Sample records for remote command giving

  1. Study and development of techniques for automatic control of remote manipulators

    NASA Technical Reports Server (NTRS)

    Shaket, E.; Leal, A.

    1976-01-01

    An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world.

  2. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  3. Remote physiological monitoring in an austere environment: a future for battlefield care provision?

    PubMed

    Smyth, Matthew J; Round, J A; Mellor, A J

    2018-05-14

    Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Army Contracting Command--Picatinny Telework Policy: Applying Lessons Learned from the Federal Government

    DTIC Science & Technology

    2011-09-01

    Telecommuting Initiative OPM Office of Personnel Management OMB Office of Management and Budget OSHA Occupational Safety and Health Administration...telework, such as telecommuting , flexible workplace, remote work, virtual work, and mobile work, which it states “are all used to refer to work done...gives a basic explanation of telework similar to that of OPM’s and again includes with the definition of telework terms like telecommuting , flexible

  5. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Cepollina, Frank J. (Inventor); Corbo, James E. (Inventor); Burns, Richard D. (Inventor); Jedhrich, Nicholas M. (Inventor); Holz, Jill M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR, and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time as well as the ability to intervene using manual override to teleoperate the robot.

  6. Remote image analysis for Mars Exploration Rover mobility and manipulation operations

    NASA Technical Reports Server (NTRS)

    Leger, Chris; Deen, Robert G.; Bonitz, Robert G.

    2005-01-01

    NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.

  7. Secure Web-based Ground System User Interfaces over the Open Internet

    NASA Technical Reports Server (NTRS)

    Langston, James H.; Murray, Henry L.; Hunt, Gary R.

    1998-01-01

    A prototype has been developed which makes use of commercially available products in conjunction with the Java programming language to provide a secure user interface for command and control over the open Internet. This paper reports successful demonstration of: (1) Security over the Internet, including encryption and certification; (2) Integration of Java applets with a COTS command and control product; (3) Remote spacecraft commanding using the Internet. The Java-based Spacecraft Web Interface to Telemetry and Command Handling (Jswitch) ground system prototype provides these capabilities. This activity demonstrates the use and integration of current technologies to enable a spacecraft engineer or flight operator to monitor and control a spacecraft from a user interface communicating over the open Internet using standard World Wide Web (WWW) protocols and commercial off-the-shelf (COTS) products. The core command and control functions are provided by the COTS Epoch 2000 product. The standard WWW tools and browsers are used in conjunction with the Java programming technology. Security is provided with the current encryption and certification technology. This system prototype is a step in the direction of giving scientist and flight operators Web-based access to instrument, payload, and spacecraft data.

  8. Design of multifunction anti-terrorism robotic system based on police dog

    NASA Astrophysics Data System (ADS)

    You, Bo; Liu, Suju; Xu, Jun; Li, Dongjie

    2007-11-01

    Aimed at some typical constraints of police dogs and robots used in the areas of reconnaissance and counterterrorism currently, the multifunction anti-terrorism robotic system based on police dog has been introduced. The system is made up of two parts: portable commanding device and police dog robotic system. The portable commanding device consists of power supply module, microprocessor module, LCD display module, wireless data receiving and dispatching module and commanding module, which implements the remote control to the police dogs and takes real time monitor to the video and images. The police dog robotic system consists of microprocessor module, micro video module, wireless data transmission module, power supply module and offence weapon module, which real time collects and transmits video and image data of the counter-terrorism sites, and gives military attack based on commands. The system combines police dogs' biological intelligence with micro robot. Not only does it avoid the complexity of general anti-terrorism robots' mechanical structure and the control algorithm, but it also widens the working scope of police dog, which meets the requirements of anti-terrorism in the new era.

  9. STS-114 Flight Day 3 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.

  10. Remote Software Application and Display Development

    NASA Technical Reports Server (NTRS)

    Sanders, Brandon T.

    2014-01-01

    The era of the shuttle program has come to an end, but only to give rise to newer and more exciting projects. Now is the time of the Orion spacecraft, a work of art designed to exceed all previous endeavors of man. NASA is exiting the time of exploration and is entering a new period, a period of pioneering. With this new mission, many of NASAs organizations must undergo a great deal of change and development to support the Orion missions. The Spaceport Command and Control System (SCCS) is the new system that will provide NASA the ability to launch rockets into orbit and thus control Orion and other spacecraft as the goal of populating Mars becomes ever increasingly tangible. Since the previous control system, Launch Processing System (LPS), was primarily designed to launch the shuttles, SCCS was needed as Kennedy Space Center (KSC) reorganized to a multiuser spaceport for commercial flights, providing a more versatile control over rockets. Within SCCS, is the Launch Control System (LCS), which is the remote software behind the command and monitoring of flight and ground system hardware. This internship at KSC has involved two main components in LCS, including Remote Software Application and Display development. The display environment provides a graphical user interface for an operator to view and see if any cautions are raised, while the remote applications are the backbone that communicate with hardware, and then relay the data back to the displays. These elements go hand in hand as they provide monitoring and control over hardware and software alike from the safety of the Launch Control Center. The remote software applications are written in Application Control Language (ACL), which must undergo unit testing to ensure data integrity. This paper describes both the implementation and writing of unit tests in ACL code for remote software applications, as well as the building of remote displays to be used in the Launch Control Center (LCC).

  11. Remote media vision-based computer input device

    NASA Astrophysics Data System (ADS)

    Arabnia, Hamid R.; Chen, Ching-Yi

    1991-11-01

    In this paper, we introduce a vision-based computer input device which has been built at the University of Georgia. The user of this system gives commands to the computer without touching any physical device. The system receives input through a CCD camera; it is PC- based and is built on top of the DOS operating system. The major components of the input device are: a monitor, an image capturing board, a CCD camera, and some software (developed by use). These are interfaced with a standard PC running under the DOS operating system.

  12. Remote secure observing for the Faulkes Telescopes

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Steele, Iain A.; Marchant, Jonathan M.; Fraser, Stephen N.; Mucke-Herzberg, Dorothea

    2004-09-01

    Since the Faulkes Telescopes are to be used by a wide variety of audiences, both powerful engineering level and simple graphical interfaces exist giving complete remote and robotic control of the telescope over the internet. Security is extremely important to protect the health of both humans and equipment. Data integrity must also be carefully guarded for images being delivered directly into the classroom. The adopted network architecture is described along with the variety of security and intrusion detection software. We use a combination of SSL, proxies, IPSec, and both Linux iptables and Cisco IOS firewalls to ensure only authenticated and safe commands are sent to the telescopes. With an eye to a possible future global network of robotic telescopes, the system implemented is capable of scaling linearly to any moderate (of order ten) number of telescopes.

  13. Terrain Commander: a next-generation remote surveillance system

    NASA Astrophysics Data System (ADS)

    Finneral, Henry J.

    2003-09-01

    Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.

  14. Modeling, simulation, and high-autonomy control of a Martian oxygen production plant

    NASA Technical Reports Server (NTRS)

    Schooley, L. C.; Cellier, F. E.; Wang, F.-Y.; Zeigler, B. P.

    1992-01-01

    Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.

  15. Architecture for Control of the K9 Rover

    NASA Technical Reports Server (NTRS)

    Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard

    2006-01-01

    Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.

  16. Using UNIX, Part 2.

    PubMed

    Mann, J

    2001-01-01

    We talked about using 3 UNIX commands. In UNIX, there are many other options for using them. But for the most part, if you can use them like I have shown, you will be able to do everything you need. If you can learn these few points well, I think you will be better off than if I give you 50 options and leave you totally confused about when to do what. On some UNIX systems, an electronic version of the UNIX manual is on the system. This gives a lot more information about each command. However, it is a bit difficult to understand. If you want more information about any command, you can type man COMMAND, e.g., man ls. This will give you more ways to use the ls command. And remember, the command pwd tells what directory you are in, cd/directory changes to another directory, ls lists the contents of the directory you are in, ls more displays the directory contents 1 page at a time (the space bar gives you the next page), ls-al gives a detailed listing of the contents of the directory you are in, ls-al more displays them 1 page at a time (the space bar gives you the next page).

  17. Media Independent Handover for Wireless Full Motion Video Dissemination

    DTIC Science & Technology

    2012-09-01

    ODTONE Configuration Files 51 References 63 Initial Distribution List 65 viii List of Figures Figure 2.1 MIH framework as defined by the IEEE 802.21...10 Figure 2.3 Link commands and MIH commands. From [1]. . . . . . . . . . . . . 12 Figure 2.4 Remote MIH Commands. From [1...13 Figure 2.5 Link commands. From [1]. . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 2.6 MIH commands. From [1

  18. Plans for the extreme ultraviolet explorer data base

    NASA Technical Reports Server (NTRS)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  19. Encryption for Remote Control via Internet or Intranet

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis

    2005-01-01

    A data-communication protocol has been devised to enable secure, reliable remote control of processes and equipment via a collision-based network, while using minimal bandwidth and computation. The network could be the Internet or an intranet. Control is made secure by use of both a password and a dynamic key, which is sent transparently to a remote user by the controlled computer (that is, the computer, located at the site of the equipment or process to be controlled, that exerts direct control over the process). The protocol functions in the presence of network latency, overcomes errors caused by missed dynamic keys, and defeats attempts by unauthorized remote users to gain control. The protocol is not suitable for real-time control, but is well suited for applications in which control latencies up to about 0.5 second are acceptable. The encryption scheme involves the use of both a dynamic and a private key, without any additional overhead that would degrade performance. The dynamic key is embedded in the equipment- or process-monitor data packets sent out by the controlled computer: in other words, the dynamic key is a subset of the data in each such data packet. The controlled computer maintains a history of the last 3 to 5 data packets for use in decrypting incoming control commands. In addition, the controlled computer records a private key (password) that is given to the remote computer. The encrypted incoming command is permuted by both the dynamic and private key. A person who records the command data in a given packet for hostile purposes cannot use that packet after the public key expires (typically within 3 seconds). Even a person in possession of an unauthorized copy of the command/remote-display software cannot use that software in the absence of the password. The use of a dynamic key embedded in the outgoing data makes the central-processing unit overhead very small. The use of a National Instruments DataSocket(TradeMark) (or equivalent) protocol or the User Datagram Protocol makes it possible to obtain reasonably short response times: Typical response times in event-driven control, using packets sized .300 bytes, are <0.2 second for commands issued from locations anywhere on Earth. The protocol requires that control commands represent absolute values of controlled parameters (e.g., a specified temperature), as distinguished from changes in values of controlled parameters (e.g., a specified increment of temperature). Each command is issued three or more times to ensure delivery in crowded networks. The use of absolute-value commands prevents additional (redundant) commands from causing trouble. Because a remote controlling computer receives "talkback" in the form of data packets from the controlled computer, typically within a time interval < or =1 s, the controlling computer can re-issue a command if network failure has occurred. The controlled computer, the process or equipment that it controls, and any human operator(s) at the site of the controlled equipment or process should be equipped with safety measures to prevent damage to equipment or injury to humans. These features could be a combination of software, external hardware, and intervention by the human operator(s). The protocol is not fail-safe, but by adopting these safety measures as part of the protocol, one makes the protocol a robust means of controlling remote processes and equipment by use of typical office computers via intranets and/or the Internet.

  20. A teleoperated system for remote site characterization

    NASA Technical Reports Server (NTRS)

    Sandness, Gerald A.; Richardson, Bradley S.; Pence, Jon

    1994-01-01

    The detection and characterization of buried objects and materials is an important step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. By performing these tasks with remotely controlled sensors, it is possible to obtain improved data quality and consistency as well as enhanced safety for on-site workers. Therefore, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by a radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS).

  1. GSM Web-Based Centralized Remote Wireless Automatic Controlling and Monitoring of Aquafeeder

    NASA Astrophysics Data System (ADS)

    Wong, C. L.; Idris, A.; Hasan, Z.

    2016-03-01

    This project is about producing a prototype to feed fishes at fish ponds of remote location with the use of GSM mobile phone. An automatic fish feeder is an electric device that has been designed to give out the right amount of pellets at the designed time. In this project, the automatic feeder designed consists of photovoltaic solar cells that are used to generate electricity and storing it into batteries. Solar charge controllers can be used to determine the rate of which current is drawn and added from the batteries. GSM cellular communication is used to allow user to control from a distance. Commands or instructions are sent to the operating system which in return runs the servomotor and blower by blowing certain amount of fish pallets into the pond to feed the fishes. The duration of the feeding processes is fixed by the user, hence the amount of fish food pallets released are precisely the same for each time. This technology is especially useful for fish farmers where they can remotely feed their fishes.

  2. Adjustable impedance, force feedback and command language aids for telerobotics (parts 1-4 of an 8-part MIT progress report)

    NASA Technical Reports Server (NTRS)

    Sheridan, Thomas B.; Raju, G. Jagganath; Buzan, Forrest T.; Yared, Wael; Park, Jong

    1989-01-01

    Projects recently completed or in progress at MIT Man-Machine Systems Laboratory are summarized. (1) A 2-part impedance network model of a single degree of freedom remote manipulation system is presented in which a human operator at the master port interacts with a task object at the slave port in a remote location is presented. (2) The extension of the predictor concept to include force feedback and dynamic modeling of the manipulator and the environment is addressed. (3) A system was constructed to infer intent from the operator's commands and the teleoperation context, and generalize this information to interpret future commands. (4) A command language system is being designed that is robust, easy to learn, and has more natural man-machine communication. A general telerobot problem selected as an important command language context is finding a collision-free path for a robot.

  3. 106-17 Telemetry Standards Recorder and Reproducer Command and Control Chapter 6

    DTIC Science & Technology

    2017-07-01

    6-35 6.3 MIL-STD-1553 Remote Terminal Command and Control ..................................... 6-36 6.4 Discrete Command and...6-6 Figure 6-9. Required Discrete Control Functions...6-36 Figure 6-10. Discrete Control and Indicator Functional Diagram .......................................... 6-37 Telemetry Standards

  4. Results from Testing Crew-Controlled Surface Telerobotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Schreckenghost, Debra; Pacis, Estrellina; Fong, Terrence; Kalar, Donald; Beutter, Brent

    2014-01-01

    During Summer 2013, the Intelligent Robotics Group at NASA Ames Research Center conducted a series of tests to examine how astronauts in the International Space Station (ISS) can remotely operate a planetary rover. The tests simulated portions of a proposed lunar mission, in which an astronaut in lunar orbit would remotely operate a planetary rover to deploy a radio telescope on the lunar far side. Over the course of Expedition 36, three ISS astronauts remotely operated the NASA "K10" planetary rover in an analogue lunar terrain located at the NASA Ames Research Center in California. The astronauts used a "Space Station Computer" (crew laptop), a combination of supervisory control (command sequencing) and manual control (discrete commanding), and Ku-band data communications to command and monitor K10 for 11 hours. In this paper, we present and analyze test results, summarize user feedback, and describe directions for future research.

  5. Remotely controlling of mobile robots using gesture captured by the Kinect and recognized by machine learning method

    NASA Astrophysics Data System (ADS)

    Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting

    2013-01-01

    The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.

  6. Flight test experience and controlled impact of a remotely piloted jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Horton, Timothy W.; Kempel, Robert W.

    1988-01-01

    The Dryden Flight Research Center Facility of NASA Ames Research Center (Ames-Dryden) and the FAA conducted the controlled impact demonstration (CID) program using a large, four-engine, remotely piloted jet transport airplane. Closed-loop primary flight was controlled through the existing onboard PB-20D autopilot which had been modified for the CID program. Uplink commands were sent from a ground-based cockpit and digital computer in conjunction with an up-down telemetry link. These uplink commands were received aboard the airplane and transferred through uplink interface systems to the modified PB-20D autopilot. Both proportional and discrete commands were produced by the ground system. Prior to flight tests, extensive simulation was conducted during the development of ground-based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems; however, piloted flight tests were the primary method and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and systems required to accomplish the remotely piloted mission are discussed.

  7. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  8. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  9. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  10. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  11. 32 CFR 700.859 - Quarantine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OFFICIAL RECORDS UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS The Commanding Officer Commanding Officers Afloat § 700.859 Quarantine. (a) The commanding officer or aircraft commander of a ship or... port or area within which the ship or aircraft is located. (b) The commanding officer shall give all...

  12. Negative Responses to Teacher Commands: An Effective Teaching Strategy.

    ERIC Educational Resources Information Center

    Bragger, Jeannette D.

    1982-01-01

    Describes process and gives examples by which contradiction is introduced in a course using Total Physical Response approach. Gives students opportunity to say "no" and come up with an alternative while demonstrating understanding of original command. (BK)

  13. New information technology tools for a medical command system for mass decontamination.

    PubMed

    Fuse, Akira; Okumura, Tetsu; Hagiwara, Jun; Tanabe, Tomohide; Fukuda, Reo; Masuno, Tomohiko; Mimura, Seiji; Yamamoto, Kaname; Yokota, Hiroyuki

    2013-06-01

    In a mass decontamination during a nuclear, biological, or chemical (NBC) response, the capability to command, control, and communicate is crucial for the proper flow of casualties at the scene and their subsequent evacuation to definitive medical facilities. Information Technology (IT) tools can be used to strengthen medical control, command, and communication during such a response. Novel IT tools comprise a vehicle-based, remote video camera and communication network systems. During an on-site verification event, an image from a remote video camera system attached to the personal protective garment of a medical responder working in the warm zone was transmitted to the on-site Medical Commander for aid in decision making. Similarly, a communication network system was used for personnel at the following points: (1) the on-site Medical Headquarters; (2) the decontamination hot zone; (3) an on-site coordination office; and (4) a remote medical headquarters of a local government office. A specially equipped, dedicated vehicle was used for the on-site medical headquarters, and facilitated the coordination with other agencies. The use of these IT tools proved effective in assisting with the medical command and control of medical resources and patient transport decisions during a mass-decontamination exercise, but improvements are required to overcome transmission delays and camera direction settings, as well as network limitations in certain areas.

  14. Evaluation of Organisational Interoperabiity in a Network Centric Warfare Environment

    DTIC Science & Technology

    2004-09-01

    understanding developed. Command and Coordination examines issues related to command structure, command and leadership styles . Ethos covers socio...harmonisation of command arrangements and the accommodation of differences in command and leadership styles . 3.2.4 Ethos Future warfare will... leadership styles . • changes to give less emphasis to hierarchy and command and more to coordination. Any reference to a single chain of command has been

  15. High level intelligent control of telerobotics systems

    NASA Technical Reports Server (NTRS)

    Mckee, James

    1988-01-01

    A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.

  16. Hardware platform for multiple mobile robots

    NASA Astrophysics Data System (ADS)

    Parzhuber, Otto; Dolinsky, D.

    2004-12-01

    This work is concerned with software and communications architectures that might facilitate the operation of several mobile robots. The vehicles should be remotely piloted or tele-operated via a wireless link between the operator and the vehicles. The wireless link will carry control commands from the operator to the vehicle, telemetry data from the vehicle back to the operator and frequently also a real-time video stream from an on board camera. For autonomous driving the link will carry commands and data between the vehicles. For this purpose we have developed a hardware platform which consists of a powerful microprocessor, different sensors, stereo- camera and Wireless Local Area Network (WLAN) for communication. The adoption of IEEE802.11 standard for the physical and access layer protocols allow a straightforward integration with the internet protocols TCP/IP. For the inspection of the environment the robots are equipped with a wide variety of sensors like ultrasonic, infrared proximity sensors and a small inertial measurement unit. Stereo cameras give the feasibility of the detection of obstacles, measurement of distance and creation of a map of the room.

  17. Children's Reasoning about Three Authority Attributes: Adult Status, Knowledge, and Social Position.

    ERIC Educational Resources Information Center

    Laupa, Marta

    1991-01-01

    Assessed children's evaluations of individuals' commands and children's choices between individuals who gave opposing commands. Subjects weighted individuals' social position and knowledge more heavily than adult status in judging the legitimacy of commands and choosing between individuals giving opposing commands. (BC)

  18. Command and data handling for Atmosphere Explorer satellite

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.

    1974-01-01

    The command and data-handling subsystem of the Atmosphere Explorer satellite provides the necessary controls for the instrumentation and telemetry, and also controls the satellite attitude and trajectory. The subsystem executes all command information within the spacecraft, either in real time (as received over the S-band command transmission link) or remote from the command site (as required by the orbit operations schedule). Power consumption in the spacecraft is optimized by suitable application and removal of power to various instruments; additional functions include control of magnetic torquers and of the orbit-adjust propulsion subsystem. Telemetry data from instruments and the spacecraft equipment are formatted into a single serial bit stream. Attention is given to command types, command formats, decoder operation, and command processing functions.

  19. Common command-and-control user interface for current force UGS

    NASA Astrophysics Data System (ADS)

    Stolovy, Gary H.

    2009-05-01

    The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.

  20. Multipurpose Interactive NASA Information Systems (MINIS)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Multipurpose Interactive NASA Information System was developed to provide remote, interactive information retrieval capability for various types of data bases to be processed on different types of small and medium size computers. Use of the system for three different data bases is decribed: (1) LANDSAT photo look-up, (2) land use, and (3) census/socioeconomic. Each of the data base elements is shown together with other detailed information that a user would require to contact the system remotely, to transmit inquiries on commands, and to receive the results of the queries or commands.

  1. Adaptive supervisory control of remote manipulation

    NASA Technical Reports Server (NTRS)

    Ferrell, W. R.

    1977-01-01

    The command language by which an operator exerts supervisory control over a general purpose remote manipulator should be designed to accommodate certain characteristics of human performance if there is to be effective communication between the operator and the machine. Some of the ways in which people formulate tasks, use language, learn and make errors are discussed and design implications are drawn. A general approach to command language design is suggested, based on the notion matching the operator's current task schema or context by appropriate program structures or 'frames' in the machine.

  2. Frequency division multiplex technique

    NASA Technical Reports Server (NTRS)

    Brey, H. (Inventor)

    1973-01-01

    A system for monitoring a plurality of condition responsive devices is described. It consists of a master control station and a remote station. The master control station is capable of transmitting command signals which includes a parity signal to a remote station which transmits the signals back to the command station so that such can be compared with the original signals in order to determine if there are any transmission errors. The system utilizes frequency sources which are 1.21 multiples of each other so that no linear combination of any harmonics will interfere with another frequency.

  3. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  4. Analysis and Selection of a Remote Docking Simulation Visual Display System

    NASA Technical Reports Server (NTRS)

    Shields, N., Jr.; Fagg, M. F.

    1984-01-01

    The development of a remote docking simulation visual display system is examined. Video system and operator performance are discussed as well as operator command and control requirements and a design analysis of the reconfigurable work station.

  5. Remote Agent Experiment

    NASA Technical Reports Server (NTRS)

    Benard, Doug; Dorais, Gregory A.; Gamble, Ed; Kanefsky, Bob; Kurien, James; Millar, William; Muscettola, Nicola; Nayak, Pandu; Rouquette, Nicolas; Rajan, Kanna; hide

    2000-01-01

    Remote Agent (RA) is a model-based, reusable artificial intelligence (At) software system that enables goal-based spacecraft commanding and robust fault recovery. RA was flight validated during an experiment on board of DS1 between May 17th and May 21th, 1999.

  6. Young Children's Misconceptions of Simple Turtle Graphics Commands.

    ERIC Educational Resources Information Center

    Cuneo, Diane O.

    Four- and 5-year-olds' understanding of basic turtle graphics commands was examined before and after a hands-on, interactive problem-solving experience. Children (n=32) saw display screen events consisting of an initial turtle state, a command transformation, and the resulting turtle state. They were asked to give the command executed in each…

  7. Remote control radioactive-waste removal system uses modulated laser transmitter

    NASA Technical Reports Server (NTRS)

    Burcher, E. E.; Kopia, L. P.; Rowland, C. W.; Sinclair, A. R.

    1971-01-01

    Laser remote control system consists of transmitter, auto tracker, and receiver. Transmitter and tracker, packaged together and bore sighted, constitute control station, receiver is slave station. Model has five command channels and optical link operating range of 110 m.

  8. Computer interface for mechanical arm

    NASA Technical Reports Server (NTRS)

    Derocher, W. L.; Zermuehlen, R. O.

    1978-01-01

    Man/machine interface commands computer-controlled mechanical arm. Remotely-controlled arm has six degrees of freedom and is controlled through "supervisory-control" mode, in which all motions of arm follow set of preprogramed sequences. For simplicity, few prescribed commands are required to accomplish entire operation. Applications include operating computer-controlled arm to handle radioactive of explosive materials or commanding arm to perform functions in hostile environments. Modified version using displays may be applied in medicine.

  9. Remotely Piloted Vehicle (RPV): Proposed command, control, communications (C3) structure

    NASA Technical Reports Server (NTRS)

    Hughes, R. L.; Evans, W. K.; Howard, W. G.; Wallace, A. S.

    1982-01-01

    The currently proposed command, control, and communications (C3) structure associated with the RPV system, potential problem areas in the transfer of information to and from the RPV system, and options for improving information transfer and estimate the degree of improvement to be expected were identified.

  10. Design of Flight Control Panel Layout using Graphical User Interface in MATLAB

    NASA Astrophysics Data System (ADS)

    Wirawan, A.; Indriyanto, T.

    2018-04-01

    This paper introduces the design of Flight Control Panel (FCP) Layout using Graphical User Interface in MATLAB. The FCP is the interface to give the command to the simulation and to monitor model variables while the simulation is running. The command accommodates by the FCP are altitude command, the angle of sideslip command, heading command, and setting command for turbulence model. The FCP was also designed to monitor the flight parameter while the simulation is running.

  11. Paralyzed subject controls telepresence mobile robot using novel sEMG brain-computer interface: case study.

    PubMed

    Lyons, Kenneth R; Joshi, Sanjay S

    2013-06-01

    Here we demonstrate the use of a new singlesignal surface electromyography (sEMG) brain-computer interface (BCI) to control a mobile robot in a remote location. Previous work on this BCI has shown that users are able to perform cursor-to-target tasks in two-dimensional space using only a single sEMG signal by continuously modulating the signal power in two frequency bands. Using the cursor-to-target paradigm, targets are shown on the screen of a tablet computer so that the user can select them, commanding the robot to move in different directions for a fixed distance/angle. A Wifi-enabled camera transmits video from the robot's perspective, giving the user feedback about robot motion. Current results show a case study with a C3-C4 spinal cord injury (SCI) subject using a single auricularis posterior muscle site to navigate a simple obstacle course. Performance metrics for operation of the BCI as well as completion of the telerobotic command task are developed. It is anticipated that this noninvasive and mobile system will open communication opportunities for the severely paralyzed, possibly using only a single sensor.

  12. NASIS data base management system - IBM 360/370 OS MVT implementation. 5: Retrieval command system reference manual

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The retrieval command subsystem reference manual for the NASA Aerospace Safety Information System (NASIS) is presented. The output oriented classification of retrieval commands provides the user with the ability to review a set of data items for verification or inspection as a typewriter or CRT terminal and to print a set of data on a remote printer. Predefined and user-definable data formatting are available for both output media.

  13. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    USGS Publications Warehouse

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  14. Flight test experience and controlled impact of a large, four-engine, remotely piloted airplane

    NASA Technical Reports Server (NTRS)

    Kempel, R. W.; Horton, T. W.

    1985-01-01

    A controlled impact demonstration (CID) program using a large, four engine, remotely piloted transport airplane was conducted. Closed loop primary flight control was performed from a ground based cockpit and digital computer in conjunction with an up/down telemetry link. Uplink commands were received aboard the airplane and transferred through uplink interface systems to a highly modified Bendix PB-20D autopilot. Both proportional and discrete commands were generated by the ground pilot. Prior to flight tests, extensive simulation was conducted during the development of ground based digital control laws. The control laws included primary control, secondary control, and racetrack and final approach guidance. Extensive ground checks were performed on all remotely piloted systems. However, manned flight tests were the primary method of verification and validation of control law concepts developed from simulation. The design, development, and flight testing of control laws and the systems required to accomplish the remotely piloted mission are discussed.

  15. The Arecibo Remote Command Center Network

    NASA Astrophysics Data System (ADS)

    Crawford, Fronefield; Jenet, Fredrick; Christy, Brian; Dolch, Timothy; Guerreo-Miller, Alma; Quetschke, Volker; Siemens, Xavier; Smith, Tristan L.; Stovall, Kevin; Wade, Leslie; Wade, Madeline

    2017-01-01

    The Arecibo Remote Command Center (ARCC) network is an education, research, and training program for undergraduates, graduate students, and postdocs spanning multiple institutions. ARCC members use the Arecibo 305-m radio telescope to remotely conduct pulsar survey and timing observations, and they search the data collected to find new radio pulsars using a custom pulsar candidate viewer. Timing data are used in the ongoing NANOGrav search for gravitational waves using pulsar timing arrays. The ARCC program also serves as an effective introduction for students to radio pulsar research. Currently ARCC has seven institutional members and dozens of participants. Our poster provides some general background about the ARCC program at Franklin and Marshall College and serves as a catalyst for in-person conversations and discussions about ARCC, including the benefits of joining the ARCC network and some specifics on how to join.

  16. Instrument Remote Control Application Framework

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Hostetter, Carl F.

    2006-01-01

    The Instrument Remote Control (IRC) architecture is a flexible, platform-independent application framework that is well suited for the control and monitoring of remote devices and sensors. IRC enables significant savings in development costs by utilizing extensible Markup Language (XML) descriptions to configure the framework for a specific application. The Instrument Markup Language (IML) is used to describe the commands used by an instrument, the data streams produced, the rules for formatting commands and parsing the data, and the method of communication. Often no custom code is needed to communicate with a new instrument or device. An IRC instance can advertise and publish a description about a device or subscribe to another device's description on a network. This simple capability of dynamically publishing and subscribing to interfaces enables a very flexible, self-adapting architecture for monitoring and control of complex instruments in diverse environments.

  17. Teachers' Commands and Their Role in Preschool Classrooms

    ERIC Educational Resources Information Center

    Bertsch, Kathy M.; Houlihan, Daniel; Lenz, Melissa A.; Patte, Christi A.

    2009-01-01

    Introduction: Many aspects of teacher competency have been previously examined, particularly a teacher's ability to give commands effectively. Teachers' instructions to students within the classroom, aid in the acquisition of both the students' academic and nonacademic skills. Teachers' commands promote verbal and social skills, and facilitate…

  18. Unmanned ground vehicles for integrated force protection

    NASA Astrophysics Data System (ADS)

    Carroll, Daniel M.; Mikell, Kenneth; Denewiler, Thomas

    2004-09-01

    The combination of Command and Control (C2) systems with Unmanned Ground Vehicles (UGVs) provides Integrated Force Protection from the Robotic Operation Command Center. Autonomous UGVs are directed as Force Projection units. UGV payloads and fixed sensors provide situational awareness while unattended munitions provide a less-than-lethal response capability. Remote resources serve as automated interfaces to legacy physical devices such as manned response vehicles, barrier gates, fence openings, garage doors, and remote power on/off capability for unmanned systems. The Robotic Operations Command Center executes the Multiple Resource Host Architecture (MRHA) to simultaneously control heterogeneous unmanned systems. The MRHA graphically displays video, map, and status for each resource using wireless digital communications for integrated data, video, and audio. Events are prioritized and the user is prompted with audio alerts and text instructions for alarms and warnings. A control hierarchy of missions and duty rosters support autonomous operations. This paper provides an overview of the key technology enablers for Integrated Force Protection with details on a force-on-force scenario to test and demonstrate concept of operations using Unmanned Ground Vehicles. Special attention is given to development and applications for the Remote Detection Challenge and Response (REDCAR) initiative for Integrated Base Defense.

  19. MIL-STD-1553B Marconi LSI chip set in a remote terminal application

    NASA Astrophysics Data System (ADS)

    Dimarino, A.

    1982-11-01

    Marconi Avionics is utilizing the MIL-STD-1553B LSI Chip Set in the SCADC Air Data Computer application to perform all of the required remote terminal MIL-STD-1553B protocol functions. Basic components of the RTU are the dual redundant chip set, CT3231 Transceivers, 256 x 16 RAM and a Z8002 microprocessor. Basic transfers are to/from the RAM command of the bus controller or Z8002 processor. During transfers from the processor to the RAM, the chip set busy bit is set for a period not exceeding 250 microseconds. When the transfer is complete, the busy bit is released and transfers to the data bus occur on command. The LSI Chip Set word count lines are used to locate each data word in the local memory and 4 mode codes are used in the application: reset remote terminal, transmit status word, transmitter shut-down, and override transmitter shutdown.

  20. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks †

    PubMed Central

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V.

    2016-01-01

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes. PMID:27023540

  1. Secure Authentication for Remote Patient Monitoring with Wireless Medical Sensor Networks.

    PubMed

    Hayajneh, Thaier; Mohd, Bassam J; Imran, Muhammad; Almashaqbeh, Ghada; Vasilakos, Athanasios V

    2016-03-24

    There is broad consensus that remote health monitoring will benefit all stakeholders in the healthcare system and that it has the potential to save billions of dollars. Among the major concerns that are preventing the patients from widely adopting this technology are data privacy and security. Wireless Medical Sensor Networks (MSNs) are the building blocks for remote health monitoring systems. This paper helps to identify the most challenging security issues in the existing authentication protocols for remote patient monitoring and presents a lightweight public-key-based authentication protocol for MSNs. In MSNs, the nodes are classified into sensors that report measurements about the human body and actuators that receive commands from the medical staff and perform actions. Authenticating these commands is a critical security issue, as any alteration may lead to serious consequences. The proposed protocol is based on the Rabin authentication algorithm, which is modified in this paper to improve its signature signing process, making it suitable for delay-sensitive MSN applications. To prove the efficiency of the Rabin algorithm, we implemented the algorithm with different hardware settings using Tmote Sky motes and also programmed the algorithm on an FPGA to evaluate its design and performance. Furthermore, the proposed protocol is implemented and tested using the MIRACL (Multiprecision Integer and Rational Arithmetic C/C++) library. The results show that secure, direct, instant and authenticated commands can be delivered from the medical staff to the MSN nodes.

  2. Re-engineering the Multimission Command System at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Alexander, Scott; Biesiadecki, Jeff; Cox, Nagin; Murphy, Susan C.; Reeve, Tim

    1994-01-01

    The Operations Engineering Lab (OEL) at JPL has developed the multimission command system as part of JPL's Advanced Multimission Operations System. The command system provides an advanced multimission environment for secure, concurrent commanding of multiple spacecraft. The command functions include real-time command generation, command translation and radiation, status reporting, some remote control of Deep Space Network antenna functions, and command file management. The mission-independent architecture has allowed easy adaptation to new flight projects and the system currently supports all JPL planetary missions (Voyager, Galileo, Magellan, Ulysses, Mars Pathfinder, and CASSINI). This paper will discuss the design and implementation of the command software, especially trade-offs and lessons learned from practical operational use. The lessons learned have resulted in a re-engineering of the command system, especially in its user interface and new automation capabilities. The redesign has allowed streamlining of command operations with significant improvements in productivity and ease of use. In addition, the new system has provided a command capability that works equally well for real-time operations and within a spacecraft testbed. This paper will also discuss new development work including a multimission command database toolkit, a universal command translator for sequencing and real-time commands, and incorporation of telecommand capabilities for new missions.

  3. A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 LAUNCH VIEW --- A remote camera at Launch Pad 39B, at the Kennedy Space Center (KSC), recorded this profile view of the Space Shuttle Columbia as it cleared the tower to begin the mission. The liftoff occurred on schedule at 3:18:00 p.m. (EST), February 22, 1996. Onboard Columbia for the scheduled two-week mission were astronauts Andrew M. Allen, commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and astronauts Maurizio Cheli, Jeffrey A. Hoffman and Claude Nicollier, along with payload specialist Umberto Guidioni. Cheli and Nicollier represent the European Space Agency (ESA), while Guidioni represents the Italian Space Agency (ASI).

  4. Deictic primitives for general purpose navigation

    NASA Technical Reports Server (NTRS)

    Crismann, Jill D.

    1994-01-01

    A visually-based deictic primative used as an elementary command set for general purpose navigation was investigated. It was shown that a simple 'follow your eyes' scenario is sufficient for tracking a moving target. Limitations of velocity, acceleration, and modeling of the response of the mechanical systems were enforced. Realistic paths of the robots were produced during the simulation. Scientists could remotely command a planetary rover to go to a particular rock formation that may be interesting. Similarly an expert at plant maintenance could obtain diagnostic information remotely by using deictic primitives on a mobile are used in the deictic primitives, we could imagine that the exact same control software could be used for all of these applications.

  5. DOS.

    ERIC Educational Resources Information Center

    Traven, Bill

    1988-01-01

    Discusses using the DOS PATH command (for MS-DOS) to enable the microcomputer user to move from directory to directory on a hard drive. Lists the commands to be programed, gives examples, and explains the use of each. (MVL)

  6. Digital Gunnery: How Combat Vehicle Gunnery Training Creates a Model for Training the Mission Command System.

    DTIC Science & Technology

    2017-06-09

    DIGITAL GUNNERY: HOW COMBAT VEHICLE GUNNERY TRAINING CREATES A MODEL FOR TRAINING THE MISSION COMMAND SYSTEM A thesis presented...Training Creates a Model for Training the Mission Command System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...digital systems that give commanders an unprecedented ability to understand and lead in the battlefields where they operate. Unfortunately, units

  7. Remote mission specialist - A study in real-time, adaptive planning

    NASA Technical Reports Server (NTRS)

    Rokey, Mark J.

    1990-01-01

    A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.

  8. CCIR for Complex and Uncertain Environments

    DTIC Science & Technology

    2007-05-01

    these purposes. Doctrine gives such a wide variety of reasons for using CCIR that the concept seems unfocused, giving the commander no true criteria...complex. The true effect that these issues have on CCIR is open to a considerable amount of debate. Every commander has the freedom to develop his...operations. He set a precedent that seems to have held true through the entire history of intelligence requirements – every step in the development

  9. XML in an Adaptive Framework for Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy J.

    2004-01-01

    NASA Goddard Space Flight Center is developing an extensible framework for instrument command and control, known as Instrument Remote Control (IRC), that combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML). A key aspect of the architecture is software that is driven by an instrument description, written using the Instrument Markup Language (IML). IML is an XML dialect used to describe interfaces to control and monitor the instrument, command sets and command formats, data streams, communication mechanisms, and data processing algorithms.

