NASA Technical Reports Server (NTRS)
Stute, Robert A. (Inventor); Galloway, F. Houston (Inventor); Medelius, Pedro J. (Inventor); Swindle, Robert W. (Inventor); Bierman, Tracy A. (Inventor)
1996-01-01
A remote monitor alarm system monitors discrete alarm and analog power supply voltage conditions at remotely located communications terminal equipment. A central monitoring unit (CMU) is connected via serial data links to each of a plurality of remote terminal units (RTUS) that monitor the alarm and power supply conditions of the remote terminal equipment. Each RTU can monitor and store condition information of both discrete alarm points and analog power supply voltage points in its associated communications terminal equipment. The stored alarm information is periodically transmitted to the CMU in response to sequential polling of the RTUS. The number of monitored alarm inputs and permissible voltage ranges for the analog inputs can be remotely configured at the CMU and downloaded into programmable memory at each RTU. The CMU includes a video display, a hard disk memory, a line printer and an audio alarm for communicating and storing the alarm information received from each RTU.
Improving crop condition monitoring at field scale by using optimal Landsat and MODIS images
USDA-ARS?s Scientific Manuscript database
Satellite remote sensing data at coarse resolution (kilometers) have been widely used in monitoring crop condition for decades. However, crop condition monitoring at field scale requires high resolution data in both time and space. Although a large number of remote sensing instruments with different...
Annotated bibliography of remote sensing methods for monitoring desertification
Walker, A.S.; Robinove, Charles J.
1981-01-01
Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.
A remote condition monitoring system for wind-turbine based DG systems
NASA Astrophysics Data System (ADS)
Ma, X.; Wang, G.; Cross, P.; Zhang, X.
2012-05-01
In this paper, a remote condition monitoring system is proposed, which fundamentally consists of real-time monitoring modules on the plant side, a remote support centre and the communications between them. The paper addresses some of the key issues related on the monitoring system, including i) the implementation and configuration of a VPN connection, ii) an effective database system to be able to handle huge amount of monitoring data, and iii) efficient data mining techniques to convert raw data into useful information for plant assessment. The preliminary results have demonstrated that the proposed system is practically feasible and can be deployed to monitor the emerging new energy generation systems.
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
14 CFR 171.309 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... satisfactorily under the following conditions: Wind Velocity: The ground equipment shall remain within monitor... equipment, associated monitor, remote control and indicator equipment. (2) Approach elevation equipment, associated monitor, remote control and indicator equipment. (3) A means for the encoding and transmission of...
Remote monitoring of heart failure: benefits for therapeutic decision making.
Martirosyan, Mihran; Caliskan, Kadir; Theuns, Dominic A M J; Szili-Torok, Tamas
2017-07-01
Chronic heart failure is a cardiovascular disorder with high prevalence and incidence worldwide. The course of heart failure is characterized by periods of stability and instability. Decompensation of heart failure is associated with frequent and prolonged hospitalizations and it worsens the prognosis for the disease and increases cardiovascular mortality among affected patients. It is therefore important to monitor these patients carefully to reveal changes in their condition. Remote monitoring has been designed to facilitate an early detection of adverse events and to minimize regular follow-up visits for heart failure patients. Several new devices have been developed and introduced to the daily practice of cardiology departments worldwide. Areas covered: Currently, special tools and techniques are available to perform remote monitoring. Concurrently there are a number of modern cardiac implantable electronic devices that incorporate a remote monitoring function. All the techniques that have a remote monitoring function are discussed in this paper in detail. All the major studies on this subject have been selected for review of the recent data on remote monitoring of HF patients and demonstrate the role of remote monitoring in the therapeutic decision making for heart failure patients. Expert commentary: Remote monitoring represents a novel intensified follow-up strategy of heart failure management. Overall, theoretically, remote monitoring may play a crucial role in the early detection of heart failure progression and may improve the outcome of patients.
NASA Technical Reports Server (NTRS)
Goettelman, R. C.; Grass, L. B.; Millard, J. P.; Nixon, P. R.
1983-01-01
The following multispectral remote-sensing techniques were compared to determine the most suitable method for routinely monitoring agricultural subsurface drain conditions: airborne scanning, covering the visible through thermal-infrared (IR) portions of the spectrum; color-IR photography; and natural-color photography. Color-IR photography was determined to be the best approach, from the standpoint of both cost and information content. Aerial monitoring of drain conditions for early warning of tile malfunction appears practical. With careful selection of season and rain-induced soil-moisture conditions, extensive regional surveys are possible. Certain locations, such as the Imperial Valley, Calif., are precluded from regional monitoring because of year-round crop rotations and soil stratification conditions. Here, farms with similar crops could time local coverage for bare-field and saturated-soil conditions.
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
NASA Astrophysics Data System (ADS)
Tuomela, Anne; Davids, Corine; Knutsson, Sven; Knutsson, Roger; Rauhala, Anssi; Rossi, Pekka M.; Rouyet, Line
2017-04-01
Northern areas of Finland, Sweden and Norway have mineral-rich deposits. There are several active mines in the area but also closed ones and deposits with plans for future mining. With increasing demand for environmental protection in the sensitive Northern conditions, there is a need for more comprehensive monitoring of the mining environment. In our study, we aim to develop new opportunities to use remote sensing data from satellites and unmanned aerial vehicles (UAVs) in improving mining safety and monitoring, for example in the case of mine waste storage facilities. Remote sensing methods have evolved fast, and could in many cases enable precise, reliable, and cost-efficient data collection over large areas. The study has focused on four mining areas in Northern Fennoscandia. Freely available medium-resolution (e.g. Sentinel-1), commercial high-resolution (e.g. TerraSAR-X) and Synthetic Aperture Radar (SAR) data has been collected during 2015-2016 to study how satellite remote sensing could be used e.g. for displacement monitoring using SAR Interferometry (InSAR). Furthermore, UAVs have been utilized in similar data collection in a local scale, and also in collection of thermal infrared data for hydrological monitoring of the areas. The development and efficient use of the methods in mining areas requires experts from several fields. In addition, the Northern conditions with four distinct seasons bring their own challenges for the efficient use of remote sensing, and further complicate their integration as standardised monitoring methods for mine environments. Based on the initial results, remote sensing could especially enhance the monitoring of large-scale structures in mine areas such as tailings impoundments.
Remote health monitoring using mobile phones and Web services.
Agarwal, Sparsh; Lau, Chiew Tong
2010-06-01
Diabetes and hypertension have become very common perhaps because of increasingly busy lifestyles, unhealthy eating habits, and a highly competitive workplace. The rapid advancement of mobile communication technologies offers innumerable opportunities for the development of software and hardware applications for remote monitoring of such chronic diseases. This study describes a remote health-monitoring service that provides an end-to-end solution, that is, (1) it collects blood pressure readings from the patient through a mobile phone; (2) it provides these data to doctors through a Web interface; and (3) it enables doctors to manage the chronic condition by providing feedback to the patients remotely. This article also aims at understanding the requirements and expectations of doctors and hospitals from such a remote health-monitoring service.
Integrating multiple satellite data for crop monitoring
USDA-ARS?s Scientific Manuscript database
Remote sensing provides a valuable data source for detecting crop types, monitoring crop condition and predicting crop yields from space. Routine and continuous remote sensing data are critical for agricultural research and operational applications. Since crop field dimensions tend to be relatively ...
NASA Astrophysics Data System (ADS)
Huang, Qing; Zhou, Qing-bo; Zhang, Li
2009-07-01
China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.
Gross-Schulman, Sandra; Sklaroff, Laura Myerchin; Hertz, Crystal Coyazo; Guterman, Jeffrey J
2017-12-01
Heart Failure (HF) is the most expensive preventable condition, regardless of patient ethnicity, race, socioeconomic status, sex, and insurance status. Remote telemonitoring with timely outpatient care can significantly reduce avoidable HF hospitalizations. Human outreach, the traditional method used for remote monitoring, is effective but costly. Automated systems can potentially provide positive clinical, fiscal, and satisfaction outcomes in chronic disease monitoring. The authors implemented a telephonic HF automated remote monitoring system that utilizes deterministic decision tree logic to identify patients who are at risk of clinical decompensation. This safety study evaluated the degree of clinical concordance between the automated system and traditional human monitoring. This study focused on a broad underserved population and demonstrated a safe, reliable, and inexpensive method of monitoring patients with HF.
Remote humidity and temperature real time monitoring system for studying seed biology
NASA Astrophysics Data System (ADS)
Balachandran, Thiruparan
This thesis discusses the design, prototyping, and testing of a remote monitoring system that is used to study the biology of seeds under various controlled conditions. Seed scientists use air-tight boxes to maintain relative humidity, which influences seed longevity and seed dormancy break. The common practice is the use of super-saturated solutions either with different chemicals or different concentrations of LiCl to create various relative humidity. Theretofore, no known system has been developed to remotely monitor the environmental conditions inside these boxes in real time. This thesis discusses the development of a remote monitoring system that can be used to accurately monitor and measure the relative humidity and temperature inside sealed boxes for the study of seed biology. The system allows the remote and real-time monitoring of these two parameters in five boxes with different conditions. It functions as a client that is connected to the internet using Wireless Fidelity (Wi-Fi) technology while Google spreadsheet is used as the server for uploading and plotting the data. This system directly gets connected to the Google sever through Wi-Fi and uploads the sensors' values in a Google spread sheet. Application-specific software is created and the user can monitor the data in real time and/or download the data into Excel for further analyses. Using Google drive app the data can be viewed using a smart phone or a tablet. Furthermore, an electronic mail (e-mail) alert is also integrated into the system. Whenever measured values go beyond the threshold values, the user will receive an e-mail alert.
Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries
USDA-ARS?s Scientific Manuscript database
Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...
Analysis of remote reflectin spectroscopy to monitor plant health
NASA Technical Reports Server (NTRS)
Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.
1994-01-01
Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.
Remote sensing of vegetation pattern and condition to monitor changes in Everglades biogeochemistry
Jones, John W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management.
L.R. Ahuja; S. A. El-Swaify
1979-01-01
Continuous monitoring of soil-water pressures, rainfall and runoff under natural conditions was tested as a technique for determining soil hydrologic characteristics of a remote forest watershed plot. A completely battery-powered (and thus portable) pressure transducer–scanner–recorder system was assembled for monitoring of soil-water pressures in...
A new multi-sensor integrated index for drought monitoring
NASA Astrophysics Data System (ADS)
Jiao, W.; Wang, L.; Tian, C.
2017-12-01
Drought is perceived as one of the most expensive and least understood natural disasters. The remote-sensing-based integrated drought indices, which integrate multiple variables, could reflect the drought conditions more comprehensively than single drought indices. However, most of current remote-sensing-based integrated drought indices focus on agricultural drought (i.e., deficit in soil moisture), their application in monitoring meteorological drought (i.e., deficit in precipitation) was limited. More importantly, most of the remote-sensing-based integrated drought indices did not take into consideration of the spatially non-stationary nature of the related variables, so such indices may lose essential local details when integrating multiple variables. In this regard, we proposed a new mathematical framework for generating integrated drought index for meteorological drought monitoring. The geographically weighted regression (GWR) model and principal component analysis were used to composite Moderate-resolution Imaging Spectroradiometer (MODIS) based temperature condition index (TCI), the Vegetation Index based on the Universal Pattern Decomposition method (VIUPD) based vegetation condition index (VCI), tropical rainfall measuring mission (TRMM) based Precipitation Condition Index (PCI) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) based soil moisture condition index (SMCI). We called the new remote-sensing-based integrated drought index geographical-location-based integrated drought index (GLIDI). We examined the utility of the GLIDI for drought monitoring in various climate divisions across the continental United States (CONUS). GLIDI showed high correlations with in-situ drought indices and outperformed most other existing drought indices. The results also indicate that the performance of GLIDI is not affected by environmental factors such as land cover, precipitation, temperature and soil conditions. As such, the GLIDI has considerable potential for drought monitoring across various environmental conditions.
Remote sensing of vegetation pattern and condition to monitor changes in everglades biogeochemistry
Jones, J.W.
2011-01-01
Ground-based studies of biogeochemistry and vegetation patterning yield process understanding, but the amount of information gained by ground-based studies can be greatly enhanced by efficient, synoptic, and temporally resolute monitoring afforded by remote sensing. The variety of presently available Everglades vegetation maps reflects both the wide range of application requirements and the need to balance cost and capability. More effort needs to be applied to documenting and understanding vegetation distribution and condition as indicators of biogeochemistry and contamination. Ground-based and remote sensing studies should be modified to maximize their synergy and utility for adaptive management. Copyright ?? 2011 Taylor & Francis Group, LLC.
Predicting Near-Term Water Quality from Satellite Observations of Watershed Conditions
NASA Astrophysics Data System (ADS)
Weiss, W. J.; Wang, L.; Hoffman, K.; West, D.; Mehta, A. V.; Lee, C.
2017-12-01
Despite the strong influence of watershed conditions on source water quality, most water utilities and water resource agencies do not currently have the capability to monitor watershed sources of contamination with great temporal or spatial detail. Typically, knowledge of source water quality is limited to periodic grab sampling; automated monitoring of a limited number of parameters at a few select locations; and/or monitoring relevant constituents at a treatment plant intake. While important, such observations are not sufficient to inform proactive watershed or source water management at a monthly or seasonal scale. Satellite remote sensing data on the other hand can provide a snapshot of an entire watershed at regular, sub-monthly intervals, helping analysts characterize watershed conditions and identify trends that could signal changes in source water quality. Accordingly, the authors are investigating correlations between satellite remote sensing observations of watersheds and source water quality, at a variety of spatial and temporal scales and lags. While correlations between remote sensing observations and direct in situ measurements of water quality have been well described in the literature, there are few studies that link remote sensing observations across a watershed with near-term predictions of water quality. In this presentation, the authors will describe results of statistical analyses and discuss how these results are being used to inform development of a desktop decision support tool to support predictive application of remote sensing data. Predictor variables under evaluation include parameters that describe vegetative conditions; parameters that describe climate/weather conditions; and non-remote sensing, in situ measurements. Water quality parameters under investigation include nitrogen, phosphorus, organic carbon, chlorophyll-a, and turbidity.
NASA Technical Reports Server (NTRS)
Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph
2006-01-01
A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.
NASA Astrophysics Data System (ADS)
Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.
2016-11-01
A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.
Remote sensing of multimodal transportation systems : research brief.
DOT National Transportation Integrated Search
2016-09-01
Remote Sensing of Multimodal Transportation Systems : Rapid condition monitoring and performance evaluations of the vast and vulnerable transportation infrastructure has been elusive. The framework and models developed in this research will enable th...
Test-bed for the remote health monitoring system for bridge structures using FBG sensors
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog
2009-05-01
This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.
Remote monitoring of lower-limb prosthetic socket fit using wireless technologies.
Sahandi, R; Sewell, P; Noroozi, S; Hewitt, M
2012-01-01
Accurate fitting of a lower-limb prosthetic socket is the most important factor affecting amputee satisfaction and rehabilitation. The technology is now available to allow real-time monitoring of in-service pressure distribution of prosthetic limbs. This paper proposes a remote interfacial pressure monitoring system necessary for the assessment of fit. The suitability of a wireless ZigBee network due to its relevant technical specification is investigated. The system enables remote monitoring of a prosthetic socket and its fit under different operating conditions thereby improving design, efficiency and effectiveness. The data can be used by prosthetists and may also be recorded for future training or for patient progress monitoring. This can minimize the number of iterations by getting it right first time, thereby minimizing the number of replacement prostheses. Copyright © 2012 Informa UK, Ltd.
Real-Time Remote Monitoring with Data Acquisition System
NASA Astrophysics Data System (ADS)
Faizal Zainal Abidin, Ahmad; Huzaimy Jusoh, Mohammad; James, Elster; Junid, Syed Abdul Mutalib Al; Mohd Yassin, Ahmad Ihsan
2015-11-01
The purpose of this system is to provide monitoring system for an electrical device and enable remote monitoring via web based application. This monitoring system allow the user to monitor the device condition from anywhere as the information will be synchronised to the website. The current and voltage reading of the monitored equipment, ambient temperature and humidity level are monitored and recorded. These parameters will be updated on the web page. All these sensor are connected to the microcontroller and the data will saved in micro secure digital (SD) card and send all the gathered information to a web page using the GPRS service connection synchronously. The collected data will be displayed on the website and the user enable to download the data directly from the website. The system will help user to monitor the devices condition and ambient changes with ease. The system is successfully developed, tested and has been installed at residential area in Taman Cahaya Alam, Section U12, Shah Alam, Selangor, Malaysia.
Monitoring and diagnosis of vegetable growth based on internet of things
NASA Astrophysics Data System (ADS)
Zhang, Qian; Yu, Feng; Fu, Rong; Li, Gang
2017-10-01
A new condition monitoring method of vegetable growth was proposed, which was based on internet of things. It was combined remote environmental monitoring, video surveillance, intelligently decision-making and two-way video consultation together organically.
Health Monitoring System for Car Seat
NASA Technical Reports Server (NTRS)
Elrod, Susan Vinz (Inventor); Dabney, Richard W. (Inventor)
2004-01-01
A health monitoring system for use with a child car seat has sensors mounted in the seat to monitor one or more health conditions of the seat's occupant. A processor monitors the sensor's signals and generates status signals related to the monitored conditions. A transmitter wireless transmits the status signals to a remotely located receiver. A signaling device coupled to the receiver produces at least one sensory (e.g., visual, audible, tactile) output based on the status signals.
NASA Astrophysics Data System (ADS)
Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim
2016-11-01
Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.
Strouthidis, N G; Chandrasekharan, G; Diamond, J P; Murdoch, I E
2014-01-01
Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service. PMID:24723617
IN SITU ESTIMATES OF FOREST LAI FOR MODIS DATA VALIDATION
Satellite remote sensor data are commonly used to assess ecosystem conditions through synoptic monitoring of terrestrial vegetation extent, biomass, and seasonal dynamics. Two commonly used vegetation indices that can be derived from various remote sensor systems include the Norm...
