Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
AVIRIS data and neural networks applied to an urban ecosystem
NASA Technical Reports Server (NTRS)
Ridd, Merrill K.; Ritter, Niles D.; Bryant, Nevin A.; Green, Robert O.
1992-01-01
Urbanization is expanding on every continent. Although urban/industrial areas occupy a small percentage of the total landscape of the earth, their influence extends far beyond their borders, affecting terrestrial, aquatic, and atmospheric systems globally. Yet little has been done to characterize urban ecosystems of their linkages to other systems horizontally or vertically. With remote sensing we now have the tools to characterize, monitor, and model urban landscapes world-wide. However, the remote sensing performed on cities so far has concentrated on land-use patterns as distinct from land-cover or composition. The popular Anderson system is entirely land-use oriented in urban areas. This paper begins with the premise that characterizing the biophysical composition of urban environments is fundamental to understanding urban/industrial ecosystems, and, in turn, supports the modeling of other systems interfacing with urban systems. Further, it is contended that remote sensing is a tool poised to provide the biophysical composition data to characterize urban landscapes.
REMOTE SENSING AND GIS FOR WETLANDS
In identifying and characterizing wetland and adjacent features, the use of remote sensor and Geographic Information Systems (GIS) technologies has been valuable. Remote sensors such as photographs and computer-sensor generated images can illustrate conditions of hydrology, exten...
Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.
A teleoperated system for remote site characterization
NASA Technical Reports Server (NTRS)
Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon
1994-01-01
The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).
Thermal Remote Anemometer Device
NASA Technical Reports Server (NTRS)
Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.
1988-01-01
Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.
Medium Spatial Resolution Satellite Characterization
NASA Technical Reports Server (NTRS)
Stensaas, Greg
2007-01-01
This project provides characterization and calibration of aerial and satellite systems in support of quality acquisition and understanding of remote sensing data, and verifies and validates the associated data products with respect to ground and and atmospheric truth so that accurate value-added science can be performed. The project also provides assessment of new remote sensing technologies.
Use of remote-sensing techniques to survey the physical habitat of large rivers
Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.
1997-01-01
Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
Bringing an ecological view of change to Landsat-based remote sensing
Robert E. Kennedy; Serge Andrefouet; Warren B. Cohen; Cristina Gomez; Patrick Griffiths; Martin Hais; Sean P. Healey; Eileen H. Helmer; Patrick Hostert; Mitchell B. Lyons; Garrett W. Meigs; Dirk Pflugmacher; Stuart R. Phinn; Scott L. Powell; Peter Scarth; Susmita Sen; Todd A. Schroeder; Annemarie Schneider; Ruth Sonnenschein; James E. Vogelmann; Michael A. Wulder; Zhe Zhu
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more...
Concepts in Electromagnetic Scattering for Particulate-Systems Characterization
2013-04-29
scientists attended and 19 presentations were given. Specific topics included remote sensing, polarimetry , analytic and numeric electromagnetic...presentations were given. Specific topics included remote sensing, polarimetry , ana- lytic and numeric electromagnetic theory, camouflage in nature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop
NASA Technical Reports Server (NTRS)
2006-01-01
Topics covered include: NASA Applied Sciences Program; USGS Land Remote Sensing: Overview; QuickBird System Status and Product Overview; ORBIMAGE Overview; IKONOS 2004 Calibration and Validation Status; OrbView-3 Spatial Characterization; On-Orbit Modulation Transfer Function (MTF) Measurement of QuickBird; Spatial Resolution Characterization for QuickBird Image Products 2003-2004 Season; Image Quality Evaluation of QuickBird Super Resolution and Revisit of IKONOS: Civil and Commercial Application Project (CCAP); On-Orbit System MTF Measurement; QuickBird Post Launch Geopositional Characterization Update; OrbView-3 Geometric Calibration and Geopositional Accuracy; Geopositional Statistical Methods; QuickBird and OrbView-3 Geopositional Accuracy Assessment; Initial On-Orbit Spatial Resolution Characterization of OrbView-3 Panchromatic Images; Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps; Stennis Space Center Verification and Validation Capabilities; Joint Agency Commercial Imagery Evaluation (JACIE) Team; Adjacency Effects in High Resolution Imagery; Effect of Pulse Width vs. GSD on MTF Estimation; Camera and Sensor Calibration at the USGS; QuickBird Geometric Verification; Comparison of MODTRAN to Heritage-based Results in Vicarious Calibration at University of Arizona; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Estimating Sub-Pixel Proportions of Sagebrush with a Regression Tree; How Do YOU Use the National Land Cover Dataset?; The National Map Hazards Data Distribution System; Recording a Troubled World; What Does This-Have to Do with This?; When Can a Picture Save a Thousand Homes?; InSAR Studies of Alaska Volcanoes; Earth Observing-1 (EO-1) Data Products; Improving Access to the USGS Aerial Film Collections: High Resolution Scanners; Improving Access to the USGS Aerial Film Collections: Phoenix Digitizing System Product Distribution; System and Product Characterization: Issues Approach; Innovative Approaches to Analysis of Lidar Data for the National Map; Changes in Imperviousness near Military Installations; Geopositional Accuracy Evaluations of QuickBird and OrbView-3: Civil and Commercial Applications Project (CCAP); Geometric Accuracy Assessment: OrbView ORTHO Products; QuickBird Radiometric Calibration Update; OrbView-3 Radiometric Calibration; QuickBird Radiometric Characterization; NASA Radiometric Characterization; Establishing and Verifying the Traceability of Remote-Sensing Measurements to International Standards; QuickBird Applications; Airport Mapping and Perpetual Monitoring Using IKONOS; OrbView-3 Relative Accuracy Results and Impacts on Exploitation and Accuracy Improvement; Using Remotely Sensed Imagery to Determine Impervious Surface in Sioux Falls, South Dakota; Applying High-Resolution Satellite Imagery and Remotely Sensed Data to Local Government Applications: Sioux Falls, South Dakota; Automatic Co-Registration of QuickBird Data for Change Detection Applications; Developing Coastal Surface Roughness Maps Using ASTER and QuickBird Data Sources; Automated, Near-Real Time Cloud and Cloud Shadow Detection in High Resolution VNIR Imagery; Science Applications of High Resolution Imagery at the USGS EROS Data Center; Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research; Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems; Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach; Using IKONOS Imagery to Assess Impervious Surface Area, Riparian Buffers and Stream Health in the Mid-Atlantic Region; Commercial Remote Sensing Space Policy Civil Implementation Update; USGS Commercial Remote Sensing Data Contracts (CRSDC); and Commercial Remote Sensing Space Policy (CRSSP): Civil Near-Term Requirements Collection Update.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
Remote radio control of insect flight.
Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M
2009-01-01
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.
NASA Astrophysics Data System (ADS)
Choi, Sungwoo
1992-01-01
This thesis describes the growth and characterization of wide gap III-V compound semiconductors such as aluminum gallium arsenide (Al_{rm x} Ga_{rm 1-x}As), gallium nitride (GaN), and gallium phosphide (GaP), deposited by the metalorganic chemical vapor deposition (MOCVD) and remote plasma enhanced chemical vapor deposition (Remote PECVD). In the first part of the thesis, the optimization of GaAs and Al_{rm x}Ga _{rm 1-x}As hetero -epitaxial layers on Ge substrates is described in the context of the application in the construction of cascade solar cells. The emphasis on this study is on the trade-offs in the choice of the temperature related to increasing interdiffusion/autodoping and increasing perfection of the epilayer with increasing temperature. The structural, chemical, optical, and electrical properties of the heterostructures are characterized by x-ray rocking curve measurement, scanning electron microscopy (SEM), electron beam induced current (EBIC), cross-sectional transmission electron microscopy (X-TEM), Raman spectroscopy, secondary ion mass spectrometry (SIMS), and steady-state and time-resolved photoluminescence (PL). Based on the results of this work the optimum growth temperature is 720^circC. The second part of the thesis describes the growth of GaN and GaP layers on silicon and sapphire substrates and the homoepitaxy of GaP by remote PECVD. I have designed and built an ultra high vacuum (UHV) deposition system which includes: the gas supply system, the pumping system, the deposition chamber, the load-lock chamber, and the waste disposal system. The work on the deposition of GaN on Si and sapphire focuses onto the understanding of the growth kinetics. In addition, Auger electron spectroscopy (AES) for surface analysis, x-ray diffraction methods and microscopic analyses using SEM and TEM for structural characterization, infrared (IR) and ultraviolet (UV) absorption measurements for optical characterization, and electrical characterization results on the GaN films are presented. In the deposition GaP thin films by remote PECVD, trimethylgallium and in-situ generated phosphine precursors are employed as source gases which permits homo- and heteroepitaxial growth as substrate temperature of 590-620^ circC. Also, the growth kinetics of gallium phosphide is discussed. As in the case of GaN, the surface, structural, chemical, optical, and electrical properties are characterized and the results are discussed.
NASA Technical Reports Server (NTRS)
Bowen, Howard S.; Cunningham, Douglas M.
2007-01-01
The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
Cloud Optical Depth Measured with Ground-Based, Uncooled Infrared Imagers
NASA Technical Reports Server (NTRS)
Shaw, Joseph A.; Nugent, Paul W.; Pust, Nathan J.; Redman, Brian J.; Piazzolla, Sabino
2012-01-01
Recent advances in uncooled, low-cost, long-wave infrared imagers provide excellent opportunities for remotely deployed ground-based remote sensing systems. However, the use of these imagers in demanding atmospheric sensing applications requires that careful attention be paid to characterizing and calibrating the system. We have developed and are using several versions of the ground-based "Infrared Cloud Imager (ICI)" instrument to measure spatial and temporal statistics of clouds and cloud optical depth or attenuation for both climate research and Earth-space optical communications path characterization. In this paper we summarize the ICI instruments and calibration methodology, then show ICI-derived cloud optical depths that are validated using a dual-polarization cloud lidar system for thin clouds (optical depth of approximately 4 or less).
In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Sandia..., remote-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Sandia National Laboratory (SNL) in Albuquerque, New Mexico. This waste is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-08
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at Bettis... radioactive remote-handled (RH) transuranic (TRU) waste characterization program implemented by the Central Characterization Project (CCP) at Bettis Atomic Power Laboratory (BAPL) in West Mifflin, Pennsylvania. This waste...
Studying turbulence by remote sensing systems during slope-2016 campaign
NASA Astrophysics Data System (ADS)
Moreira, Gregori de A.; Guerrero-Rascado, Juan L.; Benavent-Oltra, Jose A.; Ortiz-Amezcua, Pablo; Róman, Roberto; Landulfo, Eduardo; Alados-Arboledas, Lucas
2018-04-01
The Planetary Boundary Layer (PBL) is the lowermost part of the troposphere. In this work, we analysed some high order moments and PBL height detected continuously by three remote sensing systems: an elastic lidar, a Doppler lidar and a passive Microwave Radiometer, during the SLOPE-2016 campaign, which was held in Granada from May to August 2016. This study confirms the feasibility of these systems for the characterization of the PBL, helping us to justify and understand its behaviour along the day.
Datla, R. U.; Rice, J. P.; Lykke, K. R.; Johnson, B. C.; Butler, J. J.; Xiong, X.
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented. PMID:26989588
Datla, R U; Rice, J P; Lykke, K R; Johnson, B C; Butler, J J; Xiong, X
2011-01-01
The pre-launch characterization and calibration of remote sensing instruments should be planned and carried out in conjunction with their design and development to meet the mission requirements. The onboard calibrators such as blackbodies and the sensors such as spectral radiometers should be characterized and calibrated using SI traceable standards. In the case of earth remote sensing, this allows inter-comparison and intercalibration of different sensors in space to create global time series of climate records of high accuracy where some inevitable data gaps can be easily bridged. The recommended best practice guidelines for this pre-launch effort is presented based on experience gained at National Institute of Standards and Technology (NIST), National Aeronautics and Space Administration (NASA) and National Oceanic and Atmospheric Administration (NOAA) programs over the past two decades. The currently available radiometric standards and calibration facilities at NIST serving the remote sensing community are described. Examples of best practice calibrations and intercomparisons to build SI (international System of Units) traceable uncertainty budget in the instrumentation used for preflight satellite sensor calibration and validation are presented.
Remote sensing and human health: new sensors and new opportunities
NASA Technical Reports Server (NTRS)
Beck, L. R.; Lobitz, B. M.; Wood, B. L.
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, R. Michael; Turner, David D.
A review of remote sensing technology for lower tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer—usually characterized by an inversion—and the lowermore » troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global navigation satellite system, as well as water vapor and temperature Raman lidar and water vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
High Spatial Resolution Commercial Satellite Imaging Product Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas
2005-01-01
NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Surface Telerobotics: Development and Testing of a Crew Controlled Planetary Rover System
NASA Technical Reports Server (NTRS)
Bualat, Maria G.; Fong, Terrence; Allan, Mark; Bouyssounouse, Xavier; Cohen, Tamar; Kobayashi, Linda
2013-01-01
In planning for future exploration missions, architecture and study teams have made numerous assumptions about how crew can be telepresent on a planetary surface by remotely operating surface robots from space (i.e. from a flight vehicle or deep space habitat). These assumptions include estimates of technology maturity, existing technology gaps, and operational risks. These assumptions, however, have not been grounded by experimental data. Moreover, to date, no crew-controlled surface telerobot has been fully tested in a high-fidelity manner. To address these issues, we developed the "Surface Telerobotics" tests to do three things: 1) Demonstrate interactive crew control of a mobile surface telerobot in the presence of short communications delay. 2) Characterize a concept of operations for a single astronaut remotely operating a planetary rover with limited support from ground control. 3) Characterize system utilization and operator work-load for a single astronaut remotely operating a planetary rover with limited support from ground control.
High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.
Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min
2012-01-01
The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.; ...
2015-07-08
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulfmeyer, Volker; Hardesty, Mike; Turner, David D.
A review of remote sensing technology for lower-tropospheric thermodynamic (TD) profiling is presented with focus on high accuracy and high temporal-vertical resolution. The contributions of these instruments to the understanding of the Earth system are assessed with respect to radiative transfer, land-surface-atmosphere feedback, convection initiation, and data assimilation. We demonstrate that for progress in weather and climate research, TD profilers are essential. These observational systems must resolve gradients of humidity and temperature in the stable or unstable atmospheric surface layer close to the ground, in the mixed layer, in the interfacial layer – usually characterized by an inversion – andmore » the lower troposphere. A thorough analysis of the current observing systems is performed revealing significant gaps that must be addressed to fulfill existing needs. We analyze whether current and future passive and active remote sensing systems can close these gaps. A methodological analysis and demonstration of measurement capabilities with respect to bias and precision is executed both for passive and active remote sensing including passive infrared and microwave spectroscopy, the global positioning system as well as water-vapor and temperature Raman lidar and water-vapor differential absorption lidar. Whereas passive remote sensing systems are already mature with respect to operational applications, active remote sensing systems require further engineering to become operational in networks. However, active remote sensing systems provide a smaller bias as well as higher temporal and vertical resolutions. For a suitable mesoscale network design, TD profiler system developments should be intensified and dedicated observing system simulation experiments should be performed.« less
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
NASA Astrophysics Data System (ADS)
Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding
2011-11-01
The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.
Remote sensing and human health: new sensors and new opportunities.
Beck, L R; Lobitz, B M; Wood, B L
2000-01-01
Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, N.E.; Svoboda, J.M.
1999-05-25
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency. 13 figs.
Remotely controlled sensor apparatus for use in dig-face characterization system
Josten, Nicholas E.; Svoboda, John M.
1999-01-01
A remotely controlled sensor platform apparatus useful in a dig-face characterization system is deployed from a mobile delivery device such as standard heavy construction equipment. The sensor apparatus is designed to stabilize sensors against extraneous motions induced by heavy equipment manipulations or other outside influences, and includes a terrain sensing and sensor elevation control system to maintain the sensors in close ground proximity. The deployed sensor apparatus is particularly useful in collecting data in work environments where human access is difficult due to the presence of hazardous conditions, rough terrain, or other circumstances that prevent efficient data collection by conventional methods. Such work environments include hazardous waste sites, unexploded ordnance sites, or construction sites. Data collection in these environments by utilizing the deployed sensor apparatus is desirable in order to protect human health and safety, or to assist in planning daily operations to increase efficiency.
Automated extraction of metadata from remotely sensed satellite imagery
NASA Technical Reports Server (NTRS)
Cromp, Robert F.
1991-01-01
The paper discusses research in the Intelligent Data Management project at the NASA/Goddard Space Flight Center, with emphasis on recent improvements in low-level feature detection algorithms for performing real-time characterization of images. Images, including MSS and TM data, are characterized using neural networks and the interpretation of the neural network output by an expert system for subsequent archiving in an object-oriented data base. The data show the applicability of this approach to different arrangements of low-level remote sensing channels. The technique works well when the neural network is trained on data similar to the data used for testing.
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2011-11-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground
NASA Astrophysics Data System (ADS)
Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.
2012-05-01
U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-24
... Central Characterization Project's Remote-Handled Transuranic Waste Characterization Program at the...-handled (RH), transuranic (TRU) waste characterization program implemented by the Central Characterization... Criteria, EPA evaluated the characterization of RH TRU debris waste from SRS-CCP during an inspection on...
Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I
NASA Technical Reports Server (NTRS)
Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael
2015-01-01
Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.
Bringing an ecological view of change to Landsat-based remote sensing
Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe
2014-01-01
When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.
NASA Technical Reports Server (NTRS)
Maddrea, G. L., Jr.; Bendura, R. J.
1981-01-01
A field experiment designed to further understand the formation and transport of visibility reducing aerosols and to characterize regional scale air masses and urban plumes is described. Measurements were made primarily in the Ohio River Valley region. The NASA participation included obtaining measurements for the determination of mixing layer height and ozone profiles by using airborne remote sensor systems such as the ultraviolet differential absorption lidar, the high spectral resolution lidar, and the laser absorption spectrometer. Other NASA systems included the microwave atmospheric remote sensor, tethered balloons, an in situ measurements aircraft, and several photometer/transmissiometer systems.
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-02-27
Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. The following will be a site by site discussion of RH waste handling, placement, and container data. This will be followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that is the most up to date and accurate data available today. 2 figures, 10 tables.
Remote Operations of Laser Guide Star Systems: Gemini Observatory.
NASA Astrophysics Data System (ADS)
Oram, Richard J.; Fesquet, Vincent; Wyman, Robert; D'Orgeville, Celine
2011-03-01
The Gemini North telescope, equipped with a 14W laser, has been providing Laser Guide Star Adaptive Optics (LGS AO) regular science queue observations for worldwide astronomers since February 2007. The new 55W laser system for MCAO was installed on the Gemini South telescope in May 2010. In this paper, we comment on how Gemini Observatory developed regular remote operation of the Laser Guide Star Facility and high-power solid-state laser as routine normal operations. Fully remote operation of the LGSF from the Hilo base facility HBF was initially trialed and then optimized and became the standard operating procedure (SOP) for LGS operation in December 2008. From an engineering perspective remote operation demands stable, well characterized and base-lined equipment sets. In the effort to produce consistent, stable and controlled laser parameters (power, wavelength and beam quality) we completed a failure mode effect analysis of the laser system and sub systems that initiated a campaign of hardware upgrades and procedural improvements to the routine maintenance operations. Finally, we provide an overview of normal operation procedures during LGS runs and present a snapshot of data accumulated over several years that describes the overall LGS AO observing efficiency at the Gemini North telescope.
Parametric investigations of plasma characteristics in a remote inductively coupled plasma system
NASA Astrophysics Data System (ADS)
Shukla, Prasoon; Roy, Abhra; Jain, Kunal; Bhoj, Ananth
2016-09-01
Designing a remote plasma system involves source chamber sizing, selection of coils and/or electrodes to power the plasma, designing the downstream tubes, selection of materials used in the source and downstream regions, locations of inlets and outlets and finally optimizing the process parameter space of pressure, gas flow rates and power delivery. Simulations can aid in spatial and temporal plasma characterization in what are often inaccessible locations for experimental probes in the source chamber. In this paper, we report on simulations of a remote inductively coupled Argon plasma system using the modeling platform CFD-ACE +. The coupled multiphysics model description successfully address flow, chemistry, electromagnetics, heat transfer and plasma transport in the remote plasma system. The SimManager tool enables easy setup of parametric simulations to investigate the effect of varying the pressure, power, frequency, flow rates and downstream tube lengths. It can also enable the automatic solution of the varied parameters to optimize a user-defined objective function, which may be the integral ion and radical fluxes at the wafer. The fast run time coupled with the parametric and optimization capabilities can add significant insight and value in design and optimization.
Photogrammetric system and method used in the characterization of a structure
NASA Technical Reports Server (NTRS)
Watson, Kent A. (Inventor); Connell, John W. (Inventor); Pappa, Richard S. (Inventor); Belvin, W. Keith (Inventor); Dorrington, Adrian A. (Inventor); Jones, Thomas W. (Inventor); Danehy, Paul M. (Inventor)
2010-01-01
A photogrammetric system uses an array of spaced-apart targets coupled to a structure. Each target exhibits fluorescence when exposed to a broad beam of illumination. A photogrammetric imaging system located remotely with respect to the structure detects and processes the fluorescence (but not the illumination wavelength) to measure the shape of a structure.
NASA Astrophysics Data System (ADS)
Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.
2017-12-01
Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.
Uncertainty Management in Remote Sensing of Climate Data. Summary of A Workshop
NASA Technical Reports Server (NTRS)
McConnell, M.; Weidman, S.
2009-01-01
Great advances have been made in our understanding of the climate system over the past few decades, and remotely sensed data have played a key role in supporting many of these advances. Improvements in satellites and in computational and data-handling techniques have yielded high quality, readily accessible data. However, rapid increases in data volume have also led to large and complex datasets that pose significant challenges in data analysis (NRC, 2007). Uncertainty characterization is needed for every satellite mission and scientists continue to be challenged by the need to reduce the uncertainty in remotely sensed climate records and projections. The approaches currently used to quantify the uncertainty in remotely sensed data, including statistical methods used to calibrate and validate satellite instruments, lack an overall mathematically based framework.
NASA Technical Reports Server (NTRS)
Holleman, Elizabeth; Sharp, David; Sheller, Richard; Styron, Jason
2007-01-01
This paper describes the application of a FUR Systems A40M infrared (IR) digital camera for thermal monitoring of a Liquid Oxygen (LOX) and Ethanol bi-propellant Reaction Control Engine (RCE) during Auxiliary Propulsion System (APS) testing at the National Aeronautics & Space Administration's (NASA) White Sands Test Facility (WSTF) near Las Cruces, New Mexico. Typically, NASA has relied mostly on the use of ThermoCouples (TC) for this type of thermal monitoring due to the variability of constraints required to accurately map rapidly changing temperatures from ambient to glowing hot chamber material. Obtaining accurate real-time temperatures in the JR spectrum is made even more elusive by the changing emissivity of the chamber material as it begins to glow. The parameters evaluated prior to APS testing included: (1) remote operation of the A40M camera using fiber optic Firewire signal sender and receiver units; (2) operation of the camera inside a Pelco explosion proof enclosure with a germanium window; (3) remote analog signal display for real-time monitoring; (4) remote digital data acquisition of the A40M's sensor information using FUR's ThermaCAM Researcher Pro 2.8 software; and (5) overall reliability of the system. An initial characterization report was prepared after the A40M characterization tests at Marshall Space Flight Center (MSFC) to document controlled heat source comparisons to calibrated TCs. Summary IR digital data recorded from WSTF's APS testing is included within this document along with findings, lessons learned, and recommendations for further usage as a monitoring tool for the development of rocket engines.
NASA Astrophysics Data System (ADS)
Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.
2015-12-01
While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.
Locomotion control of hybrid cockroach robots
Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong
2015-01-01
Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Oil pollution signatures by remote sensing.
NASA Technical Reports Server (NTRS)
Catoe, C. E.; Mclean, J. T.
1972-01-01
Study of the possibility of developing an effective remote sensing system for oil pollution monitoring which would be capable of detecting oil films on water, mapping the areal extent of oil slicks, measuring slick thickness, and identifying the oil types. In the spectral regions considered (ultraviolet, visible, infrared, microwave, and radar), the signatures were sufficiently unique when compared to the background so that it was possible to detect and map oil slicks. Both microwave and radar techniques are capable of operating in adverse weather. Fluorescence techniques show promise in identifying oil types. A multispectral system will be required to detect oil, map its distribution, estimate film thickness, and characterize the oil pollutant.
Wirth, Lisa; Rosenberger, Amanda; Prakash, Anupma; Gens, Rudiger; Margraf, F. Joseph; Hamazaki, Toshihide
2012-01-01
At northern limits of a species’ distribution, fish habitat requirements are often linked to thermal preferences, and the presence of overwintering habitat. However, logistical challenges and hydrologic processes typical of glacial systems could compromize the identification of these habitats, particularly in large river environments. Our goal was to identify and characterize spawning habitat for fall-run chum salmon Oncorhynchus keta and model habitat selection from spatial distributions of tagged individuals in the Tanana River, Alaska using an approach that combined ground surveys with remote sensing. Models included braiding, sinuosity, ice-free water surface area (indicating groundwater influence), and persistent ice-free water (i.e., consistent presence of ice-free water for a 12-year period according to satellite imagery). Candidate models containing persistent ice-free water were selected as most likely, highlighting the utility of remote sensing for monitoring and identifying salmon habitat in remote areas. A combination of ground and remote surveys revealed spatial and temporal thermal characteristics of these habitats that could have strong biological implications. Persistent ice-free sites identified using synthetic aperture radar appear to serve as core areas for spawning fall chum salmon, and the importance of stability through time suggests a legacy of successful reproductive effort for this homing species. These features would not be captured with a one-visit traditional survey but rather required remote-sensing monitoring of the sites through time.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Cavalli, Rosa Maria; Betti, Mattia; Campanelli, Alessandra; Di Cicco, Annalisa; Guglietta, Daniela; Penna, Pierluigi; Piermattei, Viviana
2014-01-01
This methodology assesses the accuracy with which remote data characterizes a surface, as a function of Full Width at Half Maximum (FWHM). The purpose is to identify the best remote data that improves the characterization of a surface, evaluating the number of bands in the spectral range. The first step creates an accurate dataset of remote simulated data, using in situ hyperspectral reflectances. The second step evaluates the capability of remote simulated data to characterize this surface. The spectral similarity measurements, which are obtained using classifiers, provide this capability. The third step examines the precision of this capability. The assumption is that in situ hyperspectral reflectances are considered the “real” reflectances. They are resized with the same spectral range of the remote data. The spectral similarity measurements which are obtained from “real” resized reflectances, are considered “real” measurements. Therefore, the quantity and magnitude of “errors” (i.e., differences between spectral similarity measurements obtained from “real” resized reflectances and from remote data) provide the accuracy as a function of FWHM. This methodology was applied to evaluate the accuracy with which CHRIS-mode1, CHRIS-mode2, Landsat5-TM, MIVIS and PRISMA data characterize three coastal waters. Their mean values of uncertainty are 1.59%, 3.79%, 7.75%, 3.15% and 1.18%, respectively. PMID:24434875
NASA Technical Reports Server (NTRS)
Ryerson, Charles C.
2000-01-01
Remote-sensing systems that map aircraft icing conditions in the flight path from airports or aircraft would allow icing to be avoided and exited. Icing remote-sensing system development requires consideration of the operational environment, the meteorological environment, and the technology available. Operationally, pilots need unambiguous cockpit icing displays for risk management decision-making. Human factors, aircraft integration, integration of remotely sensed icing information into the weather system infrastructures, and avoid-and-exit issues need resolution. Cost, maintenance, power, weight, and space concern manufacturers, operators, and regulators. An icing remote-sensing system detects cloud and precipitation liquid water, drop size, and temperature. An algorithm is needed to convert these conditions into icing potential estimates for cockpit display. Specification development requires that magnitudes of cloud microphysical conditions and their spatial and temporal variability be understood at multiple scales. The core of an icing remote-sensing system is the technology that senses icing microphysical conditions. Radar and microwave radiometers penetrate clouds and can estimate liquid water and drop size. Retrieval development is needed; differential attenuation and neural network assessment of multiple-band radar returns are most promising to date. Airport-based radar or radiometers are the most viable near-term technologies. A radiometer that profiles cloud liquid water, and experimental techniques to use radiometers horizontally, are promising. The most critical operational research needs are to assess cockpit and aircraft system integration, develop avoid-and-exit protocols, assess human factors, and integrate remote-sensing information into weather and air traffic control infrastructures. Improved spatial characterization of cloud and precipitation liquid-water content, drop-size spectra, and temperature are needed, as well as an algorithm to convert sensed conditions into a measure of icing potential. Technology development also requires refinement of inversion techniques. These goals can be accomplished with collaboration among federal agencies including NASA, the FAA, the National Center for Atmospheric Research, NOAA, and the Department of Defense. This report reviews operational, meteorological, and technological considerations in developing the capability to remotely map in-flight icing conditions from the ground and from the air.
In-flight edge response measurements for high-spatial-resolution remote sensing systems
NASA Astrophysics Data System (ADS)
Blonski, Slawomir; Pagnutti, Mary A.; Ryan, Robert; Zanoni, Vickie
2002-09-01
In-flight measurements of spatial resolution were conducted as part of the NASA Scientific Data Purchase Verification and Validation process. Characterization included remote sensing image products with ground sample distance of 1 meter or less, such as those acquired with the panchromatic imager onboard the IKONOS satellite and the airborne ADAR System 5500 multispectral instrument. Final image products were used to evaluate the effects of both the image acquisition system and image post-processing. Spatial resolution was characterized by full width at half maximum of an edge-response-derived line spread function. The edge responses were analyzed using the tilted-edge technique that overcomes the spatial sampling limitations of the digital imaging systems. As an enhancement to existing algorithms, the slope of the edge response and the orientation of the edge target were determined by a single computational process. Adjacent black and white square panels, either painted on a flat surface or deployed as tarps, formed the ground-based edge targets used in the tests. Orientation of the deployable tarps was optimized beforehand, based on simulations of the imaging system. The effects of such factors as acquisition geometry, temporal variability, Modulation Transfer Function compensation, and ground sample distance on spatial resolution were investigated.
NASA Astrophysics Data System (ADS)
Wang, Can; Bin, Chen; Christman, Lilianna E.; Glen, Jonathan M. G.; Klemperer, Simon L.; McPhee, Darcy K.; Kappler, Karl N.; Bleier, Tom E.; Dunson, J. Clark
2018-04-01
When working with ultra-low-frequency (ULF) magnetic datasets, as with most geophysical time-series data, it is important to be able to distinguish between cultural signals, internal instrument noise, and natural external signals with their induced telluric fields. This distinction is commonly attempted using simultaneously recorded data from a spatially remote reference site. Here, instead, we compared data recorded by two systems with different instrumental characteristics at the same location over the same time period. We collocated two independent ULF magnetic systems, one from the QuakeFinder network and the other from the United States Geological Survey (USGS)-Stanford network, in order to cross-compare their data, characterize data reproducibility, and characterize signal origin. In addition, we used simultaneous measurements at a remote geomagnetic observatory to distinguish global atmospheric signals from local cultural signals. We demonstrated that the QuakeFinder and USGS-Stanford systems have excellent coherence, despite their different sensors and digitizers. Rare instances of isolated signals recorded by only one system or only one sensor indicate that caution is needed when attributing specific recorded signal features to specific origins.[Figure not available: see fulltext.
Locomotion control of hybrid cockroach robots.
Sanchez, Carlos J; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M; Vinson, S Bradleigh; Liang, Hong
2015-04-06
Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
2011-05-01
Characterization of Test Sites 57 Appendix 4 – Interactive Maps and Images...issued by the tropical test study panel, reporting the results of work conducted at 24 sites. The evolution of tropical testing to the suite of sites...macrophylla, Terminalia amazonia, Virola brachycarpa, and the palm Astrocaryum mexicanum. The mangrove and littoral forest are ecologically important to the
A remotely triggered fast neutron detection instrument based on a plastic organic scintillator
NASA Astrophysics Data System (ADS)
Jones, A. R.; Aspinall, M. D.; Joyce, M. J.
2018-02-01
A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.
A remotely triggered fast neutron detection instrument based on a plastic organic scintillator.
Jones, A R; Aspinall, M D; Joyce, M J
2018-02-01
A detector system for the characterization of radiation fields of both fast neutrons and γ rays is described comprising of a gated photomultiplier tube (PMT), an EJ299-33 solid organic scintillator detector, and an external trigger circuit. The objective of this development was to conceive a means by which the PMT in such a system can be actuated remotely during the high-intensity bursts of pulsed γ-ray contamination that can arise during active interrogation procedures. The system is used to detect neutrons and γ rays using established pulse-shape discrimination (PSD) techniques. The gating circuit enables the PMT to be switched off remotely. This is compatible with use during intense radiation transients to avoid saturation and the disruption of the operation of the PMT during the burst. Data are presented in the form of pulse-height spectra and PSD scatter plots for the system triggered with a strobed light source. These confirm that the gain of the system and the throughput for both triggered and un-triggered scenarios are as expected, given the duty cycle of the stimulating radiation. This demonstrates that the triggering function does not perturb the system response of the detector.
Wireless sensors powered by microbial fuel cells.
Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew
2005-07-01
Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.
Characterizing land processes in the biosphere
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Tuyahov, A. J.
1984-01-01
NASA long-term planning for the satellite remote sensing of land areas is discussed from the perspective of a holistic interdisciplinary approach to the study of the biosphere. The earth is characterized as a biogeochemical system; the impact of human activity on this system is considered; and the primary scientific goals for their study are defined. Remote-sensing programs are seen as essential in gaining an improved understanding of energy budgets, the hydrological cycle, other biogeological cycles, and the coupling between these cycles, with the construction of a global data base and eventually the development of predictive simulation models which can be used to assess the impact of planned human activities. Current sensor development at NASA includes a multilinear array for the visible and IR and the L-band Shuttle Imaging Radar B, both to be flown on Shuttle missions in the near future; for the 1990s, a large essentially permanent man-tended interdisciplinary multisensor platform connected to an advanced data network is being planned.
Remotely-sensed and in-situ observations of Greenland firn aquifers
NASA Astrophysics Data System (ADS)
Forster, R. R.; Miège, C.; Koenig, L.; Solomon, D. K.; Schmerr, N. C.; Miller, O. L.; Ligtenberg, S.; Montgomery, L. N.; Brucker, L.; Miller, J.; Legchenko, A.