  10. Space vehicle onboard command encoder

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A flexible onboard encoder system was designed for the space shuttle. The following areas were covered: (1) implementation of the encoder design into hardware to demonstrate the various encoding algorithms/code formats, (2) modulation techniques in a single hardware package to maintain comparable reliability and link integrity of the existing link systems and to integrate the various techniques into a single design using current technology. The primary function of the command encoder is to accept input commands, generated either locally onboard the space shuttle or remotely from the ground, format and encode the commands in accordance with the payload input requirements and appropriately modulate a subcarrier for transmission by the baseband RF modulator. The following information was provided: command encoder system design, brassboard hardware design, test set hardware and system packaging, and software.

  11. Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Burns, Richard D. (Inventor); Cepollina, Frank J. (Inventor); Jedhrich, Nicholas M. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor)

    2008-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  12. Method and associated apparatus for capturing, servicing and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Burns, Richard D. (Inventor); Jedhrich, Nicholas M. (Inventor); Cepollina, Frank J. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor)

    2007-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  13. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Holz, Jill M. (Inventor); Corbo, James E. (Inventor); Burns, Richard D. (Inventor); Cepollina, Frank J. (Inventor); Jedhrich, Nicholas M. (Inventor)

    2009-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  14. Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics

    NASA Technical Reports Server (NTRS)

    Burns, Richard D. (Inventor); Cepollina, Frank J. (Inventor); Jedhrich, Nicholas M. (Inventor); Holz, Jill M. (Inventor); Corbo, James E. (Inventor)

    2007-01-01

    This invention is a method and supporting apparatus for autonomously capturing, servicing and de-orbiting a free-flying spacecraft, such as a satellite, using robotics. The capture of the spacecraft includes the steps of optically seeking and ranging the satellite using LIDAR; and matching tumble rates, rendezvousing and berthing with the satellite. Servicing of the spacecraft may be done using supervised autonomy, which is allowing a robot to execute a sequence of instructions without intervention from a remote human-occupied location. These instructions may be packaged at the remote station in a script and uplinked to the robot for execution upon remote command giving authority to proceed. Alternately, the instructions may be generated by Artificial Intelligence (AI) logic onboard the robot. In either case, the remote operator maintains the ability to abort an instruction or script at any time, as well as the ability to intervene using manual override to teleoperate the robot.In one embodiment, a vehicle used for carrying out the method of this invention comprises an ejection module, which includes the robot, and a de-orbit module. Once servicing is completed by the robot, the ejection module separates from the de-orbit module, leaving the de-orbit module attached to the satellite for de-orbiting the same at a future time. Upon separation, the ejection module can either de-orbit itself or rendezvous with another satellite for servicing. The ability to de-orbit a spacecraft further allows the opportunity to direct the landing of the spent satellite in a safe location away from population centers, such as the ocean.

  15. Commandant Instructions 3710.5: Aircraft Employment Standards

    DOT National Transportation Integrated Search

    1997-03-14

    Three enclosures provide guidelines for aircraft employment to operational : commanders and planning staffs for derivation of the standards and definitions : of the terms used, listings of standards as they are applied to each Air Station, and gives ...

  16. Cliffbot Maestro

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Powell, Mark W.; Fox, Jason M.; Crockett, Thomas M.; Joswig, Joseph C.

    2009-01-01

    Cliffbot Maestro permits teleoperation of remote rovers for field testing in extreme environments. The application user interface provides two sets of tools for operations: stereo image browsing and command generation.

  17. The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations

    NASA Technical Reports Server (NTRS)

    Hansen, E. R.; Bruner, E. C., Jr.

    1979-01-01

    The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.

  18. NHD, riverspill, and the development of the incident command tool for drinking water protection.

    Treesearch

    William B. Samuels; Rakesh Bahadur; Michael C. Monteith; David E. Amstutz; Jonathan M. Pickus; Katherine Parker; Douglas Ryan

    2006-01-01

    This project involved the development of an information tool that gives Incident Commanders the critical information they need to make informed decisions regarding the consequences of threats to public water supply intakes.

  19. Software Development for Remote Control and Firing Room Displays

    NASA Technical Reports Server (NTRS)

    Zambrano Pena, Jessica

    2014-01-01

    The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.

  20. Defying Unjust Authority: An Exploratory Study

    PubMed Central

    Zimbardo, Philip G.

    2010-01-01

    This research explores the psychological factors potentially involved in fostering disobedience to an unjust authority. Our paradigm was modeled after that of the Utrecht Studies on Obedience (Meeus and Raaijmakers European Journal of Social Psychology 16:311-324, 1986) in which participants are ordered to give each of 15 increasingly hostile comments to a participant/victim whenever he fails a trial. Although 30% of our sample followed commands to insult the other participant (confederate), the majority did refuse to do so at some point in the escalating hostility sequence. Our procedure utilized conditions known from prior research to increase the ratio of disobedience to obedience: proximity of teacher to learner plus remote authority. In order to better understand some of the cognitive and affective processes that may predict such defiant behaviour, we utilized a variety of measures, among them, behavioural observations, individual difference assessments, and in depth post-experimental interviews. PMID:20461226

  1. Defying Unjust Authority: An Exploratory Study.

    PubMed

    Bocchiaro, Piero; Zimbardo, Philip G

    2010-06-01

    This research explores the psychological factors potentially involved in fostering disobedience to an unjust authority. Our paradigm was modeled after that of the Utrecht Studies on Obedience (Meeus and Raaijmakers European Journal of Social Psychology 16:311-324, 1986) in which participants are ordered to give each of 15 increasingly hostile comments to a participant/victim whenever he fails a trial. Although 30% of our sample followed commands to insult the other participant (confederate), the majority did refuse to do so at some point in the escalating hostility sequence. Our procedure utilized conditions known from prior research to increase the ratio of disobedience to obedience: proximity of teacher to learner plus remote authority. In order to better understand some of the cognitive and affective processes that may predict such defiant behaviour, we utilized a variety of measures, among them, behavioural observations, individual difference assessments, and in depth post-experimental interviews.

  2. Touch sensors and control.

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Description of the equipment employed and results obtained in experiments with tactile feedback and different levels of automatic control. In the experiments described tactile feedback was investigated by incorporating a touch sensing and touch display system into a teleoperator, while the levels of automatic control were investigated by incorporating supervisory control features in the teleoperator control system. In particular, a hand contact system which senses and reproduces to the operator the contact between the end-effector and the object being touched or manipulated is described, as well as a jaw contact system which senses and reproduces to the operator the shape and location of the object held in the remote jaws, and an arm control system consisting of a control station where the operator controls the motion of the arm by transmitting commands, a remote station that accepts the commands and uses them, and a communications link that limits information flow. In addition, an algorithmic language for remote manipulation is described, and the desired features that an automatic arm controller should possess are reviewed.

  3. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, Daniel A.; Moss, William C.; Valk, Theodore C.; Conder, Alan D.

    1995-01-01

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch.

  4. Design and Realization of Silhouette Operation Platform Based on GIS

    NASA Astrophysics Data System (ADS)

    Fu, Jia; Cui, Xinqiang; Yuan, Zhengteng

    2018-01-01

    Artificial weather effects after several generations of unremitting efforts in many provinces, municipalities and districts have become a regular business to serve the community. In the actual operation of the actual impact of weather operations, onsite job terminal system functional integration is not high, such as the operation process cumbersome operation instructions unreasonable, the weather data lag, the data form of a single factor and other factors seriously affect the weather conditions, Sexual and intuitive improvement. Therefore, this paper adopts the Android system as the carrier for the design and implementation of the silhouette intelligent terminal system. The intelligent terminal system has carried on the preliminary deployment trial in the real-time intelligent command system which realizes the weather operation in a province, and has formed a centralized, unified and digital artificial influence in combination with the self-developed multi-function server system platform and the remote centre command system Weather operation communication network, to achieve intelligent terminal and remote centre commander between the efficient, timely and stable information exchange, improve the shadow of the economic and social benefits, basically reached the initial design purpose.

  5. SCORPION persistent surveillance system with universal gateway

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jon; Winters, Michael; Belesi, Joe

    2008-04-01

    This paper addresses benefits derived from the universal gateway utilized in Northrop Grumman Systems Corporation's (NGSC) SCORPION, a persistent surveillance and target recognition system produced by the Xetron campus in Cincinnati, Ohio. SCORPION is currently deployed in Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). The SCORPION universal gateway is a flexible, field programmable system that provides integration of over forty Unattended Ground Sensor (UGS) types from a variety of manufacturers, multiple visible and thermal electro-optical (EO) imagers, and numerous long haul satellite and terrestrial communications links, including the Army Research Lab (ARL) Blue Radio. Xetron has been integrating best in class sensors with this universal gateway to provide encrypted data exfiltration and remote sensor command and control since 1998. SCORPION data can be distributed point to point, or to multiple Common Operational Picture (COP) systems, including Command and Control Personal Computer (C2PC), Common Data Interchange Format for the Situational Awareness Display (CDIF/SAD), Force XXI Battle Command Brigade and Below (FBCB2), Defense Common Ground Systems (DCGS), and Remote Automated Position Identification System (RAPIDS).

  6. Remote Data Exploration with the Interactive Data Language (IDL)

    NASA Technical Reports Server (NTRS)

    Galloy, Michael

    2013-01-01

    A difficulty for many NASA researchers is that often the data to analyze is located remotely from the scientist and the data is too large to transfer for local analysis. Researchers have developed the Data Access Protocol (DAP) for accessing remote data. Presently one can use DAP from within IDL, but the IDL-DAP interface is both limited and cumbersome. A more powerful and user-friendly interface to DAP for IDL has been developed. Users are able to browse remote data sets graphically, select partial data to retrieve, import that data and make customized plots, and have an interactive IDL command line session simultaneous with the remote visualization. All of these IDL-DAP tools are usable easily and seamlessly for any IDL user. IDL and DAP are both widely used in science, but were not easily used together. The IDL DAP bindings were incomplete and had numerous bugs that prevented their serious use. For example, the existing bindings did not read DAP Grid data, which is the organization of nearly all NASA datasets currently served via DAP. This project uniquely provides a fully featured, user-friendly interface to DAP from IDL, both from the command line and a GUI application. The DAP Explorer GUI application makes browsing a dataset more user-friendly, while also providing the capability to run user-defined functions on specified data. Methods for running remote functions on the DAP server were investigated, and a technique for accomplishing this task was decided upon.

  7. Designing, Testing, and Using Command, Control, Communications, Computers, and Intelligence (C4I) Systems: What Causes the Disconnects and What Can be Done About Them?

    DTIC Science & Technology

    1994-06-28

    developing Unmanned Aerial Vehicles, not for military use, but for civilian use3, such as remote news coverage and remote tourism by broadcasting live...Interoperability, and Integration of (’ommand, (Control, (’ ommunications , Computers, and Intelligence Systems. CJCS Instruction no. 6212.01, Washington, D.C.: U.S

  8. Fiber-Coupled Acousto-Optical-Filter Spectrometer

    NASA Technical Reports Server (NTRS)

    Levin, Kenneth H.; Li, Frank Yanan

    1993-01-01

    Fiber-coupled acousto-optical-filter spectrometer steps rapidly through commanded sequence of wavelengths. Sample cell located remotely from monochromator and associated electronic circuitry, connected to them with optical fibers. Optical-fiber coupling makes possible to monitor samples in remote, hazardous, or confined locations. Advantages include compactness, speed, and no moving parts. Potential applications include control of chemical processes, medical diagnoses, spectral imaging, and sampling of atmospheres.

  9. Plan execution monitoring with distributed intelligent agents for battle command

    NASA Astrophysics Data System (ADS)

    Allen, James P.; Barry, Kevin P.; McCormick, John M.; Paul, Ross A.

    2004-07-01

    As military tactics evolve toward execution centric operations the ability to analyze vast amounts of mission relevant data is essential to command and control decision making. To maintain operational tempo and achieve information superiority we have developed Vigilant Advisor, a mobile agent-based distributed Plan Execution Monitoring system. It provides military commanders with continuous contingency monitoring tailored to their preferences while overcoming the network bandwidth problem often associated with traditional remote data querying. This paper presents an overview of Plan Execution Monitoring as well as a detailed view of the Vigilant Advisor system including key features and statistical analysis of resource savings provided by its mobile agent-based approach.

  10. A graphical, rule based robotic interface system

    NASA Technical Reports Server (NTRS)

    Mckee, James W.; Wolfsberger, John

    1988-01-01

    The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.

  11. Wireless Telemetry and Command (T and C) Program

    NASA Technical Reports Server (NTRS)

    Jiang, Hui; Horan, Stephen

    2000-01-01

    The Wireless Telemetry and Command (T&C) program is to investigate methods of using commercial telecommunications service providers to support command and telemetry services between a remote user and a base station. While the initial development is based on ground networks, the development is being done with an eye towards future space communications needs. Both NASA and the Air Force have indicated a plan to consider the use of commercial telecommunications providers to support their space missions. To do this, there will need to be an understanding of the requirements and limitations of interfacing with the commercial providers. The eventual payoff will be the reduced operations cost and the ability to tap into commercial services being developed by the commercial networks. This should enable easier realization of EP services to the end points, commercial routing of data, and quicker integration of new services into the space mission operations. Therefore, the ultimate goal of this program is not just to provide wireless radio communications for T&C services but to enhance those services through wireless networking and provider enhancements that come with the networks. In the following chapters, the detailed technical procedure will be showed step by step. Chapter 2 will talk about the general idea of simulation as well as the implementation of data acquisition including sensor array data and GPS data. Chapter 3 will talk about how to use LabVEEW and Component Works to do wireless communication simulation and how to distribute the real-time information over the Internet by using Visual Basic and ActiveX controls. Also talk about the test configuration and validation. Chapter 4 will show the test results both from In-Lab test and Networking Test. Chapter 5 will summarize the whole procedure and give the perspective for the future consideration.

  12. STS-47 Astronaut Crew at Pad B for TCDT, Emergency Egress Training, and Photo Opportunity

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The crew of STS-47, Commander Robert L. Gibson, Pilot Curtis L. Brown, Payload Commander Mark C. Lee, Mission Specialists N. Jan Davis, Jay Apt, and Mae C. Jemison, and Payload Specialist Mamoru Mohri are seen during emergency egress training. Then Commander Gibson introduces the members of the crew and they each give a brief statement about the mission and answer questions from the press.

  13. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  14. Staged venting of fuel cell system during rapid shutdown

    DOEpatents

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  15. Compact self-contained electrical-to-optical converter/transmitter

    DOEpatents

    Seligmann, D.A.; Moss, W.C.; Valk, T.C.; Conder, A.D.

    1995-11-21

    A first optical receiver and a second optical receiver are provided for receiving a calibrate command and a power switching signal, respectively, from a remote processor. A third receiver is provided for receiving an analog electrical signal from a transducer. A calibrator generates a reference signal in response to the calibrate command. A combiner mixes the electrical signal with the reference signal to form a calibrated signal. A converter converts the calibrated signal to an optical signal. A transmitter transmits the optical signal to the remote processor. A primary battery supplies power to the calibrator, the combiner, the converter, and the transmitter. An optically-activated switch supplies power to the calibrator, the combiner, the converter, and the transmitter in response to the power switching signal. An auxiliary battery supplies power continuously to the switch. 13 figs.

  16. Pulsar Search Results from the Arecibo Remote Command Center

    NASA Astrophysics Data System (ADS)

    Rodriguez, Miguel; Stovall, Kevin; Banaszak, Shawn A.; Becker, Alison; Biwer, Christopher M.; Boehler, Keith; Caballero, Keeisi; Christy, Brian; Cohen, Stephanie; Crawford, Fronefield; Cuellar, Andres; Danford, Andrew; Percy Dartez, Louis; Day, David; Flanigan, Joseph D.; Fonrouge, Aldo; Gonzalez, Adolfo; Gustavson, Kathy; Handzo, Emma; Hinojosa, Jesus; Jenet, Fredrick A.; Kaplan, David L. A.; Lommen, Andrea N.; Longoria, Chasity; Lopez, Janine; Lunsford, Grady; Mahany, Nicolas; Martinez, Jose; Mata, Alberto; Miller, Andy; Murray, James; Pankow, Chris; Ramirez, Ivan; Reser, Jackie; Rojas, Pablo; Rohr, Matthew; Rolph, Kristina; Rose, Caitlin; Rudnik, Philip; Siemens, Xavier; Tellez, Andrea; Tillman, Nicholas; Walker, Arielle; Wells, Bradley L.; Zaldivar, Jonathan; Zermeno, Adrienne; Gbncc Consortium, Palfa Consortium, Gbtdrift Consortium, Ao327 Consortium

    2015-01-01

    This poster presents the pulsar discoveries made by students in the Arecibo Remote Command Center (ARCC) program. The ARCC program was started at the University of Texas - Brownsville (UTB) within the Center for Advanced Radio Astronomy (CARA) as a group of scientists, faculty, graduate, undergraduate, and high school students interested in astrophysics. It has since expanded to form other ARCC programs at the University of Wisconsin-Milwaukee (UWM) and Franklin and Marshall College (F&M). The students in the ARCC group control the world's largest radio telescopes to search and discover pulsars. Pulsars are exotic neutron stars that emit beams of electromagnetic radiation. ARCC students use a web application to view and rate the images of radio pulsar candidates based on their signal characteristics. To date, ARCC students have searched through thousands of candidates and have discovered 61 pulsars to date.

  17. Rapid deployable global sensing hazard alert system

    DOEpatents

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  18. Design and engineering analysis of material procurement mobile operation platform

    NASA Astrophysics Data System (ADS)

    Ding, H.; Li, J.

    2014-03-01

    The material procurement mobile operation platform (MPMOP) consists of six modules, including network operation, truck transportation, remote communication, satellite positioning, power supply and environment regulation. The MPMOP is designed to have six major functions, including online procurement, command control, remote communication, satellite positioning, information management and auxiliary decision. The paper implements an engineering analysis on the MPMOP from three aspects, including transportation transfinite, centroid, and power dissipation.

  19. The antisaccade task: visual distractors elicit a location-independent planning 'cost'.

    PubMed

    DeSimone, Jesse C; Everling, Stefan; Heath, Matthew

    2015-01-01

    The presentation of a remote - but not proximal - distractor concurrent with target onset increases prosaccade reaction times (RT) (i.e., the remote distractor effect: RDE). The competitive integration model asserts that the RDE represents the time required to resolve the conflict for a common saccade threshold between target- and distractor-related saccade generating commands in the superior colliculus. To our knowledge however, no previous research has examined whether remote and proximal distractors differentially influence antisaccade RTs. This represents a notable question because antisaccades require decoupling of the spatial relations between stimulus and response (SR) and therefore provide a basis for determining whether the sensory- and/or motor-related features of a distractor influence response planning. Participants completed pro- and antisaccades in a target-only condition and conditions wherein the target was concurrently presented with a proximal or remote distractor. As expected, prosaccade RTs elicited a reliable RDE. In contrast, antisaccade RTs were increased independent of the distractor's spatial location and the magnitude of the effect was comparable across each distractor location. Thus, distractor-related antisaccade RT costs are not accounted for by a competitive integration between conflicting saccade generating commands. Instead, we propose that a visual distractor increases uncertainty related to the evocation of the response-selection rule necessary for decoupling SR relations.

  20. The Three Wars of Lt. Gen. George E. Stratemeyer. His Korean War Diary

    DTIC Science & Technology

    1999-01-01

    Powers (SCAP), he exercised command over all occupation forces and, in essence , ruled Japan; as Commander-in-Chief, Far East Command (CINCFE), he exercised... essence , he was attempting to make national policy himself and was giving the Chinese an ultimatum that the war would be extended to their mainland...LT. GEN. GEORGE E. STRATEMEYER : HIS KOREAN WAR DIARY 45. The Sykes report was, in essence , General Stratemeyer’s diary entries for those dates with

  1. Astronaut David Scott gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11863 (1 Aug. 1971) --- Astronaut David R. Scott, commander, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM), "Falcon," is partially visible on the right. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about three statue miles) away. This photograph was taken by astronaut James B. Irwin, lunar module pilot. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained in lunar orbit in the Command and Service Modules (CSM).

  2. RPCM R&R

    NASA Image and Video Library

    2011-10-17

    ISS029-E-029712 (17 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, performs in-flight maintenance (IFM) of removing and replacing the failed Remote Power Controller Module (RPCM) equipment in the Destiny laboratory of the International Space Station.

  3. Command and data handling of science signals on Spacelab

    NASA Technical Reports Server (NTRS)

    Mccain, H. G.

    1975-01-01

    The Orbiter Avionics and the Spacelab Command and Data Management System (CDMS) combine to provide a relatively complete command, control, and data handling service to the instrument complement during a Shuttle Sortie Mission. The Spacelab CDMS services the instruments and the Orbiter in turn services the Spacelab. The CDMS computer system includes three computers, two I/O units, a mass memory, and a variable number of remote acquisition units. Attention is given to the CDMS high rate multiplexer, CDMS tape recorders, closed circuit television for the visual monitoring of payload bay and cabin area activities, methods of science data acquisition, questions of transmission and recording, CDMS experiment computer usage, and experiment electronics.

  4. Design of a command, communications, and control van (surrogate)

    NASA Astrophysics Data System (ADS)

    Holder, J. Darryl; Fishback, Jerome

    1989-03-01

    This report describes the design, construction, and checkout of a radio and telephone multi-mode communications hub. This unit is to serve as a surrogate for a command, control, and communications van which is to be used in support of a special series of testing at a remote site. This unit is assembled in a military four-wheel van and has a crew of a commander and three operators. Radio communications monitoring can be performed in all popular modes of transmission from 50 KHz to 2 GHz and transmission can be performed on selected frequencies in the 40-meter, 6-meter, and 2-meter bands. Both voice and digital (teletype, packet, facsimile, etc.) communications are supported.

  5. McArthur in Destiny laboratory

    NASA Image and Video Library

    2005-10-05

    ISS011-E-14120 (5 October 2005) --- Astronaut William S. McArthur, Jr., Expedition 12 commander and NASA science officer, works with Space Station Remote Manipulator System or Canadarm2 controls located in the Destiny lab, while sharing duty time with the Expedition 11 crewmembers on the international space station. The Expedition 11 crew of cosmonaut Sergei K. Krikalev of Russia's Federal Space Agency, commander, and astronaut John L. Phillips, flight engineer and NASA science officer, along with spaceflight participant Greg Olsen, will be returning to Earth early next week.

  6. A flexible computerized system for environmental data acquisition and transmission

    NASA Astrophysics Data System (ADS)

    Zappalà, G.

    2009-04-01

    In recent years increasing importance has been addressed to the knowledge of the marine environment, either to help detecting and understanding global climate change phenomena, or to protect and preserve those coastal areas, where multiple interests converge (linked to the tourism, recreational or productive activities…) and which suffer greater impact from anthropogenic activities; this has in turn stimulated the start of research programs devoted to the monitoring and surveillance of these particular zones, coupling the needs for knowledge, sustainable development and exploitation of natural resources. There is an increasing need to have data available in real time or near real time in order to intervene in emergency situations. Cabled or wireless data transmission can be used. The first allows the transmission of a higher amount of data only in coastal sites, while the second gives a bigger flexibility in terms of application to different environments; more, using mobile phone services (either terrestrial or satellite), it is possible to allocate the data centre in the most convenient place, without any need of proximity to the sea. Traditional oceanographic techniques, based on ship surveys, hardly fit the needs of operational oceanography, because of their high cost and fragmentary nature, both in spatial and temporal domains. To obtain a good synopticity, it is necessary to complement traditional ship observations with measurements from fixed stations (buoys moored in sites chosen to be representative of wider areas, or to constitute a sentinel against the arrival of pollutants), satellite observations, use of ships of opportunity and of newly developed instruments, like the gliders, or towed sliding devices, like the SAVE. Modern instruments rely on an electronic heart; an integrated hardware-software system developed in Messina is here presented, used in various versions to control data acquisition and transmission on buoys or on ship-based instrumentation. The data acquisition and transmission system is based on IEEE P996.1 standard boards, implementing a PC-like architecture; basically, it consists in a Pentium family CPU (the fist prototypes used a 40 MHz 386 CPU), a variable number of RS-232 ports to connect measuring instruments and communication devices, an analog to digital converter (8 inputs 12 or 16 bit), power outputs with connected circuit status feedback to drive actuators and switch on and off the measuring systems, satellite and/or cellular phone modem, GPS; the mass storage is supplied by Disk on Chip (DOC) devices. According to the needs, it can be fully or only partly implemented. The software environment is Datalight ROMDOS v. 6, an MS-DOS compatible Operating System. The software has been written in Microsoft Professional Compiled BASIC v. 7.1. and Microsoft Macro Assembler v. 5.0. It enables to fully control the system instruments both in local and remote mode using a special set of macro commands (that can be combined into sequences using a simple text editor) that include also conditional execution of branches; this feature can be very useful in case of partial operativity of the system due, for instance, to low battery level or failure of some instrument. Available commands include: • System management commands • Instrument management commands • Conditional branch commands • Data transmission commands Collected data are locally stored and can be transmitted as e-mails, so increasing their safety against loosing and making the global data path fault tolerant using the peculiarities of the e-mail system. The first version was used in a network of coastal monitoring buoys funded by the Italian SAM program; a second one to equip an automatic multiple launcher for expendable probes to be used in ships of opportunity, designed and built in the framework of an EU funded program, "MFSTEP". Every hour, a "sequence manager" starts a macro-command sequence, that can be different for each time and is remotely reprogrammable; new releases of the software and of the sequences are uploadable to the station without suspending its normal activity. The macro-commands enable to manage the data acquisition and transmission, the mission programming, the station hardware and the measuring instruments. In the "launcher" version the program also controls real time and position acquisition, comparison against set points-times, launch, data acquisition and transmission, ancillary functions. The whole system can be connected to another computer (local laptop or remote desktop) using a terminal software; however, to fully and easily use its capabilities, a remote control program has been written in Microsoft Visual Basic, running in Windows environment. This program enables to transfer files to and from the measuring system, set up all its functionalities, and, if needed, take control of all the system operations. Thanks to the PC-like hardware architecture, it is easy to upgrade the system to more powerful processors without the need to modify the software, which, in turn, can be easily programmed using standard development packages.

  7. Marshburn gives Hadfield a Haircut in Node 1

    NASA Image and Video Library

    2013-04-07

    Expedition 35 flight engineer Tom Marshburn gives commander Chris Hadfield a haircut (using clippers attached to a vacuum hose) in the Unity Node 1. Hadfield (a Canadian Space Agency astronaut) has a temperature sensor taped to his forehead.

  8. An Introduction to Sked

    NASA Technical Reports Server (NTRS)

    Gipson, John

    2010-01-01

    In this note I give an overview of the VLBI scheduling software sked. I describe some of the algorithms used in automatic scheduling and some sked commands which have been introduced at users requests. I also give a cookbook for generating some schedules.

  9. Sturckow gives the thumbs up in the Node 1

    NASA Image and Video Library

    2007-06-21

    S117-E-09480 (17 June 2007) --- Astronaut Rick Sturckow, STS-117 commander, gives a "thumbs-up" signal after placing the STS-117 mission insignia along with others in the Unity node of the International Space Station.

  10. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Cornelius, Randy; Frank, Jeremy; Garner, Larry; Haddock, Angie; Stetson, Howard; Wang, Lui

    2015-01-01

    The Autonomous Mission Operations project is investigating crew autonomy capabilities and tools for deep space missions. Team members at Ames Research Center, Johnson Space Center and Marshall Space Flight Center are using their experience with ISS Payload operations and TIMELINER to: move earth based command and control assets to on-board for crew access; safely merge core and payload command procedures; give the crew single action intelligent operations; and investigate crew interface requirements.

  11. U.S. Army Medical Department Journal, July-September 2005

    DTIC Science & Technology

    2005-09-01

    problems exposed by the press in Oct 03, Fort Lewis formalized Remote Care the Remote Care Program with protocols agreed by senior level commanders...workload of MAMC, like most of the formal work of the case management practice to identify key AMEDD, has not decreased with combat deployments and, in...and return to SRCMP within 72 hours, receive a formal case couches with sitting and standing Soldiers drinking coffee and number, Case Manager, and

  12. Marshall Space Flight Center Telescience Resource Kit

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Telescience Resource Kit (TReK) is a suite of software applications that can be used to monitor and control assets in space or on the ground. The Telescience Resource Kit was originally developed for the International Space Station program. Since then it has been used to support a variety of NASA programs and projects including the WB-57 Ascent Vehicle Experiment (WAVE) project, the Fast Affordable Science and Technology Satellite (FASTSAT) project, and the Constellation Program. The Payloads Operations Center (POC), also known as the Payload Operations Integration Center (POIC), provides the capability for payload users to operate their payloads at their home sites. In this environment, TReK provides local ground support system services and an interface to utilize remote services provided by the POC. TReK provides ground system services for local and remote payload user sites including International Partner sites, Telescience Support Centers, and U.S. Investigator sites in over 40 locations worldwide. General Capabilities: Support for various data interfaces such as User Datagram Protocol, Transmission Control Protocol, and Serial interfaces. Data Services - retrieve, process, record, playback, forward, and display data (ground based data or telemetry data). Command - create, modify, send, and track commands. Command Management - Configure one TReK system to serve as a command server/filter for other TReK systems. Database - databases are used to store telemetry and command definition information. Application Programming Interface (API) - ANSI C interface compatible with commercial products such as Visual C++, Visual Basic, LabVIEW, Borland C++, etc. The TReK API provides a bridge for users to develop software to access and extend TReK services. Environments - development, test, simulations, training, and flight. Includes standalone training simulators.

  13. Astronaut James Irwin gives salute beside U.S. flag during EVA

    NASA Image and Video Library

    1971-08-01

    AS15-88-11866 (1 Aug. 1971) --- Astronaut James B. Irwin, lunar module pilot, gives a military salute while standing beside the deployed United States flag during the Apollo 15 lunar surface extravehicular activity (EVA) at the Hadley-Apennine landing site. The flag was deployed toward the end of EVA-2. The Lunar Module (LM) "Falcon" is in the center. On the right is the Lunar Roving Vehicle (LRV). This view is looking almost due south. Hadley Delta in the background rises approximately 4,000 meters (about 13,124 feet) above the plain. The base of the mountain is approximately 5 kilometers (about 3 statute miles) away. This photograph was taken by astronaut David R. Scott, Apollo 15 commander. While astronauts Scott and Irwin descended in the LM to explore the moon, astronaut Alfred M. Worden, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaver, Justin M; Borges, Raymond Charles; Buckner, Mark A

    Critical infrastructure Supervisory Control and Data Acquisition (SCADA) systems were designed to operate on closed, proprietary networks where a malicious insider posed the greatest threat potential. The centralization of control and the movement towards open systems and standards has improved the efficiency of industrial control, but has also exposed legacy SCADA systems to security threats that they were not designed to mitigate. This work explores the viability of machine learning methods in detecting the new threat scenarios of command and data injection. Similar to network intrusion detection systems in the cyber security domain, the command and control communications in amore » critical infrastructure setting are monitored, and vetted against examples of benign and malicious command traffic, in order to identify potential attack events. Multiple learning methods are evaluated using a dataset of Remote Terminal Unit communications, which included both normal operations and instances of command and data injection attack scenarios.« less

  15. Launch flexibility using NLP guidance and remote wind sensing

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  16. Conjugate-Gradient Neural Networks in Classification of Multisource and Very-High-Dimensional Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Benediktsson, J. A.; Swain, P. H.; Ersoy, O. K.

    1993-01-01

    Application of neural networks to classification of remote sensing data is discussed. Conventional two-layer backpropagation is found to give good results in classification of remote sensing data but is not efficient in training. A more efficient variant, based on conjugate-gradient optimization, is used for classification of multisource remote sensing and geographic data and very-high-dimensional data. The conjugate-gradient neural networks give excellent performance in classification of multisource data, but do not compare as well with statistical methods in classification of very-high-dimentional data.

  17. Apollo 11 Facts Project [EVA Training/Washington, D. C. Tour

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage shows the crew of Apollo 11, Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin Jr., and Command Module Pilot Michael Collins, during various pre-mission activities. They are seen training for the extravehicular activity on the surface of the Moon, giving speeches in front of the White House, and during a parade in Houston.

  18. Remote observing capability with Subaru Telescope

    NASA Astrophysics Data System (ADS)

    Kosugi, George; Sasaki, Toshiyuki; Yagi, Masafumi; Ogasawara, Ryusuke; Mizumoto, Yoshihiko; Noumaru, Junichi; Kawai, Jun A.; Koura, Norikazu; Kusumoto, Toyoaki; Yamamoto, Tadahiro; Watanabe, Noboru; Ukawa, Kentaro

    2004-09-01

    We've implemented remote observing function to Subaru telescope Observation Software system (SOSs). Subaru telescope has three observing-sites, i.e., a telescope local-site and two remote observing-sites, Hilo base facility in Hawaii and Mitaka NAOJ headquarter in Japan. Our remote observing system is designed to allow operations not only from one of three observing-sites, but also from more than two sites concurrently or simultaneously. Considering allowance for delay in observing operations and a bandwidth of the network between the telescope-site and the remote observing-sites, three types of interfaces (protocols) have been implemented. In the remote observing mode, we use socket interface for the command and the status communication, vnc for ready-made applications and pop-up windows, and ftp for the actual data transfer. All images taken at the telescope-site are transferred to both of two remote observing-sites immediately after the acquisition to enable the observers' evaluation of the data. We present the current status of remote observations with Subaru telescope.

  19. Particle Cooler/Generator Module in the MRM1

    NASA Image and Video Library

    2014-01-13

    ISS038-E-029767 (13 Jan. 2014) --- Russian cosmonaut Oleg Kotov, Expedition 38 commander, uses the Remote Control Panel for the Kaplya-2 experiment in the Rassvet Mini-Research Module 1 (MRM1) of the International Space Station.

  20. Studies to design and develop improved remote manipulator systems

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Remote manipulator control considered is based on several levels of automatic supervision which derives manipulator commands from an analysis of sensor states and task requirements. Principle sensors are manipulator joint position, tactile, and currents. The tactile sensor states can be displayed visually in perspective or replicated in the operator's control handle of perceived by the automatic supervisor. Studies are reported on control organization, operator performance and system performance measures. Unusual hardware and software details are described.

  1. The Nose Knows: Developing Advanced Chemical Sensors for the Remote Detection of Improvised Explosive Devices in 2030

    DTIC Science & Technology

    2009-04-01

    noses”, High Frequency Quartz Crystal Microbalance (HF- QCM ), and fluorescent polymer based sensors . The combination of the chemical binding of molecules...nose and uses HF- QCM technology. The hand-held product consists of a sampling unit and analyzer and contains an array of sensors and coatings which...i AU/ACSC/2763/2008-09 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY THE NOSE KNOWS: DEVELOPING ADVANCED CHEMICAL SENSORS FOR THE REMOTE

  2. Evolving technologies for Space Station Freedom computer-based workstations

    NASA Technical Reports Server (NTRS)

    Jensen, Dean G.; Rudisill, Marianne

    1990-01-01

    Viewgraphs on evolving technologies for Space Station Freedom computer-based workstations are presented. The human-computer computer software environment modules are described. The following topics are addressed: command and control workstation concept; cupola workstation concept; Japanese experiment module RMS workstation concept; remote devices controlled from workstations; orbital maneuvering vehicle free flyer; remote manipulator system; Japanese experiment module exposed facility; Japanese experiment module small fine arm; flight telerobotic servicer; human-computer interaction; and workstation/robotics related activities.

  3. Malenchenko and Lu in Pirs Docking Compartment (DC-1) module

    NASA Image and Video Library

    2003-10-20

    ISS007-E-17761 (20 October 2003) --- The Expedition 7 crewmembers, cosmonaut Yuri I. Malenchenko, mission commander representing Rosaviakosmos; and astronaut Edward T. Lu, NASA ISS science officer and flight engineer, pose for a photo by a camera triggered for a change by something other than auto-set or remote means. The photographer in this case was one of the newly arrived Expedition 8 crewmembers, astronaut C. Michael Foale, American commander and NASA ISS science officer and cosmonaut Alexander Kaleri, Russian flight engineer and Soyuz commander; or possibly European Space Agency astronaut Pedro Duque, who joined the Expedition 8 crew for the trip "up" and who will return to Earth on Oct. 28 with the Expedition 7 crew.

  4. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  5. Monitoring and Controlling an Underwater Robotic Arm

    NASA Technical Reports Server (NTRS)

    Haas, John; Todd, Brian Keith; Woodcock, Larry; Robinson, Fred M.

    2009-01-01

    The SSRMS Module 1 software is part of a system for monitoring an adaptive, closed-loop control of the motions of a robotic arm in NASA s Neutral Buoyancy Laboratory, where buoyancy in a pool of water is used to simulate the weightlessness of outer space. This software is so named because the robot arm is a replica of the Space Shuttle Remote Manipulator System (SSRMS). This software is distributed, running on remote joint processors (RJPs), each of which is mounted in a hydraulic actuator comprising the joint of the robotic arm and communicating with a poolside processor denoted the Direct Control Rack (DCR). Each RJP executes the feedback joint-motion control algorithm for its joint and communicates with the DCR. The DCR receives joint-angular-velocity commands either locally from an operator or remotely from computers that simulate the flight like SSRMS and perform coordinated motion calculations based on hand-controller inputs. The received commands are checked for validity before they are transmitted to the RJPs. The DCR software generates a display of the statuses of the RJPs for the DCR operator and can shut down the hydraulic pump when excessive joint-angle error or failure of a RJP is detected.