Remote monitoring as a tool in condition assessment of a highway bridge
NASA Astrophysics Data System (ADS)
Tantele, Elia A.; Votsis, Renos A.; Onoufriou, Toula; Milis, Marios; Kareklas, George
2016-08-01
The deterioration of civil infrastructure and their subsequent maintenance is a significant problem for the responsible managing authorities. The ideal scenario is to detect deterioration and/or structural problems at early stages so that the maintenance cost is kept low and the safety of the infrastructure remains undisputed. The current inspection regimes implemented mostly via visual inspection are planned at specific intervals but are not always executed on time due to shortcomings in expert personnel and finance. However the introduction of technological advances in the assessment of infrastructures provides the tools to alleviate this problem. This study describes the assessment of a highway RC bridge's structural condition using remote structural health monitoring. A monitoring plan is implemented focusing on strain measurements; as strain is a parameter influenced by the environmental conditions supplementary data are provided from temperature and wind sensors. The data are acquired using wired sensors (deployed at specific locations) which are connected to a wireless sensor unit installed at the bridge. This WSN application enables the transmission of the raw data from the field to the office for processing and evaluation. The processed data are then used to assess the condition of the bridge. This case study, which is part of an undergoing RPF research project, illustrates that remote monitoring can alleviate the problem of missing structural inspections. Additionally, shows its potential to be the main part of a fully automated smart procedure of obtaining structural data, processed them and trigger an alarm when certain undesirable conditions are met.
Monitoring water quality by remote sensing
NASA Technical Reports Server (NTRS)
Brown, R. L. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A limited study was conducted to determine the applicability of remote sensing for evaluating water quality conditions in the San Francisco Bay and delta. Considerable supporting data were available for the study area from other than overflight sources, but short-term temporal and spatial variability precluded their use. The study results were not sufficient to shed much light on the subject, but it did appear that, with the present state of the art in image analysis and the large amount of ground truth needed, remote sensing has only limited application in monitoring water quality.
Remote monitoring of a thermal plume
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Talay, T. A.
1979-01-01
A remote-sensing experiment conducted on May 17, 1977, over the Surry nuclear power station on the James River, Virginia is discussed. Isotherms of the thermal plume from the power station were derived from remotely sensed data and compared with in situ water temperature measurements provided by the Virginia Electric and Power Company, VEPCO. The results of this study were also qualitatively compared with those from other previous studies under comparable conditions of the power station's operation and the ambient flow. These studies included hydraulic model predictions carried out by Pritchard and Carpenter and a 5-year in situ monitoring program based on boat surveys.
Utilizing multisource remotely sensed data to dynamically monitor drought in China
NASA Astrophysics Data System (ADS)
Liu, Sanchao; Li, Wenbo
2011-12-01
Drought is one of major nature disaster in the world and China. China has a vast territory and very different spatio-temporal distribution weather condition. Therefore, drought disasters occur frequently throughout China, which may affect large areas and cause great economic loss every year. In this paper, geostationary meteorological remote sensing data, FY-2C/D/E VISSR and three quantitative remotely sensed models including Cloud Parameters Method (CPM), Vegetation Supply Water Index (VSWI), and Temperature Vegetation Dryness Index (TVDI) have been used to dynamically monitor severe drought in southwest China from 2009 to 2010. The results have effectively revealed the occurrence, development and disappearance of this drought event. The monitoring results can be used for the relevant disaster management departments' decision-making works.
Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth
2016-06-01
Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.
Advancements in satellite remote sensing for drought monitoring
USDA-ARS?s Scientific Manuscript database
Drought monitoring is a key component for effective drought preparedness strategies, providing critical information on current conditions that can be used to trigger mitigation actions to lessen the impact of this natural hazard. However, drought can be both complex and challenging to monitor becau...
Monitoring Global Crop Condition Indicators Using a Web-Based Visualization Tool
Bob Tetrault; Bob Baldwin
2006-01-01
Global crop condition information for major agricultural regions in the world can be monitored using the web-based application called Crop Explorer. With this application, U.S. and international producers, traders, researchers, and the public can access remote sensing information used by agricultural economists and scientists who predict crop production worldwide. For...
Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.
1991-01-01
Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools
As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...
González, Fernando Cornelio Jimènez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa
2014-01-01
Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia. PMID:25230306
González, Fernando Cornelio Jiménez; Villegas, Osslan Osiris Vergara; Ramírez, Dulce Esperanza Torres; Sánchez, Vianey Guadalupe Cruz; Domínguez, Humberto Ochoa
2014-09-16
Technological innovations in the field of disease prevention and maintenance of patient health have enabled the evolution of fields such as monitoring systems. One of the main advances is the development of real-time monitors that use intelligent and wireless communication technology. In this paper, a system is presented for the remote monitoring of the body temperature and heart rate of a patient by means of a wireless sensor network (WSN) and mobile augmented reality (MAR). The combination of a WSN and MAR provides a novel alternative to remotely measure body temperature and heart rate in real time during patient care. The system is composed of (1) hardware such as Arduino microcontrollers (in the patient nodes), personal computers (for the nurse server), smartphones (for the mobile nurse monitor and the virtual patient file) and sensors (to measure body temperature and heart rate), (2) a network layer using WiFly technology, and (3) software such as LabView, Android SDK, and DroidAR. The results obtained from tests show that the system can perform effectively within a range of 20 m and requires ten minutes to stabilize the temperature sensor to detect hyperthermia, hypothermia or normal body temperature conditions. Additionally, the heart rate sensor can detect conditions of tachycardia and bradycardia.
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires remote sensing data at fine spatial and temporal resolution. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for crop and rangeland monitoring. The Landsat satellite s...
USDA-ARS?s Scientific Manuscript database
Vegetation monitoring requires frequent remote sensing observations. While imagery from coarse resolution sensors such as MODIS/VIIRS can provide daily observations, they lack spatial detail to capture surface features for vegetation monitoring. The medium spatial resolution (10-100m) sensors are su...
Wireless pilot monitoring system for extreme race conditions.
Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W
2012-01-01
This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring.
Remote sensing: Snow monitoring tool for today and tomorrow
NASA Technical Reports Server (NTRS)
Rango, A.
1977-01-01
Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.
Aircraft remote sensing of freshwater ecosystems offers federal and state monitoring agencies an ability to meet their assessment requirements by rapidly acquiring information on ecosystem responses to environmental change for water bodies that are below the resolution of space...
USDA/federal user of LANDSAT remote sensing
NASA Technical Reports Server (NTRS)
Allen, R.
1981-01-01
Developed and potential uses of remote sensing in crop condition and acreage assessment, renewable resources inventories, conservation practices, and water and forest management applications are described. Operational approaches, the adaptation of procedures to needs, and the agency's concern about data continuity and cost are discussed as well as support for future technology development for enhanced sensing capability. The use of improved camera systems for soil mapping and conservation monitoring from space shuttle, and of aerospace radar to improve soil moisture monitoring are mentioned.
Strouthidis, N G; Chandrasekharan, G; Diamond, J P; Murdoch, I E
2014-12-01
Telemedicine technologies and services allow today's ophthalmic clinicians to remotely diagnose, manage and monitor several ophthalmic conditions from a distance. But is this the case for glaucomas? There has been a proliferation of telemedicine friendly devices in recent years that improves the capabilities of the clinician in managing glaucomas. The existing instruments still need to align themselves with accepted industry standards. There are successful programmes running in several areas of the world. The safety and efficacy of these programmes needs further exploration. The inability of a single device or test to diagnose glaucomas satisfactorily has also hampered progress in remotely diagnosing these conditions. There is, however, significant potential for telemedicine-friendly devices to remotely monitor the progress of glaucoma and, thereby, reduce some of the workload on an overstretched health service. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wireless remote monitoring of critical facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Hanchung; Anderson, John T.; Liu, Yung Y.
A method, apparatus, and system are provided for monitoring environment parameters of critical facilities. A Remote Area Modular Monitoring (RAMM) apparatus is provided for monitoring environment parameters of critical facilities. The RAMM apparatus includes a battery power supply and a central processor. The RAMM apparatus includes a plurality of sensors monitoring the associated environment parameters and at least one communication module for transmitting one or more monitored environment parameters. The RAMM apparatus is powered by the battery power supply, controlled by the central processor operating a wireless sensor network (WSN) platform when the facility condition is disrupted. The RAMM apparatusmore » includes a housing prepositioned at a strategic location, for example, where a dangerous build-up of contamination and radiation may preclude subsequent manned entrance and surveillance.« less
Regional Drought Monitoring Based on Multi-Sensor Remote Sensing
NASA Astrophysics Data System (ADS)
Rhee, Jinyoung; Im, Jungho; Park, Seonyoung
2014-05-01
Drought originates from the deficit of precipitation and impacts environment including agriculture and hydrological resources as it persists. The assessment and monitoring of drought has traditionally been performed using a variety of drought indices based on meteorological data, and recently the use of remote sensing data is gaining much attention due to its vast spatial coverage and cost-effectiveness. Drought information has been successfully derived from remotely sensed data related to some biophysical and meteorological variables and drought monitoring is advancing with the development of remote sensing-based indices such as the Vegetation Condition Index (VCI), Vegetation Health Index (VHI), and Normalized Difference Water Index (NDWI) to name a few. The Scaled Drought Condition Index (SDCI) has also been proposed to be used for humid regions proving the performance of multi-sensor data for agricultural drought monitoring. In this study, remote sensing-based hydro-meteorological variables related to drought including precipitation, temperature, evapotranspiration, and soil moisture were examined and the SDCI was improved by providing multiple blends of the multi-sensor indices for different types of drought. Multiple indices were examined together since the coupling and feedback between variables are intertwined and it is not appropriate to investigate only limited variables to monitor each type of drought. The purpose of this study is to verify the significance of each variable to monitor each type of drought and to examine the combination of multi-sensor indices for more accurate and timely drought monitoring. The weights for the blends of multiple indicators were obtained from the importance of variables calculated by non-linear optimization using a Machine Learning technique called Random Forest. The case study was performed in the Republic of Korea, which has four distinct seasons over the course of the year and contains complex topography with a variety of land cover types. Remote sensing data from the Tropical Rainfall Measuring Mission satellite (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS), and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) sensors were obtained for the period from 2000 to 2012, and observation data from 99 weather stations, 441 streamflow gauges, as well as the gridded observation data from Asian Precipitation Highly-Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE) were obtained for validation. The objective blends of multiple indicators helped better assessment of various types of drought, and can be useful for drought early warning system. Since the improved SDCI is based on remotely sensed data, it can be easily applied to regions with limited or no observation data for drought assessment and monitoring.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2010-04-01
Broadband wireless access standards, together with advances in the development of commercial sensing and actuator devices, enable the feasibility of a consumer service for a multi-sensor system that monitors the conditions within a residence or office: the environment/infrastructure, patient-occupant health, and physical security. The proposed service is a broadband reimplementation and combination of existing services to allow on-demand reports on and management of the conditions by remote subscribers. The flow of on-demand reports to subscribers and to specialists contracted to mitigate out-of-tolerance conditions is the foreground process. Service subscribers for an over-the-horizon connected home/office (OCHO) monitoring system are the occupant of the premises and agencies, contracted by the service provider, to mitigate or resolve any observed out-of-tolerance condition(s) at the premises. Collectively, these parties are the foreground users of the OCHO system; the implemented wireless standards allow the foreground users to be mobile as they request situation reports on demand from the subsystems on remote conditions that comprise OCHO via wireless devices. An OCHO subscriber, i.e., a foreground user, may select the level of detail found in on-demand reports, i.e., the amount of information displayed in the report of monitored conditions at the premises. This is one context of system operations. While foreground reports are sent only periodically to subscribers, the information generated by the monitored conditions at the premises is continuous and is transferred to a background configuration of servers on which databases reside. These databases are each used, generally, in non-real time, for the assessment and management of situations defined by attributes like those being monitored in the foreground by OCHO. This is the second context of system operations. Context awareness and management of conditions at the premises by a second group of analysts and decision makers who extract information from the OCHO data in the databases form the foundation of the situation management problem.
Some insights on grassland health assessment based on remote sensing.
Xu, Dandan; Guo, Xulin
2015-01-29
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment.
Some Insights on Grassland Health Assessment Based on Remote Sensing
Xu, Dandan; Guo, Xulin
2015-01-01
Grassland ecosystem is one of the largest ecosystems, which naturally occurs on all continents excluding Antarctica and provides both ecological and economic functions. The deterioration of natural grassland has been attracting many grassland researchers to monitor the grassland condition and dynamics for decades. Remote sensing techniques, which are advanced in dealing with the scale constraints of ecological research and provide temporal information, become a powerful approach of grassland ecosystem monitoring. So far, grassland health monitoring studies have mostly focused on different areas, for example, productivity evaluation, classification, vegetation dynamics, livestock carrying capacity, grazing intensity, natural disaster detecting, fire, climate change, coverage assessment and soil erosion. However, the grassland ecosystem is a complex system which is formed by soil, vegetation, wildlife and atmosphere. Thus, it is time to consider the grassland ecosystem as an entity synthetically and establish an integrated grassland health monitoring system to combine different aspects of the complex grassland ecosystem. In this review, current grassland health monitoring methods, including rangeland health assessment, ecosystem health assessment and grassland monitoring by remote sensing from different aspects, are discussed along with the future directions of grassland health assessment. PMID:25643060
Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems
Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz
2014-01-01
Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...
Remote monitoring of implantable cardiac devices: current state and future directions.
Ganeshan, Raj; Enriquez, Alan D; Freeman, James V
2018-01-01
Recent evidence has demonstrated substantial benefits associated with remote monitoring of cardiac implantable electronic devices (CIEDs), and treatment guidelines have endorsed the use of remote monitoring. Familiarity with the features of remote monitoring systems and the data supporting its use are vital for physicians' care for patients with CEIDs. Remote monitoring remains underutilized, but its use is expanding including in new practice settings including emergency departments. Patient experience and outcomes are positive, with earlier detection of clinical events such as atrial fibrillation, reductions in inappropriate implantable cardioverter-defibrillator (ICD) shocks and potentially a decrease in mortality with frequent remote monitoring utilizaiton. Rates of hospitalization are reduced among remote monitoring users, and the replacement of outpatient follow-up visits with remote monitoring transmissions has been shown to be well tolerated. In addition, health resource utilization is lower and remote monitoring has been associated with considerable cost savings. A dose relationship exists between use of remote monitoring and patient outcomes, and those with early and high transmission rates have superior outcomes. Remote monitoring provides clinicians with the ability to provide comprehensive follow-up care for patients with CIEDs. Patient outcomes are improved, and resource utilization is decreased with appropriate use of remote monitoring. Future efforts must focus on improving the utilization and efficiency of remote monitoring.
DOT National Transportation Integrated Search
2011-01-01
The increasing emphasis on the maintenance of existing infrastructure systems have led to : greater use of advanced sensors and condition monitoring systems. Wireless sensors and : sensor networks are emerging as sensing paradigms that the structural...
Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection
Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.
2015-01-01
The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.; Newhouse, M. E.
1974-01-01
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.
Telemedicine and cardiac implants: what is the benefit?
Varma, Niraj; Ricci, Renato Pietro
2013-01-01
Cardiac implantable electronic devices are increasing in prevalence. The post-implant follow-up is important for monitoring both device function and patient condition. However, practice is inconsistent. For example, ICD follow-up schedules vary from 3 monthly to yearly according to facility and physician preference and availability of resources. Recommended follow-up schedules impose significant burden. Importantly, no surveillance occurs between follow-up visits. In contrast, implantable devices with automatic remote monitoring capability provide a means for performing constant surveillance, with the ability to identify salient problems rapidly. Remote home monitoring reduces the volume of device clinic visits and provides early detection of patient and/or system problems. PMID:23211231
NASA Technical Reports Server (NTRS)
Price, Kevin P.; Nellis, M. Duane
1996-01-01
The purpose of this project was to develop a practical protocol that employs multitemporal remotely sensed imagery, integrated with environmental parameters to model and monitor agricultural and natural resources in the High Plains Region of the United States. The value of this project would be extended throughout the region via workshops targeted at carefully selected audiences and designed to transfer remote sensing technology and the methods and applications developed. Implementation of such a protocol using remotely sensed satellite imagery is critical for addressing many issues of regional importance, including: (1) Prediction of rural land use/land cover (LULC) categories within a region; (2) Use of rural LULC maps for successive years to monitor change; (3) Crop types derived from LULC maps as important inputs to water consumption models; (4) Early prediction of crop yields; (5) Multi-date maps of crop types to monitor patterns related to crop change; (6) Knowledge of crop types to monitor condition and improve prediction of crop yield; (7) More precise models of crop types and conditions to improve agricultural economic forecasts; (8;) Prediction of biomass for estimating vegetation production, soil protection from erosion forces, nonpoint source pollution, wildlife habitat quality and other related factors; (9) Crop type and condition information to more accurately predict production of biogeochemicals such as CO2, CH4, and other greenhouse gases that are inputs to global climate models; (10) Provide information regarding limiting factors (i.e., economic constraints of pumping, fertilizing, etc.) used in conjunction with other factors, such as changes in climate for predicting changes in rural LULC; (11) Accurate prediction of rural LULC used to assess the effectiveness of government programs such as the U.S. Soil Conservation Service (SCS) Conservation Reserve Program; and (12) Prediction of water demand based on rural LULC that can be related to rates of draw-down of underground water supplies.