2017-12-01
In 2011, prior to seasonal melt, our research team drilled into an unknown firn aquifer system in Southeast Greenland. Since 2013, we have conducted four field seasons, complemented with modeling and remote sensing to gain knowledge regarding firn aquifers and surrounding snow/firn/ice. We aim to provide a more complete picture of the system including formation conditions, controlling mechanisms, spatial and temporal changes, and connections with the larger ice sheet hydrologic system. This work summarizes remote sensing data since 1993 showing the spatial and temporal evolution of the aquifer extent. To complement the remote sensing and better characterize the firn aquifer in the field, we use a combination of three different geophysics methods. Ground penetrating radar provides us knowledge of the water table elevation and its variations, magnetic-resonance soundings give us the water volume held in the aquifer and the active seismic data allow us to locate the bottom of the aquifer. In addition, firn/ice-core stratigraphy suggests that the timing and evolution of the aquifer bottom is controlled by thermodynamics. Our compilation of remote sensing measurements point to a dynamic and expanding aquifer system. We found that firn aquifers have existed at least since 1993 (dataset start) in the high melt and high accumulation region of the South Eastern Greenland ice sheet. Firn aquifers are now growing toward the interior related to the warming air temperatures in the Arctic and more intense melt during summers. These remotely sensed observations and in-situ measurements are required to validate improved ice sheet mass balance models that incorporate firn aquifers. They are also needed to further investigate the potential of firn aquifer discharge to the glacier bed via crevasse hydrofracturing influencing ice dynamics.
2008-01-01
backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the...broadband acoustic scattering system by adapting existing technology that has been recently developed at WHOI for a monostatic Doppler sonar module...broadband acoustic backscattering system: 1) Modifications to the monostatic Doppler sonar module, recently developed at WHOI for turbulence studies
Behavioral Modeling and Characterization of Nonlinear Operation in RF and Microwave Systems
2005-01-01
the model further reinforces the intuition gained by employing this modeling technique. 84 Chapter 5 Remote Characterization of RF Devices 5.1...was used to extract the power series coefficients, 21 dBm. This further reinforces the conclusion that the nonlinear coefficients should be extracted...are becoming important. The fit of the odd-ordered model reinforces this hypothesis since the phase component of the fit roughly splits the
International Conference on Remote Emergency Medical Services
NASA Technical Reports Server (NTRS)
1975-01-01
An emergency medical system is characterized. Applications of NASA technology in biomedical telecommunication and bioinstrumentation are explored. The training and effectiveness of paramedics, technicians, nurses, and physicians are evaluated as applied to emergency situations and the operations of trauma centers. Civilian and military aeromedical evacuation is discussed.
Assessment of Spacecraft Operational Status Using Electro-Optical Predictive Techniques
2010-09-01
panel appendages, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical sensors...observing and characterizing key spacecraft features. The simulation results are based on electro-optical signatures apparent to nonimaging sensors, along...and communication equipment, may require enhanced preflight characterization processes to support monitoring by passive, remote, nonimaging optical
NASA Astrophysics Data System (ADS)
Sussman, A. J.; Anderson, D.; Burt, C.; Craven, J.; Kimblin, C.; McKenna, I.; Schultz-Fellenz, E. S.; Miller, E.; Yocky, D. A.; Haas, D.
2016-12-01
Underground nuclear explosions (UNEs) result in numerous signatures that manifest on a wide range of temporal and spatial scales. Currently, prompt signals, such as the detection of seismic waves provide only generalized locations and the timing and amplitude of non-prompt signals are difficult to predict. As such, research into improving the detection, location, and identification of suspect events has been conducted, resulting in advancement of nuclear test detection science. In this presentation, we demonstrate the scalar variably of surface and subsurface observables, briefly discuss current capabilities to locate, detect and characterize potential nuclear explosion locations, and explain how emergent technologies and amalgamation of disparate data sets will facilitate improved monitoring and verification. At the smaller scales, material and fracture characterization efforts on rock collected from legacy UNE sites and from underground experiments using chemical explosions can be incorporated into predictive modeling efforts. Spatial analyses of digital elevation models and orthoimagery of both modern conventional and legacy nuclear sites show subtle surface topographic changes and damage at nearby outcrops. Additionally, at sites where such technology cannot penetrate vegetative cover, it is possible to use the vegetation itself as both a companion signature reflecting geologic conditions and showing subsurface impacts to water, nutrients, and chemicals. Aerial systems based on RGB imagery, light detection and ranging, and hyperspectral imaging can allow for combined remote sensing modalities to perform pattern recognition and classification tasks. Finally, more remote systems such as satellite based synthetic aperture radar and satellite imagery are other techniques in development for UNE site detection, location and characterization.
NASA Astrophysics Data System (ADS)
Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes
2018-06-01
A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.
Exploring Ocean-World Habitability within the Planned Europa Clipper Mission
NASA Astrophysics Data System (ADS)
Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.
2017-12-01
A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.
Laser long-range remote-sensing program experimental results
NASA Astrophysics Data System (ADS)
Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe
1995-12-01
A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.
Assessing the Interdisciplinary Use of Socioeconomic and Remote Sensing Data in the Earth Sciences
NASA Astrophysics Data System (ADS)
Chen, R. S.; Downs, R. R.; Schumacher, J.
2013-12-01
Remotely sensed data are widely used in Earth science research and applications not just to improve understanding of natural systems but also to elucidate interactions between natural and human systems and to model and predict human impacts on the environment, whether planned or unplanned. It is therefore often necessary for both remote sensing and socioeconomic data to be used together in both Earth science and social science research, for example in modeling past, present, and future land cover change, in assessing societal vulnerability to geophysical and climatological hazards, in measuring the human health impacts of air and water pollution, or in developing improved approaches to managing water, ecological, and other resources. The NASA Socioeconomic Data and Applications Center (SEDAC) was established as part of the Earth Observing System Data and Information System (EOSDIS) to facilitate access to and use of socioeconomic data in conjunction with remote sensing data in both research and applications. SEDAC provides access both to socioeconomic data that have been transformed into forms more readily usable by Earth scientists and other users, and to integrated datasets that incorporate both socioeconomic and remote sensing data. SEDAC data have been cited in at least 2,000 scientific papers covering a wide range of scientific disciplines and problem areas. In many cases, SEDAC data are cited in these papers along with other remote sensing datasets available from NASA or other sources. However, such citations do not necessarily indicate significant, integrated use of SEDAC and remote sensing data. To assess the level and type of integrated data use, we analyze a selection of recent SEDAC data citations in Earth science journals to characterize the ways in which SEDAC data have been used in the underlying research project and the paper itself. Papers were selected based on the presence of a SEDAC data citation and one or more keywords related to a remote sensing instrument or dataset. We assess if and how the SEDAC and remote sensing data are used together, e.g., in an empirical analysis, model, and/or visualization. We also ascertain the multidisciplinary backgrounds of the author or authors, as well as the Web of Science category and impact factor associated with the journal, to help characterize the user community and the overall scientific impact of the data use. Another issue is whether or not authors are formally citing SEDAC data and remote sensing in reference sections as opposed to referring to data informally, e.g., in figure captions. A key challenge in promoting the cross-disciplinary use of scientific data is the identification of ways in which scientists and other users not only access data from other disciplines but also use these data in their research. Objective assessment of scientific outputs such as the peer-reviewed scientific literature provides important insight into how individual scientists and scientific teams are taking advantage of the ongoing explosion in the variety and quantity of digital data from multiple disciplines to address pressing research problems and applications.
Overall design of imaging spectrometer on-board light aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhongqi, H.; Zhengkui, C.; Changhua, C.
1996-11-01
Aerial remote sensing is the earliest remote sensing technical system and has gotten rapid development in recent years. The development of aerial remote sensing was dominated by high to medium altitude platform in the past, and now it is characterized by the diversity platform including planes of high-medium-low flying altitude, helicopter, airship, remotely controlled airplane, glider, and balloon. The widely used and rapidly developed platform recently is light aircraft. Early in the close of 1970s, Beijing Research Institute of Uranium Geology began aerial photography and geophysical survey using light aircraft, and put forward the overall design scheme of light aircraftmore » imaging spectral application system (LAISAS) in 19905. LAISAS is comprised of four subsystem. They are called measuring platform, data acquiring subsystem, ground testing and data processing subsystem respectively. The principal instruments of LAISAS include measuring platform controlled by inertia gyroscope, aerial spectrometer with high spectral resolution, imaging spectrometer, 3-channel scanner, 128-channel imaging spectrometer, GPS, illuminance-meter, and devices for atmospheric parameters measuring, ground testing, data correction and processing. LAISAS has the features of integrity from data acquisition to data processing and to application; of stability which guarantees the image quality and is comprised of measuring, ground testing device, and in-door data correction system; of exemplariness of integrated the technology of GIS, GPS, and Image Processing System; of practicality which embodied LAISAS with flexibility and high ratio of performance to cost. So, it can be used in the fields of fundamental research of Remote Sensing and large-scale mapping for resource exploration, environmental monitoring, calamity prediction, and military purpose.« less
Best practices in passive remote sensing VNIR hyperspectral system hardware calibrations
Jablonski, Joseph; Durell, Christopher; Slonecker, Terry; Wong, Kwok; Simon, Blair; Eichelberger, Andrew; Osterberg, Jacob
2016-01-01
Hyperspectral imaging (HSI) is an exciting and rapidly expanding area of instruments and technology in passive remote sensing. Due to quickly changing applications, the instruments are evolving to suit new uses and there is a need for consistent definition, testing, characterization and calibration. This paper seeks to outline a broad prescription and recommendations for basic specification, testing and characterization that must be done on Visible Near Infra-Red grating-based sensors in order to provide calibrated absolute output and performance or at least relative performance that will suit the user’s task. The primary goal of this paper is to provide awareness of the issues with performance of this technology and make recommendations towards standards and protocols that could be used for further efforts in emerging procedures for national laboratory and standards groups.
Surface connectivity of wetlands in the 700,000 km2 Prairie Pothole Region of North America (PPR) can occur through fill-spill and fill-merge mechanisms, with some wetlands eventually spilling into stream/river systems. These wetland-to-wetland and wetland-to-stream connections v...
Techniques to Remotely Identify and Evaluate Electrical Power System Infrastructure
2006-02-01
bursts is quantified in a “ macroburst ”: The totality of all transients (arcs) produced during a single switch opera- tion is termed a macroburst . A... macroburst can be characterized in terms of its duration in time, the total number of field transients produced, the am- plitude variation between
Progress In Developing Laser Based Post Irradiation Examination Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Scott, Clark L.; Benefiel, Brad C.
To be able to understand the performance of reactor fuels and materials, irradiated materials must be characterized effectively and efficiently in a high rad environment. The characterization work must be performed remotely and in an environment hostile to instrumentation. Laser based characterization techniques provide the ability to be remote and robust in a hot-cell environment. Laser based instrumentation also can provide high spatial resolution suitable for scanning and imaging large areas. The INL is currently developing three laser based Post Irradiation Examination (PIE) stations for the Hot Fuel Examination Facility at the INL. These laser based systems will characterize irradiatedmore » materials and fuels. The characterization systems are the following: Laser Shock Laser based ultrasonic C-scan system Gas Assay, Sample, and Recharge system (GASR, up-grade to an existing system). The laser shock technique will characterize material properties and failure loads/mechanisms in various materials such as LWR fuel, plate fuel, and next generation fuel forms, for PIE in high radiation areas. The laser shock-technique induces large amplitude shock waves to mechanically characterize interfaces such as the fuel-clad bond. The shock wave travels as a compression wave through the material to the free (unconfined) back surface and reflects back through the material under test as a rarefaction (tensile) wave. This rarefaction wave is the physical mechanism that produces internal de-lamination failure. As part of the laser shock system, a laser-based ultrasonic C-scan system will be used to detect and characterize debonding caused by the laser shock technique. The laser ultrasonic system will be fully capable of performing classical non-destructive evaluation testing and imaging functions such as microstructure characterization, flaw detection and dimensional metrology in complex components. The purpose of the GASR is to measure the pressure/volume of the plenum of an irradiated fuel element and obtain fission gas samples for analysis. The study of pressure and volume in the plenum of an irradiated fuel element and the analysis of fission gases released from the fuel is important to understanding the performance of reactor fuels and materials. This system may also be used to measure the pressure/volume of other components (such as control blades) and obtain gas samples from these components for analysis. The main function of the laser in this application is to puncture the fuel element to allow the fission gas to escape and if necessary to weld the spot close. The GASR station will have the inherent capability to perform cutting welding and joining functions within a hot-cell.« less
ERIC Educational Resources Information Center
Brinson, James R.
2017-01-01
This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to…
An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments
C. Gabrielli; J.J. McDonnell
2011-01-01
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...
The Airborne Visible / Infrared Imaging Spectrometer AVIS: Design, Characterization and Calibration.
Oppelt, Natascha; Mauser, Wolfram
2007-09-14
The Airborne Visible / Infrared imaging Spectrometer AVIS is a hyperspectralimager designed for environmental monitoring purposes. The sensor, which wasconstructed entirely from commercially available components, has been successfullydeployed during several experiments between 1999 and 2007. We describe the instrumentdesign and present the results of laboratory characterization and calibration of the system'ssecond generation, AVIS-2, which is currently being operated. The processing of the datais described and examples of remote sensing reflectance data are presented.
Combined LIBS-Raman for remote detection and characterization of biological samples
Anderson, Aaron S.; Mukundan, Harshini; Mcinroy, Rhonda E.; ...
2015-02-07
Laser-Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy have rich histories in the analysis of a wide variety of samples in both in situ and remote configurations. Our team is working on building a deployable, integrated Raman and LIBS spectrometer (RLS) for the parallel elucidation of elemental and molecular signatures under Earth and Martian surface conditions. Herein, results from remote LIBS and Raman analysis of biological samples such as amino acids, small peptides, mono- and disaccharides, and nucleic acids acquired under terrestrial and Mars conditions are reported, giving rise to some interesting differences. A library of spectra and peaks of interestmore » were compiled, and will be used to inform the analysis of more complex systems, such as large peptides, dried bacterial spores, and biofilms. Lastly, these results will be presented and future applications will be discussed, including the assembly of a combined RLS spectroscopic system and stand-off detection in a variety of environments.« less
NASA Technical Reports Server (NTRS)
Ross, Kenton W.; McKellip, Rodney D.
2005-01-01
Topics covered include: Implementation and Validation of Sensor-Based Site-Specific Crop Management; Enhanced Management of Agricultural Perennial Systems (EMAPS) Using GIS and Remote Sensing; Validation and Application of Geospatial Information for Early Identification of Stress in Wheat; Adapting and Validating Precision Technologies for Cotton Production in the Mid-Southern United States - 2004 Progress Report; Development of a System to Automatically Geo-Rectify Images; Economics of Precision Agriculture Technologies in Cotton Production-AG 2020 Prescription Farming Automation Algorithms; Field Testing a Sensor-Based Applicator for Nitrogen and Phosphorus Application; Early Detection of Citrus Diseases Using Machine Vision and DGPS; Remote Sensing of Citrus Tree Stress Levels and Factors; Spectral-based Nitrogen Sensing for Citrus; Characterization of Tree Canopies; In-field Sensing of Shallow Water Tables and Hydromorphic Soils with an Electromagnetic Induction Profiler; Maintaining the Competitiveness of Tree Fruit Production Through Precision Agriculture; Modeling and Visualizing Terrain and Remote Sensing Data for Research and Education in Precision Agriculture; Thematic Soil Mapping and Crop-Based Strategies for Site-Specific Management; and Crop-Based Strategies for Site-Specific Management.
A magnetic-resonance-imaging-compatible remote catheter navigation system.
Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria
2013-04-01
A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.
Surveillance of Arthropod Vector-Borne Infectious Diseases Using Remote Sensing Techniques: A Review
Kalluri, Satya; Gilruth, Peter; Rogers, David; Szczur, Martha
2007-01-01
Epidemiologists are adopting new remote sensing techniques to study a variety of vector-borne diseases. Associations between satellite-derived environmental variables such as temperature, humidity, and land cover type and vector density are used to identify and characterize vector habitats. The convergence of factors such as the availability of multi-temporal satellite data and georeferenced epidemiological data, collaboration between remote sensing scientists and biologists, and the availability of sophisticated, statistical geographic information system and image processing algorithms in a desktop environment creates a fertile research environment. The use of remote sensing techniques to map vector-borne diseases has evolved significantly over the past 25 years. In this paper, we review the status of remote sensing studies of arthropod vector-borne diseases due to mosquitoes, ticks, blackflies, tsetse flies, and sandflies, which are responsible for the majority of vector-borne diseases in the world. Examples of simple image classification techniques that associate land use and land cover types with vector habitats, as well as complex statistical models that link satellite-derived multi-temporal meteorological observations with vector biology and abundance, are discussed here. Future improvements in remote sensing applications in epidemiology are also discussed. PMID:17967056
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
GIS technology transfer for use in private sector consulting
NASA Astrophysics Data System (ADS)
Gibas, Dawn R.; Davis, Roger J.
1996-03-01
Summit Envirosolutions, Inc. (Summit) is an EOCAP '93 company working in partnership with NASA's Commercial Remote Sensing Program to integrate the use of Geographic Information Systems (GIS) and Remote Sensing (RS) technology into our environmental consulting business. The EOCAP program has allowed us to obtain the hardware and software necessary for this technology that would have been difficult for a small company, such as Summit, to purchase outright. We are integrating GIS/RS into our consulting business in several areas including wellhead protection and environmental assessments. The major emphasis in the EOCAP project is to develop a system, termed RealFlowSM. The goals of RealFlowSM are to reduce client costs associated with environmental compliance (in particular preparation of EPA-mandated Wellhead Protection Plans), more accurately characterize aquifer parameters, provide a scientifically sound basis for delineating Wellhead Protection Areas, and readily assess changes in well field operations and potential impacts of environmental stresses. RealFlowSM utilizes real-time telemetric data, digital imagery, GIS, Global Positioning System (GPS), and field data to characterize a study area at a lower cost. In addition, we are applying this technology in other service areas and showing a reduction in the overall costs for large projects.
AN INVESTIGATION OF REMOTE SENSING DEVICES FOR CHEMICAL CHARACTERIZATION OF MOTOR VEHICLE EXHAUST
The report summarizes results of tests to (1) evaluate the accuracy and precision of two different remote sensing devices (RSDs) for measuring carbon monoxide (CO), hydrocarbons (HCs), and nitric oxide (NO) and (2) evaluate the capabilities of three RSDs for characterizing fleet ...
Characterizing tropical forests with multispectral imagery
Eileen Helmer; Nicholas R. Goodwin; Valery Gond; Carlos M. Souza, Jr.; Gregory P. Asner
2015-01-01
Multispectral satellite imagery, that is, remotely sensed imagery with discrete bands ranging from visible to shortwave infrared (SWIR) wavelengths, is the timeliest and most accessible remotely sensed data for monitoring tropical forests. Given this relevance, we summarize here how multispectral imagery can help characterize tropical forest attributes of widespread...
The Global Emergency Observation and Warning System
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Mulqueen, John A.
1994-01-01
Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.
Analysis of measurements for solid state laser remote lidar system
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin
1995-01-01
The merits of using lidar systems for remote measurements of various atmospheric processes such as wind, turbulence, moisture, and aerosol concentration are widely recognized. Although the lidar technology has progressed considerably over the past two decades, significant research particularly in the area of solid state lidars remains to be conducted in order to fully exploit this technology. The work performed by the UAH (University of Alabama in Huntsville) personnel under this Delivery Order concentrated on analyses of measurements required in support of solid state laser remote sensing lidar systems which are to be designed, deployed, and used to measure atmospheric processes and constituents. UAH personnel has studied and recommended to NASA/MSFC the requirements of the optical systems needed to characterize the detection devices suitable for solid state wavelengths and to evaluate various heterodyne detection schemes. The 2-micron solid state laser technology was investigated and several preliminary laser designs were developed and their performance for remote sensing of atmospheric winds and clouds from a spaceborne platform were specified. In addition to the laser source and the detector, the other critical technologies necessary for global wind measurements by a spaceborne solid state coherent lidar systems were identified to be developed and demonstrated. As part of this work, an analysis was performed to determine the atmospheric wind velocity estimation accuracy using the line-of-sight measurements of a scanning coherent lidar. Under this delivery order, a computer database of materials related to the theory, development, testing, and operation of lidar systems was developed to serve as a source of information for lidar research and development.
Kostyukevich, Yury; Efremov, Denis; Ionov, Vladimir; Kukaev, Eugene; Nikolaev, Eugene
2017-11-01
The detection of explosives and drugs in hard-to-reach places is a considerable challenge. We report the development and initial experimental characterization of the air analysis system that includes Field Asymmetric Ion Mobility Spectrometer, array of the semiconductor gas sensors and is installed on multicopter. The system was developed based on the commercially available DJI Matrix 100 platform. For data collection and communication with operator, the special compact computer (Intel Compute Stick) was installed onboard. The total weight of the system was 3.3 kg. The system allows the 15-minute flight and provides the remote access to the obtained data. The developed system can be effectively used for the detection of impurities in the air, ecology monitoring, detection of chemical warfare agents, and explosives, what is especially important in light of recent terroristic attacks. The capabilities of the system were tested on the several explosives such as trinitrotoluene and nitro powder. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Angelliaume, S.; Ceamanos, X.; Viallefont-Robinet, F.; Baqué, R.; Déliot, Ph.; Miegebielle, V.
2017-10-01
Radar and optical sensors are operationally used by authorities or petroleum companies for detecting and characterizing maritime pollution. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as the oil real fraction, which is critical for both exploration purposes and efficient cleanup operations. Today state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI, the airborne system developed by ONERA, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this data set lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the electromagnetic spectrum. Specific processing techniques have been developed in order to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows to estimate slick surface properties such as the spatial abundance of oil and the relative concentration of hydrocarbons on the sea surface.
NASA Astrophysics Data System (ADS)
Salvini, Riccardo; Mastrorocco, Giovanni; Esposito, Giuseppe; Di Bartolo, Silvia; Coggan, John; Vanneschi, Claudio
2018-01-01
The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.
Myanmar: The Community Learning Centre Experience.
ERIC Educational Resources Information Center
Middelborg, Jorn; Duvieusart, Baudouin, Ed.
A community learning centre (CLC) is a local educational institution outside the formal education system, usually set up and managed by local people. CLCs were first introduced in Myanmar in 1994, and by 2001 there were 71 CLCs in 11 townships. The townships are characterized by remoteness, landlessness, unemployment, dependency on one cash crop,…
DOT National Transportation Integrated Search
2016-03-07
Building on the success of developing a UAV based unpaved road assessment system in Phase I, the project team was awarded a Phase II project by the USDOT to focus on outreach and implementation. The project team added Valerie Lefler of Integrated Glo...
Sensing Cell-Culture Assays with Low-Cost Circuitry.
Pérez, Pablo; Huertas, Gloria; Maldonado-Jacobi, Andrés; Martín, María; Serrano, Juan A; Olmo, Alberto; Daza, Paula; Yúfera, Alberto
2018-06-11
An alternative approach for cell-culture end-point protocols is proposed herein. This new technique is suitable for real-time remote sensing. It is based on Electrical Cell-substrate Impedance Spectroscopy (ECIS) and employs the Oscillation-Based Test (OBT) method. Simple and straightforward circuit blocks form the basis of the proposed measurement system. Oscillation parameters - frequency and amplitude - constitute the outcome, directly correlated with the culture status. A user can remotely track the evolution of cell cultures in real time over the complete experiment through a web tool continuously displaying the acquired data. Experiments carried out with commercial electrodes and a well-established cell line (AA8) are described, obtaining the cell number in real time from growth assays. The electrodes have been electrically characterized along the design flow in order to predict the system performance and the sensitivity curves. Curves for 1-week cell growth are reported. The obtained experimental results validate the proposed OBT for cell-culture characterization. Furthermore, the proposed electrode model provides a good approximation for the cell number and the time evolution of the studied cultures.
LANDSAT-4 evaluation program and scientific characterization activities
NASA Technical Reports Server (NTRS)
Barker, J. L.
1983-01-01
The characterization objectives of the LANDSAT 4 Science Office at GSFC are to: (1) determine the accuracy and precision of sensor and spacecraft performance, image data quality, and derived information; (2) recommend LANDSAT 4 system improvements; and (3) communicate results to the research community. In-house activities are directed toward full access and utilization of the prelaunch and in-orbit engineering test data on the sensor and spacecraft. Principle scientists in remote sensing are involved as part of a major scientific characterization effort, and workshops were held for these investigative teams. A symposium is scheduled prior to turnover of the TM to NOAA.
Floods, floodplains, delta plains — A satellite imaging approach
NASA Astrophysics Data System (ADS)
Syvitski, James P. M.; Overeem, Irina; Brakenridge, G. Robert; Hannon, Mark
2012-08-01
Thirty-three lowland floodplains and their associated delta plains are characterized with data from three remote sensing systems (AMSR-E, SRTM and MODIS). These data provide new quantitative information to characterize Late Quaternary floodplain landscapes and their penchant for flooding over the last decade. Daily proxy records for discharge since 2002 and for each of the 33 river systems can be derived with novel Advanced Microwave Scanning Radiometer (AMSR-E) methods. A descriptive framework based on analysis of Shuttle Radar Topography Mission (SRTM) data is used to capture the major landscape-scale floodplain elements or zones: 1) container valleys with their long and narrow pathways of largely sediment transit and bypass, 2) floodplain depressions that act as loci for frequent flooding and sediment storage, 3) zones of nodal avulsions common to many continental scale rivers, and often located seaward of container valleys, and 4) coastal floodplains and delta plains that offer both sediment bypass and storage but under the influence of marine processes. The SRTM data allow mapping of smaller-scale architectural elements in unprecedented systematic manner. Floodplain depressions were found to play a major role, which may largely be overlooked in conceptual floodplain models. Lastly, MODIS data (independently and combined with AMSR-E) allows the tracking of flood hydrographs and pathways and sedimentation patterns on a near-daily timescale worldwide. These remote-sensing data show that 85% of the studied major river systems experienced extensive flooding in the last decade. A new quantitative paradigm of floodplain processes, honoring the frequency and extent of floods, can be develop by careful analysis of these new remotely sensed data.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
2014-01-01
NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.
NASA Technical Reports Server (NTRS)
Welch, Richard V.; Edmonds, Gary O.
1994-01-01
The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.
Lidar: shedding new light on habitat characterization and modeling.
Kerri T. Vierling; Lee A. Vierling; William A. Gould; Sebastian Martinuzzi; Rick M. Clawges
2008-01-01
Ecologists need data on animalâhabitat associations in terrestrial and aquatic environments to design and implement effective conservation strategies. Habitat characteristics used in models typically incorporate (1) field data of limited spatial extent and/or (2) remote sensing data that do not characterize the vertical habitat structure. Remote sensing tools that...
Prototype of a wearable system for remote fetal monitoring during pregnancy.
Fanelli, Andrea; Ferrario, Manuela; Piccini, Luca; Andreoni, Giuseppe; Matrone, Giulia; Magenes, Giovanni; Signorini, Maria G
2010-01-01
Fetal Heart Rate (FHR) monitoring gives important information about the fetus health state during pregnancy. This paper presents a new prototype for remote fetal monitoring. The device will allow to monitor FHR in a domiciliary context and to send fetal ECG traces to a hospital facility, where clinicians can interpret them. In this way the mother could receive prompt feedback about fetal wellbeing. The system is characterized by two units: (i) a wearable unit endowed with textile electrodes for abdominal ECG recordings and with a Field Programmable Gate Array (FPGA) board for fetal heart rate (FHR) extraction; (ii) a dock station for the transmission of the data through the telephone line. The system will allow to reduce costs in fetal monitoring, improving the assessment of fetal conditions. The device is actually in development state. In this paper, the most crucial aspects behind its fulfillment are discussed.
Advances in atmospheric light scattering theory and remote-sensing techniques
NASA Astrophysics Data System (ADS)
Videen, Gorden; Sun, Wenbo; Gong, Wei
2017-02-01
This issue focuses especially on characterizing particles in the Earth-atmosphere system. The significant role of aerosol particles in this system was recognized in the mid-1970s [1]. Since that time, our appreciation for the role they play has only increased. It has been and continues to be one of the greatest unknown factors in the Earth-atmosphere system as evidenced by the most recent Intergovernmental Panel on Climate Change (IPCC) assessments [2]. With increased computational capabilities, in terms of both advanced algorithms and in brute-force computational power, more researchers have the tools available to address different aspects of the role of aerosols in the atmosphere. In this issue, we focus on recent advances in this topical area, especially the role of light scattering and remote sensing. This issue follows on the heels of four previous topical issues on this subject matter that have graced the pages of this journal [3-6].
1979-04-01
crosshead of the piston assembly. Shock transients at this location cause demagnetization of the magnet . This is being alleviated by in- stallation of magnets ...substantial structure, such as bulk - heads with edge cape. Soond, the wire-out foam *or* for the wing could not be sufficiently precise to preven the used for...characterize the power potential, fuel consumption, weight, bulk , and adaptability to closed loop control of candidate carburetion systems to be employed with
Remote sensing of tropospheric gases and aerosols with airborne DIAL system
NASA Technical Reports Server (NTRS)
Browell, E. V.
1983-01-01
The multipurpose airborne DIAL system developed at NASA Langley Research Center is characterized, and the published results of tropospheric O3, H2O, and aerosol-backscatter remote-sensing experiments performed in 1980 and 1981 are summarized. The system comprises two tunable dye lasers pumped by frequency-doubled Nd:YAG lasers, dielectric-coated steering optics, a 36-cm-diameter Cassegrain receiver telescope, gateable photomultiplier tubes, and a minicomputer data-processing unit for real-time calculation of gas concentrations and backscattering profiles. The transmitted energy of the 100-microsec-separated dye-laser pulses is 40, 80, or 50 mJ/pulse at around 300, 600, or 720-nm wavelength, respectively. Good agreement was found between DIAL-remote-sensed and in-situ H2O and O3 profiles of the lower troposphere and O3 profiles of the tropopause region, and the usefulness of DIAL backscattering measurements in the study of boundary-layer and tropospheric dynamics is demonstrated. The feasibility of DIAL sensing of power-plant or urban plume SO2, of urban-area (or rural-area column-content) NO2, and of temperature and H2O (simultaneously using a third laser) has been suggested by simulation studies.
The application of remote sensing techniques to the study of ophiolites
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Mahmood, Khalid
2008-08-01
Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.
Airborne and satellite remote sensors for precision agriculture
USDA-ARS?s Scientific Manuscript database
Remote sensing provides an important source of information to characterize soil and crop variability for both within-season and after-season management despite the availability of numerous ground-based soil and crop sensors. Remote sensing applications in precision agriculture have been steadily inc...
Remote sensing and reflectance profiling in entomology
USDA-ARS?s Scientific Manuscript database
Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...
2009-01-01
measure of a backscatter at a single narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted...monostatic Doppler sonar module. Key personnel for this project include: Andone Lavery as the PI for this project and who has overall responsibility...for the successful development, testing, and calibration of the broadband system. Gene Terray, who developed the original sonar Doppler sonar boards
NASA Technical Reports Server (NTRS)
Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei
1997-01-01
With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.
The role of bedrock groundwater in rainfall-runoff response at hillslope and catchment scales
C. Gabrielli; J.J. McDonnell; W.T. Jarvis
2012-01-01
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Direct hydrometric measurements have been limited due to the logistical challenges associated with drilling through hard rock in steep, remote and often roadless terrain. We used a new portable bedrock drilling system to explore bedrock groundwater dynamics aimed at...
NASA Astrophysics Data System (ADS)
Halverson, G. H.; Fisher, J.; Magnuson, M.; John, L.
2017-12-01
An operational system to produce and disseminate remotely sensed evapotranspiration using the PT-JPL model and support its analysis and use in water resources decision making is being integrated into the New Mexico state government. A partnership between the NASA Western Water Applications Office (WWAO), the Jet Propulsion Laboratory (JPL), and the New Mexico Office of the State Engineer (NMOSE) has enabled collaboration with a variety of state agencies to inform decision making processes for agriculture, rangeland, and forest management. This system improves drought understanding and mobilization, litigation support, and economic, municipal, and ground-water planning through interactive mapping of daily rates of evapotranspiration at 1 km spatial resolution with near real-time latency. This is facilitated by daily remote sensing acquisitions of land-surface temperature and near-surface air temperature and humidity from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite as well as the short-term composites of Normalized Difference Vegetation Index (NDVI) and albedo provided by MODIS. Incorporating evapotranspiration data into agricultural water management better characterizes imbalances between water requirements and supplies. Monitoring evapotranspiration over rangeland areas improves remediation and prevention of aridification. Monitoring forest evapotranspiration improves wildlife management and response to wildfire risk. Continued implementation of this decision support system should enhance water and food security.
Thermal remote sensing as a part of Exupéry volcano fast response system
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Hort, Matthias
2010-05-01
In order to understand the eruptive potential of a volcanic system one has to characterize the actual state of stress of a volcanic system that involves proper monitoring strategies. As several volcanoes in highly populated areas especially in south east Asia are still nearly unmonitored a mobile volcano monitoring system is currently being developed in Germany. One of the major novelties of this mobile volcano fast response system called Exupéry is the direct inclusion of satellite based observations. Remote sensing data are introduced together with ground based field measurements into the GIS database, where the statistical properties of all recorded data are estimated. Using physical modelling and statistical methods we hope to constrain the probability of future eruptions. The emphasis of this contribution is on using thermal remote sensing as tool for monitoring active volcanoes. One can detect thermal anomalies originating from a volcano by comparing signals in mid and thermal infrared spectra. A reliable and effective thermal anomalies detection algorithm was developed by Wright (2002) for MODIS sensor; it is based on the threshold of the so called normalized thermal index (NTI). This is the method we use in Exupéry, where we characterize each detected thermal anomaly by temperature, area, heat flux and effusion rate. The recent work has shown that radiant flux is the most robust parameter for this characterization. Its derivation depends on atmosphere, satellite viewing angle and sensor characteristics. Some of these influences are easy to correct using standard remote sensing pre-processing techniques, however, some noise still remains in data. In addition, satellites in polar orbits have long revisit times and thus they might fail to follow a fast evolving volcanic crisis due to long revisit times. Thus we are currently testing Kalman filter on simultaneous use of MODIS and AVHRR data to improve the thermal anomaly characterization. The advantage of this technique is that it increases the temporal resolution through using images from different satellites having different resolution and sensitivity. This algorithm has been tested for an eruption at Mt. Etna (2002) and successfully captures more details of the eruption evolution than would be seen by using only one satellite source. At the moment for Exupéry, merely MODIS (a sensor aboard NASA's Terra and Aqua satellite) data are used for the operational use. As MODIS is a meteorological sensor, it is suitable also for producing general overview images of the crisis area. Therefore, for each processed MODIS image we also produce RGB image where some basic meteorological features are classified: e.g. clouds, volcanic ash plumes, ocean, etc. In the case of detected hotspot an additional image is created; it contains the original measured radiances of the selected channels for the crisis area. All anomaly and processing parameters are additionally written into an XML file. The results are available in web GIS in the worst case two hours after NASA provides level 1b data online.