  6. Remote gaming on resource-constrained devices

    NASA Astrophysics Data System (ADS)

    Reza, Waazim; Kalva, Hari; Kaufman, Richard

    2010-08-01

    Games have become important applications on mobile devices. A mobile gaming approach known as remote gaming is being developed to support games on low cost mobile devices. In the remote gaming approach, the responsibility of rendering a game and advancing the game play is put on remote servers instead of the resource constrained mobile devices. The games rendered on the servers are encoded as video and streamed to mobile devices. Mobile devices gather user input and stream the commands back to the servers to advance game play. With this solution, mobile devices with video playback and network connectivity can become game consoles. In this paper we present the design and development of such a system and evaluate the performance and design considerations to maximize the end user gaming experience.

  7. Man-Machine Communication in Remote Manipulation: Task-Oriented Supervisory Command Language (TOSC).

    DTIC Science & Technology

    1980-03-01

    ORIENTED SUPERVISORY CONTROL SYSTEM METHODOLOGY 3-1 3.1 Overview 3-1 3.2 Background 3-3 3.2.1 General 3-3 3.2.2 Preliminary Principles of Command Language...Design 3-4 3.2.3 Preliminary Principles of Feedback Display Design 3-9 3.3 Man-Machine Communication Models 3-12 3.3.1 Background 3-12 3.3.2 Adapted...and feedback mode. The work ends with the presentation of a performance prediction model and a set of principles and guidelines, applicable to the

  8. The Galileo Orbiter - Command and telemetry subsystems on their way to Jupiter

    NASA Astrophysics Data System (ADS)

    Erickson, James K.

    1990-09-01

    An overview is given of the Galileo command and telemetry subsystems, which exemplify the rigid time-synchronized systems required by TDM (time division multiplexing). The spacecraft clock is examined, along with some of the rationale for the development of the clock structure and timing to give a sense of the design imperatives for rigidly synchronized systems. Additional subjects include the structure of the science and engineering frames, emphasizing the subcommutated structure of the engineering frame and its relationship to the spacecraft clock; ground processing for and basic uses of the telemetry; the various message types used to transmit commands to the spacecraft; and the generation processes for the command message types.

  9. RPCM R&R

    NASA Image and Video Library

    2011-10-17

    ISS029-E-029720 (17 Oct. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, uses a communication system while performing in-flight maintenance (IFM) of removing and replacing the failed Remote Power Controller Module (RPCM) equipment in the Destiny laboratory of the International Space Station.

  10. Apollo 11 Facts Project [On-Orbit Lunar Module Checkout

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Footage is shown of the crew of Apollo 11 (Commander Neil Armstrong, Lunar Module Pilot Edwin Aldrin Jr., and Command Module Pilot Michael Collins) inside the spacecraft as they fly from the Earth to the Moon. The Moon is seen in its entirety and in close detail. Aldrin gives a brief demonstration on how the astronauts eat in space.

  11. General-Purpose Serial Interface For Remote Control

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M.; Gupton, Lawrence E.

    1990-01-01

    Computer controls remote television camera. General-purpose controller developed to serve as interface between host computer and pan/tilt/zoom/focus functions on series of automated video cameras. Interface port based on 8251 programmable communications-interface circuit configured for tristated outputs, and connects controller system to any host computer with RS-232 input/output (I/O) port. Accepts byte-coded data from host, compares them with prestored codes in read-only memory (ROM), and closes or opens appropriate switches. Six output ports control opening and closing of as many as 48 switches. Operator controls remote television camera by speaking commands, in system including general-purpose controller.

  12. Experimental Validation: Subscale Aircraft Ground Facilities and Integrated Test Capability

    NASA Technical Reports Server (NTRS)

    Bailey, Roger M.; Hostetler, Robert W., Jr.; Barnes, Kevin N.; Belcastro, Celeste M.; Belcastro, Christine M.

    2005-01-01

    Experimental testing is an important aspect of validating complex integrated safety critical aircraft technologies. The Airborne Subscale Transport Aircraft Research (AirSTAR) Testbed is being developed at NASA Langley to validate technologies under conditions that cannot be flight validated with full-scale vehicles. The AirSTAR capability comprises a series of flying sub-scale models, associated ground-support equipment, and a base research station at NASA Langley. The subscale model capability utilizes a generic 5.5% scaled transport class vehicle known as the Generic Transport Model (GTM). The AirSTAR Ground Facilities encompass the hardware and software infrastructure necessary to provide comprehensive support services for the GTM testbed. The ground facilities support remote piloting of the GTM aircraft, and include all subsystems required for data/video telemetry, experimental flight control algorithm implementation and evaluation, GTM simulation, data recording/archiving, and audio communications. The ground facilities include a self-contained, motorized vehicle serving as a mobile research command/operations center, capable of deployment to remote sites when conducting GTM flight experiments. The ground facilities also include a laboratory based at NASA LaRC providing near identical capabilities as the mobile command/operations center, as well as the capability to receive data/video/audio from, and send data/audio to the mobile command/operations center during GTM flight experiments.

  13. Integration and Field Trials of a High-Resolution Multi-beam Sonar on the Remote Mine hunting Vehicle Dorado

    DTIC Science & Technology

    2003-12-01

    Minehunting System (RMS), is a semi-submersible, remotely controlled drone designed to tow an actively stabilized sidescan sonar towfish. The multi... comparativement aux véhicules sous-marins autonomes, ils offrent le positionnement DGPS, la commande en temps réel et la télémesure, en plus...minehunting vehicle. The Reson 8125 multi-beam bathymetric sonar is designed to acquire high-resolution (of order cm) bathymetry in a 240- beam swath 120

  14. 32 CFR 750.2 - Investigations: In general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... give rise to a claim against the United States shall include the following: This investigation has been... command where the incident giving rise to the claim is alleged to have happened is responsible for... result in a claim against or in favor of the United States shall be promptly and thoroughly investigated...

  15. C-Command in the Grammars of Children with High Functioning Autism.

    PubMed

    Khetrapal, Neha; Thornton, Rosalind

    2017-01-01

    A recent study questioned the adherence of children with Autism Spectrum Disorders (ASD) to a linguistic constraint on the use of reflexive pronouns (Principle A) in sentences like Bart's dad is touching himself . This led researchers to question whether children with ASD are able to compute the hierarchical structural relationship of c-command, and raised the possibility that the children rely on a linear strategy for reference assignment. The current study investigates the status of c-command in children with ASD by testing their interpretation of sentences like (1) and (2) that tease apart use of c-command and a linear strategy for reference assignment. The girl who stayed up late will not get a dime or a jewel (C-command)The girl who didn't go to sleep will get a dime or a jewel (Non C-command) These examples both contain negation ( not or did n't ) and disjunction ( or ). In (1), negation c-commands the disjunction phrase, yielding a conjunctive entailment. This gives rise to the meaning that the girl who stayed up late won't get a dime and she won't get a jewel. In (2), negation is positioned inside a relative clause and it does not c-command disjunction. Therefore, no conjunctive entailment follows. Thus, (2) is true if the girl just gets a dime or just a jewel, or possibly both. If children with ASD lack c-command, then (1) will not give rise to a conjunctive entailment. In this case, children might rely on a linear strategy for reference assignment. Since negation precedes disjunction in both (1) and (2), they might be interpreted in a similar manner. Likewise, children who show knowledge of c-command should perform well on sentences governed by Principle A. These hypotheses were tested in experiments with 12 Australian children with HFA, aged 5;4 to 12;7, and 12 typically-developing controls, matched on non-verbal IQ. There was no significant difference in the pattern of responses by children with HFA and the control children on either (1) and (2) or the Principle A sentences. The findings provide preliminary support for the proposal that knowledge of c-command and Principle A is intact in HFA children.

  16. C-Command in the Grammars of Children with High Functioning Autism

    PubMed Central

    Khetrapal, Neha; Thornton, Rosalind

    2017-01-01

    A recent study questioned the adherence of children with Autism Spectrum Disorders (ASD) to a linguistic constraint on the use of reflexive pronouns (Principle A) in sentences like Bart's dad is touching himself. This led researchers to question whether children with ASD are able to compute the hierarchical structural relationship of c-command, and raised the possibility that the children rely on a linear strategy for reference assignment. The current study investigates the status of c-command in children with ASD by testing their interpretation of sentences like (1) and (2) that tease apart use of c-command and a linear strategy for reference assignment. The girl who stayed up late will not get a dime or a jewel (C-command)The girl who didn't go to sleep will get a dime or a jewel (Non C-command) These examples both contain negation (not or didn't) and disjunction (or). In (1), negation c-commands the disjunction phrase, yielding a conjunctive entailment. This gives rise to the meaning that the girl who stayed up late won't get a dime and she won't get a jewel. In (2), negation is positioned inside a relative clause and it does not c-command disjunction. Therefore, no conjunctive entailment follows. Thus, (2) is true if the girl just gets a dime or just a jewel, or possibly both. If children with ASD lack c-command, then (1) will not give rise to a conjunctive entailment. In this case, children might rely on a linear strategy for reference assignment. Since negation precedes disjunction in both (1) and (2), they might be interpreted in a similar manner. Likewise, children who show knowledge of c-command should perform well on sentences governed by Principle A. These hypotheses were tested in experiments with 12 Australian children with HFA, aged 5;4 to 12;7, and 12 typically-developing controls, matched on non-verbal IQ. There was no significant difference in the pattern of responses by children with HFA and the control children on either (1) and (2) or the Principle A sentences. The findings provide preliminary support for the proposal that knowledge of c-command and Principle A is intact in HFA children. PMID:28400740

  17. Vying for control of CHAMPUS funds.

    PubMed

    Kenkel, P J

    1991-04-08

    Advocating a "coordinated care" approach to healthcare for military retirees and their dependents, the Pentagon is hoping for a victory in its battle with civilian managed-care contractors for control of CHAMPUS funds. But coordinated care, which would give military hospital commanders the added responsibility of overseeing healthcare spending outside military facilities, has drawn fire from critics who say commanders lack the expertise to run such a program.

  18. Remote water monitoring system

    NASA Technical Reports Server (NTRS)

    Grana, D. C.; Haynes, D. P. (Inventor)

    1978-01-01

    A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis.

  19. Autonomous Vehicles and the Net-Centric Battlespace

    DTIC Science & Technology

    2000-04-01

    Autonomous vehicles are playing increasing roles in the air/land/sea network of today’s battlespace. As the Navy’s lead laboratory for command...including remote sensor platforms, communication relays, and work platforms. As these capabilities are developed autonomous vehicles will become an

  20. Supervised Remote Robot with Guided Autonomy and Teleoperation (SURROGATE): A Framework for Whole-Body Manipulation

    NASA Technical Reports Server (NTRS)

    Hebert, Paul; Ma, Jeremy; Borders, James; Aydemir, Alper; Bajracharya, Max; Hudson, Nicolas; Shankar, Krishna; Karumanchi, Sisir; Douillard, Bertrand; Burdick, Joel

    2015-01-01

    The use of the cognitive capabilties of humans to help guide the autonomy of robotics platforms in what is typically called "supervised-autonomy" is becoming more commonplace in robotics research. The work discussed in this paper presents an approach to a human-in-the-loop mode of robot operation that integrates high level human cognition and commanding with the intelligence and processing power of autonomous systems. Our framework for a "Supervised Remote Robot with Guided Autonomy and Teleoperation" (SURROGATE) is demonstrated on a robotic platform consisting of a pan-tilt perception head, two 7-DOF arms connected by a single 7-DOF torso, mounted on a tracked-wheel base. We present an architecture that allows high-level supervisory commands and intents to be specified by a user that are then interpreted by the robotic system to perform whole body manipulation tasks autonomously. We use a concept of "behaviors" to chain together sequences of "actions" for the robot to perform which is then executed real time.

  1. MicMac GIS application: free open source

    NASA Astrophysics Data System (ADS)

    Duarte, L.; Moutinho, O.; Teodoro, A.

    2016-10-01

    The use of Remotely Piloted Aerial System (RPAS) for remote sensing applications is becoming more frequent as the technologies on on-board cameras and the platform itself are becoming a serious contender to satellite and airplane imagery. MicMac is a photogrammetric tool for image matching that can be used in different contexts. It is an open source software and it can be used as a command line or with a graphic interface (for each command). The main objective of this work was the integration of MicMac with QGIS, which is also an open source software, in order to create a new open source tool applied to photogrammetry/remote sensing. Python language was used to develop the application. This tool would be very useful in the manipulation and 3D modelling of a set of images. The main objective was to create a toolbar in QGIS with the basic functionalities with intuitive graphic interfaces. The toolbar is composed by three buttons: produce the points cloud, create the Digital Elevation Model (DEM) and produce the orthophoto of the study area. The application was tested considering 35 photos, a subset of images acquired by a RPAS in the Aguda beach area, Porto, Portugal. They were used in order to create a 3D terrain model and from this model obtain an orthophoto and the corresponding DEM. The code is open and can be modified according to the user requirements. This integration would be very useful in photogrammetry and remote sensing community combined with GIS capabilities.

  2. FPGA for Power Control of MSL Avionics

    NASA Technical Reports Server (NTRS)

    Wang, Duo; Burke, Gary R.

    2011-01-01

    A PLGT FPGA (Field Programmable Gate Array) is included in the LCC (Load Control Card), GID (Guidance Interface & Drivers), TMC (Telemetry Multiplexer Card), and PFC (Pyro Firing Card) boards of the Mars Science Laboratory (MSL) spacecraft. (PLGT stands for PFC, LCC, GID, and TMC.) It provides the interface between the backside bus and the power drivers on these boards. The LCC drives power switches to switch power loads, and also relays. The GID drives the thrusters and latch valves, as well as having the star-tracker and Sun-sensor interface. The PFC drives pyros, and the TMC receives digital and analog telemetry. The FPGA is implemented both in Xilinx (Spartan 3- 400) and in Actel (RTSX72SU, ASX72S). The Xilinx Spartan 3 part is used for the breadboard, the Actel ASX part is used for the EM (Engineer Module), and the pin-compatible, radiation-hardened RTSX part is used for final EM and flight. The MSL spacecraft uses a FC (Flight Computer) to control power loads, relays, thrusters, latch valves, Sun-sensor, and star-tracker, and to read telemetry such as temperature. Commands are sent over a 1553 bus to the MREU (Multi-Mission System Architecture Platform Remote Engineering Unit). The MREU resends over a remote serial command bus c-bus to the LCC, GID TMC, and PFC. The MREU also sends out telemetry addresses via a remote serial telemetry address bus to the LCC, GID, TMC, and PFC, and the status is returned over the remote serial telemetry data bus.

  3. Semi-autonomous unmanned ground vehicle control system

    NASA Astrophysics Data System (ADS)

    Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James

    2006-05-01

    Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.

  4. A universal computer control system for motors

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A control system for a multi-motor system such as a space telerobot, having a remote computational node and a local computational node interconnected with one another by a high speed data link is described. A Universal Computer Control System (UCCS) for the telerobot is located at each node. Each node is provided with a multibus computer system which is characterized by a plurality of processors with all processors being connected to a common bus, and including at least one command processor. The command processor communicates over the bus with a plurality of joint controller cards. A plurality of direct current torque motors, of the type used in telerobot joints and telerobot hand-held controllers, are connected to the controller cards and responds to digital control signals from the command processor. Essential motor operating parameters are sensed by analog sensing circuits and the sensed analog signals are converted to digital signals for storage at the controller cards where such signals can be read during an address read/write cycle of the command processing processor.

  5. Remote surface inspection system

    NASA Astrophysics Data System (ADS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-02-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  6. Remote surface inspection system

    NASA Technical Reports Server (NTRS)

    Hayati, S.; Balaram, J.; Seraji, H.; Kim, W. S.; Tso, K.; Prasad, V.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  7. Deployment and early experience with remote-presence patient care in a community hospital.

    PubMed

    Petelin, J B; Nelson, M E; Goodman, J

    2007-01-01

    The introduction of the RP6 (InTouch Health, Santa Barbara, CA, USA) remote-presence "robot" appears to offer a useful telemedicine device. The authors describe the deployment and early experience with the RP6 in a community hospital and provided a live demonstration of the system on April 16, 2005 during the Emerging Technologies Session of the 2005 SAGES Meeting in Fort Lauderdale, Florida. The RP6 is a 5-ft 4-in. tall, 215-pound robot that can be remotely controlled from an appropriately configured computer located anywhere on the Internet (i.e., on this planet). The system is composed of a control station (a computer at the central station), a mechanical robot, a wireless network (at the remote facility: the hospital), and a high-speed Internet connection at both the remote (hospital) and central locations. The robot itself houses a rechargeable power supply. Its hardware and software allows communication over the Internet with the central station, interpretation of commands from the central station, and conversion of the commands into mechanical and nonmechanical actions at the remote location, which are communicated back to the central station over the Internet. The RP6 system allows the central party (e.g., physician) to control the movements of the robot itself, see and hear at the remote location (hospital), and be seen and heard at the remote location (hospital) while not physically there. Deployment of the RP6 system at the hospital was accomplished in less than a day. The wireless network at the institution was already in place. The control station setup time ranged from 1 to 4 h and was dependent primarily on the quality of the Internet connection (bandwidth) at the remote locations. Patients who visited with the RP6 on their discharge day could be discharged more than 4 h earlier than with conventional visits, thereby freeing up hospital beds on a busy med-surg floor. Patient visits during "off hours" (nights and weekends) were three times more efficient than conventional visits during these times (20 min per visit vs 40-min round trip travel + 20-min visit). Patients and nursing personnel both expressed tremendous satisfaction with the remote-presence interaction. The authors' early experience suggests a significant benefit to patients, hospitals, and physicians with the use of RP6. The implications for future development are enormous.

  8. "What Advice Would You Give to Students Starting Your Course?"

    ERIC Educational Resources Information Center

    Meedin, Aneeqa

    2007-01-01

    In this essay, the author, a Biomedical Sciences student at the University of Sheffield, presents an atypical way of addressing the question "What advice would you give to students starting your course?" by transcribing the much-evoked and revered Ten Commandments, the original guide to life, into advice for new and bewildered Biomedical…

  9. Application of model reference adaptive control to a flexible remote manipulator arm

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.; Balas, M. J.

    1986-01-01

    An exact modal state-space representation is derived in detail for a single-link, flexible remote manipulator with a noncollocated sensor and actuator. A direct model following adaptive controller is designed to control the torque at the pinned end of the arm so as to command the free end to track a prescribed sinusoidal motion. Conditions that must be satisfied in order for the controller to work are stated. Simulation results to date are discussed along with the potential of the model following adaptive control scheme in robotics and space environments.

  10. Starting Over: Current Issues in Online Catalog User Interface Design.

    ERIC Educational Resources Information Center

    Crawford, Walt

    1992-01-01

    Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…

  11. Technical Standards for Command and Control Information Systems (CCISs)

    DTIC Science & Technology

    1992-01-01

    initiation, Conformance Testing 149 management, scheduling, resource allocation , logical and IEEE P1 003 146 physical device access, interrupt handling...70 5.2.3 Remote Data Access (RDA) ........................................... 72 5.2.4 Information Resource Dictionary...146 7.2.1.2 POSIX Conformance Testing .............................. 149 7.2.2 Consortia Recommendations

  12. Deception Recognition: Rethinking the Operational Commander’s Approach

    DTIC Science & Technology

    2010-10-27

    Understanding this cultural relativism gives us insight into intent. Social norms tend to be tacitly established and maintained through body...the concept of ―face‖ in dealing with people in a personal or professional relationship is first and foremost in the Chinese culture . The western... morality ,‖5 the operational commander can be and usually is directly affected by both political deception and MILDEC and must be able to recognize and

  13. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  14. Remote surface inspection system. [of large space platforms

    NASA Technical Reports Server (NTRS)

    Hayati, Samad; Balaram, J.; Seraji, Homayoun; Kim, Won S.; Tso, Kam S.

    1993-01-01

    This paper reports on an on-going research and development effort in remote surface inspection of space platforms such as the Space Station Freedom (SSF). It describes the space environment and identifies the types of damage for which to search. This paper provides an overview of the Remote Surface Inspection System that was developed to conduct proof-of-concept demonstrations and to perform experiments in a laboratory environment. Specifically, the paper describes three technology areas: (1) manipulator control for sensor placement; (2) automated non-contact inspection to detect and classify flaws; and (3) an operator interface to command the system interactively and receive raw or processed sensor data. Initial findings for the automated and human visual inspection tests are reported.

  15. Autonomy Architectures for a Constellation of Spacecraft

    NASA Technical Reports Server (NTRS)

    Barrett, Anthony

    2000-01-01

    Until the past few years, missions typically involved fairly large expensive spacecraft. Such missions have primarily favored using older proven technologies over more recently developed ones, and humans controlled spacecraft by manually generating detailed command sequences with low-level tools and then transmitting the sequences for subsequent execution on a spacecraft controller. This approach toward controlling a spacecraft has worked spectacularly on previous missions, but it has limitations deriving from communications restrictions - scheduling time to communicate with a particular spacecraft involves competing with other projects due to the limited number of deep space network antennae. This implies that a spacecraft can spend a long time just waiting whenever a command sequence fails. This is one reason why the New Millennium program has an objective to migrate parts of mission control tasks onboard a spacecraft to reduce wait time by making spacecraft more robust. The migrated software is called a "remote agent" and has 4 components: a mission manager to generate the high level goals, a planner/scheduler to turn goals into activities while reasoning about future expected situations, an executive/diagnostics engine to initiate and maintain activities while interpreting sensed events by reasoning about past and present situations, and a conventional real-time subsystem to interface with the spacecraft to implement an activity's primitive actions. In addition to needing remote planning and execution for isolated spacecraft, a trend toward multiple-spacecraft missions points to the need for remote distributed planning and execution. The past few years have seen missions with growing numbers of probes. Pathfinder has its rover (Sojourner), Cassini has its lander (Huygens), and the New Millenium Deep Space 3 (DS3) proposal involves a constellation of 3 spacecraft for interferometric mapping. This trend is expected to continue to progressively larger fleets. For example, one mission proposed to succeed DS3 would have 18 spacecraft flying in formation in order to detect earth-sized planets orbiting other stars. A proposed magnetospheric constellation would involve 5 to 500 spacecraft in Earth orbit to measure global phenomena within the magnetosphere. This work describes and compares three autonomy architectures for a system that continuously plans to control a fleet of spacecraft using collective mission goals instead of goals or command sequences for each spacecraft. A fleet of self-commanding spacecraft would autonomously coordinate itself to satisfy high level science and engineering goals in a changing partially-understood environment making feasible the operation of tens or even a hundred spacecraft (such as for interferometry or plasma physics missions). The easiest way to adapt autonomous spacecraft research to controlling constellations involves treating the constellation as a single spacecraft. Here one spacecraft directly controls the others as if they were connected. The controlling "master" spacecraft performs all autonomy reasoning, and the slaves only have real-time subsystems to execute the master's commands and transmit local telemetry/observations. The executive/diagnostics module starts actions and the master's real-time subsystem controls the action either locally or remotely through a slave. While the master/slave approach benefits from conceptual simplicity, it relies on an assumption that the master spacecraft's executive can continuously monitor the slaves' real-time subsystems, and this relies on high-bandwidth highly-reliable communications. Since unintended results occur fairly rarely, one way to relax the bandwidth requirements involves only monitoring unexpected events in spacecraft. Unfortunately, this disables the ability to monitor for unexpected events between spacecraft and leads to a host of coordination problems among the slaves. Also, failures in the communications system can result in losing slaves. The other two architectures improve robustness while reducing communications by progressively distributing more of the other three remote agent components across the constellation. In a teamwork architecture, all spacecraft have executives and real-time subsystems - only the leader has the planner/scheduler and mission manager. Finally, distributing all remote agent components leads to a peer-to-peer approach toward constellation control.

  16. New Heights with High-Altitude Balloon Launches for Effective Student Learning and Environmental Awareness

    NASA Astrophysics Data System (ADS)

    Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.

    2009-12-01

    Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students and prepares them well for graduate school and professional careers. Students obtain a personal ownership of their education when they engage in state-of-the-art balloon launch capability into the "unknown" with real-time data (50 Kb) with command interaction. The scientific method comes alive with creativity, problem solving, fun, and multidisciplinary hands-on team work. More students in basic science (and liberal arts) and public have an awareness of the environment, atmosphere, space, and heavens by direct probing and remote sensing from "New Heights" (over 98% of atmosphere at 30 km altitude).

  17. The instant sequencing task: Toward constraint-checking a complex spacecraft command sequence interactively

    NASA Technical Reports Server (NTRS)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Amador, Arthur V.; Spitale, Joseph N.

    1993-01-01

    Robotic spacecraft are controlled by sets of commands called 'sequences.' These sequences must be checked against mission constraints. Making our existing constraint checking program faster would enable new capabilities in our uplink process. Therefore, we are rewriting this program to run on a parallel computer. To do so, we had to determine how to run constraint-checking algorithms in parallel and create a new method of specifying spacecraft models and constraints. This new specification gives us a means of representing flight systems and their predicted response to commands which could be used in a variety of applications throughout the command process, particularly during anomaly or high-activity operations. This commonality could reduce operations cost and risk for future complex missions. Lessons learned in applying some parts of this system to the TOPEX/Poseidon mission will be described.

  18. Entertainment and Pacification System For Car Seat

    NASA Technical Reports Server (NTRS)

    Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)

    2006-01-01

    An entertainment and pacification system for use with a child car seat has speakers mounted in the child car seat with a plurality of audio sources and an anti-noise audio system coupled to the child car seat. A controllable switching system provides for, at any given time, the selective activation of i) one of the audio sources such that the audio signal generated thereby is coupled to one or more of the speakers, and ii) the anti-noise audio system such that an ambient-noise-canceling audio signal generated thereby is coupled to one or more of the speakers. The controllable switching system can receive commands generated at one of first controls located at the child car seat and second controls located remotely with respect to the child car seat with commands generated by the second controls overriding commands generated by the first controls.

  19. Method for encryption and transmission of digital keying data

    DOEpatents

    Mniszewski, Susan M.; Springer, Edward A.; Brenner, David P.

    1988-01-01

    A method for the encryption, transmission, and subsequent decryption of digital keying data. The method utilizes the Data Encryption Standard and is implemented by means of a pair of apparatus, each of which is selectable to operate as either a master unit or remote unit. Each unit contains a set of key encryption keys which are indexed by a common indexing system. The master unit operates upon command from the remote unit to generate a data encryption key and encrypt the data encryption key using a preselected key encryption key. The encrypted data encryption key and an index designator are then downloaded to the remote unit, where the data encryption key is decrypted for subsequent use in the encryption and transmission data. Downloading of the encrypted data encryption key enables frequent change of keys without requiring manual entry or storage of keys at the remote unit.

  20. Distress, omnipotence, and responsibility beliefs in command hallucinations.

    PubMed

    Ellett, Lyn; Luzon, Olga; Birchwood, Max; Abbas, Zarina; Harris, Abi; Chadwick, Paul

    2017-09-01

    Command hallucinations are considered to be one of the most distressing and disturbing symptoms of schizophrenia. Building on earlier studies, we compare key attributes in the symptomatic, affective, and cognitive profiles of people diagnosed with schizophrenia and hearing voices that do (n = 77) or do not (n = 74) give commands. The study employed a cross-sectional design, in which we assessed voice severity, distress and control (PSYRATs), anxiety and depression (HADS), beliefs about voices (BAVQ-R), and responsibility beliefs (RIQ). Clinical and demographic variables were also collected. Command hallucinations were found to be more distressing and controlling, perceived as more omnipotent and malevolent, linked to higher anxiety and depression, and resisted more than hallucinations without commands. Commanding voices were also associated with higher conviction ratings for being personally responsible for preventing harm. The findings suggest key differences in the affective and cognitive profiles of people who hear commanding voices, which have important implications for theory and psychological interventions. Command hallucinations are associated with higher distress, malevolence, and omnipotence. Command hallucinations are associated with higher responsibility beliefs for preventing harm. Responsibility beliefs are associated with voice-related distress. Future psychological interventions for command hallucinations might benefit from focussing not only on omnipotence, but also on responsibility beliefs, as is done in psychological therapies for obsessive compulsive disorder. Limitations The cross-sectional design does not assess issues of causality. We did not measure the presence or severity of delusions. © 2017 The British Psychological Society.

  1. An Artificially Intelligent Physical Model-Checking Approach to Detect Switching-Related Attacks on Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama

    Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less

  2. Military and Security Developments Involving the Democratic People’s Republic of Korea: Annual Report to Congress

    DTIC Science & Technology

    2013-01-01

    underground, cross-border tunnels to attack high-value targets like command and control nodes or air bases. Theater Ballistic Missiles. North Korea has...fomenting unrest and revolution. Command and Control. The DPRK National Defense Commission ( NDC ) is the symbolic nominal authority over the North’s...and control is exercised by its subordinate General Staff Department. The 1992 constitution gives control of the North’s military to the NDC , and

  3. 49 CFR 218.99 - Shoving or pushing movements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (ii) Giving signals or instructions necessary to control the movement. (c) Additional requirements for remote control movements. All remote control movements are considered shoving or pushing movements, except when the remote control operator controlling the movement is riding the leading end of the leading...

  4. Expedition 37 Landing

    NASA Image and Video Library

    2013-11-11

    The inflatable medical tent is seen in a remote area outside the town of Zhezkazgan, Kazakhstan, on Monday, Nov. 11, 2013. Expedition 37 Commander Fyodor Yurchikhin of Roscosmos, Flight Engineers Karen Nyberg of NASA and Luca Parmitano of Italy returned to earth after five and a half months on the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  5. ROMPS critical design review. Volume 2: Robot module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The robot module design documentation for the Remote Operated Materials Processing in Space (ROMPS) experiment is compiled. This volume presents the following information: robot module modifications; Easylab commands definitions and flowcharts; Easylab program definitions and flowcharts; robot module fault conditions and structure charts; and C-DOC flow structure and cross references.

  6. STS-114 Flight Day 11 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Flight Day 11 begins with the STS-114 crew of Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) awaking to "Anchors Away," to signify the undocking of the Raffaello Multipurpose Logistics Module (MPLM) from the International Space Station (ISS). Canadarm 2, the Space Station Remote Manipulator System (SSRMS), retrieves the Raffaello Multipurpose Logistics Module (MPLM) from the nadir port of the Unity node of the ISS and returns it to Discovery's payload bay. The Shuttle Remote Manipulator System (SRMS) hands the Orbiter Boom Sensor System (OBSS) to its counterpart, the SSRMS, for rebearthing in the payload bay as well. The rebearthing of the OBSS is shown in detail, including centerline and split-screen views. Collins sends a message to her husband, and talks with Representative Tom DeLay (R-TX). Earth views include the Amalfi coast of Italy. The ISS control room bids farewell to the STS-114 crew and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS.

  7. Improving Family Communications

    MedlinePlus

    ... mode Turn off more accessible mode Skip Ribbon Commands Skip to main content Turn off Animations Turn ... do the same. More Tips To Improve Communication Do Give clear, age-appropriate directions such as, "When ...

  8. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-04

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, giving thumbs up, Russian Space Forces cosmonaut Yuri Shargin and Flight Engineer and Soyuz Commander Salizhan Sharipov donned their launch and entry suits and climbed aboard their Soyuz TMA-5 spacecraft Friday, October 5, 2004, at the Baikonur Cosmodrome in Kazakhstan for a dress rehearsal of launch day activities leading to their liftoff October 14 to the International Space Station. Chiao and Sharipov, the first crew of all-Asian extraction, will spend six months on the Station. Shargin will return to Earth October 24 with the Stations' current residents, Expedition 9 Commander Gennady Padalka and NASA Flight Engineer and Science Officer Mike Fincke. Photo Credit: (NASA/Bill Ingalls)

  9. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2014-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories subsystem. In addition, a Conversion Fusion project was created to show specific approved checkout and launch engineering data for public-friendly display purposes.

  10. Firing Room Remote Application Software Development

    NASA Technical Reports Server (NTRS)

    Liu, Kan

    2015-01-01

    The Engineering and Technology Directorate (NE) at National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) is designing a new command and control system for the checkout and launch of Space Launch System (SLS) and future rockets. The purposes of the semester long internship as a remote application software developer include the design, development, integration, and verification of the software and hardware in the firing rooms, in particular with the Mobile Launcher (ML) Launch Accessories (LACC) subsystem. In addition, a software test verification procedure document was created to verify and checkout LACC software for Launch Equipment Test Facility (LETF) testing.

  11. Emotional Development: 1 Year Olds

    MedlinePlus

    ... mode Turn off more accessible mode Skip Ribbon Commands Skip to main content Turn off Animations Turn ... her regain her composure is to give her attention and reassurance when she needs it. Snapping at ...

  12. Analysis of Display Latency for 3D Perceptual Experiments

    DTIC Science & Technology

    2016-11-01

    the 3D mode on and recorded the experiment using only one of the two images on the display in 2D mode. Within our experimental code, a “tic- toc ...timer was added. A tic time was recorded when the command for fixation offset executed, and the toc was recorded when the command for stimulus onset...executed. The difference between toc and tic gives us the machine ISI time which we can compare to the recorded display ISI. This value should be

  13. Flair-fleet location and information reporting

    NASA Technical Reports Server (NTRS)

    Norman, E. R.; Dunlap, M. E.

    1974-01-01

    The FLAIR system, as now produced, automatically updates each vehicle's location and corresponding officer's status once each two seconds and presents this information to police dispatchers in the command and control center. The position of all vehicles available for assignment is displayed on a color video map at each dispatcher's console to an accuracy of 50 feet. This gives the dispatcher a continuous picture of the deployment of the total available force and thus complete command and control of all police under his responsibility.

  14. Ada (Trade Name) Foundation Technology. Volume 4. Software Requirements for WIS (WWMCCS (World Wide Military Command and Control System) Information System) Text Processing Prototypes

    DTIC Science & Technology

    1986-12-01

    graphics : The package allows a character set which can be defined by users giving the picture for a character by designating its pixels. Such characters...type lonts and gsei-oriented "help" messages tailored to the operations being performed and user expertise In general, critical design issues...other volumes include command language, software design , description and analysis tools, database management system operating systems; planning and

  15. A software control system for the ACTS high-burst-rate link evaluation terminal

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Daugherty, Elaine S.

    1991-01-01

    Control and performance monitoring of NASA's High Burst Rate Link Evaluation Terminal (HBR-LET) is accomplished by using several software control modules. Different software modules are responsible for controlling remote radio frequency (RF) instrumentation, supporting communication between a host and a remote computer, controlling the output power of the Link Evaluation Terminal and data display. Remote commanding of microwave RF instrumentation and the LET digital ground terminal allows computer control of various experiments, including bit error rate measurements. Computer communication allows system operators to transmit and receive from the Advanced Communications Technology Satellite (ACTS). Finally, the output power control software dynamically controls the uplink output power of the terminal to compensate for signal loss due to rain fade. Included is a discussion of each software module and its applications.

  16. A Small Lunar Rover for Reconnaissance in the Framework of ExoGeoLab Project, System Level Design

    NASA Astrophysics Data System (ADS)

    Noroozi, A.; Ha, L.; van Dalen, P.; Maas, A.; de Raedt, S.; Poulakis, P.; Foing, B. H.

    2009-04-01

    Scientific research is based on accurate measurement and so depends on the possibilities of accurate instruments. In planetary science and exploration it is often difficult or even impossible in some cases to gather accurate and direct information from a specified target. It is important to gather as much information as possible to be able to analyze and extract scientific data from them. One possibility to do so is to send equipments to the target and perform the measurements locally. The measurement data is then sent to base station for further analysis. To send measurement instruments to measurement point it is important to have a good estimation of the environmental situation there. This information can be collected by sending a pilot rover to the area of interest to collect visual information. The aim of this work is to develop a tele-operated small rover, Google Lunar X-Prize (GLXP) class, which is capable of surviving in the Moon environment and perform reconnaissance to provide visual information to base station of ExoGeoLab project of ESA/ESTEC. Using the state of the art developments in electronics, software and communication technologies allows us to achieve increase in accuracy while reducing size and power consumption. Target mass of the rover is lees than 5 kg and its target dimension is 300 x 60 x 80 mm3. The small size of the rover gives the possibility of accessing places which are normally out of reach. The required power for operation and the cost of launch is considerably reduced compared to large rovers which makes the mission more cost effective. The mission of the rover is to capture high resolution images and transmit them to base station. Data link between lover and base station is wireless and rover should supply its own energy. The base station can be either a habitat or a relay station. The navigation of the rover is controlled by an operator in a habitat who has a view from the stereo camera on the rover. This stereo camera gives image information to the base and gives the possibility for future autonomous navigation by using three-dimensional image recognition software. As the navigation view should have minimum delay, the resolution of stereo camera is not very high. The rover design is divided into four work packages. These work packages are remote imaging, remote manual navigation, locomotion and structure, and power system. Remote imaging work package is responsible for capturing high resolution images, transmitting image data to base station via wireless link and store the data for further processing. Remote manual navigation is handling the tele-operation. It collects stereo images and navigation sensor readouts, transmits stereo images and navigation data to base station via wireless link, displays the image and sensor status in a real-time fashion on operator's monitor, receives command from operator's joystick, transfers navigation commands to rover via wireless link, and operates the actuators accordingly. Locomotion and structure takes care of designing the body structure and locomotion system based on the Moon environment specifications. The target specifications of rover locomotion system are maximum speed of 200 m/h, maximum acceleration of 0.554 m/s2, and maximum slope angle of 20˚ . The power system for the rover includes the solar panel, batteries and power electronics mounted on the rover. The energy storage in the rover should be able to survive for minimum 500 m movement on the moon. Subsequently, it should provide energy for other sub-systems to communicate, navigate and transmit the data. Considering the harsh environmental issues on the Moon such as dust, temperature range and radiation, it is vital for the mission that these issues are considered in the design to correctly dimension reliability and if necessary redundancy. Corrosion resistive material should be used to ensure the survival of mechanical structure, moving parts and other sensitive parts such as electronics. High temperature variation should be considered in the design of structure and electronics and finally electronics should be radiation protected.

  17. mGrid: A load-balanced distributed computing environment for the remote execution of the user-defined Matlab code

    PubMed Central

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-01-01

    Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707

  18. mGrid: a load-balanced distributed computing environment for the remote execution of the user-defined Matlab code.

