. The General Electric DCP has proven to be a versatile, rugged piece of hardware and has surpassed original expectation; it is very simple to use and does not require skilled staff for its use, installation, and operation. It is well suited for use in remote sites where no power is available. From this experience, it is concluded that the data collection system will be very useful in operating a network of hydrometeorological stations situated in sites remote from normal communication links.
Kavandi at controls of Canadarm2 in Destiny module
2001-07-16
S104-E-5114 (16 July 2001) --- Janet L. Kavandi, STS-104 mission specialist, looks over the Canadarm2, Space Station Remote Manipulator System (SSRMS), control station in the Destiny laboratory during STS-104's visit to the International Space Station (ISS).
Laser long-range remote-sensing program experimental results
NASA Astrophysics Data System (ADS)
Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe
1995-12-01
A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.
NASA Astrophysics Data System (ADS)
Polkowski, Marcin; Grad, Marek
2016-04-01
Passive seismic experiment "13BB Star" is operated since mid 2013 in northern Poland and consists of 13 broadband seismic stations. One of the elements of this experiment is dedicated on-line data acquisition system comprised of both client (station) side and server side modules with web based interface that allows monitoring of network status and provides tools for preliminary data analysis. Station side is controlled by ARM Linux board that is programmed to maintain 3G/EDGE internet connection, receive data from digitizer, send data do central server among with additional auxiliary parameters like temperatures, voltages and electric current measurements. Station side is controlled by set of easy to install PHP scripts. Data is transmitted securely over SSH protocol to central server. Central server is a dedicated Linux based machine. Its duty is receiving and processing all data from all stations including auxiliary parameters. Server side software is written in PHP and Python. Additionally, it allows remote station configuration and provides web based interface for user friendly interaction. All collected data can be displayed for each day and station. It also allows manual creation of event oriented plots with different filtering abilities and provides numerous status and statistic information. Our solution is very flexible and easy to modify. In this presentation we would like to share our solution and experience. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.
NASA Astrophysics Data System (ADS)
Luo, Zhuanxi; Gao, Meirong; Luo, Xiaosan; Yan, Changzhou
2016-03-01
The influence of haze pollution on heavy metal transport into farmland topsoil has received little attention. This study reports on heavy metal concentrations in topsoil from remote farmland in China as well as the spatial similarity and correlation to such heavy metals in atmospheric particulate matter (APM). Heavy metal concentrations in topsoil from remote farmland significantly increased over time. Moreover, stations in the mid-eastern region of China accounted for greater than 55% of total stations that exhibited higher concentrations in 2010 than 2005. This spatial trend was consistent with changes observed in APM where mass concentrations of heavy metals were also found to be higher in the mid-eastern region of China. Heavy metals in APM have already likely caused contamination in remote farmland topsoil, particularly in the mid-eastern region of China. This is primarily due to long-range transport and deposition of APM owing that no pesticides or fertilizers have been used in the remote farmland stations selected and no industries were situated nearby. Regarding the large-scale, severe haze pollution occurring in China today, it is urgent to ascertain the accumulation of heavy metals in farmland topsoil resulting from APM as well as its subsequent potential mechanisms and ecological risks.
Chang-Diaz and Perrin attach power and data cables to MBS during STS-111 UF-2 EVA 2
2002-06-11
STS111-E-5184 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both mission specialists, work on the Mobile Remote Servicer Base System (MBS) and the Mobile Transporter on the International Space Station (ISS) during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. The boxes in front of the spacewalkers are the Canadian Remote Power Control Modules (RPCM). The S0 (S-zero) Truss is partially visible in the background. Perrin represents CNES, the French Space Agency.
Chang-Diaz and Perrin attach power and data cables to MBS during STS-111 UF-2 EVA 2
2002-06-11
STS111-E-5183 (11 June 2002) --- Astronauts Franklin R. Chang-Diaz (left) and Philippe Perrin, both mission specialists, work on the Mobile Remote Servicer Base System (MBS) and the Mobile Transporter on the International Space Station (ISS) during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. The boxes in front of the spacewalkers are the Canadian Remote Power Control Modules (RPCM). The S0 (S-zero) Truss is partially visible in the background. Perrin represents CNES, the French Space Agency.
Optical Energy Transfer and Conversion System
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2018-01-01
An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.
NASA Technical Reports Server (NTRS)
Howes, Norman R.
1986-01-01
The Space Station DMS (Data Management System) is the onboard component of the Space Station Information System (SSIS) that includes the computers, networks and software that support the various core and payload subsystems of the Space Station. TAVERNS (Test And Validation Environment for Remote Networked Systems) is a distributed approach for development and validation of application software for Space Station. The TAVERNS concept assumes that the different subsystems will be developed by different contractors who may be geographically separated. The TAVERNS Emulator is an Ada simulation of a TAVERNS on the ASD VAX. The software services described in the DMS Test Bed User's Manual are being emulated on the VAX together with simulations of some of the core subsystems and a simulation of the DCN. The TAVERNS Emulator will be accessible remotely from any VAX that can communicate with the ASD VAX.
Wireless Sensor Networks Approach
NASA Technical Reports Server (NTRS)
Perotti, Jose M.
2003-01-01
This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.
NASA Astrophysics Data System (ADS)
González, Yenny; Schneider, Matthias; Christner, Emanuel; Rodríguez, Omaira E.; Sepúlveda, Eliezer; Dyroff, Christoph; Wiegele, Andreas
2013-04-01
The main goal of the project MUSICA (Multiplatform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi global tropospheric water vapor isototopologue dataset of a good and well-documented quality. Therefore, new ground- and space-based remote sensing observations (NDACC-FTIR and IASI/METOP) are combined with in-situ measurements. This work presents the first comparison between in-situ and remote sensing observations made at the Izaña Atmospheric Research Centre (Tenerife, Canary Islands, Spain). The in-situ measurements are made by a Picarro L2120-i water vapor isotopologue analyzer. At Izaña the in-situ data are affected by local small-scale mixing processes: during daylight, the thermally buoyant upslope flow prompts the mixing between the Marine Boundary Layer (MBL) and the low Free Troposphere (FT). However, the remote sensors detect δD values averaged over altitudes that are more representative for the free troposphere. This difference has to be considered for the comparison. In general, a good agreement between the MUSICA remote sensing and the in situ H2O-versus-δD plots is found, which demonstrates that the MUSICA δD remote sensing products add scientifically valuable information to the H2O data.
Analysis of long term trends of precipitation estimates acquired using radar network in Turkey
NASA Astrophysics Data System (ADS)
Tugrul Yilmaz, M.; Yucel, Ismail; Kamil Yilmaz, Koray
2016-04-01
Precipitation estimates, a vital input in many hydrological and agricultural studies, can be obtained using many different platforms (ground station-, radar-, model-, satellite-based). Satellite- and model-based estimates are spatially continuous datasets, however they lack the high resolution information many applications often require. Station-based values are actual precipitation observations, however they suffer from their nature that they are point data. These datasets may be interpolated however such end-products may have large errors over remote locations with different climate/topography/etc than the areas stations are installed. Radars have the particular advantage of having high spatial resolution information over land even though accuracy of radar-based precipitation estimates depends on the Z-R relationship, mountain blockage, target distance from the radar, spurious echoes resulting from anomalous propagation of the radar beam, bright band contamination and ground clutter. A viable method to obtain spatially and temporally high resolution consistent precipitation information is merging radar and station data to take advantage of each retrieval platform. An optimally merged product is particularly important in Turkey where complex topography exerts strong controls on the precipitation regime and in turn hampers observation efforts. There are currently 10 (additional 7 are planned) weather radars over Turkey obtaining precipitation information since 2007. This study aims to optimally merge radar precipitation data with station based observations to introduce a station-radar blended precipitation product. This study was supported by TUBITAK fund # 114Y676.
Tethered orbital propellant depot
NASA Technical Reports Server (NTRS)
Fester, D. A.; Rudolph, L. K.; Kiefel, E. R.
1985-01-01
A planned function of the Space Station is to refurbish and refuel an advanced space-based LO2/LH2 orbit transfer vehicle. An alternative to propellant storage at the station is to use a remote facility tied to the station with a log tether. Preliminary design of such a facility is described with emphasis on fluid transfer and storage requirements. Using tether lengths of at least 300 ft, gravity gradient forces will dominate surface tension in such a system. Although gravity given transfer is difficult because of line pressure drops, fluid settling over the tank outlet greatly alleviates acquisition concerns and will facilitate vented tank fills. The major concern with a tethered orbital refueling facility is its considerable operational complexity including transport of the OTV to and from the facility.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, an overhead crane moves the Special Purpose Dexterous Manipulator, known as Dextre, to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves nearer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves closer to the payload canister where it will be installed for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
High-efficient full-duplex WDM-RoF system with sub-central station
NASA Astrophysics Data System (ADS)
Liu, Anliang; Yin, Hongxi; Wu, Bin
2018-05-01
With an additional sub-central station (S-CS), a high-efficient full-duplex radio-over-fiber (RoF) system compatible with the wavelength-division-multiplexing technology is proposed and experimentally demonstrated in this paper. To improve the dispersion tolerance of the RoF system, the baseband data format for the downlink and an all-optical down-conversion approach for the uplink are employed. In addition, this RoF system can not only make full use of the fiber link resources but also realize the upstream transmission without any local light sources at remote base stations (BSs). A 10-GHz RoF experimental system with a 1.25-Gb/s rate bidirectional transmission is established based on the S-CS structure. The feasibility and reliability of this RoF system are verified through eye diagrams and bit error rate (BER) curves experimentally obtained.
Microscope-Based Fluid Physics Experiments in the Fluids and Combustion Facility on ISS
NASA Technical Reports Server (NTRS)
Doherty, Michael P.; Motil, Susan M.; Snead, John H.; Malarik, Diane C.
2000-01-01
At the NASA Glenn Research Center, the Microgravity Science Program is planning to conduct a large number of experiments on the International Space Station in both the Fluid Physics and Combustion Science disciplines, and is developing flight experiment hardware for use within the International Space Station's Fluids and Combustion Facility. Four fluids physics experiments that require an optical microscope will be sequentially conducted within a subrack payload to the Fluids Integrated Rack of the Fluids and Combustion Facility called the Light Microscopy Module, which will provide the containment, changeout, and diagnostic capabilities to perform the experiments. The Light Microscopy Module is planned as a fully remotely controllable on-orbit microscope facility, allowing flexible scheduling and control of experiments within International Space Station resources. This paper will focus on the four microscope-based experiments, specifically, their objectives and the sample cell and instrument hardware to accommodate their requirements.
Verification of the WFAS Lightning Efficiency Map
Paul Sopko; Don Latham; Isaac Grenfell
2007-01-01
A Lightning Ignition Efficiency map was added to the suite of daily maps offered by the Wildland Fire Assessment System (WFAS) in 1999. This map computes a lightning probability of ignition (POI) based on the estimated fuel type, fuel depth, and 100-hour fuel moisture interpolated from the Remote Automated Weather Station (RAWS) network. An attempt to verify the...
Development of a Methodology for Predicting Forest Area for Large-Area Resource Monitoring
William H. Cooke
2001-01-01
The U.S. Department of Agriculture, Forest Service, Southcm Research Station, appointed a remote-sensing team to develop an image-processing methodology for mapping forest lands over large geographic areds. The team has presented a repeatable methodology, which is based on regression modeling of Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic...
NASA Technical Reports Server (NTRS)
Brooks, Colin; Bourgeau-Chavez, Laura; Endres, Sarah; Battaglia, Michael; Shuchman, Robert
2015-01-01
Primary Goal: Assist with the evaluation and measuring of wetlands hydroperiod at the PlumBrook Station using multi-source remote sensing data as part of a larger effort on projecting climate change-related impacts on the station's wetland ecosystems. MTRI expanded on the multi-source remote sensing capabilities to help estimate and measure hydroperiod and the relative soil moisture of wetlands at NASA's Plum Brook Station. Multi-source remote sensing capabilities are useful in estimating and measuring hydroperiod and relative soil moisture of wetlands. This is important as a changing regional climate has several potential risks for wetland ecosystem function. The year two analysis built on the first year of the project by acquiring and analyzing remote sensing data for additional dates and types of imagery, combined with focused field work. Five deliverables were planned and completed: 1) Show the relative length of hydroperiod using available remote sensing datasets 2) Date linked table of wetlands extent over time for all feasible non-forested wetlands 3) Utilize LIDAR data to measure topographic height above sea level of all wetlands, wetland to catchment area radio, slope of wetlands, and other useful variables 4) A demonstration of how analyzed results from multiple remote sensing data sources can help with wetlands vulnerability assessment 5) A MTRI style report summarizing year 2 results. This report serves as a descriptive summary of our completion of these our deliverables. Additionally, two formal meetings were held with Larry Liou and Amanda Sprinzl to provide project updates and receive direction on outputs. These were held on 2/26/15 and 9/17/15 at the Plum Brook Station. Principal Component Analysis (PCA) is a multivariate statistical technique used to identify dominant spatial and temporal backscatter signatures. PCA reduces the information contained in the temporal dataset to the first few new Principal Component (PC) images. Some advantages of PCA include the ability to filter out temporal autocorrelation and reduce speckle to the higher order PC images. A PCA was performed using ERDAS Imagine on a time series of PALSAR dates. Hydroperiod maps were created by separating the PALSAR dates into two date ranges, 2006-2008 and 2010, and performing an unsupervised classification on the PCAs.
47 CFR 74.451 - Certification of equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Certification of equipment. 74.451 Section 74... Broadcast Stations § 74.451 Certification of equipment. (a) Applications for new remote pickup broadcast stations or systems or for changing transmitting equipment of an existing station will not be accepted...
Engineers in the mist: The solar in the jungle project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, J.P.; Thornton, S.
This article describes the design and installation of a photovoltaic power supply for a remote orangutan research station in the rain forest in Borneo. The unique needs of the station, including the problems created by noisy equipment and the transport of fuel offering potential for severe damage, are discussed, along with the design of the system, a community based system for the camp that would not only compensate for shadowing loss due to a chain link cage and meet the daily load, but would provide up to 20 days of energy if loads were managed properly.
The evolution of automation and robotics in manned spaceflight
NASA Technical Reports Server (NTRS)
Moser, T. L.; Erickson, J. D.
1986-01-01
The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.
VON and Its Use in NASA's International Space Station Science Operation
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Chamberlain, Jim
1999-01-01
This presentation will provide a brief overview of a International Space Station (ISS) remote user (scientist/experimenter) operation. Specifically, the presentation will show how Voice over IP (VoIP) is integrated into the ISS science payload operation and in the mission voice system. Included will be the details on how a scientist, using VON, will talk to the ISS onboard crew and ground based cadre from a scientist's home location (lab, office or garage) over tile public Internet and science nets. Benefit(s) to tile ISS Program (and taxpayer) and of VoIP versus other implementations also will be presented.
2014-06-27
Earth Observation taken during a day pass by the Expedition 40 crew aboard the International Space Station (ISS). Part of Space Station Remote Manipulator System (SSRMS) is visible. Folder lists this as: the Middle East, Israel.
Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters
Ouillon, Sylvain; Douillet, Pascal; Petrenko, Anne; Neveux, Jacques; Dupouy, Cécile; Froidefond, Jean-Marie; Andréfouët, Serge; Muñoz-Caravaca, Alain
2008-01-01
Is it possible to derive accurately Total Suspended Matter concentration or its proxy, turbidity, from remote sensing data in tropical coastal lagoon waters? To investigate this question, hyperspectral remote sensing reflectance, turbidity and chlorophyll pigment concentration were measured in three coral reef lagoons. The three sites enabled us to get data over very diverse environments: oligotrophic and sediment-poor waters in the southwest lagoon of New Caledonia, eutrophic waters in the Cienfuegos Bay (Cuba), and sediment-rich waters in the Laucala Bay (Fiji). In this paper, optical algorithms for turbidity are presented per site based on 113 stations in New Caledonia, 24 stations in Cuba and 56 stations in Fiji. Empirical algorithms are tested at satellite wavebands useful to coastal applications. Global algorithms are also derived for the merged data set (193 stations). The performances of global and local regression algorithms are compared. The best one-band algorithms on all the measurements are obtained at 681 nm using either a polynomial or a power model. The best two-band algorithms are obtained with R412/R620, R443/R670 and R510/R681. Two three-band algorithms based on Rrs620.Rrs681/Rrs412 and Rrs620.Rrs681/Rrs510 also give fair regression statistics. Finally, we propose a global algorithm based on one or three bands: turbidity is first calculated from Rrs681 and then, if < 1 FTU, it is recalculated using an algorithm based on Rrs620.Rrs681/Rrs412. On our data set, this algorithm is suitable for the 0.2-25 FTU turbidity range and for the three sites sampled (mean bias: 3.6 %, rms: 35%, mean quadratic error: 1.4 FTU). This shows that defining global empirical turbidity algorithms in tropical coastal waters is at reach. PMID:27879929
NASA Astrophysics Data System (ADS)
Xu, Baodong; Li, Jing; Liu, Qinhuo; Zeng, Yelu; Yin, Gaofei
2014-11-01
Leaf Area Index (LAI) is known as a key vegetation biophysical variable. To effectively use remote sensing LAI products in various disciplines, it is critical to understand the accuracy of them. The common method for the validation of LAI products is firstly establish the empirical relationship between the field data and high-resolution imagery, to derive LAI maps, then aggregate high-resolution LAI maps to match moderate-resolution LAI products. This method is just suited for the small region, and its frequencies of measurement are limited. Therefore, the continuous observing LAI datasets from ground station network are important for the validation of multi-temporal LAI products. However, due to the scale mismatch between the point observation in the ground station and the pixel observation, the direct comparison will bring the scale error. Thus it is needed to evaluate the representativeness of ground station measurement within pixel scale of products for the reasonable validation. In this paper, a case study with Chinese Ecosystem Research Network (CERN) in situ data was taken to introduce a methodology to estimate representativeness of LAI station observation for validating LAI products. We first analyzed the indicators to evaluate the observation representativeness, and then graded the station measurement data. Finally, the LAI measurement data which can represent the pixel scale was used to validate the MODIS, GLASS and GEOV1 LAI products. The result shows that the best agreement is reached between the GLASS and GEOV1, while the lowest uncertainty is achieved by GEOV1 followed by GLASS and MODIS. We conclude that the ground station measurement data can validate multi-temporal LAI products objectively based on the evaluation indicators of station observation representativeness, which can also improve the reliability for the validation of remote sensing products.
47 CFR 73.665 - Use of TV aural baseband subcarriers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... signals within the composite baseband for the following purposes: (a) Stereophonic (biphonic, quadraphonic... relating to the operation of TV stations, such as relaying broadcast materials to other stations, remote...
47 CFR 101.107 - Frequency tolerance.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., this tolerance will govern the marketing of LTTS equipment and the issuance of all such authorizations... stations providing MVDDS. 5 For private operational fixed point-to-point microwave systems, with a channel... address remote stations with channels greater than 12.5 KHz bandwidth, ±0.0005%. 6 For stations authorized...