On-chip remote charger model using plasmonic island circuit
NASA Astrophysics Data System (ADS)
Ali, J.; Youplao, P.; Pornsuwancharoen, N.; Aziz, M. S.; Chiangga, S.; Amiri, I. S.; Punthawanunt, S.; Singh, G.; Yupapin, P.
2018-06-01
We propose the remote charger model using the light fidelity (LiFi) transmission and integrate microring resonator circuit. It consists of the stacked layers of silicon-graphene-gold materials known as a plasmonic island placed at the center of the modified add-drop filter. The input light power from the remote LiFi can enter into the island via a silicon waveguide. The optimized input power is obtained by the coupled micro-lens on the silicon surface. The induced electron mobility generated in the gold layer by the interfacing layer between silicon-graphene. This is the reversed interaction of the whispering gallery mode light power of the microring system, in which the generated power is fed back into the microring circuit. The electron mobility is the required output and obtained at the device ports and characterized for the remote current source applications. The obtained calculation results have shown that the output current of ∼2.5 × 10-11 AW-1, with the gold height of 1.0 μm and the input power of 5.0 W is obtained at the output port, which is shown the potential application for a short range free pace remote charger.
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
Remote sensing for site characterization
Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.
2000-01-01
This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.
Characterizing meadow vegetation with multitemporal Landsat thematic mapper remote sensing.
Alan A. Ager; Karen E. Owens
2004-01-01
Wet meadows are important biological components in the Blue Mountains of eastern Oregon. Many meadows in the Blue Mountains and elsewhere in the Western United States are in a state of change owing to grazing, mining, logging, road development, and other factors. This project evaluated the utility of remotely sensed data to characterize and monitor meadow vegetation...
Fundamentals and advances in the development of remote welding fabrication systems
NASA Technical Reports Server (NTRS)
Agapakis, J. E.; Masubuchi, K.; Von Alt, C.
1986-01-01
Operational and man-machine issues for welding underwater, in outer space, and at other remote sites are investigated, and recent process developments are described. Probable remote welding missions are classified, and the essential characteristics of fundamental remote welding tasks are analyzed. Various possible operational modes for remote welding fabrication are identified, and appropriate roles for humans and machines are suggested. Human operator performance in remote welding fabrication tasks is discussed, and recent advances in the development of remote welding systems are described, including packaged welding systems, stud welding systems, remotely operated welding systems, and vision-aided remote robotic welding and autonomous welding systems.
Wageningen UR Unmanned Aerial Remote Sensing Facility - Overview of activities
NASA Astrophysics Data System (ADS)
Bartholomeus, Harm; Keesstra, Saskia; Kooistra, Lammert; Suomalainen, Juha; Mucher, Sander; Kramer, Henk; Franke, Jappe
2016-04-01
To support environmental management there is an increasing need for timely, accurate and detailed information on our land. Unmanned Aerial Systems (UAS) are increasingly used to monitor agricultural crop development, habitat quality or urban heat efficiency. An important reason is that UAS technology is maturing quickly while the flexible capabilities of UAS fill a gap between satellite based and ground based geo-sensing systems. In 2012, different groups within Wageningen University and Research Centre have established an Unmanned Airborne Remote Sensing Facility. The objective of this facility is threefold: a) To develop innovation in the field of remote sensing science by providing a platform for dedicated and high-quality experiments; b) To support high quality UAS services by providing calibration facilities and disseminating processing procedures to the UAS user community; and c) To promote and test the use of UAS in a broad range of application fields like habitat monitoring, precision agriculture and land degradation assessment. The facility is hosted by the Laboratory of Geo-Information Science and Remote Sensing (GRS) and the Department of Soil Physics and Land Management (SLM) of Wageningen University together with the team Earth Informatics (EI) of Alterra. The added value of the Unmanned Aerial Remote Sensing Facility is that compared to for example satellite based remote sensing more dedicated science experiments can be prepared. This includes for example higher frequent observations in time (e.g., diurnal observations), observations of an object under different observation angles for characterization of BRDF and flexibility in use of camera's and sensors types. In this way, laboratory type of set ups can be tested in a field situation and effects of up-scaling can be tested. In the last years we developed and implemented different camera systems (e.g. a hyperspectral pushbroom system, and multispectral frame cameras) which we operated in projects all around the world, while new camera systems are being planned such as LiDAR and a full frame hyperspectral camera. In the presentation we will give an overview of our activities, ranging from erosion studies, decision support for precision agriculture, determining leaf biochemistry and canopy structure in tropical forests to the mapping of coastal zones.
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume
NASA Technical Reports Server (NTRS)
Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce
2002-01-01
Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.
NASA Astrophysics Data System (ADS)
Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero
2018-04-01
Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide quantitative and qualitative descriptions of subglacial channels that revisit well-established field identification guidelines. Distinguishing subglacial channels in topographic data is critical for understanding the emergence, geometry, and extent of channelized meltwater systems and their role in ice sheet drainage. The final aim of this study is to facilitate the identification of subglacial channel networks throughout the globe by using remote sensing techniques, which will improve the detection of these systems and help to build understanding of the underlying mechanics of subglacial channelized drainage.
Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Singh, A.; Wang, Z.
2016-12-01
One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Fries, Elke; Frei, Michaela
2016-04-01
Soil is one of the most precious resources on Earth. Preserving, using and enriching soils are most complex processes that fundamentally need a sound regional data base. Many countries lack this sort of extensive data or the existing data must be urgently updated when land use recently changed in major patterns. The project "RECHARBO" (Regional Characterization of Soil Properties) aims at the combination of methods from remote sensing, geophysics and geopedology in order to develop a new system to map soils on a regional scale in a quick and efficient manner. First tests will be performed on existing soil monitoring districts, using newly available sensing systems as well as established techniques. Especially hyperspectral and infrared data measured from satellites or airborne platforms shall be combined. Moreover, a systematic correlation between hyperspectral imagery and gamma-ray spectroscopy shall be established. These recordings will be compared and correlated to measurements upon ground and on soil samples to get hold of properties such as soil moisture, soil density, specific resistance plus analytic properties like clay content, anorganic background, organic matter etc. The goal is to generate a system that enables users to map soil patterns on a regional scale using airborne or satellite data and to fix their characteristics with only a limited number of soil samples.
NASA Astrophysics Data System (ADS)
Zhao, Runchen; Ientilucci, Emmett J.
2017-05-01
Hyperspectral remote sensing systems provide spectral data composed of hundreds of narrow spectral bands. Spectral remote sensing systems can be used to identify targets, for example, without physical interaction. Often it is of interested to characterize the spectral variability of targets or objects. The purpose of this paper is to identify and characterize the LWIR spectral variability of targets based on an improved earth observing statistical performance model, known as the Forecasting and Analysis of Spectroradiometric System Performance (FASSP) model. FASSP contains three basic modules including a scene model, sensor model and a processing model. Instead of using mean surface reflectance only as input to the model, FASSP transfers user defined statistical characteristics of a scene through the image chain (i.e., from source to sensor). The radiative transfer model, MODTRAN, is used to simulate the radiative transfer based on user defined atmospheric parameters. To retrieve class emissivity and temperature statistics, or temperature / emissivity separation (TES), a LWIR atmospheric compensation method is necessary. The FASSP model has a method to transform statistics in the visible (ie., ELM) but currently does not have LWIR TES algorithm in place. This paper addresses the implementation of such a TES algorithm and its associated transformation of statistics.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
Zhdanov,; Michael, S [Salt Lake City, UT
2008-01-29
Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.
Automatic labeling and characterization of objects using artificial neural networks
NASA Technical Reports Server (NTRS)
Campbell, William J.; Hill, Scott E.; Cromp, Robert F.
1989-01-01
Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms, i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.
Assessment of remote sensing technologies to discover and characterize waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-03-11
This report presents details about waste management practices that are being developed using remote sensing techniques to characterize DOE waste sites. Once the sites and problems have been located and characterized and an achievable restoration and remediation program have been established, efforts to reclaim the environment will begin. Special problems to be considered are: concentrated waste forms in tanks and pits; soil and ground water contamination; ground safety hazards for workers; and requirement for long-term monitoring.
NASA Astrophysics Data System (ADS)
Lenain, L.; Clark, D. B.; Guza, R. T.; Hally-Rosendahl, K.; Statom, N.; Feddersen, F.
2012-12-01
The transport and evolution of temperature, sediment, chlorophyll, fluorescent dye, and other tracers is of significant oceanographic interest, particularly in complex coastal environments such as the nearshore, river mouths, and tidal inlets. Remote sensing improves spatial coverage over in situ observations, and ground truthing remote sensed observations is critical for its use. Here, we present remotely sensed observations of Rhodamine WT dye and Sea Surface Temperature (SST) using the SIO Modular Aerial Sensing System (MASS) and compare them with in situ observations from the IB09 (0-300 m seaward of the surfzone, Imperial Beach, CA, October 2009) and RIVET (New River Inlet, NC, May 2012) field experiments. Dye concentrations are estimated from a unique multispectral camera system that measures the emission and absorption wavelengths of Rhodamine WT dye. During RIVET, dye is also characterized using a pushbroom hyperspectral imaging system (SPECIM AISAEagle VNIR 400-990 nm) while SST is estimated using a long-wave infrared camera (FLIR SC6000HS) coupled with an infrared pyrometer (Heitronics KT19.85II). Repeated flight passes over the dye plume were conducted approximately every 5 min for up to 4.5 hr in duration with a swath width ranging from 400 to 2000 m (altitude dependent), and provided a unique spatio-temporal depiction of the plume. A dye proxy is developed using the measured radiance at the emission and absorption wavelengths of the Rhodamine WT dye. During IB09 and RIVET, in situ dye and temperature were measured with two GPS-tracked jet skis, a small boat, and moored observations. The in situ observations are compared with the remotely sensed data in these two complex coastal environments. Funding was provided by the Office of Naval Research.
Remote geologic structural analysis of Yucca Flat
NASA Astrophysics Data System (ADS)
Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Lakshmi, V.; Al-Barakat, R.; Maksimowicz, M.
2016-12-01
Terrestrial vegetation controls the partitioning of incoming energy into latent and sensible heat fluxes and precipitation into runoff and infiltration. Humans modify terrestrial vegetation in direct and indirect ways, impacting the components of the surface water and energy balance. Although ecohydrologic impacts of land modification due to agriculture and deforestation have been studied extensively, impacts of civil conflict on regional ecohydrology have received comparatively less study. Remote sensing provides a unique opportunity to investigate potential impacts of this civil conflict on terrestrial vegetation communities and the surface water and energy balance. During the Mozambican civil war (1977-1992) many agricultural fields went fallow and large herbivore populations collapsed due to poaching. The extent of these impacts on changes in regional water and energy balance and the spatiotemporal scale of those changes, however, is largely unknown. We use remote sensing data from multiple satellite platforms to diagnose and characterize changes in terrestrial vegetation and ecohydrology in Mozambique. The Advanced very High Resolution Radiometer (AVHRR) sensor has been integral to many NOAA satellite platforms and provides long-term continuous data that can document terrestrial vegetation change during most of the Mozambican civil war period. More recently, the Tropical Rainfall Measurement Mission provides microwave-based estimates of precipitation from 1997 onward, affording the ability to explore associations between precipitation and vegetation in the post-bellum period. In this work we explore application of graph theory methods for characterizing spatial and temporal patterns in vegetation and precipitation. This work is important to advancing fundamental understanding of coupled human-environment systems through characterizing potential impacts of civil conflict (which may become more frequent and widespread with climate change) on regional ecohydrology.
Sudhir, Dass; Bandyopadhyay, M; Chakraborty, A
2016-02-01
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the same authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhir, Dass, E-mail: dass.sudhir@iter-india.org; Bandyopadhyay, M.; Chakraborty, A.
2016-02-15
Plasma characterization and impedance matching are an integral part of any radio frequency (RF) based plasma source. In long pulse operation, particularly in high power operation where plasma load may vary due to different reasons (e.g. pressure and power), online tuning of impedance matching circuit and remote plasma density estimation are very useful. In some cases, due to remote interfaces, radio activation and, due to maintenance issues, power probes are not allowed to be incorporated in the ion source design for plasma characterization. Therefore, for characterization and impedance matching, more remote schemes are envisaged. Two such schemes by the samemore » authors are suggested in these regards, which are based on air core transformer model of inductive coupled plasma (ICP) [M. Bandyopadhyay et al., Nucl. Fusion 55, 033017 (2015); D. Sudhir et al., Rev. Sci. Instrum. 85, 013510 (2014)]. However, the influence of the RF field interaction with the plasma to determine its impedance, a physics code HELIC [D. Arnush, Phys. Plasmas 7, 3042 (2000)] is coupled with the transformer model. This model can be useful for both types of RF sources, i.e., ICP and helicon sources.« less
The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Hans-Erik Andersen; Robert J. McGaughey; Ward W. Carson; Stephen E. Reutebuch; Bryan Mercer; Jeremy Allan
2004-01-01
Active remote sensing technologies, including interferometric radar (InSAR) and airborne laser scanning (LIDAR) have the potential to provide accurate information relating to three-dimensional forest canopy structure over extensive areas of the landscape. In order to assess the capabilities of these alternative systems for characterizing the forest canopy dimensions,...
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.; Yurchak, Boris S.; Sleptsov, Yuri A.; Turi, Johan Mathis; Mathlesen, Svein D.
2005-01-01
To adapt successfully to the major changes - climate, environment, economic, social and industrial - which have taken place across the Arctic. in recent years, indigenous communities such as reindeer herders must become increasingly empowered with the best available technologies to add to their storehouse of traditional knowledge. Remotely-sensed data and observations are providing increased capabilities for monitoring, risk mapping, and surveillance of parameters critical to the characterization of pasture quality and migratory routes, such as vegetation distribution, snow cover, infrastructure development, and pasture damages due to fires. This paper describes a series of remote sensing capabilities, which are useful to reindeer husbandry, and gives the results of the first year of a project, "Reindeer Mapper", which is a remote sensing and GIs-based system to bring together space technologies with indigenous knowledge for sustainable reindeer husbandry in the Russian Arctic. In this project, reindeer herders and scientists are joining together to utilize technologies to create a system for collecting and sharing space-based and indigenous knowledge in the Russian Arctic. The "Reindeer Mapper" system will help make technologies more readily available to the herder community for observing, data collection and analysis, monitoring, sharing, communications, and dissemination of information - to be integrated with traditional, local knowledge. This paper describes some of the technologies which comprise the system including an intranet system to enable to the team members to work together and share information electronically, remote sensing data for monitoring environmental parameters important to reindeer husbandry (e.g., SAR, Landsat, AVHRR, MODIS), indigenous knowledge about important environmental parameters, acquisition of ground- based measurements, and the integration of all useful data sets for more informed decision-making.
Model-data integration for developing the Cropland Carbon Monitoring System (CCMS)
NASA Astrophysics Data System (ADS)
Jones, C. D.; Bandaru, V.; Pnvr, K.; Jin, H.; Reddy, A.; Sahajpal, R.; Sedano, F.; Skakun, S.; Wagle, P.; Gowda, P. H.; Hurtt, G. C.; Izaurralde, R. C.
2017-12-01
The Cropland Carbon Monitoring System (CCMS) has been initiated to improve regional estimates of carbon fluxes from croplands in the conterminous United States through integration of terrestrial ecosystem modeling, use of remote-sensing products and publically available datasets, and development of improved landscape and management databases. In order to develop these improved carbon flux estimates, experimental datasets are essential for evaluating the skill of estimates, characterizing the uncertainty of these estimates, characterizing parameter sensitivities, and calibrating specific modeling components. Experiments were sought that included flux tower measurement of CO2 fluxes under production of major agronomic crops. Currently data has been collected from 17 experiments comprising 117 site-years from 12 unique locations. Calibration of terrestrial ecosystem model parameters using available crop productivity and net ecosystem exchange (NEE) measurements resulted in improvements in RMSE of NEE predictions of between 3.78% to 7.67%, while improvements in RMSE for yield ranged from -1.85% to 14.79%. Model sensitivities were dominated by parameters related to leaf area index (LAI) and spring growth, demonstrating considerable capacity for model improvement through development and integration of remote-sensing products. Subsequent analyses will assess the impact of such integrated approaches on skill of cropland carbon flux estimates.
Landscape characterization of peridomestic risk for Lyme disease using satellite imagery
NASA Technical Reports Server (NTRS)
Dister, S. W.; Fish, D.; Bros, S. M.; Frank, D. H.; Wood, B. L.
1997-01-01
Remotely sensed characterizations of landscape composition were evaluated for Lyme disease exposure risk on 337 residential properties in two communities of suburban Westchester County, New York. Properties were categorized as no, low, or high risk based on seasonally adjusted densities of Ixodes scapularis nymphs, determined by drag sampling during June and July 1990. Spectral indices based on Landsat Thematic Mapper data provided relative measures of vegetation structure and moisture (wetness), as well as vegetation abundance (greenness). A geographic information system (GIS) was used to spatially quantify and relate the remotely sensed landscape variables to risk category. A comparison of the two communities showed that Chappaqua, which had more high-risk properties (P < 0.001), was significantly greener and wetter than Armonk (P < 0.001). Furthermore, within Chappaqua, high-risk properties were significantly greener and wetter than lower-risk properties in this community (P < 0.01). The high-risk properties appeared to contain a greater proportion of broadleaf trees, while lower-risk properties were interpreted as having a greater proportion of nonvegetative cover and/or open lawn. The ability to distinguish these fine scale differences among communities and individual properties illustrates the efficiency of a remote sensing/GIS-based approach for identifying peridomestic risk of Lyme disease over large geographic areas.
Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, weather prediction, earth quake prediction, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucia, M., E-mail: mlucia@pppl.gov; Kaita, R.; Majeski, R.
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
Remote Control Childhood: Combating the Hazards of Media Culture in Schools
ERIC Educational Resources Information Center
Levin, Diane
2010-01-01
Background: Media culture touches most aspects of the lives of children growing up today, beginning at the earliest ages. It is profoundly the lessons children learn as well as how they learn, thereby contributing to what this article characterizes as "remote control childhood." Educators need to understand remote control childhood so…
A Web Service and Interface for Remote Electronic Device Characterization
ERIC Educational Resources Information Center
Dutta, S.; Prakash, S.; Estrada, D.; Pop, E.
2011-01-01
A lightweight Web Service and a Web site interface have been developed, which enable remote measurements of electronic devices as a "virtual laboratory" for undergraduate engineering classes. Using standard browsers without additional plugins (such as Internet Explorer, Firefox, or even Safari on an iPhone), remote users can control a Keithley…
NASA Technical Reports Server (NTRS)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
NASA Astrophysics Data System (ADS)
Jiang, Guodong; Fan, Ming; Li, Lihua
2016-03-01
Mammography is the gold standard for breast cancer screening, reducing mortality by about 30%. The application of a computer-aided detection (CAD) system to assist a single radiologist is important to further improve mammographic sensitivity for breast cancer detection. In this study, a design and realization of the prototype for remote diagnosis system in mammography based on cloud platform were proposed. To build this system, technologies were utilized including medical image information construction, cloud infrastructure and human-machine diagnosis model. Specifically, on one hand, web platform for remote diagnosis was established by J2EE web technology. Moreover, background design was realized through Hadoop open-source framework. On the other hand, storage system was built up with Hadoop distributed file system (HDFS) technology which enables users to easily develop and run on massive data application, and give full play to the advantages of cloud computing which is characterized by high efficiency, scalability and low cost. In addition, the CAD system was realized through MapReduce frame. The diagnosis module in this system implemented the algorithms of fusion of machine and human intelligence. Specifically, we combined results of diagnoses from doctors' experience and traditional CAD by using the man-machine intelligent fusion model based on Alpha-Integration and multi-agent algorithm. Finally, the applications on different levels of this system in the platform were also discussed. This diagnosis system will have great importance for the balanced health resource, lower medical expense and improvement of accuracy of diagnosis in basic medical institutes.
Zombie algorithms: a timesaving remote sensing systems engineering tool
NASA Astrophysics Data System (ADS)
Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen
2008-08-01
In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.
Probable Mechanisms of Needling Therapies for Myofascial Pain Control
Chou, Li-Wei; Kao, Mu-Jung; Lin, Jaung-Geng
2012-01-01
Myofascial pain syndrome (MPS) has been defined as a regional pain syndrome characterized by muscle pain caused by myofascial trigger points (MTrPs) clinically. MTrP is defined as the hyperirritable spot in a palpable taut band of skeletal muscle fibers. Appropriate treatment to MTrPs can effectively relieve the clinical pain of MPS. Needling therapies, such as MTrP injection, dry needling, or acupuncture (AcP) can effectively eliminate pain immediately. AcP is probably the first reported technique in treating MPS patients with dry needling based on the Traditional Chinese Medicine (TCM) theory. The possible mechanism of AcP analgesia were studied and published in recent decades. The analgesic effect of AcP is hypothesized to be related to immune, hormonal, and nervous systems. Compared to slow-acting hormonal system, nervous system acts in a faster manner. Given these complexities, AcP analgesia cannot be explained by any single mechanism. There are several principles for selection of acupoints based on the TCM principles: “Ah-Shi” point, proximal or remote acupoints on the meridian, and extra-meridian acupoints. Correlations between acupoints and MTrPs are discussed. Some clinical and animal studies of remote AcP for MTrPs and the possible mechanisms of remote effectiveness are reviewed and discussed. PMID:23346211
Field calibration and validation of remote-sensing surveys
Pe'eri, Shachak; McLeod, Andy; Lavoie, Paul; Ackerman, Seth D.; Gardner, James; Parrish, Christopher
2013-01-01
The Optical Collection Suite (OCS) is a ground-truth sampling system designed to perform in situ measurements that help calibrate and validate optical remote-sensing and swath-sonar surveys for mapping and monitoring coastal ecosystems and ocean planning. The OCS system enables researchers to collect underwater imagery with real-time feedback, measure the spectral response, and quantify the water clarity with simple and relatively inexpensive instruments that can be hand-deployed from a small vessel. This article reviews the design and performance of the system, based on operational and logistical considerations, as well as the data requirements to support a number of coastal science and management projects. The OCS system has been operational since 2009 and has been used in several ground-truth missions that overlapped with airborne lidar bathymetry (ALB), hyperspectral imagery (HSI), and swath-sonar bathymetric surveys in the Gulf of Maine, southwest Alaska, and the US Virgin Islands (USVI). Research projects that have used the system include a comparison of backscatter intensity derived from acoustic (multibeam/interferometric sonars) versus active optical (ALB) sensors, ALB bottom detection, and seafloor characterization using HSI and ALB.
NASA Astrophysics Data System (ADS)
Rinaldi, M.; Castrignanò, A.; Mastrorilli, M.; Rana, G.; Ventrella, D.; Acutis, M.; D'Urso, G.; Mattia, F.
2006-08-01
An efficient management of water resources is crucial point for Italy and in particular for southern areas characterized by Mediterranean climate in order to improve the economical and environmental sustainability of the agricultural activity. A three-year Project (2005-2008) has been funded by the Italian Ministry of Agriculture and Forestry Policies; it involves four Italian research institutions: the Agricultural Research Council (ISA, Bari), the National Research Council (ISSIA, Bari) and two Universities (Federico II-Naples and Milan). It is focused on the remote sensing, the plant and the climate and, for interdisciplinary relationships, the project working group consists of agronomists, engineers and physicists. The aims of the Project are: a) to produce a Decision Support System (DSS) combining remote sensing information, spatial data and simulation models to manage water resources in irrigation districts; b) to simulate irrigation scenarios to evaluate the effects of water stress on crop yield using agro-ecological indicators; c) to identify the most sensitive areas to drought risk in Southern Italy. The tools used in this Project will be: 1. Remote sensing images, topographic maps, soil and land use maps; 2. Geographic Information Systems; 3. Geostatistic methodologies; 4. Ground truth measurements (land use, canopy and soil temperatures, soil and plant water status, Normalized Difference Vegetation Index, Crop Water Stress Index, Leaf Area Index, actual evapotranspiration, crop coefficients, crop yield, agro-ecological indicators); 5. Crop simulation models. The Project is structured in four work packages with specific objectives, high degree of interaction and information exchange: 1) Remote Sensing and Image Analysis; 2) Cropping Systems; 3) Modelling and Softwares Development; 4) Stakeholders. The final product will be a DSS with the purpose of integrating remote sensing images, to estimate crop and soil variables related to drought, to assimilate these variables into a simulation model at district scale and, finally, to estimate evapotranspiration, plant water status and drought indicators. A project Web home page, a technical course about DSS for the employers of irrigation authorities and dissemination of results (meetings, publications, reports), are also planned.
NASA Technical Reports Server (NTRS)
Cohen, Tamar E.; Lees, David S.; Deans, Matthew C.; Lim, Darlene S. S.; Lee, Yeon Jin Grace
2018-01-01
Exploration Ground Data Systems (xGDS) supports rapid scientific decision making by synchronizing video in context with map, instrument data visualization, geo-located notes and any other collected data. xGDS is an open source web-based software suite developed at NASA Ames Research Center to support remote science operations in analog missions and prototype solutions for remote planetary exploration. (See Appendix B) Typical video systems are designed to play or stream video only, independent of other data collected in the context of the video. Providing customizable displays for monitoring live video and data as well as replaying recorded video and data helps end users build up a rich situational awareness. xGDS was designed to support remote field exploration with unreliable networks. Commercial digital recording systems operate under the assumption that there is a stable and reliable network between the source of the video and the recording system. In many field deployments and space exploration scenarios, this is not the case - there are both anticipated and unexpected network losses. xGDS' Video Module handles these interruptions, storing the available video, organizing and characterizing the dropouts, and presenting the video for streaming or replay to the end user including visualization of the dropouts. Scientific instruments often require custom or expensive software to analyze and visualize collected data. This limits the speed at which the data can be visualized and limits access to the data to those users with the software. xGDS' Instrument Module integrates with instruments that collect and broadcast data in a single snapshot or that continually collect and broadcast a stream of data. While seeing a visualization of collected instrument data is informative, showing the context for the collected data, other data collected nearby along with events indicating current status helps remote science teams build a better understanding of the environment. Further, sharing geo-located, tagged notes recorded by the scientists and others on the team spurs deeper analysis of the data.
NASA Astrophysics Data System (ADS)
Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.
2016-02-01
Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Environmental Public Health Applications Using Remotely Sensed Data.
Al-Hamdan, Mohammad Z; Crosson, William L; Economou, Sigrid A; Estes, Maurice G; Estes, Sue M; Hemmings, Sarah N; Kent, Shia T; Puckett, Mark; Quattrochi, Dale A; Rickman, Douglas L; Wade, Gina M; McClure, Leslie A
2014-01-01
We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM 2.5 ), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making.
NASA Astrophysics Data System (ADS)
Delbarre, H.; Augustin, P.; Saïd, F.; Campistron, B.; Bénech, B.; Lohou, F.; Puygrenier, V.; Moppert, C.; Cousin, F.; Fréville, P.; Fréjafon, E.
2005-03-01
Ground-based remote sensing systems have been used during the ESCOMPTE campaign, to continuously characterize the boundary-layer behaviour through many atmospheric parameters (wind, extinction and ozone concentration distribution, reflectivity, turbulence). This analysis is focused on the comparison of the atmospheric stratification retrieved from a UV angular ozone lidar, an Ultra High Frequency wind profiler and a sodar, above the area of Marseille, on June 26th 2001 (Intensive Observation Period 2b). The atmospheric stratification is shown to be very complex including two superimposed sea breezes, with an important contribution of advection. The temporal and spatial evolution of the stratification observed by the UV lidar and by the UHF radar are in good agreement although the origin of the echoes of these systems is quite different. The complexity of the dynamic situation has only partially been retrieved by a non-hydrostatic mesoscale model used with a 3 km resolution.
Remote sensing of snow and ice
NASA Technical Reports Server (NTRS)
Rango, A.
1979-01-01
This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.
Environmental Public Health Applications Using Remotely Sensed Data
Al-Hamdan, Mohammad Z.; Crosson, William L.; Economou, Sigrid A.; Estes, Maurice G.; Estes, Sue M.; Hemmings, Sarah N.; Kent, Shia T.; Puckett, Mark; Quattrochi, Dale A.; Rickman, Douglas L.; Wade, Gina M.; McClure, Leslie A.
2012-01-01
We describe a remote sensing and GIS-based study that has three objectives: (1) characterize fine particulate matter (PM2.5), insolation and land surface temperature using NASA satellite observations, EPA ground-level monitor data and North American Land Data Assimilation System (NLDAS) data products on a national scale; (2) link these data with public health data from the REasons for Geographic And Racial Differences in Stroke (REGARDS) national cohort study to determine whether these environmental risk factors are related to cognitive decline, stroke and other health outcomes; and (3) disseminate the environmental datasets and public health linkage analyses to end users for decision-making through the Centers for Disease Control and Prevention (CDC) Wide-ranging Online Data for Epidemiologic Research (WONDER) system. This study directly addresses a public health focus of the NASA Applied Sciences Program, utilization of Earth Sciences products, by addressing issues of environmental health to enhance public health decision-making. PMID:24910505
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator); Wall, S. L.; Beck, L. H.; Degloria, S. D.; Ritter, P. R.; Thomas, R. W.; Travlos, A. J.; Fakhoury, E.
1984-01-01
Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems.
NASA Astrophysics Data System (ADS)
Liu, C.; Liu, J.; Hu, Y.; Zheng, C.
2015-05-01
Managing surface water and groundwater as a unified system is important for water resource exploitation and aquatic ecosystem conservation. The unified approach to water management needs accurate characterization of surface water and groundwater interactions. Temperature is a natural tracer for identifying surface water and groundwater interactions, and the use of remote sensing techniques facilitates basin-scale temperature measurement. This study focuses on the Heihe River basin, the second largest inland river basin in the arid and semi-arid northwest of China where surface water and groundwater undergoes dynamic exchanges. The spatially continuous river-surface temperature of the midstream section of the Heihe River was obtained by using an airborne pushbroom hyperspectral thermal sensor system. By using the hot spot analysis toolkit in the ArcGIS software, abnormally cold water zones were identified as indicators of the spatial pattern of groundwater discharge to the river.
Microgravity acceleration measurement and environment characterization science (17-IML-1)
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Acceleration Measurement System (SAMS) is a general purpose instrumentation system designed to measure the accelerations onboard the Shuttle Orbiter and Shuttle/Spacelab vehicles. These measurements are used to support microgravity experiments and investigation into the microgravity environment of the vehicle. Acceleration measurements can be made at locations remote from the SAMS main instrumentation unit by the use of up to three remote triaxial sensor heads. The prime objective for SAMS on the International Microgravity Lab (IML-1) mission will be to measure the accelerations experienced by the Fluid Experiment System (FES). The SAMS acceleration measurements for FES will be complemented by low level, low frequency acceleration measurements made by the Orbital Acceleration Research Experiment (OARE) installed on the shuttle. Secondary objectives for SAMS will be to measure accelerations at several specific locations to enable the acceleration transfer function of the Spacelab module to be analyzed. This analysis effort will be in conjunction with similar measurements analyses on other Spacelab missions.
NASA Technical Reports Server (NTRS)
1975-01-01
A program was conducted which included the design of a set of simplified simulation tasks, design of apparatus and breadboard TV equipment for task performance, and the implementation of a number of simulation tests. Performance measurements were made under controlled conditions and the results analyzed to permit evaluation of the relative merits (effectivity) of various TV systems. Burden factors were subsequently generated for each TV system to permit tradeoff evaluation of system characteristics against performance. For the general remote operation mission, the 2-view system is recommended. This system is characterized and the corresponding equipment specifications were generated.
Earth view: A business guide to orbital remote sensing
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1990-01-01
The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.
Offshore Wind Resource Characterization | Wind | NREL
identify critical data needed. Remote Sensing and Modeling Photo of the SeaZephIR Prototype at sea. 2009 techniques such as remote sensing and modeling to provide data on design conditions. Research includes comparing the data provided by remote sensing devices and models to data collected by traditional methods
Development, characterization, and modeling of a tunable filter camera
NASA Astrophysics Data System (ADS)
Sartor, Mark Alan
1999-10-01
This paper describes the development, characterization, and modeling of a Tunable Filter Camera (TFC). The TFC is a new multispectral instrument with electronically tuned spectral filtering and low-light-level sensitivity. It represents a hybrid between hyperspectral and multispectral imaging spectrometers that incorporates advantages from each, addressing issues such as complexity, cost, lack of sensitivity, and adaptability. These capabilities allow the TFC to be applied to low- altitude video surveillance for real-time spectral and spatial target detection and image exploitation. Described herein are the theory and principles of operation for the TFC, which includes a liquid crystal tunable filter, an intensified CCD, and a custom apochromatic lens. The results of proof-of-concept testing, and characterization of two prototype cameras are included, along with a summary of the design analyses for the development of a multiple-channel system. A significant result of this effort was the creation of a system-level model, which was used to facilitate development and predict performance. It includes models for the liquid crystal tunable filter and intensified CCD. Such modeling was necessary in the design of the system and is useful for evaluation of the system in remote-sensing applications. Also presented are characterization data from component testing, which included quantitative results for linearity, signal to noise ratio (SNR), linearity, and radiometric response. These data were used to help refine and validate the model. For a pre-defined source, the spatial and spectral response, and the noise of the camera, system can now be predicted. The innovation that sets this development apart is the fact that this instrument has been designed for integrated, multi-channel operation for the express purpose of real-time detection/identification in low- light-level conditions. Many of the requirements for the TFC were derived from this mission. In order to provide background for the design requirements for the TFC development, the mission and principles of operation behind the multi-channel system will be reviewed. Given the combination of the flexibility, simplicity, and sensitivity, the TFC and its multiple-channel extension can play a significant role in the next generation of remote-sensing instruments.