    PubMed

    Karpievitch, Yuliya V; Almeida, Jonas S

    2006-03-15

    Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.

  19. SPARTAN-201-3 spacecraft prior to being re-captured

    NASA Image and Video Library

    1995-09-10

    STS069-703-00H (10 September 1995) --- Prior to being re-captured by Space Shuttle Endeavour’s Remote Manipulator System (RMS), the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN-201) spacecraft was recorded on film, backdropped against the darkness of space over a heavily cloud-covered Earth. Endeavour, with a five-member crew, launched on September 7, 1995, from the Kennedy Space Center (KSC) and ended its mission there on September 18, 1995, with a successful landing on Runway 33. The multifaceted mission carried a crew of astronauts David M. Walker, mission commander; Kenneth D. Cockrell, pilot; and James S. Voss (payload commander), James H. Newman and Michael L. Gernhardt, all mission specialists.

  20. Talisman Sabre Offers Unique Training in Remote Aussie Towns | DoDLive

    Science.gov Websites

    . Pacific Command and the Australian Defence Force, helps both countries plan and execute contingency temperatures currently range from 66-86 degrees Fahrenheit. These Australian sites might be small, but they are : Darwin is named after Charles Darwin, the British naturalist who is famous for his theory of natural

  1. The Radio Frequency Health Node Wireless Sensor System

    NASA Technical Reports Server (NTRS)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor units. The RFHN includes a core module that performs generic computer functions, including management of power and input, output, processing, and storage of data. In a typical application, the processing capabilities in the RFHN are utilized to perform preprocessing, trending, and fusion of sensor data. The core module also serves as the unit through which the remote control computer configures the sensor units and the rest of the RFHN.

  2. GROVER: An autonomous vehicle for ice sheet research

    NASA Astrophysics Data System (ADS)

    Trisca, G. O.; Robertson, M. E.; Marshall, H.; Koenig, L.; Comberiate, M. A.

    2013-12-01

    The Goddard Remotely Operated Vehicle for Exploration and Research or Greenland Rover (GROVER) is a science enabling autonomous robot specifically designed to carry a low-power, large bandwidth radar for snow accumulation mapping over the Greenland Ice Sheet. This new and evolving technology enables reduced cost and increased safety for polar research. GROVER was field tested at Summit, Greenland in May 2013. The robot traveled over 30 km and was controlled both by line of sight wireless and completely autonomously with commands and telemetry via the Iridium Satellite Network, from Summit as well as remotely from Boise, Idaho. Here we describe GROVER's unique abilities and design. The software stack features a modular design that can be adapted for any application that requires autonomous behavior, reliable communications using different technologies and low level control of peripherals. The modules are built to communicate using the publisher-subscriber design pattern to maximize data-reuse and allow for graceful failures at the software level, along with the ability to be loaded or unloaded on-the-fly, enabling the software to adopt different behaviors based on power constraints or specific processing needs. These modules can also be loaded or unloaded remotely for servicing and telemetry can be configured to contain any kind of information being generated by the sensors or scientific instruments. The hardware design protects the electronic components and the control system can change functional parameters based on sensor input. Power failure modes built into the hardware prevent the vehicle from running out of energy permanently by monitoring voltage levels and triggering software reboots when the levels match pre-established conditions. This guarantees that the control software will be operational as soon as there is enough charge to sustain it, giving the vehicle increased longevity in case of a temporary power loss. GROVER demonstrates that autonomous rovers can be a revolutionary tool for data collection, and that both the technology and the software are available and ready to be implemented to create scientific data collection platforms.

  3. Remote console for virtual telerehabilitation.

    PubMed

    Lewis, Jeffrey A; Boian, Rares F; Burdea, Grigore; Deutsch, Judith E

    2005-01-01

    The Remote Console (ReCon) telerehabilitation system provides a platform for therapists to guide rehabilitation sessions from a remote location. The ReCon system integrates real-time graphics, audio/video communication, private therapist chat, post-test data graphs, extendable patient and exercise performance monitoring, exercise pre-configuration and modification under a single application. These tools give therapists the ability to conduct training, monitoring/assessment, and therapeutic intervention remotely and in real-time.

  4. Expedition 31 Landing

    NASA Image and Video Library

    2012-07-01

    Expedition 31 Flight Engineer Don Pettit of NASA is helped out of a Russian Search and Rescue helicopter after it carried him from the Soyuz TMA-03M capsule landing site in a remote area near the town of Zhezkazgan to Karaganda on Sunday, July 1, 2012 in Kazakhstan. Expedition 31 Commander Oleg Kononenko of Russia and Flight Engineers Pettit and Andre Kuipers of the European Space Agency landed in their Soyuz TMA-03M capsule in a remote area near the town of Zhezkazgan, Kazakhstan after serving more than six months onboard the International Space Station as members of the Expedition 30 and 31 crews. Photo Credit: (NASA/Bill Ingalls)

  5. Web-Altairis: An Internet-Enabled Ground System

    NASA Technical Reports Server (NTRS)

    Miller, Phil; Coleman, Jason; Gemoets, Darren; Hughes, Kevin

    2000-01-01

    This paper describes Web-Altairis, an Internet-enabled ground system software package funded by the Advanced Automation and Architectures Branch (Code 588) of NASA's Goddard Space Flight Center. Web-Altairis supports the trend towards "lights out" ground systems, where the control center is unattended and problems are resolved by remote operators. This client/server software runs on most popular platforms and provides for remote data visualization using the rich functionality of the VisAGE toolkit. Web-Altairis also supports satellite commanding over the Internet. This paper describes the structure of Web-Altairis and VisAGE, the underlying technologies, the provisions for security, and our experiences in developing and testing the software.

  6. Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2003-01-01

    Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.

  7. The effects of time delays on a telepathology user interface.

    PubMed Central

    Carr, D.; Hasegawa, H.; Lemmon, D.; Plaisant, C.

    1992-01-01

    Telepathology enables a pathologist to examine physically distant tissue samples by microscope operation over a communication link. Communication links can impose time delays which cause difficulties in controlling the remote device. Such difficulties were found in a microscope teleoperation system. Since the user interface is critical to pathologist's acceptance of telepathology, we redesigned the user interface for this system, built two different versions (a keypad whose movement commands operated by specifying a start command followed by a stop command and a trackball interface whose movement commands were incremental and directly proportional to the rotation of the trackball). We then conducted a pilot study to determine the effect of time delays on the new user interfaces. In our experiment, the keypad was the faster interface when the time delay is short. There was no evidence to favor either the keypad or trackball when the time delay was longer. Inexperienced participants benefitted by allowing them to move long distances over the microscope slide by dragging the field-of-view indicator on the touchscreen control panel. The experiment suggests that changes could be made to the trackball interface which would improve its performance. PMID:1482878

  8. Japan Report.

    DTIC Science & Technology

    1985-05-09

    world and is used by national leaders such as the president, secretary of state, and the chairman of the joint chiefs of staff ( NCA [National Command...Authorities]) for giving orders to the military. The NCA makes judgments based upon intelligence gathered from throughout the world, and gives...is thinner than a CRT ( cathode ray tube), so- even if the picture is made larger it does not take up space. Therefore, other devices can be loaded in

  9. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis.

    PubMed

    Suzuki, Masataka; Yamazaki, Yoshihiko

    2005-01-01

    According to the equilibrium point hypothesis of voluntary motor control, control action of muscles is not explicitly computed, but rather arises as a consequence of interaction between moving equilibrium position, current kinematics and stiffness of the joint. This approach is attractive as it obviates the need to explicitly specify the forces controlling limb movements. However, many debatable aspects of this hypothesis remain in the manner of specification of the equilibrium point trajectory and muscle activation (or its stiffness), which elicits a restoring force toward the planned equilibrium trajectory. In this study, we expanded the framework of this hypothesis by assuming that the control system uses the velocity measure as the origin of subordinate variables scaling descending commands. The velocity command is translated into muscle control inputs by second order pattern generators, which yield reciprocal command and coactivation commands, and create alternating activation of the antagonistic muscles during movement and coactivation in the post-movement phase, respectively. The velocity command is also integrated to give a position command specifying a moving equilibrium point. This model is purely kinematics-dependent, since the descending commands needed to modulate the visco-elasticity of muscles are implicitly given by simple parametric specifications of the velocity command alone. The simulated movements of fast elbow single-joint movements corresponded well with measured data performed over a wide range of movement distances, in terms of both muscle excitations and kinematics. Our proposal on a synthesis for the equilibrium point approach and velocity command, may offer some insights into the control scheme of the single-joint arm movements.

  10. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006315 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery.

  11. PCLIPS: Parallel CLIPS

    NASA Technical Reports Server (NTRS)

    Hall, Lawrence O.; Bennett, Bonnie H.; Tello, Ivan

    1994-01-01

    A parallel version of CLIPS 5.1 has been developed to run on Intel Hypercubes. The user interface is the same as that for CLIPS with some added commands to allow for parallel calls. A complete version of CLIPS runs on each node of the hypercube. The system has been instrumented to display the time spent in the match, recognize, and act cycles on each node. Only rule-level parallelism is supported. Parallel commands enable the assertion and retraction of facts to/from remote nodes working memory. Parallel CLIPS was used to implement a knowledge-based command, control, communications, and intelligence (C(sup 3)I) system to demonstrate the fusion of high-level, disparate sources. We discuss the nature of the information fusion problem, our approach, and implementation. Parallel CLIPS has also be used to run several benchmark parallel knowledge bases such as one to set up a cafeteria. Results show from running Parallel CLIPS with parallel knowledge base partitions indicate that significant speed increases, including superlinear in some cases, are possible.

  12. Open-systems architecture of a standardized command interface chip-set for switching and control of a spacecraft power bus

    NASA Technical Reports Server (NTRS)

    Ruiz, Ian B.; Burke, Gary R.; Lung, Gerald; Whitaker, William D.; Nowicki, Robert M.

    2004-01-01

    The Jet Propulsion Laboratory (JPL) has developed a command interface chip-set that primarily consists of two mixed-signal ASICs'; the Command Interface ASIC (CIA) and Analog Interface ASIC (AIA). The Open-systems architecture employed during the design of this chip-set enables its use as both an intelligent gateway between the system's flight computer and the control, actuation, and activation of the spacecraft's loads, valves, and pyrotechnics respectfully as well as the regulator of the spacecraft power bus. Furthermore, the architecture is highly adaptable and employed fault-tolerant design methods enabling a host of other mission uses including reliable remote data collection. The objective of this design is to both provide a needed flight component that meets the stringent environmental requirements of current deep space missions and to add a new element to a growing library that can be used as a standard building block for future missions to the outer planets.

  13. Alternative Attitude Commanding and Control for Precise Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Singh, Gurkirpal

    2004-01-01

    A report proposes an alternative method of control for precision landing on a remote planet. In the traditional method, the attitude of a spacecraft is required to track a commanded translational acceleration vector, which is generated at each time step by solving a two-point boundary value problem. No requirement of continuity is imposed on the acceleration. The translational acceleration does not necessarily vary smoothly. Tracking of a non-smooth acceleration causes the vehicle attitude to exhibit undesirable transients and poor pointing stability behavior. In the alternative method, the two-point boundary value problem is not solved at each time step. A smooth reference position profile is computed. The profile is recomputed only when the control errors get sufficiently large. The nominal attitude is still required to track the smooth reference acceleration command. A steering logic is proposed that controls the position and velocity errors about the reference profile by perturbing the attitude slightly about the nominal attitude. The overall pointing behavior is therefore smooth, greatly reducing the degree of pointing instability.

  14. JCMT observatory control system

    NASA Astrophysics Data System (ADS)

    Rees, Nicholas P.; Economou, Frossie; Jenness, Tim; Kackley, Russell D.; Walther, Craig A.; Dent, William R. F.; Folger, Martin; Gao, Xiaofeng; Kelly, Dennis; Lightfoot, John F.; Pain, Ian; Hovey, Gary J.; Redman, Russell O.

    2002-12-01

    The JCMT, the world's largest sub-mm telescope, has had essentially the same VAX/VMS based control system since it was commissioned. For the next generation of instrumentation we are implementing a new Unix/VxWorks based system, based on the successful ORAC system that was recently released on UKIRT. The system is now entering the integration and testing phase. This paper gives a broad overview of the system architecture and includes some discussion on the choices made. (Other papers in this conference cover some areas in more detail). The basic philosophy is to control the sub-systems with a small and simple set of commands, but passing detailed XML configuration descriptions along with the commands to give the flexibility required. The XML files can be passed between various layers in the system without interpretation, and so simplify the design enormously. This has all been made possible by the adoption of an Observation Preparation Tool, which essentially serves as an intelligent XML editor.

  15. Remote Control and Data Acquisition: A Case Study

    NASA Technical Reports Server (NTRS)

    DeGennaro, Alfred J.; Wilkinson, R. Allen

    2000-01-01

    This paper details software tools developed to remotely command experimental apparatus, and to acquire and visualize the associated data in soft real time. The work was undertaken because commercial products failed to meet the needs. This work has identified six key factors intrinsic to development of quality research laboratory software. Capabilities include access to all new instrument functions without any programming or dependence on others to write drivers or virtual instruments, simple full screen text-based experiment configuration and control user interface, months of continuous experiment run-times, order of 1% CPU load for condensed matter physics experiment described here, very little imposition of software tool choices on remote users, and total remote control from anywhere in the world over the Internet or from home on a 56 Kb modem as if the user is sitting in the laboratory. This work yielded a set of simple robust tools that are highly reliable, resource conserving, extensible, and versatile, with a uniform simple interface.

  16. Empirical Analysis of the Use of the VISIR Remote Lab in Teaching Analog Electronics

    ERIC Educational Resources Information Center

    Garcia-Zubia, Javier; Cuadros, Jordi; Romero, Susana; Hernandez-Jayo, Unai; Orduña, Pablo; Guenaga, Mariluz; Gonzalez-Sabate, Lucinio; Gustavsson, Ingvar

    2017-01-01

    Remote laboratories give students the opportunity of experimenting in STEM by using the Internet to control and measure an experimental setting. Remote laboratories are increasingly used in the classroom to complement, or substitute for, hands-on laboratories, so it is important to know its learning value. While many authors approach this question…

  17. A local network integrated into a balloon-borne apparatus

    NASA Astrophysics Data System (ADS)

    Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa

    A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.

  18. Telescience Resource Kit Software Capabilities and Future Enhancements

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle

    2004-01-01

    The Telescience Resource Kit (TReK) is a suite of PC-based software applications that can be used to monitor and control a payload on board the International Space Station (ISS). This software provides a way for payload users to operate their payloads from their home sites. It can be used by an individual or a team of people. TReK provides both local ground support system services and an interface to utilize remote services provided by the Payload Operations Integration Center (POIC). by the POIC and to perform local data functions such as processing the data, storing it in local files, and forwarding it to other computer systems. TReK can also be used to build, send, and track payload commands. In addition to these features, work is in progress to add a new command management capability. This capability will provide a way to manage a multi- platform command environment that can include geographically distributed computers. This is intended to help those teams that need to manage a shared on-board resource such as a facility class payload. The environment can be configured such that one individual can manage all the command activities associated with that payload. This paper will provide a summary of existing TReK capabilities and a description of the new command management capability. For example, 7'ReK can be used to receive payload data distributed

  19. Astronaut Terry J. Hart in training session RMS for STS-2 bldg 29

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Terry J. Hart in training session with the Remote Manipulator System (RMS) for STS-2 bldg 29. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame while Astronaut Sally Ride waits on right for her time at the RMS.

  20. Using FastX on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    with full 3D hardware acceleration. The traditional method of displaying graphics applications to a remote X server (indirect rendering) supports 3D hardware acceleration, but this approach causes all of the OpenGL commands and 3D data to be sent over the network to be rendered on the client machine. With

  1. Rapid Network Design

    DTIC Science & Technology

    2013-09-01

    control GCE ground combat element LCE logistics combat element MAGTF Marine Air Ground Task Force MWCS Marine Wing Communications Squadron NPS Naval...elements: command element (CE), ground combat el- ement ( GCE ), aviation combat element (ACE), and logistics combat element (LCE). Each ele- ment...This layer provides unimpeded high-speed connectivity between remote sites and the Internet. Limited security policies are applied at this level to

  2. Engineers of the Southwest Pacific 1941-1945. Volume 8. Critique

    DTIC Science & Technology

    1950-01-01

    excerpts had to be complemented and expanded into well-rounded interpretations , and the many remotely connected conclusions had to be combined and...88 Brigadier General Ralph Coane, 41st Division Artillery Commander, uses map to interpret ...hostilities, was using six different language interpreters whcn oeaL he addressed his regiment. demolition crew, had crossed. The entireopea- 5 c

  3. Usachev and Helms install SSRMS cables

    NASA Image and Video Library

    2001-03-30

    ISS002E5480 (30 March 2001) --- Cosmonaut Yury V. Usachev (foreground), Expedition Two mission commander, and astronaut Susan J. Helms, Expedition Two flight engineer, install cables for the Space Station Remote Manipulator System (SSRMS) or Canadarm2 control panel in preparation for the delivery of the Canadarm2 by the STS-100 crew in April. This image was recorded with a digital still camera.

  4. Virts in Cupola

    NASA Image and Video Library

    2015-05-31

    ISS043E276404 (05/31/2015) --- Expedition 43 Commander and NASA astronaut Terry Virts is seen here in the International Space Station’s Cupola module, a 360 degree Earth and space viewing platform. The module also contains a robotic workstation for controlling the station’s main robotic arm, Canadarm2, which is used for a variety of operations including the remote grappling of visiting cargo vehicles.

  5. Human-Centered Design and Evaluation of Haptic Cueing for Teleoperation of Multiple Mobile Robots.

    PubMed

    Son, Hyoung Il; Franchi, Antonio; Chuang, Lewis L; Kim, Junsuk; Bulthoff, Heinrich H; Giordano, Paolo Robuffo

    2013-04-01

    In this paper, we investigate the effect of haptic cueing on a human operator's performance in the field of bilateral teleoperation of multiple mobile robots, particularly multiple unmanned aerial vehicles (UAVs). Two aspects of human performance are deemed important in this area, namely, the maneuverability of mobile robots and the perceptual sensitivity of the remote environment. We introduce metrics that allow us to address these aspects in two psychophysical studies, which are reported here. Three fundamental haptic cue types were evaluated. The Force cue conveys information on the proximity of the commanded trajectory to obstacles in the remote environment. The Velocity cue represents the mismatch between the commanded and actual velocities of the UAVs and can implicitly provide a rich amount of information regarding the actual behavior of the UAVs. Finally, the Velocity+Force cue is a linear combination of the two. Our experimental results show that, while maneuverability is best supported by the Force cue feedback, perceptual sensitivity is best served by the Velocity cue feedback. In addition, we show that large gains in the haptic feedbacks do not always guarantee an enhancement in the teleoperator's performance.

  6. SCORPION II persistent surveillance system update

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jon

    2010-04-01

    This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.

  7. CLIPS, AppleEvents, and AppleScript: Integrating CLIPS with commercial software

    NASA Technical Reports Server (NTRS)

    Compton, Michael M.; Wolfe, Shawn R.

    1994-01-01

    Many of today's intelligent systems are comprised of several modules, perhaps written in different tools and languages, that together help solve the user's problem. These systems often employ a knowledge-based component that is not accessed directly by the user, but instead operates 'in the background' offering assistance to the user as necessary. In these types of modular systems, an efficient, flexible, and eady-to-use mechanism for sharing data between programs is crucial. To help permit transparent integration of CLIPS with other Macintosh applications, the AI Research Branch at NASA Ames Research Center has extended CLIPS to allow it to communicate transparently with other applications through two popular data-sharing mechanisms provided by the Macintosh operating system: Apple Events (a 'high-level' event mechanism for program-to-program communication), and AppleScript, a recently-released scripting language for the Macintosh. This capability permits other applications (running on either the same or a remote machine) to send a command to CLIPS, which then responds as if the command were typed into the CLIPS dialog window. Any result returned by the command is then automatically returned to the program that sent it. Likewise, CLIPS can send several types of Apple Events directly to other local or remote applications. This CLIPS system has been successfully integrated with a variety of commercial applications, including data collection programs, electronics forms packages, DBMS's, and email programs. These mechanisms can permit transparent user access to the knowledge base from within a commercial application, and allow a single copy of the knowledge base to service multiple users in a networked environment.

  8. Task Report for Task Authorization 1 for: Technology Demonstration of the Joint Network Defence and Management System (JNDMS) Project

    DTIC Science & Technology

    2009-01-30

    tool written in Java to support the automated creation of simulated subnets. It can be run giving it a subnet, the number of hosts to create, the...network and can also be used to create subnets with specific profiles. Subnet Creator command line: > java –jar SubnetCreator.jar –j [path to client...command: > java –jar jss_client.jar com.mdacorporation.jndms.JSS.Client.JSSBatchClient [file] 5. Software: This is the output file that will store the

  9. The AST3 controlling and operating software suite for automatic sky survey

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Shang, Zhaohui; Ma, Bin; Hu, Keliang

    2016-07-01

    We have developed a specialized software package, called ast3suite, to achieve the remote control and automatic sky survey for AST3 (Antarctic Survey Telescope) from scratch. It includes several daemon servers and many basic commands. Each program does only one single task, and they work together to make AST3 a robotic telescope. A survey script calls basic commands to carry out automatic sky survey. Ast3suite was carefully tested in Mohe, China in 2013 and has been used at Dome, Antarctica in 2015 and 2016 with the real hardware for practical sky survey. Both test results and practical using showed that ast3suite had worked very well without any manual auxiliary as we expected.

  10. Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.

    PubMed

    Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi

    2017-10-04

    Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.

  11. Human factors optimization of virtual environment attributes for a space telerobotic control station

    NASA Astrophysics Data System (ADS)

    Lane, Jason Corde

    2000-10-01

    Remote control of underwater vehicles and other robotic systems has, up until now, proved to be a challenging task for the human operator. With technology advancements in computers and displays, computer interfaces can be used to alleviate the workload on the operator. This research introduces the concept of a commanded display, which is a graphical simulation that shows the commands sent to the actual system in real-time. The primary goal of this research was to show a commanded display as an alternative to the traditional predictive display for reducing the effects of time delay. Several experiments were used to investigate how subjects compensated for time delay under a variety of conditions while controlling a 7-degree of freedom robotic manipulator. Results indicate that time delay increased completion time linearly; this linear relationship occurred even at different manipulator speeds, varying levels of error, and when using a commanded display. The commanded display alleviated the majority of time delay effects, up to 91% reduction. The commanded display also facilitated more accurate control, reducing the number of inadvertent impacts to the task worksite, even when compared to no time delay. Even with a moderate error between the commanded and actual displays, the commanded display was still a useful tool for mitigating time delay. The way subjects controlled the manipulator with the input device was tracked and their control strategies were extracted. A correlation between the subjects' use of the input device and their task completion time was determined. The importance of stereo vision and head tracking was examined and shown to improve a subject's depth perception within a virtual environment. Reports of simulator sickness induced by display equipment, including a head mounted display and LCD shutter glasses, were compared. The results of the above testing were used to develop an effective virtual environment control station to control a multi-arm robot.

  12. Astronaut Richard H. Truly in training session RMS for STS-2 bldg 9A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Astronaut Richard H. Truly in training session with the Remote Manipulator System (RMS) for STS-2 bldg 9A. Views show Truly working at the command console while watching out the windows. Karen Ehlers, an RMS procedures specialist, can be seen at left side of frame (34314); view from behind Truly as he trains at the RMS console (34315).

  13. West Europe Report, Science and Technology

    DTIC Science & Technology

    1986-01-16

    Nicolas Rousseaux; ZERO UN INFORMATION HEBDO, 30 Sep 85) 93 TECHNOLOGY TRANSFER Briefs Renault Equipment to USSR 96 c - 16 January 1986 AEROSPACE...personnel and has a capacity of 200 persons. From the launch center, where monitoring and command systems are installed, the start up of the remote...supplying of propellants and fluids and hookup of monitoring and control systems -preparation for launch: countdown and launch -possible erection and

  14. Understanding the Situation in the Urban Environment

    DTIC Science & Technology

    2001-05-15

    second type of information, termed executable information, communciates a clearly understood vision of the operation and desired outcome after a decision...information necessary for the commander as situational awareness information which creates understanding and execution information which communciates a...technological advances yet to take place in such fields as computers or remotely controlled sensors, ൿ DOrner, 39. 56 Creveld, 265. 22 will be less opaque

  15. Telescience testbed experiments for biomedical studies: fertilization potential recording of amphibian eggs using tele-manipulation under stereoscopic vision.

    PubMed

    Watanabe, S; Tanaka, M; Wada, Y; Suzuki, H; Takagi, S; Mori, S; Fukai, K; Kanazawa, Y; Takagi, M; Hirakawa, K; Ogasawara, K; Tsumura, K; Ogawa, K; Matsumoto, K; Nagaoka, S; Suzuki, T; Shimura, D; Yamashita, M; Nishio, S

    1994-07-01

    The telescience testbed experiments were carried out to test and investigate the tele-manipulation techniques in the intracellular potential recording of amphibian eggs. Implementation of telescience testbed was set up in the two separated laboratories of the Tsukuba Space center of NASDA, which were connected by tele-communication links. Manipulators respective for a microelectrode and a sample stage of microscope were moved by computers, of which command signals were transmitted from a computer in a remote control room. The computer in the control room was operated by an investigator (PI) who controlled the movement of each manipulator remotely. A stereoscopic vision of the microscope image were prepared by using a head mounted display (HMD) and were indispensable to the intracellular single cell recording. The fertilization potential of amphibian eggs was successfully obtained through the remote operating system.

  16. The Slow Control System of the Auger Fluorescence Detectors

    NASA Astrophysics Data System (ADS)

    Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.

    2003-07-01

    The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.

  17. LANDSAT technology transfer to the private and public sectors through community colleges and other locally available institutions

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1980-01-01

    Major first year accomplishments are summarized and plans are provided for the next 12-month period for a program established by NASA with the Environmental Research Institute of Michigan to investigate methods of making LANDSAT technology readily available to a broader set of private sector firms through local community colleges. The program applies a network where the major participants are NASA, university or research institutes, community colleges, and obtain hands-on training in LANDSAT data analysis techniques, using a desk-top, interactive remote analysis station which communicates with a central computing facility via telephone line, and provides for generation of land cover maps and data products via remote command.

  18. Autonomous Satellite Command and Control through the World Wide Web: Phase 3

    NASA Technical Reports Server (NTRS)

    Cantwell, Brian; Twiggs, Robert

    1998-01-01

    NASA's New Millenium Program (NMP) has identified a variety of revolutionary technologies that will support orders of magnitude improvements in the capabilities of spacecraft missions. This program's Autonomy team has focused on science and engineering automation technologies. In doing so, it has established a clear development roadmap specifying the experiments and demonstrations required to mature these technologies. The primary developmental thrusts of this roadmap are in the areas of remote agents, PI/operator interface, planning/scheduling fault management, and smart execution architectures. Phases 1 and 2 of the ASSET Project (previously known as the WebSat project) have focused on establishing World Wide Web-based commanding and telemetry services as an advanced means of interfacing a spacecraft system with the PI and operators. Current automated capabilities include Web-based command submission, limited contact scheduling, command list generation and transfer to the ground station, spacecraft support for demonstrations experiments, data transfer from the ground station back to the ASSET system, data archiving, and Web-based telemetry distribution. Phase 2 was finished in December 1996. During January-December 1997 work was commenced on Phase 3 of the ASSET Project. Phase 3 is the subject of this report. This phase permitted SSDL and its project partners to expand the ASSET system in a variety of ways. These added capabilities included the advancement of ground station capabilities, the adaptation of spacecraft on-board software, and the expansion of capabilities of the ASSET management algorithms. Specific goals of Phase 3 were: (1) Extend Web-based goal-level commanding for both the payload PI and the spacecraft engineer; (2) Support prioritized handling of multiple PIs as well as associated payload experimenters; (3) Expand the number and types of experiments supported by the ASSET system and its associated spacecraft; (4) Implement more advanced resource management, modeling and fault management capabilities that integrate the space and ground segments of the space system hardware; (5) Implement a beacon monitoring test; (6) Implement an experimental blackboard controller for space system management; (7) Further define typical ground station developments required for Internet-based remote control and for full system automation of the PI-to-spacecraft link. Each of those goals is examined in the next section. Significant sections of this report were also published as a conference paper.

  19. Remotely sensed geology from lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests

    USGS Publications Warehouse

    Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.

    2002-01-01

    Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.

  20. Meeting Future C3I (Command-Control-Communications-Intelligence) Needs with Fiber Optics,

    DTIC Science & Technology

    1985-05-01

    Frequency dependence of the sensitivity of fibers with hard coatings is relatively small. Nylon gives the weakest dependence, while the soft UV -cured...elastomer gives the strongest. Maximum sensitivity is obtained with Teflon TFE, while the minimum is achieved with the soft UV coating. With the latter...fiber-optics systems: the LED (Light Emitting Diode) and ILD (Injection Laser Diode). These devices emit light when an electric current is applied. The

  1. Whitson gives Tani a haircut in Node 2

    NASA Image and Video Library

    2007-12-01

    ISS016-E-014192 (1 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, trims astronaut Daniel Tani's hair in the Harmony node of the International Space Station. Whitson used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  2. Whitson gives Tani a haircut in Node 2

    NASA Image and Video Library

    2007-12-01

    ISS016-E-014193 (1 Dec. 2007) --- Astronaut Peggy A. Whitson, Expedition 16 commander, trims astronaut Daniel Tani's hair in the Harmony node of the International Space Station. Whitson used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  3. X-Band Acquisition Aid Software

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Strain, Martha M.; Wert, Michael

    2011-01-01

    The X-band Acquisition Aid (AAP) software is a low-cost acquisition aid for the Deep Space Network (DSN) antennas, and is used while acquiring a spacecraft shortly after it has launched. When enabled, the acquisition aid provides corrections to the antenna-predicted trajectory of the spacecraft to compensate for the variations that occur during the actual launch. The AAP software also provides the corrections to the antenna-predicted trajectory to the navigation team that uses the corrections to refine their model of the spacecraft in order to produce improved antenna-predicted trajectories for each spacecraft that passes over each complex. The software provides an automated Acquisition Aid receiver calibration, and provides graphical displays to the operator and remote viewers via an Ethernet connection. It has a Web server, and the remote workstations use the Firefox browser to view the displays. At any given time, only one operator can control any particular display in order to avoid conflicting commands from more than one control point. The configuration and control is accomplished solely via the graphical displays. The operator does not have to remember any commands. Only a few configuration parameters need to be changed, and can be saved to the appropriate spacecraft-dependent configuration file on the AAP s hard disk. AAP automates the calibration sequence by first commanding the antenna to the correct position, starting the receiver calibration sequence, and then providing the operator with the option of accepting or rejecting the new calibration parameters. If accepted, the new parameters are stored in the appropriate spacecraft-dependent configuration file. The calibration can be performed on the Sun, greatly expanding the window of opportunity for calibration. The spacecraft traditionally used for calibration is in view typically twice per day, and only for about ten minutes each pass.

  4. STS-114 Flight Day 8 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The major activities of Day 8 for the STS-114 crew of the Space Shuttle Discovery (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew of the International Space Station (ISS) (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) are a press conference and a conversation with President Bush. The two crews are interviewed by American, Japanese, and Russian media. Discovery crew members on the shuttle's mid-deck review paperwork regarding the impending extravehicular activity (EVA) to remove gap fillers from underneath the orbiter, and the Space Station Remote Manipulator System grapples the External Stowage Platform-2 in the Shuttle's payload bay. Finally, Mission control grants the shuttle crew some time off.

  5. STS-82 Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The STS-82 crew, Commander Kenneth D. Bowersox, Pilot Scott J. Horowitz, Payload Commander Mark C. Lee, and Mission Specialists Gregory J. Harbaugh, Steven L. Smith, Joseph R. Tanner, and Steven A. Hawley present a video and still picture overview of their mission. Included in the presentation are the following: the pre-launch activities such as eating the traditional breakfast, being suited up, and riding out to the launch pad, various panoramic views of the shuttle on the pad, the countdown, engine ignition, launch, shuttle roll maneuver, separation of the Solid Rocket Boosters (SRB) from the shuttle, survey of the payload bay with the Shuttle's 50-foot remote manipulator system (RMS), the successful retrieve of the Hubble Space Telescope (HST), EVAs to repair HST, release of HST, and the shuttle's landing.

  6. NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    NASA Technical Reports Server (NTRS)

    Butler, G. F.; Corbin, M. J.; Mepham, S.; Stewart, J. F.; Larson, R. R.

    1983-01-01

    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described.

  7. Preshaping command inputs to reduce telerobotic system oscillations

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1989-01-01

    The results of using a new technique for shaping inputs to a model of the space shuttle Remote Manipulator System (RMS) are presented. The shapes inputs move the system to the same location that was originally commanded, however, the oscillations of the machine are considerably reduced. An overview of the new shaping method is presented. A description of RMS model is provided. The problem of slow joint servo rates on the RMS is accommodated with an extension of the shaping method. The results and sample data are also presented for both joint and three-dimensional cartesian motions. The results demonstrate that the new shaping method performs well on large, telerobotic systems which exhibit significant structural vibration. The new method is shown to also result in considerable energy savings during operations of the RMS manipulator.

  8. Novel apparatus and methods for performing remotely controlled particle-solid interaction experiments at CERN

    NASA Astrophysics Data System (ADS)

    Krause, H. F.; Deveney, E. F.; Jones, N. L.; Vane, C. R.; Datz, S.; Knudsen, H.; Grafström, P.; Schuch, R.

    1997-04-01

    Recent atomic physics studies involving ultrarelativistic Pb ions required solid target positioners, scintillators, and a sophisticated data acquisition and control system placed in a remote location at the CERN Super Proton Synchrotron near Geneva, Switzerland. The apparatus, installed in a high-radiation zone underground, had to (i) function for months, (ii) automatically respond to failures such as power outages and particle-induced computer upsets, and (iii) communicate with the outside world via a telephone line. The heart of the apparatus developed was an Apple Macintosh-based CAMAC system that answered the telephone and interpreted and executed remote control commands that (i) sensed and set targets, (ii) controlled voltages and discriminator levels for scintillators, (iii) modified data acquisition hardware logic, (iv) reported control information, and (v) automatically synchronized data acquisition to the CERN spill cycle via a modem signal and transmitted experimental data to a remote computer. No problems were experienced using intercontinental telephone connections at 1200 baud. Our successful "virtual laboratory" approach that uses off-the-shelf electronics is generally adaptable to more conventional bench-type experiments.

  9. CAD/CAM Helps Build Better Bots: High-Tech Design and Manufacture Draws Engineering-Oriented Students

    ERIC Educational Resources Information Center

    Van Name, Barry

    2012-01-01

    There is a battlefield where no quarter is given, no mercy shown, but not a single drop of blood is spilled. It is an arena that witnesses the bringing together of high-tech design and manufacture with the outpouring of brute force, under the remotely accessed command of some of today's brightest students. This is the world of battling robots, or…

  10. Expedition 37 Landing

    NASA Image and Video Library

    2013-11-11

    Russian Search and Rescue all-terrain vehicles are seen waiting to ferry the Expedition 37 crew to their respective helicopters in a remote area outside the town of Zhezkazgan, Kazakhstan, on Monday, Nov. 11, 2013. The crew of Expedition 37 Commander Fyodor Yurchikhin of Roscosmos, Flight Engineers Karen Nyberg of NASA and Luca Parmitano of Italy returned to earth after five and a half months on the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  11. Joint Eglin Acoustics Week 2013 Data Report

    DTIC Science & Technology

    2017-10-01

    during this test. The M-model HH-60 (Tail Number 04-27001), with the new wide-chord blade that is principally characterized by its unique tapered...cards located within each remote unit. Upon termination of each run , sufficient data metrics and system health information are transmitted back to the...command computer to assure that good data were acquired at each microphone station during the run . A typical WAMS microphone station deployment is

  12. Expedition 36 Soyuz TMA-08M Landing

    NASA Image and Video Library

    2013-09-11

    Expedition 36 Flight Engineer Chris Cassidy waves hello after he and, Commander Pavel Vinogradov of Russian Federal Space Agency (Roscosmos), and Flight Engineer Alexander Misurkin of Roscosmos landed their Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy returned to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Communications satellite no. 2 (CS-2)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The purpose of the Japanese CS-2 satellite is to provide national communications and industrial communications, such as special emergency and remote communications, and to contribute to the development of technology pertaining to communications satellites. Description and operating parameters of the following satellite components are presented: structure, communications system, telemetry/command system, electric power system, attitude and antenna control system, secondary propulsion system, apogee motor, framework, and heat control system.

  14. NASA DEVELOP Students Rev Up Response to Gulf Oil Spill

    NASA Technical Reports Server (NTRS)

    Jones, Jason B.; Childs, Lauren M.

    2010-01-01

    After the April 20th explosion aboard the Deepwater Horizon drilling rig in the Gulf of Mexico, the world witnessed one of the worst oil spill catastrophes in global history. In an effort to mitigate the disaster, the U.S. government moved quickly to establish a unified command for responding to the spill. Some of the command's most immediate needs were to track the movement of the surface oil slick, establish a baseline measurement of pre-oil coastal ecosystem conditions, and assess potential air quality and water hazards related to the spill. To help address these needs and assist the Federal response to the disaster, NASA deployed several of its airborne and satellite research sensors to collect an unprecedented amount of remotely-sensed data over the Gulf of Mexico region. Although some of these data were shared with the public via the media, much of the NASA data on the disaster was not well known to the Gulf Coast community. The need existed to inform the general public about these datasets and help improve understanding about how NASA's science research was contributing to oil spill response and recovery. With its extensive experience conducting community-oriented remote sensing projects and close ties to organizations around Gulf of Mexico, the NASA DEVELOP National Program stood in a unique position to meet this need.