NASA Astrophysics Data System (ADS)
Mönnig, Carsten
2014-05-01
The increasing precision of modern farming systems requires a near-real-time monitoring of agricultural crops in order to estimate soil condition, plant health and potential crop yield. For large sized agricultural plots, satellite imagery or aerial surveys can be used at considerable costs and possible time delays of days or even weeks. However, for small to medium sized plots, these monitoring approaches are cost-prohibitive and difficult to assess. Therefore, we propose within the INTERREG IV A-Project SMART INSPECTORS (Smart Aerial Test Rigs with Infrared Spectrometers and Radar), a cost effective, comparably simple approach to support farmers with a small and lightweight hyperspectral imaging system to collect remotely sensed data in spectral bands in between 400 to 1700nm. SMART INSPECTORS includes the whole remote sensing processing chain of small scale remote sensing from sensor construction, data processing and ground truthing for analysis of the results. The sensors are mounted on a remotely controlled (RC) Octocopter, a fixed wing RC airplane as well as on a two-seated Autogyro for larger plots. The high resolution images up to 5cm on the ground include spectra of visible light, near and thermal infrared as well as hyperspectral imagery. The data will be analyzed using remote sensing software and a Geographic Information System (GIS). The soil condition analysis includes soil humidity, temperature and roughness. Furthermore, a radar sensor is envisaged for the detection of geomorphologic, drainage and soil-plant roughness investigation. Plant health control includes drought stress, vegetation health, pest control, growth condition and canopy temperature. Different vegetation and soil indices will help to determine and understand soil conditions and plant traits. Additional investigation might include crop yield estimation of certain crops like apples, strawberries, pasture land, etc. The quality of remotely sensed vegetation data will be tested with ground truthing tools like a spectrometer, visual inspection and ground control panel. The soil condition will also be monitored with a wireless sensor network installed on the examined plots of interest. Provided with this data, a farmer can respond immediately to potential threats with high local precision. In this presentation, preliminary results of hyperspectral images of distinctive vegetation cover and soil on different pasture test plots are shown. After an evaluation period, the whole processing chain will offer farmers a unique, near real- time, low cost solution for small to mid-sized agricultural plots in order to easily assess crop and soil quality and the estimation of harvest. SMART INSPECTORS remotely sensed data will form the basis for an input in a decision support system which aims to detect crop related issues in order to react quickly and efficiently, saving fertilizer, water or pesticides.
The future of remote ECG monitoring systems.
Guo, Shu-Li; Han, Li-Na; Liu, Hong-Wei; Si, Quan-Jin; Kong, De-Feng; Guo, Fu-Su
2016-09-01
Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and reception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, patient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
Automated ground-water monitoring with Robowell: case studies and potential applications
NASA Astrophysics Data System (ADS)
Granato, Gregory E.; Smith, Kirk P.
2002-02-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual- sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/
Automated ground-water monitoring with robowell-Case studies and potential applications
Granato, G.E.; Smith, K.P.; ,
2001-01-01
Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.
NASA Astrophysics Data System (ADS)
Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi
2017-01-01
An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.
NASA Technical Reports Server (NTRS)
Bolten, John; Crow, Wade
2012-01-01
The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable.
Remote health monitoring system for detecting cardiac disorders.
Bansal, Ayush; Kumar, Sunil; Bajpai, Anurag; Tiwari, Vijay N; Nayak, Mithun; Venkatesan, Shankar; Narayanan, Rangavittal
2015-12-01
Remote health monitoring system with clinical decision support system as a key component could potentially quicken the response of medical specialists to critical health emergencies experienced by their patients. A monitoring system, specifically designed for cardiac care with electrocardiogram (ECG) signal analysis as the core diagnostic technique, could play a vital role in early detection of a wide range of cardiac ailments, from a simple arrhythmia to life threatening conditions such as myocardial infarction. The system that the authors have developed consists of three major components, namely, (a) mobile gateway, deployed on patient's mobile device, that receives 12-lead ECG signals from any ECG sensor, (b) remote server component that hosts algorithms for accurate annotation and analysis of the ECG signal and (c) point of care device of the doctor to receive a diagnostic report from the server based on the analysis of ECG signals. In the present study, their focus has been toward developing a system capable of detecting critical cardiac events well in advance using an advanced remote monitoring system. A system of this kind is expected to have applications ranging from tracking wellness/fitness to detection of symptoms leading to fatal cardiac events.
Summary: Remote sensing soil moisture research
NASA Technical Reports Server (NTRS)
Schmer, F. A.; Werner, H. D.; Waltz, F. A.
1970-01-01
During the 1969 and 1970 growing seasons research was conducted to investigate the relationship between remote sensing imagery and soil moisture. The research was accomplished under two completely different conditions: (1) cultivated cropland in east central South Dakota, and (2) rangeland in western South Dakota. Aerial and ground truth data are being studied and correlated in order to evaluate the moisture supply and water use. Results show that remote sensing is a feasible method for monitoring soil moisture.
Qiu, Guo Yu; Zhao, Ming
2010-03-01
Remote monitoring of soil evaporation and soil water status is necessary for water resource and environment management. Ground based remote sensing can be the bridge between satellite remote sensing and ground-based point measurement. The primary object of this study is to provide an algorithm to estimate evaporation and soil water status by remote sensing and to verify its accuracy. Observations were carried out in a flat field with varied soil water content. High-resolution thermal images were taken with a thermal camera; soil evaporation was measured with a weighing lysimeter; weather data were recorded at a nearby meteorological station. Based on the thermal imaging and the three-temperatures model (3T model), we developed an algorithm to estimate soil evaporation and soil water status. The required parameters of the proposed method were soil surface temperature, air temperature, and solar radiation. By using the proposed method, daily variation in soil evaporation was estimated. Meanwhile, soil water status was remotely monitored by using the soil evaporation transfer coefficient. Results showed that the daily variation trends of measured and estimated evaporation agreed with each other, with a regression line of y = 0.92x and coefficient of determination R(2) = 0.69. The simplicity of the proposed method makes the 3T model a potentially valuable tool for remote sensing.
Kurti, Allison N; Davis, Danielle R; Redner, Ryan; Jarvis, Brantley P; Zvorsky, Ivori; Keith, Diana R; Bolivar, Hypatia A; White, Thomas J; Rippberger, Peter; Markesich, Catherine; Atwood, Gary; Higgins, Stephen T
2016-06-01
Use of technology (e.g., Internet, cell phones) to allow remote implementation of incentives interventions for health-related behavior change is growing. To our knowledge, there has yet to be a systematic review of this literature reported. The present report provides a systematic review of the controlled studies where technology was used to remotely implement financial incentive interventions targeting substance use and other health behaviors published between 2004 and 2015. For inclusion in the review, studies had to use technology to remotely accomplish one of the following two aims alone or in combination: (a) monitor the target behavior, or (b) deliver incentives for achieving the target goal. Studies also had to examine financial incentives (e.g., cash, vouchers) for health-related behavior change, be published in peer-reviewed journals, and include a research design that allowed evaluation of the efficacy of the incentive intervention relative to another condition (e.g., non-contingent incentives, treatment as usual). Of the 39 reports that met inclusion criteria, 18 targeted substance use, 10 targeted medication adherence or home-based health monitoring, and 11 targeted diet, exercise, or weight loss. All 39 (100%) studies used technology to facilitate remote monitoring of the target behavior, and 26 (66.7%) studies also incorporated technology in the remote delivery of incentives. Statistically significant intervention effects were reported in 71% of studies reviewed. Overall, the results offer substantial support for the efficacy of remotely implemented incentive interventions for health-related behavior change, which have the potential to increase the cost-effectiveness and reach of this treatment approach.
Remote Supervision and Control of Air Conditioning Systems in Different Modes
NASA Astrophysics Data System (ADS)
Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree
2018-01-01
In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.
Monitoring boreal ecosystem phenology with integrated active/passive microwave remote sensing
NASA Technical Reports Server (NTRS)
McDonald, K. C.; Njoku, E.; Kimball, J.; Running, S.; Thompson, C.; Lee, J. K.
2002-01-01
The important role of the high latitudes in the functioning of global processes is becoming well established. The size and remoteness of arctic and boreal ecosystems, however, pose a challenge to quantification of both terrestrial ecosystem processes and their feedbacks to regional and global climate conditions. Boreal and arctic regions form a complex land cover mosaic where vegetation structure, condition and distribution are strongly regulated by environmental factors such as moisture availability, permafrost, growing season length, disturbance and soil nutrients.
Marzegalli, Maurizio; Landolina, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Pappone, Alessia; Guenzati, Giuseppe; Campana, Carlo; Frigerio, Maria; Parati, Gianfranco; Curnis, Antonio; Colangelo, Irene; Valsecchi, Sergio
2009-01-01
Background Heart failure patients with implantable defibrillators (ICD) frequently visit the clinic for routine device monitoring. Moreover, in the case of clinical events, such as ICD shocks or alert notifications for changes in cardiac status or safety issues, they often visit the emergency department or the clinic for an unscheduled visit. These planned and unplanned visits place a great burden on healthcare providers. Internet-based remote device interrogation systems, which give physicians remote access to patients' data, are being proposed in order to reduce routine and interim visits and to detect and notify alert conditions earlier. Methods The EVOLVO study is a prospective, randomized, parallel, unblinded, multicenter clinical trial designed to compare remote ICD management with the current standard of care, in order to assess its ability to treat and triage patients more effectively. Two-hundred patients implanted with wireless-transmission-enabled ICD will be enrolled and randomized to receive either the Medtronic CareLink® monitor for remote transmission or the conventional method of in-person evaluations. The purpose of this manuscript is to describe the design of the trial. The results, which are to be presented separately, will characterize healthcare utilizations as a result of ICD follow-up by means of remote monitoring instead of conventional in-person evaluations. Trial registration ClinicalTrials.gov: NCT00873899 PMID:19538734
Instrument for analysis of electric motors based on slip-poles component
Haynes, Howard D.; Ayers, Curtis W.; Casada, Donald A.
1996-01-01
A new instrument for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician.
Instrument for analysis of electric motors based on slip-poles component
Haynes, H.D.; Ayers, C.W.; Casada, D.A.
1996-11-26
A new instrument is described for monitoring the condition and speed of an operating electric motor from a remote location. The slip-poles component is derived from a motor current signal. The magnitude of the slip-poles component provides the basis for a motor condition monitor, while the frequency of the slip-poles component provides the basis for a motor speed monitor. The result is a simple-to-understand motor health monitor in an easy-to-use package. Straightforward indications of motor speed, motor running current, motor condition (e.g., rotor bar condition) and synthesized motor sound (audible indication of motor condition) are provided. With the device, a relatively untrained worker can diagnose electric motors in the field without requiring the presence of a trained engineer or technician. 4 figs.
Place, Jérôme; Robert, Antoine; Brahim, Najib Ben; Patrick, Keith-Hynes; Farret, Anne; Marie-Josée, Pelletier; Buckingham, Bruce; Breton, Marc; Kovatchev, Boris; Renard, Eric
2013-01-01
Background Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. “Home-like” environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. Methods We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. Results Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. Conclusions Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature. J Diabetes Sci Technol 2013;7(6):1427–1435 PMID:24351169
Place, Jérôme; Robert, Antoine; Ben Brahim, Najib; Keith-Hynes, Patrick; Farret, Anne; Pelletier, Marie-Josée; Buckingham, Bruce; Breton, Marc; Kovatchev, Boris; Renard, Eric
2013-11-01
Developments in an artificial pancreas (AP) for patients with type 1 diabetes have allowed a move toward performing outpatient clinical trials. "Home-like" environment implies specific protocol and system adaptations among which the introduction of remote monitoring is meaningful. We present a novel tool allowing multiple patients to monitor AP use in home-like settings. We investigated existing systems, performed interviews of experienced clinical teams, listed required features, and drew several mockups of the user interface. The resulting application was tested on the bench before it was used in three outpatient studies representing 3480 h of remote monitoring. Our tool, called DiAs Web Monitoring (DWM), is a web-based application that ensures reception, storage, and display of data sent by AP systems. Continuous glucose monitoring (CGM) and insulin delivery data are presented in a colored chart to facilitate reading and interpretation. Several subjects can be monitored simultaneously on the same screen, and alerts are triggered to help detect events such as hypoglycemia or CGM failures. In the third trial, DWM received approximately 460 data per subject per hour: 77% for log messages, 5% for CGM data. More than 97% of transmissions were achieved in less than 5 min. Transition from a hospital setting to home-like conditions requires specific AP supervision to which remote monitoring systems can contribute valuably. DiAs Web Monitoring worked properly when tested in our outpatient studies. It could facilitate subject monitoring and even accelerate medical and technical assessment of the AP. It should now be adapted for long-term studies with an enhanced notification feature. © 2013 Diabetes Technology Society.
Remote Imaging Applied to Schistosomiasis Control: The Anning River Project
NASA Technical Reports Server (NTRS)
Seto, Edmund Y. W.; Maszle, Don R.; Spear, Robert C.; Gong, Peng
1997-01-01
The use of satellite imaging to remotely detect areas of high risk for transmission of infectious disease is an appealing prospect for large-scale monitoring of these diseases. The detection of large-scale environmental determinants of disease risk, often called landscape epidemiology, has been motivated by several authors (Pavlovsky 1966; Meade et al. 1988). The basic notion is that large-scale factors such as population density, air temperature, hydrological conditions, soil type, and vegetation can determine in a coarse fashion the local conditions contributing to disease vector abundance and human contact with disease agents. These large-scale factors can often be remotely detected by sensors or cameras mounted on satellite or aircraft platforms and can thus be used in a predictive model to mark high risk areas of transmission and to target control or monitoring efforts. A review of satellite technologies for this purpose was recently presented by Washino and Wood (1994) and Hay (1997) and Hay et al. (1997).
Versteeg, H; Pedersen, S S; Mastenbroek, M H; Redekop, W K; Schwab, J O; Mabo, P; Meine, M
2014-10-01
Remote patient monitoring is a safe and effective alternative for the in-clinic follow-up of patients with cardiovascular implantable electronic devices (CIEDs). However, evidence on the patient perspective on remote monitoring is scarce and inconsistent. The primary objective of the REMOTE-CIED study is to evaluate the influence of remote patient monitoring versus in-clinic follow-up on patient-reported outcomes. Secondary objectives are to: 1) identify subgroups of patients who may not be satisfied with remote monitoring; and 2) investigate the cost-effectiveness of remote monitoring. The REMOTE-CIED study is an international randomised controlled study that will include 900 consecutive heart failure patients implanted with an implantable cardioverter defibrillator (ICD) compatible with the Boston Scientific LATITUDE® Remote Patient Management system at participating centres in five European countries. Patients will be randomised to remote monitoring or in-clinic follow-up. The In-Clinic group will visit the outpatient clinic every 3-6 months, according to standard practice. The Remote Monitoring group only visits the outpatient clinic at 12 and 24 months post-implantation, other check-ups are performed remotely. Patients are asked to complete questionnaires at five time points during the 2-year follow-up. The REMOTE-CIED study will provide insight into the patient perspective on remote monitoring in ICD patients, which could help to support patient-centred care in the future.
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods: Monitoring of the condition and trend of natural resources is critical for determining effectiveness of management actions and understanding ecosystem responses to broad-scale processes like climate change. While broad-scale remote sensing has generally improved the abi...
Combine harvester monitor system based on wireless sensor network
USDA-ARS?s Scientific Manuscript database
A measurement method based on Wireless Sensor Network (WSN) was developed to monitor the working condition of combine harvester for remote application. Three JN5139 modules were chosen for sensor data acquisition and another two as a router and a coordinator, which could create a tree topology netwo...
Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data
NASA Astrophysics Data System (ADS)
Han, X.; Wu, J.
2018-04-01
The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.
Community-based Monitoring of Water Resources in Remote Mountain Regions
NASA Astrophysics Data System (ADS)
Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.
2016-12-01
Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom-up approach to implementation, which ideally isrooted in locally-based set of actors that can act as catalysts for knowledge co-production between the scientific community and local ESS users.
Remote Monitoring of Cardiac Implantable Electronic Devices.
Cheung, Christopher C; Deyell, Marc W
2018-01-08
Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Domiri, D. D.
2017-01-01
Rice crop is the most important food crop for the Asian population, especially in Indonesia. During the growth of rice plants have four main phases, namely the early planting or inundation phase, the vegetative phase, the generative phase, and bare land phase. Monitoring the condition of the rice plant needs to be conducted in order to know whether the rice plants have problems or not in its growth. Application of remote sensing technology, which uses satellite data such as Landsat 8 and others which has a spatial and temporal resolution is high enough for monitoring the condition of crops such as paddy crop in a large area. In this study has been made an algorithm for monitoring rapidly of rice growth condition using Maximum of Vegetation Index (EVI Max). The results showed that the time of early planting can be estimated if known when EVI Max occurred. The value of EVI Max and when it occured can be known by trough spatial analysis of multitemporal EVI Landsat 8 or other medium spatial resolution satellites.
Mapping of sea bottom topography
NASA Technical Reports Server (NTRS)
Calkoen, C. J.; Wensink, G. J.; Hesselmans, G. H. F. M.
1992-01-01
Under suitable conditions the bottom topography of shallow seas is visible in remote sensing radar imagery. Two experiments were performed to establish which remote sensing technique or combination yields optimal imaging of bottom topography and which hydro-meteorological conditions are favorable. A further goal is to gain experience with these techniques. Two experiments were performed over an area in the North Sea near the measuring platform Meetpost Noordwijk (MPN). The bottom topography in the test area is dominated by sand waves. The crests of the sand waves are perpendicular to the coast line and the dominating (tidal-)current direction. A 4x4 sq km wide section of the test area was studied in more detail. The first experiment was undertaken on 16 Aug. 1989. During the experiment the following remote sensing instruments were used: Landsat-Thematic Mapper, and NASA/JPL Airborne Imaging Radar (AIR). The hydro-meteorological conditions; current, wind, wave, and air and water temperature were monitored by MPN, a ship of Rijkswaterstaat (the OCTANS), and a pitch-and-roll WAVEC-buoy. The second experiment took place on 12 July 1992. During this experiment data were collected with the NASA/JPL polarimetric synthetic aperture radar (SAR), and a five-band helicopter-borne scatterometer. Again the hydro-meteorological conditions were monitored at MPN and the OCTANS. Furthermore, interferometric radar data were collected.
Prototype of a wearable system for remote fetal monitoring during pregnancy.
Fanelli, Andrea; Ferrario, Manuela; Piccini, Luca; Andreoni, Giuseppe; Matrone, Giulia; Magenes, Giovanni; Signorini, Maria G
2010-01-01
Fetal Heart Rate (FHR) monitoring gives important information about the fetus health state during pregnancy. This paper presents a new prototype for remote fetal monitoring. The device will allow to monitor FHR in a domiciliary context and to send fetal ECG traces to a hospital facility, where clinicians can interpret them. In this way the mother could receive prompt feedback about fetal wellbeing. The system is characterized by two units: (i) a wearable unit endowed with textile electrodes for abdominal ECG recordings and with a Field Programmable Gate Array (FPGA) board for fetal heart rate (FHR) extraction; (ii) a dock station for the transmission of the data through the telephone line. The system will allow to reduce costs in fetal monitoring, improving the assessment of fetal conditions. The device is actually in development state. In this paper, the most crucial aspects behind its fulfillment are discussed.