NASA Astrophysics Data System (ADS)
Qin, Xiu-Chun; Nakayama, Tomoki; Matsumi, Yutaka; Kawasaki, Masahiro; Ono, Akiko; Hayashida, Sachiko; Imasu, Ryoichi; Lei, Li-Ping; Murata, Isao; Kuroki, Takahiro; Ohashi, Masafumi
2018-01-01
Remote sensing of the atmospheric greenhouse gases, methane (CH4) and carbon dioxide (CO2), contributes to the understanding of global warming and climate change. A portable ground-based instrument consisting of a commercially available desktop optical spectrum analyzer and a small sun tracker has been applied to measure the column densities of atmospheric CH4 and CO2 at Yanting observation station in a mountainous paddy field of the Sichuan Basin from September to November 2013. The column-averaged dry-air molar mixing ratios, XCH4/XCO2, are compared with those retrieved by satellite observations in the Sichuan Basin and by ground-based network observations in the same latitude zone as the Yanting observation station.
NASA Astrophysics Data System (ADS)
Esteban Bedoya-Velásquez, Andrés; Navas-Guzmán, Francisco; José Granados-Muñoz, María; Titos, Gloria; Román, Roberto; Andrés Casquero-Vera, Juan; Ortiz-Amezcua, Pablo; Benavent-Oltra, Jose Antonio; de Arruda Moreira, Gregori; Montilla-Rosero, Elena; Hoyos, Carlos David; Artiñano, Begoña; Coz, Esther; José Olmo-Reyes, Francisco; Alados-Arboledas, Lucas; Guerrero-Rascado, Juan Luis
2018-05-01
This study focuses on the analysis of aerosol hygroscopic growth during the Sierra Nevada Lidar AerOsol Profiling Experiment (SLOPE I) campaign by using the synergy of active and passive remote sensors at the ACTRIS Granada station and in situ instrumentation at a mountain station (Sierra Nevada, SNS). To this end, a methodology based on simultaneous measurements of aerosol profiles from an EARLINET multi-wavelength Raman lidar (RL) and relative humidity (RH) profiles obtained from a multi-instrumental approach is used. This approach is based on the combination of calibrated water vapor mixing ratio (r) profiles from RL and continuous temperature profiles from a microwave radiometer (MWR) for obtaining RH profiles with a reasonable vertical and temporal resolution. This methodology is validated against the traditional one that uses RH from co-located radiosounding (RS) measurements, obtaining differences in the hygroscopic growth parameter (γ) lower than 5 % between the methodology based on RS and the one presented here. Additionally, during the SLOPE I campaign the remote sensing methodology used for aerosol hygroscopic growth studies has been checked against Mie calculations of aerosol hygroscopic growth using in situ measurements of particle number size distribution and submicron chemical composition measured at SNS. The hygroscopic case observed during SLOPE I showed an increase in the particle backscatter coefficient at 355 and 532 nm with relative humidity (RH ranged between 78 and 98 %), but also a decrease in the backscatter-related Ångström exponent (AE) and particle linear depolarization ratio (PLDR), indicating that the particles became larger and more spherical due to hygroscopic processes. Vertical and horizontal wind analysis is performed by means of a co-located Doppler lidar system, in order to evaluate the horizontal and vertical dynamics of the air masses. Finally, the Hänel parameterization is applied to experimental data for both stations, and we found good agreement on γ measured with remote sensing (γ532 = 0.48 ± 0.01 and γ355 = 0.40 ± 0.01) with respect to the values calculated using Mie theory (γ532 = 0.53 ± 0.02 and γ355 = 0.45 ± 0.02), with relative differences between measurements and simulations lower than 9 % at 532 nm and 11 % at 355 nm.
Orbital construction support equipment - Manned remote work station
NASA Technical Reports Server (NTRS)
Nassiff, S. H.
1978-01-01
The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China
NASA Astrophysics Data System (ADS)
Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.
2018-04-01
Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.
46 CFR 169.692 - Remote stop stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Machinery and Electrical Electrical Installations on Vessels of 100 Gross Tons and Over § 169.692 Remote... propulsion unit, (b) A bilge slop or dirty oil discharge shutdown at the deck discharge, (c) A ventilation...
2006-12-12
S116-E-05764 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.
2006-12-12
S116-E-05765 (11 Dec. 2006) --- The International Space Station's Canadarm2 moves toward the station's new P5 truss section for a hand-off from Space Shuttle Discovery's Remote Manipulator System (RMS) robotic arm.
NASA Astrophysics Data System (ADS)
Zulfikar, Can; Pinar, Ali; Tunc, Suleyman; Erdik, Mustafa
2014-05-01
The Istanbul EEW network consisting of 10 inland and 5 OBS strong motion stations located close to the Main Marmara Fault zone is operated by KOERI. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The data transmission time from the remote stations to the KOERI data center is a few milliseconds through fiber optic lines and less than a second via satellites. The early warning signal (consisting three alarm levels) is communicated to the appropriate servo shut-down systems of the receipent facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. Since 2005, buildings in Istanbul using natural gas are required to install seismometers that automatically cut natural gas flow when certain thresholds are exceeded. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAŞ receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal of KOERI is also transmitted to the serve shut down system of the Marmaray Rail Tube Tunnel and Commuter Rail Mass Transit System in Istanbul. The Marmaray system includes an undersea railway tunnel under the Bosphorus Strait. Several strong motion instruments are installed within the tunnel for taking measurements against strong ground shaking and early warning purposes. This system is integrated with the KOERI EEW System. KOERI sends the EEW signal to the command center of Marmaray. Having received the signal, the command center put into action the previously defined measurements. For example, the trains within the tunnel will be stopped at the nearest station, no access to the tunnel will be allowed to the trains approaching the tunnel, water protective caps will be closed to protect flood closing the connection between the onshore and offshore tunnels.
NASA Astrophysics Data System (ADS)
Paul, G.; Gowda, P. H.; Howell, T. A.; Basu, S.; Colaizzi, P. D.; Marek, T.
2013-12-01
Scintillation method is a relatively new technique for measuring the sensible heat and water fluxes over land surfaces. Path integrating capabilities of scintillometer over heterogeneous landscapes make it a potential tool for comparing the energy fluxes derived from remote sensing based energy balance algorithms. For this reason, scintillometer-derived evapotranspiration (ET) fluxes are being used to evaluate remote sensing based energy balance algorithms for their ability to estimate ET fluxes. However, LAS' (Large Aperture Scintillometer) ability to derive ET fluxes is not thoroughly tested. The objective of this study was to evaluate LAS- and Surface Energy Balance System (SEBS)-derived fluxes against lysimetric data to determine LAS' suitability for validating remote sensing based evapotranspiration (ET) maps. The study was conducted during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment - 2008 (BEAREX-08) at the USDA-ARS Conservation and Production Research Laboratory (CPRL), Bushland, Texas. SEBS was coded in a GIS environment to retrieve ET fluxes from the high resolution imageries acquired using airborne multispectral sensors. The CPRL has four large weighing lysimeters (3 m long x 3 m wide x 2.4 m deep), each located in the middle of approximately 5 ha fields, arranged in a block pattern. The two lysimeter fields located on the east (NE and SE) were managed under irrigated conditions, and the other two lysimeters on the west (NW and SW) were under dryland management. Each lysimeter field was equipped with an automated weather station that provided measurements for net radiation (Rn), Ts, soil heat flux (Go), Ta, relative humidity, and wind speed. During BEAREX08, the NE and SE fields were planted to cotton on May 21, and the NW and SW dryland lysimeters fields were planted to cotton on June 5. One LAS each was deployed across two large dryland lysimeter fields (NW and SW) and two large irrigated lysimeter fields (NE and SE). The structural parameter of refractive index of air was measured at 1-min interval and averaged at 15-min, and synchronized with weather station. The source area (footprint) of the surface energy fluxes were computed using a footprint model. ET fluxes were derived using LAS-estimated H as a residual from the energy balance equation. Comparison of SEBS- and LAS-derived ET fluxes were made against lysimetric data and performance of each method was discussed to determine the suitability of LAS for evaluating accuracy of remote sensing based ET maps.
Data Collection for Disaster Response from the International Space Station
NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Evans, C. A.
2015-04-01
Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 90 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Charter, Space and Major Disasters, also known informally as the International Disaster Charter (IDC) response data in May 2012. Since the start of IDC response in 2012, and as of late March 2015, there have been 123 IDC activations; NASA sensor systems have collected data for thirty-four of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos/Energia through the Urugan program.
Watershed Allied Telemetry Experimental Research
NASA Astrophysics Data System (ADS)
Li, Xin; Li, Xiaowen; Li, Zengyuan; Ma, Mingguo; Wang, Jian; Xiao, Qing; Liu, Qiang; Che, Tao; Chen, Erxue; Yan, Guangjian; Hu, Zeyong; Zhang, Lixin; Chu, Rongzhong; Su, Peixi; Liu, Qinhuo; Liu, Shaomin; Wang, Jindi; Niu, Zheng; Chen, Yan; Jin, Rui; Wang, Weizhen; Ran, Youhua; Xin, Xiaozhou; Ren, Huazhong
2009-11-01
The Watershed Allied Telemetry Experimental Research (WATER) is a simultaneous airborne, satellite-borne, and ground-based remote sensing experiment aiming to improve the observability, understanding, and predictability of hydrological and related ecological processes at a catchment scale. WATER consists of the cold region, forest, and arid region hydrological experiments as well as a hydrometeorology experiment and took place in the Heihe River Basin, a typical inland river basin in the northwest of China. The field campaigns have been completed, with an intensive observation period lasting from 7 March to 12 April, from 15 May to 22 July, and from 23 August to 5 September 2008: in total, 120 days. Twenty-five airborne missions were flown. Airborne sensors including microwave radiometers at L, K, and Ka bands, imaging spectrometer, thermal imager, CCD, and lidar were used. Various satellite data were collected. Ground measurements were carried out at four scales, that is, key experimental area, foci experimental area, experiment site, and elementary sampling plot, using ground-based remote sensing instruments, densified network of automatic meteorological stations, flux towers, and hydrological stations. On the basis of these measurements, the remote sensing retrieval models and algorithms of water cycle variables are to be developed or improved, and a catchment-scale land/hydrological data assimilation system is being developed. This paper reviews the background, scientific objectives, experiment design, filed campaign implementation, and current status of WATER. The analysis of the data will continue over the next 2 years, and limited revisits to the field are anticipated.
Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús
2014-01-01
This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations). PMID:24732102
Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús
2014-04-11
This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations).
Development of a PC-based ground support system for a small satellite instrument
NASA Astrophysics Data System (ADS)
Deschambault, Robert L.; Gregory, Philip R.; Spenler, Stephen; Whalen, Brian A.
1993-11-01
The importance of effective ground support for the remote control and data retrieval of a satellite instrument cannot be understated. Problems with ground support may include the need to base personnel at a ground tracking station for extended periods, and the delay between the instrument observation and the processing of the data by the science team. Flexible solutions to such problems in the case of small satellite systems are provided by using low-cost, powerful personal computers and off-the-shelf software for data acquisition and processing, and by using Internet as a communication pathway to enable scientists to view and manipulate satellite data in real time at any ground location. The personal computer based ground support system is illustrated for the case of the cold plasma analyzer flown on the Freja satellite. Commercial software was used as building blocks for writing the ground support equipment software. Several levels of hardware support, including unit tests and development, functional tests, and integration were provided by portable and desktop personal computers. Satellite stations in Saskatchewan and Sweden were linked to the science team via phone lines and Internet, which provided remote control through a central point. These successful strategies will be used on future small satellite space programs.
On-Orbit Prospective Echocardiography on International Space Station
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.
2010-01-01
A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.
Telerobotic controller development
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, Ken; Rhoades, Don
1987-01-01
To meet NASA's space station's needs and growth, a modular and generic approach to robotic control which provides near-term implementation with low development cost and capability for growth into more autonomous systems was developed. The method uses a vision based robotic controller and compliant hand integrated with the Remote Manipulator System arm on the Orbiter. A description of the hardware and its system integration is presented.
Changes in the Arctic: Background and Issues for Congress
2014-04-28
knowledge of the physical environment. Data must be obtained by a suite of remote sensors (satellites, radars), autonomous sensors (data buoys...unmanned vehicles), and manned sensors (shipboard, coastal observing stations). Computer-based ocean and atmospheric models must be adjusted to the... soot ). 6. Implementation: In carrying out this policy as it relates to environmental protection and conservation of natural resources, the
Egnor, W.D.; Romine, G.L.
1963-05-21
A remotely operated turntable is described for moving containers in succession from station to station and holding the containers in position at each station while a desired operation is performed. The assembly is capable of both vertical and rotational movements and is equipped with means that limit the rotational movements to predetermined angular increments and means that prevent rotation of the turntable while the container is at a work station. (AEC)
Real-time bioacoustics monitoring and automated species identification.
Aide, T Mitchell; Corrada-Bravo, Carlos; Campos-Cerqueira, Marconi; Milan, Carlos; Vega, Giovany; Alvarez, Rafael
2013-01-01
Traditionally, animal species diversity and abundance is assessed using a variety of methods that are generally costly, limited in space and time, and most importantly, they rarely include a permanent record. Given the urgency of climate change and the loss of habitat, it is vital that we use new technologies to improve and expand global biodiversity monitoring to thousands of sites around the world. In this article, we describe the acoustical component of the Automated Remote Biodiversity Monitoring Network (ARBIMON), a novel combination of hardware and software for automating data acquisition, data management, and species identification based on audio recordings. The major components of the cyberinfrastructure include: a solar powered remote monitoring station that sends 1-min recordings every 10 min to a base station, which relays the recordings in real-time to the project server, where the recordings are processed and uploaded to the project website (arbimon.net). Along with a module for viewing, listening, and annotating recordings, the website includes a species identification interface to help users create machine learning algorithms to automate species identification. To demonstrate the system we present data on the vocal activity patterns of birds, frogs, insects, and mammals from Puerto Rico and Costa Rica.
McBeth, Paul B; Crawford, Innes; Blaivas, Michael; Hamilton, Trevor; Musselwhite, Kimberly; Panebianco, Nova; Melniker, Lawrence; Ball, Chad G; Gargani, Luna; Gherdovich, Carlotta; Kirkpatrick, Andrew W
2011-12-01
Apnea (APN) and pneumothorax (PTX) are common immediately life-threatening conditions. Ultrasound is a portable tool that captures anatomy and physiology as digital information allowing it to be readily transferred by electronic means. Both APN and PTX are simply ruled out by visualizing respiratory motion at the visceral-parietal pleural interface known as lung sliding (LS), corroborated by either the M-mode or color-power Doppler depiction of LS. We thus assessed how economically and practically this information could be obtained remotely over a cellular network. Ultrasound images were obtained on handheld ultrasound machines streamed to a standard free internet service (Skype) using an iPhone. Remote expert sonographers directed remote providers (with variable to no ultrasound experience) to obtain images by viewing the transmitted ultrasound signal and by viewing the remote examiner over a head-mounted webcam. Examinations were conducted between a series of remote sites and a base station. Remote sites included two remote on-mountain sites, a small airplane in flight, and a Calgary household, with base sites located in Pisa, Rome, Philadelphia, and Calgary. In all lung fields (20/20) on all occasions, LS could easily and quickly be seen. LS was easily corroborated and documented through capture of color-power Doppler and M-mode images. Other ultrasound applications such as the Focused Assessment with Sonography for Trauma examination, vascular anatomy, and a fetal wellness assessment were also demonstrated. The emergent exclusion of APN-PTX can be immediately accomplished by a remote expert economically linked to almost any responder over cellular networks. Further work should explore the range of other physiologic functions and anatomy that could be so remotely assessed.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Study and Application of Remote Data Moving Transmission under the Network Convergence
NASA Astrophysics Data System (ADS)
Zhiguo, Meng; Du, Zhou
The data transmission is an important problem in remote applications. Advance of network convergence has help to select and use data transmission model. The embedded system and data management platform is a key of the design. With communication module, interface technology and the transceiver which has independent intellectual property rights connected broadband network and mobile network seamlessly. Using the distribution system of mobile base station to realize the wireless transmission, using public networks to implement the data transmission, making the distant information system break through area restrictions and realizing transmission of the moving data, it has been fully recognized in long-distance medical care applications.
A study of space station needs, attributes and architectural options. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Steinbronn, O.
1983-01-01
Missions that will benefit from the development of a permanent manned space station are examined. The missions that will determine the space station architecture include spaceborne scientific experiments, space industrialization and commercialization, remote space operations, and U.S. national security. Architectural options and economic analysis are also presented.
DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM
2009-03-18
ISS018-E-040985 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
DomeGene Experiment at Cell Biology Experiment Facility (CBEF) in JPM
2009-03-18
ISS018-E-040986 (18 March 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 18 flight engineer, uses a computer at the Japanese Remote Manipulator System (JEM-RMS) work station in the Kibo laboratory of the International Space Station while Space Shuttle Discovery (STS-119) remains docked with the station.
NASA Technical Reports Server (NTRS)
1983-01-01
The remote manipulating system, the pointing control system, and the external radiator for the core module of the space station are discussed. The principal interfaces for four basic classes of user and transportation vehicles or facilities associated with the space station were examined.
Aswan High Dam in 6-meter Resolution from the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Astronaut photography of the Earth from the International Space Station has achieved resolutions close to those available from commercial remote sensing satellites-with many photographs having spatial resolutions of less than six meters. Astronauts take the photographs by hand and physically compensate for the motion of the spacecraft relative to the Earth while the images are being acquired. The achievement was highlighted in an article entitled 'Space Station Allows Remote Sensing of Earth to within Six Meters' published in this week's edition of Eos, Transactions of the American Geophysical Union. Lines painted on airport runways at the Aswan Airport served to independently validate the spatial resolution of the camera sensor. For press information, read: International Space Station Astronauts Set New Standard for Earth Photography For details, see Robinson, J. A. and Evans, C. A. 2002. Space Station Allows Remote Sensing of Earth to within Six Meters. Eos, Transactions, American Geophysical Union 83(17):185, 188. See some of the other detailed photographs posted to Earth Observatory: Pyramids at Giza Bermuda Downtown Houston The image above represents a detailed portion of a digitized NASA photograph STS102-303-17, and was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
NASA Astrophysics Data System (ADS)
Kurczyński, Zdzisław; Różycki, Sebastian; Bylina, Paweł
2017-12-01
To produce orthophotomaps or digital elevation models, the most commonly used method is photogrammetric measurement. However, the use of aerial images is not easy in polar regions for logistical reasons. In these areas, remote sensing data acquired from satellite systems is much more useful. This paper presents the basic technical requirements of different products which can be obtain (in particular orthoimages and digital elevation model (DEM)) using Very-High-Resolution Satellite (VHRS) images. The study area was situated in the vicinity of the Henryk Arctowski Polish Antarctic Station on the Western Shore of Admiralty Bay, King George Island, Western Antarctic. Image processing was applied on two triplets of images acquired by the Pléiades 1A and 1B in March 2013. The results of the generation of orthoimages from the Pléiades systems without control points showed that the proposed method can achieve Root Mean Squared Error (RMSE) of 3-9 m. The presented Pléiades images are useful for thematic remote sensing analysis and processing of measurements. Using satellite images to produce remote sensing products for polar regions is highly beneficial and reliable and compares well with more expensive airborne photographs or field surveys.
NASA Astrophysics Data System (ADS)
Li, J.; Liu, L. Q.; Liu, T.; Xu, X. D.; Dong, B.; Lu, W. H.; Pan, W.; Wu, J. H.; Xiong, L. Y.