  15. SCORPION II persistent surveillance system with universal gateway

    NASA Astrophysics Data System (ADS)

    Coster, Michael; Chambers, Jonathan; Brunck, Albert

    2009-05-01

    This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.

  16. ASCIIGenome: a command line genome browser for console terminals.

    PubMed

    Beraldi, Dario

    2017-05-15

    Current genome browsers are designed to work via graphical user interfaces (GUIs), which, however intuitive, are not amenable to operate within console terminals and therefore are difficult to streamline or integrate in scripts. To circumvent these limitations, ASCIIGenome runs exclusively via command line interface to display genomic data directly in a terminal window. By following the same philosophy of UNIX tools, ASCIIGenome aims to be easily integrated with the command line, including batch processing of data, and therefore enables an effective exploration of the data. ASCIIGenome is written in Java. Consequently, it is a cross-platform tool and requires minimal or no installation. Some of the common genomic data types are supported and data access on remote ftp servers is possible. Speed and memory footprint are comparable to or better than those of common genome browsers. Software and source code (MIT License) are available at https://github.com/dariober/ASCIIGenome with detailed documentation at http://asciigenome.readthedocs.io . Dario.beraldi@cruk.cam.ac.uk. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.

  17. INFLIGHT - APOLLO XVI (CREW)

    NASA Image and Video Library

    1972-04-07

    S72-35971 (21 April 1972) --- A 360-degree field of view of the Apollo 16 Descartes landing site area composed of individual scenes taken from color transmission made by the color RCA TV camera mounted on the Lunar Roving Vehicle (LRV). This panorama was made while the LRV was parked at the rim of North Ray Crater (Stations 11 & 12) during the third Apollo 16 lunar surface extravehicular activity (EVA) by astronauts John W. Young and Charles M. Duke Jr. The overlay identifies the directions and the key lunar terrain features. The camera panned across the rear portion of the LRV in its 360-degree sweep. Note Young and Duke walking along the edge of the crater in one of the scenes. The TV camera was remotely controlled from a console in the Mission Control Center (MCC). Astronauts Young, commander; and Duke, lunar module pilot; descended in the Apollo 16 Lunar Module (LM) "Orion" to explore the Descartes highlands landing site on the moon. Astronaut Thomas K. Mattingly II, command module pilot, remained with the Command and Service Modules (CSM) "Casper" in lunar orbit.

  18. Inertial Pointing and Positioning System

    NASA Technical Reports Server (NTRS)

    Yee, Robert (Inventor); Robbins, Fred (Inventor)

    1998-01-01

    An inertial pointing and control system and method for pointing to a designated target with known coordinates from a platform to provide accurate position, steering, and command information. The system continuously receives GPS signals and corrects Inertial Navigation System (INS) dead reckoning or drift errors. An INS is mounted directly on a pointing instrument rather than in a remote location on the platform for-monitoring the terrestrial position and instrument attitude. and for pointing the instrument at designated celestial targets or ground based landmarks. As a result. the pointing instrument and die INS move independently in inertial space from the platform since the INS is decoupled from the platform. Another important characteristic of the present system is that selected INS measurements are combined with predefined coordinate transformation equations and control logic algorithms under computer control in order to generate inertial pointing commands to the pointing instrument. More specifically. the computer calculates the desired instrument angles (Phi, Theta. Psi). which are then compared to the Euler angles measured by the instrument- mounted INS. and forms the pointing command error angles as a result of the compared difference.

  19. Motion and ranging sensor system for through-the-wall surveillance system

    NASA Astrophysics Data System (ADS)

    Black, Jeffrey D.

    2002-08-01

    A portable Through-the-Wall Surveillance System is being developed for law enforcement, counter-terrorism, and military use. The Motion and Ranging Sensor is a radar that operates in a frequency band that allows for surveillance penetration of most non-metallic walls. Changes in the sensed radar returns are analyzed to detect the human motion that would typically be present during a hostage or barricaded suspect scenario. The system consists of a Sensor Unit, a handheld Remote Display Unit, and an optional laptop computer Command Display Console. All units are battery powered and a wireless link provides command and data communication between units. The Sensor Unit is deployed close to the wall or door through which the surveillance is to occur. After deploying the sensor the operator may move freely as required by the scenario. Up to five Sensor Units may be deployed at a single location. A software upgrade to the Command Display Console is also being developed. This software upgrade will combine the motion detected by multiple Sensor Units and determine and track the location of detected motion in two dimensions.

  20. Mobile Sensor Technologies Being Developed

    NASA Technical Reports Server (NTRS)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a central command location. Web-based control and interrogation of similar mobile sensor platforms have also been demonstrated. Expected applications of this technology include robotic planetary exploration, astronaut-to-equipment communication, and remote aerospace engine inspections.

  1. Recent field experiments with commercial satellite imagery direct downlink.

    PubMed

    Gonzalez, Anthony R; Amber, Samuel H

    US Pacific Command's strategy includes assistance to United States government relief agencies and nongovernment organizations during humanitarian aid and disaster relief operations in the Asia-Pacific region. Situational awareness during these operations is enhanced by broad interagency access to unclassified commercial satellite imagery. The Remote Ground Terminal-a mobile satellite downlink ground station-has undergone several technology demonstrations and participated in an overseas deployment exercise focused on a natural disaster scenario. This ground station has received new commercial imagery within 20 minutes, hastening a normally days-long process. The Army Geospatial Center continues to manage technology development and product improvement for the Remote Ground Terminal. Furthermore, this ground station is now on a technology transition path into the Distributed Common Ground System-Army program of record.

  2. Teleoperated position control of a PUMA robot

    NASA Technical Reports Server (NTRS)

    Austin, Edmund; Fong, Chung P.

    1987-01-01

    A laboratory distributed computer control teleoperator system is developed to support NASA's future space telerobotic operation. This teleoperator system uses a universal force-reflecting hand controller in the local iste as the operator's input device. In the remote site, a PUMA controller recieves the Cartesian position commands and implements PID control laws to position the PUMA robot. The local site uses two microprocessors while the remote site uses three. The processors communicate with each other through shared memory. The PUMA robot controller was interfaced through custom made electronics to bypass VAL. The development status of this teleoperator system is reported. The execution time of each processor is analyzed, and the overall system throughput rate is reported. Methods to improve the efficiency and performance are discussed.

  3. Whitson gives Tani a haircut in Node 2

    NASA Image and Video Library

    2007-12-30

    ISS016-E-019457 (30 Dec. 2007) --- Astronaut Daniel Tani, Expedition 16 flight engineer, trims his hair in the Harmony node of the International Space Station. Tani used hair clippers fashioned with a vacuum device to garner freshly cut hair. Astronaut Peggy Whitson, commander, assisted Tani.

  4. Swanson, Wiseman and Gerst in Node 2

    NASA Image and Video Library

    2014-05-29

    ISS040-E-006033 (29 May 2014) --- NASA astronaut Steve Swanson (center), Expedition 40 commander; along with European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both flight engineers, give a “thumbs up” signal in the Harmony node of the International Space Station.

  5. Sturckow uses Cycle Ergometer on Middeck (MDDK) during STS-128

    NASA Image and Video Library

    2009-08-29

    S128-E-006313 (29 Aug. 2009) --- Astronaut Rick Sturckow, STS-128 commander, gives a “thumbs-up” signal while exercising on a bicycle ergometer on the middeck of the Earth-orbiting Space Shuttle Discovery. Astronaut Nicole Stott, mission specialist, is visible at right.

  6. Physics teaching by infrared remote sensing of vegetation

    NASA Astrophysics Data System (ADS)

    Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund

    2018-05-01

    Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.

  7. An extension of command shaping methods for controlling residual vibration using frequency sampling

    NASA Technical Reports Server (NTRS)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  8. Development and Flight Testing of an Adaptive Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.

    2002-01-01

    On going development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle, and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. The expert system is parameterized, which makes it adaptable to be trained to both a user's subject reasoning and existing quantitative analytic tools. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation and, data acquisition, storage and retrieval.

  9. Wireless-PDA-controlled image workflow from PACS: the next trend in the health care enterprise?

    NASA Astrophysics Data System (ADS)

    Erberich, Stephan G.; Documet, Jorge; Zhou, Michael Z.; Cao, Fei; Liu, Brent J.; Mogel, Greg T.; Huang, H. K.

    2003-05-01

    Image workflow in today's Picture Archiving and Communication Systems (PACS) is controlled from fixed Display Workstations (DW) using proprietary control interfaces. A remote access to the Hospital Information System (HIS) and Radiology Information System (RIS) for urgent patient information retrieval does not exist or gradually become available. The lack for remote access and workflow control for HIS and RIS is especially true when it comes to medical images of a PACS on Department or Hospital level. As images become more complex and data sizes expand rapidly with new image techniques like functional MRI, Mammography or routine spiral CT to name a few, the access and manageability becomes an important issue. Long image downloads or incomplete work lists cannot be tolerated in a busy health care environment. In addition, the domain of the PACS is no longer limited to the imaging department and PACS is also being used in the ER and emergency care units. Thus a prompt and secure access and manageability not only by the radiologist, but also from the physician becomes crucial to optimally utilize the PACS in the health care enterprise of the new millennium. The purpose of this paper is to introduce a concept and its implementation of a remote access and workflow control of the PACS combining wireless, Internet and Internet2 technologies. A wireless device, the Personal Digital Assistant (PDA), is used to communicate to a PACS web server that acts as a gateway controlling the commands for which the user has access to the PACS server. The commands implemented for this test-bed are query/retrieve of the patient list and study list including modality, examination, series and image selection and pushing any list items to a selected DW on the PACS network.

  10. Forming Human-Robot Teams Across Time and Space

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.

    2012-01-01

    NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot, so it involves both internal fault detection as well as force sensing for unintended external contacts. The designs for the supervisory command mode and the redundant safety system will be described. Specific implementations were developed and test results will be reported. Experiments were conducted using terrestrial analogs for deep space missions, where time delays were artificially added to emulate the longer distances found in space.

  11. European Scientific Notes. Volume 37, Number 4,

    DTIC Science & Technology

    1983-04-30

    information through the system. Conventional screening of cytologi - V P.ftnost., P... l,,, S."". cal material is done manually using --... _ smears or other...simple single commands in the high level remotely located, cable drive units and Microvision language. Components are a vertical axis ball -screw...specially built compressed air , Jr. cannon . The cannon has a bore of 150 mm (fitted with sleeves for smaller mis- siles), and impact velocities up to

  12. Expedition 37 Landing

    NASA Image and Video Library

    2013-11-11

    Russian Search and Rescue personnel prepare to assist Expedition 37 Flight Engineer Karen Nyberg from the helicopter shortly after her arrival at the Karaganda airport in Kazakhstan, Monday, Nov. 11, 2013. Nyberg, Expedition 37 Commander Fyodor Yurchikhin of the Russian Federal Space Agency (Roscosmos) and Italian Flight Engineer Luca Parmitano landed in a remote area outside of the town of Zhezkazgan after after five and a half months spent on the International Space Station. Photo Credit: (NASA/Carla Cioffi)

  13. Remote Patient Management in a Mammographic Screening Environment in Underserved Areas

    DTIC Science & Technology

    2005-09-01

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER University of Pittsburgh Pittsburgh, PA 15260 9. SPONSORING...MONITORING AGENCY NAME(S) AND ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...Langer, JL Lichtenfeld, JR Osuch, LN Reynolds, ES de Paredes, RE Williams, "Responsibilities of the mammography facility," In: Quality determinants of

  14. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Expedition 33 Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency) waves hello in a chair outside the Soyuz Capsule after he and Commander Sunita Williams of NASA, and Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/GCTC/Andrey Shelepin)

  15. System Connection via SSH Gateway | High-Performance Computing | NREL

    Science.gov Websites

    ;@peregrine.hpc.nrel.gov First time logging in? If this is the first time you've logged in with your new account, you will password. You will be prompted to enter it a second time, then you will be logged off. Just reconnect with your HPC password at any time, you can simply use the passwd command. Remote Users If you're connecting

  16. Air Mass Considerations in Fog Optical Modeling.

    DTIC Science & Technology

    1981-02-01

    Other microphysical quantities whi.-h are frequently used include the mean radius, the mode radius, and the liquid water content. All these quantities...Commerce .a~ il -’ ecommunications and Commander nr1~nAdministration Ja) Arm~y Comined Arms Center *,Y nn-l t n elecommunication Sciences, & Fort !-eav...Forecasting Selected Weather Variables (Emphasizinq Remote Means )," ASL-TR-O001, January 1978. 73. Heaps, Melvin G., "The 1979 Solar Eclipse and Validation

  17. Remote Sensing of Battlefield Weather Conditions Using Unmanned Air Vehicles

    DTIC Science & Technology

    1982-09-01

    November 1981 - 1 September 1982 September 1982 DTIC S•’ ELECTE FEB 1 o1983 AIR FORCE GEMPHYSICS LABORATORY j AIR FORCE SYSTEMS COMMAND UNITED STATES AIR...1982 AIR VEHICLES 6. PERFORMING ORG, REPORT NUMBER 7. AUTHOR(@) 8 a. CONTRACT OR GRANT NUMBER(a) Maynard L. Hill Contributors: E. Lucero, J . Rowland...of MQM107A BWOFS Mission ........... . . . 27 Table 3 Roller-coaster Mission Analysis Summary . . . . . . . . . . . . . 30 J Table 4 Metfly Mission

  18. RPV Assessment of Remote Missile Site Intrusion Alarms.

    DTIC Science & Technology

    1982-08-01

    meter j fuselage, servos, battery, alternator. 14. Pitot tube and plumbing - Centrol model no. C-5255. 15. Engine CD ignition unit - KBG model 10308...1.29 Alternator with Coupling 6.22 Magnetometer and Mount .30 +26V Lead Acid Battery Pack 5.81 Pitot Tube .15 Subrudder .43 Regulator .28 94.15 Empty...Conent, Major Henry , USAF. Training Division, 1550 Aircrew Training Test Wing, Military Airlift Command, Kirtland AFB NM. Telephone interview. 29 June

  19. Various views of the STS-103 crew on the flight deck

    NASA Image and Video Library

    2000-01-26

    STS103-334-002 (19-27 December 1999) ---.Astronauts Jean-Francois Clervoy (left).and Curtis L. Brown, Jr. communicate with ground controllers on Discovery's flight deck. Brown is mission commander for NASA's third servicing mission to the Hubble Space Telescope (HST) and.Clervoy is a mission specialist representing the European Space Agency (ESA). Clervoy was the prime operator of the remote manipulator system (RMS), the robotic arm on the Space Shuttle.

  20. Jimmy Doolittle: The Commander behind the Legend

    DTIC Science & Technology

    2015-02-01

    Schlesinger Jr ., General MacArthur and Pres- ident Truman: The Struggle for Control of American Foreign Policy (New Brunswick, NJ: Farrar, Straus...not come from Doolittle but from a Navy submarine captain named Francis Low. Low raised the idea with his boss, ADM Ernest King, chief of naval... William F. “Bull” Halsey had discussed the possibility of premature discovery and de- cided the aircraft would launch if there were even a remote

  1. Leading the Development of Concepts of Operations for Next-Generation Remotely Piloted Aircraft

    DTIC Science & Technology

    2016-01-01

    overarching CONOPS. RPAs must provide full motion video and signals intelli- gence (SIGINT) capabilities to fulfill their intelligence, surveillance, and...reached full capacity, combatant commanders had an insatiable demand for this new breed of capability, and phrases like Pred porn and drone strike...dimensional steering line on the video feed of the pilot’s head-up display (HUD) that would indicate turning cues and finite steering paths for optimal

  2. Remote Supervision and Control of Air Conditioning Systems in Different Modes

    NASA Astrophysics Data System (ADS)

    Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree

    2018-01-01

    In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.

  3. Consistency of Pay-For-Performance Results Across a Geographically Dispersed Command

    DTIC Science & Technology

    2010-04-01

    give to and receive from the other” ( Ivancevich , Konopaske, & Matteson, 2008, pg 129). Jeffery Immelt, CEO of General Electric was quoted as saying...Source Premier database. Ivancevich , J., Konopaske, R., and Matteson, M. (2008). Organizational Behavior and Management, 8th Ed. New York: McGraw

  4. Volkov gives Chamitoff a haircut in the Node 2 during Expedition 17

    NASA Image and Video Library

    2008-07-20

    ISS017-E-011547 (20 July 2008) --- Russian Federal Space Agency cosmonaut Sergei Volkov, Expedition 17 commander, trims NASA astronaut Greg Chamitoff's hair in the Harmony node of the International Space Station. Volkov used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  5. 33 CFR 117.24 - Radiotelephone installation identification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Service Signs established by the Federal Highway Administration (FHWA) in U.S. Road Symbol Signs... identification. (a) The Coast Guard authorizes, and the District Commander may require the installation of a sign... operates a VHF radiotelephone in accordance with § 117.23. (b) The sign shall give notice of the...

  6. 33 CFR 117.24 - Radiotelephone installation identification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the Service Signs established by the Federal Highway Administration (FHWA) in U.S. Road Symbol Signs... identification. (a) The Coast Guard authorizes, and the District Commander may require the installation of a sign... operates a VHF radiotelephone in accordance with § 117.23. (b) The sign shall give notice of the...

  7. 33 CFR 117.24 - Radiotelephone installation identification.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Service Signs established by the Federal Highway Administration (FHWA) in U.S. Road Symbol Signs... identification. (a) The Coast Guard authorizes, and the District Commander may require the installation of a sign... operates a VHF radiotelephone in accordance with § 117.23. (b) The sign shall give notice of the...

  8. 33 CFR 117.24 - Radiotelephone installation identification.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the Service Signs established by the Federal Highway Administration (FHWA) in U.S. Road Symbol Signs... identification. (a) The Coast Guard authorizes, and the District Commander may require the installation of a sign... operates a VHF radiotelephone in accordance with § 117.23. (b) The sign shall give notice of the...

  9. 33 CFR 117.24 - Radiotelephone installation identification.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the Service Signs established by the Federal Highway Administration (FHWA) in U.S. Road Symbol Signs... identification. (a) The Coast Guard authorizes, and the District Commander may require the installation of a sign... operates a VHF radiotelephone in accordance with § 117.23. (b) The sign shall give notice of the...

  10. Inexpensive Timeshared Graphics on the SIGMA 7.

    ERIC Educational Resources Information Center

    Bork, Alfred M.

    This paper gives a technical description of various computer graphics programs developed on the Sigma 7 computer. Terminals used are the Adage 100 and the Tektronix 4002-4010. Commands are Metasymbol procedures which access Metasymbol library subroutines; programs can also be coupled with FORTRAN programs. Available, inexpensive graphic terminals…

  11. Transforming the Army with Mission Command

    DTIC Science & Technology

    2015-06-12

    organizations the work of John Kotter has served as a useful guide. “Changing behavior is less a matter of giving people analysis to influence their thoughts......fear or panic. The third is you cannot make me move deviance , driven by anger. The last is a very pessimistic attitude that leads to constant

  12. Semantic Networks. Final Report.

    ERIC Educational Resources Information Center

    Collins, Allan M.; Warnock, Eleanor H.

    Research and development work on the use of the SCHOLAR autotutorial, online system is described. Inference strategies used within the system are deductive, negative, and functional in character. A graphics package allows user to ask questions and give commands in English to control SCHOLAR's map display capability. The examples shown are for…

  13. UAV field demonstration of social media enabled tactical data link

    NASA Astrophysics Data System (ADS)

    Olson, Christopher C.; Xu, Da; Martin, Sean R.; Castelli, Jonathan C.; Newman, Andrew J.

    2015-05-01

    This paper addresses the problem of enabling Command and Control (C2) and data exfiltration functions for missions using small, unmanned, airborne surveillance and reconnaissance platforms. The authors demonstrated the feasibility of using existing commercial wireless networks as the data transmission infrastructure to support Unmanned Aerial Vehicle (UAV) autonomy functions such as transmission of commands, imagery, metadata, and multi-vehicle coordination messages. The authors developed and integrated a C2 Android application for ground users with a common smart phone, a C2 and data exfiltration Android application deployed on-board the UAVs, and a web server with database to disseminate the collected data to distributed users using standard web browsers. The authors performed a mission-relevant field test and demonstration in which operators commanded a UAV from an Android device to search and loiter; and remote users viewed imagery, video, and metadata via web server to identify and track a vehicle on the ground. Social media served as the tactical data link for all command messages, images, videos, and metadata during the field demonstration. Imagery, video, and metadata were transmitted from the UAV to the web server via multiple Twitter, Flickr, Facebook, YouTube, and similar media accounts. The web server reassembled images and video with corresponding metadata for distributed users. The UAV autopilot communicated with the on-board Android device via on-board Bluetooth network.

  14. Remote Sensing of Precipitation from Space

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2010-01-01

    This slide presentation reviews the use of remote sensing of precipitation from satellite observations. The purpose of the presentation is to introduce the three prime instrument types for measuring precipitation from space, give an overview of the Tropical Rainfall Measuring Mission (TRMM) and the Global Precipitation Measurement (GPM) mission, provides examples of how measurements from space can be used, and provides simple, high level scenarios for how remote sensed precipitation data can be used by planners and managers.

  15. Information management system breadboard data acquisition and control system.

    NASA Technical Reports Server (NTRS)

    Mallary, W. E.

    1972-01-01

    Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.

  16. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  17. Model Checking the Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)

    2001-01-01

    This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.

  18. Aerosol Remote Sensing

    NASA Technical Reports Server (NTRS)

    Lenoble, Jacqueline (Editor); Remer, Lorraine (Editor); Tanre, Didier (Editor)

    2012-01-01

    This book gives a much needed explanation of the basic physical principles of radia5tive transfer and remote sensing, and presents all the instruments and retrieval algorithms in a homogenous manner. For the first time, an easy path from theory to practical algorithms is available in one easily accessible volume, making the connection between theoretical radiative transfer and individual practical solutions to retrieve aerosol information from remote sensing. In addition, the specifics and intercomparison of all current and historical methods are explained and clarified.

  19. Long-range strategy for remote sensing: an integrated supersystem

    NASA Astrophysics Data System (ADS)

    Glackin, David L.; Dodd, Joseph K.

    1995-12-01

    Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.

  20. HTTP-based remote operational options for the Vacuum Tower Telescope, Tenerife

    NASA Astrophysics Data System (ADS)

    Staiger, J.

    2012-09-01

    We are currently developing network based tools for the Vacuum Tower Telescope (VTT), Tenerife which will allow to operate the telescope together with the newly developed 2D-spectrometer HELLRIDE under remote control conditions. The computational configuration can be viewed as a distributed system linking hardware components of various functionality from different locations. We have developed a communication protocol which is basically an extension of the HTTP standard. It will serve as a carrier for command- and data-transfers. The server-client software is based on Berkley-Unix sockets in a C++ programming environment. A customized CMS will allow to create browser accessible information on-the-fly. Java-based applet pages have been tested as optional user access GUI's. An access tool has been implemented to download near-realtime, web-based target information from NASA/SDO. Latency tests have been carried out at the VTT and the Swedish STT at La Palma for concept verification. Short response times indicate that under favorable network conditions remote interactive telescope handling may be possible. The scientific focus of possible future remote operations will be set on the helioseismology of the solar atmosphere, the monitoring of flares and the footpoint analysis of coronal loops and chromospheric events.

  1. Remote Wiping and Secure Deletion on Mobile Devices: A Review.

    PubMed

    Leom, Ming Di; Choo, Kim-Kwang Raymond; Hunt, Ray

    2016-11-01

    Mobile devices have become ubiquitous in almost every sector of both private and commercial endeavors. As a result of such widespread use in everyday life, many users knowingly and unknowingly save significant amounts of personal and/or commercial data on these mobile devices. Thus, loss of mobile devices through accident or theft can expose users-and their businesses-to significant personal and corporate cost. To mitigate this data leakage issue, remote wiping features have been introduced to modern mobile devices. Given the destructive nature of such a feature, however, it may be subject to criminal exploitation (e.g., a criminal exploiting one or more vulnerabilities to issue a remote wiping command to the victim's device). To obtain a better understanding of remote wiping, we survey the literature, focusing on existing approaches to secure flash storage deletion and provide a critical analysis and comparison of a variety of published research in this area. In support of our analysis, we further provide prototype experimental results for three Android devices, thus providing both a theoretical and applied focus to this article as well as providing directions for further research. © 2016 American Academy of Forensic Sciences.

  2. Final Environmental Assessment for Constructing and Operating Remoted Target Systems at Avon Park Air Force Range, Florida

    DTIC Science & Technology

    2003-12-01

    NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Combat Command,Environmental Flight,Avon Park Air Force Range...FL,33825 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11...Oscar Range are either Spodosols or Alfisols. Spodosols soils are characterized by a subsurface zone called a spodic ( organic ) horizon layer, whereas

  3. THE DECENNIAL OF AIR FORCE SPACE COMMAND’S ONLY GROUND BASED MISSILE WARNING CLASSIC ASSOCIATE UNIT: BENEFITS, DRAWBACKS, AND CHALLENGES

    DTIC Science & Technology

    2016-02-16

    for future threats and challenges. In the Ground Based Missile Warning and Space Surveillance mission set, this means developing...Warning and Space Surveillance for North America .43 For 45 years, Clear AFS was solely an Active Duty remote assignment. That was up until 2006 when the ...National Guard and Homeland Defense activities. § 901 provides a definition for the term “homeland defense activity” and it

  4. Impact of Polarizing Non-Lambertian Surface and Volume Scattering on Polarized Light Signatures: Importance to Remote Sensing

    DTIC Science & Technology

    2016-12-08

    RVIL Kirtland AFB, NM 87117-5776 Official Record Copy AFRL /RVBYI/Jeannette van den Bosch 1 cy Approved for public release; distribution is... AFRL -RV-PS- TR-2017-0156 AFRL -RV-PS- TR-2017-0156 IMPACT OF POLARIZING NON-LAMBERTIAN SURFACE AND VOLUME SCATTERING ON POLARIZED LIGHT...3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government

  5. Expedition 28 Landing

    NASA Image and Video Library

    2011-09-16

    The Soyuz TMA-21 spacecraft is seen with the Moon in the background as it lands with Expedition 28 Commander Andrey Borisenko, and Flight Engineers Ron Garan, and Alexander Samokutyaev in a remote area outside of the town of Zhezkazgan, Kazakhstan, on Friday, Sept. 16, 2011. NASA Astronaut Garan, Russian Cosmonauts Borisenko and Samokutyaev are returning from more than five months onboard the International Space Station where they served as members of the Expedition 27 and 28 crews. Photo Credit: (NASA/Bill Ingalls)

  6. Reassessment of Occupational Health Among U.S. Air Force Remotely Piloted Aircraft (Drone) Operators

    DTIC Science & Technology

    2017-04-05

    As a result, the U.S. Air Force (USAF) School of Aerospace Medicine was requested to conduct a field survey to assess for general areas of health...services; and reasons for increased prescription and over-the-counter medication usage ). The purpose of this study was to reevaluate for changes in...major commands within the continental United States completed the web-based survey , resulting in an estimated 40% response rate. Statistical analyses

  7. Expedition 28 Landing

    NASA Image and Video Library

    2011-09-16

    Expedition 28 Commander Andrey Borisenko waves hello to the TV cameras outside the Soyuz TMA-21 Capsule just minutes after he and Expedition 28 Flight Engineers Alexander Samokutyaev, and Ron Garan landed in a remote area outside the town of Zhezkazgan, Kazakhstan, on Friday, Sept. 16, 2011. NASA Astronaut Garan, Russian Cosmonauts Borisenko and Samokutyaev are returning from more than five months onboard the International Space Station where they served as members of the Expedition 27 and 28 crews. Photo Credit: (NASA/Bill Ingalls)

  8. Inquiry Response Security Issues with CGI Scripting and JAVA Implementations

    DTIC Science & Technology

    1998-03-26

    that looks like this? nobody@nowhere.com;mail badguys@hell.orgc/etc/ passwd ; Now the open0 statement will evaluate the following command: /usr/lib...sendmail nobody@nowhere.com; mail badguys@hell.orgdetc/ passwd Unintentionally, open0 has mailed the contents of the system password file to the remote...functions outside of the script. For example, the following URL requests a copy of /etc/ passwd from the server machine: http://www.odci.gov/cgi-bin

  9. Status of the JWST Science Instrument Payload

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matt

    2016-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) system consists of five sensors (4 science): Mid-Infrared Instrument (MIRI), Near Infrared Imager and Slitless Spectrograph (NIRISS), Fine Guidance Sensor (FGS), Near InfraRed Camera (NIRCam), Near InfraRed Spectrograph (NIRSpec); and nine instrument support systems: Optical metering structure system, Electrical Harness System; Harness Radiator System, ISIM Electronics Compartment, ISIM Remote Services Unit, Cryogenic Thermal Control System, Command and Data Handling System, Flight Software System, Operations Scripts System.

  10. Technology Description Sheets form the AMC 1990 Technology Expo Held in Aberdeen Proving Ground, Maryland on 1-4 October 1990

    DTIC Science & Technology

    1990-10-04

    emission signals) " Compactness (can be hand-held). The ISOPADS was demonstrated to troop units at the Army Training Command, Grafenwoehr , West...To be controlled, the microwave chips and modules must be interconnected with remotely located components and subsystems. Utilizing metallic cables...forward observer systcm being developed for use in situations too dangerous for soldiers. such as nuclear- contaminated areas or in support of a minefield

  11. AQUILA Remotely Piloted Vehicle System Technology Demonstrator (RPV-STD) Program. Volume I. System Description and Capabilities

    DTIC Science & Technology

    1979-04-01

    tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed

  12. DXBC: a long distance wireless broadband communication system for coastal maritime surveillance applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.

    2015-05-01

    The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.

  13. Air and Space Museum Apollo 40th Celebration

    NASA Image and Video Library

    2009-07-19

    Jazz pianist and singer Diana Krall gives an introduction prior to her performance at the Apollo 40th anniversary celebration held at the National Air and Space Museum, Monday, July 20, 2009 in Washington. Ms. Krall's piano was staged right next to the Apollo 11 Command Capsule. Photo Credit: (NASA/Bill Ingalls)

  14. Tyurin gives Lopez-Alegria a hair cut in Node 1 module

    NASA Image and Video Library

    2007-02-20

    ISS014-E-14031 (20 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, trims commander Michael E. Lopez-Alegria's hair in the Unity node of the International Space Station. Tyurin used hair clippers fashioned with a vacuum device to garner freshly cut hair.

  15. BRIDGING THE GAP FROM SCHOOL TO WORK.

    ERIC Educational Resources Information Center

    Department of Labor, Washington, DC.

    HIGH RATES OF YOUTH UNEMPLOYMENT, ESPECIALLY FOR THOSE IN LOW-INCOME MINORITY GROUP FAMILIES, AND UNDEREMPLOYMENT, DESPITE THE FACT THAT THE UNITED STATES KEEPS LARGER PROPORTIONS OF ITS CHILDREN IN SCHOOL LONGER THAN DOES ANY OTHER NATION, GIVE SOME INDICATION OF WHY THE SCHOOL-TO-WORK PROBLEM COMMANDS PUBLIC ATTENTION. SOME OF THE VARIABLES…

  16. Using "Total Physical Response" with Young Learners in Oman

    ERIC Educational Resources Information Center

    Al Harrasi, Kothar Talib Sulaiman

    2014-01-01

    Among several approaches to teaching and learning a foreign language, Total Physical Response, or TPR, is one that simulates the way children naturally acquire their mother tongue. Instructors give commands to students in the new language, and students respond through gestures. This article showcases a language learning project that the Ministry…

  17. Fault tolerant attitude sensing and force feedback control for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Jagadish, Chirag

    Two aspects of an unmanned aerial vehicle are studied in this work. One is fault tolerant attitude determination and the other is to provide force feedback to the joy-stick of the UAV so as to prevent faulty inputs from the pilot. Determination of attitude plays an important role in control of aerial vehicles. One way of defining the attitude is through Euler angles. These angles can be determined based on the measurements of the projections of the gravity and earth magnetic fields on the three body axes of the vehicle. Attitude determination in unmanned aerial vehicles poses additional challenges due to limitations of space, payload, power and cost. Therefore it provides for almost no room for any bulky sensors or extra sensor hardware for backup and as such leaves no room for sensor fault issues either. In the face of these limitations, this study proposes a fault tolerant computing of Euler angles by utilizing multiple different computation methods, with each method utilizing a different subset of the available sensor measurement data. Twenty-five such methods have been presented in this document. The capability of computing the Euler angles in multiple ways provides a diversified redundancy required for fault tolerance. The proposed approach can identify certain sets of sensor failures and even separate the reference fields from the disturbances. A bank-to-turn maneuver of the NASA GTM UAV is used to demonstrate the fault tolerance provided by the proposed method as well as to demonstrate the method of determining the correct Euler angles despite interferences by inertial acceleration disturbances. Attitude computation is essential for stability. But as of today most UAVs are commanded remotely by human pilots. While basic stability control is entrusted to machine or the on-board automatic controller, overall guidance is usually with humans. It is therefore the pilot who sets the command/references through a joy-stick. While this is a good compromise between complete automation and complete human control, it still poses some unique challenges. Pilots of manned aircraft are present inside the cockpit of the aircraft they fly and thus have a better feel of the flying environment and also the limitations of the flight. The same might not be true for UAV pilots stationed on the ground. A major handicap is that visual feedback is the only one available for the UAV pilot. An additional parameter like force feedback on the remote control joy-stick can help the UAV pilot to physically feel the limitation of the safe flight envelope. This can make the flying itself easier and safer. A method proposed here is to design a joy-stick assembly with an additional actuator. This actuator is controlled so as to generate a force feedback on the joy-stick. The control developed for this system is such that the actuator allows free movement for the pilot as long as the UAV is within the safe flight envelope. On the other hand, if it is outside this safe range, the actuator opposes the pilot's applied torque and prevents him/her from giving erroneous commands to the UAV.

  18. STS-93: Chandra Crew Arrival

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The primary objective of the STS-93 mission was to deploy the Advanced X-ray Astrophysical Facility, which had been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar. The mission was launched at 12:31 on July 23, 1999 onboard the space shuttle Columbia. The mission was led by Commander Eileen Collins. The crew was Pilot Jeff Ashby and Mission Specialists Cady Coleman, Steve Hawley and Michel Tognini from the Centre National d'Etudes Spatiales (CNES). This videotape shows the astronauts arrival at Kennedy Space Center a week before the launch. Each of the astronauts gives brief remarks, beginning with Eileen Collins, the first woman to command a space mission.

  19. Apollo 14 Mission to Fra Mauro

    NASA Technical Reports Server (NTRS)

    Beasley, Brian D. (Editor)

    1991-01-01

    The 1971 Apollo 14 Mission to Fra Mauro, a lunar highland area, is highlighted in this video. The mission's primary goal was the collection of lunar rocks and soil samples and lunar exploration. The soil and rock sampling was for the geochronological determination of the Moon's evolution and its comparison with that of Earth. A remote data collection station was assembled on the Moon and left for continuous data collection and surface monitoring experiments. The Apollo 14 astronauts were Alan B. Shepard, Edgar D. Mitchell, and Stuart A. Rossa. Astronauts Shepard and Mitchell landed on the Moon (February 5, 1971) and performed the sampling, the EVA, and deployment of the lunar experiments. There is film-footage of the lunar surface, of the command module's approach to both the Moon and the Earth, Moon and Earth spacecraft launching and landing, in-orbit command- and lunar-module docking, and of Mission Control.

  20. Preliminary C3 Loading Analysis for Future High-Altitude Unmanned Aircraft in the NAS

    NASA Technical Reports Server (NTRS)

    Ho, Yan-Shek; Gheorghisor, Izabela; Box, Frank

    2006-01-01

    This document provides a preliminary assessment and summary of the command, control, and communications (C(sup 3)) loading requirements of a generic future high-altitude, long-endurance unmanned aircraft (UA) operating at in the National Airspace System. Two principal types of C(sup 3) traffic are considered in our analysis: communications links providing air traffic services (ATS) to the UA and its human pilot, and the command and control data links enabling the pilot to operate the UA remotely. we have quantified the loading requirements of both types of traffic for two different assumed levels of UA autonomy. Our results indicate that the potential use of UA-borne relays for the ATS links, and the degree of autonomy exercised by the UA during the departure and arrival phases of its flight, will be among the key drivers of C(sup 3) loading and bandwidth requirements.

  1. Marshall Space Flight Center Ground Systems Development and Integration

    NASA Technical Reports Server (NTRS)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  2. Remotely manned systems: Exploration and operation in space; Proceedings of the First National Conference, California Institute of Technology, Pasadena, Calif., September 13-15, 1972.

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1973-01-01

    Free-flying teleoperator systems are discussed, giving attention to earth-orbit mission considerations and Space Tug requirements, free-flying teleoperator requirements and conceptual design, system requirements for a free-flying teleoperator to despin, and the experimental evaluation of remote manipulator systems. Shuttle-Attached Manipulator Systems are considered, together with remote surface vehicle systems, manipulator systems technology, remote sensor and display technology, the man-machine interface, and control and machine intelligence. Nonspace applications are also explored, taking into account implications of nonspace applications, naval applications of remote manipulators, and hand tools and mechanical accessories for a deep submersible. Individual items are announced in this issue.

  3. Remote control of an MR imaging study via tele-collaboration tools

    NASA Astrophysics Data System (ADS)

    Sullivan, John M., Jr.; Mullen, Julia S.; Benz, Udo A.; Schmidt, Karl F.; Murugavel, Murali; Chen, Wei; Ghadyani, Hamid

    2005-04-01

    In contrast to traditional 'video conferencing' the Access Grid (AG), developed by Argonne National Laboratory, is a collaboration of audio, video and shared application tools which provide the 'persistent presence' of each participant. Among the shared application tools are the ability to share viewing and control of presentations, browsers, images and movies. When used in conjunction with Virtual Network Computing (VNC) software, an investigator can interact with colleagues at a remote site, and control remote systems via local keyboard and mouse commands. This combination allows for effective viewing and discussion of information, i.e. data, images, and results. It is clear that such an approach when applied to the medical sciences will provide a means by which a team of experts can not only access, but interact and control medical devices for the purpose of experimentation, diagnosis, surgery and therapy. We present the development of an application node at our 4.7 Tesla MR magnet facility, and a demonstration of remote investigator control of the magnet. A local magnet operator performs manual tasks such as loading the test subject into the magnet and administering the stimulus associated with the functional MRI study. The remote investigator has complete control of the magnet console. S/he can adjust the gradient coil settings, the pulse sequence, image capture frequency, etc. A geographically distributed audience views and interacts with the remote investigator and local MR operator. This AG demonstration of MR magnet control illuminates the potential of untethered medical experiments, procedures and training.