Long-term monitoring on environmental disasters using multi-source remote sensing technique
NASA Astrophysics Data System (ADS)
Kuo, Y. C.; Chen, C. F.
2017-12-01
Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.
Investigation of varying gray scale levels for remote manipulation
NASA Technical Reports Server (NTRS)
Bierschwale, John M.; Stuart, Mark A.; Sampaio, Carlos E.
1991-01-01
A study was conducted to investigate the effects of variant monitor gray scale levels and workplace illumination levels on operators' ability to discriminate between different colors on a monochrome monitor. It was determined that 8-gray scale viewing resulted in significantly worse discrimination performance compared to 16- and 32-gray scale viewing and that there was only a negligible difference found between 16 and 32 shades of gray. Therefore, it is recommended that monitors used while performing remote manipulation tasks have 16 or above shades of gray since this evaluation has found levels lower than this to be unacceptable for color discrimination task. There was no significant performance difference found between a high and a low workplace illumination condition. Further analysis was conducted to determine which specific combinations of colors can be used in conjunction with each other to ensure errorfree color coding/brightness discrimination performance while viewing a monochrome monitor. It was found that 92 three-color combination and 9 four-color combinations could be used with 100 percent accuracy. The results can help to determine which gray scale levels should be provided on monochrome monitors as well as which colors to use to ensure the maximal performance of remotely-viewed color discrimination/coding tasks.
Chlorophyll a (chl a) is commonly measured in water quality monitoring programs for coastal and freshwater systems. The concentration of chl a, when evaluated with other condition indicators such as water clarity and dissolved oxygen concentrations, provides information on the en...
Framework of sensor-based monitoring for pervasive patient care.
Triantafyllidis, Andreas K; Koutkias, Vassilis G; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-09-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors' approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach.
Framework of sensor-based monitoring for pervasive patient care
Koutkias, Vassilis G.; Chouvarda, Ioanna; Adami, Ilia; Kouroubali, Angelina; Maglaveras, Nicos
2016-01-01
Sensor-based health systems can often become difficult to use, extend and sustain. The authors propose a framework for designing sensor-based health monitoring systems aiming to provide extensible and usable monitoring services in the scope of pervasive patient care. The authors’ approach relies on a distributed system for monitoring the patient health status anytime-anywhere and detecting potential health complications, for which healthcare professionals and patients are notified accordingly. Portable or wearable sensing devices measure the patient's physiological parameters, a smart mobile device collects and analyses the sensor data, a Medical Center system receives notifications on the detected health condition, and a Health Professional Platform is used by formal caregivers in order to review the patient condition and configure monitoring schemas. A Service-oriented architecture is utilised to provide extensible functional components and interoperable interactions among the diversified system components. The framework was applied within the REMOTE ambient-assisted living project in which a prototype system was developed, utilising Bluetooth to communicate with the sensors and Web services for data exchange. A scenario of using the REMOTE system and preliminary usability results show the applicability, usefulness and virtue of our approach. PMID:27733920
Peretz, Daniel; Arnaert, Antonia; Ponzoni, Norma N
2018-01-01
Introduction Remote patient monitoring (RPM) in conjunction with home nursing visits is becoming increasingly popular for the follow-up of patients with chronic conditions and evidence exists that it improves patients' health outcomes. Current cost data is reported inconsistently and often gathered from studies of poor methodological quality, making it difficult for decision-makers who consider implementing this service in their organizations. This study reviewed the cost of RPM programmes targeting elderly patients with chronic conditions. Methods After evaluation against the inclusion and exclusion criteria and appraisal against two criteria which are important for economic evaluations, data from selected studies were extracted and grouped into meaningful cost categories, then adjusted to reflect November 2015 US dollars. Results In the 13 selected studies, the newly-created cost category 'Combined intervention cost' (reflecting equipment purchasing, servicing and monitoring cost) for the various RPM programmes ranged from US$275-US$7963 per patient per year. The three main findings are: (a) RPM programme costs have decreased since 2004 due to cheaper technology; (b) monitoring a single vital sign is likely to be less costly than monitoring multiple vital signs; and (c) programmes targeting hypertension or congestive heart failure are less costly than those targeting respiratory diseases or multiple conditions. Conclusions This review recommends that future studies present their cost data with more granularity, that grouping of costs should be minimized and that any assumptions, such as amortization, should be made explicit. In addition, studies should compare programmes with similar characteristics in terms of type of conditions, number of vital signs monitored, etc. for more generalizable results.
Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong
2016-07-01
Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink(®) network. Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. Copyright: © Singapore Medical Association.
Lim, Paul Chun Yih; Lee, Audry Shan Yin; Chua, Kelvin Chi Ming; Lim, Eric Tien Siang; Chong, Daniel Thuan Tee; Tan, Boon Yew; Ho, Kah Leng; Teo, Wee Siong; Ching, Chi Keong
2016-01-01
INTRODUCTION Remote monitoring of cardiac implantable electronic devices (CIED) has been shown to improve patient safety and reduce in-office visits. We report our experience with remote monitoring via the Medtronic CareLink® network. METHODS Patients were followed up for six months with scheduled monthly remote monitoring transmissions in addition to routine in-office checks. The efficacy of remote monitoring was evaluated by recording compliance to transmissions, number of device alerts requiring intervention and time from transmission to review. Questionnaires were administered to evaluate the experiences of patients, physicians and medical technicians. RESULTS A total of 57 patients were enrolled; 16 (28.1%) had permanent pacemakers, 34 (59.6%) had implantable cardioverter defibrillators and 7 (12.3%) had cardiac resynchronisation therapy defibrillators. Overall, of 334 remote transmissions scheduled, 73.7% were on time, 14.5% were overdue and 11.8% were missed. 84.6% of wireless transmissions were on time, compared to 53.8% of non-wireless transmissions. Among all transmissions, 4.4% contained alerts for which physicians were informed and only 1.8% required intervention. 98.6% of remote transmissions were reviewed by the second working day. 73.2% of patients preferred remote monitoring. Physicians agreed that remote transmissions provided information equivalent to in-office checks 97.1% of the time. 77.8% of medical technicians felt that remote monitoring would help the hospital improve patient management. No adverse events were reported. CONCLUSION Remote monitoring of CIED is safe and feasible. It has possible benefits to patient safety through earlier detection of arrhythmias or device malfunction, permitting earlier intervention. Wireless remote monitoring, in particular, may improve compliance to device monitoring. Patients may prefer remote monitoring due to possible improvements in quality of life. PMID:27439396
Designing Robust and Reliable Timestamps for Remote Patient Monitoring.
Clarke, Malcolm; Schluter, Paul; Reinhold, Barry; Reinhold, Brian
2015-09-01
Having timestamps that are robust and reliable is essential for remote patient monitoring in order for patient data to have context and to be correlated with other data. However, unlike hospital systems for which guidelines on timestamps are currently provided by HL7 and IHE, remote patient monitoring platforms are: operated in environments where it can be difficult to synchronize with reliable time sources; include devices with simple or no clock; and may store data spanning significant periods before able to upload. Existing guidelines prove inadequate. This paper analyzes the requirements and the operating scenarios of remote patient monitoring platforms and defines a framework to convey information on the conditions under which observations were made by the device and forwarded by the gateway in order for data to be managed appropriately and to include both reference to local time and an underlying continuous reference timeline. We define the timestamp formats of HL7 to denote the different conditions of operation and describe extensions to the existing definition of the HL7 timestamp to differentiate between time local to GMT (+0000) and universal coordinated time or network time protocol time where no geographic time zone is implied (-0000). We further describe how timestamps from devices having only simple or no clocks might be managed reliably by a gateway to provide timestamps that are referenced to local time and an underlying continuous reference timeline. We extend the HL7 message to include information to permit a subsequent receiver of the data to understand the quality of the timestamp and how it has been translated. We present evaluation from deploying a platform for 12 months.
Legislated emergency locating transmitters and emergency position indicating radio beacons
NASA Technical Reports Server (NTRS)
Wade, William R. (Inventor)
1988-01-01
An emergency locating transmitting (ELT) system is disclosed which comprises a legislated ELT modified with an interface unit and connected by a multiwire cable to a remote control monitor (RCM), typically located at the pilot position. The RCM can remotely test the ELT by disabling the legislated swept tone and allowing transmission of a single tone, turn the ELT on for legislated ELT transmission, and reset the ELT to an armed condition. The RCM also provides visual and audio indications of transmitter operating condition as well as ELT battery condition. Removing the RCM or shorting or opening the interface input connections will not affect traditional ELT operation.
Plant Condition Remote Monitoring Technique
NASA Technical Reports Server (NTRS)
Fotedar, L. K.; Krishen, K.
1996-01-01
This paper summarizes the results of a radiation transfer study conducted on houseplants using controlled environmental conditions. These conditions included: (1) air and soil temperature; (2) incident and reflected radiation; and (3) soil moisture. The reflectance, transmittance, and emittance measurements were conducted in six spectral bands: microwave, red, yellow, green, violet and infrared, over a period of three years. Measurements were taken on both healthy and diseased plants. The data was collected on plants under various conditions which included: variation in plant bio-mass, diurnal variation, changes in plant pathological conditions (including changes in water content), different plant types, various disease types, and incident light wavelength or color. Analysis of this data was performed to yield an algorithm for plant disease from the remotely sensed data.
NASA Technical Reports Server (NTRS)
Velez-Rodriguez, Linda L. (Principal Investigator)
1996-01-01
Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Blavier, J.-F.; Toon, G. C.; Sen, B.
2000-01-01
This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.
Hernández-Madrid, Antonio; Lewalter, Thorsten; Proclemer, Alessandro; Pison, Laurent; Lip, Gregory Y H; Blomstrom-Lundqvist, Carina
2014-01-01
The aim of this European Heart Rhythm Association survey was to provide an insight into the current use of remote monitoring for cardiac implantable electronic devices in Europe. The following topics were explored: use of remote monitoring, infrastructure and organization, patient selection and benefits. Centres using remote monitoring reported performing face-to-face visits less frequently. In many centres (56.9%), a nurse reviews all the data and forwards them to the responsible physician. The majority of the centres (91.4%) stated that remote monitoring is best used in patients with implantable cardioverter-defibrillators and those live far from the hospital (76.6% top benefit). Supraventricular and ventricular arrhythmias were reported to be the major events detected earlier by remote monitoring. Remote monitoring will have a significant impact on device management.
Landolina, Maurizio; Perego, Giovanni B; Lunati, Maurizio; Curnis, Antonio; Guenzati, Giuseppe; Vicentini, Alessandro; Parati, Gianfranco; Borghi, Gabriella; Zanaboni, Paolo; Valsecchi, Sergio; Marzegalli, Maurizio
2012-06-19
Heart failure patients with implantable cardioverter-defibrillators (ICDs) or an ICD for resynchronization therapy often visit the hospital for unscheduled examinations, placing a great burden on healthcare providers. We hypothesized that Internet-based remote interrogation systems could reduce emergency healthcare visits. This multicenter randomized trial involving 200 patients compared remote monitoring with standard patient management consisting of scheduled visits and patient response to audible ICD alerts. The primary end point was the rate of emergency department or urgent in-office visits for heart failure, arrhythmias, or ICD-related events. Over 16 months, such visits were 35% less frequent in the remote arm (75 versus 117; incidence density, 0.59 versus 0.93 events per year; P=0.005). A 21% difference was observed in the rates of total healthcare visits for heart failure, arrhythmias, or ICD-related events (4.40 versus 5.74 events per year; P<0.001). The time from an ICD alert condition to review of the data was reduced from 24.8 days in the standard arm to 1.4 days in the remote arm (P<0.001). The patients' clinical status, as measured by the Clinical Composite Score, was similar in the 2 groups, whereas a more favorable change in quality of life (Minnesota Living With Heart Failure Questionnaire) was observed from the baseline to the 16th month in the remote arm (P=0.026). Remote monitoring reduces emergency department/urgent in-office visits and, in general, total healthcare use in patients with ICD or defibrillators for resynchronization therapy. Compared with standard follow-up through in-office visits and audible ICD alerts, remote monitoring results in increased efficiency for healthcare providers and improved quality of care for patients. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00873899.
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Virtual groups for patient WBAN monitoring in medical environments.
Ivanov, Stepan; Foley, Christopher; Balasubramaniam, Sasitharan; Botvich, Dmitri
2012-11-01
Wireless body area networks (WBAN) provide a tremendous opportunity for remote health monitoring. However, engineering WBAN health monitoring systems encounters a number of challenges including efficient WBAN monitoring information extraction, dynamically fine tuning the monitoring process to suit the quality of data, and to allow the translation of high-level requirements of medical officers to low-level sensor reconfiguration. This paper addresses these challenges, by proposing an architecture that allows virtual groups to be formed between devices of patients, nurses, and doctors in order to enable remote analysis of WBAN data. Group formation and modification is performed with respect to patients' conditions and medical officers' requirements, which could be easily adjusted through high-level policies. We also propose, a new metric called the Quality of Health Monitoring, which allows medical officers to provide feedback on the quality of WBAN data received. The WBAN data gathered are transmitted to the virtual group members through an underlying environmental sensor network. The proposed approach is evaluated through a series of simulation.
An Interoperable, Agricultural Information System Based on Satellite Remote Sensing Data
NASA Technical Reports Server (NTRS)
Teng, William; Chiu, Long; Doraiswamy, Paul; Kempler, Steven; Liu, Zhong; Pham, Long; Rui, Hualan
2005-01-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of US. agricultural products and for global food security. The Goddard Space Flight Center Earth Sciences Data and Information Services Center Distributed Active Archive Center (GES DISC DAAC) is developing an Agricultural Information System (AIS), evolved from an existing TRMM Online Visualization and Analysis System (TOVAS), which will operationally provide satellite remote sensing data products (e.g., rainfall) and services. The data products will include crop condition and yield prediction maps, generated from a crop growth model with satellite data inputs, in collaboration with the USDA Agricultural Research Service. The AIS will enable the remote, interoperable access to distributed data, by using the GrADS-DODS Server (GDS) and by being compliant with Open GIS Consortium standards. Users will be able to download individual files, perform interactive online analysis, as well as receive operational data flows. AIS outputs will be integrated into existing operational decision support systems for global crop monitoring, such as those of the USDA Foreign Agricultural Service and the U.N. World Food Program.
Monitoring growth condition of spring maize in Northeast China using a process-based model
NASA Astrophysics Data System (ADS)
Wang, Peijuan; Zhou, Yuyu; Huo, Zhiguo; Han, Lijuan; Qiu, Jianxiu; Tan, Yanjng; Liu, Dan
2018-04-01
Early and accurate assessment of the growth condition of spring maize, a major crop in China, is important for the national food security. This study used a process-based Remote-Sensing-Photosynthesis-Yield Estimation for Crops (RS-P-YEC) model, driven by satellite-derived leaf area index and ground-based meteorological observations, to simulate net primary productivity (NPP) of spring maize in Northeast China from the first ten-day (FTD) of May to the second ten-day (STD) of August during 2001-2014. The growth condition of spring maize in 2014 in Northeast China was monitored and evaluated spatially and temporally by comparison with 5- and 13-year averages, as well as 2009 and 2013. Results showed that NPP simulated by the RS-P-YEC model, with consideration of multi-scattered radiation inside the crop canopy, could reveal the growth condition of spring maize more reasonably than the Boreal Ecosystem Productivity Simulator. Moreover, NPP outperformed other commonly used vegetation indices (e.g., Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI)) for monitoring and evaluating the growth condition of spring maize. Compared with the 5- and 13-year averages, the growth condition of spring maize in 2014 was worse before the STD of June and after the FTD of August, and it was better from the third ten-day (TTD) of June to the TTD of July across Northeast China. Spatially, regions with slightly worse and worse growth conditions in the STD of August 2014 were concentrated mainly in central Northeast China, and they accounted for about half of the production area of spring maize in Northeast China. This study confirms that NPP is a good indicator for monitoring and evaluating growth condition because of its capacity to reflect the physiological characteristics of crops. Meanwhile, the RS-P-YEC model, driven by remote sensing and ground-based meteorological data, is effective for monitoring crop growth condition over large areas in a near real time.
Development of sea ice monitoring with aerial remote sensing technology
NASA Astrophysics Data System (ADS)
Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei
2014-11-01
In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.
Future opportunities and challenges in remote sensing of drought
Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt; Wardlow, Brian D.; Anderson, Martha C.; Verdin, James P.
2012-01-01
The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health.
Future Opportunities and Challenges in Remote Sensing of Drought
NASA Technical Reports Server (NTRS)
Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt
2011-01-01
The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health.
High-frequency remote monitoring of large lakes with MODIS 500 m imagery
McCullough, Ian M.; Loftin, Cynthia S.; Sader, Steven A.
2012-01-01
Satellite-based remote monitoring programs of regional lake water quality largely have relied on Landsat Thematic Mapper (TM) owing to its long image archive, moderate spatial resolution (30 m), and wide sensitivity in the visible portion of the electromagnetic spectrum, despite some notable limitations such as temporal resolution (i.e., 16 days), data pre-processing requirements to improve data quality, and aging satellites. Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors on Aqua/Terra platforms compensate for these shortcomings, although at the expense of spatial resolution. We developed and evaluated a remote monitoring protocol for water clarity of large lakes using MODIS 500 m data and compared MODIS utility to Landsat-based methods. MODIS images captured during May–September 2001, 2004 and 2010 were analyzed with linear regression to identify the relationship between lake water clarity and satellite-measured surface reflectance. Correlations were strong (R² = 0.72–0.94) throughout the study period; however, they were the most consistent in August, reflecting seasonally unstable lake conditions and inter-annual differences in algal productivity during the other months. The utility of MODIS data in remote water quality estimation lies in intra-annual monitoring of lake water clarity in inaccessible, large lakes, whereas Landsat is more appropriate for inter-annual, regional trend analyses of lakes ≥ 8 ha. Model accuracy is improved when ancillary variables are included to reflect seasonal lake dynamics and weather patterns that influence lake clarity. The identification of landscape-scale drivers of regional water quality is a useful way to supplement satellite-based remote monitoring programs relying on spectral data alone.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Khan, Muhammad Farhan; Naeem, Muhammad; Anpalagan, Alagan
2015-03-25
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed.