2017-02-01
A 10 kW@20 K refrigerator has been established by the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. A measurement and control system based on Siemens PLC S7-300 for this 10 kW@20 K refrigerator is developed. According to the detailed measurement requirements, proper sensors and transmitters are adopted. Siemens S7-300 PLC CPU315-2 PN/DP operates as a master station. Two sets of ET200M DP remote expand I/O, one power meter, two compressors and one vacuum gauge operate as slave stations. Profibus-DP field communication and Modbus communication are used between the master station and the slave stations in this control system. The upper computer HMI (Human Machine Interface) is compiled using Siemens configuration software WinCC V7.0. The upper computer communicates with PLC by means of industrial Ethernet. After commissioning, this refrigerator has been operating with a 10 kW of cooling power at 20 K for more than 72 hours.
2008-02-11
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility at NASA's Kennedy Space Center, the Special Purpose Dexterous Manipulator, known as Dextre, moves across the facility via an overhead crane to the payload canister at right for transfer to Launch Pad 39A. Dextre is a sophisticated dual-armed robot, which is part of Canada's contribution to the International Space Station. Along with Canadarm2, which is called the Space Station Remote Manipulator System, and a moveable work platform called the Mobile Base System, these three elements form a robotic system called the Mobile Servicing System. The three components have been designed to work together or independently. Dextre is part of the payload on space shuttle Endeavour's STS-123 mission, targeted for launch March 11. Photo courtesy of The Boeing Company
Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA
NASA Astrophysics Data System (ADS)
Besha, A. A.; Steele, C. M.; Fernald, A.
2014-12-01
Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.
The Wettzell System Monitoring Concept and First Realizations
NASA Technical Reports Server (NTRS)
Ettl, Martin; Neidhardt, Alexander; Muehlbauer, Matthias; Ploetz, Christian; Beaudoin, Christopher
2010-01-01
Automated monitoring of operational system parameters for the geodetic space techniques is becoming more important in order to improve the geodetic data and to ensure the safety and stability of automatic and remote-controlled observations. Therefore, the Wettzell group has developed the system monitoring software, SysMon, which is based on a reliable, remotely-controllable hardware/software realization. A multi-layered data logging system based on a fanless, robust industrial PC with an internal database system is used to collect data from several external, serial, bus, or PCI-based sensors. The internal communication is realized with Remote Procedure Calls (RPC) and uses generative programming with the interface software generator idl2rpc.pl developed at Wettzell. Each data monitoring stream can be configured individually via configuration files to define the logging rates or analog-digital-conversion parameters. First realizations are currently installed at the new laser ranging system at Wettzell to address safety issues and at the VLBI station O Higgins as a meteorological data logger. The system monitoring concept should be realized for the Wettzell radio telescope in the near future.
Phillips removes Failed RPCM (Remote Power Controller Module)
2005-09-20
ISS011-E-13361 (20 September 2005) --- Astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer, performs a Remote Power Control Module (RPCM) remove and replacement in the Unity node of the international space station.
Analysis and Selection of a Remote Docking Simulation Visual Display System
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Fagg, M. F.
1984-01-01
The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.
NASA Astrophysics Data System (ADS)
Umar, M.; Rhoads, Bruce L.; Greenberg, Jonathan A.
2018-01-01
Although past work has noted that contrasts in turbidity often are detectable on remotely sensed images of rivers downstream from confluences, no systematic methodology has been developed for assessing mixing over distance of confluent flows with differing surficial suspended sediment concentrations (SSSC). In contrast to field measurements of mixing below confluences, satellite remote-sensing can provide detailed information on spatial distributions of SSSC over long distances. This paper presents a methodology that uses remote-sensing data to estimate spatial patterns of SSSC downstream of confluences along large rivers and to determine changes in the amount of mixing over distance from confluences. The method develops a calibrated Random Forest (RF) model by relating training SSSC data from river gaging stations to derived spectral indices for the pixels corresponding to gaging-station locations. The calibrated model is then used to predict SSSC values for every river pixel in a remotely sensed image, which provides the basis for mapping of spatial variability in SSSCs along the river. The pixel data are used to estimate average surficial values of SSSC at cross sections spaced uniformly along the river. Based on the cross-section data, a mixing metric is computed for each cross section. The spatial pattern of change in this metric over distance can be used to define rates and length scales of surficial mixing of suspended sediment downstream of a confluence. This type of information is useful for exploring the potential influence of various controlling factors on mixing downstream of confluences, for evaluating how mixing in a river system varies over time and space, and for determining how these variations influence water quality and ecological conditions along the river.
NASA Astrophysics Data System (ADS)
Gang, Zhang; Fansong, Meng; Jianzhong, Wang; Mingtao, Ding
2018-02-01
Determining magnetotelluric impedance precisely and accurately is fundamental to valid inversion and geological interpretation. This study aims to determine the minimum value of signal-to-noise ratio (SNR) which maintains the effectiveness of remote reference technique. Results of standard time series simulation, addition of different Gaussian noises to obtain the different SNR time series, and analysis of the intermediate data, such as polarization direction, correlation coefficient, and impedance tensor, show that when the SNR value is larger than 23.5743, the polarization direction disorder at morphology and a smooth and accurate sounding carve value can be obtained. At this condition, the correlation coefficient value of nearly complete segments between the base and remote station is larger than 0.9, and impedance tensor Zxy presents only one aggregation, which meet the natural magnetotelluric signal characteristic.
Remote sensing of fire and deforestation in the tropics from the International Space Station
NASA Astrophysics Data System (ADS)
Hoffman, James W.; Riggan, Philip J.; Brass, James A.
2000-01-01
In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .
NASA Technical Reports Server (NTRS)
1982-01-01
End user concerns about the content and accessibility of libraries of remote sensing data in general are addressed. Recommendations pertaining to the United States' satellite remote sensing programs urge: (1) the continuation of the NASA/EROS Data Center program to convert pre-1979 scenes to computer readable tapes and create a historical archive of this valuable data; (2) improving the EROS archive by adding geologically interesting scenes, data from other agencies (including previously classified data), and by adopting a policy to retire data from the archive; (3) establishing a computer data base inquiry system that includes remote sensing data from all publically available sources; (4) capability for prepurchase review and evaluation; (5) a flexible price structure; and (6) adoption of standard digital data products format. Information about LANDSAT 4, the status of worldwide LANDSAT receiving stations, future non-U.S. remote sensing satellites, a list of sources for LANDSAT data, and the results of a survey of GEOSAT members' remote sensing data processing systems are also considered.
Conceptual design of a mobile remote manipulator system
NASA Technical Reports Server (NTRS)
Bush, H. G.; Mikulas, M. M., Jr.; Wallsom, R. E.; Jensen, J. K.
1984-01-01
A mobile remote manipulator system has been identified as a necessary device for space station. A conceptual design for an MRMS is presented which features (1) tracks on the MRMS and guide pins only on the truss structure, (2) a push/pull drive mechanism which rotates to permit movement in four directions, and (3) spacecrane and mobile foot restraint manipulators (or arms). Operational and design features of the MRMS elements are described and illustrated. Concepts are also presented which permit rotating the operational plane of the MRMS through 90 deg. Such a system has been found to have great utility for initial space station construction, maintenance and repair, and to provide a construction capability for future station growth or large spacecraft assembly and/or servicing.
Recent field experiments with commercial satellite imagery direct downlink.
Gonzalez, Anthony R; Amber, Samuel H
US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal-a mobile satellite downlink ground station-has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.
Pilot Fullerton reviews checklist on Aft Flight Deck Onorbit Station
NASA Technical Reports Server (NTRS)
1982-01-01
Pilot Fullerton, wearing communication kit assembly (assy) mini headset, reviews checklist and looks at remote manipulator system (RMS) closed circuit television (CCTV) views displayed on CCTV monitors at Aft Flight Deck Onorbit Station. Taken from the aft flight deck starboard side, Fullerton is seen in front of Panels A7 and A8 with remote manipulator syste (RMS) translation hand control (THC) and RMS rotation hand control (RHC) in the foreground and surrounded by University of Michigan (U of M) GO BLUE and United States Air Force - A Great Way of Life Decals.
Japanese experiment module (JEM)
NASA Technical Reports Server (NTRS)
Kato, T.
1986-01-01
Japanese hardware elements studied during the definition phase of phase B are described. The hardware is called JEM (Japanese Experiment Module) and will be attached to the Space Station core. JEM consists of a pressurized module, an exposed facility, a scientific/equipment airlock, a local remote manipulator, and experimental logistic module. With all those hardware elements JEM will accommodate general scientific and technology development research (some of the elements are to utilize the advantage of the microgravity environment), and also accommodate control panels for the Space Station Mobile Remote Manipulator System and attached payloads.
Kingfisher: a system for remote sensing image database management
NASA Astrophysics Data System (ADS)
Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.
2003-04-01
At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.
Sea State and Boundary Layer Physics of the Emerging Arctic Ocean
2013-09-01
meteorological stations; weather observations; upper-air (rawinsondes, balloons and tethered kit); turbulent fluxes; radiation; surface temperature...remote sensing, in-field remote sensing will be employed, using small unmanned aerial vehicles (UAV), balloons , and manned aircraft (funded by other
VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING ...
VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM ...
DETAIL VIEW OF TESTING EQUIPMENT, REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING SOUTHEAST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING ...
VIEW OF REMOTE MANIPULATOR SYSTEM LAB, ROOM NO. 1N4, FACING NORTH - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL
Archambault uses communication equipment in the U.S. Laboratory during Joint Operations
2007-06-12
S117-E-07097 (12 June 2007) --- Astronaut Lee Archambault, STS-117 pilot, uses a communication system near the controls of the Space Station Remote Manipulator System (SSRMS) or Canadarm2 in the Destiny laboratory of the International Space Station during flight day five activities while Space Shuttle Atlantis was docked with the station.
Winter bait stations as a multispecies survey tool
Lacy Robinson; Samuel A. Cushman; Michael K. Lucid
2017-01-01
Winter bait stations are becoming a commonly used technique for multispecies inventory and monitoring but a technical evaluation of their effectiveness is lacking. Bait stations have three components: carcass attractant, remote camera, and hair snare. Our 22,975 km2 mountainous study area was stratified with a 5 Ã 5 km sampling grid centered on northern Idaho and...
NASA Technical Reports Server (NTRS)
1983-01-01
The development and systems architectural requirements of the space station program are described. The system design is determined by user requirements. Investigated topics include physical and life science experiments, commercial utilization, U.S. national security, and remote space operations. The economic impact of the space station program is analyzed.
USDA-ARS?s Scientific Manuscript database
The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...
View of SSRMS during Expedition Six
2003-03-19
ISS006-E-39746 (19 March 2003) --- Backdropped against the blackness of space, the Space Station Remote Manipulator System (SSRMS) or Canadarm2 is pictured in this digital still cameras view taken from the International Space Station (ISS).
NASA Technical Reports Server (NTRS)
1995-01-01
Through the Earth Observation Commercial Applications Program (EOCAP) at Stennis Space Center, Applied Analysis, Inc. developed a new tool for analyzing remotely sensed data. The Applied Analysis Spectral Analytical Process (AASAP) detects or classifies objects smaller than a pixel and removes the background. This significantly enhances the discrimination among surface features in imagery. ERDAS, Inc. offers the system as a modular addition to its ERDAS IMAGINE software package for remote sensing applications. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant. Through the Earth Observation Commercial Applications Program (EOCAP), Ocean and Coastal Environmental Sensing (OCENS) developed SeaStation for marine users. SeaStation is a low-cost, portable, shipboard satellite groundstation integrated with vessel catch and product monitoring software. Linked to the Global Positioning System, SeaStation provides real time relationships between vessel position and data such as sea surface temperature, weather conditions and ice edge location. This allows the user to increase fishing productivity and improve vessel safety. EOCAP is a government/industry cooperative program designed to encourage commercial applications of remote sensing. Projects can run three years or more and funding is shared by NASA and the private sector participant.
The International Space Station: A Unique Platform For Terrestrial Remote Sensing
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Evans, Cynthia A.
2012-01-01
The International Space Station (ISS) became operational in November of 2000, and until recently remote sensing activities and operations have focused on handheld astronaut photography of the Earth. This effort builds from earlier NASA and Russian space programs (e.g. Evans et al. 2000; Glazovskiy and Dessinov 2000). To date, astronauts have taken more than 600,000 images of the Earth s land surface, oceans, and atmospheric phenomena from orbit using film and digital cameras as part two payloads: NASA s Crew Earth Observations experiment (http://eol.jsc.nasa.gov/) and Russia s Uragan experiment (Stefanov et al. 2012). Many of these images have unique attributes - varying look angles, ground resolutions, and illumination - that are not available from other remote sensing platforms. Despite this large volume of imagery and clear capability for Earth remote sensing, the ISS historically has not been perceived as an Earth observations platform by many remote sensing scientists. With the recent installation of new facilities and sophisticated sensor systems, and additional systems manifested and in development, that perception is changing to take advantage of the unique capabilities and viewing opportunities offered by the ISS.
Thermal discharges and their role in pending power plant regulatory decisions
NASA Technical Reports Server (NTRS)
Miller, M. H.
1978-01-01
Federal and state laws require the imminent retrofit of offstream condenser cooling to the newer steam electric stations. Waiver can be granted based on sound experimental data, demonstrating that existing once-through cooling will not adversely affect aquatic ecosystems. Conventional methods for monitoring thermal plumes, and some remote sensing alternatives, are reviewed, using on going work at one Maryland power plant for illustration.
Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5238 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Stations (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.
Perrin installs the MBS to the Mobile Transporter railcar during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5240 (11 June 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist, works on the installation of the Mobile Remote Servicer Base System (MBS) on the International Space Stations (ISS) railcar, the Mobile Transporter, during the second scheduled session of extravehicular activity (EVA) for the STS-111 mission. Perrin represents CNES, the French Space Agency.
Corbari, Chiara; Ravazzani, Giovanni; Galvagno, Marta; Cremonese, Edoardo; Mancini, Marco
2017-11-18
The Food and Agricultural Organization (FAO) method for potential evapotranspiration assessment is based on the crop coefficient, which allows one to relate the reference evapotranspiration of well irrigated grass to the potential evapotranspiration of specific crops. The method was originally developed for cultivated species based on lysimeter measurements of potential evapotranspiration. Not many applications to natural vegetated areas exist due to the lack of available data for these species. In this paper we investigate the potential of using evapotranspiration measurements acquired by micrometeorological stations for the definition of crop coefficient functions of natural vegetated areas and extrapolation to ungauged sites through remotely sensed data. Pastures, deciduous and evergreen forests have been considered and lower crop coefficient values are found with respect to FAO data.
Wake-up transceivers for structural health monitoring of bridges
NASA Astrophysics Data System (ADS)
Kumberg, T.; Kokert, J.; Younesi, V.; Koenig, S.; Reindl, L. M.
2016-04-01
In this article we present a wireless sensor network to monitor the structural health of a large-scale highway bridge in Germany. The wireless sensor network consists of several sensor nodes that use wake-up receivers to realize latency free and low-power communication. The sensor nodes are either equipped with very accurate tilt sensor developed by Northrop Grumman LITEF GmbH or with a Novatel OEM615 GNSS receiver. Relay nodes are required to forward measurement data to a base station located on the bridge. The base station is a gateway that transmits the local measurement data to a remote server where it can be further analyzed and processed. Further on, we present an energy harvesting system to supply the energy demanding GNSS sensor nodes to realize long term monitoring.
Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.
Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A
2009-07-01
An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.
Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics
Chuang, Ting-Wu; Henebry, Geoffrey M.; Kimball, John S.; VanRoekel-Patton, Denise L.; Hildreth, Michael B.; Wimberly, Michael C.
2012-01-01
Environmental variability has important influences on mosquito life cycles and understanding the spatial and temporal patterns of mosquito populations is critical for mosquito control and vector-borne disease prevention. Meteorological data used for model-based predictions of mosquito abundance and life cycle dynamics are typically acquired from ground-based weather stations; however, data availability and completeness are often limited by sparse networks and resource availability. In contrast, environmental measurements from satellite remote sensing are more spatially continuous and can be retrieved automatically. This study compared environmental measurements from the NASA Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and in situ weather station data to examine their ability to predict the abundance of two important mosquito species (Aedes vexans and Culex tarsalis) in Sioux Falls, South Dakota, USA from 2005 to 2010. The AMSR-E land parameters included daily surface water inundation fraction, surface air temperature, soil moisture, and microwave vegetation opacity. The AMSR-E derived models had better fits and higher forecasting accuracy than models based on weather station data despite the relatively coarse (25-km) spatial resolution of the satellite data. In the AMSR-E models, air temperature and surface water fraction were the best predictors of Aedes vexans, whereas air temperature and vegetation opacity were the best predictors of Cx. tarsalis abundance. The models were used to extrapolate spatial, seasonal, and interannual patterns of climatic suitability for mosquitoes across eastern South Dakota. Our findings demonstrate that environmental metrics derived from satellite passive microwave radiometry are suitable for predicting mosquito population dynamics and can potentially improve the effectiveness of mosquito-borne disease early warning systems. PMID:23049143
Near Real Time Applications for Maritime Situational Awareness
NASA Astrophysics Data System (ADS)
Schwarz, E.; Krause, D.; Berg, M.; Daedelow, H.; Maass, H.
2015-04-01
Applications to derive maritime value added products like oil spill and ship detection based on remote sensing SAR image data are being developed and integrated at the Ground Station Neustrelitz, part of the German Remote Sensing Data Center. Products of meteo-marine parameters like wind and wave will complement the product portfolio. Research and development aim at the implementation of highly automated services for operational use. SAR images are being used because of the possibility to provide maritime products with high spatial resolution over wide swaths and under all weather conditions. In combination with other information like Automatic Identification System (AIS) data fusion products are available to support the Maritime Situational Awareness.
Design description report for a photovoltaic power system for a remote satellite earth terminal
NASA Technical Reports Server (NTRS)
Marshall, N. A.; Naff, G. J.
1987-01-01
A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.
Telepresence work system concepts
NASA Technical Reports Server (NTRS)
Jenkins, L. M.
1985-01-01
Telepresence has been used in the context of the ultimate in remote manipulation where the operator is provided with the sensory feedback and control to perform highly dexterous tasks. The concept of a Telepresence Work Station (TWS) for operation in space is described. System requirements, concepts, and a development approach are discussed. The TWS has the potential for application on the Space Shuttle, on the Orbit Maneuver Vehicle, on an Orbit Transfer Vehicle, and on the Space Station. The TWS function is to perform satellite servicing tasks and construction and assembly operations in the buildup of large spacecraft. The basic concept is a pair of dexterous arms controlled from a remote station by an operation with feedback. It may be evolved through levels of supervisory control to a smart adaptive robotic system.
Remote manual operator for space station intermodule ventilation valve
NASA Technical Reports Server (NTRS)
Guyaux, James R.
1996-01-01
The Remote Manual Operator (RMO) is a mechanism used for manual operation of the Space Station Intermodule Ventilation (IMV) valve and for visual indication of valve position. The IMV is a butterfly-type valve, located in the ventilation or air circulation ducts of the Space Station, and is used to interconnect or isolate the various compartments. The IMV valve is normally operated by an electric motor-driven actuator under computer or astronaut control, but it can also be operated manually with the RMO. The IMV valve RMO consists of a handle with a deployment linkage, a gear-driven flexible shaft, and a linkage to disengage the electric motor actuator during manual operation. It also provides visual indication of valve position. The IMV valve RMO is currently being prepared for qualification testing.
Remote sensing for studying atmospheric aerosols in Malaysia
NASA Astrophysics Data System (ADS)
Kanniah, Kasturi D.; Kamarul Zaman, Nurul A. F.