  4. Analysis of a flare-director concept for an externally blown flap STOL aircraft

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.

    1974-01-01

    A flare-director concept involving a thrust-required flare-guidance equation was developed and tested on a moving-base simulator. The equation gives a signal to command thrust as a linear function of the errors between the variables thrust, altitude, and altitude rate and corresponding values on a desired reference flare trajectory. During the simulator landing tests this signal drove either the horizontal command bar of the aircraft's flight director or a thrust-command dot on a head-up virtual-image display of a flare director. It was also used as the input to a simple autoflare system. An externally blown flap STOL (short take-off and landing) aircraft (with considerable stability and control augmentation) was modeled for the landing tests. The pilots considered the flare director a valuable guide for executing a proper flare-thrust program under instrument-landing conditions, but were reluctant to make any use of the head-up display when they were performing the landings visually.

  5. Expedition 5 Crew Interviews: Valery Korzun, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 5 Commander Valery Kozun is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission and what his responsibilities will be as commander, what the crew exchange will be like (the Expedition 5 crew will replace the Expedition 4 crew on the International Space Station (ISS)), the daily life on an extended stay mission, the loading operations that will take place, the experiments he will be conducting on board, and the planned extravehicular activities (EVAs) scheduled for the mission. Kozun discusses the EVAs in greater detail and explains the significance of the Mobile Base System and the Crew Equipment Translation Aid (CETA) cart for the ISS. He also explains at some length the science experiments which will be conducted on board by the Expedition 5 crew members. Korzun also touches on how his previous space experience on Mir (including dealing with a very serious fire) will benefit the Expedition 5 mission.

  6. Using XML and Java Technologies for Astronomical Instrument Control

    NASA Technical Reports Server (NTRS)

    Ames, Troy; Case, Lynne; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Traditionally, instrument command and control systems have been highly specialized, consisting mostly of custom code that is difficult to develop, maintain, and extend. Such solutions are initially very costly and are inflexible to subsequent engineering change requests, increasing software maintenance costs. Instrument description is too tightly coupled with details of implementation. NASA Goddard Space Flight Center, under the Instrument Remote Control (IRC) project, is developing a general and highly extensible framework that applies to any kind of instrument that can be controlled by a computer. The software architecture combines the platform independent processing capabilities of Java with the power of the Extensible Markup Language (XML), a human readable and machine understandable way to describe structured data. A key aspect of the object-oriented architecture is that the software is driven by an instrument description, written using the Instrument Markup Language (IML), a dialect of XML. IML is used to describe the command sets and command formats of the instrument, communication mechanisms, format of the data coming from the instrument, and characteristics of the graphical user interface to control and monitor the instrument. The IRC framework allows the users to define a data analysis pipeline which converts data coming out of the instrument. The data can be used in visualizations in order for the user to assess the data in real-time, if necessary. The data analysis pipeline algorithms can be supplied by the user in a variety of forms or programming languages. Although the current integration effort is targeted for the High-resolution Airborne Wideband Camera (HAWC) and the Submillimeter and Far Infrared Experiment (SAFIRE), first-light instruments of the Stratospheric Observatory for Infrared Astronomy (SOFIA), the framework is designed to be generic and extensible so that it can be applied to any instrument. Plans are underway to test the framework with other types of instruments, such as remote sensing earth science instruments.

  7. System for Estimating Horizontal Velocity During Descent

    NASA Technical Reports Server (NTRS)

    Johnson, Andrew; Cheng, Yang; Wilson, Reg; Goguen, Jay; Martin, Alejandro San; Leger, Chris; Matthies, Larry

    2007-01-01

    The descent image motion estimation system (DIMES) is a system of hardware and software, designed for original use in estimating the horizontal velocity of a spacecraft descending toward a landing on Mars. The estimated horizontal velocity is used in generating rocket-firing commands to reduce the horizontal velocity as part of an overall control scheme to minimize the landing impact. DIMES can also be used for estimating the horizontal velocity of a remotely controlled or autonomous aircraft for purposes of navigation and control.

  8. Supervisory Control of Remote Manipulators, Vehicles and Dynamic Processes: Experiments in Command and Display Aiding

    DTIC Science & Technology

    1983-03-01

    aiding the operator in detecting ocating failures. tN-A brief conclusion reviews how these experiments fit together and speculates on problems and...and issues high level comiands to the TIS (subgcal statements, instructions on how to reach each subgoal or what to do otherwise, andI changes in...parameters). The TIS, insofar as it has subgoals to reach, instructions on how to try or what to do if it is impeded, functions as an aatomaton. it uses

  9. OpenGl Visualization Tool and Library Version: 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2010-06-22

    GLVis is an OpenGL tool for visualization of finite element meshes and functions. When started without any options, GLVis starts a server, which waits for a socket connections and visualizes any recieved data. This way the results of simulations on a remote (parallel) machine can be visualized on the lical user desktop. GLVis can also be used to visualize a mesh with or without a finite element function (solution). It can run a batch sequence of commands (GLVis scripts), or display previously saved socket streams.

  10. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-23

    Russian Search and rescue helicopters are seen as they prepare for the landing of the Soyuz TMA-20 spacecraft with Expedition 27 Commander Dmitry Kondratyev and Flight Engineers Paolo Nespoli and Cady Coleman in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  11. Expedition 32 Landing

    NASA Image and Video Library

    2012-09-17

    Expedition 32 NASA Flight Engineer Joe Acaba rests on the Russian Search and Rescue helicopter that is carrying him from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)

  12. Expedition 32 Landing

    NASA Image and Video Library

    2012-09-17

    A view inside inside the Russian Search and Rescue helicopter that will carry Expedition 32 Flight Engineer Joe Acaba from the Soyuz TMA-04M landing site in a remote area outside Arkalyk, Kazakhstan to Kostanay, Kazakhstan shortly after he and Expedition 32 Commander Gennady Padalka and Flight Engineer Sergei Revin returned from the International Space Station on Monday, Sept. 17, 2012. Acaba, Padalka and Revin returned from five months onboard the International Space Station where they served as members of the Expedition 31 and 32 crews. Photo Credit: (NASA/Carla Cioffi)

  13. Expedition 31 Landing

    NASA Image and Video Library

    2012-07-01

    A Russian Search and Rescue helicopter flies to the the Soyuz TMA-03M capsule shortly after it landed with Expedition 31 Commander Oleg Kononenko of Russia and Flight Engineers Don Pettit of NASA and Andre Kuipers of the European Space Agency in a remote area near the town of Zhezkazgan, Kazakhstan, on Sunday, July 1, 2012. Pettit, Kononenko and Kuipers returned from more than six months onboard the International Space Station where they served as members of the Expedition 30 and 31 crews. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 36 Soyuz TMA-08M Landing

    NASA Image and Video Library

    2013-09-11

    Russian search and rescue MI-8 helicopters are seen at the landing site of the Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. The Soyuz landed with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 36 Soyuz TMA-08M Landing

    NASA Image and Video Library

    2013-09-11

    Russian search and rescue personnel arrive within seconds after the landing of the Soyuz TMA-08M spacecraft with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy of NASA aboard, in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. Vinogradov, Misurkin and Cassidy returned to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  16. Fostering a Culture of Engagement. (Military Review, September-October 2009)

    DTIC Science & Technology

    2009-10-01

    the publication of any information that could even remotely be considered to aid the enemy.”8 A year later, the Sedition Act made criticism of the...Kenneth Payne, “The Media as an Instrument of War,” Parameters (Spring 2005), 81-93. 31. Transcript of speech given by GEN Martin E. Dempsey, Commanding...General TRADOC, to the U.S. Army War College, Carlisle Barracks, PA, 25 March 2009. <www.tradoc.army.mil/pao/ Speeches /Gen%20Dempsey%202008-09/AWC%20

  17. Lindsey and Boe on forward flight deck

    NASA Image and Video Library

    2011-02-26

    S133-E-006081 (25 Feb. 2011) --- On space shuttle Discovery’s forward flight deck, astronauts Steve Lindsey (right), STS-133 commander, and Eric Boe, pilot, switch seats for a brief procedure as the crew heads toward a weekend docking with the International Space Station. Earlier the crew conducted thorough inspections of the shuttle’s thermal tile system using the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) and special cameras. Photo credit: NASA or National Aeronautics and Space Administration

  18. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Girls in traditional Kazakh dress smile after welcoming home Expedition 33 crew members; Commander Sunita Williams of NASA, and Flight Engineers Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), and Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency) at the Kustanay Airport in Kazakhstan a few hours after the Expedition 33 crew landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  19. Economical Video Monitoring of Traffic

    NASA Technical Reports Server (NTRS)

    Houser, B. C.; Paine, G.; Rubenstein, L. D.; Parham, O. Bruce, Jr.; Graves, W.; Bradley, C.

    1986-01-01

    Data compression allows video signals to be transmitted economically on telephone circuits. Telephone lines transmit television signals to remote traffic-control center. Lines also carry command signals from center to TV camera and compressor at highway site. Video system with television cameras positioned at critical points on highways allows traffic controllers to determine visually, almost immediately, exact cause of traffic-flow disruption; e.g., accidents, breakdowns, or spills, almost immediately. Controllers can then dispatch appropriate emergency services and alert motorists to minimize traffic backups.

  20. Intelligible machine learning with malibu.

    PubMed

    Langlois, Robert E; Lu, Hui

    2008-01-01

    malibu is an open-source machine learning work-bench developed in C/C++ for high-performance real-world applications, namely bioinformatics and medical informatics. It leverages third-party machine learning implementations for more robust bug-free software. This workbench handles several well-studied supervised machine learning problems including classification, regression, importance-weighted classification and multiple-instance learning. The malibu interface was designed to create reproducible experiments ideally run in a remote and/or command line environment. The software can be found at: http://proteomics.bioengr. uic.edu/malibu/index.html.

  1. Unmanned Aircraft System / Remotely Piloted Aircraft (UAS/RPA) Human Factors and Human Systems Integration Research Workshop Held in Dayton, Ohio on November 8-9, 2011

    DTIC Science & Technology

    2012-05-25

    station design . These issues include: poor ergonomics ; varying data input methods; multiple inputs required to implement a single command; lack of...facing the UAS/RPA discipline. Major discussion topics included: UAS operator selection, training, control station design , manpower and scheduling...Break 1400 – 1430: Naval UAS Training  LCDR Brent Olde 1430 – 1500: Control Station Design Issues  Melissa Walwanis 1500 – 1600: Tour of NAMRU-D

  2. Robonaut 2 performs tests in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-17

    ISS034-E-031125 (17 Jan. 2013) --- In the International Space Station's Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  3. Robonaut 2 performs tests in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-17

    ISS034-E-031124 (17 Jan. 2013) --- In the International Space Station's Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  4. Robonaut 2 in the U.S. Laboratory

    NASA Image and Video Library

    2013-01-02

    ISS034-E-013990 (2 Jan. 2013) --- In the International Space Station’s Destiny laboratory, Robonaut 2 is pictured during a round of testing for the first humanoid robot in space. Ground teams put Robonaut through its paces as they remotely commanded it to operate valves on a task board. Robonaut is a testbed for exploring new robotic capabilities in space, and its form and dexterity allow it to use the same tools and control panels as its human counterparts do aboard the station.

  5. The Army Study Program.

    DTIC Science & Technology

    1980-10-09

    STUDDIES BY CATEGORY STUDY TITLE SPONSOR NMtTHOO PPA ADM RE:MOTE LINK PRUG DARCOM CONTRACT ADV TECH MODEL FULL DARCON CONTRACT ARMY COMMAND ANDi CONTROL...HOUUSE NUN -RLCURRIN 1 LMANUS DARCON I"-HUSL FF-TH-hLLI TM~k ECUNLNI(. ANALYSIS DARCOM CUNTRALT FOR SFELTKUM ANALYZERS UPLRA1IUN&L FLt)AI/EKPSL TKADL...TECHNULOGY A5 AESM:NT TRADOC bUTH *TEN YEAR INSTRUMENTATIOft ANALYSkIS OCSA ot" PHASE I TERRAIN MODELS DARCOM bUTH lEST CRITLRIA FUOR NUN -IIILLL-K WEAPUN

  6. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  7. The Aerospace Energy Systems Laboratory: A BITBUS networking application

    NASA Technical Reports Server (NTRS)

    Glover, Richard D.; Oneill-Rood, Nora

    1989-01-01

    The NASA Ames-Dryden Flight Research Facility developed a computerized aircraft battery servicing facility called the Aerospace Energy Systems Laboratory (AESL). This system employs distributed processing with communications provided by a 2.4-megabit BITBUS local area network. Customized handlers provide real time status, remote command, and file transfer protocols between a central system running the iRMX-II operating system and ten slave stations running the iRMX-I operating system. The hardware configuration and software components required to implement this BITBUS application are required.

  8. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Crowds of officials, family and media gather as Expedition 33 Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency) is welcomed home at the Chkalovsky Airport in Star City, Russia several hours after he, Commander Sunita Williams of NASA, and Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  9. A Multiprocessor Implementation of CSP (Communicating Sequential Processes)

    DTIC Science & Technology

    1988-03-01

    P to check that "valid" communications can take place between P using guard g , and P,, and if so, to attempt to commit to P,. If a commit was...AltList,, gi): INTEGER that scans the remote alternative list AltList, looking for a matching and corn- patible guard g , to the local guard g ,. By...matching we mean gj contains an I/O operation with P. By compatible we mean g , and gj do not both contain input (output) commands. CheckGuard returns j

  10. Two Web-Based Laboratories of the FisL@bs Network: Hooke's and Snell's Laws

    ERIC Educational Resources Information Center

    de la Torre, L.; Sanchez, J.; Dormido, S.; Sanchez, J. P.; Yuste, M.; Carreras, C.

    2011-01-01

    FisL@bs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning…

  11. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  12. Remote access and care: A comparison of Queensland women's maternity care experience according to area of residence.

    PubMed

    Hennegan, Julie; Kruske, Sue; Redshaw, Maggie

    2014-12-01

    This study fills a gap in the literature with a quantitative comparison of the maternity care experiences of women in different geographic locations in Queensland, Australia. Data from a large-scale survey were used to compare women's care experiences according to Australian Standard Geographical Classification (major city, inner regional, outer regional, remote and very remote). Compared to the other groups, women from remote or very remote areas were more likely to be younger, live in an area with poorer economic resources, identify as Aboriginal and/or Torres Strait Islander and give birth in a public facility. They were more likely to travel to another city, town or community for birth. In adjusted analyses women from remote areas were less likely to have interventions such as electronic fetal monitoring, but were more likely to give birth in an upright position and be able to move around during labour. Women from remote areas did not differ significantly from women from major cities in their satisfaction with interpersonal care. Antenatal and postpartum care was lacking for rural women. In adjusted analyses they were much less likely to have booked for maternity care by 18 weeks gestation, to be telephoned or visited by a care provider in the first 10 days after birth. Despite these differences, women from remote areas were more likely to be breastfeeding at 13 weeks and confident in caring for their baby at home. Findings support qualitative assertions that remote and rural women are disadvantaged in their access to antenatal and postnatal care by the need to travel for birth, however, other factors such as age were more likely to be significant barriers to high quality interpersonal care. Improvements to maternity services are needed in order to address inequalities in maternity care particularly in the postnatal period. Copyright © 2014 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  13. Unified Desktop for Monitoring & Control Applications - The Open Navigator Framework Applied for Control Centre and EGSE Applications

    NASA Astrophysics Data System (ADS)

    Brauer, U.

    2007-08-01

    The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").

  14. Yurchikhin gives Kotov a haircut in the Node 1 during Expedition 15

    NASA Image and Video Library

    2007-05-13

    ISS015-E-07565 (13 May 2007) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander, trims cosmonaut Oleg V. Kotov's hair in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair. Kotov, flight engineer, and Yurchikhin represent Russia's Federal Space Agency.

  15. Yurchikhin gives Kotov a haircut in the Node 1 during Expedition 15

    NASA Image and Video Library

    2007-05-13

    ISS015-E-07566 (13 May 2007) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander, trims cosmonaut Oleg V. Kotov's hair in the Unity node of the International Space Station. Yurchikhin used hair clippers fashioned with a vacuum device to garner freshly cut hair. Kotov, flight engineer, and Yurchikhin represent Russia's Federal Space Agency.

  16. Social Studies in Motion: Learning with the Whole Person

    ERIC Educational Resources Information Center

    Schulte, Paige L.

    2005-01-01

    Total Physical Response (TPR), developed by James Asher, is defined as a teaching technique whereby a learner responds to language input with body motions. Performing a chant or the game "Robot" is an example of a TPR activity, where the teacher commands her robots to do some task in the classroom. Acting out stories and giving imperative commands…

  17. Disability Statistics in the Developing World: A Reflection on the Meanings in Our Numbers

    ERIC Educational Resources Information Center

    Fujiura, Glenn T.; Park, Hye J.; Rutkowski-Kmitta, Violet

    2005-01-01

    Background: The imbalance between the sheer size of the developing world and what little is known about the lives and life circumstances of persons with disabilities living there should command our attention. Method: International development initiatives routinely give great priority to the collection of statistical indicators yet even the most…

  18. Enigme Policiere et Expression Orale (A Policy Puzzle and Oral Expression).

    ERIC Educational Resources Information Center

    Blanche, Patrick

    1996-01-01

    Criticizes the circumstance that limits the opportunity for students to speak French in casual conversation to an extent that would permit them to truly improve their command of the language. The article maintains that giving students the opportunity to develop on their own the ability to express themselves orally is a valuable teaching goal.…

  19. Controllable Bidirectional dc Power Sources For Large Loads

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1995-01-01

    System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.

  20. The associate principal astronomer telescope operations model

    NASA Technical Reports Server (NTRS)

    Drummond, Mark; Bresina, John; Swanson, Keith; Edgington, Will; Henry, Greg

    1994-01-01

    This paper outlines a new telescope operations model that is intended to achieve low operating costs with high operating efficiency and high scientific productivity. The model is based on the existing Principal Astronomer approach used in conjunction with ATIS, a language for commanding remotely located automatic telescopes. This paper introduces the notion of an Associate Principal Astronomer, or APA. At the heart of the APA is automatic observation loading and scheduling software, and it is this software that is expected to help achieve efficient and productive telescope operations. The purpose of the APA system is to make it possible for astronomers to submit observation requests to and obtain resulting data from remote automatic telescopes, via the Internet, in a highly-automated way that minimizes human interaction with the system and maximizes the scientific return from observing time.

  1. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, W. A.; Lepicovsky, J.

    1992-01-01

    The software for configuring an LV counter processor system has been developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system has been developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  2. LV software support for supersonic flow analysis

    NASA Technical Reports Server (NTRS)

    Bell, William A.

    1992-01-01

    The software for configuring a Laser Velocimeter (LV) counter processor system was developed using structured design. The LV system includes up to three counter processors and a rotary encoder. The software for configuring and testing the LV system was developed, tested, and included in an overall software package for data acquisition, analysis, and reduction. Error handling routines respond to both operator and instrument errors which often arise in the course of measuring complex, high-speed flows. The use of networking capabilities greatly facilitates the software development process by allowing software development and testing from a remote site. In addition, high-speed transfers allow graphics files or commands to provide viewing of the data from a remote site. Further advances in data analysis require corresponding advances in procedures for statistical and time series analysis of nonuniformly sampled data.

  3. Extreme Mapping: Looking for Water on the Moon

    NASA Technical Reports Server (NTRS)

    Cohen, Tamar

    2016-01-01

    There are many challenges when exploring extreme environments. Gathering accurate data to build maps about places that you cannot go is incredibly complex. NASA supports scientists by remotely operating robotic rovers to explore uncharted territories. One potential upcoming mission is to look for water near a lunar pole (the Resource Prospector mission). Learn about the technical hurdles and research steps that NASA takes before the mission. NASA practices on Earth with Mission Analogs which simulate the proposed mission. This includes going to lunar-type landscapes, building field networks, testing out rovers, instruments and operational procedures. NASA sets up remote science back rooms just as there are for actual missions. NASA develops custom Ground Data Systems software to support scientific mission planning and monitoring over variable time delays, and separate commanding software and infrastructure to operate the rovers.

  4. Feasibility study of transmission of OTV camera control information in the video vertical blanking interval

    NASA Technical Reports Server (NTRS)

    White, Preston A., III

    1994-01-01

    The Operational Television system at Kennedy Space Center operates hundreds of video cameras, many remotely controllable, in support of the operations at the center. This study was undertaken to determine if commercial NABTS (North American Basic Teletext System) teletext transmission in the vertical blanking interval of the genlock signals distributed to the cameras could be used to send remote control commands to the cameras and the associated pan and tilt platforms. Wavelength division multiplexed fiberoptic links are being installed in the OTV system to obtain RS-250 short-haul quality. It was demonstrated that the NABTS transmission could be sent over the fiberoptic cable plant without excessive video quality degradation and that video cameras could be controlled using NABTS transmissions over multimode fiberoptic paths as long as 1.2 km.

  5. Robots, systems, and methods for hazard evaluation and visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximatemore » the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.« less

  6. Remotely Monitored Sealing Array Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support activemore » tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.« less

  7. A high throughput geocomputing system for remote sensing quantitative retrieval and a case study

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting

    2011-12-01

    The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.

  8. Discrimination of soil hydraulic properties by combined thermal infrared and microwave remote sensing

    NASA Technical Reports Server (NTRS)

    Vandegriend, A. A.; Oneill, P. E.

    1986-01-01

    Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.

  9. Enhancing the Remote Variable Operations in NPSS/CCDK

    NASA Technical Reports Server (NTRS)

    Sang, Janche; Follen, Gregory; Kim, Chan; Lopez, Isaac; Townsend, Scott

    2001-01-01

    Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with distributed objects can increase the code reusability. The remote variable scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes towards a client-server platform. This scheme gives the client the capability of accessing the variables at the server site. In this paper, we review and enhance the remote variable scheme by using the operator overloading features in C++. The enhancement enables NPSS programmers to use remote variables in much the same way as traditional variables. The remote variable scheme adopts the lazy update approach and the prefetch method. The design strategies and implementation techniques are described in details. Preliminary performance evaluation shows that communication overhead can be greatly reduced.

  10. Helicopter flight-control design using an H(2) method

    NASA Technical Reports Server (NTRS)

    Takahashi, Marc D.

    1991-01-01

    Rate-command and attitude-command flight-control designs for a UH-60 helicopter in hover are presented and were synthesized using an H(2) method. Using weight functions, this method allows the direct shaping of the singular values of the sensitivity, complementary sensitivity, and control input transfer-function matrices to give acceptable feedback properties. The designs were implemented on the Vertical Motion Simulator, and four low-speed hover tasks were used to evaluate the control system characteristics. The pilot comments from the accel-decel, bob-up, hovering turn, and side-step tasks indicated good decoupling and quick response characteristics. However, an underlying roll PIO tendency was found to exist away from the hover condition, which was caused by a flap regressing mode with insufficient damping.

  11. STS-113 Crew Interviews: Jim Wetherbee, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-113 Commander Jim Wetherbee is seen during this preflight interview where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Wetherbee outlines his role in the mission, what his responsibilities will be, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what the importance of the primary payload (the P1 truss) will be. He also provides a detailed account of the three planned extravehicular activities (EVAs) and additional transfer duties. He ends by offering his thoughts on the success of the ISS as the second anniversary of continuous human occupation of the ISS approaches.

  12. Fish-eye view of Williams, Searfoss and Pawelczyk on middeck during meal

    NASA Image and Video Library

    1998-05-15

    STS090-351-009 (17 April - 3 May 1998) --- Three members of the Neurolab crew were photographed during off-duty time on the mid-deck aboard the Earth-orbiting Space Shuttle Columbia. Left to right are James A. (Jim) Pawelczyk, payload specialist, and astronauts Richard A. Searfoss, mission commander; and Richard M. Linnehan, payload commander. Linnehan is in the hatchway of the tunnel that connected the crew members to the Spacelab Science Module in Columbia's cargo bay. A "fish-eye" lens on a 35mm camera gives the scene a slightly distorted look. Five NASA astronauts and two payload specialists went on to spend a little more than 16-days in Earth-orbit in support of the Neurolab mission.

  13. Using input command pre-shaping to suppress multiple mode vibration

    NASA Technical Reports Server (NTRS)

    Hyde, James M.; Seering, Warren P.

    1990-01-01

    Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.

  14. Towards an e-Health Cloud Solution for Remote Regions at Bahia-Brazil.

    PubMed

    Sarinho, V T; Mota, A O; Silva, E P

    2017-12-19

    This paper presents CloudMedic, an e-Health Cloud solution that manages health care services in remote regions of Bahia-Brazil. For that, six main modules: Clinic, Hospital, Supply, Administrative, Billing and Health Business Intelligence, were developed to control the health flow among health actors at health institutions. They provided database model and procedures for health business rules, a standard gateway for data maintenance between web views and database layer, and a multi-front-end framework based on web views and web commands configurations. These resources were used by 2042 health actors in 261 health posts covering health demands from 118 municipalities at Bahia state. They also managed approximately 2.4 million health service 'orders and approximately 13.5 million health exams for more than 1.3 million registered patients. As a result, a collection of health functionalities available in a cloud infrastructure was successfully developed, deployed and validated in more than 28% of Bahia municipalities. A viable e-Health Cloud solution that, despite municipality limitations in remote regions, decentralized and improved the access to health care services at Bahia state.

  15. Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.

  16. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.

  17. Mobile health in cardiology: a review of currently available medical apps and equipment for remote monitoring.

    PubMed

    Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico

    2016-09-01

    Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.

  18. Turning Water into Wine: Giving Remote Texts Full Flavor for the Audience of Friends

    ERIC Educational Resources Information Center

    Gregory, Marshall

    2005-01-01

    This essay argues that teachers would be more effective at promoting students' willingness to work hard at course content that seems to them remote and abstract if teachers explicitly presented that content to students more as a means to their education rather than as the aim of their education. Teachers should confront the fact that most of the…

  19. Post-Secondary Distance Education in a Contemporary Colonial Context: Experiences of Students in a Rural First Nation in Canada

    ERIC Educational Resources Information Center

    Simon, Jesse; Burton, Kevin; Lockhart, Emily; O'Donnell, Susan

    2014-01-01

    Post-secondary distance education gives students and their families living in remote and rural regions the option to stay in their communities while they study instead of moving closer to the universities in cities. Post-secondary distance education is an option in many rural and remote First Nation (Indigenous) communities in Canada; however…

  20. Letting thoughts take wing.

    PubMed

    Jorgensen, Chuck; Wheeler, Kevin

    2002-03-01

    Recent developments in neuroelectronics are applied to aviation and airplane flight control instruments. Electromyographic control has been applied to flight simulations using the autopilot interface in order to use gestures to give bank and pitch commands to the autopilot. In other demonstrations, direct rate control was used to perform repeated successful landings and the damage-adaptive capability of inner-loop neural and propulsion-based controls was utilized.

  1. Staff Ride Handbook for the Overland Campaign, Virginia, 4 May to 15 June 1864: A Study on Operational-Level Command

    DTIC Science & Technology

    2005-01-01

    gives a needed feel for the tragedy of war. In short, staff ride leaders must choose a limited number of tactical details and human-interest stories...adjutant, was a Seneca Indian. 315 4. Meade, often irritable, was particularly frustrated at Cold Harbor. Although Meade did not publicly voice his

  2. Lopez-Alegria gives Tyurin a haircut in the Node 1 /Unity module

    NASA Image and Video Library

    2007-01-11

    ISS014-E-11687 (11 Jan. 2007) --- Astronaut Michael E. Lopez-Alegria, Expedition 14 commander and NASA space station science officer, trims cosmonaut Mikhail Tyurin's hair in the Unity node of the International Space Station. Lopez-Alegria used hair clippers fashioned with a vacuum device to garner freshly cut hair. Tyurin, flight engineer, represents Russia's Federal Space Agency.

  3. Pinnacle: The Army’s Effort to Reform Its Accession Process

    DTIC Science & Technology

    2011-02-24

    Philip Kotler emphasizes the importance of market conditions on organization design and strategy. According to Kotler , “Companies need to give the...Leadership, interview by author, December 6, 2010. 68 Philip Kotler , Marketing Management: Analysis, Planning, Implementation and Control...2010. 75 U.S. Army Recruiting Command, Pinnacle Army Research Consortium, September 1, 2009. 76 Philip Kotler , Marketing Management: Analysis

  4. The BCI competition. III: Validating alternative approaches to actual BCI problems.

    PubMed

    Blankertz, Benjamin; Müller, Klaus-Robert; Krusienski, Dean J; Schalk, Gerwin; Wolpaw, Jonathan R; Schlögl, Alois; Pfurtscheller, Gert; Millán, José del R; Schröder, Michael; Birbaumer, Niels

    2006-06-01

    A brain-computer interface (BCI) is a system that allows its users to control external devices with brain activity. Although the proof-of-concept was given decades ago, the reliable translation of user intent into device control commands is still a major challenge. Success requires the effective interaction of two adaptive controllers: the user's brain, which produces brain activity that encodes intent, and the BCI system, which translates that activity into device control commands. In order to facilitate this interaction, many laboratories are exploring a variety of signal analysis techniques to improve the adaptation of the BCI system to the user. In the literature, many machine learning and pattern classification algorithms have been reported to give impressive results when applied to BCI data in offline analyses. However, it is more difficult to evaluate their relative value for actual online use. BCI data competitions have been organized to provide objective formal evaluations of alternative methods. Prompted by the great interest in the first two BCI Competitions, we organized the third BCI Competition to address several of the most difficult and important analysis problems in BCI research. The paper describes the data sets that were provided to the competitors and gives an overview of the results.

  5. Experimental evaluation of ALS point cloud ground extraction over different land cover in the Malopolska Province

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata

    2013-04-01

    The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was made on the basis of a visual inspection of the results (Sithole G., Vosselman G., 2004; Meng X. et al., 2010). The results of these analyses were described as a graph using weighted assumption. The quantitative analyses were evaluated on a basis of Type I, Type II and Total errors (Sithole G., Vosselman G., 2003). The achieved results show that the analysed algorithms yield different classification accuracies depending on the landscape and land cover. The simplest terrain for ground extraction was flat rural area with sparse vegetation. The most difficult were mountainous areas with very dense vegetation where only a few ground points were available. Generally the LAStools algorithm gives good results in every type of terrain, but the ground surface is too smooth. The LIS Progressive Morphological Filter algorithm gives good results in forested flat and low slope areas. The surface-based algorithm from SCOP++ gives good results in mountainous areas - both forested and built-up because it better preserves steep slopes, sharp ridges and breaklines, but sometimes it fails to remove off-terrain objects from the ground class. The segmentation-based algorithm in LIS gives quite good results in built-up flat areas, but in forested areas it does not work well. Bibliography: Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII (Pt. B4/1), 110- 117 Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 53 (4), 193-203 LAStools website http://www.cs.unc.edu/~isenburg/lastools/ (verified in September 2012) Meng, X., Currit, N., Zhao, K., 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sensing 2, 833-860 Sithole, G., Vosselman, G., 2003. Report: ISPRS Comparison of Filters. Commission III, Working Group 3. Department of Geodesy, Faculty of Civil Engineering and Geosciences, Delft University of technology, The Netherlands Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction form airborne laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing 59, 85-101 Trimble, 2012 http://www.trimble.com/geospatial/aerial-software.aspx (verified in November 2012) Wichmann, V., 2012. LIS Command Reference, LASERDATA GmbH, 1-231 Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003. A progressive morphological filter for removing non-ground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882

  6. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, M. L.

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot. HRP GAPS This HRI research contributes to closure of HRP gaps by providing information on how display and control characteristics - those related to guidance, feedback, and command modalities - affect operator performance. The overarching goals are to improve interface usability, reduce operator error, and develop candidate guidelines to design effective human-robot interfaces.

  7. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  8. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  9. Virtuality and efficiency - overcoming past antinomy in the remote collaboration experience

    NASA Astrophysics Data System (ADS)

    Fernandes, Joao; Bjorkli, Knut; Clavo, David Martin; Baron, Thomas

    2010-04-01

    Several recent initiatives have been put in place by the CERN IT Department to improve the user experience in remote dispersed meetings and remote collaboration at large in the LHC communities worldwide. We will present an analysis of the factors which were historically limiting the efficiency of remote dispersed meetings and describe the consequent actions which were undertaken at CERN to overcome these limitations. After giving a status update of the different equipment available at CERN to enable the virtual sessions and the various collaborative tools which are currently proposed to users, we will focus on the evolution of this market: how can the new technological trends (among others, HD videoconferencing, Telepresence, Unified Communications, etc.) impact positively the user experience and how to attain the best usage of them. Finally, by projecting ourselves in the future, we will give some hints as to how to answer the difficult question of selecting the next generation of collaborative tools: which set of tools among the various offers (systems like Vidyo H264 SVC, next generation EVO, Groupware offers, standard H323 systems, etc.) is best suited for our environment and how to unify this set for the common user. This will finally allow us to definitively overcome the past antinomy between virtuality and efficiency.

  10. Human-Robot Interaction Directed Research Project

    NASA Technical Reports Server (NTRS)

    Sandor, Aniko; Cross, Ernest V., II; Chang, Mai Lee

    2014-01-01

    Human-robot interaction (HRI) is a discipline investigating the factors affecting the interactions between humans and robots. It is important to evaluate how the design of interfaces and command modalities affect the human's ability to perform tasks accurately, efficiently, and effectively when working with a robot. By understanding the effects of interface design on human performance, workload, and situation awareness, interfaces can be developed to appropriately support the human in performing tasks with minimal errors and with appropriate interaction time and effort. Thus, the results of research on human-robot interfaces have direct implications for the design of robotic systems. This DRP concentrates on three areas associated with interfaces and command modalities in HRI which are applicable to NASA robot systems: 1) Video Overlays, 2) Camera Views, and 3) Command Modalities. The first study focused on video overlays that investigated how Augmented Reality (AR) symbology can be added to the human-robot interface to improve teleoperation performance. Three types of AR symbology were explored in this study, command guidance (CG), situation guidance (SG), and both (SCG). CG symbology gives operators explicit instructions on what commands to input, whereas SG symbology gives operators implicit cues so that operators can infer the input commands. The combination of CG and SG provided operators with explicit and implicit cues allowing the operator to choose which symbology to utilize. The objective of the study was to understand how AR symbology affects the human operator's ability to align a robot arm to a target using a flight stick and the ability to allocate attention between the symbology and external views of the world. The study evaluated the effects type of symbology (CG and SG) has on operator tasks performance and attention allocation during teleoperation of a robot arm. The second study expanded on the first study by evaluating the effects of the type of navigational guidance (CG and SG) on operator task performance and attention allocation during teleoperation of a robot arm through uplinked commands. Although this study complements the first study on navigational guidance with hand controllers, it is a separate investigation due to the distinction in intended operators (i.e., crewmembers versus ground-operators). A third study looked at superimposed and integrated overlays for teleoperation of a mobile robot using a hand controller. When AR is superimposed on the external world, it appears to be fixed onto the display and internal to the operators' workstation. Unlike superimposed overlays, integrated overlays often appear as three-dimensional objects and move as if part of the external world. Studies conducted in the aviation domain show that integrated overlays can improve situation awareness and reduce the amount of deviation from the optimal path. The purpose of the study was to investigate whether these results apply to HRI tasks, such as navigation with a mobile robot.

  11. Displaying Sensed Tactile Cues with a Fingertip Haptic Device.

    PubMed

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2015-01-01

    Telerobotic systems enable humans to explore and manipulate remote environments for applications such as surgery and disaster response, but few such systems provide the operator with cutaneous feedback. This article presents a novel approach to remote cutaneous interaction; our method is compatible with any fingertip tactile sensor and any mechanical tactile display device, and it does not require a position/force or skin deformation model. Instead, it directly maps the sensed stimuli to the best possible input commands for the device's motors using a data set recorded with the tactile sensor inside the device. As a proof of concept, we considered a haptic system composed of a BioTac tactile sensor, in charge of measuring contact deformations, and a custom 3-DoF cutaneous device with a flat contact platform, in charge of applying deformations to the user's fingertip. To validate the proposed approach and discover its inherent tradeoffs, we carried out two remote tactile interaction experiments. The first one evaluated the error between the tactile sensations registered by the BioTac in a remote environment and the sensations created by the cutaneous device for six representative tactile interactions and 27 variations of the display algorithm. The normalized average errors in the best condition were 3.0 percent of the BioTac's full 12-bit scale. The second experiment evaluated human subjects' experiences for the same six remote interactions and eight algorithm variations. The average subjective rating for the best algorithm variation was 8.2 out of 10, where 10 is best.

  12. Naver: a PC-cluster-based VR system

    NASA Astrophysics Data System (ADS)

    Park, ChangHoon; Ko, HeeDong; Kim, TaiYun

    2003-04-01

    In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.

  13. VIPER: Virtual Intelligent Planetary Exploration Rover

    NASA Technical Reports Server (NTRS)

    Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard

    2001-01-01

    Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.

  14. Power controller 28Vdc load switching (N. O. SPST). Final report, 31 August 1977-21 January 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMackin, J.B.