McClure, Erin A; Tomko, Rachel L; Carpenter, Matthew J; Treiber, Frank A; Gray, Kevin M
2018-05-08
Similar to adult smokers, quit attempts among younger smokers almost inevitably result in relapse. Unlike adults, less is known about the process of relapse in this younger age group. A technology-based remote monitoring system may allow for detailed and accurate characterization of smoking and abstinence and would help to improve cessation strategies. This study describes a mobile system that captures smoking using breath carbon monoxide (CO) and real-time self-reports of smoking behavior. Compliance, feasibility, acceptability, and accuracy of the system were measured during a quit attempt and subsequent monitoring period. The mobile application (My Mobile Monitor, M 3 ) combined breath CO with ecological momentary assessment, delivered via smartphone. Participants (N = 16; 75% female) were daily smokers between the ages of 19 and 25, who used the app for 11 days during which they agreed to make a quit attempt. Acceptability, compliance, and abstinence were measured. Participants averaged 22.3 ± 2.0 years old and smoked an average of 13.0 ± 6.1 cigarettes per day. Overall session compliance was 69% and during the quit attempt, 56% of participants abstained from smoking for at least 24 hours. Agreement between self-reported smoking compared to breath CO was generally high, when available for comparison, though underreporting of cigarettes was likely. This study demonstrates feasibility of a remote monitoring app with younger smokers, though improvements to promote compliance are needed. Remote monitoring to detect smoking and abstinence represents a step forward in the improvement of cessation strategies, but user experience and personalization are vital.
NASA's NI-SAR Observing Strategy and Data Availability for Agricultural Monitoring and Assessment
NASA Astrophysics Data System (ADS)
Siqueira, P.; Dubayah, R.; Kellndorfer, J. M.; Saatchi, S. S.; Chapman, B. D.
2014-12-01
The monitoring and characterization of global crop development by remote sensing is a complex task, in part, because of the time varying nature of the target and the diversity of crop types and agricultural practices that vary worldwide. While some of these difficulties are overcome with the availability of national and market-derived resources (e.g. publication of crop statistics by the USDA and FAO), monitoring by remote sensing has the ability of augmenting those resources to better identify changes over time, and to provide timely assessments for the current year's production. Of the remote sensing techniques that are used for agricultural applications, optical observations of NDVI from Landsat, AVHRR, MODIS and similar sensors have historically provided the majority of data that is used by the community. In addition, radiometer and radar sensors, are often used for estimating soil moisture and structural information for these agricultural regions. The combination of these remote sensing datasets and national resources constitutes the state of the art for crop monitoring and yield forecasts. To help improve these crop monitoring efforts in the future, the joint NASA-ISRO SAR mission known as NI-SAR is being planned for launch in 2020, and will have L- and S-band fully polarimetric radar systems, a fourteen day repeat period, and a swath width on the order of several hundred kilometers. To address the needs of the science and applications communities that NI-SAR will support, the systems observing strategy is currently being planned such that data rate and the system configuration will address the needs of the community. In this presentation, a description of the NI-SAR system will be given along with the currently planned observing strategy and derived products that will be relevant to the overall GEOGLAM initiative.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1976-01-01
The objective of this research is to fully investigate the Ribbon-To-Ribbon (R-T-R) approach to silicon ribbon growth. Initial work has concentrated on modification and characterization of an existing R-T-R apparatus. In addition, equipment for auxiliary heating of the melt is being evaluated and acquired. Modification of the remote viewing system and mechanical staging are nearly complete. Characterization of the laser and other components is in progress and several auxiliary heating techniques are being investigated.
On the feasibility of comprehensive high-resolution 3D remote dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Titania; Grant, Ryan; Adamovics, John
2014-07-15
Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less
Overview of the SkyMed/COSMO mission
NASA Astrophysics Data System (ADS)
Caltagirone, Francesco; Spera, Paolo; Vigliotti, R.; Manoni, Gemma
1998-12-01
The impact of natural and man-made disasters on the social and economic progress is going to become more significant, making necessary to consider natural disasters reduction. Therefore civil protection and resource managers need elements to make quicker and better decisions on a day-to-day basis, so giving the start to an emerging world-wide remote sensing market. A deep analysis on the potential users, mainly devoted to Mediterranean basin, highlights that existing and/or planned systems are not able to completely satisfy their requirements. To fulfill this gap, Italy decided to promote the SkyMed/COSMO system, presently financed by the Italian Space Agency. SkyMed/COSMO is a constellation of small satellites for observation, remote sensing and data exploitation for risks management and coastal zone monitoring, conceived to provide products, services and logistics to both institutional and commercial remote sensing users on global scale. Furthermore the system is able to satisfy a broad spectrum of important applications also in the field of the resource management, land use and law enforcement. The SkyMed/COSMO current system architecture foresees a constellation of small satellites in two different orbit planes composed by 4 satellite equipped with X-band SAR and 3 satellites equipped with optical sensors. The system is characterized by good spatial resolution, day and night/all-weather imaging capability and by a very good revisit time. The program, currently in phase B, is carried out by an industrial consortium lead by Alenia Aerospazio.
Remote sensing and geographic information system for appraisal of salt-affected soils in India.
Singh, Gurbachan; Bundela, D S; Sethi, Madhurama; Lal, Khajanchi; Kamra, S K
2010-01-01
Quantification of the nature, extent, and spatial distribution of salt-affected soils (SAS) for India and the world is essential for planning and implementing reclamation programs in a timely and cost-effective manner for sustained crop production. The national extent of SAS for India over the last four decades was assessed by conventional and remote sensing approaches using diverse methodologies and class definitions and ranged from 6.0 to 26.1 million hectares (Mha) and 1.2 to 10.1 Mha, respectively. In 1966, an area of 6 Mha under SAS was first reported using the former approach. Three national estimates, obtained using remote sensing, were reconciled using a geographic information system, resulting in an acceptable extent of 6.73 Mha. Moderately and severely salt-encrusted lands having large contiguous area have been correctly mapped, but slightly salt-encrusted land having smaller affected areas within croplands has not been accurately mapped. Recent satellite sensors (e.g., Resourcesat-1, Cartosat-2, IKONOS-II, and RISAT-2), along with improved image processing techniques integrated with terrain and other spatial data using a geographic information system, are enabling mapping at large scale. Significant variations in salt encrustation at the surface caused by soil moisture, waterlogging conditions, salt-tolerant crops, and dynamics of subsurface salts present constraints in appraisal, delineation, and mapping efforts. The article provides an overview of development, identification, characterization, and delineation of SAS, past and current national scenarios of SAS using conventional and remote sensing approaches, reconciliation of national estimates, issues of SAS mapping, and future scope.
Standoff aircraft IR characterization with ABB dual-band hyper spectral imager
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Lantagne, Stéphane; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc
2012-09-01
Remote sensing infrared characterization of rapidly evolving events generally involves the combination of a spectro-radiometer and infrared camera(s) as separated instruments. Time synchronization, spatial coregistration, consistent radiometric calibration and managing several systems are important challenges to overcome; they complicate the target infrared characterization data processing and increase the sources of errors affecting the final radiometric accuracy. MR-i is a dual-band Hyperspectal imaging spectro-radiometer, that combines two 256 x 256 pixels infrared cameras and an infrared spectro-radiometer into one single instrument. This field instrument generates spectral datacubes in the MWIR and LWIR. It is designed to acquire the spectral signatures of rapidly evolving events. The design is modular. The spectrometer has two output ports configured with two simultaneously operated cameras to either widen the spectral coverage or to increase the dynamic range of the measured amplitudes. Various telescope options are available for the input port. Recent platform developments and field trial measurements performances will be presented for a system configuration dedicated to the characterization of airborne targets.
Mars outpost - System and operations challenges
NASA Technical Reports Server (NTRS)
Roberts, Barney; Guerra, Lisa
1990-01-01
The paper addresses the challenges inherent in establishing an outpost on the planet Mars. For background purposes, the unique, remote Martian environment and the developmental phases of a settlement in such an environment are discussed. Challenges are identified in terms of surface systems and operations. Due to its importance to habitability, the life support system (LSS) is highlighted with various options identified. Operations for the Mars outpost, earth-based and local, are characterized by a decentralized concept. The challenge of integrating logistics analysis early in system design and operations strategy is also addressed. In order to understand and reduce the system and operations challenges, the application of terrestrial and lunar testbeds is explained.
Characterization and analysis of pasture degradation in Rondonia using remote sensing
NASA Astrophysics Data System (ADS)
Numata, Izaya
2006-04-01
Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. This dissertation evaluated pasture degradation as it varied due to environmental and human factors across different scales by combining field measures, ancillary data, and remote sensing. To better understand the link between pasture nutrients and soil chemistry, samples were analyzed in the laboratory demonstrating that pasture soil fertility and grass nutrients varied significantly according to soil order. Pastures established on Alfisols, nutrient-rich soils, had higher levels of Phosphorus in soil and grass compared to pastures established on Oxisols and Ultisols. To evaluate remote sensing measures of pasture biophysical properties related to pasture degradation, remote sensing analysis focused on a variety of sensors that provide a range in spatial, spectral and temporal scales, including Landsat Thematic Mapper (TM), a field spectrometer, Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). Of the measures derived from Landsat, degraded pastures were best characterized by high non-photosynthetic vegetation (NPV) and low shade fractions, while pastures with high biomass were characterized by high green vegetation and low NPV fractions. Absorption features calculated from hyperspectral spectra collected in the field, including water and ligno-cellulose absorption depth and area, provided the best estimates of field grass measures. Temporal MODIS Normalized Difference Vegetation Index (NDVI) data were used to characterize changes in pasture quality across the region and through time. Degraded pastures were characterized by low temporal NDVI variation and occurred in dry or very wet climate conditions and on nutrient poor soils. Productive pastures were characterized by high temporal NDVI variation, were predominantly found more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.
NASA Astrophysics Data System (ADS)
Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre
2010-05-01
This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize the type of vegetation and its state of development in a more accurate way than using the ECOCLIMAP database. Finally, the CASA method was applied using the evapotranspiration images with FAPAR (Fraction of Absorbed Photosynthetically Active Radiation) images from LSA-SAF to obtain Dry Matter Productivity (DMP) and crop yield. The potential of using evapotranspiration obtained from remote sensing in crop growth modeling is studied and discussed. Results of comparing the evapotranspiration obtained with ground truth data are shown as well as the influence of using high resolution information to characterize the vegetation in the evapotranspiration estimation. The values of DMP and yield obtained with the CASA method are compared with those obtained using crop growth modeling and field data, showing the potential of using this simplified remote sensing method for crop monitoring and yield forecasting. This methodology could be applied in an operative way to the entire MSG disk, allowing the continuous crop growth monitoring.
Role of remote sensing in Bay measurements
NASA Technical Reports Server (NTRS)
Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.
1978-01-01
Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.
Telerobotic on-orbit remote fluid resupply system
NASA Technical Reports Server (NTRS)
1990-01-01
The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.
Marzegalli, Maurizio; Landolina, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Pappone, Alessia; Guenzati, Giuseppe; Campana, Carlo; Frigerio, Maria; Parati, Gianfranco; Curnis, Antonio; Colangelo, Irene; Valsecchi, Sergio
2009-01-01
Background Heart failure patients with implantable defibrillators (ICD) frequently visit the clinic for routine device monitoring. Moreover, in the case of clinical events, such as ICD shocks or alert notifications for changes in cardiac status or safety issues, they often visit the emergency department or the clinic for an unscheduled visit. These planned and unplanned visits place a great burden on healthcare providers. Internet-based remote device interrogation systems, which give physicians remote access to patients' data, are being proposed in order to reduce routine and interim visits and to detect and notify alert conditions earlier. Methods The EVOLVO study is a prospective, randomized, parallel, unblinded, multicenter clinical trial designed to compare remote ICD management with the current standard of care, in order to assess its ability to treat and triage patients more effectively. Two-hundred patients implanted with wireless-transmission-enabled ICD will be enrolled and randomized to receive either the Medtronic CareLink® monitor for remote transmission or the conventional method of in-person evaluations. The purpose of this manuscript is to describe the design of the trial. The results, which are to be presented separately, will characterize healthcare utilizations as a result of ICD follow-up by means of remote monitoring instead of conventional in-person evaluations. Trial registration ClinicalTrials.gov: NCT00873899 PMID:19538734
Development of wide area environment accelerator operation and diagnostics method
NASA Astrophysics Data System (ADS)
Uchiyama, Akito; Furukawa, Kazuro
2015-08-01
Remote operation and diagnostic systems for particle accelerators have been developed for beam operation and maintenance in various situations. Even though fully remote experiments are not necessary, the remote diagnosis and maintenance of the accelerator is required. Considering remote-operation operator interfaces (OPIs), the use of standard protocols such as the hypertext transfer protocol (HTTP) is advantageous, because system-dependent protocols are unnecessary between the remote client and the on-site server. Here, we have developed a client system based on WebSocket, which is a new protocol provided by the Internet Engineering Task Force for Web-based systems, as a next-generation Web-based OPI using the Experimental Physics and Industrial Control System Channel Access protocol. As a result of this implementation, WebSocket-based client systems have become available for remote operation. Also, as regards practical application, the remote operation of an accelerator via a wide area network (WAN) faces a number of challenges, e.g., the accelerator has both experimental device and radiation generator characteristics. Any error in remote control system operation could result in an immediate breakdown. Therefore, we propose the implementation of an operator intervention system for remote accelerator diagnostics and support that can obviate any differences between the local control room and remote locations. Here, remote-operation Web-based OPIs, which resolve security issues, are developed.
Joint Eglin Acoustics Week 2013 Data Report
2017-10-01
during this test. The M-model HH-60 (Tail Number 04-27001), with the new wide-chord blade that is principally characterized by its unique tapered...cards located within each remote unit. Upon termination of each run , sufficient data metrics and system health information are transmitted back to the...command computer to assure that good data were acquired at each microphone station during the run . A typical WAMS microphone station deployment is
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Chan, Yu-Chang; Chen, Rou-Fei; Hsieh, Yu-Chung
2018-03-01
Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
46 CFR 62.35-5 - Remote propulsion-control systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Remote propulsion-control systems. 62.35-5 Section 62.35... AUTOMATION Requirements for Specific Types of Automated Vital Systems § 62.35-5 Remote propulsion-control systems. (a) Manual propulsion control. All vessels having remote propulsion control from the navigating...
The utilization of neural nets in populating an object-oriented database
NASA Technical Reports Server (NTRS)
Campbell, William J.; Hill, Scott E.; Cromp, Robert F.
1989-01-01
Existing NASA supported scientific data bases are usually developed, managed and populated in a tedious, error prone and self-limiting way in terms of what can be described in a relational Data Base Management System (DBMS). The next generation Earth remote sensing platforms (i.e., Earth Observation System, (EOS), will be capable of generating data at a rate of over 300 Mbs per second from a suite of instruments designed for different applications. What is needed is an innovative approach that creates object-oriented databases that segment, characterize, catalog and are manageable in a domain-specific context and whose contents are available interactively and in near-real-time to the user community. Described here is work in progress that utilizes an artificial neural net approach to characterize satellite imagery of undefined objects into high-level data objects. The characterized data is then dynamically allocated to an object-oriented data base where it can be reviewed and assessed by a user. The definition, development, and evolution of the overall data system model are steps in the creation of an application-driven knowledge-based scientific information system.
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
NASA Technical Reports Server (NTRS)
Barranger, J. P.
1978-01-01
The rotor blade tip clearance measurement system consists of a capacitance sensing probe with self contained tuning elements, a connecting coaxial cable, and remotely located electronics. Tests show that the accuracy of the system suffers from a strong dependence on probe tip temperature and humidity. A novel inplace recalibration technique was presented which partly overcomes this problem through a simple modification of the electronics that permits a scale factor correction. This technique, when applied to a commercial system significantly reduced errors under varying conditions of humidity and temperature. Equations were also found that characterize the important cable and probe design quantities.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. C.; Crist, E. P.; Metzler, M.; Nuesch, D.
1982-01-01
Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
Homer, Collin G.; Aldridge, Cameron L.; Meyer, Debra K.; Schell, Spencer J.
2012-01-01
agebrush ecosystems in North America have experienced extensive degradation since European settlement. Further degradation continues from exotic invasive plants, altered fire frequency, intensive grazing practices, oil and gas development, and climate change – adding urgency to the need for ecosystem-wide understanding. Remote sensing is often identified as a key information source to facilitate ecosystem-wide characterization, monitoring, and analysis; however, approaches that characterize sagebrush with sufficient and accurate local detail across large enough areas to support this paradigm are unavailable. We describe the development of a new remote sensing sagebrush characterization approach for the state of Wyoming, U.S.A. This approach integrates 2.4 m QuickBird, 30 m Landsat TM, and 56 m AWiFS imagery into the characterization of four primary continuous field components including percent bare ground, percent herbaceous cover, percent litter, and percent shrub, and four secondary components including percent sagebrush (Artemisia spp.), percent big sagebrush (Artemisia tridentata), percent Wyoming sagebrush (Artemisia tridentata Wyomingensis), and shrub height using a regression tree. According to an independent accuracy assessment, primary component root mean square error (RMSE) values ranged from 4.90 to 10.16 for 2.4 m QuickBird, 6.01 to 15.54 for 30 m Landsat, and 6.97 to 16.14 for 56 m AWiFS. Shrub and herbaceous components outperformed the current data standard called LANDFIRE, with a shrub RMSE value of 6.04 versus 12.64 and a herbaceous component RMSE value of 12.89 versus 14.63. This approach offers new advancements in sagebrush characterization from remote sensing and provides a foundation to quantitatively monitor these components into the future.
Information mining in remote sensing imagery
NASA Astrophysics Data System (ADS)
Li, Jiang
The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and fuzzy normalized difference vegetation index (NDVI) pattern mining. The study results show the effectiveness of the proposed system prototype and the potentials for other applications in remote sensing.
Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments
NASA Astrophysics Data System (ADS)
Hagler, Gayle S. W.
Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.
36 Years of Remote Oceanographic Laser Fluorosensing: Findings, Challenges and Pathways to Explore
NASA Astrophysics Data System (ADS)
Chekalyuk, A. M.
2009-12-01
Since its initial bright start in early 70s, the oceanographic applications of laser remote fluorosensing have been mostly driven by the enthusiastic laser geeks, who tried to transfer the recent technological advances from their laboratory breadboards to the real world. This communication provides an overview of the key milestones and advances in the oceanographic applications of remote laser fluorosensing that is used for qualitative and quantitative characterization of the key aquatic constituents, including chromophoric dissolved organic matter, phytoplankton pigments, their biomass, community structure, and photo-physiological status. The basic principles and analytical techniques, including fluorescence excitation and emission measurements, as well as active control over the media to retrieve additional information (“super-active remote sensing”), are briefly discussed and illustrated with examples of practical applications. The laser excitation sources (including solid state, tunable lasers and optical parametric oscillators) and signal detectors and analyzers (including multi-spectral and hyperspectral systems) are discussed. The advantages and limitations of various platforms (stationary settings, ships, airplanes, helicopters, unmanned autonomous vehicles (UAV), and satellites) are analyzed. The recent findings, methodological and technological developments in oceanographic applications of laser fluorescence indicate that there is a significant, still underexplored potential of remote fluorosensing that may provide new observational capabilities and serve as a useful tool for oceanographic research, bio-environmental monitoring, and validation of passive satellite retrievals.
Bioprocesses. [in the marine environment
NASA Technical Reports Server (NTRS)
Ditoro, D. M.; Iverson, R. L.; Mccarthy, J. J.
1980-01-01
The application of remote sensing techniques to the study of eutrophication in natural waters and the location and characterization of fronts is considered. The specific problem to be studied is examined along with the feasibility and capabability of remote sensing techniques for each application.
Optical Fiber Networks for Remote Fiber Optic Sensors
Fernandez-Vallejo, Montserrat; Lopez-Amo, Manuel
2012-01-01
This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered. PMID:22666011
Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F
2009-08-01
The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
Integrated crystal mounting and alignment system for high-throughput biological crystallography
Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.
2007-09-25
A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.
Integrated crystal mounting and alignment system for high-throughput biological crystallography
Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.
2005-07-19
A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.
Remote Systems Design & Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ
2009-08-28
The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNL’s experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNL’s work experiences, and the work of others in the national laboratory complex.
An intelligent remote control system for ECEI on EAST
NASA Astrophysics Data System (ADS)
Chen, Dongxu; Zhu, Yilun; Zhao, Zhenling; Qu, Chengming; Liao, Wang; Xie, Jinlin; Liu, Wandong
2017-08-01
An intelligent remote control system based on a power distribution unit (PDU) and Arduino has been designed for the electron cyclotron emission imaging (ECEI) system on Experimental Advanced Superconducting Tokamak (EAST). This intelligent system has three major functions: ECEI system reboot, measurement region adjustment and signal amplitude optimization. The observation region of ECEI can be modified for different physics proposals by remotely tuning the optical and electronics systems. Via the remote adjustment of the attenuation level, the ECEI intermediate frequency signal amplitude can be efficiently optimized. The remote control system provides a feasible and reliable solution for the improvement of signal quality and the efficiency of the ECEI diagnostic system, which is also valuable for other diagnostic systems.
Biegler, Nancy; McBeth, Paul B; Tevez-Molina, Martha C; McMillan, Janelle; Crawford, Innes; Hamilton, Douglas R; Kirkpatrick, Andrew W
2012-12-01
Remote telementored ultrasound (RTMUS) is a new discipline that allows a remote expert to guide variably experienced clinical responders through focused ultrasound examinations. We used the examination of the pleural spaces after tube thoracostomy (TT) removal by a nurse with no prior ultrasound experience as an illustrative but highly accurate example of the technique using a simple cost-effective system. The image outputs of a handheld ultrasound machine and a head-mounted Web camera were input into a customized graphical user interface and streamed over a freely available voice over Internet protocol system that allowed two-way audio and visual communication between the novice examiner and the remote expert. The bedside nurse was then guided to examine the anterior chest of a patient who had recently had bilateral TTs removed. The team sought to determine the presence or absence of any recurrent pneumothoraces using the standard criteria for the ultrasound diagnosis of post-removal pneumothorax (PTXs). An upright chest radiograph (CXR) was obtained immediately after the RTMUS examination. The RTMUS system enabled the novice user to learn how to hold the ultrasound probe, where to place it on the chest, and thereafter to diagnose a subtle unilateral PTX characterized as "tiny" on the subsequent formal CXR report. As ultrasound has almost limitless clinical utility, using simple but advanced informatics and communication technologies has potential to improve worldwide healthcare delivery. RTMUS could be used both to enhance the information content as well as to digitally document important physiologic findings in any clinical encounter wherever a portable ultrasound and Internet connectivity are available.
Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system
NASA Astrophysics Data System (ADS)
Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.
2009-03-01
This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of the deposits largely, whereas the remote wind effect has the largest influence on the amount of sediment released from the Lagoon. It is noted that this paper analyzes the initial deposition patterns induced by current effects only. However, in reality, these deposits are further redistributed over the Shelf by wave effects—these are subject of a next study on the sediment dynamics of the larger Patos Lagoon-Cassino Beach system.
2013-03-01
holo- graphic recording on photo-thermo-plastic structure ,” J. Modern Opt. 57(10), 854–858 (2010). 6. N. Kukhtarev and T. Kukhtareva, “ Dynamic ...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 21-10-2013 Journal Article Remote Sensing and Characterization of Oil on Water Using...green-blue region can also degrade oil. This finding indicates that properly structured laser clean-up can be an alternative method of decontamination
Discrimination Between Child and Adult Forms Using Radar Frequency Signature Analysis
2013-03-14
Distances. This sensor poses no risk to human subjects or persons operating the equipment. The 88 th Medical Group Bio -Environmental Safety...method of remotely characterizing human activity. Unlike optical sensors , radar systems need not rely upon line-of-sight or good weather to perform well...and in monitoring vital signs through chemical or bio - logical protection suits. These military applications have seen research as early as the mid
2010-09-30
proposal include: 1) complete the development of second-generation sonar boards, 2) complete the integration of new transducers with the second... sonar board and transducer. APPROACH Over the last 40 years, there has been significant research effort directed towards the use of high...narrowband frequency, and some AUVs carry single-frequency sidescan sonars (and this technology has been adapted for gliders), the lack of suitable
Analysis of Solar Census Remote Solar Access Value Calculation Methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nangle, J.; Dean, J.; Van Geet, O.
2015-03-01
The costs of photovoltaic (PV) system hardware (PV panels, inverters, racking, etc.) have fallen dramatically over the past few years. Nonhardware (soft) costs, however, have failed to keep pace with the decrease in hardware costs, and soft costs have become a major driver of U.S. PV system prices. Upfront or 'sunken' customer acquisition costs make up a portion of an installation's soft costs and can be addressed through software solutions that aim to streamline sales and system design aspects of customer acquisition. One of the key soft costs associated with sales and system design is collecting information on solar accessmore » for a particular site. Solar access, reported in solar access values (SAVs), is a measurement of the available clear sky over a site and is used to characterize the impacts of local shading objects. Historically, onsite shading studies have been required to characterize the SAV of the proposed array and determine the potential energy production of a photovoltaic system.« less
21 CFR 880.6315 - Remote Medication Management System.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote Medication Management System. 880.6315 Section 880.6315 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Miscellaneous Devices § 880.6315 Remote Medication Management System. (a) Identification. A remote medication...
EVALUATION OF FUGITIVE EMISSIONS USING GROUND-BASED OPTICAL REMOTE SENSING TECHNOLOGY
EPA has developed and evaluated a method for characterizing fugitive emissions from large area sources. The method, known as radial plume mapping (RPM) uses multiple-beam, scanning, optical remote sensing (ORS) instrumentation such as open-path Fourier transform infrared spectro...
NASA Astrophysics Data System (ADS)
Genoud, Adrien P.; Basistyy, Roman; Williams, Gregory M.; Thomas, Benjamin P.
2018-03-01
Mosquito-borne diseases are a major challenge for Human health as they affect nearly 700 million people every year and result in over 1 million deaths. Reliable information on the evolution of population and spatial distribution of key insects species is of major importance in the development of eco-epidemiologic models. This paper reports on the remote characterization of flying mosquitoes using a continuous-wave infrared optical remote sensing system. The system is setup in a controlled environment to mimic long-range lidars, mosquitoes are free flying at a distance of 4 m from the collecting optics. The wing beat frequency is retrieved from the backscattered light from mosquitoes transiting through the laser beam. A total of 427 transit signals have been recorded from three mosquito species, males and females. Since the mosquito species and gender are known a priori, we investigate the use of wing beat frequency as the sole predictor variable for two Bayesian classifications: gender alone (two classes) and species/gender (six classes). The gender of each mosquito is retrieved with a 96.5% accuracy while the species/gender of mosquitoes is retrieved with a 62.3% accuracy. Known to be an efficient mean to identify insect family, we discuss the limitations of using wing beat frequency alone to identify insect species.
NASA Astrophysics Data System (ADS)
Zollweg, J. A.
2017-10-01
Numerous ground-based, airborne, and orbiting platforms provide remotely-sensed data of remarkable spatial resolution at short time intervals. However, this spatiotemporal data is most valuable if it can be processed into information, thereby creating meaning. We live in a world of objects: cars, buildings, farms, etc. On a stormy day, we don't see millions of cubes of atmosphere; we see a thunderstorm `object'. Temporally, we don't see the properties of those individual cubes changing, we see the thunderstorm as a whole evolving and moving. There is a need to represent the bulky, raw spatiotemporal data from remote sensors as a small number of relevant spatiotemporal objects, thereby matching the human brain's perception of the world. This presentation reveals an efficient algorithm and system to extract the objects/features from raster-formatted remotely-sensed data. The system makes use of the Python object-oriented programming language, SciPy/NumPy for matrix manipulation and scientific computation, and export/import to the GeoJSON standard geographic object data format. The example presented will show how thunderstorms can be identified and characterized in a spatiotemporal continuum using a Python program to process raster data from NOAA's High-Resolution Rapid Refresh v2 (HRRRv2) data stream.
NASA Astrophysics Data System (ADS)
Singh, U. N.; Refaat, T. F.; Ismail, S.; Davis, K. J.; Kawa, S. R.; Menzies, R. T.; Petros, M.; Yu, J.
2016-12-01
Carbon dioxide (CO2) is recognized as the most important anthropogenic greenhouse gas. While CO2 concentration is rapidly increasing, understanding of the global carbon cycle remains a primary scientific challenge. This is mainly due to the lack of full characterization of CO2 sources and sinks. Quantifying the current global distribution of CO2 sources and sinks with sufficient accuracy and spatial resolution is a critical requirement for improving models of carbon-climate interactions and for attributing them to specific biogeochemical processes. This requires sustained atmospheric CO2 observations with high precision, and low bias for high accuracy, and spatial and temporal dense representation that cannot be fully realized with current CO2 observing systems, including existing satellite CO2 passive remote sensors. Progress in 2-micron instrument technologies, airborne testing, and system performance simulations indicates that the necessary lower tropospheric weighted CO2 measurements can be achieved from space using new high pulse energy 2-micron direct detection active remote sensing. Advantages of the CO2 active remote sensing include low bias measurements that are independent of sun light or Earth's radiation and day/night coverage over all latitudes and seasons. In addition, the direct detection system provides precise ranging with simultaneous measurement of aerosol and cloud distributions. The 2-micron active remote sensing offers strong CO2 absorption lines with optimum low tropospheric and near surface weighting. A feasibility study, including system optimization and sensitivity analysis of a space-based 2-micron pulsed IPDA lidar for CO2 measurement, is presented. This is based on the successful demonstration of the CO2 double-pulse IPDA lidar and the technology maturation of the triple-pulse IPDA lidar, currently under development at NASA Langley Research Center. Preliminary simulations indicate CO2 random measurement errors of 0.71, 0.35 and 0.13 ppm for snow, ocean surface, and desert surface reflectivity, respectively. These simulations assume a 400 km altitude polar orbit, 100 mJ pulse energy, a 1.5 m telescope, a 6.2 MHz detection bandwidth, 0.05 aerosol optical depth and 7 second data average.
Strategies for lidar characterization of particulates from point and area sources
NASA Astrophysics Data System (ADS)
Wojcik, Michael D.; Moore, Kori D.; Martin, Randal S.; Hatfield, Jerry
2010-10-01
Use of ground based remote sensing technologies such as scanning lidar systems (light detection and ranging) has gained traction in characterizing ambient aerosols due to some key advantages such as wide area of regard (10 km2), fast response time, high spatial resolution (<10 m) and high sensitivity. Energy Dynamics Laboratory and Utah State University, in conjunction with the USDA-ARS, has developed a three-wavelength scanning lidar system called Aglite that has been successfully deployed to characterize particle motion, concentration, and size distribution at both point and diffuse area sources in agricultural and industrial settings. A suite of massbased and size distribution point sensors are used to locally calibrate the lidar. Generating meaningful particle size distribution, mass concentration, and emission rate results based on lidar data is dependent on strategic onsite deployment of these point sensors with successful local meteorological measurements. Deployment strategies learned from field use of this entire measurement system over five years include the characterization of local meteorology and its predictability prior to deployment, the placement of point sensors to prevent contamination and overloading, the positioning of the lidar and beam plane to avoid hard target interferences, and the usefulness of photographic and written observational data.
NASA Astrophysics Data System (ADS)
Brachmann, Johannes F. S.; Baumgartner, Andreas; Lenhard, Karim
2016-10-01
The Calibration Home Base (CHB) at the Remote Sensing Technology Institute of the German Aerospace Center (DLR-IMF) is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric characterization is realized in the CHB in a precise and highly automated fashion. This allows performing a wide range of time consuming measurements in an efficient way. The implementation of ISO 9001 standards ensures a traceable quality of results. DLR-IMF will support the calibration and characterization campaign of the future German spaceborne hyperspectral imager EnMAP. In the context of this activity, a procedure for the correction of imaging artifacts, such as due to stray light, is currently being developed by DLR-IMF. Goal is the correction of in-band stray light as well as ghost images down to a level of a few digital numbers in the whole wavelength range 420-2450 nm. DLR-IMF owns a Norsk Elektro Optikks HySpex airborne imaging spectrometer system that has been thoroughly characterized. This system will be used to test stray light calibration procedures for EnMAP. Hyperspectral snapshot sensors offer the possibility to simultaneously acquire hyperspectral data in two dimensions. Recently, these rather new spectrometers have arisen much interest in the remote sensing community. Different designs are currently used for local area observation such as by use of small unmanned aerial vehicles (sUAV). In this context the CHB's measurement capabilities are currently extended such that a standard measurement procedure for these new sensors will be implemented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Vyacheslav E.; Potapov, Victor N.; Smirnov, Sergey V.
Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. In the building, neighboring to the reactor, the storage of HLRW is located. The storage is made of monolithic concrete in which steel cells depth 4 m are located. In cells of storage the HLRW packed into cases are placed. These the radioactive waste are also subject to export on long storage in the specialized organization. For characterization of the radioactive waste in cases the remote-controlled collimated spectrometer system wasmore » used. The system consists of a spectrometric collimated gamma-ray detector, a color video camera and a control unit, mounted on a rotator, which are mounted on a tripod with the host computer. For determination of specific activity of radionuclides in cases, it is developed programs of calculation of coefficients of proportionality of specific activity to the corresponding speeds of the account in peaks of full absorption at single specific activity of radionuclides in cases. For determination of these coefficients the mathematical model of spectrometer system based on the Monte-Carlo method was used. Dependences of calibration coefficients for various radionuclides from distance between the detector and a case at various values of the radioactive waste density in cases are given. Measurements of specific activity in cases are taken and are discussed. By results of measurements decisions on the appeal of the radioactive waste being in cases are made. (authors)« less
[Remote Slit Lamp Microscope Consultation System Based on Web].
Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping
2015-11-01
To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.
NASA Technical Reports Server (NTRS)
Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.
1989-01-01
The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.