2015-10-01
The aerosol system is Southeast Asia is complex and the high concentrations are due to population growth, rapid urbanization and development of SEA countries. Nevertheless, only a few studies have been carried out especially at large spatial extent and on a continuous basis to study atmospheric aerosols in Malaysia. In this review paper we report the use of remote sensing data to study atmospheric aerosols in Malaysia and document gaps and recommend further studies to bridge the gaps. Satellite data have been used to study the spatial and seasonal patterns of aerosol optical depth (AOD) in Malaysia. Satellite data combined with AERONET data were used to delineate different types and sizes of aerosols and to identify the sources of aerosols in Malaysia. Most of the aerosol studies performed in Malaysia was based on station-based PM10 data that have limited spatial coverage. Thus, satellite data have been used to extrapolate and retrieve PM10 data over large areas by correlating remotely sensed AOD with ground-based PM10. Realising the critical role of aerosols on radiative forcing numerous studies have been conducted worldwide to assess the aerosol radiative forcing (ARF). Such studies are yet to be conducted in Malaysia. Although the only source of aerosol data covering large region in Malaysia is remote sensing, satellite observations are limited by cloud cover, orbital gaps of satellite track, etc. In addition, relatively less understanding is achieved on how the atmospheric aerosol interacts with the regional climate system. These gaps can be bridged by conducting more studies using integrated approach of remote sensing, AERONET and ground based measurements.
Internet Based Remote Operations
NASA Technical Reports Server (NTRS)
Chamberlain, James
1999-01-01
This is the Final Report for the Internet Based Remote Operations Contract, has performed payload operations research support tasks March 1999 through September 1999. These tasks support the GSD goal of developing a secure, inexpensive data, voice, and video mission communications capability between remote payload investigators and the NASA payload operations team in the International Space Station (ISS) era. AZTek has provided feedback from the NASA payload community by utilizing its extensive payload development and operations experience to test and evaluate remote payload operations systems. AZTek has focused on use of the "public Internet" and inexpensive, Commercial-off-the-shelf (COTS) Internet-based tools that would most benefit "small" (e.g., $2 Million or less) payloads and small developers without permanent remote operations facilities. Such projects have limited budgets to support installation and development of high-speed dedicated communications links and high-end, custom ground support equipment and software. The primary conclusions of the study are as follows: (1) The trend of using Internet technology for "live" collaborative applications such as telescience will continue. The GSD-developed data and voice capabilities continued to work well over the "public" Internet during this period. 2. Transmitting multiple voice streams from a voice-conferencing server to a client PC to be mixed and played on the PC is feasible. 3. There are two classes of voice vendors in the market: - Large traditional phone equipment vendors pursuing integration of PSTN with Internet, and Small Internet startups.The key to selecting a vendor will be to find a company sufficiently large and established to provide a base voice-conferencing software product line for the next several years.
A monitoring system for vegetable greenhouses based on a wireless sensor network.
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
View of the extended SSRMS or Canadarm2 with cloudy view in the background
2003-01-09
ISS006-E-16947 (9 January 2003) --- The Space Station Remote Manipulator System (SSRMS) or Canadarm2 is pictured over the Bahama Islands in this digital still camera's view taken from the International Space Station (ISS).
Hogan, Robin
2008-01-15
Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
NASA Technical Reports Server (NTRS)
1979-01-01
A manned remote work station (MRWS) mission scenario, broken down into the three time phases was selected as the basis for analysis of the MRWS flight article requirements and concepts. The mission roles for the three time phases, supporting tradeoff and evaluation studies, was used to identify key issues requiring simulation. The MRWS is discussed in terms of its capability to perform such operations as support of Spacelab experiments, servicing and repair of satellites, and construction. Future considerations for the use of the MRWS are also given.
NASA Technical Reports Server (NTRS)
Barber, Bryan; Kahn, Laura; Wong, David
1990-01-01
Offshore operations such as oil drilling and radar monitoring require semisubmersible platforms to remain stationary at specific locations in the Gulf of Mexico. Ocean currents, wind, and waves in the Gulf of Mexico tend to move platforms away from their desired locations. A computer model was created to predict the station keeping requirements of a platform. The computer simulation uses remote sensing data from satellites and buoys as input. A background of the project, alternate approaches to the project, and the details of the simulation are presented.
International Space Station (ISS)
2002-06-01
Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Delivery of Fuel and Construction Materials to South Pole Station
1993-07-01
AID-A270 431 Delivery of Fuel and Construction Materials to South Pole Station Stephen L. DenHartog and George L. Blaisdell July 993 DTIC ELECT S OCT...South Pole Station, ideally with minimal impact on the current science and operational program. The new station will require the delivery of massive...amounts of construction materials to this remote site. The existing means of delivering material and fuel to the South Pole include the use of specialized
Remote Sensing Information Sciences Research Group, year four
NASA Technical Reports Server (NTRS)
Estes, John E.; Smith, Terence; Star, Jeffrey L.
1987-01-01
The needs of the remote sensing research and application community which will be served by the Earth Observing System (EOS) and space station, including associated polar and co-orbiting platforms are examined. Research conducted was used to extend and expand existing remote sensing research activities in the areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence, and vegetation analysis and modeling. Projects are discussed in detail.
Mapping the birch and grass pollen seasons in the UK using satellite sensor time-series.
Khwarahm, Nabaz R; Dash, Jadunandan; Skjøth, C A; Newnham, R M; Adams-Groom, B; Head, K; Caulton, Eric; Atkinson, Peter M
2017-02-01
Grass and birch pollen are two major causes of seasonal allergic rhinitis (hay fever) in the UK and parts of Europe affecting around 15-20% of the population. Current prediction of these allergens in the UK is based on (i) measurements of pollen concentrations at a limited number of monitoring stations across the country and (ii) general information about the phenological status of the vegetation. Thus, the current prediction methodology provides information at a coarse spatial resolution only. Most station-based approaches take into account only local observations of flowering, while only a small number of approaches take into account remote observations of land surface phenology. The systematic gathering of detailed information about vegetation status nationwide would therefore be of great potential utility. In particular, there exists an opportunity to use remote sensing to estimate phenological variables that are related to the flowering phenophase and, thus, pollen release. In turn, these estimates can be used to predict pollen release at a fine spatial resolution. In this study, time-series of MERIS Terrestrial Chlorophyll Index (MTCI) data were used to predict two key phenological variables: the start of season and peak of season. A technique was then developed to estimate the flowering phenophase of birch and grass from the MTCI time-series. For birch, the timing of flowering was defined as the time after the start of the growing season when the MTCI value reached 25% of the maximum. Similarly, for grass this was defined as the time when the MTCI value reached 75% of the maximum. The predicted pollen release dates were validated with data from nine pollen monitoring stations in the UK. For both birch and grass, we obtained large positive correlations between the MTCI-derived start of pollen season and the start of the pollen season defined using station data, with a slightly larger correlation observed for birch than for grass. The technique was applied to produce detailed maps for the flowering of birch and grass across the UK for each of the years from 2003 to 2010. The results demonstrate that the remote sensing-based maps of onset flowering of birch and grass for the UK together with the pollen forecast from the Meteorology Office and National Pollen and Aerobiology Research Unit (NPARU) can potentially provide more accurate information to pollen allergy sufferers in the UK. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, Don; Bennett, Toby; Short, Nicholas M., Jr.
1994-01-01
The Earth Observing System (EOS), part of a cohesive national effort to study global change, will deploy a constellation of remote sensing spacecraft over a 15 year period. Science data from the EOS spacecraft will be processed and made available to a large community of earth scientists via NASA institutional facilities. A number of these spacecraft are also providing an additional interface to broadcast data directly to users. Direct broadcast of real-time science data from overhead spacecraft has valuable applications including validation of field measurements, planning science campaigns, and science and engineering education. The success and usefulness of EOS direct broadcast depends largely on the end-user cost of receiving the data. To extend this capability to the largest possible user base, the cost of receiving ground stations must be as low as possible. To achieve this goal, NASA Goddard Space Flight Center is developing a prototype low-cost transportable ground station for EOS direct broadcast data based on Very Large Scale Integration (VLSI) components and pipelined, multiprocessing architectures. The targeted reproduction cost of this system is less than $200K. This paper describes a prototype ground station and its constituent components.
Design of a monitor and simulation terminal (master) for space station telerobotics and telescience
NASA Technical Reports Server (NTRS)
Lopez, L.; Konkel, C.; Harmon, P.; King, S.
1989-01-01
Based on Space Station and planetary spacecraft communication time delays and bandwidth limitations, it will be necessary to develop an intelligent, general purpose ground monitor terminal capable of sophisticated data display and control of on-orbit facilities and remote spacecraft. The basic elements that make up a Monitor and Simulation Terminal (MASTER) include computer overlay video, data compression, forward simulation, mission resource optimization and high level robotic control. Hardware and software elements of a MASTER are being assembled for testbed use. Applications of Neural Networks (NNs) to some key functions of a MASTER are also discussed. These functions are overlay graphics adjustment, object correlation and kinematic-dynamic characterization of the manipulator.
47 CFR Alphabetical Index - Part 74
Code of Federal Regulations, 2014 CFR
2014-10-01
... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...
47 CFR Alphabetical Index - Part 74
Code of Federal Regulations, 2013 CFR
2013-10-01
... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...
47 CFR Alphabetical Index - Part 74
Code of Federal Regulations, 2012 CFR
2012-10-01
... FM Broadcast Booster Stations FM translator and booster station information available on the Internet..., Directional (Aural STL/Relays) 74.536 Antenna location— LPTV/TV Translator 74.737 FM Translators/Boosters 74....902 FM Translators/Boosters 74.1202 Authorization of equipment— Aural Auxiliary 74.550 Remote Pickup...
47 CFR 97.205 - Repeater station.
Code of Federal Regulations, 2013 CFR
2013-10-01
... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...
47 CFR 97.205 - Repeater station.
Code of Federal Regulations, 2014 CFR
2014-10-01
... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...
47 CFR 97.205 - Repeater station.
Code of Federal Regulations, 2012 CFR
2012-10-01
... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...
47 CFR 97.205 - Repeater station.
Code of Federal Regulations, 2011 CFR
2011-10-01
... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...
47 CFR 97.205 - Repeater station.
Code of Federal Regulations, 2010 CFR
2010-10-01
... case, the licensee of the non-coordinated repeater has primary responsibility to resolve the interference. (d) A repeater may be automatically controlled. (e) Ancillary functions of a repeater that are available to users on the input channel are not considered remotely controlled functions of the station...
Magnetotellurics with long distance remote reference to reject DC railway noise
NASA Astrophysics Data System (ADS)
Hanstein, T.; Jiang, J.; Strack, K.; Ritter, O.
2014-12-01
Some parts of railway network in Europe is electrified by DC current. The return current in the ground is varying in space, time and power when the train is moving. Since the train traffic is active 24 hours, there is no quite time. The train signal is dominating for periods longer than 1 s and is a near field source. The transfer function of the magnetotelluric sounding (MT) is influenced by this near field source, the phase is going to zero and amplitude increase with slope 1 for longer periods. Since this dominating noise is present all day robust magnetotelluric processing technique to identify and remove outliers are not applicable and sufficient. The remote reference technique has successfully been applied for magnetotelluric soundings Combining an disturbed local MT data set with the data of the remote station, which is recording simultaneously the horizontal magnetic fields, can improve the data quality. Finding a good remote station during field survey is difficult and expensive. There is a permanent MT remote reference station in Germany. The set up and maintance is done by the GFZ - Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. The location is near Wittstock and has good signal-to-noise-ratio with low cutural noise, the ground is almost lD and recording since May 2010. The electric and magnetic field is continously recorded with 250 Hz sampling and induction coils. The magnetic field is also recorded with fluxgate magnetometers and 5 Hz sampling. The distance to the local MT site is about 600 km.
Baseline Testing of the Ultracapacitor Enhanced Photovoltaic Power Station
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.; Kolacz, John S.; Tavernelli, Paul F.
2001-01-01
The NASA John H. Glenn Research Center is developing an advanced ultracapacitor enhanced photovoltaic power station. Goals of this effort include maximizing photovoltaic power generation efficiency and extending the life of photovoltaic energy storage systems. Unique aspects of the power station include the use of a solar tracker, and ultracapacitors for energy storage. The photovoltaic power station is seen as a way to provide electric power in remote locations that would otherwise not have electric power, provide independence form utility systems, reduce pollution, reduce fossil fuel consumption, and reduce operating costs. The work was done under the Hybrid Power Management (HPM) Program, which includes the Hybrid Electric Transit Bus (HETB), and the E-Bike. The power station complements the E-Bike extremely well in that it permits the charging of the vehicle batteries in remote locations. Other applications include scientific research and medical power sources in isolated regions. The power station is an inexpensive approach to advance the state of the art in power technology in a practical application. The project transfers space technology to terrestrial use via nontraditional partners, and provides power system data valuable for future space applications. A description of the ultracapacitor enhanced power station, the results of performance testing and future power station development plans is the subject of this report. The report concludes that the ultracapacitor enhanced power station provides excellent performance, and that the implementation of ultracapacitors in the power system can provide significant performance improvements.
Army AL&T, October-December 2008
2008-12-01
during the WIN-T technology demonstration Nov. 8, 2007, at Naval Air Engineering Station , Lakehurst, NJ. (U.S. Army photo by Russ Messeroll.) 16 OCTOBER...worldwide communications architecture, enabling connectivity from the global backbone to regional networks to posts/camps/ stations , and, lastly, to...Force Tracker. • Tacticomp™ wireless and Global Positioning System(GPS)-enabled hand-held computer. • One Station Remote Video Terminal. • Counter
Virtual interactive presence and augmented reality (VIPAR) for remote surgical assistance.
Shenai, Mahesh B; Dillavou, Marcus; Shum, Corey; Ross, Douglas; Tubbs, Richard S; Shih, Alan; Guthrie, Barton L
2011-03-01
Surgery is a highly technical field that combines continuous decision-making with the coordination of spatiovisual tasks. We designed a virtual interactive presence and augmented reality (VIPAR) platform that allows a remote surgeon to deliver real-time virtual assistance to a local surgeon, over a standard Internet connection. The VIPAR system consisted of a "local" and a "remote" station, each situated over a surgical field and a blue screen, respectively. Each station was equipped with a digital viewpiece, composed of 2 cameras for stereoscopic capture, and a high-definition viewer displaying a virtual field. The virtual field was created by digitally compositing selected elements within the remote field into the local field. The viewpieces were controlled by workstations mutually connected by the Internet, allowing virtual remote interaction in real time. Digital renderings derived from volumetric MRI were added to the virtual field to augment the surgeon's reality. For demonstration, a fixed-formalin cadaver head and neck were obtained, and a carotid endarterectomy (CEA) and pterional craniotomy were performed under the VIPAR system. The VIPAR system allowed for real-time, virtual interaction between a local (resident) and remote (attending) surgeon. In both carotid and pterional dissections, major anatomic structures were visualized and identified. Virtual interaction permitted remote instruction for the local surgeon, and MRI augmentation provided spatial guidance to both surgeons. Camera resolution, color contrast, time lag, and depth perception were identified as technical issues requiring further optimization. Virtual interactive presence and augmented reality provide a novel platform for remote surgical assistance, with multiple applications in surgical training and remote expert assistance.
Wang, Min Zheng; Zhou, Guang Sheng
2016-06-01
Soil moisture is an important component of the soil-vegetation-atmosphere continuum (SPAC). It is a key factor to determine the water status of terrestrial ecosystems, and is also the main source of water supply for crops. In order to estimate soil moisture at different soil depths at a station scale, based on the energy balance equation and the water deficit index (WDI), a soil moisture estimation model was established in terms of the remote sensing data (the normalized difference vegetation index and surface temperature) and air temperature. The soil moisture estimation model was validated based on the data from the drought process experiment of summer maize (Zea mays) responding to different irrigation treatments carried out during 2014 at Gucheng eco-agrometeorological experimental station of China Meteorological Administration. The results indicated that the soil moisture estimation model developed in this paper was able to evaluate soil relative humidity at different soil depths in the summer maize field, and the hypothesis was reasonable that evapotranspiration deficit ratio (i.e., WDI) linearly depended on soil relative humidity. It showed that the estimation accuracy of 0-10 cm surface soil moisture was the highest (R 2 =0.90). The RMAEs of the estimated and measured soil relative humidity in deeper soil layers (up to 50 cm) were less than 15% and the RMSEs were less than 20%. The research could provide reference for drought monitoring and irrigation management.
Embedded DSP-based telehealth radar system for remote in-door fall detection.
Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique
2015-01-01
Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.
Web-based remote sensing of building energy performance
NASA Astrophysics Data System (ADS)
Martin, William; Nassiopoulos, Alexandre; Le Cam, Vincent; Kuate, Raphaël; Bourquin, Frédéric
2013-04-01
The present paper describes the design and the deployment of an instrumentation system enabling the energy monitoring of a building in a smart-grid context. The system is based on a network of wireless low power IPv6 sensors. Ambient temperature and electrical power for heating are measured. The management, storage, visualisation and treatment of the data is done through a web-based application that can be deployed as an online web service. The same web-based framework enables the acquisition of distant measured data such as those coming from a nearby weather station. On-site sensor and weather station data are then adequately treated based on inverse identification methods. The algorithms aim at determining the parameters of a numerical model suitable for a short-time horizon prediction of indoor climate. The model is based on standard multi-zone modelling assumptions and takes into account solar, airflow and conductive transfers. It was specially designed to render accurately inertia effects that are used in a demand-response strategy. All the hardware or software technologies that are used in the system are open and low cost so that they comply with the constraints of on-site deployment in buildings. The measured data as well as the model predictions can be accessed ubiquously through the web. This feature enables to consider a wide range of energy management applications at the disctrict, city or national level. The entire system has been deployed and tested in an experimental office building in Angers, France. It demonstrates the potential of ICT technologies to enable remotely controlled monitoring and surveillance in real time.
Space station common module network topology and hardware development
NASA Technical Reports Server (NTRS)
Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.
1990-01-01
Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.
Corn and sorghum phenotyping using a fixed-wing UAV-based remote sensing system
NASA Astrophysics Data System (ADS)
Shi, Yeyin; Murray, Seth C.; Rooney, William L.; Valasek, John; Olsenholler, Jeff; Pugh, N. Ace; Henrickson, James; Bowden, Ezekiel; Zhang, Dongyan; Thomasson, J. Alex
2016-05-01
Recent development of unmanned aerial systems has created opportunities in automation of field-based high-throughput phenotyping by lowering flight operational cost and complexity and allowing flexible re-visit time and higher image resolution than satellite or manned airborne remote sensing. In this study, flights were conducted over corn and sorghum breeding trials in College Station, Texas, with a fixed-wing unmanned aerial vehicle (UAV) carrying two multispectral cameras and a high-resolution digital camera. The objectives were to establish the workflow and investigate the ability of UAV-based remote sensing for automating data collection of plant traits to develop genetic and physiological models. Most important among these traits were plant height and number of plants which are currently manually collected with high labor costs. Vegetation indices were calculated for each breeding cultivar from mosaicked and radiometrically calibrated multi-band imagery in order to be correlated with ground-measured plant heights, populations and yield across high genetic-diversity breeding cultivars. Growth curves were profiled with the aerial measured time-series height and vegetation index data. The next step of this study will be to investigate the correlations between aerial measurements and ground truth measured manually in field and from lab tests.