Ali, Salman; Qaisar, Saad Bin; Saeed, Husnain; Farhan Khan, Muhammad; Naeem, Muhammad; Anpalagan, Alagan
2015-01-01
The synergy of computational and physical network components leading to the Internet of Things, Data and Services has been made feasible by the use of Cyber Physical Systems (CPSs). CPS engineering promises to impact system condition monitoring for a diverse range of fields from healthcare, manufacturing, and transportation to aerospace and warfare. CPS for environment monitoring applications completely transforms human-to-human, human-to-machine and machine-to-machine interactions with the use of Internet Cloud. A recent trend is to gain assistance from mergers between virtual networking and physical actuation to reliably perform all conventional and complex sensing and communication tasks. Oil and gas pipeline monitoring provides a novel example of the benefits of CPS, providing a reliable remote monitoring platform to leverage environment, strategic and economic benefits. In this paper, we evaluate the applications and technical requirements for seamlessly integrating CPS with sensor network plane from a reliability perspective and review the strategies for communicating information between remote monitoring sites and the widely deployed sensor nodes. Related challenges and issues in network architecture design and relevant protocols are also provided with classification. This is supported by a case study on implementing reliable monitoring of oil and gas pipeline installations. Network parameters like node-discovery, node-mobility, data security, link connectivity, data aggregation, information knowledge discovery and quality of service provisioning have been reviewed. PMID:25815444
Bluetooth telemetry system for a wearable electrocardiogram
NASA Astrophysics Data System (ADS)
Green, Ryan B.
The rise of wireless networks has led to a new market in medicine: remote patient monitoring. Practitioners now desire to monitor the health conditions of their patients after hospital release. With the large number of cardiac related deaths and this new demand in medicine being the motivation, this study developed a BluetoothRTM telemetry system for a wearable Electrocardiogram. This study also developed a compression t-shirt to hold the ECG and telemetry system. This device communicates the ECG signal of a patient to an Android device within the ISM frequency bands (2.4-2.48 GHz) where the data is displayed and stored in real time. This study is a stepping stone toward more portable heart monitoring that can communicate with the doctor in real time from remote locations.
Remote glucose monitoring in cAMP setting reduces the risk of prolonged nocturnal hypoglycemia.
DeSalvo, Daniel J; Keith-Hynes, Patrick; Peyser, Thomas; Place, Jérôme; Caswell, Kim; Wilson, Darrell M; Harris, Breanne; Clinton, Paula; Kovatchev, Boris; Buckingham, Bruce A
2014-01-01
This study tested the feasibility and effectiveness of remote continuous glucose monitoring (CGM) in a diabetes camp setting. Twenty campers (7-21 years old) with type 1 diabetes were enrolled at each of three camp sessions lasting 5-6 days. On alternating nights, 10 campers were randomized to usual wear of a Dexcom (San Diego, CA) G4™ PLATINUM CGM system, and 10 were randomized to remote monitoring with the Dexcom G4 PLATINUM communicating with the Diabetes Assistant, a cell phone platform, to allow wireless transmission of CGM values. Up to 15 individual graphs and sensor values could be displayed on a single remote monitor or portable tablet. An alarm was triggered for values <70 mg/dL, and treatment was given for meter-confirmed hypoglycemia. The primary end point was to decrease the duration of hypoglycemic episodes <50 mg/dL. There were 320 nights of CGM data and 197 hypoglycemic events. Of the remote monitoring alarms, 79% were true (meter reading of <70 mg/dL). With remote monitoring, 100% of alarms were responded to, whereas without remote monitoring only 54% of alarms were responded to. The median duration of hypoglycemic events <70 mg/dL was 35 min without remote monitoring and 30 min with remote monitoring (P=0.078). Remote monitoring significantly decreased prolonged hypoglycemic events, eliminating all events <50 mg/dL lasting longer than 30 min as well as all events <70 mg/dL lasting more than 2 h. Remote monitoring is feasible at diabetes camps and effective in reducing the risk of prolonged nocturnal hypoglycemia. This technology will facilitate forthcoming studies to evaluate the efficacy of automated closed-loop systems in the camp setting.
NASA Astrophysics Data System (ADS)
Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.
2015-12-01
Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.
NASA Astrophysics Data System (ADS)
Morgan, E. L.; Eagleson, K. W.; Hermann, R.; McCollough, N. D.
1981-05-01
Maintaining adequate water quality in a multipurpose drainage system becomes increasingly important as demands on resources become greater. Real-time water quality monitoring plays a crucial role in meeting this objective. In addition to remote automated physical monitoring, developments at the end of the 1970's allow simultaneous real-time measurements of fish breathing response to water quality changes. These advantages complement complex in-stream surveys typically carried out to evaluate the environmental quality of a system. Automated biosensing units having remote capabilities are designed to aid in the evaluation of subtle water quality changes contributing to undesirable conditions in a drainage basin. Using microprocessor-based monitors to measure fish breathing rates, the biosensing units are interfaced to a U.S. National Aeronautics and Space Administration (N.A.S.A.) remote data collection platform for National Oceanic and Atmospheric Administration (N.O.A.A.) GOES satellite retrieval and transmission of data. Simultaneously, multiparameter physical information is collected from site-specific locations and recovered in a similar manner. Real-time biological and physical data received at a data processing center are readily available for interpretation by resource managers. Management schemes incorporating real-time monitoring networks into on-going programs to simultaneously retrieve biological and physical data by satellite, radio and telephone cable give added advantages in maintaining water quality for multipurpose needs.
Compositing MODIS Terra and Aqua 250m daily surface reflectance data sets for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
Remote sensing based vegetation Indices have been proven valuable in providing a spatially complete view of crop’s vegetation condition, which also manifests the impact of the disastrous events such as massive flood and drought. VegScape, a web GIS application for crop vegetation condition monitorin...
A National Crop Progress Monitoring System Based on NASA Earth Science Results
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Zhang, B.; Deng, M.; Yang, Z.
2011-12-01
Crop progress is an important piece of information for food security and agricultural commodities. Timely monitoring and reporting are mandated for the operation of agricultural statistical agencies. Traditionally, the weekly reporting issued by the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) is based on reports from the knowledgeable state and county agricultural officials and farmers. The results are spatially coarse and subjective. In this project, a remote-sensing-supported crop progress monitoring system is being developed intensively using the data and derived products from NASA Earth Observing satellites. Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 product - MOD09 (Surface Reflectance) is used for deriving daily normalized vegetation index (NDVI), vegetation condition index (VCI), and mean vegetation condition index (MVCI). Ratio change to previous year and multiple year mean can be also produced on demand. The time-series vegetation condition indices are further combined with the NASS' remote-sensing-derived Cropland Data Layer (CDL) to estimate crop condition and progress crop by crop. To facilitate the operational requirement and increase the accessibility of data and products by different users, each component of the system has being developed and implemented following open specifications under the Web Service reference model of Open Geospatial Consortium Inc. Sensor observations and data are accessed through Web Coverage Service (WCS), Web Feature Service (WFS), or Sensor Observation Service (SOS) if available. Products are also served through such open-specification-compliant services. For rendering and presentation, Web Map Service (WMS) is used. A Web-service based system is set up and deployed at dss.csiss.gmu.edu/NDVIDownload. Further development will adopt crop growth models, feed the models with remotely sensed precipitation and soil moisture information, and incorporate the model results with vegetation-index time series for crop progress stage estimation.
Wearable Sensors for Remote Health Monitoring.
Majumder, Sumit; Mondal, Tapas; Deen, M Jamal
2017-01-12
Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.
Wearable Sensors for Remote Health Monitoring
Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal
2017-01-01
Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085
Vashist, Sandeep Kumar; Schneider, E. Marion; Luong, John H.T.
2014-01-01
Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management. PMID:26852680
Vashist, Sandeep Kumar; Schneider, E Marion; Luong, John H T
2014-08-18
Smartphone-based devices and applications (SBDAs) with cost effectiveness and remote sensing are the most promising and effective means of delivering mobile healthcare (mHealthcare). Several SBDAs have been commercialized for the personalized monitoring and/or management of basic physiological parameters, such as blood pressure, weight, body analysis, pulse rate, electrocardiograph, blood glucose, blood glucose saturation, sleeping and physical activity. With advances in Bluetooth technology, software, cloud computing and remote sensing, SBDAs provide real-time on-site analysis and telemedicine opportunities in remote areas. This scenario is of utmost importance for developing countries, where the number of smartphone users is about 70% of 6.8 billion cell phone subscribers worldwide with limited access to basic healthcare service. The technology platform facilitates patient-doctor communication and the patients to effectively manage and keep track of their medical conditions. Besides tremendous healthcare cost savings, SBDAs are very critical for the monitoring and effective management of emerging epidemics and food contamination outbreaks. The next decade will witness pioneering advances and increasing applications of SBDAs in this exponentially growing field of mHealthcare. This article provides a critical review of commercial SBDAs that are being widely used for personalized healthcare monitoring and management.
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-01-01
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system. PMID:28245623
A Wireless Sensor System for Real-Time Monitoring and Fault Detection of Motor Arrays.
Medina-García, Jonathan; Sánchez-Rodríguez, Trinidad; Galán, Juan Antonio Gómez; Delgado, Aránzazu; Gómez-Bravo, Fernando; Jiménez, Raúl
2017-02-25
This paper presents a wireless fault detection system for industrial motors that combines vibration, motor current and temperature analysis, thus improving the detection of mechanical faults. The design also considers the time of detection and further possible actions, which are also important for the early detection of possible malfunctions, and thus for avoiding irreversible damage to the motor. The remote motor condition monitoring is implemented through a wireless sensor network (WSN) based on the IEEE 802.15.4 standard. The deployed network uses the beacon-enabled mode to synchronize several sensor nodes with the coordinator node, and the guaranteed time slot mechanism provides data monitoring with a predetermined latency. A graphic user interface offers remote access to motor conditions and real-time monitoring of several parameters. The developed wireless sensor node exhibits very low power consumption since it has been optimized both in terms of hardware and software. The result is a low cost, highly reliable and compact design, achieving a high degree of autonomy of more than two years with just one 3.3 V/2600 mAh battery. Laboratory and field tests confirm the feasibility of the wireless system.
MONITORING AIR POLLUTION TRASPORT
The Advancements in the remote sensing of environmental conditions over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems (GEOSS) 10- Year Implementation Plan.
MONITORING AIR POLLUTION TRANSPORT
The Advancements in the remote sensing of environmental conditions over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan.
Highly survivable bed pressure mat remote patient monitoring system for mHealth.
Joshi, Vilas; Holtzman, Megan; Arcelus, Amaya; Goubran, Rafik; Knoefel, Frank
2012-01-01
The high speed mobile networks like 4G and beyond are making a ubiquitous remote patient monitoring (RPM) system using multiple sensors and wireless sensor networks a realistic possibility. The high speed wireless RPM system will be an integral part of the mobile health (mHealth) paradigm reducing cost and providing better service to the patients. While the high speed wireless RPM system will allow clinicians to monitor various chronic and acute medical conditions, the reliability of such system will depend on the network Quality of Service (QoS). The RPM system needs to be resilient to temporary reduced network QoS. This paper presents a highly survivable bed pressure mat RPM system design using an adaptive information content management methodology for the monitored sensor data. The proposed design improves the resiliency of the RPM system under adverse network conditions like congestion and/or temporary loss of connectivity. It also shows how the proposed RPM system can reduce the information rate and correspondingly reduce the data transfer rate by a factor of 5.5 and 144 to address temporary network congestion. The RPM system data rate reduction results in a lower specificity and sensitivity for the features being monitored but increases the survivability of the system from 1 second to 2.4 minutes making it highly robust.
Masterson Creber, Ruth M; Hickey, Kathleen T; Maurer, Mathew S
2016-10-01
Older adults with heart failure have multiple chronic conditions and a large number and range of symptoms. A fundamental component of heart failure self-care management is regular symptom monitoring. Symptom monitoring can be facilitated by cost-effective, easily accessible technologies that are integrated into patients' lives. Technologies that are tailored to older adults by incorporating gerontological design principles are called gerontechnologies. Gerontechnology is an interdisciplinary academic and professional field that combines gerontology and technology with the goals of improving prevention, care, and enhancing the quality of life for older adults. The purpose of this article is to discuss the role of gerontechnologies, specifically the use of mobile applications available on smartphones and tablets as well as remote monitoring systems, for outpatient disease management among older adults with heart failure. While largely unproven, these rapidly developing technologies have great potential to improve outcomes among older persons.
Remote Monitoring to Reduce Heart Failure Readmissions.
Emani, Sitaramesh
2017-02-01
Rehospitalization for heart failure remains a challenge in the treatment of affected patients. The ability to remotely monitor patients for worsening heart failure may provide an avenue through which therapeutic interventions can be made to prevent a rehospitalization. Available data on remote monitoring to reduce heart failure rehospitalizations are reviewed within. Strategies to reduce readmissions include clinical telemonitoring, bioimpedance changes, biomarkers, and remote hemodynamic monitoring. Telemonitoring is readily available, but has low sensitivity and adherence. No data exist to demonstrate the efficacy of this strategy in reducing admissions. Bioimpedance offers improved sensitivity compared to telemonitoring, but has not demonstrated an ability to reduce hospitalizations and is currently limited to those patients who have separate indications for an implantable device. Biomarker levels have shown variable results in the ability to reduce hospitalizations and remain without definitive proof supporting their utilization. Remote hemodynamic monitoring has shown the strongest ability to reduce heart failure readmissions and is currently approved for this purpose. However, remote hemodynamic monitoring requires an invasive procedure and may not be cost-effective. All currently available strategies to reduce hospitalizations with remote monitoring have drawbacks and challenges. Remote hemodynamic monitoring is currently the most efficacious based on data, but is not without its own imperfections.
Study to design and develop remote manipulator system
NASA Technical Reports Server (NTRS)
Hill, J. W.; Sword, A. J.
1973-01-01
Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.
Pacemaker remote monitoring in the pediatric population: is it a real solution?
Leoni, Loira; Padalino, Massimo; Biffanti, Roberta; Ferretto, Sonia; Vettor, Giulia; Corrado, Domenico; Stellin, Giovanni; Milanesi, Ornella; Iliceto, Sabino
2015-05-01
Clinical utility of remote monitoring of implantable cardiac devices has been previously demonstrated in several trials in the adult population. The aim of this study was to assess the clinical utility of remote monitoring in a pediatric population undergoing pacemakers implantation. The study population included 73 consecutive pediatric patients who received an implantable pacemaker. The remote device check was programmed for every 3 months and all patients had a yearly out-patient visit. Data on device-related events, hospitalization, and other clinical information were collected during remote checks and out-patient visits. During a mean follow-up of 18 ± 10 months, 470 remote transmissions were collected and analyzed. Two deaths were reported. Eight transmissions (1.7%) triggered an urgent out-patient visit. Twenty percent of transmissions reported evidence of significant clinical or technical events. All young patients and their families were very satisfied when using remote monitoring to replace out-patient visits. The ease in use, together with satisfaction and acceptance of remote monitoring in pediatric patients, brought very good results. The remote management of our pediatric population was safe and remote monitoring adequately replaced the periodic out-patient device checks without compromising patient safety. ©2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Harriss, R. C.
1980-01-01
Application of remote sensing techniques to the solution of geochemical problems is considered with emphasis on the 'carbon-cycle'. The problem of carbon dioxide sinks and the areal extent of coral reefs are treated. In order to assess the problems cited it is suggested that remote sensing techniques be utilized to: (1)monitor globally the carbonate and bicarbonate concentrations in surface waters of the world ocean; (2)monitor the freshwater and oceanic biomass and associated dissolved organic carbon; (3) inventory the coral reef areas and types and the associated oceanographic climatic conditions; and (4)measure the heavy metal fluxes from forested and vegetated areas, from volcanos, from different types of crustal rocks, from soils, and from sea surfaces.
Fault detection and diagnosis for gas turbines based on a kernelized information entropy model.
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms.
Fault Detection and Diagnosis for Gas Turbines Based on a Kernelized Information Entropy Model
Wang, Weiying; Xu, Zhiqiang; Tang, Rui; Li, Shuying; Wu, Wei
2014-01-01
Gas turbines are considered as one kind of the most important devices in power engineering and have been widely used in power generation, airplanes, and naval ships and also in oil drilling platforms. However, they are monitored without man on duty in the most cases. It is highly desirable to develop techniques and systems to remotely monitor their conditions and analyze their faults. In this work, we introduce a remote system for online condition monitoring and fault diagnosis of gas turbine on offshore oil well drilling platforms based on a kernelized information entropy model. Shannon information entropy is generalized for measuring the uniformity of exhaust temperatures, which reflect the overall states of the gas paths of gas turbine. In addition, we also extend the entropy to compute the information quantity of features in kernel spaces, which help to select the informative features for a certain recognition task. Finally, we introduce the information entropy based decision tree algorithm to extract rules from fault samples. The experiments on some real-world data show the effectiveness of the proposed algorithms. PMID:25258726
Vacuum-Gauge Connection For Shipping Container
NASA Technical Reports Server (NTRS)
Henry, Robert H.
1990-01-01
External connector enables measurement of vacuum in stored part. Remote-readout connector added to shipping container and connected to thermo-couple vacuum gauge in vacuum-insulated cryogenic line packed in container. Enables monitoring of condition of vacuum without opening container.
Millimeter wave sensor for monitoring effluents
Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.
1995-01-01
A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.
USDA-ARS?s Scientific Manuscript database
Drought has significant impacts over broad spatial and temporal scales, and information about the timing and extent of such conditions is of critical importance to many end users in the agricultural and water resource management communities. The ability to accurately monitor effects on crops, and p...