USGS remote sensing coordination for the 2010 Haiti earthquake
Duda, Kenneth A.; Jones, Brenda
2011-01-01
In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.
High Latitude Dust Sources, Transport Pathways and Impacts
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Baddock, M. C.; Darlington, E.; Mockford, T.; Van-Soest, M.
2017-12-01
Estimates from field studies, remote sensing and modelling all suggest around 5% of global dust emissions originate in the high latitudes (≥50°N and ≥40°S), a similar proportion to that from the USA (excluding Alaska) or Australia. This paper identifies contemporary sources of dust within the high latitudes and their role within local, regional and hemispherical environmental systems. Field data and remote sensing analyses are used to identify the environmental and climatic conditions that characterize high latitude dust sources in both hemispheres. Examples from Arctic and sub-Arctic dust sources are used to demonstrate and explain the different regional relationships among dust emissions, glacio-fluvial dynamics and snow cover. The relative timing of dust input to high latitude terrestrial, cryospheric and marine systems determines its short to medium term environmental impact. This is highlighted through quantifying the importance of locally-redistributed dust as a nutrient input to high latitude soils and lakes in West Greenland.
A review of progress in identifying and characterizing biocrusts using proximal and remote sensing
NASA Astrophysics Data System (ADS)
Rozenstein, Offer; Adamowski, Jan
2017-05-01
Biocrusts are critical components of desert ecosystems, significantly modifying the surfaces they occupy. The mixture of biological components and soil particles that form the crust, in conjunction with moisture, determines the biocrusts' spectral signatures. Proximal and remote sensing in complementary spectral regions, namely the reflective region, and the thermal region, have been used to study biocrusts in a non-destructive manner, in the laboratory, in the field, and from space. The objectives of this review paper are to present the spectral characteristics of biocrusts across the optical domain, and to discuss significant developments in the application of proximal and remote sensing for biocrust studies in the last few years. The motivation for using proximal and remote sensing in biocrust studies is discussed. Next, the application of reflectance spectroscopy to the study of biocrusts is presented followed by a review of the emergence of high spectral resolution thermal remote sensing, which facilitates the application of thermal spectroscopy for biocrust studies. Four specific topics at the forefront of proximal and remote sensing of biocrusts are discussed: (1) The use of remote sensing in determining the role of biocrusts in global biogeochemical cycles; (2) Monitoring the inceptive establishment of biocrusts; (3) Identifying and characterizing biocrusts using Longwave infrared spectroscopy; and (4) Diurnal emissivity dynamics of biocrusts in a sand dune environment. The paper concludes by identifying innovative technologies such as low altitude and high resolution imagery that are increasingly used in remote sensing science, and are expected to be used in future biocrusts studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
NASA Astrophysics Data System (ADS)
Douglas, Ewan Streets
This work explores remote sensing of planetary atmospheres and their circumstellar surroundings. The terrestrial ionosphere is a highly variable space plasma embedded in the thermosphere. Generated by solar radiation and predominantly composed of oxygen ions at high altitudes, the ionosphere is dynamically and chemically coupled to the neutral atmosphere. Variations in ionospheric plasma density impact radio astronomy and communications. Inverting observations of 83.4 nm photons resonantly scattered by singly ionized oxygen holds promise for remotely sensing the ionospheric plasma density. This hypothesis was tested by comparing 83.4 nm limb profiles recorded by the Remote Atmospheric and Ionospheric Detection System aboard the International Space Station to a forward model driven by coincident plasma densities measured independently via ground-based incoherent scatter radar. A comparison study of two separate radar overflights with different limb profile morphologies found agreement between the forward model and measured limb profiles. A new implementation of Chapman parameter retrieval via Markov chain Monte Carlo techniques quantifies the precision of the plasma densities inferred from 83.4 nm emission profiles. This first study demonstrates the utility of 83.4 nm emission for ionospheric remote sensing. Future visible and ultraviolet spectroscopy will characterize the composition of exoplanet atmospheres; therefore, the second study advances technologies for the direct imaging and spectroscopy of exoplanets. Such spectroscopy requires the development of new technologies to separate relatively dim exoplanet light from parent star light. High-contrast observations at short wavelengths require spaceborne telescopes to circumvent atmospheric aberrations. The Planet Imaging Concept Testbed Using a Rocket Experiment (PICTURE) team designed a suborbital sounding rocket payload to demonstrate visible light high-contrast imaging with a visible nulling coronagraph. Laboratory operations of the PICTURE coronagraph achieved the high-contrast imaging sensitivity necessary to test for the predicted warm circumstellar belt around Epsilon Eridani. Interferometric wavefront measurements of calibration target Beta Orionis recorded during the second test flight in November 2015 demonstrate the first active wavefront sensing with a piezoelectric mirror stage and activation of a micromachine deformable mirror in space. These two studies advance our "close-to-home'' knowledge of atmospheres and move exoplanetary studies closer to detailed measurements of atmospheres outside our solar system.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
Development progress of the Materials Analysis and Particle Probe
NASA Astrophysics Data System (ADS)
Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Boyle, D. P.; Schmitt, J. C.; Onge, D. A. St.
2014-11-01
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
Development progress of the Materials Analysis and Particle Probe.
Lucia, M; Kaita, R; Majeski, R; Bedoya, F; Allain, J P; Boyle, D P; Schmitt, J C; Onge, D A St
2014-11-01
The Materials Analysis and Particle Probe (MAPP) is a compact in vacuo surface science diagnostic, designed to provide in situ surface characterization of plasma facing components in a tokamak environment. MAPP has been implemented for operation on the Lithium Tokamak Experiment at Princeton Plasma Physics Laboratory (PPPL), where all control and analysis systems are currently under development for full remote operation. Control systems include vacuum management, instrument power, and translational/rotational probe drive. Analysis systems include onboard Langmuir probes and all components required for x-ray photoelectron spectroscopy, low-energy ion scattering spectroscopy, direct recoil spectroscopy, and thermal desorption spectroscopy surface analysis techniques.
Digital Holographic Interferometry for Airborne Particle Characterization
2015-03-19
Interferometry and polarimetry for aerosol particle characterization, Bioaerosols: Characterization and Environmental Impact, Austin, TX (2014) [organizer...and conference chair]. 6. Invited talk: Holographic Interferometry and polarimetry for aerosol particle characterization, Optical...Stokes parameters, NATO Advanced Science Institute on Special Detection Technique ( Polarimetry ) and Remote Sensing, Kyiv, Ukraine (2010). (c
Assessing and optimizing infrasound network performance: application to remote volcano monitoring
NASA Astrophysics Data System (ADS)
Tailpied, D.; LE Pichon, A.; Marchetti, E.; Kallel, M.; Ceranna, L.
2014-12-01
Infrasound is an efficient monitoring technique to remotely detect and characterize explosive sources such as volcanoes. Simulation methods incorporating realistic source and propagation effects have been developed to quantify the detection capability of any network. These methods can also be used to optimize the network configuration (number of stations, geographical location) in order to reduce the detection thresholds taking into account seasonal effects in infrasound propagation. Recent studies have shown that remote infrasound observations can provide useful information about the eruption chronology and the released acoustic energy. Comparisons with near-field recordings allow evaluating the potential of these observations to better constrain source parameters when other monitoring techniques (satellite, seismic, gas) are not available or cannot be made. Because of its regular activity, the well-instrumented Mount Etna is in Europe a unique natural repetitive source to test and optimize detection and simulation methods. The closest infrasound station part of the International Monitoring System is located in Tunisia (IS48). In summer, during the downwind season, it allows an unambiguous identification of signals associated with Etna eruptions. Under the European ARISE project (Atmospheric dynamics InfraStructure in Europe, FP7/2007-2013), experimental arrays have been installed in order to characterize infrasound propagation in different ranges of distance and direction. In addition, a small-aperture array, set up on the flank by the University of Firenze, has been operating since 2007. Such an experimental setting offers an opportunity to address the societal benefits that can be achieved through routine infrasound monitoring.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
Remote creation of a one-qubit mixed state through a short homogeneous spin-1/2 chain
NASA Astrophysics Data System (ADS)
Zenchuk, A. I.
2014-11-01
We consider a method of remote mixed state creation of a one-qubit subsystem (receiver) in a spin-1/2 chain governed by the nearest-neighbor X Y Hamiltonian. Owing to the evolution of the chain along with the variable local unitary transformation of the one- or two-qubit sender, a large variety of receiver states can be created during a specific time interval starting with a fixed initial state of the whole quantum system. These states form the creatable region of the receiver's state-space. It is remarkable that, with a two-qubit sender, a large creatable region may be covered at a properly fixed time instant t0 using just the variable local unitary transformation of the sender. In this case we have completely local control of remote state creation. In general, for a given initial state, there are some receiver states that may not be created using the above tool. These states form the unavailable region. In turn, this unavailable region might be the creatable region of another sender. Thus, in future, we have a way to share the whole receiver's state-space among the creatable regions of several senders. The effectiveness of remote state creation is characterized by the density function of the creatable region.
NASA Technical Reports Server (NTRS)
Anderson, James G.
2005-01-01
In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud probes provide the level of precision and accuracy needed to develop and validate algorithms and to contribute to our understanding of the characteristics and microphysical processes operating in cirrus clouds?
Remote Sensing of Ionosphere by IONOLAB Group
NASA Astrophysics Data System (ADS)
Arikan, Feza
2016-07-01
Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state/temporal transition. IONOLAB group contributes to remote sensing of upper atmosphere, ionosphere and plasmasphere with continuing TUBITAK projects. IONOLAB group is open to joint research and collaboration with researchers from all disciplines that investigate the challenges of ionosphere and space weather. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Lachinova, Svetlana L; Vorontsov, Mikhail A
2008-08-01
We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.
2000-01-01
The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.
Rapid Characterization of Shorelines using a Georeferenced Video Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Michael G.; Judd, Chaeli; Marcoe, K.
Increased understanding of shoreline conditions is needed, yet current approaches are limited in ability to characterize remote areas or document features at a finer resolution. Documentation using video mapping may provide a rapid and repeatable method for assessing the current state of the environment and determining changes to the shoreline over time. In this study, we compare two studies using boat-based, georeferenced video mapping in coastal Washington and the Columbia River Estuary to map and characterize coastal stressors and functional data. In both areas, mapping multiple features along the shoreline required approximation of the coastline. However, characterization of vertically orientedmore » features such as shoreline armoring and small features such as pilings and large woody debris was possible. In addition, end users noted that geovideo provides a permanent record to allow a user to examine recorded video anywhere along a transect or at discrete points.« less
NASA Technical Reports Server (NTRS)
Labovitz, M. L.; Toll, D. L.; Kennard, R. E.
1980-01-01
Previously established results demonstrate that LANDSAT data are autocorrelated and can be described by a univariate linear stochastic process known as auto-regressive-integrated-moving-average model of degree 1, 0, 1 or ARIMA (1, 0, 1). This model has two coefficients of interest for interpretation phi(1) and theta(1). In a comparison of LANDSAT thematic mapper simulator (TMS) data and LANDSAT MSS data several results were established: (1) The form of the relatedness as described by this model is not dependent upon system look angle or pixel size. (2) The phi(1) coefficient increases with decreasing pixel size and increasing topographic complexity. (3) Changes in topography have a greater influence upon phi(1) than changes in land cover class. (4) The theta(1) seems to vary with the amount of atmospheric haze. These patterns of variation in phi(1) and theta(1) are potentially exploitable by the remote sensing community to yield stochastically independent sets of observations, characterize topography, and reduce the number of bytes needed to store remotely sensed data.
Self Managing Heart Failure in Remote Australia - Translating Concepts into Clinical Practice
Iyngkaran, Pupalan; Toukhsati, Samia R.; Harris, Melanie; Connors, Christine; Kangaharan, Nadarajan; Ilton, Marcus; Nagel, Tricia; Moser, Debra K.; Battersby, Malcolm
2016-01-01
Congestive heart failure (CHF) is an ambulatory health care condition characterized by episodes of decompensation and is usually without cure. It is a leading cause for morbidity and mortality and the lead cause for hospital admissions in older patients in the developed world. The long-term requirement for medical care and pharmaceuticals contributes to significant health care costs. CHF management follows a hierarchy from physician prescription to allied health, predominately nurse-led, delivery of care. Health services are easier to access in urban compared to rural settings. The differentials for more specialized services could be even greater. Remote Australia is thus faced with unique challenges in delivering CHF best practice. Chronic disease self-management programs (CDSMP) were designed to increase patient participation in their health and alleviate stress on health systems. There have been CDSMP successes with some diseases, although challenges still exist for CHF. These challenges are amplified in remote Australia due to geographic and demographic factors, increased burden of disease, and higher incidence of comorbidities. In this review we explore CDSMP for CHF and the challenges for our region. PMID:27397492
Rugged TDLAS system for High Energy Laser atmospheric propagation characterization
NASA Astrophysics Data System (ADS)
Perram, Glen; Rice, Christopher
2008-10-01
An active remote sensing instrument for the characterization of atmospheric absorption, scattering, and scintillation at several key high energy laser wavelengths is in development. The instrument is based on narrow band tunable diode lasers fiber coupled to a 12'' Ritchey-Chretien transmit telescope and a second receive telescope with visible or near infrared imager. For example, tunable diode lasers have been used to obtain absorption spectra in the laboratory for the Cs D2 lines near 852 nm and the oxygen X-b lines near 760 nm, key to the Diode Pumped Alkali Laser (DPAL) concept. Absorbencies of less than 0.5% are observable. Applications will be assessed including effects to HEL atmospheric propagation from molecular and aerosol absorption and scattering, Cn2 estimation from atmospheric turbulence, hazardous chemical emission detection, and laser communication interception from side scattering. The system will soon be deployed to a military laser test range to characterize path lengths of greater than 1 km.
Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia
NASA Astrophysics Data System (ADS)
Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul
2015-04-01
Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to develop the exchangeable and transferable rule-set with optimal parameterization for such aforementioned tasks. A geomorphometric-based remotely sensed approach is used to understand the tectonic geomorphology in processes affecting the environment at different spatial scales. As a result of this study, questions related to cascading natural disasters, e.g. landslides can be quantitatively answered. Development and applications of seismically induced landslide hazard and risk zonation at different scales are conceptually presented and critically discussed. So far, quantification evaluation of uncertainties associated to spatial seismic hazard and risks prediction remains very challenging to understand and it is an interest of on-going research. In the near-future, it is crucial to address the changes of climate and land-use-land-cover in relation to temporal and spatial pattern of seismically induced landslides. It is also important to assess, model and incorporate the changes due to natural disasters into a sustainable risk management. As a conclusion, the characteristics, development and function of tectonic movement, as one of the components for geomorphological process-response system is crucial for a regional seismic study. With newly emerging multi-sensor of remotely sensed data coupled with the satellite positioning system promises a better mapping and monitoring tool for seismotectonic activities in such a way that it can be used to map, monitor, and model related seismically induced processes for a comprehensive hazard and associated risk assessment.
2003-12-01
NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Combat Command,Environmental Flight,Avon Park Air Force Range...FL,33825 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11...Oscar Range are either Spodosols or Alfisols. Spodosols soils are characterized by a subsurface zone called a spodic ( organic ) horizon layer, whereas
Site Characterization for Remote Minefield Detection Scanner (REMIDS) system Data Acquisition
1991-04-01
pattern - Standard A ) (US Army Engineer School 1988 ). This pattern dictates two straight rows of mines at each end of the area located 100 m apart...Westpoint, NY. Cespedes, E. R., Goodson, R. A ., and Ginsberg, I. W. 1988 (April). "Multi- sensor Image Processing Techniques for Real-Time Standoff...Monterey, CA. Gleason, H. A ., and Cronquist , A . 1963. Manual of Vascular Plants, D. Van Nostrand Co., New York. Goodson, R. A ., Cress, D. H., and
Method of remotely characterizing thermal properties of a sample
NASA Technical Reports Server (NTRS)
Heyman, Joseph S. (Inventor); Heath, D. Michele (Inventor); Welch, Christopher (Inventor); Winfree, William P. (Inventor); Miller, William E. (Inventor)
1992-01-01
A sample in a wind tunnel is radiated from a thermal energy source outside of the wind tunnel. A thermal imager system, also located outside of the wind tunnel, reads surface radiations from the sample as a function of time. The produced thermal images are characteristic of the heat transferred from the sample to the flow across the sample. In turn, the measured rates of heat loss of the sample are characteristic of the flow and the sample.
Methods for LWIR Radiometric Calibration and Characterization
NASA Technical Reports Server (NTRS)
Ryan, Robert; Pagnutti, Mary; Zanoni, Vicki; Harrington, Gary; Howell, Dane; Stewart, Randy
2002-01-01
The utility of a thermal remote sensing system increases with it's ability to retrieve surface temperature or radiance accurately. The radiometer measures the water surface radiant temperature. Combining these measurements with atmospheric pressure, temperature, and water vapor profiles, a top-of-the-atmosphere tradiance estimate can be caluclated with a radiativer transfer code to compare to trhe sensor's output. A novel approach has been developed using an uncooled infrared camera mounted on a boom, to quantify buoy effects.
NASA Technical Reports Server (NTRS)
Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel
2016-01-01
Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed..
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.; Gerace, Aaron D.; Montanaro, Matthew; McCorkel, Joel
2016-09-01
Climate change studies require long-term, continuous records that extend beyond the lifetime, and the temporal resolution, of a single remote sensing satellite sensor. The inter-calibration of spaceborne sensors is therefore desired to provide spatially, spectrally, and temporally homogeneous datasets. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) tool is a first principle-based synthetic image generation model that has the potential to characterize the parameters that impact the accuracy of the inter-calibration of spaceborne sensors. To demonstrate the potential utility of the model, we compare the radiance observed in real image data to the radiance observed in simulated image from DIRSIG. In the present work, a synthetic landscape of the Algodones Sand Dunes System is created. The terrain is facetized using a 2-meter digital elevation model generated from NASA Goddard's LiDAR, Hyperspectral, and Thermal (G-LiHT) imager. The material spectra are assigned using hyperspectral measurements of sand collected from the Algodones Sand Dunes System. Lastly, the bidirectional reflectance distribution function (BRDF) properties are assigned to the modeled terrain using the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product in conjunction with DIRSIG's Ross-Li capability. The results of this work indicate that DIRSIG is in good agreement with real image data. The potential sources of residual error are identified and the possibilities for future work are discussed.
NASA Technical Reports Server (NTRS)
Heer, E.
1973-01-01
Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.
NASA Astrophysics Data System (ADS)
Hatfield, M. C.; Webley, P.; Saiet, E., II
2014-12-01
Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.
A low cost, high performance remotely controlled backhoe/excavator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, J.
1995-12-31
This paper addresses a state of the art, low cost, remotely controlled backhoe/excavator system for remediation use at hazardous waste sites. The all weather, all terrain, Remote Dig-It is based on a simple, proven construction platform and incorporates state of the art sensors, control, telemetry and other subsystems derived from advanced underwater remotely operated vehicle systems. The system can be towed to a site without the use of a trailer, manually operated by an on board operator or operated via a fiber optic or optional RF communications link by a remotely positioned operator. A proportional control system is piggy backedmore » onto the standard manual control system. The control system improves manual operation, allows rapid manual/remote mode selection and provides fine manual or remote control of all functions. The system incorporates up to 4 separate video links, acoustic obstacle proximity sensors, and stereo audio pickups and an optional differential GPS navigation. Video system options include electronic panning and tilting within a distortion-corrected wide angle field of view. The backhoe/excavator subsystem has a quick disconnect interface feature which allows its use as a manipulator with a wide variety of end effectors and tools. The Remote Dig-It was developed to respond to the need for a low-cost, effective remediation system for use at sites containing hazardous materials. The prototype system was independently evaluated for this purpose by the Army at the Jefferson Proving Ground where it surpassed all performance goals. At the time of this writing, the Remote Dig-It system is currently the only backhoe/excavator which met the Army`s goals for remediation systems for use at hazardous waste sites and it costs a fraction of any known competing offerings.« less
NASA Technical Reports Server (NTRS)
Moores, Greg; Heller, R. P.; Sutanto, Surja; Dugal-Whitehead, Norma R.
1992-01-01
Unexpected and undesirable arcing on dc power systems can produce hazardous situations aboard space flights. The potential for fire and shock might exist in a situation where there is a broken conductor, a loose power connection, or a break in the insulation of the power cable. Such arcing has been found to be reproducible in a laboratory environment. Arcing tests show that the phenomena can last for several seconds and yet be undetectable by present protection schemes used in classical power relaying and remote power controller applications. This paper characterizes the arcing phenomena and suggests future research that is needed.
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
NASA Technical Reports Server (NTRS)
Cicone, R. (Principal Investigator); Crist, E.; Metzler, M.; Parris, T.
1982-01-01
Research supporting the use of remote sensing for inventory and assessment of agricultural commodities is summarized. Three task areas are described: (1) corn and soybean crop spectral/temporal signature characterization; (2) efficient area estimation technology development; and (3) advanced satellite and sensor system definition. Studies include an assessment of alternative green measures from MSS variables; the evaluation of alternative methods for identifying, labeling or classification targets in an automobile procedural context; a comparison of MSS, the advanced very high resolution radiometer and the coastal zone color scanner, as well as a critical assessment of thematic mapper dimensionally and spectral structure.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, Melvin A.
1992-01-01
A fiber optically isolated and remotely stabilized data transmission system s described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber.
Fiber optically isolated and remotely stabilized data transmission system
Nelson, M.A.
1992-11-10
A fiber optically isolated and remotely stabilized data transmission systems described wherein optical data may be transmitted over an optical data fiber from a remote source which includes a data transmitter and a power supply at the remote source. The transmitter may be remotely calibrated and stabilized via an optical control fiber, and the power source may be remotely cycled between duty and standby modes via an optical control fiber. 3 figs.
Expanding Your Laboratory by Accessing Collaboratory Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoyt, David W.; Burton, Sarah D.; Peterson, Michael R.
2004-03-01
The Environmental Molecular Sciences Laboratory (EMSL) in Richland, Washington, is the home of a research facility setup by the United States Department of Energy (DOE). The facility is atypical because it houses over 100 cutting-edge research systems for the use of researchers all over the United States and the world. Access to the lab is requested through a peer-review proposal process and the scientists who use the facility are generally referred to as ‘users’. There are six main research facilities housed in EMSL, all of which host visiting researchers. Several of these facilities also participate in the EMSL Collaboratory, amore » remote access capability supported by EMSL operations funds. Of these, the High-Field Magnetic Resonance Facility (HFMRF) and Molecular Science Computing Facility (MSCF) have a significant number of their users performing remote work. The HFMRF in EMSL currently houses 12 NMR spectrometers that range in magnet field strength from 7.05T to 21.1T. Staff associated with the NMR facility offers scientific expertise in the areas of structural biology, solid-state materials/catalyst characterization, and magnetic resonance imaging (MRI) techniques. The way in which the HFMRF operates, with a high level of dedication to remote operation across the full suite of High-Field NMR spectrometers, has earned it the name “Virtual NMR Facility”. This review will focus on the operational aspects of remote research done in the High-Field Magnetic Resonance Facility and the computer tools that make remote experiments possible.« less
Edge Response and NIIRS Estimates for Commercial Remote Sensing Satellites
NASA Technical Reports Server (NTRS)
Blonski, Slawomir; Ryan, Robert E.; Pagnutti, mary; Stanley, Thomas
2006-01-01
Spatial resolution of panchromatic imagery from commercial remote sensing satellites was characterized based on edge response measurements using edge targets and the tilted-edge technique. Relative Edge Response (RER) was estimated as a geometric mean of normalized edge response differences measured in two directions of image pixels at points distanced from the edge by -0.5 and 0.5 of ground sample distance. RER is one of the engineering parameters used in the General Image Quality Equation to provide predictions of imaging system performance expressed in terms of the National Imagery Interpretability Rating Scale (NIIRS). By assuming a plausible range of signal-to-noise ratio and assessing the effects of Modulation Transfer Function compensation, the NIIRS estimates were made and then compared with vendor-provided values and evaluations conducted by the National Geospatial-Intelligence Agency.
Godfrey, Alexander G; Masquelin, Thierry; Hemmerle, Horst
2013-09-01
This article describes our experiences in creating a fully integrated, globally accessible, automated chemical synthesis laboratory. The goal of the project was to establish a fully integrated automated synthesis solution that was initially focused on minimizing the burden of repetitive, routine, rules-based operations that characterize more established chemistry workflows. The architecture was crafted to allow for the expansion of synthetic capabilities while also providing for a flexible interface that permits the synthesis objective to be introduced and manipulated as needed under the judicious direction of a remote user in real-time. This innovative central synthesis suite is herein described along with some case studies to illustrate the impact such a system is having in expanding drug discovery capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Design of Remote Heat-Meter System Based on Trusted Technology
NASA Astrophysics Data System (ADS)
Yu, Changgeng; Lai, Liping
2018-03-01
This article presents a proposal of a heat meter and remote meter reading system for the disadvantages of the hackers very easily using eavesdropping, tampering, replay attack of traditional remote meter reading system. The system selects trusted technology such as, the identity authentication, integrity verifying, and data protection. By the experiments, it is proved that the remote meter reading system of the heat meter can be used to verify the feasibility of the technology, and verify the practicability and operability of data protection technology.
Construction and characterization of a single stage dual diaphragm gas gun
NASA Astrophysics Data System (ADS)
Helminiak, Nathaniel Steven
In the interest of studying the propagation of shock waves, this work sets out to design, construct, and characterize a pneumatic accelerator that performs high-velocity flyer plate impact tests. A single stage gas gun with a dual diaphragm breach allows for a non-volatile, reliable experimental testing platform for shock phenomena. This remotely operated gas gun utilizes compressed nitrogen to launch projectiles down a 14 foot long, 2 inch diameter bore barrel, which subsequently impacts a target material of interest. A dual diaphragm firing mechanism allows the 4.5 liter breech to reach a total pressure differential of 10ksi before accelerating projectiles to velocities as high as 1,000 m/s (1570-2240 mph). The projectile's velocity is measured using a series of break pin circuits. The target response can be measured with Photon Doppler Velocimetry (PDV) and/or stress gauge system. A vacuum system eliminates the need for pressure relief in front of the projectile, while additionally allowing the system to remain closed over the entire firing cycle. Characterization of the system will allow for projectile speed to be estimated prior to launching based on initial breach pressure.
Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki
2009-01-01
We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.
Construction of a remotely sensed area sampling frame for Southern Brazil
NASA Technical Reports Server (NTRS)
Fecso, R.; Gardner, W.; Hale, B.; Johnson, V.; Pavlasek, S. (Principal Investigator)
1982-01-01
A remotely sensed area sampling frame was constructed for selected areas in Southern Brazil. The sampling unit information was stored in digital form in a latitudinal/longitudinal characterized population. Computerized sampling procedures were developed which allow for flexibility in sample unit specifications and sampling designs.
The remote characterization of vegetation using Unmanned Aerial Vehicle photography
USDA-ARS?s Scientific Manuscript database
Unmanned Aerial Vehicles (UAVs) can fly in place of piloted aircraft to gather remote sensing information on vegetation characteristics. The type of sensors flown depends on the instrument payload capacity available, so that, depending on the specific UAV, it is possible to obtain video, aerial phot...
Satellite remote sensing of isolated wetlands using object-oriented classification of LANDSAT-7 data
There has been an increasing interest in characterizing and mapping isolated depressional wetlands due to a 2001 U.S. Supreme Court decision that effectively removed their protected status. Our objective was to determine the utility of satellite remote sensing to accurately map ...
The U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD) and EPA Region 8 are collaborating under the EPA’s Regional Applied Research Effort (RARE) program to evaluate ground-based remote sensing technologies that could be used to characterize emis...
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations
USDA-ARS?s Scientific Manuscript database
Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...
Remote Sensing Wind and Wind Shear System.
Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.
Photovoltaic remote instrument applications: Assessment of the near-term market
NASA Technical Reports Server (NTRS)
Rosenblum, L.; Scudder, L. R.; Poley, W. A.; Bifano, W. J.
1977-01-01
A preliminary assessment of the near term market for photovoltaic remote instrument applications is presented. Among the potential users, two market sectors are considered: government and private. However, the majority of the remote systems studied are operated by or for the federal, state, or local governments. Environmental monitoring and surveillance remote instrument systems are discussed. Based on information obtained in this preliminary market survey, a domestic, civilian market of at least 1.3 MW sub pk is forecast for remote instrument systems. This estimate is exclusive of several potentially large scale markets for remote instruments which are identified but for which no hard data is available.
An introduction to quantitative remote sensing. [data processing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Russell, J.
1974-01-01
The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.
Telepresence system development for application to the control of remote robotic systems
NASA Technical Reports Server (NTRS)
Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien
1989-01-01
The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.
Printable thermoelectric devices and conductive patterns for medical applications
NASA Astrophysics Data System (ADS)
Lee, Jungmin; Kim, Hyunjung; Chen, Linfeng; Choi, Sang H.; Varadan, Vijay K.
2012-10-01
Remote point-of-care is expected to revolutionize the modern medical practice, and many efforts have been made for the development of wireless health monitoring systems for continuously detecting the physiological signals of patients. To make the remote point-of-care generally accepted and widely used, it is necessary to develop cost-effective and durable wireless health monitoring systems. Printing technique will be helpful for the fabrication of high-quality and low-cost medical devices and systems because it allows high-resolution and high-speed fabrication, low material consumption and nano-sized patterning on both flexible and rigid substrates. Furthermore, application of thermoelectric generators can replace conventional batteries as the power sources for wireless health monitoring systems because thermoelectric generators can convert the wasted heat or the heat from nature into electricity which is required for the operation of the wireless health monitoring systems. In this research, we propose the concept of printable thermoelectric devices and conductive patterns for the realization of more portable and cost-effective medical devices. To print thermoelectric generators and conductive patterns on substrates, printing inks with special characteristics should be developed. For the development of thermoelectric inks, nano-structured thermoelectric materials are synthesized and characterized; and for the development of conductive inks, two kinds of surface treated carbon nanotubes are used as active materials.
NASA Astrophysics Data System (ADS)
Ghosh, Santaneel; Ghoshmitra, Somesree; Cai, Tong; Diercks, David R.; Mills, Nathaniel C.; Hynds, Dianna L.
2010-01-01
Biocompatible magnetic nanoparticles hold great therapeutic potential, but conventional particles can be toxic. Here, we report the synthesis and alternating magnetic field dependent actuation of a remotely controllable, multifunctional nano-scale system and its marked biocompatibility with mammalian cells. Monodisperse, magnetic nanospheres based on thermo-sensitive polymer network poly(ethylene glycol) ethyl ether methacrylate- co-poly(ethylene glycol) methyl ether methacrylate were synthesized using free radical polymerization. Synthesized nanospheres have oscillating magnetic field induced thermo-reversible behavior; exhibiting desirable characteristics comparable to the widely used poly- N-isopropylacrylamide-based systems in shrinkage plus a broader volumetric transition range. Remote heating and model drug release were characterized for different field strengths. Nanospheres containing nanoparticles up to an iron concentration of 6 mM were readily taken up by neuron-like PC12 pheochromocytoma cells and had reduced toxicity compared to other surface modified magnetic nanocarriers. Furthermore, nanosphere exposure did not inhibit the extension of cellular processes (neurite outgrowth) even at high iron concentrations (6 mM), indicating minimal negative effects in cellular systems. Excellent intracellular uptake and enhanced biocompatibility coupled with the lack of deleterious effects on neurite outgrowth and prior Food and Drug Administration (FDA) approval of PEG-based carriers suggest increased therapeutic potential of this system for manipulating axon regeneration following nervous system injury.
DC-based smart PV-powered home energy management system based on voltage matching and RF module
Hasan, W. Z. W.
2017-01-01
The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances’ consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances’ energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11–123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results. PMID:28934271
DC-based smart PV-powered home energy management system based on voltage matching and RF module.
Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S
2017-01-01
The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.
NASA Astrophysics Data System (ADS)
Liu, I.-Hung; Yang, Che-Hua
2011-01-01
In this research, a procedure employing a laser ultrasound technique (LUT) and an inversion algorism is reported for nondestructive characterization of mechanical and geometrical properties in Zircaloy tubes with different levels of hydrogen charging. With the LUT, guided acoustic waves are generated to propagate in the Zircaloy tubes and are detected remotely by optical means. By measuring the dispersive wavespeeds followed by the inversion algorism, mechanical properties such as elastic moduli and geometrical property such as wall-thickness of Zircaloy tubes are characterized for different levels of hydrogen charging. Having the advantages of remote, non-contact and point-wise generation/detection, the reported procedure serves as a competitive candidate for the characterization of Zircaloy tubes generally operated in irradiative and temperature-elevated environments.
Advances in remote sensing of the daytime ionosphere with EUV airglow
NASA Astrophysics Data System (ADS)
Stephan, Andrew W.
2016-09-01
This paper summarizes recent progress in developing a method for characterizing the daytime ionosphere from limb profile measurements of the OII 83.4 nm emission. This extreme ultraviolet emission is created by solar photoionization of atomic oxygen in the lower thermosphere and is resonantly scattered by O+ in the ionosphere. The brightness and shape of the measured altitude profile thus depend on both the photoionization source in the lower thermosphere and the ionospheric densities that determine the resonant scattering contribution. This technique has greatly matured over the past decade due to measurements by the series of Naval Research Laboratory Special Sensor Ultraviolet Limb Imager (SSULI) instruments flown on Defense Meteorological Satellite Program (DMSP) missions and the Remote Atmospheric and Ionospheric Detection System (RAIDS) on the International Space Station. The volume of data from these missions has enabled a better approach to handling specific biases and uncertainties in both the measurement and retrieval process that affect the accuracy of the result. This paper identifies the key measurement and data quality factors that will enable the continued evolution of this technique into an advanced method for characterization of the daytime ionosphere.
NASA Technical Reports Server (NTRS)
Mackro, J.
1973-01-01
The results are presented of a study involving closed circuit television as the means of providing the necessary task-to-operator feedback for efficient performance of the remote manipulation system. Experiments were performed to determine the remote video configuration that will result in the best overall system. Two categories of tests were conducted which include: those which involved remote control position (rate) of just the video system, and those in which closed circuit TV was used along with manipulation of the objects themselves.
Remote powering platform for implantable sensor systems at 2.45 GHz.