Characterization of air pollution in Mexico City by remote sensing
NASA Astrophysics Data System (ADS)
Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang
2014-05-01
Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery
Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang
2018-01-01
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.
Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang
2018-04-25
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
2013-09-01
Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming
Evolution of the Space Station Robotic Manipulator
NASA Technical Reports Server (NTRS)
Razvi, Shakeel; Burns, Susan H.
2007-01-01
The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that this evolution can be accomplished while conducting critical on-orbit operations with minimal hardware changes.
MIT-NASA/KSC space life science experiments - A telescience testbed
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.
1990-01-01
Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.
Vicarious calibrations of HICO data acquired from the International Space Station.
Gao, Bo-Cai; Li, Rong-Rong; Lucke, Robert L; Davis, Curtiss O; Bevilacqua, Richard M; Korwan, Daniel R; Montes, Marcos J; Bowles, Jeffrey H; Corson, Michael R
2012-05-10
The Hyperspectral Imager for the Coastal Ocean (HICO) presently onboard the International Space Station (ISS) is an imaging spectrometer designed for remote sensing of coastal waters. The instrument is not equipped with any onboard spectral and radiometric calibration devices. Here we describe vicarious calibration techniques that have been used in converting the HICO raw digital numbers to calibrated radiances. The spectral calibration is based on matching atmospheric water vapor and oxygen absorption bands and extraterrestrial solar lines. The radiometric calibration is based on comparisons between HICO and the EOS/MODIS data measured over homogeneous desert areas and on spectral reflectance properties of coral reefs and water clouds. Improvements to the present vicarious calibration techniques are possible as we gain more in-depth understanding of the HICO laboratory calibration data and the ISS HICO data in the future.
Smoked aluminum track stations record flying squirrel occurrence
Martin G. Raphael; Cathy A. Taylor; Reginald H. Barrett
1986-01-01
Smoked aluminum track stations are a useful technique for studying patterns of abundance and distribution of northern flying squirrel (Glaucomys sabrinus). They are easily transported to remote field sites, allow permanent preservation of tracks, and yield frequency-of-occurrence information. A study in Douglas-fir (Pseseudotsuga menziesii...
46 CFR 154.1340 - Temperature measuring devices.
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...
46 CFR 154.1340 - Temperature measuring devices.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...
46 CFR 154.1340 - Temperature measuring devices.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...
46 CFR 154.1340 - Temperature measuring devices.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...
46 CFR 154.1340 - Temperature measuring devices.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Each device must actuate an audible and visual alarm at the cargo control station and a remote group... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment... cargo control station. (c) Except for independent tanks type C, each cargo containment system for a...
Voss and Helms at SSRMS controls in Destiny laboratory module
2001-04-22
ISS002-E-7043 (22 April 2001) --- Expedition Two flight engineers James S. Voss and Susan J. Helms work at the Canadarm2 / Space Station Remote Manipulator System (SSRMS) control station in the Destiny Laboratory. The image was recorded with a digital still camera.
2013-07-26
View of Space Station Remote Manipulator System (SSRMS) extended arm with a dark,cloudy Earth in the background. Photo was taken by an Expedition 36 crew member on board the International Space Station (ISS). Per Twitter message: #CanadaArm2 poised and ready to support capture of #HTV4 in just a couple weeks.
NASA Technical Reports Server (NTRS)
Estes, J. E.; Smith, T.; Star, J. L.
1986-01-01
Research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. The focus is on remote sensing and application for the Earth Observing System (Eos) and Space Station, including associated polar and co-orbiting platforms. The remote sensing research activities are being expanded, integrated, and extended into the areas of global science, georeferenced information systems, machine assissted information extraction from image data, and artificial intelligence. The accomplishments in these areas are examined.
Quarterly literature review of the remote sensing of natural resources
NASA Technical Reports Server (NTRS)
Fears, C. B. (Editor); Inglis, M. H. (Editor)
1977-01-01
The Technology Application Center reviewed abstracted literature sources, and selected document data and data gathering techniques which were performed or obtained remotely from space, aircraft or groundbased stations. All of the documentation was related to remote sensing sensors or the remote sensing of the natural resources. Sensors were primarily those operating within the 10 to the minus 8 power to 1 meter wavelength band. Included are NASA Tech Briefs, ARAC Industrial Applications Reports, U.S. Navy Technical Reports, U.S. Patent reports, and other technical articles and reports.
NASA Technical Reports Server (NTRS)
Cameron, Richard
2012-01-01
Dr. Cameron joined the Arctic Institute of North America in 1956 to participate in IGY-related activities in Antarctica. He served as Chief Glaciologist at Wilkes Station, on the coast of East Antarctica. This was a joint Navy-civilian operation consisting of 17 Navy personnel and 10 scientists. Specifically, his glaciological team consisted of two colleagues with whom he had worked before - Olav Loken in Norway in the summer of 1953, and John Molholm in Greenland in the summer of 1954. This team spent much of its time at a remote station established 80 kilometers (50 miles) inland, where they conducted both meteorological and glaciological studies. One of the glaciological studies entailed digging a 35-meter (approx.115-foot) vertical pit to study snow densification and stratigraphy. The assignment for the Navy Seabees was to first establish a joint US-NZ base at Cape Hallett and then go along the coast of East Antarctica and set up Wilkes Station.
Kwon, David; Bouffard, J Antonio; van Holsbeeck, Marnix; Sargsyan, Asot E; Hamilton, Douglas R; Melton, Shannon L; Dulchavsky, Scott A
2007-03-01
National Aeronautical and Space and Administration (NASA) researchers have optimized training methods that allow minimally trained, non-physician operators to obtain diagnostic ultrasound (US) images for medical diagnosis including musculoskeletal injury. We hypothesize that these techniques could be expanded to non-expert operators including National Hockey League (NHL) and Olympic athletic trainers to diagnose musculoskeletal injuries in athletes. NHL and Olympic athletic trainers received a brief course on musculoskeletal US. Remote guidance musculoskeletal examinations were conducted by athletic trainers, consisting of hockey groin hernia, knee, ankle, elbow, or shoulder evaluations. US images were transmitted to remote experts for interpretation. Groin, knee, ankle, elbow, or shoulder images were obtained on 32 athletes; all real-time US video stream and still capture images were considered adequate for diagnostic interpretation. This experience suggests that US can be expanded for use in locations without a high level of on-site expertise. A non-physician with minimal training can perform complex, diagnostic-quality examinations when directed by a remote-based expert.
NASA Astrophysics Data System (ADS)
Rembala, Richard; Ower, Cameron
2009-10-01
MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic operator on-orbit of some of the more routine tasks. Overall these proposed approaches when used effectively offer the potential to drive down operations overhead and allow more efficient and productive robotic operations.
Design of a Remote Infrared Images and Other Data Acquisition Station for outdoor applications
NASA Astrophysics Data System (ADS)
Béland, M.-A.; Djupkep, F. B. D.; Bendada, A.; Maldague, X.; Ferrarini, G.; Bison, P.; Grinzato, E.
2013-05-01
The Infrared Images and Other Data Acquisition Station enables a user, who is located inside a laboratory, to acquire visible and infrared images and distances in an outdoor environment with the help of an Internet connection. This station can acquire data using an infrared camera, a visible camera, and a rangefinder. The system can be used through a web page or through Python functions.
Serial network simplifies the design of multiple microcomputer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkes, D.
1981-01-01
Recently there has been a lot of interest in developing network communication schemes for carrying digital data between locally distributed computing stations. Many of these schemes have focused on distributed networking techniques for data processing applications. These applications suggest the use of a serial, multipoint bus, where a number of remote intelligent units act as slaves to a central or host computer. Each slave would be serially addressable from the host and would perform required operations upon being addressed by the host. Based on an MK3873 single-chip microcomputer, the SCU 20 is designed to be such a remote slave device.more » The capabilities of the SCU 20 and its use in systems applications are examined.« less
New technology applied to well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-11-01
Remote locations and increasingly complex geology require a higher level of sophistication in well-logging equipment and services. Applying technological advancements, well-logging contractors have developed a variety of new products and services designed to provide better quality data at reasonable prices. One of the most significant technological breakthroughs has been in satellite communications. Denver-based Western Tele-Communications Inc. is one of the few companies offering voice and data transmission services via satellite. Up to 9600 bits per second of realtime data is transmitted from terminals at remote wellsites through a main station in Denver to locations throughout the world. Because management inmore » separate offices can review well data simultaneously, critical operations decisions can be made more quickly.« less
Remote-area health care delivery through space technology - STARPAHC
NASA Technical Reports Server (NTRS)
Belasco, N.; Johnston, R. S.; Stonesifer, J. C.; Pool, S. L.
1977-01-01
A joint NASA/HEW project called Space Technology Applied to Rural Papage Advanced Health Care (STARPAHC) has been developed to deliver quality health care to inhabitants of remote geographical areas. The system consists of a hospital-based support control center, a fixed clinic, a mobile clinic, and a referral center with access to specialists via television links to the control center. A strategically located relay station routes television, voice, and data transmissions between system elements. A model system has been installed on the Papage Indian Reservation in Arizona, and is undergoing a 2-year evaluation. The system has been shown to be both effective and cost-efficient, and applications of the concept are planned for future manned spacecraft flights.
Schutte, Jamie L; McCue, Michael P; Parmanto, Bambang; McGonigle, John; Handen, Benjamin; Lewis, Allen; Pulantara, I Wayan; Saptono, Andi
2015-03-01
The Autism Diagnostic Observation Schedule (ADOS) Module 4 is an autism assessment designed for verbally fluent adolescents and adults. Because of a shortage of available clinical expertise, it can be difficult for adults to receive a proper autism spectrum disorder (ASD) diagnostic assessment. A potential option to address this shortage is remote assessment. The objective of this study was to examine the feasibility, usability, and reliability of administering the ADOS Module 4 remotely using the Versatile and Integrated System for Telerehabilitation (VISYTER). VISYTER consists of computer stations at the client site and clinician site for video communication and a Web portal for managing and coordinating the assessment process. Twenty-three adults with an ASD diagnosis participated in a within-subject crossover design study in which both a remote ADOS and a face-to-face ADOS were administered. After completing the remote ADOS, participants completed a satisfaction survey. Participant satisfaction with the remote ADOS delivery system was high. The kappa value was greater than 0.61 on 21 of 31 ADOS items. There was substantial agreement on ADOS classification (i.e., diagnosis) between assessments delivered face-to-face versus assessments delivered remotely (interclass coefficient=0.92). Non-agreement may have been due to outside factors or practice effect despite a washout period. The results of this study demonstrate that an autism assessment designed to be delivered face to face can be administered remotely using an integrated Web-based system with high levels of usability and reliability.
Optical Energy Transfer and Conversion System
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2015-01-01
An optical power transfer system comprising a fiber spooler, a fiber optic rotary joint mechanically connected to the fiber spooler, and an electrical power extraction subsystem connected to the fiber optic rotary joint with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, through the rotary joint, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy.
47 CFR 74.831 - Scope of service and permissible transmissions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Power Auxiliary Stations § 74.831 Scope of service and permissible transmissions. The license for a low power auxiliary station authorizes the transmission of cues and orders to production personnel and... transmission of comments, interviews, and reports from the scene of a remote broadcast. Low power auxiliary...
View of the SSRMS/Canadarm2 with blue and white Earth in the background during Expedition Six
2003-04-06
ISS006-E-43973 (6 April 2003) --- Backdropped against a blue and white Earth, the Space Station Remote Manipulator System (SSRMS) or Canadarm2 is pictured in this digital still cameras view taken from the International Space Station (ISS).
JPL space station telerobotic engineering prototype development FY 91 status/achievements
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne
1991-01-01
The topics covered are presented in view graph form and include: (1) streamlining intravehicular activity (IVA) teleoperation activities on the Space Station Freedom (SSF); (2) enhancing SSF utilization during the man-tended phase; (3) telerobotic ground remote operations (TGRO); and (4) advanced telerobotics system technology (shared control).
Photographic copy of photograph (original print in possession of James ...
Photographic copy of photograph (original print in possession of James E. Zelinski, Earth Tech, Huntsville, AL). Photographer unknown. Aerial view (southwest to northeast) of remote sprint launch site #2, nearing completion. The RLOB has been earth-mounded. The limited access sentry station can be seen in the PAR right foreground, behind it are the waste stabilization ponds. Barely discernible is the exclusion area sentry station at the entrance to the sprint field - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 2, West of Mile Marker 220 on State Route 1, 6.0 miles North of Langdon, ND, Nekoma, Cavalier County, ND
NASA Technical Reports Server (NTRS)
1983-01-01
It is argued that there would be broad scientific benefit in establishing in Alaska an imaging radar receiving station that would collect data from the European Space Agency's Remote Sensing Satellite, ERS-1. This station would acquire imagery of the ice cover from the American territorial waters of the Beaufort, Chukchi, and Bering Seas. This station, in conjunction with similar stations proposed for Kiruna, Sweden, and Prince Albert, Canada would provide synoptic coverage of nearly the entire Arctic. The value of such coverage to aspects of oceanography, geology, glaciology, and botany is considered.
High-autonomy control of space resource processing plants
NASA Technical Reports Server (NTRS)
Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue
1993-01-01
A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.
The National Spallation Neutron Source Target Station.
NASA Astrophysics Data System (ADS)
Gabriel, T. A.
1997-05-01
The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.
Multi-sun-synchronous (MSS) orbits for earth observation
NASA Astrophysics Data System (ADS)
Ulivieri, Carlo; Anselmo, Luciano
1992-08-01
A case study is outlined for a remote-sensing mission at low and middle latitudes based on multi-sun-synchronous (MSS) orbits. The scenario involves the use of small payloads in low-earth posigrade orbits that would overfly the Mediterranean region. A 600-kg spacecraft is considered in an orbit that is 571 km in altitude and at an inclination of 42.5 deg. The orbit is analyzed in terms of mission characteristics, and two years of operation is shown to be feasible with a fuel-consumption rate of less than three kg/yr of hydrazine. The mission could be based on the use of a Scout solid-propellant rockets into an MSS orbit, and only a limited number of ground stations are required for good data collection. A remote-sensing mission at low/middle latitudes is shown to be efficient in terms of both revisit frequency, fuel consumption, and data acquisition.
Data Assimilation Results from PLASMON
NASA Astrophysics Data System (ADS)
Jorgensen, A. M.; Lichtenberger, J.; Duffy, J.; Friedel, R. H.; Clilverd, M.; Heilig, B.; Vellante, M.; Manninen, J. K.; Raita, T.; Rodger, C. J.; Collier, A.; Reda, J.; Holzworth, R. H.; Ober, D. M.; Boudouridis, A.; Zesta, E.; Chi, P. J.
2013-12-01
VLF and magnetometer observations can be used to remotely sense the plasmasphere. VLF whistler waves can be used to measure the electron density and magnetic Field Line Resonance (FLR) measurements can be used to measure the mass density. In principle it is then possible to remotely map the plasmasphere with a network of ground-based stations which are also less expensive and more permanent than satellites. The PLASMON project, funded by the EU FP-7 program, is in the process of doing just this. A large number of ground-based observations will be input into a data assimilative framework which models the plasmasphere structure and dynamics. The data assimilation framework combines the Ensemble Kalman Filter with the Dynamic Global Core Plasma Model. In this presentation we will describe the plasmasphere model, the data assimilation approach that we have taken, PLASMON data and data assimilation results for specific events.
Antarctic station life: The first 15 years of mixed expeditions to the Antarctic
NASA Astrophysics Data System (ADS)
Sarris, Aspa
2017-02-01
This study examined the experiences of women who lived and worked on remote and isolated Antarctic stations for up to 15 months at a time. The study employed purposeful sampling and a longitudinal - processual approach to study women's experiences over the first 15 years of mixed gender Antarctic expeditions. The retrospective analysis was based on a semi-structured interview administered to 14 women upon their return to Australia. The results showed that women referred to the natural physical Antarctic environment as one of the best aspects of their experience and the reason they would recommend the Antarctic to their friends as a good place to work. In describing the worst aspect of their experience, women referred to aspects of Antarctic station life, including: (i) the male dominated nature of station culture; (ii) the impact of interpersonal conflict, including gender based conflict and friction between scientists and trades workers; and (iii) the lack of anonymity associated with living and working with the same group of individuals, mainly men, for up to 12 months or more. The results are discussed within the context of the evolution of Antarctic station culture and recommendations are made in terms of the demography of expeditions, expeditioner selection and recruitment and the ongoing monitoring of Antarctic station culture. The study presents a framework that can be applied to groups and teams living and working in analogous isolated, confined and extreme work environments, including outer space missions.
Remotely operated high pressure valve protects test personnel
NASA Technical Reports Server (NTRS)
Howland, B. T.
1967-01-01
High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.
Legacy System Improvements for the Objective Force
2001-08-14
Less Than 11 lbs • M249 Short Barrel/ Buttstock •Reduced size/length • Com Remotely Op Wpn Sys •Fire Under Armor w/o Turret • IAV Program Spt •Primary...concepts being evaluated Common Remotely Operated Weapons Station(CROWS) Benefits: • Permits under armor operation of crew served weapons for suppression of
Ames life science telescience testbed evaluation
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Johnson, Vicki; Vogelsong, Kristofer H.; Froloff, Walt
1989-01-01
Eight surrogate spaceflight mission specialists participated in a real-time evaluation of remote coaching using the Ames Life Science Telescience Testbed facility. This facility consisted of three remotely located nodes: (1) a prototype Space Station glovebox; (2) a ground control station; and (3) a principal investigator's (PI) work area. The major objective of this project was to evaluate the effectiveness of telescience techniques and hardware to support three realistic remote coaching science procedures: plant seed germinator charging, plant sample acquisition and preservation, and remote plant observation with ground coaching. Each scenario was performed by a subject acting as flight mission specialist, interacting with a payload operations manager and a principal investigator expert. All three groups were physically isolated from each other yet linked by duplex audio and color video communication channels and networked computer workstations. Workload ratings were made by the flight and ground crewpersons immediately after completing their assigned tasks. Time to complete each scientific procedural step was recorded automatically. Two expert observers also made performance ratings and various error assessments. The results are presented and discussed.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
Changes in the relation between snow station observations and basin scale snow water resources
NASA Astrophysics Data System (ADS)
Sexstone, G. A.; Penn, C. A.; Clow, D. W.; Moeser, D.; Liston, G. E.
2017-12-01
Snow monitoring stations that measure snow water equivalent or snow depth provide fundamental observations used for predicting water availability and flood risk in mountainous regions. In the western United States, snow station observations provided by the Natural Resources Conservation Service Snow Telemetry (SNOTEL) network are relied upon for forecasting spring and summer streamflow volume. Streamflow forecast accuracy has declined for many regions over the last several decades. Changes in snow accumulation and melt related to climate, land use, and forest cover are not accounted for in current forecasts, and are likely sources of error. Therefore, understanding and updating relations between snow station observations and basin scale snow water resources is crucial to improve accuracy of streamflow prediction. In this study, we investigated the representativeness of snow station observations when compared to simulated basin-wide snow water resources within the Rio Grande headwaters of Colorado. We used the combination of a process-based snow model (SnowModel), field-based measurements, and remote sensing observations to compare the spatiotemporal variability of simulated basin-wide snow accumulation and melt with that of SNOTEL station observations. Results indicated that observations are comparable to simulated basin-average winter precipitation but overestimate both the simulated basin-average snow water equivalent and snowmelt rate. Changes in the representation of snow station observations over time in the Rio Grande headwaters were also investigated and compared to observed streamflow and streamflow forecasting errors. Results from this study provide important insight in the context of non-stationarity for future water availability assessments and streamflow predictions.