Northwest Forest Plan—the first 20 years (1994–2013): watershed condition status and trends
Stephanie A. Miller; Sean N. Gordon; Peter Eldred; Ronald M. Beloin; Steve Wilcox; Mark Raggon; Heidi Andersen; Ariel. Muldoon
2017-01-01
The Aquatic and Riparian Effectiveness Monitoring Program focuses on assessing the degree to which federal land management under the aquatic conservation strategy (ACS) of the Northwest Forest Plan (NWFP) has been effective in maintaining and improving watershed conditions. We used stream sampling data and upslope/riparian geographic information system (GIS) and remote...
NASA Astrophysics Data System (ADS)
Coburn, C. A.; Qin, Y.; Zhang, J.; Staenz, K.
2015-12-01
Food security is one of the most pressing issues facing humankind. Recent estimates predict that over one billion people don't have enough food to meet their basic nutritional needs. The ability of remote sensing tools to monitor and model crop production and predict crop yield is essential for providing governments and farmers with vital information to ensure food security. Google Earth Engine (GEE) is a cloud computing platform, which integrates storage and processing algorithms for massive remotely sensed imagery and vector data sets. By providing the capabilities of storing and analyzing the data sets, it provides an ideal platform for the development of advanced analytic tools for extracting key variables used in regional and national food security systems. With the high performance computing and storing capabilities of GEE, a cloud-computing based system for near real-time crop land monitoring was developed using multi-source remotely sensed data over large areas. The system is able to process and visualize the MODIS time series NDVI profile in conjunction with Landsat 8 image segmentation for crop monitoring. With multi-temporal Landsat 8 imagery, the crop fields are extracted using the image segmentation algorithm developed by Baatz et al.[1]. The MODIS time series NDVI data are modeled by TIMESAT [2], a software package developed for analyzing time series of satellite data. The seasonality of MODIS time series data, for example, the start date of the growing season, length of growing season, and NDVI peak at a field-level are obtained for evaluating the crop-growth conditions. The system fuses MODIS time series NDVI data and Landsat 8 imagery to provide information of near real-time crop-growth conditions through the visualization of MODIS NDVI time series and comparison of multi-year NDVI profiles. Stakeholders, i.e., farmers and government officers, are able to obtain crop-growth information at crop-field level online. This unique utilization of GEE in combination with advanced analytic and extraction techniques provides a vital remote sensing tool for decision makers and scientists with a high-degree of flexibility to adapt to different uses.
2016-02-01
15 Figure 16.Temperature sensor wires routed into galvanized steel piping...The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed...or result in severe corrosion of steel HDS components, and must be corrected immediately to avoid costly collateral impacts on energy costs or HDS
Monitoring the spatial and temporal evolution of slope instability with Digital Image Correlation
NASA Astrophysics Data System (ADS)
Manconi, Andrea; Glueer, Franziska; Loew, Simon
2017-04-01
The identification and monitoring of ground deformation is important for an appropriate analysis and interpretation of unstable slopes. Displacements are usually monitored with in-situ techniques (e.g., extensometers, inclinometers, geodetic leveling, tachymeters and D-GPS), and/or active remote sensing methods (e.g., LiDAR and radar interferometry). In particular situations, however, the choice of the appropriate monitoring system is constrained by site-specific conditions. Slope areas can be very remote and/or affected by rapid surface changes, thus hardly accessible, often unsafe, for field installations. In many cases the use of remote sensing approaches might be also hindered because of unsuitable acquisition geometries, poor spatial resolution and revisit times, and/or high costs. The increasing availability of digital imagery acquired from terrestrial photo and video cameras allows us nowadays for an additional source of data. The latter can be exploited to visually identify changes of the scene occurring over time, but also to quantify the evolution of surface displacements. Image processing analyses, such as Digital Image Correlation (known also as pixel-offset or feature-tracking), have demonstrated to provide a suitable alternative to detect and monitor surface deformation at high spatial and temporal resolutions. However, a number of intrinsic limitations have to be considered when dealing with optical imagery acquisition and processing, including the effects of light conditions, shadowing, and/or meteorological variables. Here we propose an algorithm to automatically select and process images acquired from time-lapse cameras. We aim at maximizing the results obtainable from large datasets of digital images acquired with different light and meteorological conditions, and at retrieving accurate information on the evolution of surface deformation. We show a successful example of application of our approach in the Swiss Alps, more specifically in the Great Aletsch area, where slope instability was recently reactivated due to the progressive glacier retreat. At this location, time-lapse cameras have been installed during the last two years, ranging from low-cost and low-resolution webcams to more expensive high-resolution reflex cameras. Our results confirm that time-lapse cameras provide quantitative and accurate measurements of surface deformation evolution over space and time, especially in situations when other monitoring instruments fail.
The Use of Remote Sensing Data for Modeling Air Quality in the Cities
NASA Astrophysics Data System (ADS)
Putrenko, V. V.; Pashynska, N. M.
2017-12-01
Monitoring of environmental pollution in the cities by the methods of remote sensing of the Earth is actual area of research for sustainable development. Ukraine has a poorly developed network of monitoring stations for air quality, the technical condition of which is deteriorating in recent years. Therefore, the possibility of obtaining data about the condition of air by remote sensing methods is of great importance. The paper considers the possibility of using the data about condition of atmosphere of the project AERONET to assess the air quality in Ukraine. The main pollution indicators were used data on fine particulate matter (PM2.5) and nitrogen dioxide (NO2) content in the atmosphere. The main indicator of air quality in Ukraine is the air pollution index (API). We have built regression models the relationship between indicators of NO2, which are measured by remote sensing methods and ground-based measurements of indicators. There have also been built regression models, the relationship between the data given to the land of NO2 and API. To simulate the relationship between the API and PM2.5 were used geographically weighted regression model, which allows to take into account the territorial differentiation between these indicators. As a result, the maps that show the distribution of the main types of pollution in the territory of Ukraine, were constructed. PM2.5 data modeling is complicated with using existing indicators, which requires a separate organization observation network for PM2.5 content in the atmosphere for sustainable development in cities of Ukraine.
Remote patient monitoring in chronic heart failure.
Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H
2013-01-01
Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.
Downey, C L; Brown, J M; Jayne, D G; Randell, R
2018-06-01
Vital signs monitoring is used to identify deteriorating patients in hospital. The most common tool for vital signs monitoring is an early warning score, although emerging technologies allow for remote, continuous patient monitoring. A number of reviews have examined the impact of continuous monitoring on patient outcomes, but little is known about the patient experience. This study aims to discover what patients think of monitoring in hospital, with a particular emphasis on intermittent early warning scores versus remote continuous monitoring, in order to inform future implementations of continuous monitoring technology. Semi-structured interviews were undertaken with 12 surgical inpatients as part of a study testing a remote continuous monitoring device. All patients were monitored with both an early warning score and the new device. Interviews were audio-recorded, transcribed verbatim and analysed using thematic analysis. Patients can see the value in remote, continuous monitoring, particularly overnight. However, patients appreciate the face-to-face aspect of early warning score monitoring as it allows for reassurance, social interaction, and gives them further opportunity to ask questions about their medical care. Early warning score systems are widely used to facilitate detection of the deteriorating patient. Continuous monitoring technologies may provide added reassurance. However, patients value personal contact with their healthcare professionals and remote monitoring should not replace this. We suggest that remote monitoring is best introduced in a phased manner, and initially as an adjunct to usual care, with careful consideration of the patient experience throughout. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessing the use of remotely sensed measurements for characterizing rangeland condition
NASA Astrophysics Data System (ADS)
Folker, Geoffrey P.
There are over 233 million hectares (ha) of nonfederal grazing lands in the United States. Conventional field observation and sampling techniques are insufficient methods to monitor such large areas frequently enough to confidently quantify the biophysical state and assess rangeland condition over large geographic areas. In an attempt to enhance rangeland resource managers' abilities to monitor and assess these factors, remote sensing scientists and land resource managers have worked together to determine whether remotely sensed measurements can improve the ability to measure rangeland response to land management practices. The relationship between spectral reflectance patterns and plant species composition was investigated on six south-central Kansas ranches. Airborne multispectral color infrared images for 2002 through 2004 were collected at multiple times in the growing season over the study area. Concurrent with the image acquisition periods, ground cover estimates of plant species composition and biomass by growth form were collected. Correlation analysis was used to examine relationships among spectral and biophysical field measurements. Results indicate that heavily grazed sites exhibited the highest spectral vegetation index values. This was attributed to increases in low forage quality broadleaf forbs such as annual ragweed (Ambrosia artemisiifolia L.). Although higher vegetation index values have a positive correlation with overall above ground primary productivity, species composition may be the best indicator of healthy rangeland condition. A Weediness Index, which was found to be correlated with range condition, was also strongly linked to spectral reflectance patterns recorded in the airborne imagery.
NASA Astrophysics Data System (ADS)
Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.
2016-02-01
Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.
Kim, Yoon-Nyun; Shin, Dong Gu; Park, Sungha; Lee, Chang Hee
2015-07-01
The effectiveness of remote patient monitoring and physician care for the treatment of hypertension has not been demonstrated in a randomized clinical trial. The objective of this study was to evaluate the effectiveness of remote patient monitoring with or without remote physician care in reducing office blood pressure in patients with hypertension. A total of 374 hypertensive patients over 20 years of age were randomized into the following three groups: group (1) control, the patients received usual clinical care with home BP monitoring; group (2) the patients were remotely monitored and received office follow-up; and group (3) the patients received remote monitoring without physician office care using the remote monitoring device. For each group, in-office follow-up care was scheduled every 8 weeks for 24 weeks. The primary end point was the difference in sitting SBP at the 24-week follow-up. No difference between the three groups was observed in the primary end point (adjusted mean sitting SBP was as follows: group 1: -8.9±15.5 mm Hg, group 2: -11.3±15.9 mm Hg, group 3: -11.6±19.8 mm Hg, (NS). Significant differences in achieving the target BP at the 24th week of follow-up were observed between groups 1 and 2. The subjects over 55-years old had a significant decrease in the adjusted mean sitting SBP in groups 2 and 3 compared with that of the control group. Remote monitoring alone or remote monitoring coupled with remote physician care was as efficacious as the usual office care for reducing blood pressure with comparable safety and efficacy in hypertensive patients.
Software design of a remote real-time ECG monitoring system
NASA Astrophysics Data System (ADS)
Yu, Chengbo; Tao, Hongyan
2005-12-01
Heart disease is one of the main diseases that threaten the health and lives of human beings. At present, the normal remote ECG monitoring system has the disadvantages of a short testing distance and limitation of monitoring lines. Because of accident and paroxysmal disease, ECG monitoring has extended from the hospital to the family. Therefore, remote ECG monitoring through the Internet has the actual value and significance. The principle and design method of software of the remote dynamic ECG monitor was presented and discussed. The monitoring software is programmed with Delphi software based on client-sever interactive mode. The application program of the system, which makes use of multithreading technology, is shown to perform in an excellent manner. The program includes remote link users and ECG processing, i.e. ECG data's receiving, real-time displaying, recording and replaying. The system can connect many clients simultaneously and perform real-time monitoring to patients.
NASA Astrophysics Data System (ADS)
McDonald, K. C.; Kimball, J. S.
2004-12-01
The transition of the landscape between predominantly frozen and non-frozen conditions in seasonally frozen environments impacts climate, hydrological, ecological and biogeochemical processes profoundly. Satellite microwave remote sensing is uniquely capable of detecting and monitoring a range of related biophysical processes associated with the measurement of landscape freeze/thaw status. We present the development, physical basis, current techniques and selected hydrological applications of satellite-borne microwave remote sensing of landscape freeze/thaw states for the terrestrial cryosphere. Major landscape hydrological processes embracing the remotely-sensed freeze/thaw signal include timing and spatial dynamics of seasonal snowmelt and associated soil thaw, runoff generation and flooding, ice breakup in large rivers and lakes, and timing and length of vegetation growing seasons and associated productivity and trace gas exchange. Employing both active and passive microwave sensors, we apply a selection of temporal change classification algorithms to examine a variety of hydrologic processes. We investigate contemporaneous and retrospective applications of the QuikSCAT scatterometer, and the SSM/I and SMMR radiometers to this end. Results illustrate the strong correspondence between regional thawing, seasonal ice break up for rivers, and the springtime pulse in river flow. We present the physical principles of microwave sensitivity to landscape freeze/thaw state, recent progress in applying these principles toward satellite remote sensing of freeze/thaw processes over broad regions, and potential for future global monitoring of this significant phenomenon of the global cryosphere. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and at the University of Montana, Missoula, under contract to the National Aeronautics and Space Administration.
Zhang, Chunhua; Walters, Dan; Kovacs, John M.
2014-01-01
With the growth of the low altitude remote sensing (LARS) industry in recent years, their practical application in precision agriculture seems all the more possible. However, only a few scientists have reported using LARS to monitor crop conditions. Moreover, there have been concerns regarding the feasibility of such systems for producers given the issues related to the post-processing of images, technical expertise, and timely delivery of information. The purpose of this study is to showcase actual requests by farmers to monitor crop conditions in their fields using an unmanned aerial vehicle (UAV). Working in collaboration with farmers in northeastern Ontario, we use optical and near-infrared imagery to monitor fertilizer trials, conduct crop scouting and map field tile drainage. We demonstrate that LARS imagery has many practical applications. However, several obstacles remain, including the costs associated with both the LARS system and the image processing software, the extent of professional training required to operate the LARS and to process the imagery, and the influence from local weather conditions (e.g. clouds, wind) on image acquisition all need to be considered. Consequently, at present a feasible solution for producers might be the use of LARS service provided by private consultants or in collaboration with LARS scientific research teams. PMID:25386696
Zhang, Chunhua; Walters, Dan; Kovacs, John M
2014-01-01
With the growth of the low altitude remote sensing (LARS) industry in recent years, their practical application in precision agriculture seems all the more possible. However, only a few scientists have reported using LARS to monitor crop conditions. Moreover, there have been concerns regarding the feasibility of such systems for producers given the issues related to the post-processing of images, technical expertise, and timely delivery of information. The purpose of this study is to showcase actual requests by farmers to monitor crop conditions in their fields using an unmanned aerial vehicle (UAV). Working in collaboration with farmers in northeastern Ontario, we use optical and near-infrared imagery to monitor fertilizer trials, conduct crop scouting and map field tile drainage. We demonstrate that LARS imagery has many practical applications. However, several obstacles remain, including the costs associated with both the LARS system and the image processing software, the extent of professional training required to operate the LARS and to process the imagery, and the influence from local weather conditions (e.g. clouds, wind) on image acquisition all need to be considered. Consequently, at present a feasible solution for producers might be the use of LARS service provided by private consultants or in collaboration with LARS scientific research teams.
Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.
Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M
2016-01-01
To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.
Seto, Emily; Leonard, Kevin J; Masino, Caterina; Cafazzo, Joseph A; Barnsley, Jan; Ross, Heather J
2010-11-29
Mobile phone-based remote patient monitoring systems have been proposed for heart failure management because they are relatively inexpensive and enable patients to be monitored anywhere. However, little is known about whether patients and their health care providers are willing and able to use this technology. The objective of our study was to assess the attitudes of heart failure patients and their health care providers from a heart function clinic in a large urban teaching hospital toward the use of mobile phone-based remote monitoring. A questionnaire regarding attitudes toward home monitoring and technology was administered to 100 heart failure patients (94/100 returned a completed questionnaire). Semi-structured interviews were also conducted with 20 heart failure patients and 16 clinicians to determine the perceived benefits and barriers to using mobile phone-based remote monitoring, as well as their willingness and ability to use the technology. The survey results indicated that the patients were very comfortable using mobile phones (mean rating 4.5, SD 0.6, on a five-point Likert scale), even more so than with using computers (mean 4.1, SD 1.1). The difference in comfort level between mobile phones and computers was statistically significant (P< .001). Patients were also confident in using mobile phones to view health information (mean 4.4, SD 0.9). Patients and clinicians were willing to use the system as long as several conditions were met, including providing a system that was easy to use with clear tangible benefits, maintaining good patient-provider communication, and not increasing clinical workload. Clinicians cited several barriers to implementation of such a system, including lack of remuneration for telephone interactions with patients and medicolegal implications. Patients and clinicians want to use mobile phone-based remote monitoring and believe that they would be able to use the technology. However, they have several reservations, such as potential increased clinical workload, medicolegal issues, and difficulty of use for some patients due to lack of visual acuity or manual dexterity.
Technology platforms for remote monitoring of vital signs in the new era of telemedicine.
Zhao, Fang; Li, Meng; Tsien, Joe Z
2015-07-01
Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
Monitoring the battery status for photovoltaic systems
NASA Astrophysics Data System (ADS)
Kim, Myungsoo; Hwang, Euijin
Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.
A monitoring system for vegetable greenhouses based on a wireless sensor network.
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring.
NASA Astrophysics Data System (ADS)
Chen, Y.; Sun, Y.; You, L.; Liu, Y.
2017-12-01
The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.
Jan U.H. Eitel; Lee A. Vierling; Marcy E. Litvak; Dan S. Long; Urs Schulthess; Alan A. Ager; Dan J. Krofcheck; Leo Stoscheck
2011-01-01
Multiple plant stresses can affect the health, esthetic condition, and timber harvest value of conifer forests. To monitor spatial and temporal dynamic forest stress conditions, timely, accurate, and cost-effective information is needed that could be provided by remote sensing. Recently, satellite imagery has become available via the RapidEye satellite constellation to...
MONITORING AND UNDERSTANDING CONDITIONS AND TRENDS IN US ESTUARIES
Estuarine systems are complex and dynamic, being responsive to changes in the atmosphere, on land, and at their seaward boundary. Talks in this session describe how changes can be documented with modern quality-assured measurements including: synoptic measurements (e.g. remote se...
An Updated Decision Support Interface: A Tool for Remote Monitoring of Crop Growing Conditions
NASA Astrophysics Data System (ADS)
Husak, G. J.; Budde, M. E.; Rowland, J.; Verdin, J. P.; Funk, C. C.; Landsfeld, M. F.