    1980-01-21

    A solid state power controller has been designed in four ratings to switch 28Vdc power to selected loads upon remote command. The four ratings trip out at currents of 10, 5, 2 and 1/2 amps. The design allows for wide variations in load and supply voltage and will not trip out on short load transients of up to 1000% of rated load current. In case of failure of the controller circuitry, an internal fuse protects the load from excessive current. The control current which operates the controller also provides a sensing function so that the state of the controller canmore » be determined remotely. The controllers are designed to operate over a case temperature range of -54 C to 120 C. A quantity of 100 units have been fabricated, tested, and supplied to the Navy.« less

  15. High altitude aircraft remote sensing during the 1988 Yellowstone National Park wildfires

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.

    1990-01-01

    An overview is presented of the effects of the wildfires that occurred in the Yellowstone National Park during 1988 and the techniques employed to combat these fires with the use of remote sensing. The fire management team utilized King-Air and Merlin aircraft flying night missions with a thermal IR line-scanning system. NASA-Ames Research Center assisted with an ER-2 high altitude aircraft with the ability to down-link active data from the aircraft via a teledetection system. The ER-2 was equipped with a multispectral Thematic Mapper Simulator scanner and the resultant map data and video imagery was provided to the fire command personnel for field evaluation and fire suppression activities. This type of information proved very valuable to the fire control management personnel and to the continuing ecological research goals of NASA-Ames scientists analyzing the effects of burn type and severity on ecosystem recovery and development.

  16. Large-Scale Cryogen Systems and Test Facilities

    NASA Technical Reports Server (NTRS)

    Johnson, R. G.; Sass, J. P.; Hatfield, W. H.

    2007-01-01

    NASA has completed initial construction and verification testing of the Integrated Systems Test Facility (ISTF) Cryogenic Testbed. The ISTF is located at Complex 20 at Cape Canaveral Air Force Station, Florida. The remote and secure location is ideally suited for the following functions: (1) development testing of advanced cryogenic component technologies, (2) development testing of concepts and processes for entire ground support systems designed for servicing large launch vehicles, and (3) commercial sector testing of cryogenic- and energy-related products and systems. The ISTF Cryogenic Testbed consists of modular fluid distribution piping and storage tanks for liquid oxygen/nitrogen (56,000 gal) and liquid hydrogen (66,000 gal). Storage tanks for liquid methane (41,000 gal) and Rocket Propellant 1 (37,000 gal) are also specified for the facility. A state-of-the-art blast proof test command and control center provides capability for remote operation, video surveillance, and data recording for all test areas.

  17. Remote battlefield observer technology (REBOT)

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Uhlmann, Jeffrey K.; Julier, Simon J.; Kuo, Eddy

    1999-07-01

    Battlefield situation awareness is the most fundamental prerequisite for effective command and control. Information about the state of the battlefield must be both timely and accurate. Imagery data is of particular importance because it can be directly used to monitor the deployment of enemy forces in a given area of interest, the traversability of the terrain in that area, as well as many other variables that are critical for tactical and force level planning. In this paper we describe prototype REmote Battlefield Observer Technology (REBOT) that can be deployed at specified locations and subsequently tasked to transmit high resolution panoramic imagery of its surrounding area. Although first generation REBOTs will be stationary platforms, the next generation will be autonomous ground vehicles capable of transporting themselves to specified locations. We argue that REBOT fills a critical gap in present situation awareness technologies. We expect to provide results of REBOT tests to be conducted at the 1999 Marines Advanced Warfighting Demonstration.

  18. LANDSAT technology transfer to the private and public sectors through community colleges and other locally available institutions, phase 2 program

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator)

    1982-01-01

    A program established by NASA with the Environmental Research Institute of Michigan (ERIM) applies a network where the major participants are NASA, universities or research institutes, community colleges, and local private and public organizations. Local users are given an opportunity to obtain "hands on" training in LANDSAT data analysis and Geographic Information System (GIS) techniques using a desk top, interactive remote analysis station (RAS). The RAS communicates with a central computing facility via telephone line, and provides for generation of land use and land suitability maps and other data products via remote command. During the period from 22 September 1980 - 6 March 1982, 15 workshops and other training activities were successfully conducted throughout Michigan providing hands on training on the RAS terminals for 250 or more people and user awareness activities such as exhibits and demonstrations for 2,000 or more participants.

  19. International Space Station Future Correlation Analysis Improvements

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  20. French Counterinsurgency (COIN) Efforts in Spain During the Napoleonic Era - A Modern Analysis Through the Lens of the Principles of COIN In US Joint Doctrine

    DTIC Science & Technology

    2014-11-01

    the time of Napoleon ???s actions in Spain. At the conclusion of the research, the key findings were of no surprise. Napoleon , King Joseph Bonaparte ...were of no surprise. Napoleon , King Joseph Bonaparte , and his commanders in the field failed to grasp the sociocultural issues motivating the...exile on St. Helena, Napoleon Bonaparte contemplated on how he came to be on this remote island in the Atlantic Ocean after dominating all of Europe

  1. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  2. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) is helped off a Russian Search and Rescue helicopter at Karaganda Airport in Kazakhstan following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Hadfield, Expedition 35 NASA Flight Engineer Tom Marshburn and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  3. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 NASA Flight Engineer Tom Marshburn is helped off a Russian Search and Rescue helicopter at Karaganda Airport in Kazakhstan following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Marshburn, Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  4. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Russian Search and Rescue Helicopters are seen as they await departure from the landing zone in a remote area near the town of Zhezkazgan, Kazakhstan following the the landing of the Soyuz TMA-07M spacecraft on Tuesday, May 14, 2013. The Soyuz spacecraft delivered Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA), NASA Flight Engineer Tom Marshburn and Russian Flight Engineer Roman Romanenko after having spent five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  5. Expedition 36 Soyuz TMA-08M Landing

    NASA Image and Video Library

    2013-09-11

    A Russian search and rescue all-terrain vehicle (ATV) and helicopter are seen at the landing site of the Soyuz TMA-08M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, on Wednesday, Sept. 11, 2013. The Soyuz landed with Expedition 36 Commander Pavel Vinogradov of the Russian Federal Space Agency (Roscosmos), Flight Engineer Alexander Misurkin of Roscosmos and Flight Engineer Chris Cassidy. Vinogradov, Misurkin and Cassidy are returning to Earth after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  6. KSC-08pd1266

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The crew for the STS-124 mission departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Seen here are Commander Mark Kelly and Mission Specialist Greg Chamitoff heading for the T-38 training jets for their flight back to Houston. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  7. Mitigating the Impact of Sensor Uncertainty on Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Jack, Devin P.; Hoffler, Keith D.; Sturdy, James L.

    2017-01-01

    Without a pilot onboard an aircraft, a Detect-and-Avoid (DAA) system, in conjunction with surveillance sensors, must be used to provide the remotely-located Pilot-in-Command sufficient situational awareness in order to keep the Unmanned Aircraft (UA) safely separated from other aircraft. To facilitate safe operations of UA within the U.S.' National Airspace System, the uncertainty associated with surveillance sensors must be accounted for. An approach to mitigating the impact of sensor uncertainty on achievable separation has been developed to support technical requirements for DAA systems.

  8. Remote Advanced Payload Test Rig (RAPTR) Portable Payload Test System for the International Space Station

    NASA Technical Reports Server (NTRS)

    De La Cruz, Melinda; Henderson, Steve

    2016-01-01

    The RAPTR was developed to test ISS payloads for NASA. RAPTR is a simulation of the Command and Data Handling (C&DH) interfaces of the ISS (MIL-STD1553B, Ethernet and TAXI) and is designed for rapid testing and deployment of payload experiments to the ISS. The ISS's goal is to reduce the amount of time it takes for a payload developer to build, test and fly a payload, including payload software. The RAPTR meets this need with its user oriented, visually rich interface.

  9. IRONSIDES: DNS With No Single Packet Denial of Service or Remote Code Execution Vulnerabilities

    DTIC Science & Technology

    2012-02-27

    Caching DNSSEC TSIG 1Pv6 Wildcard S fi.. In terface y y Y * N __ mo e ---- o •• vare y y y N NN y m progress y y y NY N Web, Y command...Proceedings of the 2007 IEEE Aerospace Conference. [6) C. Heitmeyer, M . Archer, E. Leonard and J. Mclean, "Applying formal methods to a certifiably secure...2003). [1 5] DNSSEC-The DNS Security Extensions, http:// http://www.dnssec.net/ (16] S . Conchon, E. Contcjean and J. Kanig, "Ergo : A theorem prover

  10. EVA 5 - Grunsfeld installs radiator

    NASA Image and Video Library

    2002-03-08

    STS109-315-007 (8 March 2002) --- Astronaut John M. Grunsfeld, STS-109 payload commander, anchored on the end of the Space Shuttle Columbia’s Remote Manipulator System (RMS) robotic arm, moves toward the giant Hubble Space Telescope (HST) temporarily hosted in the orbiter’s cargo bay. Astronaut Richard M. Linnehan (out of frame) works in tandem with Grunsfeld during this fifth and final session of extravehicular activity (EVA). Activities for the space walk centered around the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) to install a Cryogenic Cooler and its Cooling System Radiator.

  11. Expedition 27 Landing

    NASA Image and Video Library

    2011-05-24

    Kazakh performers at the Karaganda Airport in Kazakhstan play music prior to a welcome home ceremony for Expedition 27 Commander Dmitry Kondratyev, and, Flight Engineers Paolo Nespoli, and Cady Coleman, after the three landed in their Soyuz TMA-20 spacecraft in a remote area southeast of the town of Zhezkazgan, Kazakhstan, on Tuesday, May 24, 2011. NASA Astronaut Coleman, Russian Cosmonaut Kondratyev and Italian Astronaut Nespoli are returning from more than five months onboard the International Space Station where they served as members of the Expedition 26 and 27 crews. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Pilots look out from the cockpit and watch as Expedition 33 Flight Engineer Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency) is welcomed home at the Chkalovsky Airport in Star City, Russia by officials and his family after he, Commander Sunita Williams of NASA, and Flight Engineer Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 33 Soyuz Landing

    NASA Image and Video Library

    2012-11-19

    Expedition 33 Commander Sunita Williams of NASA rests during a helicopter flight back to Kustanany, Kazakhstan while nurse Raxana Batsmanova and Chief of the NASA Astronaut Office Bob Behnken look on just a a few hours after Williams and Flight Engineers Yuri Malenchenko of ROSCOSMOS (Russian Federal Space Agency), and Akihiko Hoshide of JAXA (Japan Aerospace Exploration Agency), landed their Soyuz spacecraft in a remote area outside the town of Arkalyk, Kazakhstan, on Monday, Nov. 19, 2012. Williams, Hoshide and Malenchenko returned from four months onboard the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 NASA Flight Engineer Tom Marshburn, center, is attended to by his nurse and crew support personnel following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Marshburn and crew mates Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  15. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) is attended to by his nurse following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Hadfield and crew mates NASA Flight Engineer Tom Marshburn and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  16. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 NASA Flight Engineer Tom Marshburn is attended to by his nurse following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Marshburn and crew mates Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  17. A Shared Memory Algorithm and Proof for the Generalized Alternative Construct in CSP (Communicating Sequential Processes)

    DTIC Science & Technology

    1987-06-01

    shared variables. This will be discussed later. One procedure merits special attention. CheckAndCommit(m, g ,): INTEGER is called by process P, (I...denotes the local process) to check that "valid" communications can take place between P, using guard g , and Pm (m denotes the remote process). If so, P...local guard gi. By matching we mean gj contains an 1/O operation with P. By compatible we mean g , and gj do not both contain input (output) commands

  18. Telerobotics: methodology for the development of through-the-Internet robotic teleoperated system

    NASA Astrophysics Data System (ADS)

    Alvares, Alberto J.; Caribe de Carvalho, Guilherme; Romariz, Luiz S. J.; Alfaro, Sadek C. A.

    1999-11-01

    This work presents a methodology for the development of Teleoperated Robotic System through Internet. Initially, it is presented a bibliographical review of the telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through Internet denominated RobWebCam. The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink.

  19. EVA 5 activity on Flight Day 8 to service the Hubble Space Telescope

    NASA Image and Video Library

    1997-02-18

    S82-E-5718 (18 Feb. 1997) --- Making use of the Remote Manipulator System (RMS) astronauts Mark C. Lee (left), STS-82 payload commander, and Steven L. Smith, mission specialist, perform the final phases of Extravehicular Activity (EVA) duty. Lee holds a patch piece for Bay #10, out of view, toward which the two were headed. A sample of the patch work can be seen on Bay #9 in the upper left quadrant of the picture. This view was taken with an Electronic Still Camera (ESC).

  20. Extending the littoral battlespace (ELB)

    NASA Astrophysics Data System (ADS)

    McKinney, Edward J.

    1999-07-01

    The ELB program is a joint Advanced Concept Technology Demonstration funded by the Navy, Marine Corps and the Office of the Secretary of Defence, and managed by the Naval Research. ELB is based on the new warfare paradigm defined by 'joint vision 2010, and on concepts developed by the Navy and Marine Corps in 'From the Sea', 'Forward...from the Sea', 'Ship to Objective Maneuver (STOM)', and 'Operational Maneuver from the Sea'. The objective of ELB is to demonstrate effective operation of dispersed forces in a variety of littoral environments, and to provide those forces timely remote fire support. Successful operation will depend on achieving a common situational awareness among a mobile, distributed command and control, a shortened sensor- to-shooter timeline, and effective utilization of all information source. The glue to hold this system of systems together is a reliable wide band communications system and network infrastructure. This paper will describe the overall architecture of ELB and focus on the core command and control functions associated with achieving a common situational awareness.

  1. Rapidly quantifying the relative distention of a human bladder

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor); Heyman, Joseph S. (Inventor); Mineo, Beth A. (Inventor); Cavalier, Albert R. (Inventor); Blalock, Travis N. (Inventor)

    1989-01-01

    A device and method of rapidly quantifying the relative distention of the bladder in a human subject are disclosed. The ultrasonic transducer which is positioned on the subject in proximity to the bladder is excited by a pulser under the command of a microprocessor to launch an acoustic wave into the patient. This wave interacts with the bladder walls and is reflected back to the ultrasonic transducer, when it is received, amplified and processed by the receiver. The resulting signal is digitized by an analog-to-digital converter under the command of the microprocessor and is stored in the data memory. The software in the microprocessor determines the relative distention of the bladder as a function of the propagated ultrasonic energy; and based on programmed scientific measurements and individual, anatomical, and behavioral characterists of the specific subject as contained in the program memory, sends out a signal to turn on any or all of the audible alarm, the visible alarm, the tactile alarm, and the remote wireless alarm.

  2. The need for separate operational and engineering user interfaces for command and control of airborne synthetic aperture radar systems

    NASA Astrophysics Data System (ADS)

    Klein, Laura M.; McNamara, Laura A.

    2017-05-01

    In this paper, we address the needed components to create usable engineering and operational user interfaces (UIs) for airborne Synthetic Aperture Radar (SAR) systems. As airborne SAR technology gains wider acceptance in the remote sensing and Intelligence, Surveillance, and Reconnaissance (ISR) communities, the need for effective and appropriate UIs to command and control these sensors has also increased. However, despite the growing demand for SAR in operational environments, the technology still faces an adoption roadblock, in large part due to the lack of effective UIs. It is common to find operational interfaces that have barely grown beyond the disparate tools engineers and technologists developed to demonstrate an initial concept or system. While sensor usability and utility are common requirements to engineers and operators, their objectives for interacting with the sensor are different. As such, the amount and type of information presented ought to be tailored to the specific application.

  3. Digital frequency control of satellite frequency standards. [Defense Navigation Satellites

    NASA Technical Reports Server (NTRS)

    Nichols, S. A.

    1973-01-01

    In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.

  4. A conceptual design for an integrated data base management system for remote sensing data. [user requirements and data processing

    NASA Technical Reports Server (NTRS)

    Maresca, P. A.; Lefler, R. M.

    1978-01-01

    The requirements of potential users were considered in the design of an integrated data base management system, developed to be independent of any specific computer or operating system, and to be used to support investigations in weather and climate. Ultimately, the system would expand to include data from the agriculture, hydrology, and related Earth resources disciplines. An overview of the system and its capabilities is presented. Aspects discussed cover the proposed interactive command language; the application program command language; storage and tabular data maintained by the regional data base management system; the handling of data files and the use of system standard formats; various control structures required to support the internal architecture of the system; and the actual system architecture with the various modules needed to implement the system. The concepts on which the relational data model is based; data integrity, consistency, and quality; and provisions for supporting concurrent access to data within the system are covered in the appendices.

  5. Managing Cassini Safe Mode Attitude at Saturn

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. In the event safe mode interrupts normal orbital operations, Cassini has flight software fault protection algorithms to detect, isolate, and recover to a thermally safe and commandable attitude and then wait for further instructions from the ground. But the Saturn environment is complex, and safety hazards change depending on where Cassini is in its orbital trajectory around Saturn. Selecting an appropriate safe mode attitude that insures safe operation in the Saturn environment, including keeping the star tracker field of view clear of bright bodies, while maintaining a quiescent, commandable attitude, is a significant challenge. This paper discusses the Cassini safe table management strategy and the key criteria that must be considered, especially during low altitude flybys of Titan, in deciding what spacecraft attitude should be used in the event of safe mode.

  6. C-Shell Cookbook

    NASA Astrophysics Data System (ADS)

    Currie, Malcolm J.

    This cookbook describes the fundamentals of writing scripts using the UNIX C shell. It shows how to combine Starlink and private applications with shell commands and constructs to create powerful and time-saving tools for performing repetitive jobs, creating data-processing pipelines, and encapsulating useful recipes. The cookbook aims to give practical and reassuring examples to at least get you started without having to consult a UNIX manual. However, it does not offer a comprehensive description of C-shell syntax to prevent you from being overwhelmed or intimidated. The topics covered are: how to run a script, defining shell variables, prompting, arithmetic and string processing, passing information between Starlink applications, obtaining dataset attributes and FITS header information, processing multiple files and filename modification, command-line arguments and options, and loops. There is also a glossary.

  7. STS-47 crew during JSC fire fighting exercises in the Fire Training Pit

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses during JSC fire fighting exercises held at JSC's Fire Training Pit. In the foreground are (left to right) Pilot Curtis L. Brown, Jr, holding the hose nozzle, Mission Specialist (MS) N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak, partially visible at the end of the line. In the background, manning a second hose are backup Payload Specialist Takao Doi, MS Jerome Apt, and Commander Robert L. Gibson. A veteran fire fighter (behind Brown) stands between the two hoses giving instructions. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Doi represents Japan's National Space Development Agency (NASDA).

  8. NATO initial common operational picture capability project

    NASA Astrophysics Data System (ADS)

    Fanti, Laura; Beach, David

    2002-08-01

    The Common Operational Picture (COP) capability can be defined as the ability to display on a single screen integrated views of the Recognized Maritime, Air and Ground Pictures, enriched by other tactical data, such as theater plans, assets, intelligence and logistics information. The purpose of the COP capability is to provide military forces a comprehensive view of the battle space, thereby enhancing situational awareness and the decision-making process across the military command and control spectrum. The availability of a COP capability throughout the command structure is a high priority operational requirement in NATO. A COP capability for NATO is being procured and implemented in an incremental way within the NATO Automated Information System (Bi-SC AIS) Functional Services programme under the coordination of the NATO Consultation, Command and Control Agency (NC3A) Integrated Programme Team 5 (IPT5). The NATO Initial COP (iCOP) capability project, first step of this evolutionary procurement, will provide an initial COP capability to NATO in a highly pragmatic and low-risk fashion, by using existing operational communications infrastructure and NATO systems, i.e. the NATO-Wide Integrated Command and Control Software for Air Operations (ICC), the Maritime Command and Control Information System (MCCIS), and the Joint Operations and Intelligence Information System (JOIIS), which will provide respectively the Recognized Air, Maritime and Ground Pictures. This paper gives an overview of the NATO Initial COP capability project, including its evolutionary implementation approach, and describes the technical solution selected to satisfy the urgent operational requirement in a timely and cost effective manner.

  9. 50th Anniversary First American to Orbit Earth

    NASA Image and Video Library

    2012-02-20

    Captain Mark Kelly, commander of the space shuttle Endeavour’s final mission and husband of retired U.S. Representative Gabrielle Giffords, gives the keynote address during a celebration dinner at Ohio State University honoring the 50th anniversary of John Glenn's historic flight aboard Friendship 7 Monday, Feb. 20, 2012, in Columbus, Ohio. Glenn was the first American to orbit Earth. Photo Credit: (NASA/Bill Ingalls)

  10. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    Second Lady Karen Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, Vice President Mike Pence, daughter of Mike Pence, Charlotte Pence, and JPL Director Michael Watkins, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  11. Vice President Pence Tours Jet Propulsion Laboratory

    NASA Image and Video Library

    2018-04-28

    U.S. Vice President Mike Pence gives commands to a rover nicknamed "Scarecrow" as NASA Mars Exploration Manager Li Fuk, left, Mars Curiosity Engineering Operations Team Chief Megan Lin, JPL Director Michael Watkins, and daughter of Mike Pence, Charlotte Pence, right, look on, Saturday, April 28, 2018 in Pasadena, California. Scarecrow is used to test mobility of rovers on Mars. Photo Credit: (NASA/Bill Ingalls)

  12. Problems in Preparing for the English Impromptu Speech Contest: The Case of Yuanpei Institute of Science and Technology in Taiwan

    ERIC Educational Resources Information Center

    Hsieh, Shu-min

    2006-01-01

    Entering an "English Impromptu Speech Contest" intimidates many students who do not have a good command of the English language. Some choose to give up before the contest date while others stand speechless on the stage. This paper identifies a range of problems confronted by contestants from my college, the Yuanpei Institute of Science…

  13. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    DTIC Science & Technology

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  14. Using ontological inference and hierarchical matchmaking to overcome semantic heterogeneity in remote sensing-based biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Kleinschmit, Birgit; Förster, Michael

    2015-05-01

    Ontology-based applications hold promise in improving spatial data interoperability. In this work we use remote sensing-based biodiversity information and apply semantic formalisation and ontological inference to show improvements in data interoperability/comparability. The proposed methodology includes an observation-based, "bottom-up" engineering approach for remote sensing applications and gives a practical example of semantic mediation of geospatial products. We apply the methodology to three different nomenclatures used for remote sensing-based classification of two heathland nature conservation areas in Belgium and Germany. We analysed sensor nomenclatures with respect to their semantic formalisation and their bio-geographical differences. The results indicate that a hierarchical and transparent nomenclature is far more important for transferability than the sensor or study area. The inclusion of additional information, not necessarily belonging to a vegetation class description, is a key factor for the future success of using semantics for interoperability in remote sensing.

  15. Geologic remote sensing study of the Hayden pass-Orient Mine Area, Northern Sangre de Cristo Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Wychgram, D. C.

    1972-01-01

    Remote sensor data from a NASA Convair 990 radar flight and Mission 101 and 105 have been interpreted and evaluated. Based on interpretation of the remote sensor data, a geologic map has been prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives one indication of the usefulness and reliability of the remote sensor data. Color and color infrared photography provided the largest amount of valuable information. Multiband photography was of lesser value and side-looking radar imagery provided no new information that was not available on small scale photography. Thermal scanner imagery proved to be a very specialized remote sensing tool that should be applied to areas of low relief and sparse vegetation where geologic features produce known or suspected thermal contrast. Low sun angle photography may be a good alternative to side-looking radar imagery but must be flown with critical timing.

  16. Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School

    NASA Astrophysics Data System (ADS)

    Lili Somantri, Nandi

    2016-11-01

    The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.

  17. An object-based storage model for distributed remote sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng

    2006-10-01

    It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.

  18. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  19. Design and Implementation of a Smart LED Lighting System Using a Self Adaptive Weighted Data Fusion Algorithm

    PubMed Central

    Sung, Wen-Tsai; Lin, Jia-Syun

    2013-01-01

    This work aims to develop a smart LED lighting system, which is remotely controlled by Android apps via handheld devices, e.g., smartphones, tablets, and so forth. The status of energy use is reflected by readings displayed on a handheld device, and it is treated as a criterion in the lighting mode design of a system. A multimeter, a wireless light dimmer, an IR learning remote module, etc. are connected to a server by means of RS 232/485 and a human computer interface on a touch screen. The wireless data communication is designed to operate in compliance with the ZigBee standard, and signal processing on sensed data is made through a self adaptive weighted data fusion algorithm. A low variation in data fusion together with a high stability is experimentally demonstrated in this work. The wireless light dimmer as well as the IR learning remote module can be instructed directly by command given on the human computer interface, and the reading on a multimeter can be displayed thereon via the server. This proposed smart LED lighting system can be remotely controlled and self learning mode can be enabled by a single handheld device via WiFi transmission. Hence, this proposal is validated as an approach to power monitoring for home appliances, and is demonstrated as a digital home network in consideration of energy efficiency.

  20. Human-in-the-loop evaluation of RMS Active Damping Augmentation

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.

    1993-01-01

    Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).

  1. Remotely-Sensed Geology from Lander-Based to Orbital Perspectives: Results for FIDO Rover Field Tests

    NASA Technical Reports Server (NTRS)

    Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.

    2000-01-01

    Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.

  2. Design and Execution of make-like, distributed Analyses based on Spotify’s Pipelining Package Luigi

    NASA Astrophysics Data System (ADS)

    Erdmann, M.; Fischer, B.; Fischer, R.; Rieger, M.

    2017-10-01

    In high-energy particle physics, workflow management systems are primarily used as tailored solutions in dedicated areas such as Monte Carlo production. However, physicists performing data analyses are usually required to steer their individual workflows manually which is time-consuming and often leads to undocumented relations between particular workloads. We present a generic analysis design pattern that copes with the sophisticated demands of end-to-end HEP analyses and provides a make-like execution system. It is based on the open-source pipelining package Luigi which was developed at Spotify and enables the definition of arbitrary workloads, so-called Tasks, and the dependencies between them in a lightweight and scalable structure. Further features are multi-user support, automated dependency resolution and error handling, central scheduling, and status visualization in the web. In addition to already built-in features for remote jobs and file systems like Hadoop and HDFS, we added support for WLCG infrastructure such as LSF and CREAM job submission, as well as remote file access through the Grid File Access Library. Furthermore, we implemented automated resubmission functionality, software sandboxing, and a command line interface with auto-completion for a convenient working environment. For the implementation of a t \\overline{{{t}}} H cross section measurement, we created a generic Python interface that provides programmatic access to all external information such as datasets, physics processes, statistical models, and additional files and values. In summary, the setup enables the execution of the entire analysis in a parallelized and distributed fashion with a single command.

  3. Synchronized computational architecture for generalized bilateral control of robot arms

    NASA Technical Reports Server (NTRS)

    Szakaly, Zoltan F. (Inventor)

    1991-01-01

    A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time.

  4. Development and Flight Testing of an Adaptable Vehicle Health-Monitoring Architecture

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.; Taylor, B. Douglas; Brett, Rube R.

    2003-01-01

    Development and testing of an adaptable wireless health-monitoring architecture for a vehicle fleet is presented. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained adaptable expert system. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate, and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear.

  5. The Swedish space programme

    NASA Astrophysics Data System (ADS)

    Helger, Arne

    The Swedish National Space Board (SNSB) under the Ministry of Industry is the central governmental agency responsible for the goverment-funded Swedish national and international space and remote sensing activities. The technical implementation is mainly contracted by the Board to the state-owned Swedish Space Corporation (SSC). International cooperation is a cornerstone in the Swedish space activities, absorbing more than 80% of the total national budget. Within ESA, Sweden participates in practically all infrastructure and applications programs. Basic research, mainly concentrated to the near earth space physics, microgravity and remote sensing are important elements in the Swedish space program. Sweden participates in the French Spot program. At Esrange, data reception, and satellite control, and tracking, telemetry command (TT&C) are performed for many international satellite projects. An SSC subsidiary, SATELLITBILD, is archiving, processing and distributing remote sensing data worldwide. The National Space Development Agency of Japan (NASDA) has established a portable TT&C station for JERS-1 at Esrange, Kiruna. A center for international research on the ozone problem has been established at Esrange and Kiruna. A new sounding rocket for 15 minutes of microgravity research, MAXUS, has been developed by SSC in cooperation with Germany. A national scientific satellite, FREJA, is planned to be launched late 1992.

  6. Mission Management Computer and Sequencing Hardware for RLV-TD HEX-01 Mission

    NASA Astrophysics Data System (ADS)

    Gupta, Sukrat; Raj, Remya; Mathew, Asha Mary; Koshy, Anna Priya; Paramasivam, R.; Mookiah, T.

    2017-12-01

    Reusable Launch Vehicle-Technology Demonstrator Hypersonic Experiment (RLV-TD HEX-01) mission posed some unique challenges in the design and development of avionics hardware. This work presents the details of mission critical avionics hardware mainly Mission Management Computer (MMC) and sequencing hardware. The Navigation, Guidance and Control (NGC) chain for RLV-TD is dual redundant with cross-strapped Remote Terminals (RTs) interfaced through MIL-STD-1553B bus. MMC is Bus Controller on the 1553 bus, which does the function of GPS aided navigation, guidance, digital autopilot and sequencing for the RLV-TD launch vehicle in different periodicities (10, 20, 500 ms). Digital autopilot execution in MMC with a periodicity of 10 ms (in ascent phase) is introduced for the first time and successfully demonstrated in the flight. MMC is built around Intel i960 processor and has inbuilt fault tolerance features like ECC for memories. Fault Detection and Isolation schemes are implemented to isolate the failed MMC. The sequencing hardware comprises Stage Processing System (SPS) and Command Execution Module (CEM). SPS is `RT' on the 1553 bus which receives the sequencing and control related commands from MMCs and posts to downstream modules after proper error handling for final execution. SPS is designed as a high reliability system by incorporating various fault tolerance and fault detection features. CEM is a relay based module for sequence command execution.

  7. Teleoperator/robot technology can help solve biomedical problems

    NASA Technical Reports Server (NTRS)

    Heer, E.; Bejczy, A. K.

    1975-01-01

    Teleoperator and robot technology appears to offer the possibility to apply these techniques to the benefit for the severely handicapped giving them greater self reliance and independence. Major problem areas in the development of prostheses and remotely controlled devices for the handicapped are briefly discussed, and the parallelism with problems in the development of teleoperator/robots identified. A brief description of specific ongoing and projected developments in the area of remotely controlled devices (wheelchairs and manipulators) is provided.

  8. Remote programming of cochlear implants: a telecommunications model.

    PubMed

    McElveen, John T; Blackburn, Erin L; Green, J Douglas; McLear, Patrick W; Thimsen, Donald J; Wilson, Blake S

    2010-09-01

    Evaluate the effectiveness of remote programming for cochlear implants. Retrospective review of the cochlear implant performance for patients who had undergone mapping and programming of their cochlear implant via remote connection through the Internet. Postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for 7 patients who had undergone remote mapping and programming of their cochlear implant were compared with the mean scores of 7 patients who had been programmed by the same audiologist over a 12-month period. Times required for remote and direct programming were also compared. The quality of the Internet connection was assessed using standardized measures. Remote programming was performed via a virtual private network with a separate software program used for video and audio linkage. All 7 patients were programmed successfully via remote connectivity. No untoward patient experiences were encountered. No statistically significant differences could be found in comparing postoperative Hearing in Noise Test and Consonant/Nucleus/Consonant word scores for patients who had undergone remote programming versus a similar group of patients who had their cochlear implant programmed directly. Remote programming did not require a significantly longer programming time for the audiologist with these 7 patients. Remote programming of a cochlear implant can be performed safely without any deterioration in the quality of the programming. This ability to remotely program cochlear implant patients gives the potential to extend cochlear implantation to underserved areas in the United States and elsewhere.

  9. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  10. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1986-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  11. Networked sensors for the combat forces

    NASA Astrophysics Data System (ADS)

    Klager, Gene

    2004-11-01

    Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.

  12. Job Attitudes of USAF Administrative Personnel

    DTIC Science & Technology

    1986-04-01

    34opportunities for training, giving supervisory feedback, and -developing future leaders. Their findings were bas-ed on researrch Sdate similar to those upon...chance to move in and out of this rewarding functional area, could have a significant effect on the outcome of future attitudinal surveys of the admin...admin personnal to mission accomplishment at newcomer orientetions , commander’s calls, and similar gatherings, especially when families are present. (c

  13. Using SPSS syntax: a beginner's guide Jacqueline Collier Using SPSS syntax: a beginner's guide Sage Pages: 216 £24.99 9781412922180 1412922186 [Formula: see text].

    PubMed

    2011-01-21

    As someone who is comfortable with analysing data in SAS using coding language, it is perplexing that I run from the use of syntax in SPSS. But, my apprehension has subsided with the Collier's guide. Syntax command can automate processes, increase reproducibility and give the user broader access to features otherwise unavailable in SPSS.

  14. Tyurin gives Culbertson a haircut in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-5901 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.

  15. Tyurin gives Culbertson a haircut in the Service Module during Expedition Three

    NASA Image and Video Library

    2001-09-22

    ISS003-E-5896 (22 September 2001) --- Astronaut Frank L. Culbertson, Jr. (right), Expedition Three mission commander, holds a vacuum device the crew has fashioned to garner freshly cut hair floating freely, as Mikhail Tyurin cuts his hair in the Zvezda Service Module on the International Space Station (ISS). Tyurin is a flight engineer representing Rosaviakosmos. This image was taken with a digital still camera.

  16. Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-16

    ISS030-E-012613 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  17. Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2011-12-16

    ISS030-E-012609 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  18. Nondestructive Evaluation of Metallized Tape Bonds Formed by Tape Automated Bonding (TAB)

    DTIC Science & Technology

    1989-04-01

    powered by micro-positioning linear actuators. 3) Interchangeable sample-holding fixtures mounted upon top of slide assembly. 4) Coverslip gantry mounted...Controller Unit 1) Motor power supplies 2) Motor output servo driver amplifiers 3) "Macro-language" command Interpreter 4) Two-way cormunications with...adjustments are manual knobs giving approximately one degree of tilt adjustment per turn. The servo controller has self-contained power supplies for

  19. Apollo 12 Mission Summary and Splashdown

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This NASA Kennedy Space Center (KSC) video release presents footage of the November 14, 1969 Apollo-12 space mission begun from launch complex pad 39-A at Kennedy Space Center, Florida. Charles Conrad, Jr., Richard F. Gordon, Jr., and Alan L. Bean make up the three-man spacecrew. The video includes the astronaut's pre-launch breakfast, President Nixon, his wife, and daughter arriving at Cape Kennedy in time to see the launch, as well as countdown and liftoff. After the launch, President Nixon gives a brief congratulatory speech to the members of launch control at KSC. The video also presents views of the astronauts and spacecraft in space as well as splashdown of the command module on November 24, 1969. The video ends with the recovery, by helicopter and additional personnel, of the spacecrew from the command module floating in the waters of the Atlantic.

  20. Expedition 6 Crew Interviews: Ken Bowersox CDR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition 6 Commander Ken Bowersox is seen during a prelaunch interview. He gives details on the mission's goals and significance, his role in the mission, what his responsibilities will be as commander, what the crew exchange will be like (transferring the Expedition 6 crew in place of the Expedition 5 crew on the International Space Station (ISS)) and what day-to-day life on an extended stay mission is like. Bowersox also discusses in some detail the planned extravehicular activities (EVAs), the anticipated use of the robot arms in installing the P1 truss and the on-going science experiments which will be conducted by the Expedition 6 crew. He touches on challenges posed by a late change in the crew roster. Bowersox ends with his thoughts on the value on the ISS in fostering international cooperation.

  1. Thirteen days: Joseph Delboeuf versus Pierre Janet on the nature of hypnotic suggestion.

    PubMed

    LeBlanc, André

    2004-01-01

    The problem of post-hypnotic suggestion was introduced in 1884. Give a hypnotic subject the post-hypnotic command to return in 13 days. Awake, the subject remembers nothing yet nonetheless fulfills the command to return. How then does the subject count 13 days without knowing it? In 1886, Pierre Janet proposed the concept of dissociation as a solution, arguing that a second consciousness kept track of time outside of the subject's main consciousness. Joseph Delboeuf, in 1885, and Hippolyte Bernheim, in 1886, proposed an alternative solution, arguing that subjects occasionally drifted into a hypnotic state in which they were reminded of the suggestion. This article traces the development of these competing solutions and describes some of Delboeuf's final reflections on the problem of simulation and the nature of hypnosis. Copyright 2004 Wiley Periodicals, Inc.

  2. [Attention and aging].

    PubMed

    Siéroff, Eric; Piquard, Ambre

    2004-12-01

    Due to progress in the cognitive theories in the last twenty years, the description of attentional deficits associated with normal or pathological aging has substantially improved. In this article, attentional deficits are presented according to Posner theory, which describes three sub-systems in a global network of attention: vigilance, selective attention, command. This theory not only characterizes the functions of these subsystems, but gives precise indications about their anatomical and neurochemical substrates. Several clinical tests can be described for each of these different subsystems. The main attentional deficits are presented in the second part of this paper: if some decline of the attentional command occurs in normal aging, a real deficit in this subsystem is found in most degenerative processes (frontotemporal dementia, Alzheimer and Parkinson diseases). Alzheimer disease is also frequently associated with a deficit of selective spatial attention, early in the evolution of the disease.

  3. KSC-01pp1312

    NASA Image and Video Library

    2001-07-18

    KENNEDY SPACE CENTER, Fla. -- Expedition Three crew Commander Frank Culbertson gives a thumbs up before taking the wheel of the M-113 armored personnel carrier that is part of emergency egress training at the pad. The training is part of Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown and familiarization with the payload. The STS-105 crew members taking part are Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Daniel Barry and Patrick Forrester; and the other Expedition Three crew members: cosmonauts Vladimir Nikolaevich Dezhurov and Mikhail Tyurin. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001

  4. Exploring Pacific Seamounts through Telepresence Mapping on the NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Lobecker, E.; Malik, M.; Sowers, D.; Kennedy, B. R.