Kazanc, Onur; Yilmaz, Gurkan; Maloberti, Franco; Dehollain, Catherine
2014-01-01
Far-field remotely powered sensor systems enable long distance operation for low-power sensor systems. In this work, we demonstrate a remote powering platform with a miniaturized antenna and remote powering base station operating at 2.45 GHz. The rectenna, which is the energy receiving and conversion element of the sensor system, is designed and measured. The measurements for the tag are performed within 15 cm distance from the remote powering base station. The realized gain of the tag antenna is measured as -3.3 dB, which is 0.5 dB close to the simulations, where simulated realized gain is -2.8 dB.
In vitro assessment of MRI issues at 3-Tesla for a breast tissue expander with a remote port.
Linnemeyer, Hannah; Shellock, Frank G; Ahn, Christina Y
2014-04-01
A patient with a breast tissue expander may require a diagnostic assessment using magnetic resonance imaging (MRI). To ensure patient safety, this type of implant must undergo in vitro MRI testing using proper techniques. Therefore, this investigation evaluated MRI issues (i.e., magnetic field interactions, heating, and artifacts) at 3-Tesla for a breast tissue expander with a remote port. A breast tissue expander with a remote port (Integra Breast Tissue Expander, Model 3612-06 with Standard Remote Port, PMT Corporation, Chanhassen, MN) underwent evaluation for magnetic field interactions (translational attraction and torque), MRI-related heating, and artifacts using standardized techniques. Heating was evaluated by placing the implant in a gelled-saline-filled phantom and MRI was performed using a transmit/receive RF body coil at an MR system reported, whole body averaged specific absorption rate of 2.9-W/kg. Artifacts were characterized using T1-weighted and GRE pulse sequences. Magnetic field interactions were not substantial and, thus, will not pose a hazard to a patient in a 3-Tesla or less MRI environment. The highest temperature rise was 1.7°C, which is physiologically inconsequential. Artifacts were large in relation to the remote port and metal connector of the implant but will only present problems if the MR imaging area of interest is where these components are located. A patient with this breast tissue expander with a remote port may safely undergo MRI at 3-Tesla or less under the conditions used for this investigation. These findings are the first reported at 3-Tesla for a tissue expander. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Shields, N., Jr.; Piccione, F.; Kirkpatrick, M., III; Malone, T. B.
1982-01-01
The combination of human and machine capabilities into an integrated engineering system which is complex and interactive interdisciplinary undertaking is discussed. Human controlled remote systems referred to as teleoperators, are reviewed. The human factors requirements for remotely manned systems are identified. The data were developed in three principal teleoperator laboratories and the visual, manipulator and mobility laboratories are described. Three major sections are identified: (1) remote system components, (2) human operator considerations; and (3) teleoperator system simulation and concept verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, S.; Lucero, R.; Glidewell, D.
1997-08-01
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less
Berlin Reflectance Spectral Library (BRSL)
NASA Astrophysics Data System (ADS)
Henckel, D.; Arnold, G.; Kappel, D.; Moroz, L. V.; Markus, K.
2017-09-01
The Berlin Reflectance Spectral Library (BRSL) provides a collection of reflectance spectra between 0.3 and 17 µm. It was originally dedicated to support space missions to small solar system bodies. Meanwhile the library includes selections of biconical reflectance spectra for spectral data analysis of other planetary bodies as well. The library provides reference spectra of well-characterized terrestrial analogue materials and meteorites for interpretation of remote sensing reflectance spectra of planetary surfaces. We introduce the BRSL, summarize the data available, and access to use them for further relevant applications.
NASA Technical Reports Server (NTRS)
Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.
2015-01-01
This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1996-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1997-12-09
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1999-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
Remote information service access system based on a client-server-service model
Konrad, A.M.
1996-08-06
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user`s local host, thereby providing ease of use and minimal software maintenance for users of that remote service. 16 figs.
Remote information service access system based on a client-server-service model
Konrad, Allan M.
1997-01-01
A local host computing system, a remote host computing system as connected by a network, and service functionalities: a human interface service functionality, a starter service functionality, and a desired utility service functionality, and a Client-Server-Service (CSS) model is imposed on each service functionality. In one embodiment, this results in nine logical components and three physical components (a local host, a remote host, and an intervening network), where two of the logical components are integrated into one Remote Object Client component, and that Remote Object Client component and the other seven logical components are deployed among the local host and remote host in a manner which eases compatibility and upgrade problems, and provides an illusion to a user that a desired utility service supported on a remote host resides locally on the user's local host, thereby providing ease of use and minimal software maintenance for users of that remote service.
[On-Orbit Multispectral Sensor Characterization Based on Spectral Tarps].
Li, Xin; Zhang, Li-ming; Chen, Hong-yao; Xu, Wei-wei
2016-03-01
The multispectral remote sensing technology has been a primary means in the research of biomass monitoring, climate change, disaster prediction and etc. The spectral sensitivity is essential in the quantitative analysis of remote sensing data. When the sensor is running in the space, it will be influenced by cosmic radiation, severe change of temperature, chemical molecular contamination, cosmic dust and etc. As a result, the spectral sensitivity will degrade by time, which has great implication on the accuracy and consistency of the physical measurements. This paper presents a characterization method of the degradation based on man-made spectral targets. Firstly, a degradation model is established in the paper. Then, combined with equivalent reflectance of spectral targets measured and inverted from image, the degradation characterization can be achieved. The simulation and on orbit experiment results showed that, using the proposed method, the change of center wavelength and band width can be monotored. The method proposed in the paper has great significance for improving the accuracy of long time series remote sensing data product and comprehensive utilization level of multi sensor data products.
NASA Astrophysics Data System (ADS)
Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan
2017-04-01
Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the underlying heterogeneities in spatial domain and finite Gaussian mixture models are adopted to quantitatively describe the statistical patterns in terms of center vectors and covariance matrices in feature space. A recently developed parallel stochastic clustering algorithm is adopted to implement the HMRF models and the Markov chain Monte Carlo based Bayesian inference. Certain spatial patterns such as buried paleo-river channels covered by shallow sediments are investigated as typical examples. The results indicate that the geometric patterns of the subsurface heterogeneity can be represented and quantitatively characterized by HMRF. Furthermore, the statistical patterns of the NDVI and the EMI data from the soil/vegetation-continuum system can be inferred and analyzed in a quantitative manner.
Innovative technology summary report: Houdini{trademark} I and II remotely operated vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
The US Department of Energy (DOE) is responsible for cleaning up and closing 273 large, aging, underground tanks the department has used for storing approximately 1 million gal of high- and low-level radioactive and mixed waste. The waste`s radioactivity precludes humans from working in the tanks. A remote-controlled retrieval method must be used. The Houdini robot addresses the need for vehicle-based, rugged, remote manipulation systems that can perform waste retrieval, characterization, and inspection tasks. Houdini-I was delivered to ORNL in September 1996, deployed in a cold test facility in November, and first deployed in the gunite tanks in June 1997.more » Since then, it has seen continuous (still on-going) service at ORNL, providing a critical role in the cleanup of two gunite tanks, W-3 and W-4, in the GAAT NTF. Houdini-I has proven rugged, capable of waste retrieval, and able to withstand high reaction force operations such as wall core sampling. It`s even able to operate while hanging, which was the case when Houdini was used to cut and remove cables and steel pipes hanging below manways in Tank W-3. Based upon the lessons learned at ORNL, Houdini`s design has been completely overhauled. A second generation system, Houdini-II, is now being built.« less
2014-06-12
interferometry and polarimetry . In the paper, the model was used to simulate SAR data for Mangrove (tropical) and Nezer (temperate) forests for P-band and...Scattering Model Applied to Radiometry, Interferometry, and Polarimetry at P- and L-Band. IEEE Transactions on Geoscience and Remote Sensing 44(4): 849
USDA-ARS?s Scientific Manuscript database
Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPA′s Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
A New Remote Health-Care System Based on Moving Robot Intended for the Elderly at Home
Zhou, Bing; Wu, Kaige; Wang, Jing; Chen, Gang; Ji, Bo; Liu, Siying
2018-01-01
Nowadays, due to the growing need for remote care and the constantly increasing popularity of mobile devices, a large amount of mobile applications for remote care support has been developed. Although mobile phones are very suitable for young people, there are still many problems related to remote health care of the elderly. Due to hearing loss or limited movements, it is difficult for the elderly to contact their families or doctors via real-time video call. In this paper, we introduce a new remote health-care system based on moving robots intended for the elderly at home. Since the proposed system is an online system, the elderly can contact their families and doctors quickly anytime and anywhere. Besides call, our system involves the accurate indoor object detection algorithms and automatic health data collection, which are not included in existing remote care systems. Therefore, the proposed system solves some challenging problems related to the elderly care. The experiment has shown that the proposed care system achieves excellent performance and provides good user experience. PMID:29599949
NASA Astrophysics Data System (ADS)
Tan, Songxin; Narayanan, Ram M.
2004-04-01
The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
Tropospheric Passive Remote Sensing
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr. (Editor)
1982-01-01
The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
Optical Power Transfer System for Powering a Remote Mobility System for Multiple Missions
NASA Technical Reports Server (NTRS)
Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)
2016-01-01
An optical power transfer system for powering a remote mobility system for multiple missions comprising a high power source and a chilling station connected to a laser source. The laser source transmits a high optical energy to a beam switch assembly via an optical fiber. The beam switch assembly is optically connected to actively cooled fiber spoolers. Docking stations are adapted for securing the fiber spoolers until alternatively ready for use by a remote mobility system. The remote mobility system is optically connected to the fiber spoolers and has a receiving port adapted for securing the fiber spoolers thereon. The fiber spooler transmits the optical energy to a power conversion system which converts the optical energy received to another usable form of energy. More than one power source may be used where the remote mobility system transfers from one source to another while maintaining an operational radius to each source.
Some emerging applications of lasers
NASA Astrophysics Data System (ADS)
Christensen, C. P.
1982-10-01
Applications of lasers in photochemistry, advanced instrumentation, and information storage are discussed. Laser microchemistry offers a number of new methods for altering the morphology of a solid surface with high spatial resolution. Recent experiments in material deposition, material removal, and alloying and doping are reviewed. A basic optical disk storage system is described and the problems faced by this application are discussed, in particular those pertaining to recording media. An advanced erasable system based on the magnetooptic effect is described. Applications of lasers for remote sensing are discussed, including various lidar systems, the use of laser-induced fluorescence for oil spill characterization and uranium exploration, and the use of differential absorption for detection of atmospheric constituents, temperature, and humidity.
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
NASA Technical Reports Server (NTRS)
Kingsbury, Brent K.
1986-01-01
Described is the implementation of a networked, UNIX based queueing system developed on contract for NASA. The system discussed supports both batch and device requests, and provides the facilities of remote queueing, request routing, remote status, queue access controls, batch request resource quota limits, and remote output return.
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Tanabe, N; Go, K; Sakurada, Y; Imasawa, M; Mabuchi, F; Chiba, T; Abe, K; Kashiwagi, K
2011-01-01
To develop a remote-operating slit lamp microscope system (the remote slit lamp) as the core for highly specialized ophthalmology diagnoses, and to compare the utility of this system with the conventional slit lamp microscope system (the conventional slit lamp) in making a diagnosis. The remote slit lamp system was developed. Three factors were evaluated in comparison to the conventional slit lamp. The ability to acquire skills was investigated using a task loading system among specialists and residents in ophthalmology. Participants repeated a task up to ten times and the time required for each task was analyzed. The consistency of the two systems in making a diagnosis was investigated using eyes of patients with ocular diseases as well as healthy volunteers. The remote slit lamp is composed of a patient's unit and ophthalmologist's unit connected by high-speed internet. The two units share images acquired by the slit lamp in addition to the images and voices of patients and ophthalmologists. Both ophthalmology specialists and residents could minimize the completion times after several trials. The remote slit lamp took more time than the conventional slit lamp. Both systems showed a high consistency in evaluations among eyes with healthy eyes or those with ocular diseases. The remote slit lamp has a similar diagnostic ability, but required more examination time in comparison to the conventional slit lamp. The currently developed remote slit lamp has the potential to be employed for tele-medicine purposes in the field of ophthalmology.
NASA Astrophysics Data System (ADS)
Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine
2017-04-01
The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The gathered data and obtained results form the basis for further modelling efforts which aim at better management of tailings storage facilities.
Remote Supervision and Control of Air Conditioning Systems in Different Modes
NASA Astrophysics Data System (ADS)
Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree
2018-01-01
In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.
Linking remote sensing, land cover and disease.
Curran, P J; Atkinson, P M; Foody, G M; Milton, E J
2000-01-01
Land cover is a critical variable in epidemiology and can be characterized remotely. A framework is used to describe both the links between land cover and radiation recorded in a remotely sensed image, and the links between land cover and the disease carried by vectors. The framework is then used to explore the issues involved when moving from remotely sensed imagery to land cover and then to vector density/disease risk. This exploration highlights the role of land cover; the need to develop a sound knowledge of each link in the predictive sequence; the problematic mismatch between the spatial units of the remotely sensed and epidemiological data and the challenges and opportunities posed by adding a temporal mismatch between the remotely sensed and epidemiological data. The paper concludes with a call for both greater understanding of the physical components of the proposed framework and the utilization of optimized statistical tools as prerequisites to progress in this field.
Hyperspectral Remote Sensing of Atmospheric Profiles from Satellites and Aircraft
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Harrison, F. W.; Revercomb, H. E.; Larar, A. M.; Huang, H. L.; Huang, B.
2001-01-01
A future hyperspectral resolution remote imaging and sounding system, called the GIFTS (Geostationary Imaging Fourier Transform Spectrometer), is described. An airborne system, which produces the type of hyperspectral resolution sounding data to be achieved with the GIFTS, has been flown on high altitude aircraft. Results from simulations and from the airborne measurements are presented to demonstrate the revolutionary remote sounding capabilities to be realized with future satellite hyperspectral remote imaging/sounding systems.
Karst aquifer characterization using geophysical remote sensing of dynamic recharge events
NASA Astrophysics Data System (ADS)
Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.
2017-12-01
Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and meteorologic data to map and characterize conduits and other features of the larger karst system and to monitor subsurface flow dynamics during recharge events.
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2012 CFR
2012-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2014 CFR
2014-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2013 CFR
2013-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.2 Scope. (a) The Act and the regulations in this... proposes to operate a private remote sensing space system, either directly or through an affiliate or... private remote sensing system. (b) In determining whether substantial connections exist with regard to a...
Fractal Characterization of Multitemporal Scaled Remote Sensing Data
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Lam, Nina Siu-Ngan; Qiu, Hong-lie
1998-01-01
Scale is an "innate" concept in geographic information systems. It is recognized as something that is intrinsic to the ingestion, storage, manipulation, analysis, modeling, and output of space and time data within a GIS purview, yet the relative meaning and ramifications of scaling spatial and temporal data from this perspective remain enigmatic. As GISs become more sophisticated as a product of more robust software and more powerful computer systems, there is an urgent need to examine the issue of scale, and its relationship to the whole body of spatiotemporal data, as imparted in GISS. Scale is fundamental to the characterization of geo-spatial data as represented in GISS, but we have relatively little insight on the effects of, or how to measure the effects of, scale in representing multiscaled data; i.e., data that are acquired in different formats (e.g., map, digital) and exist in varying spatial, temporal, and in the case of remote sensing data, radiometric, configurations. This is particularly true in the emerging era of Integrated GISs (IGIS), wherein spatial data in a variety of formats (e.g., raster, vector) are combined with multiscaled remote sensing data, capable of performing highly sophisticated space-time data analyses and modeling. Moreover, the complexities associated with the integration of multiscaled data sets in a multitude of formats are exacerbated by the confusion of what the term "scale" is from a multidisciplinary perspective; i.e., "scale" takes on significantly different meanings depending upon one's disciplinary background and spatial perspective which can lead to substantive confusion in the input, manipulation, analyses, and output of IGISs (Quattrochi, 1993). Hence, we must begin to look at the universality of scale and begin to develop the theory, methods, and techniques necessary to advance knowledge on the "Science of Scale" across a wide number of spatial disciplines that use GISs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, G.L.; Milosevic, M.
Diffuse reflectance (DR), emission (E), and external reflectance (ER) FT-IR spectroscopies are powerful techniques for materials characterization and surface analysis provided the spectrometer can address the appropriate location on a specimen under conditions for which the resulting measurement is meaningful. Evacuable cells and transfer optics have been developed for this purpose for coupon studies under laboratory conditions where a well defined location on a specimen can be monitored by DR, E, or ER while the environment, i. e., temperature and atmosphere, of the specimen is rigorously controlled. The Spectropus system of remote sampling accessories has been developed to make similarmore » measurements on large flat or convex objects in ambient air or in environmental chambers with sufficient ease that meaningful statistical comparisons of spectra obtained from many locations on a specimen or from many specimens can be made. These two general techniques are complimentary and allow for the results of controlled laboratory experiments to be readily extended to inspection operations. Evacuable cells designs for DR, for combined DR and E, and for 75{degrees}-ER with polarized light are described. Complimentary use of these cells with functionally similar remote sensing accessories is demonstrated with applications including the preparation of ceramic BeO surfaces for adhesive bonding (DR), the determination of the extent of cure and the oxidative degradation of epoxy adhesives and composites (DR and E), and the determination of the oxidation rate of uranium metal in air, oxygen, and water vapor (ER).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-01-01
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-12-31
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
NASA Astrophysics Data System (ADS)
Sierra-Calderon, A.; Rodriguez-Novelo, J. C.; Gamez-Aviles, E.; May-Alarcon, M.; Toral-Cruz, H.; Alvarez-Chavez, J. A.
2016-09-01
The spectral noise characteristic and relative intensity noise of an all fibre Sagnac interferometer system consisting of a 980nm pump source at 130mW maximum output power, a 980/1550nm wavelength division multiplexer, a 10m-piece of Erbium-doped fibre, a fibre Bragg grating (FBG) centered at 1.548um, an optical circulator at 1550nm and a 50/50 fibre coupler, were measured with an optical spectrum analyzer (OSA) for fine tuning for a range of temperature between 5 and 180 degrees Celsius in step of 1 degree Celsius. At the probing end, a high-bi piece of fibre and a Peltier were employed for temperature variation of the system. Spectral and temperature response of the noise reduction due to temperature variation was performed remotely using and Arduino micro-controller and a DS18B20 digital sensor, into a local area network. Full optical and thermal characterization of the system will be included in the presentation.
Tracking Avian Reservoirs of Arboviruses using Remote Sensing and Radiotelemetry
NASA Technical Reports Server (NTRS)
Beck, L.; Wright, S.; Schmidt, C.; Lobitz, B.; Bell, D.; Brown, D.; Brass, James A. (Technical Monitor)
2002-01-01
Encephalitis is caused by a virus that is transmitted by mosquitoes between mammalian hosts. The virus is closely related to the West Nile virus (WNV), which started in New York in 1999, and has since spread to 25 states. Like encephalitis, WNV is vectored by mosquitoes, and the primary hosts are birds; humans are accidental, or'dead-end' hosts. Very little is understood about the behavior of these bird populations, and how they intersect - both in time and in space - with mosquito populations. Exploring these relationships is the first step in developing models for encephalitis and WNV transmission risk. This project combines remotely sensed data with radiotelemetry to create a spatiotemporal map of encephalitis viral activity in bird and mosquito populations in the Sacramento Valley of California. Specifically, remote sensing (RS) and geographic information system (GIS) technologies were used to characterize habitats utilized by both avian viral reservoirs and the mosquitoes that vector encephalitis. Radiotelemetry and serosurveys (blood) were then used to spatially and temporally track the patterns of infection. The project uses Landsat ETM+ multitemporal satellite data to characterize habitats utilized by both birds and the mosquito vectors. Mist nets were used to sample members of individual flocks of blackbirds and cowbirds over a period of several months; these birds were then bled to assess their viral status, banded, and fitted with transmitters. Radiotelemetry was used to spatially and temporally track the distribution of banded birds and their associated flocks. The movement of these indicator flocks were compared with the location of remotely sensed (adult and larval) mosquito habitats to determine the intersection of bird's and vectors; this is key in understanding where and when transmission occurs from bird to bird, as well as from bird to mammal, via mosquito. The relationships found during the project are being used to generate a model of encephalitis transmission risk in California.
NDSI products system based on Hadoop platform
NASA Astrophysics Data System (ADS)
Zhou, Yan; Jiang, He; Yang, Xiaoxia; Geng, Erhui
2015-12-01
Snow is solid state of water resources on earth, and plays an important role in human life. Satellite remote sensing is significant in snow extraction with the advantages of cyclical, macro, comprehensiveness, objectivity, timeliness. With the continuous development of remote sensing technology, remote sensing data access to the trend of multiple platforms, multiple sensors and multiple perspectives. At the same time, in view of the remote sensing data of compute-intensive applications demand increase gradually. However, current the producing system of remote sensing products is in a serial mode, and this kind of production system is used for professional remote sensing researchers mostly, and production systems achieving automatic or semi-automatic production are relatively less. Facing massive remote sensing data, the traditional serial mode producing system with its low efficiency has been difficult to meet the requirements of mass data timely and efficient processing. In order to effectively improve the production efficiency of NDSI products, meet the demand of large-scale remote sensing data processed timely and efficiently, this paper build NDSI products production system based on Hadoop platform, and the system mainly includes the remote sensing image management module, NDSI production module, and system service module. Main research contents and results including: (1)The remote sensing image management module: includes image import and image metadata management two parts. Import mass basis IRS images and NDSI product images (the system performing the production task output) into HDFS file system; At the same time, read the corresponding orbit ranks number, maximum/minimum longitude and latitude, product date, HDFS storage path, Hadoop task ID (NDSI products), and other metadata information, and then create thumbnails, and unique ID number for each record distribution, import it into base/product image metadata database. (2)NDSI production module: includes the index calculation, production tasks submission and monitoring two parts. Read HDF images related to production task in the form of a byte stream, and use Beam library to parse image byte stream to the form of Product; Use MapReduce distributed framework to perform production tasks, at the same time monitoring task status; When the production task complete, calls remote sensing image management module to store NDSI products. (3)System service module: includes both image search and DNSI products download. To image metadata attributes described in JSON format, return to the image sequence ID existing in the HDFS file system; For the given MapReduce task ID, package several task output NDSI products into ZIP format file, and return to the download link (4)System evaluation: download massive remote sensing data and use the system to process it to get the NDSI products testing the performance, and the result shows that the system has high extendibility, strong fault tolerance, fast production speed, and the image processing results with high accuracy.
Remotely Distinguishing and Mapping Endogenic Water on the Moon
NASA Technical Reports Server (NTRS)
Klima, Rachel L.; Petro, Noah E.
2017-01-01
Water and/or hydroxyl detected remotely on the lunar surface originates from several sources: (i) comets and other exogenous debris; (ii) solar wind implantation; (iii) the lunar interior. While each of these sources is interesting in its own right, distinguishing among them is critical for testing hypotheses for the origin and evolution of the Moon and our Solar System. Existing spacecraft observations are not of high enough spectral resolution to uniquely characterize the bonding energies of the hydroxyl molecules that have been detected. Nevertheless, the spatial distribution and associations of H, OH- or H2O with specific lunar lithologies provide some insight into the origin of lunar hydrous materials. The global distribution of OH-/H2O as detected using infrared spectroscopic measurements from orbit is here examined, with particular focus on regional geological features that exhibit OH-/H2O absorption band strengths that differ from their immediate surroundings.
Customized altitude-azimuth mount for a raster-scanning Fourier transform spectrometer
NASA Astrophysics Data System (ADS)
Durrenberger, Jed E.; Gutman, William M.; Gammill, Troy D.; Grover, Dennis H.
1996-10-01
Applications of the Army Research Laboratory Mobile Atmospheric Spectrometer Remote Sensing Rover required development of a customized computer-controlled mount to satisfy a variety of requirements within a limited budget. The payload was designed to operate atop a military electronics shelter mounted on a 4-wheel drive truck to be above most atmospheric ground turbulence. Pointing orientation in altitude is limited by constraints imposed by use of a liquid nitrogen detector Dewar in the spectrometer. Stepper motor drives and control system are compatible with existing custom software used with other instrumentation for controlled incremental raster stepping. The altitude axis passes close to the center of gravity of the complete payload to minimize load eccentricity and drive torque requirements. Dovetail fixture mounting enables quick service and fine adjustment of balance to minimize stepper/gearbox drive backlash through the limited orientation range in altitude. Initial applications to characterization of remote gas plumes have been successful.
Remote detection of geobotanical anomalies associated with hydrocarbon microseepage
NASA Technical Reports Server (NTRS)
Rock, B. N.
1985-01-01
As part of the continuing study of the Lost River, West Virginia NASA/Geosat Test Case Site, an extensive soil gas survey of the site was conducted during the summer of 1983. This soil gas survey has identified an order of magnitude methane, ethane, propane, and butane anomaly that is precisely coincident with the linear maple anomaly reported previously. This and other maple anomalies were previously suggested to be indicative of anaerobic soil conditions associated with hydrocarbon microseepage. In vitro studies support the view that anomalous distributions of native tree species tolerant of anaerobic soil conditions may be useful indicators of methane microseepage in heavily vegetated areas of the United States characterized by deciduous forest cover. Remote sensing systems which allow discrimination and mapping of native tree species and/or species associations will provide the exploration community with a means of identifying vegetation distributional anomalies indicative of microseepage.
Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.; Weng, Qihao
2014-01-01
This chapter describes emerging methods for using satellite imagery across temporal and spatial scales using a case study approach to illustrate some of the opportunities now available for combining observations across scales. It explores the use of multiplatform sensor systems to characterize ecological change, as exemplified by efforts to scale the effects of a biocontrol insect (the leaf beetle Diorhabda carinulata) on the phenology and water use of Tamarix shrubs (Tamarix ramosissima and related species and hybrids) targeted for removal on western U.S. rivers, from the level of individual leaves to the regional level of measurement. Finally, the chapter summarizes the lessons learned and emphasize the need for ground data to calibrate and validate remote sensing data and the types of errors inherent in scaling point data over wide areas, illustrated with research on evapotranspiration (ET) of Tamarix using a wide range of ground measurement and remote sensing methods.
Remote measurement of surface roughness, surface reflectance, and body reflectance with LiDAR.
Li, Xiaolu; Liang, Yu
2015-10-20
Light detection and ranging (LiDAR) intensity data are attracting increasing attention because of the great potential for use of such data in a variety of remote sensing applications. To fully investigate the data potential for target classification and identification, we carried out a series of experiments with typical urban building materials and employed our reconstructed built-in-lab LiDAR system. Received intensity data were analyzed on the basis of the derived bidirectional reflectance distribution function (BRDF) model and the established integration method. With an improved fitting algorithm, parameters involved in the BRDF model can be obtained to depict the surface characteristics. One of these parameters related to surface roughness was converted to a most used roughness parameter, the arithmetical mean deviation of the roughness profile (Ra), which can be used to validate the feasibility of the BRDF model in surface characterizations and performance evaluations.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Analysis of laser fluorosensor systems for remote algae detection and quantification
NASA Technical Reports Server (NTRS)
Browell, E. V.
1977-01-01
The development and performance of single- and multiple-wavelength laser fluorosensor systems for use in the remote detection and quantification of algae are discussed. The appropriate equation for the fluorescence power received by a laser fluorosensor system is derived in detail. Experimental development of a single wavelength system and a four wavelength system, which selectively excites the algae contained in the four primary algal color groups, is reviewed, and test results are presented. A comprehensive error analysis is reported which evaluates the uncertainty in the remote determination of the chlorophyll a concentration contained in algae by single- and multiple-wavelength laser fluorosensor systems. Results of the error analysis indicate that the remote quantification of chlorophyll a by a laser fluorosensor system requires optimum excitation wavelength(s), remote measurement of marine attenuation coefficients, and supplemental instrumentation to reduce uncertainties in the algal fluorescence cross sections.
An intelligent remote monitoring system for artificial heart.
Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G
2005-12-01
A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.
Remote video assessment for missile launch facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, G.G.; Stewart, W.A.
1995-07-01
The widely dispersed, unmanned launch facilities (LFs) for land-based ICBMs (intercontinental ballistic missiles) currently do not have visual assessment capability for existing intrusion alarms. The security response force currently must assess each alarm on-site. Remote assessment will enhance manpower, safety, and security efforts. Sandia National Laboratories was tasked by the USAF Electronic Systems Center to research, recommend, and demonstrate a cost-effective remote video assessment capability at missile LFs. The project`s charter was to provide: system concepts; market survey analysis; technology search recommendations; and operational hardware demonstrations for remote video assessment from a missile LF to a remote security center viamore » a cost-effective transmission medium and without using visible, on-site lighting. The technical challenges of this project were to: analyze various video transmission media and emphasize using the existing missile system copper line which can be as long as 30 miles; accentuate and extremely low-cost system because of the many sites requiring system installation; integrate the video assessment system with the current LF alarm system; and provide video assessment at the remote sites with non-visible lighting.« less
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Ryan, Robert; Pagnutti, Mary; Baldridge, Braxton; Roylance, Spencer; Snyder, Greg; Lee, George; Stanley, Tom
2002-01-01
An overview of the Joint Agency Commercial Imagery Evalation (JACIE) team is presented. JACIE, composed of the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS), was formed to leverage government agencies' capabilities for the characterization of commercial remote sensing data. Each JACIE agency purchases, or plans to purchase, commercial imagery to support its research and applications. It is critical that the data be assessed for its accuracy and utility. Through JACIE, NASA, NIMA, and USGS jointly characterized image products from Space Imaging's IKONOS satellite. Each JACIE agency performed an aspect of the characterization based on its expertise. NASA and its university partners performed a system characterization focusing on radiometric calibration, geopositional accuracy, and spatial resolution assessment; NIMA performed image interpretability and feature extraction evaluations; and USGS assessed geopositional accuracy of several IKONOS products. The JACIE team purchased IKONOS imagery of several study sites to perform the assessments and presented results at an industry-government workshop. Future plans for JACIE include the characterization of DigitalGlobe's QuickBird-2 image products.
NASA Astrophysics Data System (ADS)
Brinson, James R.
2017-10-01
This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.
NASA Technical Reports Server (NTRS)
Wang, Menghua
2003-01-01
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.
Magnetic steering control of multi-cellular bio-hybrid microswimmers.
Carlsen, Rika Wright; Edwards, Matthew R; Zhuang, Jiang; Pacoret, Cecile; Sitti, Metin
2014-10-07
Bio-hybrid devices, which integrate biological cells with synthetic components, have opened a new path in miniaturized systems with the potential to provide actuation and control for systems down to a few microns in size. Here, we address the challenge of remotely controlling bio-hybrid microswimmers propelled by multiple bacterial cells. These devices have been proposed as a viable method for targeted drug delivery but have also been shown to exhibit stochastic motion. We demonstrate a method of remote magnetic control that significantly reduces the stochasticity of the motion, enabling steering control. The demonstrated microswimmers consist of multiple Serratia marcescens (S. marcescens) bacteria attached to a 6 μm-diameter superparamagnetic bead. We characterize their motion and define the parameters governing their controllability. We show that the microswimmers can be controlled along two-dimensional (2-D) trajectories using weak magnetic fields (≤10 mT) and can achieve 2-D swimming speeds up to 7.3 μm s(-1). This magnetic steering approach can be integrated with sensory-based steering in future work, enabling new control strategies for bio-hybrid microsystems.
NASA Astrophysics Data System (ADS)
Yousefi Lalimi, F.; Silvestri, S.; Moore, L. J.; Marani, M.
2017-01-01
Vegetation plays a key role in stabilizing coastal dunes and barrier islands by mediating sand transport, deposition, and erosion. Dune topography, in turn, affects vegetation growth, by determining local environmental conditions. However, our understanding of vegetation and dune topography as coupled and spatially extensive dynamical systems is limited. Here we develop and use remote sensing analyses to quantitatively characterize coastal dune ecotopographic patterns by simultaneously identifying the spatial distribution of topographic elevation and vegetation biomass. Lidar-derived leaf area index and hyperspectral-derived normalized difference vegetation index patterns yield vegetation distributions at the whole-system scale which are in agreement with each other and with field observations. Lidar-derived concurrent quantifications of biomass and topography show that plants more favorably develop on the landward side of the foredune crest and that the foredune crestline marks the position of an ecotone, which is interpreted as the result of a sheltering effect sharply changing local environmental conditions. We conclude that the position of the foredune crestline is a chief ecomorphodynamic feature resulting from the two-way interaction between vegetation and topography.
NASA Astrophysics Data System (ADS)
Brownlow, R.; Lowry, D.; Thomas, R. M.; Fisher, R. E.; France, J. L.; Cain, M.; Richardson, T. S.; Greatwood, C.; Freer, J.; Pyle, J. A.; MacKenzie, A. R.; Nisbet, E. G.
2016-11-01
Ascension Island is a remote South Atlantic equatorial site, ideal for monitoring tropical background CH4. In September 2014 and July 2015, octocopters were used to collect air samples in Tedlar bags from different heights above and below the well-defined Trade Wind Inversion (TWI), sampling a maximum altitude of 2700 m above mean sea level. Sampling captured both remote air in the marine boundary layer below the TWI and also air masses above the TWI that had been lofted by convective systems in the African tropics. Air above the TWI was characterized by higher CH4, but no distinct shift in δ13C was observed compared to the air below. Back trajectories indicate that lofted CH4 emissions from Southern Hemisphere Africa have bulk δ13CCH4 signatures similar to background, suggesting mixed emissions from wetlands, agriculture, and biomass burning. The campaigns illustrate the usefulness of unmanned aerial system sampling and Ascension's value for atmospheric measurement in an understudied region.
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2012 CFR
2012-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2011 CFR
2011-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
Code of Federal Regulations, 2014 CFR
2014-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Prohibitions § 960.13 Prohibitions. It is unlawful for... subsidiary or affiliate to: (a) Operate a private remote sensing space system in such a manner as to...) Operate a private remote sensing space system without possession of a valid license issued under the Act...