2014-12-01
Remote sensing of agroclimatological variables to monitor food production conditions is a critical component of the Famine Early Warning Systems Network portfolio of tools for assessing food security in the developing world. The Decision Support Interface (DSI) seeks to integrate a number of remotely sensed and modeled variables to create a single, simplified portal for analysis of crop growing conditions. The DSI has been reformulated to incorporate more variables and give the user more freedom in exploring the available data. This refinement seeks to transition the DSI from a "first glance" agroclimatic indicator to one better suited for the differentiation of drought events. The DSI performs analysis of variables over primary agricultural zones at the first sub-national administrative level. It uses the spatially averaged rainfall, normalized difference vegetation index (NDVI), water requirement satisfaction index (WRSI), and actual evapotranspiration (ETa) to identify potential hazards to food security. Presenting this information in a web-based client gives food security analysts and decision makers a lightweight portal for information on crop growing conditions in the region. The crop zones used for the aggregation contain timing information which is critical to the DSI presentation. Rainfall and ETa are accumulated from different points in the crop phenology to identify season-long deficits in rainfall or transpiration that adversely affect the crop-growing conditions. Furthermore, the NDVI and WRSI serve as their own seasonal accumulated measures of growing conditions by capturing vegetation vigor or actual evapotranspiration deficits. The DSI is currently active for major growing regions of sub-Saharan Africa, with intention of expanding to other areas over the coming years.
Remote health monitoring of heart failure with data mining via CART method on HRV features.
Pecchia, Leandro; Melillo, Paolo; Bracale, Marcello
2011-03-01
Disease management programs, which use no advanced information and computer technology, are as effective as telemedicine but more efficient because less costly. We proposed a platform to enhance effectiveness and efficiency of home monitoring using data mining for early detection of any worsening in patient's condition. These worsenings could require more complex and expensive care if not recognized. In this letter, we briefly describe the remote health monitoring platform we designed and realized, which supports heart failure (HF) severity assessment offering functions of data mining based on the classification and regression tree method. The system developed achieved accuracy and a precision of 96.39% and 100.00% in detecting HF and of 79.31% and 82.35% in distinguishing severe versus mild HF, respectively. These preliminary results were achieved on public databases of signals to improve their reproducibility. Clinical trials involving local patients are still running and will require longer experimentation.
Russell N. Faux; John M. Buffington; M. German Whitley; Steve H. Lanigan; Brett B. Roper
2009-01-01
Aquatic habitat monitoring is being conducted by numerous organizations in many parts of the Pacific Northwest to document physical and biological conditions of stream reaches as part of legal- and policy-mandated environmental assessments. Remote sensing using discrete-return, near-infrared, airborne LiDAR (Light Detection and Ranging) and high-resolution digital...
Monitoring changes in Greater Yellowstone Lake water quality following the 1988 wildfires
NASA Technical Reports Server (NTRS)
Lathrop, Richard G., Jr.; Vande Castle, John D.; Brass, James A.
1994-01-01
The fires that burned the Greater Yellowstone Area (GYA) during the summer of 1988 were the largest ever recorded for the region. Wildfire can have profound indirect effects on associated aquatic ecosystems by increased nutrient loading, sediment, erosion, and runoff. Satellite remote sensing and water quality sampling were used to compare pre- versus post-fire conditions in the GYA's large oliotrophic (high transparency, low productivity) lakes. Inputs of suspended sediment to Jackson Lake appear to have increased. Yellowstone Lake has not shown any discernable shift in water quality. The insights gained separately from the Landsat Thematic and NOAA Advanced Very High Resolution Radiometer (AVHRR) remote sensing systems, along with conventional in-situ sampling, can be combined into a useful water quality monitoring tool.
Impact of Shutting Down En Route Primary Radars within CONUS Interior
1993-06-01
Remote Control Interface Unit ( RCIU ) RMS software for the primary radar will be deleted. Any dependency of the secondary radar on the primary radar data...Generators RCIU Remote Control and Interface Unit RMM Remote Monitoring and Maintenance RMMS Remote Maintenance Monitoring System RMS Remote Maintenance
Liu, Anlin; Li, Xingmin; He, Yanbo; Deng, Fengdong
2004-02-01
Based on the principle of energy balance, the method for calculating latent evaporation was simplified, and hence, the construction of the drought remote sensing monitoring model of crop water shortage index was also simplified. Since the modified model involved fewer parameters and reduced computing times, it was more suitable for the operation running in the routine services. After collecting the concerned meteorological elements and the NOAA/AVHRR image data, the new model was applied to monitor the spring drought in Guanzhong, Shanxi Province. The results showed that the monitoring results from the new model, which also took more considerations of the effects of the ground coverage conditions and meteorological elements such as wind speed and the water pressure, were much better than the results from the model of vegetation water supply index. From the view of the computing times, service effects and monitoring results, the simplified crop water shortage index model was more suitable for practical use. In addition, the reasons of the abnormal results of CWSI > 1 in some regions in the case studies were also discussed in this paper.
Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review
Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.
2016-01-01
Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611
NASA Astrophysics Data System (ADS)
Lebed, L.; Qi, J.; Heilman, P.
2012-06-01
The 187 million hectares of pasturelands in Kazakhstan play a key role in the nation’s economy, as livestock production accounted for 54% of total agricultural production in 2010. However, more than half of these lands have been degraded as a result of unregulated grazing practices. Therefore, effective long term ecological monitoring of pasturelands in Kazakhstan is imperative to ensure sustainable pastureland management. As a case study in this research, we demonstrated how the ecological conditions could be assessed with remote sensing technologies and pastureland models. The example focuses on the southern Balkhash area with study sites on a foothill plain with Artemisia-ephemeral plants and a sandy plain with psammophilic vegetation in the Turan Desert. The assessment was based on remotely sensed imagery and meteorological data, a geobotanical archive and periodic ground sampling. The Pasture agrometeorological model was used to calculate biological, ecological and economic indicators to assess pastureland condition. The results showed that field surveys, meteorological observations, remote sensing and ecological models, such as Pasture, could be combined to effectively assess the ecological conditions of pasturelands and provide information about forage production that is critically important for balancing grazing and ecological conservation.
Hyperspectral remote sensing application for monitoring and preservation of plant ecosystems
NASA Astrophysics Data System (ADS)
Krezhova, Dora; Maneva, Svetla; Zdravev, Tomas; Petrov, Nikolay; Stoev, Antoniy
Remote sensing technologies have advanced significantly at last decade and have improved the capability to gather information about Earth’s resources and environment. They have many applications in Earth observation, such as mapping and updating land-use and cover, weather forecasting, biodiversity determination, etc. Hyperspectral remote sensing offers unique opportunities in the environmental monitoring and sustainable use of natural resources. Remote sensing sensors on space-based platforms, aircrafts, or on ground, are capable of providing detailed spectral, spatial and temporal information on terrestrial ecosystems. Ground-based sensors are used to record detailed information about the land surface and to create a data base for better characterizing the objects which are being imaged by the other sensors. In this paper some applications of two hyperspectral remote sensing techniques, leaf reflectance and chlorophyll fluorescence, for monitoring and assessment of the effects of adverse environmental conditions on plant ecosystems are presented. The effect of stress factors such as enhanced UV-radiation, acid rain, salinity, viral infections applied to some young plants (potato, pea, tobacco) and trees (plums, apples, paulownia) as well as of some growth regulators were investigated. Hyperspectral reflectance and fluorescence data were collected by means of a portable fiber-optics spectrometer in the visible and near infrared spectral ranges (450-850 nm and 600-900 nm), respectively. The differences between the reflectance data of healthy (control) and injured (stressed) plants were assessed by means of statistical (Student’s t-criterion), first derivative, and cluster analysis and calculation of some vegetation indices in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm). Fluorescence spectra were analyzed at five characteristic wavelengths located at the maximums of the emitted radiation and at the forefronts and rear slopes. The strong relationship, which was found between the results from the two remote sensing techniques and some biochemical and serological analyses (stress markers, DAS-ELISA test), indicates the importance of hyperspectral reflectance and fluorescence techniques for conducting, easily and without damage, rapid health condition assessments of vegetation. This study fills in the existed spectral data base and exemplifies the benefits of integrating remote sensing, Earth observation, plant physiology, ecology, and conducting of interdisciplinary investigations of terrestrial ecosystems.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2011 CFR
2011-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2013 CFR
2013-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2012 CFR
2012-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
14 CFR 171.259 - Performance requirements: General.
Code of Federal Regulations, 2014 CFR
2014-01-01
... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...
[Technological advances and hospital-at-home care].
Tibaldi, Vittoria; Aimonino Ricauda, Nicoletta; Rocco, Maurizio; Bertone, Paola; Fanton, Giordano; Isaia, Giancarlo
2013-05-01
Advances in the miniaturization and portability of diagnostic technologies, information technologies, remote monitoring, and long-distance care have increased the viability of home-based care, even for patients with serious conditions. Telemedicine and teleradiology projects are active at the Hospital at Home Service of Torino.
Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico
2016-09-01
Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-09-18
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2015-12-01
Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.
Remote monitoring of fish in small streams: A unified approach using PIT tags
Zydlewski, G.B.; Horton, G.; Dubreuil, T.; Letcher, B.; Casey, S.; Zydlewski, Joseph D.
2006-01-01
Accurate assessments of fish populations are often limited by re-observation or recapture events. Since the early 1990s, passive integrated transponders (PIT tags) have been used to understand the biology of many fish species. Until recently, PIT applications in small streams have been limited to physical recapture events. To maximize recapture probability, we constructed PIT antenna arrays in small streams to remotely detect individual fish. Experiences from two different laboratories (three case studies) allowed us to develop a unified approach to applying PIT technology for enhancing data assessments. Information on equipment, its installation, tag considerations, and array construction is provided. Theoretical and practical definitions are introduced to standardize metrics for assessing detection efficiency. We demonstrate how certain conditions (stream discharge, vibration, and ambient radio frequency noise) affect the detection efficiency and suggest that by monitoring these conditions, expectations of efficiency can be modified. We emphasize the importance of consistently estimating detection efficiency for fisheries applications.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo
2010-01-01
Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
Development of Decision Support System for Remote Monitoring of PIP Corn
The EPA is developing a multi-level approach that utilizes satellite and airborne remote sensing to locate and monitor genetically modified corn in the agricultural landscape and pest infestation. The current status of the EPA IRM monitoring program based on remote sensed imager...
NASA Astrophysics Data System (ADS)
Ashe, Josie; Luscombe, David; Grand-Clement, Emilie; Gatis, Naomi; Anderson, Karen; Brazier, Richard
2014-05-01
The Exmoor/Dartmoor Mires Project is a peatland restoration programme focused on the geoclimatically marginal blanket bogs of South West England. In order to better understand the hydrological functioning of degraded/restored peatlands and support land management decisions across these uplands, this study is providing robust spatially distributed, hydrological monitoring at a high temporal resolution and in near real time. This paper presents the conceptual framework and experimental design for three hydrological monitoring arrays situated in headwater catchments dominated by eroding and drained blanket peatland. Over 250 individual measurements are collected at a high temporal resolution (15 minute time-step) via sensors integrated within a remote telemetry system. These are sent directly to a dedicated server over VHF and GPRS mobile networks. Sensors arrays are distributed at varying spatial scales throughout the studied catchments and record multiple parameters including: water table depth, channel flow, temperature, conductivity and pH measurements. A full suite of meteorological sensors and ten spatially distributed automatic flow based water samplers are also connected to the telemetry system and controlled remotely. This paper will highlight the challenges and solutions to obtaining these data in exceptionally remote and harsh field conditions over long (multi annual) temporal scales.
Remote Sensing for Food Security Monitoring in Afghanistan
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2008-01-01
Two decades of war have severely weakened Afghanistan s economy and infrastructure. Along with larger impacts on civil stability, education and health care, the current conflict in Afghanistan has resulted in widespread hunger and destitution. The 2005 National Risk and Vulnerability Assessment conducted by the United Nations found that 6.6 million Afghans do not meet their minimum food requirements and approximately 400,000 people each year are seriously affected by natural disasters, such as droughts, floods and extreme weather conditions. Given the poor security situation in the country, systems that will enable remote observations of variations of climate and their impacts on food production are critical for providing an appropriate and timely response. This chapter describes the remote sensing systems and food security analyses that the US Agency for International Development s Famine Early Warning Systems Network (FEWS NET) conducts in Afghanistan to monitor and provide information to international donors to ensure that adequate assistance is provided during this time of development and recovery.
Lee, H; Min, Y M; Park, C H; Park, Y H
2004-01-01
Many small-size wastewater treatment plants in Korea's rural communities are designed to remove organic and suspended matter only, and they generally show a large fluctuation in the influent loading compared to municipal wastewater treatment plants (MWWTPs). They also have no professional engineers stationed for efficient operation against mechanical breakdown. For those reasons, the wastewater treatment plants have low efficiency in treatment of nitrogen and phosphorus as well as organic matter. In order to solve those problems, this study developed an automatic control system and RMS (remote monitoring system), which can keep efficiency stable despite any change in the small plants' loading rates and are capable of removing nutrient materials such as nitrogen or phosphorus. According to the results of the Experimental SBR system of the automatic control program, complete nitrification was made under oxic conditions and denitrification occurred as NO3-N concentration decreased by 0.5 mg/l in anoxic conditions and excellent nitrogen removal efficiency was seen generally. The Experimental SBR system created "phosphate release and uptake" effectively and displayed phosphate-removing efficiency up to more than 80% as the concentration of effluent was kept low by 0.4 mg/l. RMS developed in this study transmits a plant's data and operation states to clients in remote locations in real-time interval through the Internet. Therefore, although you are in a remote location, it allows you to see if a plant is properly operated or there is any breakdown.
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
Home medical monitoring network based on embedded technology
NASA Astrophysics Data System (ADS)
Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang
2006-11-01
Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.
Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, adata center module and aWEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB). PMID:22319377
Integrating Social Networks and Remote Patient Monitoring Systems to Disseminate Notifications.
Ribeiro, Hugo A; Germano, Eliseu; Carvalho, Sergio T; Albuquerque, Eduardo S
2017-01-01
Healthcare workforce shortage can be compensated by using information and communication technologies. Remote patient monitoring systems allow us to identify and communicate complications and anomalies. Integrating social networking services into remote patient monitoring systems enables users to manage their relationships. User defined relationships may be used to disseminate healthcare related notifications. Hence this integration leads to quicker interventions and may reduce hospital readmission rate. As a proof of concept, a module was integrated to a remote patient monitoring platform. A mobile application to manage relationships and receive notifications was also developed.
Implantable cardiac devices: the utility of remote monitoring in a paediatric and CHD population.
Olen, Melissa M; Dechert-Crooks, Brynn
2017-01-01
Remote monitoring in the modern era has improved outcomes for patients with cardiac implantable electronic devices. There are many advantages to remote monitoring, including improved quality of life for patients, decreased need for in-office interrogation, and secondary reduced costs. Patient safety and enhanced survival remain the most significant benefit. With most of the published literature on this topic being focussed on adults, paediatric outcomes continue to be defined. This is a review of the benefits of remote monitoring in paediatrics and in patients with CHD.
Design and implementation of a wireless sensor network-based remote water-level monitoring system.
Li, Xiuhong; Cheng, Xiao; Gong, Peng; Yan, Ke
2011-01-01
The proposed remote water-level monitoring system (RWMS) consists of a field sensor module, a base station module, a data center module and a WEB releasing module. It has advantages in real time and synchronized remote control, expandability, and anti-jamming capabilities. The RWMS can realize real-time remote monitoring, providing early warning of events and protection of the safety of monitoring personnel under certain dangerous circumstances. This system has been successfully applied in Poyanghu Lake. The cost of the whole system is approximately 1,500 yuan (RMB).
Riley, William T; Keberlein, Pamela; Sorenson, Gigi; Mohler, Sailor; Tye, Blake; Ramirez, A Susana; Carroll, Mark
2015-03-01
Remote monitoring for heart failure (HF) has had mixed and heterogeneous effects across studies, necessitating further evaluation of remote monitoring systems within specific healthcare systems and their patient populations. "Care Beyond Walls and Wires," a wireless remote monitoring program to facilitate patient and care team co-management of HF patients, served by a rural regional medical center, provided the opportunity to evaluate the effects of this program on healthcare utilization. Fifty HF patients admitted to Flagstaff Medical Center (Flagstaff, AZ) participated in the project. Many of these patients lived in underserved and rural communities, including Native American reservations. Enrolled patients received mobile, broadband-enabled remote monitoring devices. A matched cohort was identified for comparison. HF patients enrolled in this program showed substantial and statistically significant reductions in healthcare utilization during the 6 months following enrollment, and these reductions were significantly greater compared with those who declined to participate but not when compared with a matched cohort. The findings from this project indicate that a remote HF monitoring program can be successfully implemented in a rural, underserved area. Reductions in healthcare utilization were observed among program participants, but reductions were also observed among a matched cohort, illustrating the need for rigorous assessment of the effects of HF remote monitoring programs in healthcare systems.
Marcantoni, Lina; Toselli, Tiziano; Urso, Giulia; Pratola, Claudio; Ceconi, Claudio; Bertini, Matteo
2015-11-01
In the last decade, there has been an exponential increase in cardioverter-defibrillator (ICD) implants. Remote monitoring systems, allow daily follow-ups of patients with ICD. To evaluate the impact of remote monitoring on the management of cardiovascular events associated with supraventricular and ventricular arrhythmias during long-term follow-up. A total of 207 patients undergoing ICD implantation/replacement were enrolled: 79 patients received remote monitoring systems and were followed up every 12 months, and 128 patients were followed up conventionally every 6 months. All patients were followed up and monitored for the occurrence of supraventricular and ventricular arrhythmia-related cardiovascular events (ICD shocks and/or hospitalizations). During a median follow-up of 842 days (interquartile range 476-1288 days), 32 (15.5%) patients experienced supraventricular arrhythmia-related events and 51 (24.6%) patients experienced ventricular arrhythmia-related events. Remote monitoring had a significant role in the reduction of supraventricular arrhythmia-related events, but it had no effect on ventricular arrhythmia-related events. In multivariable analysis, remote monitoring remained as an independent protective factor, reducing the risk of supraventricular arrhythmia-related events of 67% [hazard ratio, 0.33; 95% confidence interval (CI), 0.13-0.82; P = 0.017]. Remote monitoring systems improved outcomes in patients with supraventricular arrhythmias by reducing the risk of cardiovascular events, but no benefits were observed in patients with ventricular arrhythmias.