NASA Astrophysics Data System (ADS)
Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.
2008-12-01
Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.
Autonomous Satellite Command and Control through the World Wide Web: Phase 3
NASA Technical Reports Server (NTRS)
Cantwell, Brian; Twiggs, Robert
1998-01-01
NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.
NASA Technical Reports Server (NTRS)
Meintel, A. J., Jr.; Will, R. W.
1985-01-01
This presentation consists of four sections. The first section is a brief introduction to the NASA Space Program. The second portion summarized the results of a congressionally mandated study of automation and robotics for space station. The third portion presents a number of concepts for space teleoperator systems. The remainder of the presentation describes Langley Research Center's teleoperator/robotic research to support remote space operations.
International Space Station Future Correlation Analysis Improvements
NASA Technical Reports Server (NTRS)
Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael
2018-01-01
Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.
STS-111 Crew Interviews: Paul Lockhart, Pilot
NASA Technical Reports Server (NTRS)
2002-01-01
STS-111 Pilot Paul Lockhart is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. He discusses the following mission goals: the crew transfer activities (the Expedition 5 crew is replacing the Expedition 4 crew on the International Space Station (ISS)), the delivery of the payloads which includes the Mobile Remote Servicer Base System (MBS), and the planned extravehicular activities (EVAs) which include attaching the MBS to the ISS and repairing the station's robot arm. He describes in-flight procedures for launch, reentry and docking with the ISS. He ends with his thoughts on the role of international cooperation in building and maintaining ISS.
Internationalization of the Space Station
NASA Technical Reports Server (NTRS)
Lottmann, R. V.
1985-01-01
Attention is given to the NASA Space Station system elements whose production is under consideration by potential foreign partners. The ESA's Columbus Program declaration encompasses studies of pressurized modules, unmanned payload carriers, and ground support facilities. Canada has expressed interest in construction and servicing facilities, solar arrays, and remote sensing facilities. Japanese studies concern a multipurpose experimental module concept. Each of these foreign investments would expand Space Station capabilities and lay the groundwork for long term partnerships.
Kuipers replaces the ESEM-1 with new ESEM in the U.S. Laboratory
2011-12-28
ISS030-E-033367 (28 Dec. 2011) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, replaces the faulty Exchangeable Standard Electronic Module 1 (ESEM-1) behind the front panel of the Microgravity Science Glovebox Remote Power Distribution Assembly (MSG RPDA) with the new spare. The ESEM is used to distribute station main power to the entire MSG facility.
Teleneurosonology: a novel application of transcranial and carotid ultrasound.
Rubin, Mark N; Barrett, Kevin M; Freeman, W David; Lee Iannotti, Joyce K; Channer, Dwight D; Rabinstein, Alejandro A; Demaerschalk, Bart M
2015-03-01
To demonstrate the technical feasibility of interfacing transcranial Doppler (TCD) and carotid "duplex" ultrasonography (CUS) peripherals with telemedicine end points to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. We performed remote TCD and CUS examinations on a healthy, volunteer employee from our institution without known cerebrovascular disease. The telemedicine end point was stationed in our institution's hospital where the neurosonology examinations took place and the control station was in a dedicated telemedicine room in a separate building. The examinations were performed by a postgraduate level neurohospitalist trainee (M.N.R.) and interpreted by an attending vascular neurologist, both with experience in the performance and interpretation of TCD and CUS. Spectral waveform and duplex ultrasound data were successfully transmitted from TCD and CUS instruments through a telemedicine end point to a remote reviewer at a control station. Image quality was preserved in all cases, and technical failures were not encountered. This proof-of-concept study demonstrates the technical feasibility of interfacing TCD and CUS peripherals with a telemedicine end point to provide real-time spectral waveform and duplex imaging data for remote review and interpretation. Medical diagnostic and telemedicine devices should be equipped with interfaces that allow simple transmission of high-quality audio and video information from the medical devices to the telemedicine technology. Further study is encouraged to determine the clinical impact of teleneurosonology. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Unmanned and Unattended Response Capability for Homeland Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
BENNETT, PHIL C.
2002-11-01
An analysis was conducted of the potential for unmanned and unattended robotic technologies for forward-based, immediate response capabilities that enables access and controlled task performance. The authors analyze high-impact response scenarios in conjunction with homeland security organizations, such as the NNSA Office of Emergency Response, the FBI, the National Guard, and the Army Technical Escort Unit, to cover a range of radiological, chemical and biological threats. They conducted an analysis of the potential of forward-based, unmanned and unattended robotic technologies to accelerate and enhance emergency and crisis response by Homeland Defense organizations. Response systems concepts were developed utilizing new technologiesmore » supported by existing emerging threats base technologies to meet the defined response scenarios. These systems will pre-position robotic and remote sensing capabilities stationed close to multiple sites for immediate action. Analysis of assembled systems included experimental activities to determine potential efficacy in the response scenarios, and iteration on systems concepts and remote sensing and robotic technologies, creating new immediate response capabilities for Homeland Defense.« less
2011-06-29
Action and Alternatives 9 2.5 Identification of the Preferred Action 10 3.0 AFFECTED ENVIRONMENT 13 3.1 New Boston Air Force Station 13 3.1.1 Air...the alternative actions is presented in Section 2.4. Finally, identification of the Preferred Action is presented in Section 2.5. 2.1 PROPOSED...presented in Chapter 4.0 of this EA. 2.5 IDENTIFICATION OF THE PREFERRED ACTION The USAF’s Preferred Action is to implement the Proposed Action at
Fincke, E Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E; Hamilton, Douglas R; Martin, David; Melton, Shannon L; McFarlin, Kellie; Dulchavsky, Scott A
2005-02-01
Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.
NASA Technical Reports Server (NTRS)
Fincke, E. Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E.; Hamilton, Douglas R.; Martin, David; Melton, Shannon L.; McFarlin, Kellie; Dulchavsky, Scott A.
2005-01-01
Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally trained operators by using remote guidance. This technique can be used to evaluate shoulder integrity in symptomatic crewmembers after strenuous extravehicular activities or to monitor microgravity-associated changes in musculoskeletal anatomy. Just-in-time training, combined with remote experienced physician guidance, may provide a useful approach to complex medical tasks performed by nonexperienced personnel in a variety of remote settings, including current and future space programs. (c) RSNA, 2004.
In-service communication channel sensing based on reflectometry for TWDM-PON systems
NASA Astrophysics Data System (ADS)
Iida, Daisuke; Kuwano, Shigeru; Terada, Jun
2014-05-01
Many base stations are accommodated in TWDM-PON based mobile backhaul and fronthaul networks for future radio access, and failed connections in an optical network unit (ONU) wavelength channel severely degrade system performance. A cost effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue we propose a reflectometry-based remote sensing method that provides wavelength channel information with the optical line terminal (OLT)-ONU distance. The method realizes real-time monitoring of ONU wavelength channels without signal quality degradation. Experimental results show it achieves wavelength channel distinction with high distance resolution.
Remote sensing; Proceedings of the Meeting, Orlando, FL, Apr. 3, 4, 1986
NASA Technical Reports Server (NTRS)
Menzies, Robert T. (Editor)
1986-01-01
Advances in optical technology for remote sensing are discussed in reviews and reports of recent experimental investigations. Topics examined include industrial applications, laser diagnostics for combustion research, laser remote sensing for ranging and altimetry, and imaging systems for terrestrial remote sensing from space. Consideration is given to LIF in forensic diagnostics, time-resolved laser-induced-breakdown spectrometry for rapid analysis of alloys, CARS in practical combustion environments, airborne inertial surveying using laser tracking and profiling techniques, earth-resources instrumentation for the EOS polar platform of the Space Station, and the SAR for EOS.
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Le Pichon, Alexis; Vergoz, Julien; Herry, Pascal; Lalande, Jean-Marie; Lee, Hee-il; Che, Il-Young; Rybin, Alexander
2011-02-01
Sarychev Peak (SP), located on Ostrov Matua, Kurils, erupted explosively during 11-16 June 2009. Whereas remote seismic stations did not record the eruption, we report atmospheric infrasound (acoustic wave ~ 0.01-20 Hz) observations of the eruption at seven infrasound arrays located at ranges of ~ 640-6400 km from SP. The infrasound arrays consist of stations of the International Monitoring System global infrasound network and additional stations operated by the Korea Institute of Geoscience and Mineral Resources. Signals at the three closest recording stations IS44 (643 km, Petropavlovsk-Kamchatskiy, Kamchatka Krai, Russia), IS45 (1690 km, Ussuriysk, Russia), and IS30 (1774 km, Isumi, Japan) represent a detailed record of the explosion chronology that correlates well with an eruption chronology based on satellite data (TERRA, NOAA, MTSAT). The eruption chronology inferred from infrasound data has a higher temporal resolution than that obtained with satellite data. Atmosphere-corrected infrasonic source locations determined from backazimuth cross-bearings of first-arrivals have a mean centroid ~ 15 km from the true location of SP. Scatter in source locations of up to ~ 100 km result from currently unresolved details of atmospheric propagation and source complexity. We observe systematic time-variations in trace-velocity, backazimuth deviation, and signal frequency content at IS44. Preliminary investigation of atmospheric propagation from SP to IS44 indicates that these variations can be attributed to solar tide variability in the thermosphere. It is well known that additional information about active volcanic processes can be learned by deploying infrasonic sensors with seismometers at erupting volcanoes. This study further highlights the significant potential of infrasound arrays for monitoring volcanic regions such as the Kurils that have only sparse seismic network coverage.
View of the extended SSRMS or Canadarm2 with cloudy view in the background
2003-01-09
ISS006-E-16953 (9 January 2003) --- The Space Station Remote Manipulator System (SSRMS) or Canadarm2 is backdropped against the Caribbean Sea in this digital still camera's view taken from the International Space Station (ISS). Puerto Rico is in the left side of the frame.
Helms with laptop in Destiny laboratory module
2001-03-30
ISS002-E-5478 (30 March 2001) --- Astronaut Susan J. Helms, Expedition Two flight engineer, works at a laptop computer in the U.S. Laboratory / Destiny module of the International Space Station (ISS). The Space Station Remote Manipulator System (SSRMS) control panel is visible to Helms' right. This image was recorded with a digital still camera.
Time synchronization via lunar radar.
NASA Technical Reports Server (NTRS)
Higa, W. H.
1972-01-01
The advent of round-trip radar measurements has permitted the determination of the ranges to the nearby planets with greater precision than was previously possible. When the distances to the planets are known with high precision, the propagation delay for electromagnetic waves reflected by the planets may be calculated and used to synchronize remotely located clocks. Details basic to the operation of a lunar radar indicate a capability for clock synchronization to plus or minus 20 microsec. One of the design goals for this system was to achieve a simple semiautomatic receiver for remotely located tracking stations. The lunar radar system is in operational use for deep space tracking at Jet Propulsion Laboratory and synchronizes five world-wide tracking stations with a master clock at Goldstone, Calif. Computers are programmed to correct the Goldstone transmissions for transit time delay and Doppler shifts so as to be received on time at the tracking stations; this dictates that only one station can be synchronized at a given time period and that the moon must be simultaneously visible to both the transmitter and receiver for a minimum time of 10 min.-
Lifting Scheme DWT Implementation in a Wireless Vision Sensor Network
NASA Astrophysics Data System (ADS)
Ong, Jia Jan; Ang, L.-M.; Seng, K. P.
This paper presents the practical implementation of a Wireless Visual Sensor Network (WVSN) with DWT processing on the visual nodes. WVSN consists of visual nodes that capture video and transmit to the base-station without processing. Limitation of network bandwidth restrains the implementation of real time video streaming from remote visual nodes through wireless communication. Three layers of DWT filters are implemented to process the captured image from the camera. With having all the wavelet coefficients produced, it is possible just to transmit the low frequency band coefficients and obtain an approximate image at the base-station. This will reduce the amount of power required in transmission. When necessary, transmitting all the wavelet coefficients will produce the full detail of image, which is similar to the image captured at the visual nodes. The visual node combines the CMOS camera, Xilinx Spartan-3L FPGA and wireless ZigBee® network that uses the Ember EM250 chip.
A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohachek, Randolph Charles
2015-09-01
The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactorsmore » is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.« less
NASA Astrophysics Data System (ADS)
Mangold, Alexander; Laffineur, Quentin; De Backer, Hugo; Herenz, Paul; Wex, Heike; Gossart, Alexandra; Souverijns, Niels; Gorodetskaya, Irina; Van Lipzig, Nicole
2016-04-01
Since 2010, several complementary ground-based instruments for measuring the aerosol composition of the Antarctic atmosphere have been operated at the Belgian Antarctic research station Princess Elisabeth, in Dronning Maud Land, East Antarctica (71.95° S, 23.35° E, 1390 m asl.). In addition, three ground-based remote sensing instruments for cloud and precipitation observations have been installed for continuous operation, including a ceilometer (cloud base height, type, vertical extent), a 24 Ghz micro-rain radar (vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (cloud base temperature). The station is inhabited from November to end of February and operates under remote control during the other months. In this contribution, the general aerosol and cloud condensation nuclei (CCN) properties will be described with a special focus on new particle formation events and around precipitation events. New particle formation events are important for the atmospheric aerosol budget and they also show that aerosols are not only transported to Antarctica but are also produced there, also inland. Aerosols are essential for cloud formation and therefore also for precipitation, which is the only source for mass gain of the Antarctic ice sheet. Measured aerosol properties comprise size distribution, total number, total mass concentration, mass concentration of light-absorbing aerosol and absorption coefficient and total scattering coefficient. In addition, a CCN counter has been operated during austral summers 2013/14, 2014/15 and 2015/16. The baseline total number concentration N-total was around some hundreds of particles/cm3. During new particle formation events N-total increased to some thousands of particles/cm3. Simultaneous measurements of N-total, size distribution and CCN number revealed that mostly the number of particles smaller than 100 nm increased and that the concentration of cloud condensation nuclei increased only very weakly, respectively. Further analysis of the CCN data indicate that the aerosol measured at Princess Elisabeth station consisted mainly of material with a hygroscopicity close to that of sulfate. The measured wavelength-dependent aerosol absorption and scattering coefficients give further insight on the aerosol type, showing that mainly strongly scattering aerosol dominates. However, the fraction of light-absorbing aerosol increased during the passage of some extra-tropical cyclones or frontal systems, indicating the presence of aged, long-range transported aerosol. The characterisation of the atmospheric aerosol at Princess Elisabeth station will be used in this contribution to compare it with simultaneously measured precipitation observations.
NASA Astrophysics Data System (ADS)
Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong
2017-02-01
There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.
Indicators of international remote sensing activities
NASA Technical Reports Server (NTRS)
Spann, G. W.
1977-01-01
The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.
Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1976-01-01
Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.
NASA Astrophysics Data System (ADS)
Li, J.; Liu, L. Q.; Xu, X. D.; Liu, T.; Li, Q.; Hu, Z. J.; Wang, B. M.; Xiong, L. Y.; Dong, B.; Yan, T.
A 40l/h Helium Liquefier has been commissioned by the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. A measurement and control system based on Siemens PLC S7-300 for this Helium Liquefier is developed. Proper sensors are selected, for example, three types of transmitters are adopted respectively according to detailed temperature measurement requirements. Siemens S7-300 PLC CPU315-2PN/DP operates as a master station and three sets of ET200 M DP remote expand I/O operate asslave stations. Profibus-DP field communication is used between the master station and the slave stations. The upper computer HMI(Human Machine Interface) is compiled using Siemens configuration software WinCC V7.0. The upper computer communicates with PLC by means of industrial Ethernet. A specific control logic for this Helium Liquefier is developed. The control of the suction and discharge pressures of the compressor and the control of the turbo-expanders loop are being discussed in this paper. Following the commissioning phase, the outlet temperature of the second stage turbine has reached 8.6K and the temperature before the throttle valve has reached 13.1K.
NASA Astrophysics Data System (ADS)
Li, J.; Xiong, L. Y.; Peng, N.; Dong, B.; Wang, P.; Liu, L. Q.
2014-01-01
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemens S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Xiong, L. Y.; Peng, N.
2014-01-29
An experimental platform for cryogenic Helium gas bearing turbo-expanders is established at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. This turbo-expander experimental platform is designed for performance testing and experimental research on Helium turbo-expanders with different sizes from the liquid hydrogen temperature to the room temperature region. A measurement and control system based on Siemens PLC S7-300 for this turbo-expander experimental platform is developed. Proper sensors are selected to measure such parameters as temperature, pressure, rotation speed and air flow rate. All the collected data to be processed are transformed and transmitted to S7-300 CPU. Siemensmore » S7-300 series PLC CPU315-2PN/DP is as master station and two sets of ET200M DP remote expand I/O is as slave station. Profibus-DP field communication is established between master station and slave stations. The upper computer Human Machine Interface (HMI) is compiled using Siemens configuration software WinCC V6.2. The upper computer communicates with PLC by means of industrial Ethernet. Centralized monitoring and distributed control is achieved. Experimental results show that this measurement and control system has fulfilled the test requirement for the turbo-expander experimental platform.« less
Information management system breadboard data acquisition and control system.
NASA Technical Reports Server (NTRS)
Mallary, W. E.
1972-01-01
Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.
Remote sensing of surface currents with single shipborne high-frequency surface wave radar
NASA Astrophysics Data System (ADS)
Wang, Zhongbao; Xie, Junhao; Ji, Zhenyuan; Quan, Taifan
2016-01-01
High-frequency surface wave radar (HFSWR) is a useful technology for remote sensing of surface currents. It usually requires two (or more) stations spaced apart to create a two-dimensional (2D) current vector field. However, this method can only obtain the measurements within the overlapping coverage, which wastes most of the data from only one radar observation. Furthermore, it increases observation's costs significantly. To reduce the number of required radars and increase the ocean area that can be measured, this paper proposes an economical methodology for remote sensing of the 2D surface current vector field using single shipborne HFSWR. The methodology contains two parts: (1) a real space-time multiple signal classification (MUSIC) based on sparse representation and unitary transformation techniques is developed for measuring the radial currents from the spreading first-order spectra, and (2) the stream function method is introduced to obtain the 2D surface current vector field. Some important conclusions are drawn, and simulations are included to validate the correctness of them.
Current NASA Earth Remote Sensing Observations
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; Myers, Orrin;
2011-01-01
This slide presentation reviews current NASA Earth Remote Sensing observations in specific reference to improving public health information in view of pollen sensing. While pollen sampling has instrumentation, there are limitations, such as lack of stations, and reporting lag time. Therefore it is desirable use remote sensing to act as early warning system for public health reasons. The use of Juniper Pollen was chosen to test the possibility of using MODIS data and a dust transport model, Dust REgional Atmospheric Model (DREAM) to act as an early warning system.
An airborne remote sensing system for urban air quality
NASA Technical Reports Server (NTRS)
Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.
1974-01-01
Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.
Space transportation, satellite services, and space platforms
NASA Technical Reports Server (NTRS)
Disher, J. H.
1979-01-01
The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).
Medical care capabilities for Space Station Freedom: A phase approach
NASA Technical Reports Server (NTRS)
Doarn, C. R.; Lloyd, C. W.