    2016-12-01

    Telepresence utilizes modern computer networks and a high bandwidth satellite connection to enable remote users to participate virtually in ocean research and exploration cruises. NOAA's Office of Ocean Exploration and Research (OER) has been leveraging telepresence capabilities since the early 2000s. Through telepresence, remote users have provided support for operations planning and execution, troubleshooting hardware and software, and data interpretation during exploratory ocean mapping and remotely operated vehicle missions conducted by OER. The potential for this technology's application to immersive data acquisition and processing during mapping missions, however, has not yet been fully realized. We report the results of the application of telepresence to an 18-day 24 hour / day seafloor mapping expedition with the NOAA Ship Okeanos Explorer. The mapping team was split between shipboard and shore-based mission team members based at the Exploration Command Center at the University of New Hampshire. This cruise represented the third dedicated mapping cruise in a multi-year NOAA Campaign to Address the Pacific monument Science, Technology, and Ocean Needs (CAPSTONE). Cruise objectives included mapping several previously unmapped seamounts in the Wake Atoll Unit of the recently expanded Pacific Remote Islands Marine National Monument, and mapping of prominent seamount, ridge, and fracture zone features during transits. We discuss (1) expanded shore-based data processing of multiple sonar data streams leading to enhanced, rapid, initial site characterization, (2) remote access control of shipboard sonar data acquisition and processing computers, and (3) potential for broadening multidisciplinary applications of ocean mapping cruises including outreach, education, and communications efforts focused on expanding societal cognition and benefits of ocean exploration.

  5. Reliable discrimination of high explosive and chemical/biological artillery using acoustic UGS

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi

    2005-10-01

    The Army is currently developing acoustic overwatch sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security on the battlefield. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other disparate sensor technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to that which conventional methods allow. This capability facilitates the necessity of classifying the types of rounds that have burst in a specified region in order to give both warning and provide identification of CB agents found in the area. In this paper, feature extraction methods based on the discrete wavelet transform (DWT) and multiresolution analysis facilitate the development of a robust classification algorithm that affords reliable discrimination between conventional and simulated chemical/biological artillery rounds using acoustic signals produced during detonation. Distinct characteristics arise within the different airburst signatures because high explosive warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over large areas, therefore employing a slower burning, less intense explosive to mix and spread their contents. The ensuing blast waves are readily characterized by variations in the corresponding peak pressure and rise time of the blast, differences in the ratio of positive pressure amplitude to the negative amplitude, and variations in the overall duration of the resulting waveform. We show that, highly reliable discrimination (> 98%) between conventional and potentially chemical/biological artillery is achieved at ranges exceeding 3km. A feedforward neural network classifier, trained on a feature space derived from the distribution of wavelet coefficients found within different levels of the multiresolution decomposition yields.

  6. The Integration of Remote-Sensing Detection Techniques into the Operational Decision-Making of Marine Oil Spills

    NASA Astrophysics Data System (ADS)

    Garron, J.; Trainor, S.

    2017-12-01

    Remotely-sensed data collected from satellites, airplanes and unmanned aerial systems can be used in marine oil spills to identify the overall footprint, estimate fate and transport, and to identify resources at risk. Mandates for the use of best available technology exists for addressing marine oil spills under the jurisdiction of the USCG (33 CFR 155.1050), though clear pathways to familiarization of these technologies during a marine oil spill, or more importantly, between marine oil spills, does not. Similarly, remote-sensing scientists continue to experiment with highly tuned oil detection, fate and transport techniques that can benefit decision-making during a marine oil spill response, but the process of translating these prototypical tools to operational information remains undefined, leading most researchers to describe the "potential" of these new tools in an operational setting rather than their actual use, and decision-makers relying on traditional field observational methods. Arctic marine oil spills are no different in their mandates and the remote-sensing research undertaken, but are unique via the dark, cold, remote, infrastructure-free environment in which they can occur. These conditions increase the reliance of decision-makers in an Arctic oil spill on remotely-sensed data and tools for their manipulation. In the absence of another large-scale oil spill in the US, and limited literature on the subject, this study was undertaken to understand how remotely-sensed data and tools are being used in the Incident Command System of a marine oil spill now, with an emphasis on Arctic implementation. Interviews, oil spill scenario/drill observations and marine oil spill after action reports were collected and analyzed to determine the current state of remote-sensing data use for decision-making during a marine oil spill, and to define a set of recommendations for the process of integrating new remote-sensing tools and information in future oil spill responses. Using automated synthetic aperture radar analyses of oil spills in a common operational picture as a scientific case study, this presentation is a demonstration of how landscape-level scientific data can be integrated into Arctic planning and operational decision-making.

  7. Procedure for Tooth Contact Analysis of a Face Gear Meshing With a Spur Gear Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George; Lewicki, David G. (Technical Monitor)

    2002-01-01

    A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.

  8. Incorporating Laptop Technologies into an Animal Sciences Curriculum

    ERIC Educational Resources Information Center

    Birrenkott, Glenn; Bertrand, Jean A.; Bolt, Brian

    2005-01-01

    Teaching animal sciences, like most agricultural disciplines, requires giving students hands-on learning opportunities in remote and often computer-unfriendly sites such as animal farms. How do faculty integrate laptop use into such an environment?

  9. Expedition 35 Landing

    NASA Image and Video Library

    2013-05-14

    Expedition 35 NASA Flight Engineer Tom Marshburn, center, is seen on a Russian Search and Rescue helicopter just before arriving at Karaganda Airport in Kazakhstan following his landing in the Soyuz TMA-07M spacecraft in a remote area near the town of Zhezkazgan, Kazakhstan, Tuesday, May 14, 2013. Marshburn, Expedition 35 Commander Chris Hadfield of the Canadian Space Agency (CSA) and Russian Flight Engineer Roman Romanenko of the Russian Federal Space Agency (Roscosmos) returned to earth from more than five months onboard the International Space Station where they served as members of the Expedition 34 and 35 crews. Photo Credit: (NASA/Carla Cioffi)

  10. Expedition 36 Soyuz TMA-08M Landing

    NASA Image and Video Library

    2013-09-11

    Russian search and rescue crews wave farewell to a departing helicopter as an all-terrain vehicle (ATV) with Expedition 36 Flight Engineer Chris Cassidy of NASA drops Cassidy off to from the Soyuz TMA-08M landing zone in a remote area near the town of Zhezkazgan, Kazakhstan to Karaganda on Wednesday, Sept. 11, 2013. Cassidy, Commander Pavel Vinogradov of Russian Federal Space Agency (Roscosmos), and Flight Engineer Alexander Misurkin of Roscosmos returned to Earth in a Soyuz TMA-08M capsule after five and a half months on the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  11. KSC-08pd1267

    NASA Image and Video Library

    2008-05-09

    CAPE CANAVERAL, Fla. -- The crew for the STS-124 mission departs NASA's Kennedy Space Center after a successful launch dress rehearsal called the terminal countdown demonstration test. Commander Mark Kelly (right) waits his turn to climb into the cockpit of the T-38 training jet for the flight back to Houston. Mission Specialist Greg Chamitoff is already seated. The crew is expected to return in late May for the May 31 launch of space shuttle Discovery. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  12. KSC-08pd1182

    NASA Image and Video Library

    2008-05-07

    CAPE CANAVERAL, Fla. -- STS-124 Commander Mark Kelly is ready to practice driving the M113 armored personnel carrier as part of emergency training. He and other crew members are at NASA's Kennedy Space Center for a dress launch rehearsal called the terminal countdown demonstration test. TCDT provides astronauts and ground crews with an opportunity to participate in various simulated countdown activities, including equipment familiarization and emergency training. On the STS-124 mission, the crew will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Discovery's launch is targeted for May 31. Photo credit: NASA/Kim Shiflett

  13. STS-124 Space Shuttle Discovery Landing

    NASA Image and Video Library

    2008-06-14

    The aft end of the space shuttle Discovery is seen shortly after landing on runway 15 of the NASA Kennedy Space Center Shuttle Landing Facility at 11:15 a.m., Saturday, June 14, 2008 in Cape Canaveral, Florida. Onboard Discovery were NASA astronauts Mark Kelly, commander; Ken Ham, pilot; Mike Fossum, Ron Garan, Karen Nyberg, Garrett Reisman and Japan Aerospace Exploration Agency astronaut Akihiko Hoshide, all mission specialists. During the STS-124 mission, Discovery's crew installed the Japan Aerospace Exploration Agency's large Kibo laboratory and its remote manipulator system leaving a larger space station and one with increased science capabilities. Photo Credit: (NASA/Bill Ingalls)

  14. Major technological innovations introduced in the large antennas of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.

    2002-01-01

    The NASA Deep Space Network (DSN) is the largest and most sensitive scientific, telecommunications and radio navigation network in the world. Its principal responsibilities are to provide communications, tracking, and science services to most of the world's spacecraft that travel beyond low Earth orbit. The network consists of three Deep Space Communications Complexes. Each of the three complexes consists of multiple large antennas equipped with ultra sensitive receiving systems. A centralized Signal Processing Center (SPC) remotely controls the antennas, generates and transmits spacecraft commands, and receives and processes the spacecraft telemetry.

  15. Electronic warfare microwave components

    NASA Astrophysics Data System (ADS)

    Cosby, L. A.

    1984-09-01

    The current and projected state-of-the-art for electronic warfare (EW) microwave components is reviewed, with attention given to microwave components used extensively in EW systems for reconnaissance, threat warning, direction finding, and repeater jamming. It is emphasized that distributed EW systems must be able to operate from manned tactical and strategic platforms, with requirements including remote aerospace and space elements, as well as the need for expandable devices for detection, location, and denial/deception functions. EW coordination, or battle management, across a distributed system is a rapidly emerging requirement that must be integrated into current and projected command-and-control programs.

  16. KSC-08pd1455

    NASA Image and Video Library

    2008-05-28

    CAPE CANAVERAL, Fla. -- After their arrival on the Shuttle Landing Facility at NASA's Kennedy Space Center, the crew members of space shuttle Discovery's STS-124 mission pose for a group photo. From left are Mission Specialists Gregory Chamitoff and Akihiko Hoshide, Pilot Ken Ham, Mission Specialists Karen Nyberg and Mike Fossum, Commander Mark Kelly and Mission Specialist Ron Garan. Launch of Discovery is scheduled for 5:02 p.m. May 31. On the STS-124 mission, the crew of seven will deliver and install the Japanese Experiment Module – Pressurized Module and Japanese Remote Manipulator System. Photo credit: NASA/Kim Shiflett

  17. Controlling multiple security robots in a warehouse environment

    NASA Technical Reports Server (NTRS)

    Everett, H. R.; Gilbreath, G. A.; Heath-Pastore, T. A.; Laird, R. T.

    1994-01-01

    The Naval Command Control and Ocean Surveillance Center (NCCOSC) has developed an architecture to provide coordinated control of multiple autonomous vehicles from a single host console. The multiple robot host architecture (MRHA) is a distributed multiprocessing system that can be expanded to accommodate as many as 32 robots. The initial application will employ eight Cybermotion K2A Navmaster robots configured as remote security platforms in support of the Mobile Detection Assessment and Response System (MDARS) Program. This paper discusses developmental testing of the MRHA in an operational warehouse environment, with two actual and four simulated robotic platforms.

  18. Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations

    NASA Technical Reports Server (NTRS)

    Goo, Sherwin

    2014-01-01

    As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.

  19. Remote sensing and disease control in China: past, present and future

    PubMed Central

    2013-01-01

    Satellite measurements have distinct advantages over conventional ground measurements because they can collect the information repeatedly and automatically. Since 1970 globally and 1985 in China, the availability of remote sensing (RS) techniques has steadily grown and they are becoming increasingly important to improve our understanding of human health. This paper gives the first detailed overview on the developments of RS applications for disease control in China. The problems, challenges and future directions are also discussed with an aim of guiding prospective studies. PMID:23311958

  20. Challenges to overcome: energy supply for remote consumers in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Morgunova, M. O.; Solovyev, D. A.

    2017-11-01

    The paper explores challenges of power supply for remote users through the case of the Northern Sea Route (NSR) supportive infrastructure development and specially nature protected areas (NPA) of the Russian Arctic. The study is based on a comprehensive analysis of relevant data of the state of renewable energy in the Russian Arctic. The paper gives policy recommendations on how to extend the use of renewable energy power plants in the region, optimize their input and increase cost-effectiveness and safety.

  1. Detection of cyst using image segmentation and building knowledge-based intelligent decision support system as an aid to telemedicine

    NASA Astrophysics Data System (ADS)

    Janet, J.; Natesan, T. R.; Santhosh, Ramamurthy; Ibramsha, Mohideen

    2005-02-01

    An intelligent decision support tool to the Radiologist in telemedicine is described. Medical prescriptions are given based on the images of cyst that has been transmitted over computer networks to the remote medical center. The digital image, acquired by sonography, is converted into an intensity image. This image is then subjected to image preprocessing which involves correction methods to eliminate specific artifacts. The image is resized into a 256 x 256 matrix by using bilinear interpolation method. The background area is detected using distinct block operation. The area of the cyst is calculated by removing the background area from the original image. Boundary enhancement and morphological operations are done to remove unrelated pixels. This gives us the cyst volume. This segmented image of the cyst is sent to the remote medical center for analysis by Knowledge based artificial Intelligent Decision Support System (KIDSS). The type of cyst is detected and reported to the control mechanism of KIDSS. Then the inference engine compares this with the knowledge base and gives appropriate medical prescriptions or treatment recommendations by applying reasoning mechanisms at the remote medical center.

  2. Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis

    NASA Astrophysics Data System (ADS)

    Hochschild, V.

    2012-12-01

    This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.

  3. Overcoming correlation fluctuations in two-photon interference experiments with differently bright and independently blinking remote quantum emitters

    NASA Astrophysics Data System (ADS)

    Weber, Jonas H.; Kettler, Jan; Vural, Hüseyin; Müller, Markus; Maisch, Julian; Jetter, Michael; Portalupi, Simone L.; Michler, Peter

    2018-05-01

    As a fundamental building block for quantum computation and communication protocols, the correct verification of the two-photon interference (TPI) contrast between two independent quantum light sources is of utmost importance. Here, we experimentally demonstrate how frequently present blinking dynamics and changes in emitter brightness critically affect the Hong-Ou-Mandel-type (HOM) correlation histograms of remote TPI experiments measured via the commonly utilized setup configuration. We further exploit this qualitative and quantitative explanation of the observed correlation dynamics to establish an alternative interferometer configuration, which is overcoming the discussed temporal fluctuations, giving rise to an error-free determination of the remote TPI visibility. We prove full knowledge of the obtained correlation by reproducing the measured correlation statistics via Monte Carlo simulations. As an exemplary system, we make use of two pairs of remote semiconductor quantum dots; however, the same conclusions apply for TPI experiments with flying qubits from any kind of remote solid-state quantum emitters.

  4. Searching Remotely Sensed Images for Meaningful Nested Gestalten

    NASA Astrophysics Data System (ADS)

    Michaelsen, E.; Muench, D.; Arens, M.

    2016-06-01

    Even non-expert human observers sometimes still outperform automatic extraction of man-made objects from remotely sensed data. We conjecture that some of this remarkable capability can be explained by Gestalt mechanisms. Gestalt algebra gives a mathematical structure capturing such part-aggregate relations and the laws to form an aggregate called Gestalt. Primitive Gestalten are obtained from an input image and the space of all possible Gestalt algebra terms is searched for well-assessed instances. This can be a very challenging combinatorial effort. The contribution at hand gives some tools and structures unfolding a finite and comparably small subset of the possible combinations. Yet, the intended Gestalten still are contained and found with high probability and moderate efforts. Experiments are made with images obtained from a virtual globe system, and use the SIFT method for extraction of the primitive Gestalten. Comparison is made with manually extracted ground-truth Gestalten salient to human observers.

  5. Inter-Agency Cooperation: The New Security Paradigm in the 21st Century

    DTIC Science & Technology

    2012-03-22

    year. Other then development and military to military projects, the CJTF-HOA also conducted medical and veterinarian exercises in conjunction with...training in basic medical and veterinarian services, to isolated civilian populations, we were giving the partner nation government the opportunity to...collaboration practices and challenges at DoD’s Southern and African Commands. In this brief it was brought to light that there is a shortage of

  6. STS-100 Crew Interview: Kent Rominger

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-100 Commander Kent Rominger is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Rominger then discusses his views about space exploration as it becomes an international collaboration.

  7. Programming Coup D’Oeil: The Impact of Decision Making Technology in Operational Warfare

    DTIC Science & Technology

    2010-05-03

    system will never be a complete substitute for the personal judgment of the operational commander. Computers exist wholly in the scientific realm, in...a binary world that is defined through mathematical, logical, and scientific terms, and where everything is represented through the lenses of an...equation. War, on the other hand, is a messy and unpredictable business, where events happen for no reason despite giving every scientific indication

  8. STS-102 Crew Interview/Jim Wetherbee

    NASA Technical Reports Server (NTRS)

    2001-01-01

    STS-102 Commander Jim Wetherbee is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, its payload (ISS-07/5A1 (MPLM-1)), and spacewalks. Wetherbee discusses the upcoming transfer of the International Space Station's (ISS) crew Expedition 1 and Expedition 2 and the role of the Mir Space Station in the evolution and success of the ISS.

  9. Ford and Novitskiy participate in a CHeCS Medical Contingency Drill in the U.S. Laboratory

    NASA Image and Video Library

    2012-11-26

    ISS034-E-005268 (26 Nov. 2012) --- NASA astronaut Kevin Ford (background), Expedition 34 commander; and Russian cosmonaut Oleg Novitskiy, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.

  10. Release of a Wound-healing Agent from PLGA Microspheres in a Thermosensitive Gel

    DTIC Science & Technology

    2013-01-01

    have been associated with infectious complications due to the nature of wounding, giving rise to significant devitalized tissue, con- tamination of...Command, Military Infectious Dis- eases, and Combat Casualty Care Research Directorates. References [1] C. K. Murray, “ Infectious disease complications...pluronic-based metronidazole in situ gelling formulations for vaginal application,” Acta Pharmaceutica, vol. 62, no. 1, pp. 59–70, 2012. [24] K. D. Thakker

  11. The role of remote sensing and GIS for spatial prediction of vector-borne diseases transmission: a systematic review.

    PubMed

    Palaniyandi, M

    2012-12-01

    There have been several attempts made to the appreciation of remote sensing and GIS for the study of vectors, biodiversity, vector presence, vector abundance and the vector-borne diseases with respect to space and time. This study was made for reviewing and appraising the potential use of remote sensing and GIS applications for spatial prediction of vector-borne diseases transmission. The nature of the presence and the abundance of vectors and vector-borne diseases, disease infection and the disease transmission are not ubiquitous and are confined with geographical, environmental and climatic factors, and are localized. The presence of vectors and vector-borne diseases is most complex in nature, however, it is confined and fueled by the geographical, climatic and environmental factors including man-made factors. The usefulness of the present day availability of the information derived from the satellite data including vegetation indices of canopy cover and its density, soil types, soil moisture, soil texture, soil depth, etc. is integrating the information in the expert GIS engine for the spatial analysis of other geoclimatic and geoenvironmental variables. The present study gives the detailed information on the classical studies of the past and present, and the future role of remote sensing and GIS for the vector-borne diseases control. The ecological modeling directly gives us the relevant information to understand the spatial variation of the vector biodiversity, vector presence, vector abundance and the vector-borne diseases in association with geoclimatic and the environmental variables. The probability map of the geographical distribution and seasonal variations of horizontal and vertical distribution of vector abundance and its association with vector -borne diseases can be obtained with low cost remote sensing and GIS tool with reliable data and speed.

  12. Speech versus manual control of camera functions during a telerobotic task

    NASA Technical Reports Server (NTRS)

    Bierschwale, John M.; Sampaio, Carlos E.; Stuart, Mark A.; Smith, Randy L.

    1989-01-01

    Voice input for control of camera functions was investigated in this study. Objective were to (1) assess the feasibility of a voice-commanded camera control system, and (2) identify factors that differ between voice and manual control of camera functions. Subjects participated in a remote manipulation task that required extensive camera-aided viewing. Each subject was exposed to two conditions, voice and manual input, with a counterbalanced administration order. Voice input was found to be significantly slower than manual input for this task. However, in terms of remote manipulator performance errors and subject preference, there was no difference between modalities. Voice control of continuous camera functions is not recommended. It is believed that the use of voice input for discrete functions, such as multiplexing or camera switching, could aid performance. Hybrid mixes of voice and manual input may provide the best use of both modalities. This report contributes to a better understanding of the issues that affect the design of an efficient human/telerobot interface.

  13. The Tetracorder user guide: version 4.4

    USGS Publications Warehouse

    Livo, Keith Eric; Clark, Roger N.

    2014-01-01

    Imaging spectroscopy mapping software assists in the identification and mapping of materials based on their chemical properties as expressed in spectral measurements of a planet including the solid or liquid surface or atmosphere. Such software can be used to analyze field, aircraft, or spacecraft data; remote sensing datasets; or laboratory spectra. Tetracorder is a set of software algorithms commanded through an expert system to identify materials based on their spectra (Clark and others, 2003). Tetracorder also can be used in traditional remote sensing analyses, because some of the algorithms are a version of a matched filter. Thus, depending on the instructions fed to the Tetracorder system, results can range from simple matched filter output, to spectral feature fitting, to full identification of surface materials (within the limits of the spectral signatures of materials over the spectral range and resolution of the imaging spectroscopy data). A basic understanding of spectroscopy by the user is required for developing an optimum mapping strategy and assessing the results.

  14. Overview of the joint services lightweight standoff chemical agent detector (JSLSCAD)

    NASA Astrophysics Data System (ADS)

    Hammond, Barney; Popa, Mirela

    2005-05-01

    This paper presents a system-level description of the Joint Services Lightweight Standoff Chemical Agent Detector (JSLSCAD). JSLSCAD is a passive Fourier Transform InfraRed (FTIR) based remote sensing system for detecting chemical warfare agents. Unlike predecessor systems, JSLSCAD is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The sensor is interfaced to a small, high performance spatial scanner that provides high-speed, two-axis area coverage. Command, control, and processing electronics have been coupled with real time control software and robust detection/discrimination algorithms. Operator interfaces include local and remote options in addition to interfaces to external communications networks. The modular system design facilitates interfacing to the many platforms targeted for JSLSCAD.

  15. MIT research in telerobotics

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1987-01-01

    Ongoing MIT research in telerobotics (vehicles capable of some autonomous sensing and manipulating, having some remote supervisory control by people) and teleoperation (vehicles for sensing and manipulating which are fully controlled remotely by people) is discussed. The current efforts mix human and artificial intelligence/control. The idea of adjustable impedance at either end of pure master-slave teleoperation, and simultaneous coordinated control of teleoperator/telerobotic systems which have more than six degrees of freedom (e.g., a combined vehicle and arm, each with five or six DOF) are discussed. A new cable-controlled parallel link arm which offers many advantages over conventional arms for space is briefly described. Predictor displays to compensate for time delay in teleoperator loops, the use of state estimation to help human control decisions in space, and ongoing research in supervisory command language are covered. Finally, efforts to build a human flyable real-time dynamic computer-graphic telerobot simulator are described. These projects represent most, but not all, of the telerobotics research in our laboratory, supported by JPL, NASA Ames and NOAA.

  16. Web-Enabled Optoelectronic Particle-Fallout Monitor

    NASA Technical Reports Server (NTRS)

    Lineberger, Lewis P.

    2008-01-01

    A Web-enabled optoelectronic particle- fallout monitor has been developed as a prototype of future such instruments that (l) would be installed in multiple locations for which assurance of cleanliness is required and (2) could be interrogated and controlled in nearly real time by multiple remote users. Like prior particle-fallout monitors, this instrument provides a measure of particles that accumulate on a surface as an indication of the quantity of airborne particulate contaminants. The design of this instrument reflects requirements to: Reduce the cost and complexity of its optoelectronic sensory subsystem relative to those of prior optoelectronic particle fallout monitors while maintaining or improving capabilities; Use existing network and office computers for distributed display and control; Derive electric power for the instrument from a computer network, a wall outlet, or a battery; Provide for Web-based retrieval and analysis of measurement data and of a file containing such ancillary data as a log of command attempts at remote units; and Use the User Datagram Protocol (UDP) for maximum performance and minimal network overhead.

  17. Unique Offerings of the ISS as an Earth Observing Platform

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  18. Flight Calibration of the LROC Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  19. STS-114 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Flight Day 10 of the STS-114 mission the International Space Station (ISS) is seen in low lighting while the Space Station Remote Manipulator System (SSRMS), also known as Canadarm 2 grapples the Raffaello Multipurpose Logistics Module (MPLM) in preparation for its undocking the following day. Members of the shuttle crew (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS read statements in English and Russian in a ceremony for astronauts who gave their lives. Interview segments include one of Collins, Robinson, and Camarda, wearing red shirts to commemorate the STS-107 Columbia crew, and one of Collins and Noguchi on board the ISS, which features voice over from an interpreter translating questions from the Japanese prime minister. The video also features a segment showing gap fillers on board Discovery after being removed from underneath the orbiter, and another segment which explains an experimental plug for future shuttle repairs being tested onboard the mid deck.

  20. User interface customization on Endoscopy Department Mini-PACS and its impact on examination workflow

    NASA Astrophysics Data System (ADS)

    Osada, Masakazu; Kaise, Mitsuru; Ozeki, Takeshi; Tsunakawa, Hirofumi; Tsunakawa, Kiyoshi; Takayanagi, Takashi; Suzuki, Nobuaki; Miwa, Jun; Ohta, Yasuhiko; Kanai, Koichi

    1999-07-01

    We have proposed a new user interface with workflow customization, implemented and evaluted in Endoscopy Department Mini-PACS that has been introduced and routinely used for two years at Toshiba General Hospital. We have set some task at endoscopy image acquisition units during examinations for two different types of user interfaces and compared performance. One is a command-button based operation using a remote control, and another is that with eight graphic buttons which are displayed on a CRT monitor and can be customized. Results of the two-year study show that mean number of input diagnosis codes per examination with graphic and customized interface is significantly greater than that with conventional interface. Also, mean time to complete one upper gastric endoscopy examination with new user interface is about 17 percent less than that with conventional interface. These result suggest that systems with the visualized and customized operation and feedback encourages physicians to use more functions and to compete tasks more efficiently than systems with conventional command-button based user interfaces.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-12

    Astronauts Frank L. Culbertson, Jr. (left), Expedition Three mission commander, and Daniel W. Bursch, Expedition Four flight engineer, work in the Russian Zvezda Service Module on the International Space Station (ISS). Zvezda is linked to the Russian built Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, a flight control system, and a propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000 pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-25

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  4. Effects of two types of intra-team feedback on developing a shared mental model in Command & Control teams.

    PubMed

    Rasker, P C; Post, W M; Schraagen, J M

    2000-08-01

    In two studies, the effect of two types of intra-team feedback on developing a shared mental model in Command & Control teams was investigated. A distinction is made between performance monitoring and team self-correction. Performance monitoring is the ability of team members to monitor each other's task execution and give feedback during task execution. Team self-correction is the process in which team members engage in evaluating their performance and in determining their strategies after task execution. In two experiments the opportunity to engage in performance monitoring, respectively team self-correction, was varied systematically. Both performance monitoring as well as team self-correction appeared beneficial in the improvement of team performance. Teams that had the opportunity to engage in performance monitoring, however, performed better than teams that had the opportunity to engage in team self-correction.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilder, Todd; Moragne, Corliss L.

    The City of Tallahassee's Innovative Energy Initiatives program sought, first, to evaluate customer response and acceptance to in-home Smart Meter-enabled technologies that allow customers intelligent control of their energy usage. Additionally, this project is in furtherance of the City of Tallahassee's ongoing efforts to expand and enhance the City's Smart Grid capacity and give consumers more tools with which to effectively manage their energy consumption. This enhancement would become possible by establishing an "operations or command center" environment that would be designed as a dual use facility for the City's employees - field and network staff - and systems responsiblemore » for a Smart Grid network. A command center would also support the City's Office of Electric Delivery and Energy Reliability's objective to overcome barriers to the deployment of new technologies that will ensure a truly modern and robust grid capable of meeting the demands of the 2151 century.« less

  6. STS-107 Crew Interviews: Rick D. Husband, Commander

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-107 Commander Rick Husband is seen during this preflight interview, where he gives a quick overview of the mission before answering questions about his inspiration to become an astronaut and his career path. Husband outlines what his role in the mission will be, what training the crew received, what crew member responsibilities will be, particularly during launch and reentry, what day to day life will be like on an extended duration mission, and what science experiments are going to be conducted onboard. He discusses the following science experiments and instruments in detail: MEIDEX (Mediterranean Israeli Dust Experiment), SOLSE (Shuttle Ozone Limb Sounding Experiment, FREESTAR (Fast Reaction Enabling Science Technology and Research) and various student projects. Husband also touches on the importance of space research, the value of international cooperation, the reason for dual crew shifts on the mission and the role of crew members as research subjects.

  7. Learning Media Application Based On Microcontroller Chip Technology In Early Age

    NASA Astrophysics Data System (ADS)

    Ika Hidayati, Permata

    2018-04-01

    In Early childhood cognitive intelligence need right rncdia learning that can help a child’s cognitive intelligence quickly. The purpose of this study to design a learning media in the form of a puppet can used to introduce human anatomy during early childhood. This educational doll utilizing voice recognition technology from EasyVR module to receive commands from the user to introduce body parts on a doll, is used as an indicator TED. In addition to providing the introduction of human anatomy, this dolljut. a user can give a shout out to mainly play previously stored voice module sound recorder. Results obtained from this study is that this educational dolls can detect more than voice and spoken commands that can be random detected. Distance concrete of this doll in detecting the sound is up to a distance of 2.5 meters.

  8. KSC-97pc606

    NASA Image and Video Library

    1997-04-08

    KENNEDY SPACE CENTER, FLA. -- With the Space Shuttle Orbiter Columbia in the background, STS-83 Mission Commander James D. Halsell (center) gives a post-landing briefing on Runway 33 at KSC’s Shuttle Landing Facility. Columbia landed at 2:33:11 p. m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. The other flight crew members (from left) are: Payload Specialist Roger K. Crouch; Payload Commander Janice Voss; Mission Specialist Michael L. Gernhardt; Pilot Susan L. Still; Payload Specialist Gregory T. Linteris; and Mission Specialist Donald A. Thomas. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981

  9. Strategic command, control, communications, and intelligence.

    PubMed

    Zraket, C A

    1984-06-22

    Command, control, communications, and intelligence (C(3)l) for nuclear forces are essential elements in the deterrence of nuclear war. The present C(3)l) system has vulnerabilities associated with its reliability, survivability, and endurance under attack, thereby weakening deterrence by increasing the ambiguity in our capabilities. Development of a reliable and enduring C(3)l) system would reduce this ambiguity. Its reliable, positive control of nuclear forces would give the national leadership more time to assess situations, ensure discriminate retaliation, and improve our ability to manage crises in general. These capabilities could help to stop a war rapidly should one start. A reliable and enduring C(3)1) system will be needed for a long time to come, even if a freeze on strategic nuclear forces is accomplished or other arms control successes achieved. Indeed, C(3)l) may be the best source today of confidence-building measures to reduce tensions and the threat of nuclear catastrophe.

  10. Wind models for the NSTS ascent trajectory biasing for wind load alleviation

    NASA Technical Reports Server (NTRS)

    Smith, O. E.; Adelfang, S. I.; Batts, G. W.; Hill, C. K.

    1989-01-01

    New concepts are presented for aerospace vehicle ascent wind profile biasing. The purpose for wind biasing the ascent trajectory is to provide ascent wind loads relief and thus decrease the probability for launch delays due to wind loads exceeding critical limits. Wind biasing trajectories to the profile of monthly mean winds have been widely used for this purpose. The wind profile models presented give additional alternatives for wind biased trajectories. They are derived from the properties of the bivariate normal probability function using the available wind statistical parameters for the launch site. The analytical expressions are presented to permit generalizations. Specific examples are given to illustrate the procedures. The wind profile models can be used to establish the ascent trajectory steering commands to guide the vehicle through the first stage. For the National Space Transportation System (NSTS) program these steering commands are called I-loads.

  11. KSC-02pd1265

    NASA Image and Video Library

    2002-08-28

    KENNEDY SPACE CENTER, FLA. - During the master plan signing ceremony at Port Canaveral Terminal 10, Matt Taylor gives a presentation to attendees, who included Canaveral National Seashore Superintendent Robert Newkirk, Canaveral Port Authority Executive Director Malcolm "Mac" McLouth, KSC Director Roy Bridges Jr., U.S. Rep. Dave Weldon, 45th Space Wing Commander Gregory Pavlovich, U.S. Fish & Wildlife Services Refuge Manager Ron Hight, Naval Ordnance Test Unit Commanding Officer William Borger, and Florida Space Authority Executive Director Ed Gormel. Taylor is vice president and chief planning officer of ZHA, Inc., which provided consulting services for the plan. The plan represents interagency cooperation between the leadership group's agencies and the U.S. Fish and Wildlife Service, the National Park Service and U.S. Navy. Joining them in developing a vision of the Spaceport's future have been aerospace educators, researchers, and businesses, along with representatives from local, state and national government.

  12. Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, G,; Houston, M.; Ng, Y.-R.

    2002-01-11

    We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less

  13. Niyith NiyithWatmam [corrected] (the quiet story): exploring the experiences of Aboriginal women who give birth in their remote community.

    PubMed

    Ireland, Sarah; Wulili Narjic, Concepta; Belton, Suzanne; Kildea, Sue

    2011-10-01

    to investigate the beliefs and practices of Aboriginal women who decline transfer to urban hospitals and remain in their remote community to give birth. an ethnographic approach was used which included: the collection of birth histories and narratives, observation and participation in the community for 24 months, field notes, training and employment of an Aboriginal co-researcher, and consultation with and advice from a local reference group. a remote Aboriginal community in the Northern Territory, Australia. narratives were collected from seven Aboriginal women and five family members. findings showed that women, through their previous experiences of standard care, appeared to make conscious decisions and choices about managing their subsequent pregnancies and births. Women took into account their health, the baby's health, the care of their other children, and designated men with a helping role. narratives described a breakdown of traditional birthing practices and high levels of non-compliance with health-system-recommended care. standard care provided for women relocating for birth must be improved, and the provision of a primary maternity service in this particular community may allow Aboriginal Women's Business roles and cultural obligations to be recognised and invigorated. International examples of primary birthing services in remote areas demonstrate that they can be safe alternatives to urban transfer for childbirth. A primary maternity service would provide a safer environment for the women who choose to avoid standard care. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Monitoring and telemedicine support in remote environments and in human space flight.

    PubMed

    Cermack, M

    2006-07-01

    The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.

  15. 3-dimensional telepresence system for a robotic environment

    DOEpatents

    Anderson, Matthew O.; McKay, Mark D.

    2000-01-01

    A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.

  16. [Characteristics of chemical pollution of snow cover in Aktobe areas].

    PubMed

    Iskakov, A Zh

    2010-01-01

    The paper gives data on the nature of snow cover pollution in the urbanized areas in relation to the remoteness from the basic sources of ambient air pollution. The total snow content of carcinogens has been estimated.

  17. Quantification of Glacier Depletion in the Central Tibetan Plateau by Using Integrated Satellite Remote Sensing and Gravimetry

    NASA Astrophysics Data System (ADS)

    Tseng, K.-H.; Liu, K. T.; Shum, C. K.; Jia, Y.; Shang, K.; Dai, C.

    2016-06-01

    Glaciers over the Tibetan Plateau have experienced accelerated depletion in the last few decades due primarily to the global warming. The freshwater drained into brackish lakes is also observed by optical remote sensing and altimetry satellites. However, the actual water storage change is difficult to be quantified since the altimetry or remote sensing only provide data in limited dimensions. The altimetry data give an elevation change of surface while the remote sensing images provide an extent variation in horizontal plane. Hence a data set used to describe the volume change is needed to measure the exact mass transition in a time span. In this study, we utilize GRACE gravimetry mission to quantify the total column mass change in the central Tibetan Plateau, especially focused on the lakes near Tanggula Mountains. By removing these factors, the freshwater storage change of glacier system at study area can be potentially isolated.

  18. Practical Approach To Building A Mid-Wave Remote Sensing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyke, Benjamin J.

    The purpose of this project, Laser Active Transmitter & Receiver (LATR), was to build a mobile ground based remote sensing system that can detect, identify and quantify a specific gaseous species using Differential Absorption LIDAR (DIAL). This thesis project is concerned with the development and field testing of a mid-wave infrared active remote sensing system, capable of identifying and quantifying emissions in the 3.2 – 3.5 micron range. The goal is to give a brief description of what remote sensing is about and the specific technique used to analyze the collected data. The thesis will discuss the transmitter and themore » associated subsystems used to create the required wavelength, and the receiver used to collect the returns. And finally, the thesis will discuss the process of collecting the data and some of the results from field and lab collections.« less

  19. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  20. Single-channel ground airborne radio system (SINCGARS) based remote control for the M1 Abrahms

    NASA Astrophysics Data System (ADS)

    Urda, Joseph R.

    1995-04-01

    Remote control of the Ml Abrahms Main Battle Tank through a minefield breach operation will remove the vehicle crew from the inherent hazard. A successful remote control system will provide automotive control yet not impair normal operation. This requires a minimum of physical parts, and an unobtrusive installation. Most importantly, a system failure must not impair the regular operation as a manned system. The system itself need not be complex. A minefield breach only requires simple control of automotive function and a mine plow interface. Control hardware for the Ml-Al can be reduced to two linear actuators, an electrical interface for the engine control unit, an interface for the mine plow, and the associated cables. Communication between vehicle control and operator control takes place over the vehicles organic radio (typically SINCGARS). This helps reduce the number of special purpose components for the remote control device. The device is currently awaiting an automotive safety test to prepare for its safety release. Because of the specific nature of the MDL-STD 1553-B data bus the device will not control an M1-A2 Main Battle Tank. The architecture will allow control of the M1-A2 through the 1553-B data bus however the physical hardware has not been constructed. The control scheme will not change. The communication interface will provide greater flexibility when interfacing to the vehicle tactical radio. Operational utility will be determined by U.S. Army Training and Doctrine Command personnel. The obvious benefit is that if a remote tank is lost during a minefield breach the crew is saved.

Top