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Reliability analysis of airship remote sensing system
NASA Astrophysics Data System (ADS)
Qin, Jun
1998-08-01
Airship Remote Sensing System (ARSS) for obtain the dynamic or real time images in the remote sensing of the catastrophe and the environment, is a mixed complex system. Its sensor platform is a remote control airship. The achievement of a remote sensing mission depends on a series of factors. For this reason, it is very important for us to analyze reliability of ARSS. In first place, the system model was simplified form multi-stage system to two-state system on the basis of the result of the failure mode and effect analysis and the failure tree failure mode effect and criticality analysis. The failure tree was created after analyzing all factors and their interrelations. This failure tree includes four branches, e.g. engine subsystem, remote control subsystem, airship construction subsystem, flying metrology and climate subsystem. By way of failure tree analysis and basic-events classing, the weak links were discovered. The result of test running shown no difference in comparison with theory analysis. In accordance with the above conclusions, a plan of the reliability growth and reliability maintenance were posed. System's reliability are raised from 89 percent to 92 percent with the reformation of the man-machine interactive interface, the augmentation of the secondary better-groupie and the secondary remote control equipment.
Multiple channel optical data acquisition system
Fasching, G.E.; Goff, D.R.
1985-02-22
A multiple channel optical data acquisition system is provided in which a plurality of remote sensors monitoring specific process variable are interrogated by means of a single optical fiber connecting the remote station/sensors to a base station. The remote station/sensors derive all power from light transmitted through the fiber from the base station. Each station/sensor is individually accessed by means of a light modulated address code sent over the fiber. The remote station/sensors use a single light emitting diode to both send and receive light signals to communicate with the base station and provide power for the remote station. The system described can power at least 100 remote station/sensors over an optical fiber one mile in length.
NASA Astrophysics Data System (ADS)
Pastick, N. J.; Jorgenson, T.; Swanson, D. K.; Jorgenson, J. C.; Goetz, S. J.; Jones, B. M.; Wylie, B. K.; Knight, J. F.; Minsley, B. J.; Helene, G.
2017-12-01
Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that have significant consequences for socio-environmental systems. With the heightened susceptibility of arctic and boreal landscapes to change, the characterization of landscape dynamics and the identification of environmental drivers of change across northern high latitudes is critical. Here, we characterize the historical sensitivity of Alaska's ecosystems to natural and anthropogenic disturbances using expert knowledge, remote sensing data, spatiotemporal analyses, and modeling. Time-series analysis of moderate- and high-resolution imagery was used to characterize landscape dynamics across Alaska and along randomly sampled change-detection grids (n=312). Expert interpretations of ecological and geomorphological changes were made at each grid using historical air photos and high-resolution satellite imagery (1980s, 2000s, 2010s), and corroborate land surface greening, browning, and wetness/moisture trends derived from peak-growing season (July 1st - August 31st) Landsat imagery acquired from 1984 to 2015. Spectral change metrics, climatic data, maps of biophysical characteristics, and interpretations of change were incorporated into a modeling framework for mapping and understanding change across Alaska. At the landscape scale, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is associated with recent warming-induced shrub expansion and vegetation growth. Significant browning trends in interior Alaska were largely the result of recent wildland fires, but browning trends are also driven by increases in evaporative demand and surface water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity were also associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, and glacial retreat, as well as lake infilling and drainage events. This study documents historical landscape dynamics and drivers of change, which is important for understanding potential future trajectories of change and for identifying areas most likely vulnerable to change.
Spatiotemporal remote sensing of ecosystem change and causation across Alaska.
Pastick, Neal J; Jorgenson, M Torre; Goetz, Scott J; Jones, Benjamin M; Wylie, Bruce K; Minsley, Burke J; Genet, Hélène; Knight, Joseph F; Swanson, David K; Jorgenson, Janet C
2018-05-28
Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km 2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high-latitude regions. © 2018 John Wiley & Sons Ltd.
VHP - An environment for the remote visualization of heuristic processes
NASA Technical Reports Server (NTRS)
Crawford, Stuart L.; Leiner, Barry M.
1991-01-01
A software system called VHP is introduced which permits the visualization of heuristic algorithms on both resident and remote hardware platforms. The VHP is based on the DCF tool for interprocess communication and is applicable to remote algorithms which can be on different types of hardware and in languages other than VHP. The VHP system is of particular interest to systems in which the visualization of remote processes is required such as robotics for telescience applications.
Telepresence in neurosurgery: the integrated remote neurosurgical system.
Kassell, N F; Downs, J H; Graves, B S
1997-01-01
This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.
Remote telescope control of site testing with ASCOM
NASA Astrophysics Data System (ADS)
Ji, Kaifan; Liang, Bo; Peng, Yajie; Wang, Feng
2012-04-01
Remote telescope control is significant important for the astronomical site testing. Basing on ASCOM standard, a prototype of remote telescope control system has been implemented. In this paper, the details of the system design, both server end and client end, are introduced. We tested the prototype on a narrow-band dial-up networking and controlled a real remote telescope successfully. The result indicates that it is effective to control remote telescope and other devices with ASCOM.
Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument
NASA Technical Reports Server (NTRS)
Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.;
2011-01-01
The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing, planned for early March.
This report details a measurement campaign conducted using the Radial Plume Mapping (RPM) method and optical remote sensing technologies to characterize fugitive emissions. This work was funded by EPAs Monitoring and Measurement for the 21st Century Initiative, or 21M2. The si...
Remote sensing techniques to assess active fire characteristics and post-fire effects
Leigh B. Lentile; Zachary A. Holden; Alistair M. S. Smith; Michael J. Falkowski; Andrew T. Hudak; Penelope Morgan; Sarah A. Lewis; Paul E. Gessler; Nate C. Benson
2006-01-01
Space and airborne sensors have been used to map area burned, assess characteristics of active fires, and characterize post-fire ecological effects. Confusion about fire intensity, fire severity, burn severity, and related terms can result in the potential misuse of the inferred information by land managers and remote sensing practitioners who require unambiguous...
Consequences of fire on aquatic nitrate and phosphate dynamics in Yellowstone National Park
James A. Brass; Vincent G. Ambrosia; Philip J. Riggan; Paul D. Sebesta
1996-01-01
Airborne remotely sensed data were collected and analyzed during and following the 1988 Greater Yellowstone Ecosystem (GYE) fires in order to characterize the fire front movements, burn intensities and various vegetative components of selected watersheds. Remotely sensed data were used to categorize the burn intensities as: severely burned, moderately burned, mixed...
The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).
Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.
Tavallaei, M A; Lavdas, M K; Gelman, D; Drangova, M
2016-08-01
To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.
Stratocumulus Precipitation and Entrainment Experiment (SPEE) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Ghate, Virendra; CADeddu, Maria
2016-06-01
The scientific focus of this project was to examine precipitation and entrainment processes in marine stratocumulus clouds. The entrainment studies focused on characterizing cloud turbulence at cloud top using Doppler cloud radar observations. The precipitation studies focused on characterizing the precipitation and the macroscopic properties (cloud thickness, and liquid water path) of the clouds. This project will contribute to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s overall objective of providing the remote-sensing observations needed to improve the representation of key cloud processes in climate models. It will be of direct relevance to the componentsmore » of ARM dealing with entrainment and precipitation processes in stratiform clouds. Further, the radar observing techniques that will be used in this study were developed using ARM Southern Great Plains (SGP) facility observations under Atmospheric System Research (ASR) support. The observing systems operating automatously from a site located just north of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) aircraft hangar in Marina, California during the period of 1 May to 4 November 2015 included: 1. Microwave radiometer: ARM Microwave Radiometer, 3-Channel (MWR3C) with channels centered at 23.834, 30, and 89 GHz; supported by Dr. Maria Cadeddu. 2. Cloud Radar: CIRPAS 95 GHz Frequency Modulated Continuous Wave (FMCW) Cloud Radar (Centroid Frequency Chirp Rate [CFCR]); operations overseen by Drs. Ghate and Albrecht. 3. Ceilometer: Vaisala CK-14; operations overseen by Drs. Ghate and Albrecht.« less
USDA-ARS?s Scientific Manuscript database
Unmanned platforms have become increasingly more common in recent years for acquiring remotely sensed data. These aircraft are referred to as Unmanned Airborne Vehicles (UAV), Remotely Piloted Aircraft (RPA), Remotely Piloted Vehicles (RPV), or Unmanned Aircraft Systems (UAS), the official term used...
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
VisibleWind: wind profile measurements at low altitude
NASA Astrophysics Data System (ADS)
Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell
2009-09-01
VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.
Remote sensor support requirements for planetary missions
NASA Technical Reports Server (NTRS)
Weddell, J. B.; Wheeler, A. E.
1971-01-01
The study approach, methods, results, and conclusions of remote sensor support requirements for planetary missions are summarized. Major efforts were made to (1) establish the scientific and engineering knowledge and observation requirements for planetary exploration in the 1975 to 1985 period; (2) define the state of the art and expected development of instrument systems appropriate for sensing planetary environments; (3) establish scaling laws relating performance and support requirements of candidate remote sensor systems; (4) establish fundamental remote sensor system capabilities, limitations, and support requirements during encounter and other dynamical conditions for specific missions; and (5) construct families of candidate remote sensors compatible with selected missions. It was recommended that these data be integrated with earlier results to enhance utility, and that more restrictions be placed on the system.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
Hyperspectral target detection using manifold learning and multiple target spectra
Ziemann, Amanda K.; Theiler, James; Messinger, David W.
2016-03-31
Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less
Remote-handled/special case TRU waste characterization summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.A.
1984-03-30
TRU wastes are those (other than high level waste) contaminated with specified quantities of certain alpha-emitting radionuclides of long half-life and high specific radiotoxicity. TRU waste is defined as /sup 226/Ra isotopic sources and those other materials that, without regard to source or form, are contaminated with transuranic elements with half-lives greater than 20 years, and have TRU alpha contamination greater than 100 nCi/g. RH TRU waste has high beta and gamma radiation levels, up to 30,000 R/hr, and thermal output may be a few hundred watts per container. The radiation levels in most of this remotely handled (RH) TRUmore » waste, however, are below 100 R/hr. Remote-handled wastes are stored at Los Alamos, Hanford, Oak Ridge, and the Idaho National Engineering Laboratory. This report presents a site by site discussion of RH waste handling, placement, and container data. This is followed by a series of data tables that were compiled in the TRU Waste Systems Office. These tables are a compendium of data that are the most up to date and accurate data available today. 10 tables.« less
The Joint Agency Commercial Imagery Evaluation Team and Product Characterization Approach
NASA Technical Reports Server (NTRS)
Zanoni, Vicki; Pagnutti, Mary; Ryan, Robert E.; Snyder, Greg; Lehman, William; Roylance, Spencer
2003-01-01
The Joint Agency Commercial Imagery Evaluation (JACIE) team is a collaborative interagency group focused on the characterization of commercial remote sensing data products. The team members - the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA), and the U.S. Geological Survey (USGS) - each have a vested interest in the purchase and use of commercial imagery to support government research and operational applications. For both research and applications, commercial products must be well characterized for precision, accuracy, and repeatability. Since commercial systems are built and operated with no government insight or oversight, the JACIE team provides an independent product characterization of delivered image and image-derived end products. End product characterization differs from the systems calibration approach that is typically used with government systems, where detailed system design information is available. The product characterization approach addresses three primary areas of product performance: geopositional accuracy, image quality, and radiometric accuracy. The JACIE team utilizes well-characterized test sites to support characterization activities. To characterize geopositional accuracy, the team utilizes sites containing several "photo-identifiable" targets and compares their precisely known locations with those defined by the commercial image product. In the area of image quality, spatial response is characterized using edge targets and pulse targets to measure edge response and to estimate image modulation transfer function. Additionally, imagery is also characterized using the National Imagery Interpretability Rating Scale, a means of quantifying the ability to identify certain targets (e.g., rail-cars, airplanes) within an image product. Radiometric accuracy is characterized using reflectance-based vicarious calibration methods at several uniform sites. Each JACIE agency performs an aspect of product characterization based on its area of expertise, thus minimizing duplication of effort. The JACIE team collaborated to perform comprehensive characterization of products from Space Imaging Inc.'s IKONOS satellite and from DigitalGlobe's QuickBird satellite and is currently characterizing products from OrbImage s OrbView-3. JACIE assessments have resulted in several improvements to commercial image product quality and have enhanced working relationships between government and industry. Assessment results are presented at an annual JACIE High Spatial Resolution Commercial Imagery Workshop.
[Development of Biliary Contrast Agents Remote Pushing Device].
Zhu, Haoyang; Dong, Dinghui; Luo, Yu; Ren, Fenggang; Zhang, Jing; Tan, Wenjun; Shi, Aihua; Hu, Liangshuo; Wu, Rongqian; Lyu, Yi
2018-01-30
A biliary contrast agents pushing device, including a syringe pushing system and a remote controller is introduced. The syringe pushing system comprises an injector card slot, a support platform and an injection bolus fader. A 20 mL syringe can be fitted on the syringe pushing system and kept with the ground about 30 degree. This system can perform air bubble pumping back and contrast agents bolus injection as well as speed adjustment. Remote controller is an infrared remote control which can start and stop the syringe pushing system. With this device, the remote controlled cholangiography technology can be achieved, which can not only protect doctors from X-ray radiation but also improve the traditional T-tube cholangiography and the contrast effect, reduce postoperative complications in patients as well. The application of this device will improve the current diagnosis and treatment system, the device will benefit the majority of doctors and patients.
Remote vacuum or pressure sealing device and method for critical isolated systems
Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA
2012-07-10
A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.
1984-08-01
and FPS-60 -’ vacuum-tube radars. There will be remote control interface units ( RCIU ) for tube-type radars, and an ARSR-3 relocation and RIH package...Facility RCE Remote Control Equipment; Radio Control Equipment RCIU Remote Control Interface Units RCO Remote Communications Outlet RDCC Research
Natural Resource Information System. Remote Sensing Studies.
ERIC Educational Resources Information Center
Leachtenauer, J.; And Others
A major design objective of the Natural Resource Information System entailed the use of remote sensing data as an input to the system. Potential applications of remote sensing data were therefore reviewed and available imagery interpreted to provide input to a demonstration data base. A literature review was conducted to determine the types and…
Feasibility study ASCS remote sensing/compliance determination system
NASA Technical Reports Server (NTRS)
Duggan, I. E.; Minter, T. C., Jr.; Moore, B. H.; Nosworthy, C. T.
1973-01-01
A short-term technical study was performed by the MSC Earth Observations Division to determine the feasibility of the proposed Agricultural Stabilization and Conservation Service Automatic Remote Sensing/Compliance Determination System. For the study, the term automatic was interpreted as applying to an automated remote-sensing system that includes data acquisition, processing, and management.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
Remote control of microcontroller-based infant stimulating system.
Burunkaya, M; Güler, I
2000-04-01
In this paper, a remote-controlled and microcontroller-based cradle is designed and constructed. This system is also called Remote Control of Microcontroller-Based Infant Stimulation System or the RECOMBIS System. Cradle is an infant stimulating system that provides relaxation and sleeping for the baby. RECOMBIS system is designed for healthy full-term newborns to provide safe infant care and provide relaxation and sleeping for the baby. A microcontroller-based electronic circuit was designed and implemented for RECOMBIS system. Electromagnets were controlled by 8-bit PIC16F84 microcontroller, which is programmed using MPASM package. The system works by entering preset values from the keyboard, or pulse code modulated radio frequency remote control system. The control of the system and the motion range were tested. The test results showed that the system provided a good performance.
Joint Agency Commercial Imagery Evaluation (JACIE)
Jucht, Carrie
2010-01-01
Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.
Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991
NASA Technical Reports Server (NTRS)
Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)
1991-01-01
The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.
NASA Technical Reports Server (NTRS)
Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.
1991-01-01
This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
Porubsky, W.P.; Weston, N.B.; Moore, W.S.; Ruppel, C.; Joye, S.B.
2014-01-01
Multiple techniques, including thermal infrared aerial remote sensing, geophysical and geological data, geochemical characterization and radium isotopes, were used to evaluate the role of groundwater as a source of dissolved nutrients, carbon, and trace gases to the Okatee River estuary, South Carolina. Thermal infrared aerial remote sensing surveys illustrated the presence of multiple submarine groundwater discharge sites in Okatee headwaters. Significant relationships were observed between groundwater geochemical constituents and 226Ra activity in groundwater with higher 226Ra activity correlated to higher concentrations of organics, dissolved inorganic carbon, nutrients, and trace gases to the Okatee system. A system-level radium mass balance confirmed a substantial submarine groundwater discharge contribution of these constituents to the Okatee River. Diffusive benthic flux measurements and potential denitrification rate assays tracked the fate of constituents in creek bank sediments. Diffusive benthic fluxes were substantially lower than calculated radium-based submarine groundwater discharge inputs, showing that advection of groundwater-derived nutrients dominated fluxes in the system. While a considerable potential for denitrification in tidal creek bank sediments was noted, in situ denitrification rates were nitrate-limited, making intertidal sediments an inefficient nitrogen sink in this system. Groundwater geochemical data indicated significant differences in groundwater chemical composition and radium activity ratios between the eastern and western sides of the river; these likely arose from the distinct hydrological regimes observed in each area. Groundwater from the western side of the Okatee headwaters was characterized by higher concentrations of dissolved organic and inorganic carbon, dissolved organic nitrogen, inorganic nutrients and reduced metabolites and trace gases, i.e. methane and nitrous oxide, than groundwater from the eastern side. Differences in microbial sulfate reduction, organic matter supply, and/or groundwater residence time likely contributed to this pattern. The contrasting features of the east and west sub-marsh zones highlight the need for multiple techniques for characterization of submarine groundwater discharge sources and the impact of biogeochemical processes on the delivery of nutrients and carbon to coastal areas via submarine groundwater discharge.
Development and characterization analysis of a radar polarimeter
NASA Technical Reports Server (NTRS)
Bong, S.; Blanchard, A. J.
1983-01-01
The interaction of electromagnetic waves with natural earth surface was of interest for many years. A particular area of interest in controlled remote sensing experiments is the phenomena of depolarization. The development stages of the radar system are documented. Also included are the laboratory procedures which provides some information about the specifications of the system. The radar system developed is termed the Radar Polarimeter System. A better insight of the operation of the RPS in terms of the newly developed technique--synthetic aperture radar system is provided. System performance in tems of radar cross section, in terms of power, and in terms of signal to noise ratio are also provided. In summary, an overview of the RPS in terms of its operation and design as well as how it will perform in the field is provided.
Science Drivers for Polarimetric Exploration of the Solar System and Beyond
NASA Astrophysics Data System (ADS)
Yanamandra-Fisher, P. A.
2012-12-01
Remote sensing and robotic exploration of our solar system and exoplanetary systems can be enhanced with the inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy. Since all objects have unique polarimetric signatures, like fingerprints, much can be learned about the scattering object. I highlight some of the science drivers that will benefit from polarimteric exploration. In our own dynamic solar system, the study of linear polarization of reflected light by solar system objects (planetary atmospheres, satellites, rings systems, comets, asteroids, dust, etc.) provides insight into the scattering characteristics of aerosols and hazes in atmospheres and surficial properties of atmosphereless objects. Well-known examples are the identification of spherical droplets of sulphuric acid in the atmosphere of Venus, and dust storms and ice clouds on Mars. In the case of outer planets, although the phase angles available from earth to observe are limited to a very narrow range, measurements of linear limb polarization characterizes the variation of aerosol properties across the planetary disk. Since methane is present in all giant planets' atmospheres, limb measurements of linear polarization in various methane bands allow a direct measurement of the vertical distribution of aerosol and haze particles, complementary to direct imaging and spectroscopy. Linear polarization of atmosphereless objects (the Moon, planetary satellites and asteroids) are diagnostic of surface texture, and demonstrate that most of them have their surfaces covered with a regolith of fine material, function of particle size and packing density. The recent discovery of multi-planetary systems (or multis) by Kepler mission, illustrate that a variety of planetary systems exist beyond our solar system. Current indirect techniques such as radial velocity, pulsar timing, and transits identify exoplanetary candidates and identification of atmospheric species. Direct detection and characterization of exoplanets can be achieved by measurement of linear polarization of reflected starlight by exoplanets. Our solar system, therefore, provides a dynamic laboratory and template to detect and characterize exoplanetary systems. Search for habitability elsewhere in the solar and exoplanetary systems is another important science driver. Chirality or handedness is a property of molecules that exhibit mirror-image symmetry (similar to right and left hands). Right- or left-chirality is characterized by circularly polarized light. All known biological activity and all life forms on earth are chiral and pre-dominantly left-handed. This property can be investigated by measuring the circular polarization of various species on planetary bodies. The search for the emergence of habitability in the solar system and exoplanetary systems can be aided by the measurement of circular polarization of comets; planetary and satellites' atmospheres and asteroids. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for ground-based facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.
Characterization of air pollution in Mexico City by remote sensing
NASA Astrophysics Data System (ADS)
Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang
2014-05-01
Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.
Gritzo, R.E.
1985-09-12
A remote reset circuit acts as a stand-along monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients. 4 figs.
Remote sensing of vegetation fires and its contribution to a fire management information system
Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux
2004-01-01
In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...
Gritzo, Russell E.
1987-01-01
A remote reset circuit acts as a stand-alone monitor and controller by clocking in each character sent by a terminal to a computer and comparing it to a given reference character. When a match occurs, the remote reset circuit activates the system's hardware reset line. The remote reset circuit is hardware based centered around monostable multivibrators and is unaffected by system crashes, partial serial transmissions, or power supply transients.
Li, Yunji; Wu, QingE; Peng, Li
2018-01-23
In this paper, a synthesized design of fault-detection filter and fault estimator is considered for a class of discrete-time stochastic systems in the framework of event-triggered transmission scheme subject to unknown disturbances and deception attacks. A random variable obeying the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to disturbances, a coordinate transformation approach is exploited. This approach can transform the considered system into two subsystems and the unknown disturbances are removed from one of the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator. An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault estimator performance. Furthermore, the corresponding event-triggered sensor data transmission scheme is also presented for improving working-life of the wireless sensor node when measurement information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the real-time capacity of fault-detection is guaranteed when the event condition is triggered.
Material Characterization using Passive Multispectral Polarimetric Imagery
2013-03-01
least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote
NASA Astrophysics Data System (ADS)
Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france
2017-04-01
In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predictions are given. Preliminary results suggest that remote sensing and present weather sensors based observations of cloud SD regions can be used to describe micro and macro physical characteristics of the icing conditions. The model based icing intensity prediction reasonably agreed with the PIREPs and MWR observations.
Wireless Instrumentation System and Power Management Scheme Therefore
NASA Technical Reports Server (NTRS)
Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)
2007-01-01
A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.
NASA Technical Reports Server (NTRS)
Edwards, J. W.; Deets, D. A.
1975-01-01
A cost-effective approach to flight testing advanced control concepts with remotely piloted vehicles is described. The approach utilizes a ground based digital computer coupled to the remotely piloted vehicle's motion sensors and control surface actuators through telemetry links to provide high bandwidth feedback control. The system was applied to the control of an unmanned 3/8-scale model of the F-15 airplane. The model was remotely augmented; that is, the F-15 mechanical and control augmentation flight control systems were simulated by the ground-based computer, rather than being in the vehicle itself. The results of flight tests of the model at high angles of attack are discussed.
NASA Technical Reports Server (NTRS)
Perry, J. C. (Inventor)
1980-01-01
A system for displaying at a remote station data generated at a central station and for powering the remote station from the central station is presented. A power signal is generated at the central station and time multiplexed with the data and then transmitted to the remote station. An energy storage device at the remote station is responsive to the transmitted power signal to provide energizing power for the circuits at the remote station during the time interval data is being transmitted to the remote station. Energizing power for the circuits at the remote station is provided by the power signal itself during the time this signal is transmitted. Preferably the energy storage device is a capacitor which is charged by the power signal during the time the power is transmitted and is slightly discharged during the time the data is transmitted to energize the circuits at the remote station.
Wireless Orbiter Hang-Angle Inclinometer System
NASA Technical Reports Server (NTRS)
Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman
2011-01-01
A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.
Study on Remote Monitoring System of Crossing and Spanning Tangent Tower
NASA Astrophysics Data System (ADS)
Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan
2017-05-01
In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.
MOEMs devices for future astronomical instrumentation in space
NASA Astrophysics Data System (ADS)
Zamkotsian, Frédéric; Liotard, Arnaud; Lanzoni, Patrick; ElHadi, Kacem; Waldis, Severin; Noell, Wilfried; de Rooij, Nico; Conedera, Veronique; Fabre, Norbert; Muratet, Sylvaine; Camon, Henri
2017-11-01
Based on the micro-electronics fabrication process, Micro-Opto-Electro-Mechanical Systems (MOEMS) are under study in order to be integrated in next-generation astronomical instruments for ground-based and space telescopes. Their main advantages are their compactness, scalability, specific task customization using elementary building blocks, and remote control. At Laboratoire d'Astrophysique de Marseille, we are engaged since several years in the design, realization and characterization of programmable slit masks for multi-object spectroscopy and micro-deformable mirrors for wavefront correction. First prototypes have been developed and show results matching with the requirements.
2003-01-22
ProVision Technologies, a NASA research partnership center at Sternis Space Center in Mississippi, has developed a new hyperspectral imaging (HSI) system that is much smaller than the original large units used aboard remote sensing aircraft and satellites. The new apparatus is about the size of a breadbox. Health-related applications of HSI include non-invasive analysis of human skin to characterize wounds and wound healing rates (especially important for space travelers who heal more slowly), determining if burns are first-, second-, or third degree (rather than painful punch biopsies). The work is sponsored under NASA's Space Product Development (SPD) program.
Wind turbine wake measurement in complex terrain
NASA Astrophysics Data System (ADS)
Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ
2016-09-01
SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.
Based on the requirements presented in 40 CFR 194.24(c )(2) to (4) and 194.22(a)(1) and using experience gained as part of the CH waste characterization program, EPA examined the DOE's RH Waste Characterization Proposal as presented in the WCPIP.
Characterization of Global Near-Nadir Backscatter for Remote Sensing Radar Design
NASA Technical Reports Server (NTRS)
Spencer, Michael W.; Long, David G.
2000-01-01
In order to evaluate side-lobe contamination from the near-nadir region for Ku-Band radars, a statistical characterization of global near-nadir backscatter is constructed. This characterization is performed for a variety of surface types using data from TRMM, Seasat, and Topex. An assessment of the relative calibration accuracy of these sensors is also presented.
Characterization of Global Near-Nadir Backscatter for Remote Sensing Radar Design
NASA Technical Reports Server (NTRS)
Spencer, Michael W.; Long, David G.
2000-01-01
In order to evaluate side-lobe contamination from the near-nadir region for Ku-Band radars, a statistical characterization of global near-nadir backscatter is constructed. This characterization is performed for a variety of surface types using data from TRMM, Seasat, and Topex. An assessment of the relative calibration accuracy of them sensors is also presented.
NASA Astrophysics Data System (ADS)
Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.
2011-12-01
Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA/EORC. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Deiml, Michael; Kaufmann, Martin
2017-04-01
Coupling processes initiated by gravity waves in the middle atmosphere have increasing importance for the modeling of the climate system and represent one of the larger uncertainties in this field. To support new modeling efforts spatially resolved measurements of wave fields are very beneficial. This contribution proposes a new small satellite mission based on a three unit CubeSat form factor to observe the Oxygen Atmospheric Band emission around 762 nm for temperature derivation in a limb sounding configuration to characterize gravity waves. The satellite instrument resolves individual rotational lines whose intensities follow a Boltzmann law allowing for the derivation of temperature from the relative structure of these lines. The employed Spatial Heterodyne Spectrometer is characterized by its high throughput at a small form factor, allowing to perform scientific remote sensing measurements within a small satellite during day and night. The spectrometer consists of a thermally stabilized solid block and has no moving parts, which increases its reliability in orbit while allowing high precision measurements within a small volume. The instrument is verified in its precursor mission, the Atmospheric Heterodyne Interferometer Test (AtmoHIT), within the REXUS/BEXUS ballistic rocket flight campaign. The description of the flight campaign and the results thereof conclude this contribution.
NASA Technical Reports Server (NTRS)
Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)
2001-01-01
The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.
The application of remote sensing techniques: Technical and methodological issues
NASA Technical Reports Server (NTRS)
Polcyn, F. C.; Wagner, T. W.
1974-01-01
Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included.
Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.
Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S
2017-01-01
Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.
FALCON Remote Laser Alignment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.W.; Hebner, G.A.
1993-01-01
The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.
FALCON Remote Laser Alignment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, T.W.; Hebner, G.A.
1993-02-01
The FALCON Remote Laser Alignment System is used in a high radiation environment to adjust an optical assembly. The purpose of this report is to provide a description of the hardware used and to present the system configuration. Use of the system has increased the reliability and reproducibility of data as well as significantly reducing personnel radiation exposure. Based upon measured radiation dose, radiation exposure was reduced by at least a factor of two after implementing the remote alignment system.
Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel
2018-05-03
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).
Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel
2018-01-01
Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560
NASA Astrophysics Data System (ADS)
Chirayath, V.
2014-12-01
Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
DOT National Transportation Integrated Search
2016-04-01
The objectives of this research were to develop and utilize GST methodologies : including remote sensing, to characterize and determine the level of performance : of stormwater management (SWM) facilities (BMPs), resulting in the reduction of : highw...
NASA Astrophysics Data System (ADS)
Gierke, J. S.; Rose, W. I.; Waite, G. P.; Palma, J. L.; Gross, E. L.
2008-12-01
Though much of the developing world has the potential to gain significantly from remote sensing techniques in terms of public health and safety, they often lack resources for advancing the development and practice of remote sensing. All countries share a mutual interest in furthering remote sensing capabilities for natural hazard mitigation and resource development. With National Science Foundation support from the Partnerships in International Research and Education program, we are developing a new educational system of applied research and engineering for advancing collaborative linkages among agencies and institutions in Pacific Latin American countries (to date: Guatemala, El Salvador, Nicaragua, Costa Rica, Panama, and Ecuador) in the development of remote sensing tools for hazard mitigation and water resources management. The project aims to prepare students for careers in science and engineering through their efforts to solve suites of problems needing creative solutions: collaboration with foreign agencies; living abroad immersed in different cultures; and adapting their academic training to contend with potentially difficult field conditions and limited resources. The ultimate goal of integrating research with education is to encourage cross-disciplinary, creative, and critical thinking in problem solving and foster the ability to deal with uncertainty in analyzing problems and designing appropriate solutions. In addition to traditional approaches for graduate and undergraduate research, we have built new educational systems of applied research and engineering: (1) the Peace Corp/Master's International program in Natural Hazards which features a 2-year field assignment during service in the U.S. Peace Corps, (2) the Michigan Tech Enterprise program for undergraduates, which gives teams of students from different disciplines the opportunity to work for three years in a business-like setting to solve real-world problems, and (3) a unique university exchange program in natural hazards (E-Haz). Advancements in research have been made, for example, in using thermal remote sensing methods for studying vent and eruptive processes, and in fusing RADARSAT with ASTER imagery to delineate lineaments in volcanic terrains for siting water wells. While these and other advancements are developed in conjunction with our foreign counterparts, the impacts of this work can be broadened through more comprehensive dissemination activities. Towards this end, we are in the planning phase of a Pan American workshop on applications of remote sensing techniques for natural hazards and water resources management. The workshop will be at least two weeks, sometime in July/August 2009, and involve 30-40 participants, with balanced participation from the U.S. and Latin America. In addition to fundamental aspects of remote sensing and digital image processing, the workshop topics will be presented in the context of new developments for studying volcanic processes and hazards and for characterizing groundwater systems.
Remote sensing with unmanned aircraft systems for precision agriculture applications
USDA-ARS?s Scientific Manuscript database
The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...
Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo
2015-11-01
We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies.
Remote console for virtual telerehabilitation.
Lewis, Jeffrey A; Boian, Rares F; Burdea, Grigore; Deutsch, Judith E
2005-01-01
The Remote Console (ReCon) telerehabilitation system provides a platform for therapists to guide rehabilitation sessions from a remote location. The ReCon system integrates real-time graphics, audio/video communication, private therapist chat, post-test data graphs, extendable patient and exercise performance monitoring, exercise pre-configuration and modification under a single application. These tools give therapists the ability to conduct training, monitoring/assessment, and therapeutic intervention remotely and in real-time.
Advanced servomanipulator remote maintenance demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.C.; Ladd, L.D.
1988-01-01
The Fuel Recycle Division (FRD) of the Oak Ridge National Laboratory (ORNL) is developing remote maintenance systems for the Consolidated Fuel Reprocessing Program for applications in future nuclear fuel cycle facilities. The most recent development is the advanced servomanipulator (ASM), a digitally controlled, force-reflecting, dual-arm, master/slave servomanipulator. A unique feature of ASM is that the slave arms are remotely maintainable. The ASM slave arms are composed of modules, each of which is capable of being removed and replaced by another manipulator system. The intent of this test was to demonstrate that the ASM slave arms could be completely disassembled andmore » reassembled remotely. This remote maintenance demonstration was performed using the Remote Operations and Maintenance Demonstration (ROMD) facility model M-2 servomanipulator maintenance system. Maintenance of ASM was successfully demonstrated using the M-2 servomanipulator and special fixtures. Recommendations, generally applicable to other remotely maintained equipment, have been made for maintainability improvements. 3 refs., 5 figs.« less
Practical applications of remote sensing technology
NASA Technical Reports Server (NTRS)
Whitmore, Roy A., Jr.
1990-01-01
Land managers increasingly are becoming dependent upon remote sensing and automated analysis techniques for information gathering and synthesis. Remote sensing and geographic information system (GIS) techniques provide quick and economical information gathering for large areas. The outputs of remote sensing classification and analysis are most effective when combined with a total natural resources data base within the capabilities of a computerized GIS. Some examples are presented of the successes, as well as the problems, in integrating remote sensing and geographic information systems. The need to exploit remotely sensed data and the potential that geographic information systems offer for managing and analyzing such data continues to grow. New microcomputers with vastly enlarged memory, multi-fold increases in operating speed and storage capacity that was previously available only on mainframe computers are a reality. Improved raster GIS software systems have been developed for these high performance microcomputers. Vector GIS systems previously reserved for mini and mainframe systems are available to operate on these enhanced microcomputers. One of the more exciting areas that is beginning to emerge is the integration of both raster and vector formats on a single computer screen. This technology will allow satellite imagery or digital aerial photography to be presented as a background to a vector display.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
Design, development and evaluation of a compact telerobotic catheter navigation system.