1992-01-01
As a result of Congressional mandate Space Station Freedom (SSF) was restructured. This restructuring activity has affected the capabilities for providing medical care on board the station. This presentation addresses the health care facility to be built and used on the orbiting space station. This unit, named the Health Maintenance Facility (HMF) is based on and modeled after remote, terrestrial medical facilities. It will provide a phased approach to health care for the crews of SSF. Beginning with a stabilization and transport phase, HMF will expand to provide the most advanced state of the art therapeutic and diagnostic capabilities. This presentation details the capabilities of such a phased HMF. As Freedom takes form over the next decade there will be ever-increasing engineering and scientific developmental activities. The HMF will evolve with this process until it eventually reaches a mature, complete stand-alone health care facility that provides a foundation to support interplanetary travel. As man's experience in space continues to grow so will the ability to provide advanced health care for Earth-orbital and exploratory missions as well.
International Space Station (ISS)
2002-06-11
The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).
Water environmental management with the aid of remote sensing and GIS technology
NASA Astrophysics Data System (ADS)
Chen, Xiaoling; Yuan, Zhongzhi; Li, Yok-Sheung; Song, Hong; Hou, Yingzi; Xu, Zhanhua; Liu, Honghua; Wai, Onyx W.
2005-01-01
Water environment is associated with many disciplinary fields including sciences and management which makes it difficult to study. Timely observation, data getting and analysis on water environment are very important for decision makers who play an important role to maintain the sustainable development. This study focused on developing a plateform of water environment management based on remote sensing and GIS technology, and its main target is to provide with necessary information on water environment through spatial analysis and visual display in a suitable way. The work especially focused on three points, and the first one is related to technical issues of spatial data organization and communication with a combination of GIS and statistical software. A data-related model was proposed to solve the data communication between the mentioned systems. The second one is spatio-temporal analysis based on remote sensing and GIS. Water quality parameters of suspended sediment concentration and BOD5 were specially analyzed in this case, and the results suggested an obvious influence of land source pollution quantitatively in a spatial domain. The third one is 3D visualization of surface feature based on RS and GIS technology. The Pearl River estuary and HongKong's coastal waters in the South China Sea were taken as a case in this study. The software ARCGIS was taken as a basic platform to develop a water environmental management system. The sampling data of water quality in 76 monitoring stations of coastal water bodies and remote sensed images were selected in this study.
Correction of clock errors in seismic data using noise cross-correlations
NASA Astrophysics Data System (ADS)
Hable, Sarah; Sigloch, Karin; Barruol, Guilhem; Hadziioannou, Céline
2017-04-01
Correct and verifiable timing of seismic records is crucial for most seismological applications. For seismic land stations, frequent synchronization of the internal station clock with a GPS signal should ensure accurate timing, but loss of GPS synchronization is a common occurrence, especially for remote, temporary stations. In such cases, retrieval of clock timing has been a long-standing problem. The same timing problem applies to Ocean Bottom Seismometers (OBS), where no GPS signal can be received during deployment and only two GPS synchronizations can be attempted upon deployment and recovery. If successful, a skew correction is usually applied, where the final timing deviation is interpolated linearly across the entire operation period. If GPS synchronization upon recovery fails, then even this simple and unverified, first-order correction is not possible. In recent years, the usage of cross-correlation functions (CCFs) of ambient seismic noise has been demonstrated as a clock-correction method for certain network geometries. We demonstrate the great potential of this technique for island stations and OBS that were installed in the course of the Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel (RHUM-RUM) project in the western Indian Ocean. Four stations on the island La Réunion were affected by clock errors of up to several minutes due to a missing GPS signal. CCFs are calculated for each day and compared with a reference cross-correlation function (RCF), which is usually the average of all CCFs. The clock error of each day is then determined from the measured shift between the daily CCFs and the RCF. To improve the accuracy of the method, CCFs are computed for several land stations and all three seismic components. Averaging over these station pairs and their 9 component pairs reduces the standard deviation of the clock errors by a factor of 4 (from 80 ms to 20 ms). This procedure permits a continuous monitoring of clock errors where small clock drifts (1 ms/day) as well as large clock jumps (6 min) are identified. The same method is applied to records of five OBS stations deployed within a radius of 150 km around La Réunion. The assumption of a linear clock drift is verified by correlating OBS for which GPS-based skew corrections were available with land stations. For two OBS stations without skew estimates, we find clock drifts of 0.9 ms/day and 0.4 ms/day. This study salvages expensive seismic records from remote regions that would be otherwise lost for seismicity or tomography studies.
NASA Astrophysics Data System (ADS)
Cusma, Jack T.; Spero, Laurence A.; Groshong, Bennett R.; Cho, Teddy; Bashore, Thomas M.
1993-09-01
An economical and practical digital solution for the replacement of 35 mm cine film as the archive media in the cardiac x-ray imaging environment has remained lacking to date due to the demanding requirements of high capacity, high acquisition rate, high transfer rate, and a need for application in a distributed environment. A clinical digital image library and network based on the D2 digital video format has been installed in the Duke University Cardiac Catheterization Laboratory. The system architecture includes a central image library with digital video recorders and robotic tape retrieval, three acquisition stations, and remote review stations connected via a serial image network. The library has a capacity for over 20,000 Gigabytes of uncompressed image data, equivalent to records for approximately 20,000 patients. Image acquisition in the clinical laboratories is via a real-time digital interface between the digital angiography system and a local digital recorder. Images are transferred to the library over the serial network at a rate of 14.3 Mbytes/sec and permanently stored for later review. The image library and network are currently undergoing a clinical comparison with cine film for visual and quantitative assessment of coronary artery disease. At the conclusion of the evaluation, the configuration will be expanded to include four additional catheterization laboratories and remote review stations throughout the hospital.
NASA Astrophysics Data System (ADS)
Cristina, Sónia; Icely, John; Costa Goela, Priscila; Angel DelValls, Tomás; Newton, Alice
2015-10-01
The exclusive economic zones (EEZ) of coastal countries are coming under increasing pressure from various economic sectors such as fishing, aquaculture, shipping and energy production. In Europe, there is a policy to expand the maritime economic sector without damaging the environment by ensuring that these activities comply with legally binding Directives, such as the Marine Strategy Framework Directive (MSFD). However, monitoring an extensive maritime area is a logistical and economic challenge. Remote sensing is considered one of the most cost effective methods for providing the spatial and temporal environmental data that will be necessary for the effective implementation of the MSFD. However, there is still a concern about the uncertainties associated with remote sensed products. This study has tested how a specific satellite product can contribute to the monitoring of a MSFD Descriptor for "good environmental status" (GES). The results show that the quality of the remote sensing product Algal Pigment Index 1 (API 1) from the MEdium Resolution Imaging Spectrometer (MERIS) sensor of the European Space Agency for ocean colour products can be effectively validated with in situ data from three stations off the SW Iberian Peninsula. The validation results show good agreement between the MERIS API 1 and the in situ data for the two more offshore stations, with a higher coefficient of determination (R2) of 0.79, and with lower uncertainties for the average relative percentage difference (RPD) of 24.6% and 27.9% and a root mean square error (RMSE) of 0.40 and 0.38 for Stations B and C, respectively. Near to the coast, Station A has the lowest R2 of 0.63 and the highest uncertainties with an RPD of 112.9% and a RMSE of 1.00. It is also the station most affected by adjacency effects from the land: when the Improved Contrast between Ocean and Land processor (ICOL) is applied the R2 increases to 0.77 and there is a 30% reduction in the uncertainties estimated by RPD. The MERIS API 1 product decreases from inshore to offshore, with higher values occurring mainly between early spring and the end of the summer, and with lower values during winter. By using the satellite images for API 1, it is possible to detect and track the development of algal blooms in coastal and marine waters, demonstrating the usefulness of remote sensing for supporting the implementation of the MSFD with respect to Descriptor 5: Eutrophication. It is probable that remote sensing will also prove to be useful for monitoring other Descriptors of the MSFD.
Space Station crew workload - Station operations and customer accommodations
NASA Technical Reports Server (NTRS)
Shinkle, G. L.
1985-01-01
The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grier, H.E.
1985-09-01
An automatic remote-control system armed and fired the bomb and sent out a sequence of time signals to experimental equipment on the atoll. A central station at Parry Island sent signals via submarine cables to a timer station on a shot island. The timer station controlled signals to the zero station and to experiments on the island, and through auxiliary stations, it also controlled signal distribution on adjacent islands. Light-sensitive triggering units for apparatus and for accurate standard zero-time reference were provided in the form of Blue Boxes, or fiducial markers.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Mcdougal, D. S.; Mathis, J. J., Jr.
1980-01-01
Ozone data from the 1979 Southeastern Virginia Urban Study (SEV-UPS) field program are presented. The SEV-UPS was conducted for evaluation of an ozone remote sensor, the Laser Absorption Spectrometer. During the measurement program, remote-sensor evaluation was in two areas; (1) determination of the remote sensor's accuracy, repeatability, and operational characteristics, and (2) demonstration of the application of remotely sensed ozone data in air-quality studies. Data from six experiments designed to provide in situ ozone data for evaluation of the sensor in area 1, above, are presented. Experiments consisted of overflights of a test area with the remote sensor aircraft while in situ measurements with a second aircraft and selected surface stations provided correlative ozone data within the viewing area of the remote sensor.
Navy Resale Services and Support Office Consolidation and Transportation Plan.
1983-06-01
ET AL JON 83 UNCLASSIFIED F/0 15/5 N EhhEEEmmImEEEEIIIIIE EEEE EIIIIEIIIIIIEE EEIIIIIEIIEIIE IIIIEEEIIIEEI I--EE- EIEI EIIIIIIIIIEllI -F I lmil 1.0...passes all such facilities in the Southern California area. Concentra- tions of customer populations center on San Diego and Long Beach with more remote...at Naval Station San Diego, Naval Air Station Miramar and Naval Station Long Beach in the current time frame and ultimately from the Central
Quest airlock maneuvered into position
2001-07-15
STS104-E-5068 (15 July 2001) --- Backdropped against a blue and white Earth, some 237 miles below, the Quest airlock is in the process of being installed onto the starboard side of Unity Node 1 of the International Space Station (ISS). Astronaut Susan J. Helms, Expedition Two flight engineer, used controls onboard the station to maneuver the Airlock into place with the Canadarm2 or Space Station Remote Manipulator System (SSRMS). This image was recorded with a digital still camera.
Remote presence proctoring by using a wireless remote-control videoconferencing system.
Smith, C Daniel; Skandalakis, John E
2005-06-01
Remote presence in an operating room to allow an experienced surgeon to proctor a surgeon has been promised through robotics and telesurgery solutions. Although several such systems have been developed and commercialized, little progress has been made using telesurgery for anything more than live demonstrations of surgery. This pilot project explored the use of a new videoconferencing capability to determine if it offers advantages over existing systems. The video conferencing system used is a PC-based system with a flat screen monitor and an attached camera that is then mounted on a remotely controlled platform. This device is controlled from a remotely placed PC-based videoconferencing system computer outfitted with a joystick. Using the public Internet and a wireless router at the client site, a surgeon at the control station can manipulate the videoconferencing system. Controls include navigating the unit around the room and moving the flat screen/camera portion like a head looking up/down and right/left. This system (InTouch Medical, Santa Barbara, CA) was used to proctor medical students during an anatomy class cadaver dissection. The ability of the remote surgeon to effectively monitor the students' dissections and direct their activities was assessed subjectively by students and surgeon. This device was very effective at providing a controllable and interactive presence in the anatomy lab. Students felt they were interacting with a person rather than a video screen and quickly forgot that the surgeon was not in the room. The ability to move the device within the environment rather than just observe the environment from multiple fixed camera angles gave the surgeon a similar feel of true presence. A remote-controlled videoconferencing system provides a more real experience for both student and proctor. Future development of such a device could greatly facilitate progress in implementation of remote presence proctoring.
Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors
NASA Astrophysics Data System (ADS)
Ham, J. M.
2013-12-01
Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).
Broadening the Quality and Capabilities of the EarthScope Alaska Transportable Array
NASA Astrophysics Data System (ADS)
Busby, R. W.
2016-12-01
In 2016, the EarthScope Transportable Array (TA) program will have 195 broadband seismic stations operating in Alaska and western Canada. This ambitious project will culminate in a network of 268 new or upgraded real-time seismic stations operating through 2019. The challenging environmental conditions and the remoteness of Alaska have motivated a new method for constructing a high-quality, temporary seismic network. The Alaska TA station design builds on experience of the Lower 48 TA deployment and adds design requirements because most stations are accessible only by helicopter. The stations utilize new high-performance posthole sensors, a specially built hammer/auger drill, and lightweight lithium ion batteries to minimize sling loads. A uniform station design enables a modest crew to build the network on a short timeline and operate them through the difficult conditions of rural Alaska. The Alaska TA deployment has increased the quality of seismic data, with some well-sited 2-3 m posthole stations approaching the performance of permanent Global Seismic Network stations emplaced in 100 m boreholes. The real-time data access, power budget, protective enclosure and remote logistics of these TA stations has attracted collaborations with NASA, NOAA, USGS, AVO and other organizations to add auxiliary sensors to the suite of instruments at many TA stations. Strong motion sensors have been added to (18) stations near the subduction trench to complement SM stations operated by AEC, ANSS and GSN. All TA and most upgraded stations have pressure and infrasound sensors, and 150 TA stations are receiving a Vaisala weather sensor, supplied by the National Weather Service Alaska Region and NASA, capable of measuring temperature, pressure, relative humidity, wind speed/direction, and precipitation intensity. We are also installing about (40) autonomous soil temperature profile kits adjacent to northern stations. While the priority continues to be collecting seismic data, these additional strong motion, atmospheric, and soil temperature sensors may motivate the desire extend the operation of certain stations in cooperation with these organizations. The TA has always been amenable to partnerships in the research and education communities that extend the capabilities and reach of the EarthScope Transportable Array.
Support for global science: Remote sensing's challenge
NASA Technical Reports Server (NTRS)
Estes, J. E.; Star, J. L.
1986-01-01
Remote sensing uses a wide variety of techniques and methods. Resulting data are analyzed by man and machine, using both analog and digital technology. The newest and most important initiatives in the U. S. civilian space program currently revolve around the space station complex, which includes the core station as well as co-orbiting and polar satellite platforms. This proposed suite of platforms and support systems offers a unique potential for facilitating long term, multidisciplinary scientific investigations on a truly global scale. Unlike previous generations of satellites, designed for relatively limited constituencies, the space station offers the potential to provide an integrated source of information which recognizes the scientific interest in investigating the dynamic coupling between the oceans, land surface, and atmosphere. Earth scientist already face problems that are truly global in extent. Problems such as the global carbon balance, regional deforestation, and desertification require new approaches, which combine multidisciplinary, multinational research teams, employing advanced technologies to produce a type, quantity, and quality of data not previously available. The challenge before the international scientific community is to continue to develop both the infrastructure and expertise to, on the one hand, develop the science and technology of remote sensing, while on the other hand, develop an integrated understanding of global life support systems, and work toward a quantiative science of the biosphere.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
On the relevance of source effects in geomagnetic pulsations for induction soundings
NASA Astrophysics Data System (ADS)
Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri
2018-03-01
This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.
NASA Technical Reports Server (NTRS)
Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping
2012-01-01
Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.
Inventory behavior at remote sites
NASA Technical Reports Server (NTRS)
Lewis, William C., Jr.
1987-01-01
An operations research study was conducted concerning inventory behavior on the space station. Historical data from the Space Shuttle was used. The results demonstrated a high logistics burden if Space Shuttle reliability technology were to be applied without modification to space station design (which it was not). Effects of rapid resupply and on board repair capabilities on inventory behavior were investigated.
Enhancing the Value and Sustainability of Field Stations and Marine Laboratories in the 21st Century
ERIC Educational Resources Information Center
National Academies Press, 2014
2014-01-01
For over a century, field stations have been important entryways for scientists to study and make important discoveries about the natural world. They are centers of research, conservation, education, and public outreach, often embedded in natural environments that range from remote to densely populated urban locations. Because they lack…
30 CFR 250.1624 - Blowout prevention equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...
30 CFR 250.1624 - Blowout prevention equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...
30 CFR 250.1624 - Blowout prevention equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...
30 CFR 250.1624 - Blowout prevention equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... station and one BOP-control station on the rig floor; and (5) A choke line and a kill line each equipped with two full-opening valves and a choke manifold. One of the choke-line valves and one of the kill-line valves shall be remotely controlled except that a check valve may be installed on the kill line in...
Manned remote work station development article
NASA Technical Reports Server (NTRS)
1978-01-01
Flight article and associated design concepts are evaluated to meet fundamental requirements of a universal crew cabin to be used as a construction cherrypicker, a space crane turret, a railed work station, or a free flyer. Key technology developments are embodied into a simulation program. A schedule and simulation test plan matrix is given for the open cabin cherry picker.
NASA Astrophysics Data System (ADS)
Hüsami Afşar, M.; Bulut, B.; Yilmaz, M. T.
2017-12-01
Soil moisture is one of the fundamental parameters of the environment that plays a major role in carbon, energy, and water cycles. Spatial distribution and temporal changes of soil moisture is one of the important components in climatic, ecological and natural hazards at global, regional and local levels scales. Therefore retrieval of soil moisture datasets has a great importance in these studies. Given soil moisture can be retrieved through different platforms (i.e., in-situ measurements, numerical modeling, and remote sensing) for the same location and time period, it is often desirable to evaluate these different datasets to assign the most accurate estimates for different purposes. During last decades, efforts have been given to provide evaluations about different soil moisture products based on various statistical analysis of the soil moisture time series (i.e., comparison of correlation, bias, and their error standard deviation). On the other hand, there is still need for the comparisons of the soil moisture products in drought analysis context. In this study, LPRM and NOAH Land Surface Model soil moisture datasets are investigated in drought analysis context using station-based watershed average datasets obtained over four USDA ARS watersheds as ground truth. Here, the drought analysis are performed using the standardized soil moisture datasets (i.e., zero mean and one standard deviation) while the droughts are defined as consecutive negative anomalies less than -1 for longer than 3 months duration. Accordingly, the drought characteristics (duration and severity) and false alarm and hit/miss ratios of LPRM and NOAH datasets are validated using station-based datasets as ground truth. Results showed that although the NOAH soil moisture products have better correlations, LPRM based soil moisture retrievals show better consistency in drought analysis. This project is supported by TUBITAK Project number 114Y676.
Field test of available methods to measure remotely SOx and NOx emissions from ships
NASA Astrophysics Data System (ADS)
Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.
2014-08-01
Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.
A review of the Forest Service Remote Automated Weather Station (RAWS) network
John Zachariassen; Karl F. Zeller; Ned Nikolov; Tom McClelland
2003-01-01
The RAWS network and RAWS data-use systems are closely reviewed and summarized in this report. RAWS is an active program created by the many land-management agencies that share a common need for accurate and timely weather data from remote locations for vital operational and program decisions specific to wildland and prescribed fires. A RAWS measures basic observable...
Pixel by pixel: the evolving landscapes of remote sensing.
Sally Duncan
1999-01-01
This issue of "Science Findings" focuses on remote sensing research and how it can be used to assess a landscape. The work of PNW Research Station scientists Tom Spies and Warren Cohen and their use of satellite technology in developing the coastal landscape analysis and modeling study (CLAMS) is featured. The CLAMS study area includes more than 5 million...
Concepts for VLBI Station Control as Part of NEXPReS
NASA Astrophysics Data System (ADS)
Ettl, M.; Neidhardt, A.; Schönberger, M.; Alef, W.; Himwich, E.; Beaudoin, C.; Plötz, C.; Lovell, J.; Hase, H.
2012-12-01
In the Novel EXploration Pushing Robust e-VLBI Services-project (NEXPReS) the Technische Universität München (TUM) realizes concepts for continuous quality monitoring and station remote control in cooperation with the Max-Planck-Institute for Radio Astronomy, Bonn. NEXPReS is a three-year project, funded within the European Seventh Framework program. It is aimed to develop e-VLBI services for the European VLBI Network (EVN), which can also support the IVS observations (VLBI2010). Within this project, the TUM focuses on developments of an operational remote control system (e-RemoteCtrl) with authentication and authorization. It includes an appropriate role management with different remote access states for future observation strategies. To allow a flexible control of different systems in parallel, sophisticated graphical user interfaces are designed and realized. The software is currently under test in the new AuScope network, Australia/New Zealand. Additional system parameters and information are collected with a new system monitoring (SysMon) for a higher degree of automation, which is currently under preparation for standardization within the IVS Monitoring and Control Infrastructure (MCI) Collaboration Group. The whole system for monitoring and control is fully compatible with the NASA Field System and extends it.
New initiatives in the commercial development of space
NASA Technical Reports Server (NTRS)
Rose, James T.; Stone, Barbara A.
1988-01-01
This paper provides a status report on aggressive new initiatives by the NASA Office of Commercial Programs to implement new commercial space policy. The promotion of a strong U.S. commercial presence in space via Spacehab, the Space Shuttle external tanks, privatization of the Space Station, and the development of commercial remote sensing systems is addressed. The privatization of launch services and the development of a talent base for commercial space efforts are considered. Groups, policies, and plans involved in these developments are discussed.
NASA Technical Reports Server (NTRS)
Barry, R. G.; Clark, J. M.
1975-01-01
The communication of data in real-time to users from ground stations in remote areas is a major objective of recent space technology. The data collection system considered uses small battery-operated ground-based transmitters called data collection platforms (DCP). The feasibility of collecting environmental data in extreme cold and windy environments using the ERTS DCP, has been investigated. A summary of the results of an evaluation of the system used is presented.
NASA Technical Reports Server (NTRS)
Robinson, W. J., Jr. (Inventor)
1974-01-01
A microwave, wireless, power transmission system is described in which the transmitted power level is adjusted to correspond with power required at a remote receiving station. Deviations in power load produce an antenna impedance mismatch causing variations in energy reflected by the power receiving antenna employed by the receiving station. The variations in reflected energy are sensed by a receiving antenna at the transmitting station and used to control the output power of a power transmitter.
Dragon Spacecraft on Approach to the ISS
2014-04-20
ISS039-E-013552 (20 April 2014) --- This is one of an extensive series of still photos documenting the April 20 arrival and ultimate capture and berthing of the SpaceX Dragon at the International Space Station, as photographed by the Expedition 39 crew members onboard the orbital outpost. In this photo, the two orbiting spacecraft were above a point in Yemen. The Dragon spacecraft was captured by the space station and successfully berthed using the Canadian-built space station remote manipulator system or Canadarm2.
2012-05-25
station design . These issues include: poor ergonomics ; varying data input methods; multiple inputs required to implement a single command; lack of...facing the UAS/RPA discipline. Major discussion topics included: UAS operator selection, training, control station design , manpower and scheduling...Break 1400 – 1430: Naval UAS Training LCDR Brent Olde 1430 – 1500: Control Station Design Issues Melissa Walwanis 1500 – 1600: Tour of NAMRU-D
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Description of the equipment employed and results obtained in experiments with tactile feedback and different levels of automatic control. In the experiments described tactile feedback was investigated by incorporating a touch sensing and touch display system into a teleoperator, while the levels of automatic control were investigated by incorporating supervisory control features in the teleoperator control system. In particular, a hand contact system which senses and reproduces to the operator the contact between the end-effector and the object being touched or manipulated is described, as well as a jaw contact system which senses and reproduces to the operator the shape and location of the object held in the remote jaws, and an arm control system consisting of a control station where the operator controls the motion of the arm by transmitting commands, a remote station that accepts the commands and uses them, and a communications link that limits information flow. In addition, an algorithmic language for remote manipulation is described, and the desired features that an automatic arm controller should possess are reviewed.
Historical record of Landsat global coverage
Goward, Samuel; Arvidson, Terry; Williams, Darrel; Faundeen, John; Irons, James; Franks, Shannon
2006-01-01
The long-term, 34+ year record of global Landsat remote sensing data is a critical resource to study the Earth system and human impacts on this system. The National Satellite Land Remote Sensing Data Archive (NSLRSDA) is charged by public law to: “maintain a permanent, comprehensive Government archive of global Landsat and other land remote sensing data for long-term monitoring and study of the changing global environment” (U.S. Congress, 1992). The advisory committee for NSLRSDA requested a detailed analysis of observation coverage within the U.S. Landsat holdings, as well as that acquired and held by International Cooperator (IC) stations. Our analyses, to date, have found gaps of varying magnitude in U.S. holdings of Landsat global coverage data, which appear to reflect technical or administrative variations in mission operations. In many cases it may be possible to partially fill these gaps in U.S. holdings through observations that were acquired and are now being held at International Cooperator stations.
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1993-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FEMA's Integrated Emergency Management Information Systems and the Department of Defense's Air land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS (Earth Observing System) timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
A Spatial Analysis and Modeling System (SAMS) for environment management
NASA Technical Reports Server (NTRS)
Vermillion, Charles H.; Stetina, Fran; Hill, John; Chan, Paul; Jaske, Robert; Rochon, Gilbert
1992-01-01
This is a proposal to develop a uniform global environmental data gathering and distribution system to support the calibration and validation of remotely sensed data. SAMS is based on an enhanced version of FE MA's Integrated Emergency Management Information Systems and the Department of Defense's Air Land Battlefield Environment Software Systems. This system consists of state-of-the-art graphics and visualization techniques, simulation models, database management and expert systems for conducting environmental and disaster preparedness studies. This software package will be integrated into various Landsat and UNEP-GRID stations which are planned to become direct readout stations during the EOS timeframe. This system would be implemented as a pilot program to support the Tropical Rainfall Measuring Mission (TRMM). This will be a joint NASA-FEMA-University-Industry project.
The Integrated Radiation Mapper Assistant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlton, R.E.; Tripp, L.R.
1995-03-01
The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less
Advanced ground station architecture
NASA Technical Reports Server (NTRS)
Zillig, David; Benjamin, Ted
1994-01-01
This paper describes a new station architecture for NASA's Ground Network (GN). The architecture makes efficient use of emerging technologies to provide dramatic reductions in size, operational complexity, and operational and maintenance costs. The architecture, which is based on recent receiver work sponsored by the Office of Space Communications Advanced Systems Program, allows integration of both GN and Space Network (SN) modes of operation in the same electronics system. It is highly configurable through software and the use of charged coupled device (CCD) technology to provide a wide range of operating modes. Moreover, it affords modularity of features which are optional depending on the application. The resulting system incorporates advanced RF, digital, and remote control technology capable of introducing significant operational, performance, and cost benefits to a variety of NASA communications and tracking applications.
NASA Astrophysics Data System (ADS)
Burba, George; Sturtevant, Cove; Peltola, Olli; Schreiber, Peter; Zulueta, Rommel; Haapanala, Sami; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; McDermitt, Dayle; Oechel, Walt
2013-04-01
The permafrost regions store significant amount of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over following decades and centuries. Present measurements of methane fluxes in permafrost regions have mostly been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for remote or portable research in cold regions. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hourly to annual). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump, climate control, and analyzer systems. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements in cold regions remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path instrumentation allows methane flux measurements at normal pressure without a need for a pump. As a result, the measurements can be done with very low-power (e.g., 7-10 Watts) light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance station is important for number of ecosystems (rice fields, landfills, wetlands, cattle yards, etc.), but it is especially important for permafrost and other cold regions where grid power and access roads are generally not available, and logistics of running the experiment is particularly expensive. Emerging research using low-power laser-based instrumentation to measure CH4 emissions are presented from several permafrost ecosystems with contrasting setups, weather, and moisture conditions. Principles of open-path instrument operation, station characteristics and requirements are also discussed, as well as concurrent measurements of CO2 and H2O emissions using open-path and enclosed instrumentation.
NASA Astrophysics Data System (ADS)
Tubío-Pardavila, R.; Vigil, S. A.; Puig-Suari, J.; Aguado Agelet, F.
2014-12-01
There is a requirement for low cost in-situ measurements of environmental parameters such as air quality, meteorological data, and water quality in remote areas. Currently available solutions for such measurements include remote sensing from satellite and aircraft platforms, and in-situ measurements from mobile and aircraft platforms. Fixed systems such as eddy covariance networks, tall towers, and the Total Carbon Column Observing Network (TCCON) are providing precision greenhouse gas measurements. Within this context, the HUMSAT system designed by the University of Vigo (Spain) will complement existing high-precision measurement systems with low cost in-situ ground based sensors in remote locations using a constellation of CubeSats as a communications relay. The HUMSAT system standardizes radio communications in between deployed sensors and the CubeSats of the constellation, which act as store and forward satellites to ground stations for uploading to the internet. Current ground stations have been established at the University of Vigo (Spain) and California Polytechnic State University (Cal Poly). Users of the system may deploy their own environmental sensors to meet local requirements. The sensors will be linked to a low-cost satellite data transceiver using a standard HUMSAT protocol. The transceiver is capable of receiving data from the HUMSAT constellation to remotely reconfigure sensors without the need of physically going to the sensor location. This transceiver uses a UHF channel around 437 MHz to exchange short data messages with the sensors. These data messages can contain up to 32 bytes of useful information and are transmitted at a speed around 300 bps. The protocol designed for this system handles the access to the channel by all these elements and guarantees a correct transmission of the information in such an scenario. The University of Vigo has launched the first satellite of the constellation, the HUMSAT-D CubeSat in November 2013 and has deployed sensors in Spain and Brazil. Sensors will be also deployed by Cal Poly in the near future. In the following months, the SERPENS CubeSAT Mission, a joint project of the University of Brasilia and the University of Vigo will launch the second CubeSat of the constellation.
The Canadian SSRMS is moved to test stand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility help guide the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS) suspended from an overhead crane. The SSRMS is being moved to a test stand where it will be mated to its payload carrier. This pallet will later be installed into the payload bay of Space Shuttle Endeavour for launch to the International Space Station on STS-100 in April 2001. The 56-foot-long arm will be the primary means of transferring payloads between the orbiter payload bay and the Station. Its three segments comprise seven joints for highly flexible land precise movement, making it capable of moving around the Station's exterior like an inchworm.
U.S. experience in satellite servicing and linkage to the Space Station era
NASA Technical Reports Server (NTRS)
Browning, R. K.
1986-01-01
A history of on-orbit servicing and repair is given with emphasis placed on the Solar Maximum Repair Mission. The experience gained thus far in on-orbit servicing and the design of the Space Station's servicing capabilities impose the following requirements on users: (1) satellites must have a standard grapple for capture and a standard berthing interface, (2) Space Station safety requirements must meet to preclude damage to the Space Station or injury to the EVA crew, (3) sensitive instruments will need to implement remotely controlled protective devices to prevent damage, and (4) satellite thermal systems must be designed to maintain survival temperatures during transfer from orbit to the Space Station servicing facility.
Cost comparison of competing local distribution systems for communication satellite traffic
NASA Technical Reports Server (NTRS)
Dopfel, F. E.
1979-01-01
The boundaries of market areas which favor various means for distributing communications satellite traffic are considered. The distribution methods considered are: control Earth station with cable access, rooftop Earth stations, Earth station with radio access, and various combinations of these methods. The least cost system for a hypothetical region described by number of users and the average cable access mileage is discussed. The region is characterized by a function which expresses the distribution of users. The results indicate that the least cost distribution is central Earth station with cable access for medium to high density areas of a region combined with rooftop Earth stations or (for higher volumes) radio access for remote users.
MS Parazynski transfers the DCSU during the second EVA of STS-100
2001-04-24
STS100-396-019 (24 April 2001) --- Astronaut Scott E. Parazynski, STS-100 mission specialist, totes a Direct Current Switching Unit while anchored on the end of the Canadian-built Remote Manipulator System (RMS) robotic arm. The RMS is in the process of moving Parazynski to the exterior of the Destiny laboratory (right foreground), where, assisted by astronaut Chris A. Hadfield (out of frame), he will secure the spare unit--a critical part for the station's electrical system--to the stowage platform for future crews in case it is needed. Also in the frame are the Italian-built Raffaello Multi-Purpose Logistics Module (center) and the new Canadarm2 (lower right) or Space Station Remote Manipulator System (SSRMS).
NASA Technical Reports Server (NTRS)
Estes, John E.; Smith, Terence; Star, Jeffrey L.
1987-01-01
Information Sciences Research Group (ISRG) research continues to focus on improving the type, quantity, and quality of information which can be derived from remotely sensed data. Particular focus in on the needs of the remote sensing research and application science community which will be served by the Earth Observing System (EOS) and Space Station, including associated polar and co-orbiting platforms. The areas of georeferenced information systems, machine assisted information extraction from image data, artificial intelligence and both natural and cultural vegetation analysis and modeling research will be expanded.
Photographic copy of photograph, dated September 1973 (original in possession ...
Photographic copy of photograph, dated September 1973 (original in possession of CSSD-HO, Huntsville, AL). Photographer unknown. Aerial view (northwest to southeast) of remote sprint launch site #4 during construction. In the background are the waste stabilization ponds. In the foreground, left to right, are the remote launch operations building, the exclusion area sentry stations, and the sprint launch cells - Stanley R. Mickelsen Safeguard Complex, Remote Sprint Launch Site No. 4, North of State Highway 17, approximately 9 miles Northwest of Adams, ND, Nekoma, Cavalier County, ND
Proceedings of the 2nd NASA Ada User's Symposium
NASA Technical Reports Server (NTRS)
1989-01-01
Several presentations, mostly in viewgraph form, on various topics relating to Ada applications are given. Topics covered include the use of Ada in NASA, Ada and the Space Station, the software support environment, Ada in the Software Engineering Laboratory, Ada at the Jet Propulsion Laboratory, the Flight Telerobotic Servicer, and lessons learned in prototyping the Space Station Remote Manipulator System control.
2005-07-30
S114-E-6077 (30 July 2005) --- The blackness of space and Earths horizon form the backdrop for this view while Space Shuttle Discovery was docked to the International Space Station during the STS-114 mission. A portion of Discoverys remote manipulator system (RMS) robotic arm is visible at lower right and a section of the Stations truss is visible top frame.
NASA Technical Reports Server (NTRS)
1983-01-01
The benefits for each of the following commercial areas was investigated: communications, remote sensing, materials processing in space, low Earth orbit (LEO) satellite assembly, testing, and servicing, and space tourism. In each case, where economic benefits are derived, the costs for accomplishing tasks with the Space Station are compared with the cost with the Space Transportation System only.
Expedition 3 Crew Training Clips
NASA Technical Reports Server (NTRS)
2001-01-01
The Expedition 3 crewmembers, Frank Culbertson, Jr., Mikhail Turin, and Vladimir Dezhurov, are seen during various stages of their training. Footage includes Extravehicular Activity (EVA) Training at the Neutral Buoyancy Laboratory (NBL), EVA Preparation and Post Training in the International Space Station Airlock Mock-up, in the NBL Space Station Remote Manipulator System Workstation, and during the T-38 flight at Ellington Field.
Kotov and Williams with SSRMS arm training session in Node 1 / Unity module
2007-04-18
ISS014-E-19587 (17 April 2007) --- Cosmonaut Oleg V. Kotov (foreground), Expedition 15 flight engineer representing Russia's Federal Space Agency, and astronaut Sunita L. Williams, flight engineer, participate in a Space Station Remote Manipulator System (SSRMS) training session using the Robotic Onboard Trainer (ROBOT) simulator in the Unity node of the International Space Station.
Earth Observations taken by Expedition 26 Crew
2010-12-21
ISS026-E-011834 (21 Dec. 2010) --- This photo, recorded by an Expedition 26 crewmember on the International Space Station, features two components of the Mobile Servicing System on the orbital outpost. Part of the Station Remote Manipulator System?s arm (Canadarm2) is visible at left. Dextre (right), also known as the Special Purpose Dexterous Manipulator (SPDM), is a two armed robot.
NASA Lewis' Telescience Support Center Supports Orbiting Microgravity Experiments
NASA Technical Reports Server (NTRS)
Hawersaat, Bob W.
1998-01-01
The Telescience Support Center (TSC) at the NASA Lewis Research Center was developed to enable Lewis-based science teams and principal investigators to monitor and control experimental and operational payloads onboard the International Space Station. The TSC is a remote operations hub that can interface with other remote facilities, such as universities and industrial laboratories. As a pathfinder for International Space Station telescience operations, the TSC has incrementally developed an operational capability by supporting space shuttle missions. The TSC has evolved into an environment where experimenters and scientists can control and monitor the health and status of their experiments in near real time. Remote operations (or telescience) allow local scientists and their experiment teams to minimize their travel and maintain a local complement of expertise for hardware and software troubleshooting and data analysis. The TSC was designed, developed, and is operated by Lewis' Engineering and Technical Services Directorate and its support contractors, Analex Corporation and White's Information System, Inc. It is managed by Lewis' Microgravity Science Division. The TSC provides operational support in conjunction with the NASA Marshall Space Flight Center and NASA Johnson Space Center. It enables its customers to command, receive, and view telemetry; monitor the science video from their on-orbit experiments; and communicate over mission-support voice loops. Data can be received and routed to experimenter-supplied ground support equipment and/or to the TSC data system for display. Video teleconferencing capability and other video sources, such as NASA TV, are also available. The TSC has a full complement of standard services to aid experimenters in telemetry operations.
Owen-Joyce, Sandra J.; Brown, Paul W.
1995-01-01
Data were collected at temporary meteorological stations installed in agricultural fields in Pinal County, Arizona, to evaluate the spatial and temporal variability of point data and to examine how station location affects ground-based meteorological data and the resulting values of evapotranspiration calculated using remotely sensed multispectral data from satellites. Time-specific data were collected to correspond with satellite overpasses from April to October 1989, and June 27-28, 1990. Meteorological data consisting of air temperature, relative humidity, wind speed, solar radiation, and net radiation were collected at each station during all periods of the project. Supplementary measurements of soil temperature, soil heat flux density, and surface or canopy temperature were obtained at some locations during certain periods of the project. Additional data include information on data-collection periods, station positions, instrumentation, sensor heights, and field dimensions. Other data, which correspond to the extensive field measurements made in con- junction with satellite overpasses in 1989 and 1990, include crop type, canopy cover, canopy height, irrigation, cultivation, and orientation of rows. Field boundaries and crop types were mapped in a 2- to 3-square-kilometer area surrounding each meteorological station. Field data are presented in tabular and graphic form. Meteorological and supplementary data are available, upon request, in digital form.
Wireless "Jump" Starts for Partly Disabled Equipment
NASA Technical Reports Server (NTRS)
Castle, K. D.
1986-01-01
Equipment activated when normal remote starting does not work Beam from nearby station first carries raw energy and then subsystemactivating signals to equipment crippled by discharged storage batteries. Operators start up equipment without approaching it under hazardous conditions. Potential terrestrial applications for scheme include starting of robots on such remotely-controlled hazardous tasks as handling of explosives or retrieval or deposition of objects in hostile environments.