Tavallaei, Mohammad Ali; Gelman, Daniel; Lavdas, Michael Konstantine; Skanes, Allan C; Jones, Douglas L; Bax, Jeffrey S; Drangova, Maria
2016-09-01
Remote catheter navigation systems protect interventionalists from scattered ionizing radiation. However, these systems typically require specialized catheters and extensive operator training. A new compact and sterilizable telerobotic system is described, which allows remote navigation of conventional tip-steerable catheters, with three degrees of freedom, using an interface that takes advantage of the interventionalist's existing dexterity skills. The performance of the system is evaluated ex vivo and in vivo for remote catheter navigation and ablation delivery. The system has absolute errors of 0.1 ± 0.1 mm and 7 ± 6° over 100 mm of axial motion and 360° of catheter rotation, respectively. In vivo experiments proved the safety of the proposed telerobotic system and demonstrated the feasibility of remote navigation and delivery of ablation. The proposed telerobotic system allows the interventionalist to use conventional steerable catheters; while maintaining a safe distance from the radiation source, he/she can remotely navigate the catheter and deliver ablation lesions. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Design and characterization of a novel power over fiber system integrating a high power diode laser
NASA Astrophysics Data System (ADS)
Perales, Mico; Yang, Mei-huan; Wu, Cheng-liang; Hsu, Chin-wei; Chao, Wei-sheng; Chen, Kun-hsein; Zahuranec, Terry
2017-02-01
High power 9xx nm diode lasers along with MH GoPower's (MHGP's) flexible line of Photovoltaic Power Converters (PPCs) are spurring high power applications for power over fiber (PoF), including applications for powering remote sensors and sensors monitoring high voltage equipment, powering high voltage IGBT gate drivers, converters used in RF over Fiber (RFoF) systems, and system power applications, including powering UAVs. In PoF, laser power is transmitted over fiber, and is converted to electricity by photovoltaic cells (packaged into Photovoltaic Power Converters, or PPCs) which efficiently convert the laser light. In this research, we design a high power multi-channel PoF system, incorporating a high power 976 nm diode laser, a cabling system with fiber break detection, and a multichannel PPC-module. We then characterizes system features such as its response time to system commands, the PPC module's electrical output stability, the PPC-module's thermal response, the fiber break detection system response, and the diode laser optical output stability. The high power PoF system and this research will serve as a scalable model for those interested in researching, developing, or deploying a high power, voltage isolated, and optically driven power source for high reliability utility, communications, defense, and scientific applications.
Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi; Wang, Chun-Cheng
2015-11-01
To protect patient privacy and ensure authorized access to remote medical services, many remote user authentication schemes for the integrated electronic patient record (EPR) information system have been proposed in the literature. In a recent paper, Das proposed a hash based remote user authentication scheme using passwords and smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various passive and active attacks. However, in this paper, we found that Das's authentication scheme is still vulnerable to modification and user duplication attacks. Thereafter we propose a secure and efficient authentication scheme for the integrated EPR information system based on lightweight hash function and bitwise exclusive-or (XOR) operations. The security proof and performance analysis show our new scheme is well-suited to adoption in remote medical healthcare services.
Measurement of remote micro vibration based on laser feedback interference
NASA Astrophysics Data System (ADS)
Wu, Peng; Qin, Shuijie; Xu, Ning
2018-03-01
The method of remote micro-vibration measurement is studied and presented based on the laser feedback effect in this paper, and the key factors of remote vibration measurement are analyzed. The vibration measurement system is designed and built based on the laser feedback and the research of the remote micro vibration measurement is carried out. The system has ultrahigh measuring sensitivity and the working distance is 25 meters, which can measure the vibration of non-cooperative target. The system has the capability to realize the non-contact measurement of remote micro-vibration at different driving signals and can fulfill the complex vibration measurement and reproduction of multiple frequencies. It can identify the voice signal and the voice signal reproduced is clear to hear. The system can meet various requirements of vibration measurement and has great significance in practical application.
A combined field/remote sensing approach for characterizing landslide risk in coastal areas
NASA Astrophysics Data System (ADS)
Francioni, Mirko; Coggan, John; Eyre, Matthew; Stead, Doug
2018-05-01
Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data were interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability.
Spectroscopic remote sensing for material identification, vegetation characterization, and mapping
Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.
2012-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
2014-05-01
An experimental system has been developed to investigate electro-magnetic properties of high-Tc superconductors cooled by liquid hydrogen under the external magnetic field of up to 7 T. A LH2 cryostat is concentrically mounted on the inside of a LHe cryostat to cool a NbTi superconducting magnet. The experimental system is installed in an explosion-proof room. Explosion proof electrical devices are used and current leads are covered with an enclosure filled with nitrogen gas. A remote control system has been developed. Furthermore, the effects of stray magnetic field on the existing and the new devices are investigated and electro-magnetic shielding panels and enclosure made of iron were designed. It is confirmed through the cryogenic test that the experimental system meets the design requirements.
Bilevel Shared Control Of A Remote Robotic Manipulator
NASA Technical Reports Server (NTRS)
Hayati, Samad A.; Venkataraman, Subramanian T.
1992-01-01
Proposed concept blends autonomous and teleoperator control modes, each overcoming deficiencies of the other. Both task-level and execution-level functions performed at local and remote sites. Applicable to systems with long communication delay between local and remote sites or systems intended to function partly autonomously.
15 CFR 960.11 - Conditions for operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.11 Conditions for... all facilities which comprise the remote sensing space system for the purpose of conducting license... possession, the licensee shall offer such data to the National Satellite Land Remote Sensing Data Archive at...
Code of Federal Regulations, 2010 CFR
2010-01-01
... SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.3 Definitions. For purposes of the regulations in this part, the following terms have the following meanings: Act means the Land Remote Sensing... application for a NOAA license to operate a remote sensing space system. Assistant Administrator means the...
Impact of Shutting Down En Route Primary Radars within CONUS Interior
1993-06-01
Remote Control Interface Unit ( RCIU ) RMS software for the primary radar will be deleted. Any dependency of the secondary radar on the primary radar data...Generators RCIU Remote Control and Interface Unit RMM Remote Monitoring and Maintenance RMMS Remote Maintenance Monitoring System RMS Remote Maintenance
[Thematic Issue: Remote Sensing.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1978-01-01
Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…
Remote monitoring of patients with implanted devices: data exchange and integration.
Van der Velde, Enno T; Atsma, Douwe E; Foeken, Hylke; Witteman, Tom A; Hoekstra, Wybo H G J
2013-06-01
Remote follow-up of implanted implantable cardioverter defibrillators (ICDs) may offer a solution to the problem of overcrowded outpatient clinics, and may also be effective in detecting clinical events early. Data obtained from remote follow up systems, as developed by all major device companies, are stored in a central database system, operated and owned by the device company. A problem now arises that the patient's clinical information is partly stored in the local electronic health record (EHR) system in the hospital, and partly in the remote monitoring database, which may potentially result in patient safety issues. To address the requirement of integrating remote monitoring data in the local EHR, the Integrating the Healthcare Enterprise (IHE) Implantable Device Cardiac Observation (IDCO) profile has been developed. This IHE IDCO profile has been adapted by all major device companies. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System (EPD-Vision). Data is exchanged via a HL7/XML communication protocol, as defined in the IHE IDCO profile. By implementing the IHE IDCO profile, we have been able to integrate the data from the remote monitoring databases in our local EHRs. It can be expected that remote monitoring systems will develop into dedicated monitoring and therapy platforms. Data retrieved from these systems should form an integral part of the electronic patient record as more and more out-patient clinic care will shift to personalized care provided at a distance, in other words at the patient's home.
Nölker, Georg; Gutleben, Klaus-Jürgen; Muntean, Bogdan; Vogt, Jürgen; Horstkotte, Dieter; Dabiri Abkenari, Lara; Akca, Ferdi; Szili-Torok, Tamas
2012-12-01
Studies have shown that remote magnetic navigation is safe and effective for ablation of atrial arrhythmias, although optimal outcomes often require frequent manual manipulation of a circular mapping catheter. The Vdrive robotic system ('Vdrive') was designed for remote navigation of circular mapping catheters to enable a fully remote procedure. This study details the first human clinical experience with remote circular catheter manipulation in the left atrium. This was a prospective, multi-centre, non-randomized consecutive case series that included patients presenting for catheter ablation of left atrial arrhythmias. Remote systems were used exclusively to manipulate both the circular mapping catheter and the ablation catheter. Patients were followed through hospital discharge. Ninety-four patients were included in the study, including 23 with paroxysmal atrial fibrillation (AF), 48 with persistent AF, and 15 suffering from atrial tachycardias. The population was predominately male (77%) with a mean age of 60.5 ± 11.7 years. The Vdrive was used for remote navigation between veins, creation of chamber maps, and gap identification with segmental isolation. The intended acute clinical endpoints were achieved in 100% of patients. Mean case time was 225.9 ± 70.5 min. Three patients (3.2%) crossed over to manual circular mapping catheter navigation. There were no adverse events related to the use of the remote manipulation system. The results of this study demonstrate that remote manipulation of a circular mapping catheter in the ablation of atrial arrhythmias is feasible and safe. Prospective randomized studies are needed to prove efficiency improvements over manual techniques.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.
NASA Astrophysics Data System (ADS)
Shao, Yang
This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.
Malaria Modeling using Remote Sensing and GIS Technologies
NASA Technical Reports Server (NTRS)
Kiang, Richard
2004-01-01
Malaria has been with the human race since the ancient time. In spite of the advances of biomedical research and the completion of genomic mapping of Plasmodium falciparum, the exact mechanisms of how the various strains of parasites evade the human immune system and how they have adapted and become resistant to multiple drugs remain elusive. Perhaps because of these reasons, effective vaccines against malaria are still not available. Worldwide, approximately one to three millions deaths are attributed to malaria annually. With the increased availability of remotely sensed data, researchers in medical entomology, epidemiology and ecology have started to associate environmental and ecological variables with malaria transmission. In several studies, it has been shown that transmission correlates well with certain environmental and ecological parameters, and that remote sensing can be used to measure these determinants. In a NASA project, we have taken a holistic approach to examine how remote sensing and GIs can contribute to vector and malaria controls. To gain a better understanding of the interactions among the possible promoting factors, we have been developing a habitat model, a transmission model, and a risk prediction model, all using remote sensing data as input. Our objectives are: 1) To identify the potential breeding sites of major vector species and the locations for larvicide and insecticide applications in order to reduce costs, lessen the chance of developing pesticide resistance, and minimize the damage to the environment; 2) To develop a malaria transmission model characterizing the interactions among hosts, vectors, parasites, landcover and environment in order to identify the key factors that sustain or intensify malaria transmission, and 3) To develop a risk model to predict the occurrence of malaria and its transmission intensity using epidemiological data and satellite-derived or ground-measured environmental and meteorological data.
NASA Technical Reports Server (NTRS)
Vaughan, Greg R.; Calvin, Wendy M.
2005-01-01
To support research into both precious metal exploration and environmental site characterization a combination of high spatial/spectral resolution airborne visible, near infrared, short wave infrared (VNIR/SWIR) and thermal infrared (TIR) image data were acquired to remotely map hydrothermal alteration minerals around the Geiger Grade and Comstock alteration regions, and map the mineral by-products of weathered mine dumps in Virginia City. Remote sensing data from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), SpecTIR Corporation's airborne hyperspectral imager (HyperSpecTIR), the MODIS-ASTER airborne simulator (MASTER), and the Spatially Enhanced Broadband Array Spectrograph System (SEBASS) were acquired and processed into mineral maps based on the unique spectral signatures of image pixels. VNIR/SWIR and TIR field spectrometer data were collected for both calibration and validation of the remote data sets, and field sampling, laboratory spectral analyses and XRD analyses were made to corroborate the surface mineralogy identified by spectroscopy. The resulting mineral maps show the spatial distribution of several important alteration minerals around each study area including alunite, quartz, pyrophyllite, kaolinite, montmorillonite/muscovite, and chlorite. In the Comstock region the mineral maps show acid-sulfate alteration, widespread propylitic alteration and extensive faulting that offsets the acid-sulfate areas, in contrast to the larger, dominantly acid-sulfate alteration exposed along Geiger Grade. Also, different mineral zones within the intense acid-sulfate areas were mapped. In the Virginia City historic mining district the important weathering minerals mapped include hematite, goethite, jarosite and hydrous sulfate minerals (hexahydrite, alunogen and gypsum) located on mine dumps. Sulfate minerals indicate acidic water forming in the mine dump environment. While there is not an immediate threat to the community, there are clearly sources of acidic drainage that were identified remotely.
NASA Astrophysics Data System (ADS)
Colombo, R.; Baccolo, G.; Garzonio, R.; Massabò, D.; Julitta, T.; Rossini, M.; Ferrero, L.; Delmonte, B.; Maggi, V.; Mattavelli, M.; Panigada, C.; Cogliati, S.; Cremonese, E.; Di Mauro, B.
2016-12-01
The European Alps are located close to one of the most industrialized areas of the planet and they are 3.000 km from the largest desert of the Earth. Light-absorbing impurities (LAI) emitted from these sources can reach the Alpine chain and deposit on snow covered areas and mountain glaciers. Although several studies show that LAI have important impacts on the optical properties of snow and ice, reducing the albedo and promoting the melt, this impact has been poorly characterized in the Alps. In this contribution, we present the results of a multisource remote sensing approach aimed to study the LAI impact on snow and ice properties in the Alpine area. This process has been observed by means of remote and proximal sensing methods, using satellite (Landsat 8, Hyperion and MODIS data), field spectroscopy (ASD measurements), Automatic Weather Stations, aerial surveys (Unmanned Aerial Vehicle), radiative transfer modeling (SNICAR and TARTES) and laboratory analysis (hyperspectral imaging system). Furthermore, particle size (Coulter Counter), geochemical (Instrumental Neutron Activation Analysis, INAA) and optical (Multi-Wavelength Absorbance Analyzer, MWAA) analyses have been applied to determine the nature and radiative properties of particulate material deposited on snow and ice or aggregated into cryoconite holes. Our results demonstrate that LAI can be monitored from remote sensing at different scale. LAI showed to have a strong impact on the Alpine cryosphere, paving the way for the assessment of their role in melting processes.
a New Gas Correlation Radiometer for Remote Sounding of Carbon Monoxide
NASA Astrophysics Data System (ADS)
Tikhomirov, Alexey; Drummond, James
Carbon monoxide (CO) is extremely important component of the Earth's atmosphere since it is an indicator of air quality and plays a great role in tropospheric chemistry. Experimental data about CO mixing ratio distribution are necessary to study long range transport of pollutions and are being used along with models in understanding the CO budget. Remote sounding techniques from space are very advantageous in terms of global monitoring of CO. The gas correlation radiometry method has been successfully employed on a number of satellite based instruments for remote sounding of atmospheric gases for several decades. In this report a new concept of gas correlation radiometer for remote sounding of carbon monoxide from space is described. A length modulated cell, used for the first time with the MOPITT instrument, coupled with a static dual detector per channel architecture underlies the optical design of the new sounder. The main goal of the design is to produce an extremely simple and compact system which will in turn lead to a small space instrument. A laboratory prototype of the radiometer has been built in Dalhousie University. Its characteristics are investigated to verify the new concept. The sources of optical imbalance will be discussed as well as the methods for optical imbalance characterization and minimization. The results of the radiometer calibration and laboratory measurements of CO are presented. This work is supported by the Canadian Space Agency, the Canadian Foundation for Innovation, the Atlantic Innovation Fund/Nova Scotia Research Innovation Trust and Dalhousie University.
A survey of automated remote sensing for agriculture
NASA Technical Reports Server (NTRS)
Hall, F. G.; Macdonald, R. B.
1983-01-01
The state-of-the-art of the technology available to make remote sensing crop production estimates is reviewed with reference to several past and present research projects. In particular, attention is given to Landsat data acquisition, registration and preprocessing, data transformation, data modeling, proportion estimation, and labeling. Development stage models and crop condition models are briefly characterized, and areas where further research is needed are identified.
Spectral reflectance models for characterizing winter wheat genotypes
USDA-ARS?s Scientific Manuscript database
Optimum wheat yield can be achieved by developing and growing the best genotype in the most suited environment. However, exhaustive field measurements are required to characterize plants in breeder plots for screening genotypes with desirable traits. Remote sensing tools have been shown to provide r...
Helping Hands: Using Augmented Reality to Provide Remote Guidance to Health Professionals.
Mather, Carey; Barnett, Tony; Broucek, Vlasti; Saunders, Annette; Grattidge, Darren; Huang, Weidong
2017-01-01
Access to expert practitioners or geographic distance can compound the capacity for appropriate supervision of health professionals in the workplace. Guidance and support of clinicians and students to undertake new or infrequent procedures can be resource intensive. The Helping Hands remote augmented reality system is an innovation to support the development of, and oversee the acquisition of procedural skills through remote learning and teaching supervision while in clinical practice. Helping Hands is a wearable, portable, hands-free, low cost system comprised of two networked laptops, a head-mounted display worn by the recipient and a display screen used remotely by the instructor. Hand hygiene was used as the test procedure as it is a foundation skill learned by all health profession students. The technology supports unmediated remote gesture guidance by augmenting the object with the Helping Hands of a health professional. A laboratory-based study and field trial tested usability and feasibility of the remote guidance system. The study found the Helping Hands system did not compromise learning outcomes. This innovation has the potential to transform remote learning and teaching supervision by enabling health professionals and students opportunities to develop and improve their procedural performance at the workplace.
Modelisation de l'architecture des forets pour ameliorer la teledetection des attributs forestiers
NASA Astrophysics Data System (ADS)
Cote, Jean-Francois
The quality of indirect measurements of canopy structure, from in situ and satellite remote sensing, is based on knowledge of vegetation canopy architecture. Technological advances in ground-based, airborne or satellite remote sensing can now significantly improve the effectiveness of measurement programs on forest resources. The structure of vegetation canopy describes the position, orientation, size and shape of elements of the canopy. The complexity of the canopy in forest environments greatly limits our ability to characterize forest structural attributes. Architectural models have been developed to help the interpretation of canopy structural measurements by remote sensing. Recently, the terrestrial LiDAR systems, or TLiDAR (Terrestrial Light Detection and Ranging), are used to gather information on the structure of individual trees or forest stands. The TLiDAR allows the extraction of 3D structural information under the canopy at the centimetre scale. The methodology proposed in my Ph.D. thesis is a strategy to overcome the weakness in the structural sampling of vegetation cover. The main objective of the Ph.D. is to develop an architectural model of vegetation canopy, called L-Architect (LiDAR data to vegetation Architecture), and to focus on the ability to document forest sites and to get information on canopy structure from remote sensing tools. Specifically, L-Architect reconstructs the architecture of individual conifer trees from TLiDAR data. Quantitative evaluation of L-Architect consisted to investigate (i) the structural consistency of the reconstructed trees and (ii) the radiative coherence by the inclusion of reconstructed trees in a 3D radiative transfer model. Then, a methodology was developed to quasi-automatically reconstruct the structure of individual trees from an optimization algorithm using TLiDAR data and allometric relationships. L-Architect thus provides an explicit link between the range measurements of TLiDAR and structural attributes of individual trees. L-Architect has finally been applied to model the architecture of forest canopy for better characterization of vertical and horizontal structure with airborne LiDAR data. This project provides a mean to answer requests of detailed canopy architectural data, difficult to obtain, to reproduce a variety of forest covers. Because of the importance of architectural models, L-Architect provides a significant contribution for improving the capacity of parameters' inversion in vegetation cover for optical and lidar remote sensing. Mots-cles: modelisation architecturale, lidar terrestre, couvert forestier, parametres structuraux, teledetection.
LAnd surface remote sensing Products VAlidation System (LAPVAS) and its preliminary application
NASA Astrophysics Data System (ADS)
Lin, Xingwen; Wen, Jianguang; Tang, Yong; Ma, Mingguo; Dou, Baocheng; Wu, Xiaodan; Meng, Lumin
2014-11-01
The long term record of remote sensing product shows the land surface parameters with spatial and temporal change to support regional and global scientific research widely. Remote sensing product with different sensors and different algorithms is necessary to be validated to ensure the high quality remote sensing product. Investigation about the remote sensing product validation shows that it is a complex processing both the quality of in-situ data requirement and method of precision assessment. A comprehensive validation should be needed with long time series and multiple land surface types. So a system named as land surface remote sensing product is designed in this paper to assess the uncertainty information of the remote sensing products based on a amount of in situ data and the validation techniques. The designed validation system platform consists of three parts: Validation databases Precision analysis subsystem, Inter-external interface of system. These three parts are built by some essential service modules, such as Data-Read service modules, Data-Insert service modules, Data-Associated service modules, Precision-Analysis service modules, Scale-Change service modules and so on. To run the validation system platform, users could order these service modules and choreograph them by the user interactive and then compete the validation tasks of remote sensing products (such as LAI ,ALBEDO ,VI etc.) . Taking SOA-based architecture as the framework of this system. The benefit of this architecture is the good service modules which could be independent of any development environment by standards such as the Web-Service Description Language(WSDL). The standard language: C++ and java will used as the primary programming language to create service modules. One of the key land surface parameter, albedo, is selected as an example of the system application. It is illustrated that the LAPVAS has a good performance to implement the land surface remote sensing product validation.
Variable acuity remote viewing system flight demonstration
NASA Technical Reports Server (NTRS)
Fisher, R. W.
1983-01-01
The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.
Single transmission line interrogated multiple channel data acquisition system
Fasching, George E.; Keech, Jr., Thomas W.
1980-01-01
A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.
Kampik, Timotheus; Larsen, Frank; Bellika, Johan Gustav
2015-01-01
The objective of the study was to identify experiences and attitudes of German and Norwegian general practitioners (GPs) towards Internet-based remote consultation solutions supporting communication between GPs and patients in the context of the German and Norwegian healthcare systems. Interviews with four German and five Norwegian GPs were conducted. The results were qualitatively analyzed. All interviewed GPs stated they would like to make use of Internet-based remote consultations in the future. Current experiences with remote consultations are existent to a limited degree. No GP reported to use a comprehensive remote consultation solution. The main features GPs would like to see in a remote consultation solution include asynchronous exchange of text messages, video conferencing with text chat, scheduling of remote consultation appointments, secure login and data transfer and the integration of the remote consultation solution into the GP's EHR system.
Remote sensing, land use, and demography - A look at people through their effects on the land
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1976-01-01
Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
Cost comparison of competing local distribution systems for communication satellite traffic
NASA Technical Reports Server (NTRS)
Dopfel, F. E.
1979-01-01
The boundaries of market areas which favor various means for distributing communications satellite traffic are considered. The distribution methods considered are: control Earth station with cable access, rooftop Earth stations, Earth station with radio access, and various combinations of these methods. The least cost system for a hypothetical region described by number of users and the average cable access mileage is discussed. The region is characterized by a function which expresses the distribution of users. The results indicate that the least cost distribution is central Earth station with cable access for medium to high density areas of a region combined with rooftop Earth stations or (for higher volumes) radio access for remote users.
Integrating remote sensing, geographic information system and modeling for estimating crop yield
NASA Astrophysics Data System (ADS)
Salazar, Luis Alonso
This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.
Application of Terrestrial Microwave Remote Sensing to Agricultural Drought Monitoring
NASA Astrophysics Data System (ADS)
Crow, W. T.; Bolten, J. D.
2014-12-01
Root-zone soil moisture information is a valuable diagnostic for detecting the onset and severity of agricultural drought. Current attempts to globally monitor root-zone soil moisture are generally based on the application of soil water balance models driven by observed meteorological variables. Such systems, however, are prone to random error associated with: incorrect process model physics, poor parameter choices and noisy meteorological inputs. The presentation will describe attempts to remediate these sources of error via the assimilation of remotely-sensed surface soil moisture retrievals from satellite-based passive microwave sensors into a global soil water balance model. Results demonstrate the ability of satellite-based soil moisture retrieval products to significantly improve the global characterization of root-zone soil moisture - particularly in data-poor regions lacking adequate ground-based rain gage instrumentation. This success has lead to an on-going effort to implement an operational land data assimilation system at the United States Department of Agriculture's Foreign Agricultural Service (USDA FAS) to globally monitor variations in root-zone soil moisture availability via the integration of satellite-based precipitation and soil moisture information. Prospects for improving the performance of the USDA FAS system via the simultaneous assimilation of both passive and active-based soil moisture retrievals derived from the upcoming NASA Soil Moisture Active/Passive mission will also be discussed.
Thermal Remote Sensing: A Powerful Tool in the Characterization of Landscapes on a Functional Basis
NASA Technical Reports Server (NTRS)
Jeffrey, Luvall C.; Kay, James; Fraser, Roydon
1999-01-01
Thermal remote sensing instruments can function as environmental measuring tools, with capabilities leading toward new directions in functional landscape ecology. Theoretical deduction and phenomenological observation leads us to believe that the second law of thermodynamics requires that all dynamically systems develop in a manner which dissipates gradients as rapidly as possible within the constraints of the system at hand. The ramification of this requirement is that dynamical systems will evolve dissipative structures which grow and complexify over time. This perspective has allowed us to develop a framework for discussing ecosystem development and integrity. In the context of this framework we have developed measures of development and integrity for ecosystems. One set of these measures is based on destruction of the exergy content of incoming solar energy. More developed ecosystems will be more effective at dissipating the solar gradient (destroying its exergy content). This can be measured by the effective surface temperature of the ecosystem on a landscape scale. These surface temperatures are measured using airborne thermal scanners such as the Thermal Infrared Multispectral Scanner (TIMS) and the Airborne Thermal/Visible Land Application Sensor(ATLAS) sensors. An analysis of agriculture and forest ecosystems will be used to illustrate the concept of ecological thermodynamics and the development of ecosystems.
Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress
NASA Technical Reports Server (NTRS)
King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred
2016-01-01
NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.
Duan, Zheng; Peng, Ting; Zhu, Shiming; Lian, Ming; Li, Yiyun; Wei, Fu; Xiong, Jiabao; Svanberg, Sune; Zhao, Quanzhi; Hu, Jiandong; Zhao, Guangyu
2018-05-01
Chinese hybrid rice of different varieties, growing in paddies in the Pingqiao district, north of Xinyang city, Henan province, China, was studied in detailed spectroscopic characteristics using laser-induced fluorescence. The base for the studies was the new South China Normal University mobile lidar laboratory, which was dispatched on site, providing facilities both for laboratory studies using a 405 nm excitation source as well as remote sensing measurements at ranges from around 40 m-120 m, mostly employing the 532 nm output from a Nd:YAG laser. We, in particular, studied the spectral influence of the species varieties as well as the level of nitrogen fertilization supplied. Specially developed contrast functions as well as multivariate techniques with principal components and Fisher's discriminate analyses were applied, and useful characterization of the rice could be achieved. The chlorophyll content mapping of the 30 zones was obtained with the remote sensing measurements.
Remote control of an impact demonstration vehicle
NASA Technical Reports Server (NTRS)
Harney, P. F.; Craft, J. B., Jr.; Johnson, R. G.
1985-01-01
Uplink and downlink telemetry systems were installed in a Boeing 720 aircraft that was remotely flown from Rogers Dry Lake at Edwards Air Force Base and impacted into a designated crash site on the lake bed. The controlled impact demonstration (CID) program was a joint venture by the National Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) to test passenger survivability using antimisting kerosene (AMK) to inhibit postcrash fires, improve passenger seats and restraints, and improve fire-retardent materials. The uplink telemetry system was used to remotely control the aircraft and activate onboard systems from takeoff until after impact. Aircraft systems for remote control, aircraft structural response, passenger seat and restraint systems, and anthropomorphic dummy responses were recorded and displayed by the downlink stems. The instrumentation uplink and downlink systems are described.
Code of Federal Regulations, 2013 CFR
2013-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2011 CFR
2011-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2014 CFR
2014-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2012 CFR
2012-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKnight, Timothy E.; Johnson, Anthony; Moise, Kenneth J.
Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.
21 CFR 892.5700 - Remote controlled radionuclide applicator system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
Marciniuk, Darcy
2016-01-01
The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542
NASA Astrophysics Data System (ADS)
Iakovleva, E. V.; Momot, B. A.
2017-10-01
The object of this study is to develop a power plant and an electric propulsion control system for autonomous remotely controlled vessels. The tasks of the study are as follows: to assess remotely controlled vessels usage reasonability, to define the requirements for this type of vessel navigation. In addition, the paper presents the analysis of technical diagnostics systems. The developed electric propulsion control systems for vessels should provide improved reliability and efficiency of the propulsion complex to ensure the profitability of remotely controlled vessels.
NASA Astrophysics Data System (ADS)
Sun, Yushi; Udpa, Satish; Lord, William; Udpa, Lalita; Ouyang, Tianhe
2001-04-01
The Motion Induced Remote-Field Eddy-Current (MIRFEC) effect was first observed in 1994. The effect was first exploited for detecting pipeline stress corrosion cracks as a part of a research project sponsored by the U.S. Department of Transportation. This paper presents a new application of the MIRFEC effect for online inspection of rolling metallic strips. Currently, rolled metallic strips and sheets are inspected off-line, which is costly, time consuming and not ideal for quality control. A well-designed online diagnostic and control system for metal rolling process may be able to reduce cost, improve quality, and hence enhance competitiveness of the product. The overall objective of this paper is to demonstrate the feasibility of a new nondestructive measurement system for on-line diagnostics and control of metallic rolling process using the MIRFEC effect. The system can be used to monitor, in real time, metallic strips/sheets for possible anomalies, inclusions, voids, bubbles, lamination, as well as variations in its magnetic and other properties. The potential advantages of the MIRFEC system include simplicity, robustness, low cost, high reliability, quick and accurate signal classification and characterization. Such systems can be used for real-time process control, or off-line data analysis. The technique also allows operation at high temperatures, tolerates large lift-off and vibration, and high rolling speed. Results of finite element modeling of the MIRFEC effect and experimental measurement data obtained from a prototype system are presented.
Remote presence proctoring by using a wireless remote-control videoconferencing system.
Smith, C Daniel; Skandalakis, John E
2005-06-01
Remote presence in an operating room to allow an experienced surgeon to proctor a surgeon has been promised through robotics and telesurgery solutions. Although several such systems have been developed and commercialized, little progress has been made using telesurgery for anything more than live demonstrations of surgery. This pilot project explored the use of a new videoconferencing capability to determine if it offers advantages over existing systems. The video conferencing system used is a PC-based system with a flat screen monitor and an attached camera that is then mounted on a remotely controlled platform. This device is controlled from a remotely placed PC-based videoconferencing system computer outfitted with a joystick. Using the public Internet and a wireless router at the client site, a surgeon at the control station can manipulate the videoconferencing system. Controls include navigating the unit around the room and moving the flat screen/camera portion like a head looking up/down and right/left. This system (InTouch Medical, Santa Barbara, CA) was used to proctor medical students during an anatomy class cadaver dissection. The ability of the remote surgeon to effectively monitor the students' dissections and direct their activities was assessed subjectively by students and surgeon. This device was very effective at providing a controllable and interactive presence in the anatomy lab. Students felt they were interacting with a person rather than a video screen and quickly forgot that the surgeon was not in the room. The ability to move the device within the environment rather than just observe the environment from multiple fixed camera angles gave the surgeon a similar feel of true presence. A remote-controlled videoconferencing system provides a more real experience for both student and proctor. Future development of such a device could greatly facilitate progress in implementation of remote presence proctoring.
Moreno, Gerardo; Lin, Elizabeth H; Chang, Eva; Johnson, Ron L; Berthoud, Heidi; Solomon, Cam C; Morales, Leo S
2016-03-01
Health systems are increasingly implementing remote telephone and Internet refill systems to enhance patient access to medication refills. Remote refill systems may provide an effective approach for improving medication non-adherence, but more research is needed among patients with limited English proficiency with poor access to remote refill systems. To compare the use of remote medication refill systems among limited-English-proficiency (LEP) and English-proficient (EP) patients with chronic conditions. Cross-sectional survey in six languages/dialects (English, Cantonese, Mandarin, Korean, Vietnamese, and Spanish) of 509 adults with diabetes, hypertension, or hyperlipidemia. Primary study outcomes were self-reported use of 1) Internet refills, 2) telephone refills, and 3) any remote refill system. LEP was measured by patient self-identification of a primary language other than English and a claims record of use of an interpreter. Other measures were age, gender, education, years in the U.S., insurance, health status, chronic conditions, and number of prescribed medications. Analyses included multivariable logistic regression weighted for survey non-response. Overall, 33.1 % of patients refilled their medications by telephone and 31.6 % by Internet. Among LEP patients (n = 328), 31.5 % refilled by telephone and 21.2 % by Internet, compared with 36.7 % by telephone and 52.7 % by Internet among EP patients (n = 181). Internet refill by language groups were as follows: English (52.7 %), Cantonese (34.9 %), Mandarin (17.4 %), Korean (16.7 %), Vietnamese (24.4 %), and Spanish (12.6 %). Compared to EP patients, LEP patients had lower use of any remote refill system (adjusted odds ratio [AOR] 0.18; p < 0.001), CONCLUSIONS: LEP patients are significantly less likely than EP patients to use any remote medication refill system. Increased reliance on current systems for remote medication refills may increase disparities in health outcomes affecting LEP patients with poor access to telephone and Internet medication refills.
NASA Technical Reports Server (NTRS)
Murphy, R. E.; Deering, D. W.
1984-01-01
Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest.
Applications of remote sensing to watershed management
NASA Technical Reports Server (NTRS)
Rango, A.
1975-01-01
Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, R. G.; Wegscheider, W.
2013-11-04
A concurrent remote sensing and magneto-transport study of the microwave excited two dimensional electron system (2DES) at liquid helium temperatures has been carried out using a carbon detector to remotely sense the microwave activity of the 2D electron system in the GaAs/AlGaAs heterostructure during conventional magneto-transport measurements. Various correlations are observed and reported between the oscillatory magnetotransport and the remotely sensed reflection. In addition, the oscillatory remotely sensed signal is shown to exhibit a power law type variation in its amplitude, similar to the radiation-induced magnetoresistance oscillations.
Delivery and application of precise timing for a traveling wave powerline fault locator system
NASA Technical Reports Server (NTRS)
Street, Michael A.
1990-01-01
The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.
Remote Excavation System technology evaluation report: Buried Waste Robotics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the systemmore » and discussed the procedures used to conduct the tests.« less
The Front-End System For MARE In Milano
NASA Astrophysics Data System (ADS)
Arnaboldi, Claudio; Pessina, Gianluigi
2009-12-01
The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.