Monitoring cover crops using radar remote sensing in southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Shang, J.; Huang, X.; Liu, J.; Wang, J.
2016-12-01
Information on agricultural land surface conditions is important for developing best land management practices to maintain the overall health of the fields. The climate condition supports one harvest per year for the majority of the field crops in Canada, with a relative short growing season between May and September. During the non-growing-season months (October to the following April), many fields are traditionally left bare. In more recent year, there has been an increased interest in planting cover crops. Benefits of cover crops include boosting soil organic matters, preventing soil from erosion, retaining soil moisture, and reducing surface runoff hence protecting water quality. Optical remote sensing technology has been exploited for monitoring cover crops. However limitations inherent to optical sensors such as cloud interference and signal saturation (when leaf area index is above 2.5) impeded its operational application. Radar remote sensing on the other hand is not hindered by unfavorable weather conditions, and the signal continues to be sensitive to crop growth beyond the saturation point of optical sensors. It offers a viable means for capturing timely information on field surface conditions (with or without crop cover) or crop development status. This research investigated the potential of using multi-temporal RADARSAT-2 C-band synthetic aperture radar (SAR) data collected in 2015 over multiple fields of winter wheat, corn and soybean crops in southern Ontario, Canada, to retrieve information on the presence of cover crops and their growth status. Encouraging results have been obtained. This presentation will report the methodology developed and the results obtained.
Ono, Maki; Varma, Niraj
2017-05-01
Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.
NASA Astrophysics Data System (ADS)
Anderson, M. C.; Hain, C.; Mecikalski, J. R.; Kustas, W. P.
2009-12-01
Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status: soil surface temperature increases with decreasing water content, while moisture depletion in the plant root zone leads to stomatal closure, reduced transpiration, and elevated canopy temperatures that can be effectively detected from space. Empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonstrated utility in monitoring drought conditions over large areas, but may provide ambiguous results when vegetation growth is limited by energy (radiation, air temperature) rather than moisture. A more physically based interpretation of LST and NDVI and their relationship to sub-surface moisture conditions can be obtained with a surface energy balance model driven by TIR remote sensing. In this approach, moisture stress can be quantified in terms of the reduction of evapotranspiration (ET) from the potential rate (PET) expected under non-moisture limiting conditions. The Atmosphere-Land Exchange Inverse (ALEXI) model couples a two-source (soil+canopy) land-surface model with an atmospheric boundary layer model in time-differencing mode to routinely and robustly map fluxes across the U.S. continent at 5-10km resolution using thermal band imagery from the Geostationary Operational Environmental Satellites (GOES). Finer resolution flux maps can be generated through spatial disaggregation using TIR data from polar orbiting instruments such as Landsat (60-120m) and MODIS (1km). A derived Evaporative Stress Index (ESI), given by 1-ET/PET, shows good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be produced at significantly higher spatial resolution due to limited reliance on ground observations. Because the ESI does not use precipitation data as input, it provides an independent means for assessing standard meteorologically-based drought indicators, and may be more robust in regions with limited monitoring networks. In this study, monthly maps of ESI anomalies for 2000-2008 are compared to standard drought indices and to drought classifications in the U.S. Drought Monitor. The ESI shows better skill in ranking drought severity than do precipitation-based indices composited over comparable time intervals. The thermal remote sensing inputs to ALEXI detect drought conditions even under the dense forest cover along the East Coast of the United States, where microwave soil moisture retrievals typically lose sensitivity. On the other hand, microwave observations are not constrained by cloud cover and provide better temporal continuity, but typically at significantly lower spatial resolution. A merged TIR-microwave moisture anomaly product may have potential for optimizing both spatial and temporal coverage in continental-scale drought monitoring.
NASA Astrophysics Data System (ADS)
Schull, M. A.; Anderson, M. C.; Kustas, W.; Cammalleri, C.; Houborg, R.
2012-12-01
A light-use-efficiency (LUE) based model of canopy resistance has been embedded into a thermal-based Two-Source Energy Balance (TSEB) model to facilitate coupled simulations of transpiration and carbon assimilation. The model assumes that deviations of the observed canopy LUE from a nominal stand-level value (LUEn - typically indexed by vegetation class) are due to varying conditions of light, humidity, CO2 concentration and leaf temperature. The deviations are accommodated by adjusting an effective LUE that responds to the varying conditions. The challenge to monitoring fluxes on a larger scale is to capture the physiological responses due to changing conditions. This challenge can be met using remotely sensed leaf chlorophyll (Cab). Since Cab is a vital pigment for absorbing light for use in photosynthesis, it has been recognized as a key parameter for quantifying photosynthetic functioning that are sensitive to these conditions. Recent studies have shown that it is sensitive to changes in LUE, which defines how efficiently a plant can assimilate carbon dioxide (CO2) given the absorbed Photosynthetically Active Radiation (PAR) and is therefore useful for monitoring carbon fluxes. We investigate the feasibility of leaf chlorophyll to capture these variations in LUEn using remotely sensed data. To retrieve Cab from remotely sensed data we use REGFLEC, a physically based tool that translates at-sensor radiances in the green, red and NIR spectral regions from multiple satellite sensors into realistic maps of LAI and Cab. Initial results show that Cab is exponentially correlated to light use efficiency. Incorporating nominal light use efficiency estimated from Cab is shown to improve fluxes of carbon, water and energy most notably in times of stressed vegetation. The result illustrates that Cab is sensitive to changes in plant physiology and can capture plant stress needed for improved estimation of fluxes. The observed relationship and initial results demonstrate the need for integrating remotely sensed Cab to facilitate improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.
NASA Astrophysics Data System (ADS)
Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen
2018-02-01
Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, S.; Lucero, R.; Glidewell, D.
1997-08-01
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. Thismore » paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.« less
Cost efficiency and reimbursement of remote monitoring: a US perspective.
Slotwiner, David; Wilkoff, Bruce
2013-06-01
Demographic and technological changes are driving increased utilization of cardiac implantable electronic devices (CIEDs) remote monitoring. In the USA, fee-for-service model of healthcare delivery, services rendered are valued based upon time, intensity, and technical or practice expense costs. As a consequence of this perspective, and to contain spending, Medicare has grouped physician services into families. Spending within each family of services must, by law, remain budget neutral. Cardiac implantable electronic devices monitoring services, remote and in-person, are grouped into one family. As the volume of services within this family increases, the individual encounters are destined to be discounted into ever decreasing portions. However, if the value of remote monitoring is demonstrated to extend beyond the previous boundaries of in-person interrogations, a rational request can be made to reconsider the relative value of remote monitoring. Outcome data supporting the value-added benefits of remote monitoring are rapidly accumulating, including (i) patient convenience, with reduced use of office services, (ii) equal safety compared with in-person evaluation, (iii) shorter detection time to actionable events (arrhythmias, cardiovascular disease progression, and device malfunction), (iv) reduced length of stay for hospitalizations, (v) reduced inappropriate shocks, (vi) increased battery longevity, and (vii) a relative reduction in the risk of death. Fully automatic wireless technology, only recently widely implemented, will add considerable clinical efficiencies and further increase the value of remote monitoring. The U.S. challenge will be to appropriately define the relative value of CIEDs remote monitoring now that outcome data have demonstrated its value extends beyond in-person interrogation.
Zhang, Pu; Kumabe, Akinoubu; Kogure, Yuichi; Akutagawa, Masatake; Kinouchi, Yohsuke; Zhang, Qinyu
2008-01-01
As a combination of medical information and Telecommunication technologies, telemedicine plays a more and more important role in supporting doctors to diagnose and taking care of people's daily health. It is also an appropriate means to solve the conflict between aging of population and inadequacy of doctors, which are the actual condition and inevitable developing trend of the society not only in developed countries. In this paper, some new functions are developed for a ICU/CCU Remote Monitoring System using a 3G mobile phone. Furthermore, some evaluations of the system have been implied on several different mobile phones. The system is anticipated to be adopted by hospitals for its accuracy and real-time performance to supporting telediagnosis for patients in ICU/CCU.
Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh
2011-06-01
This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.
2003-08-21
KENNEDY SPACE CENTER, FLA. - Dr. Paul Hintze (left) explains to Center Director Jim Kennedy a project he is working at the KSC Beach Corrosion Test Site. Hitze is doing post-graduate work for the National Research Council. The test facility site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.
2003-08-21
KENNEDY SPACE CENTER, FLA. - Louis MacDowell (right), Testbed manager, explains to Center Director Jim Kennedy the use of astmospheric calibration specimens. Placed at various locations, they can rank the corrosivity of the given environment. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.
Clinical benefits of remote versus transtelephonic monitoring of implanted pacemakers.
Crossley, George H; Chen, Jane; Choucair, Wassim; Cohen, Todd J; Gohn, Douglas C; Johnson, W Ben; Kennedy, Eleanor E; Mongeon, Luc R; Serwer, Gerald A; Qiao, Hongyan; Wilkoff, Bruce L
2009-11-24
The purpose of this study was to evaluate remote pacemaker interrogation for the earlier diagnosis of clinically actionable events compared with traditional transtelephonic monitoring and routine in-person evaluation. Pacemaker patient follow-up procedures have evolved from evaluating devices with little programmability and diagnostic information solely in person to transtelephonic rhythm strip recordings that allow monitoring of basic device function. More recently developed remote monitoring technology leverages expanded device capabilities, augmenting traditional transtelephonic monitoring to evaluate patients via full device interrogation. The time to first diagnosis of a clinically actionable event was compared in patients who were followed by remote interrogation (Remote) and those who were followed per standard of care with office visits augmented by transtelephonic monitoring (Control). Patients were randomized 2:1. Remote arm patients transmitted pacemaker information at 3-month intervals. Control arm patients with a single-chamber pacemaker transmitted at 2-month intervals. Control arm patients with dual-chamber devices transmitted at 2-month intervals with an office visit at 6 months. All patients were seen in office at 12 months. The mean time to first diagnosis of clinically actionable events was earlier in the Remote arm (5.7 months) than in the Control arm (7.7 months). Three (2%) of the 190 events in the Control arm and 446 (66%) of 676 events in the Remote arm were identified remotely. The strategic use of remote pacemaker interrogation follow-up detects actionable events that are potentially important more quickly and more frequently than transtelephonic rhythm strip recordings. The use of transtelephonic rhythm strips for pacemaker follow-up is of little value except for battery status determinations. (PREFER [Pacemaker Remote Follow-up Evaluation and Review]; NCT00294645).
Tomasic, Ivan; Tomasic, Nikica; Trobec, Roman; Krpan, Miroslav; Kelava, Tomislav
2018-04-01
Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO 2 ) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems. Graphical abstract ᅟ.
Real time hydro-metereological hazards monitoring system for the Ravenna municipality
NASA Astrophysics Data System (ADS)
Bertoni, W.; Cattarossi, A.; Gonella, M.
2003-04-01
The Ravenna municipality (Italy, Emilia Romagna region), through a cooperative agreement with ENI S.p.A’s., AGIP division, is carrying out a research study for the development of a real time monitoring system of hydro-meteorological conditions. The system aims to support the city Crisis Response Unit to provide more efficient support all over the municipal territory that is the largest in Italy with more than 700 km2. The support unit, a GIS computer based application, directly links to a broad range of sources, gathering real time information from a Local Area Model (meteorological data), a Wave Model (sea hydrodynamic circulation), monitoring stations, located partially on the Adriatic sea (AGIP offshore platform, SIMN) and partially over the Ravenna inland (SPDS, SIN). In the first phase, now completed and undergoing testing, this vast and diversified collection of data feeds a number of statistical models with up to 72 hours of forecast capabilities. The GIS application displays actual and forecast sea conditions offshore of Ravenna littorals in addition to actual and forecast flood conditions along the Ravenna Province inland. Model generated data are used for the forecast, which is then calibrated using the measured data. When the predefined warning limits are exceeded, end users are alerted via prerecorded phone messages, SMS, or visually through the direct or remote interaction with the GIS system (remotely accessible via portable computers). In the second stage, the statistical approach will be substituted by a more deterministic approach. A coupled hydrologic-hydraulic model will be used to forecast water stages along rivers and runoff volume along major watersheds. Moreover, already functioning capabilities allows direct control of remote monitoring points (stream and rain gages, etc.) The entire Real Time Monitoring System was developed on a GIS platform. The GEOdatabase, a relational database based on MSDE technology, is the core of the application which revolves around the conceptualization of a Hydro Data Model, a standardized way to store hydraulic based data such as watershed delineation, hydrologic network, monitoring points and time series data. Recent advancement in GIS software technologies and ready to use hydro-meteorological data offer an unprecedented opportunity to customize the GIS application and provide a powerful application to prevent and defeat flood hazards.
Honey Bee Colonies Remote Monitoring System.
Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús
2016-12-29
Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees' work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive-monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.
Honey Bee Colonies Remote Monitoring System
Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús
2016-01-01
Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time. PMID:28036061
NASA Technical Reports Server (NTRS)
Caudill, C. E.; Hatch, R. E.
1985-01-01
An account is given of the activities and accomplishments to date of the U.S. Department of Agriculture's Agriculture and Resources Inventory Surveys Through Aerospace Remote Sensing (AgRISTARS) program, which is a cooperative venture with NASA and the Departments of the Interior and of Commerce. AgRISTARS research activities encompass early warning and crop condition assessment, inventory technology development for production forecasting, crop yield model development, soil moisture monitoring, domestic crops and land cover sensing, renewable resources inventory, and conservation and pollution assessment.
Three examples of applied remote sensing of vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.
1975-01-01
Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.
Frequency division multiplex technique
NASA Technical Reports Server (NTRS)
Brey, H. (Inventor)
1973-01-01
A system for monitoring a plurality of condition responsive devices is described. It consists of a master control station and a remote station. The master control station is capable of transmitting command signals which includes a parity signal to a remote station which transmits the signals back to the command station so that such can be compared with the original signals in order to determine if there are any transmission errors. The system utilizes frequency sources which are 1.21 multiples of each other so that no linear combination of any harmonics will interfere with another frequency.
2009-09-01
Tele-maintenance Capability with Remote Serial Console Access and Proactive Monitoring of Medical Devices PRINCIPAL INVESTIGATOR...Remote Serial Console Access and Proactive Monitoring of Medical Devices 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ORGANIZATION REPORT NUMBER Concepteers LLC 880 Bergen Avenue, Suite 403 Jersey City, NJ 07306 9. SPONSORING / MONITORING
NASA Astrophysics Data System (ADS)
Lu, Anxin; Wang, Lihong; Chen, Xianzhang
2003-07-01
A major monitoring area, a part of the middle reaches of Heihe basin, was selected. The Landsat TM data in summer of 1990 and 2000 were used with interpretation on the computer screen, classification and setting up environmental investigation database (1:100000) combined with DEM, land cover/land use, land type data and etc., according to the environmental classification system. Then towards to the main problems of environment, the spatial statistical analysis and dynamic comparisons were carried out using the database. The dynamic monitoring results of 1999 and 2000 show that the changing percentage with the area of 6 ground objects are as follows: land use and agriculture land use increased by 34.17% and 19.47% respectively, wet land and water-body also increased by 6.29% and 8.03% respectively; unused land increased by 1.73% and the biggest change is natural/semi-natural vegetation area, decreased by 42.78%, the main results above meat with the requirements of precise and practical conditions by the precise exam and spot check. With the combinations of using TM remote sensing data and rich un-remote sensing data, the investigations of ecology and environment and the dynamic monitoring would be carried out efficiently in the arid area. It is a dangerous signal of large area desertification if the area of natural/semi-natural vegetation is reduced continuously and obviously.
The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...
The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...
A remote sensing-based dry and wet limit-reference evapotranspiration model for water use monitoring
USDA-ARS?s Scientific Manuscript database
With increasing growth in human population, the demand for greater food production has exceeded the capability to provide a sustainable water supply for agriculture. This is exacerbated in areas suffering from prolonged drought conditions, particularly in water limited regions. Improving the managem...
A multi-scale analysis of landscape statistics
Douglas H. Cain; Kurt H. Riitters; Kenneth Orvis
1997-01-01
It is now feasible to monitor some aspects of landscape ecological condition nationwide using remotely- sensed imagery and indicators of land cover pattern. Previous research showed redundancies among many reported pattern indicators and identified six unique dimensions of land cover pattern. This study tested the stability of those dimensions and representative...
ADVANCES IN THE APPLICATION OF REMOTE SENSING TO PLANT INCORPORATED PROTECTANT CROP MONITORING
Current forecasts call for significant increases to the plantings of transgenic corn in the United States for the 2007 growing season and beyond. Transgenic acreage approaching 80% of the total corn plantings could be realized by 2009. These conditions call for a new approach to ...
NASA Astrophysics Data System (ADS)
Qi, Weiran; Miao, Hongxia; Miao, Xuejiao; Xiao, Xuanxuan; Yan, Kuo
2016-10-01
In order to ensure the safe and stable operation of the prefabricated substations, temperature sensing subsystem, temperature remote monitoring and management subsystem, forecast subsystem are designed in the paper. Wireless temperature sensing subsystem which consists of temperature sensor and MCU sends the electrical equipment temperature to the remote monitoring center by wireless sensor network. Remote monitoring center can realize the remote monitoring and prediction by monitoring and management subsystem and forecast subsystem. Real-time monitoring of power equipment temperature, history inquiry database, user management, password settings, etc., were achieved by monitoring and management subsystem. In temperature forecast subsystem, firstly, the chaos of the temperature data was verified and phase space is reconstructed. Then Support Vector Machine - Particle Swarm Optimization (SVM-PSO) was used to predict the temperature of the power equipment in prefabricated substations. The simulation results found that compared with the traditional methods SVM-PSO has higher prediction accuracy.
Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring
NASA Technical Reports Server (NTRS)
Pollock, Julie; Oliver, Brett; Brickner, Christopher
2012-01-01
A document discusses the utilization of embedded clocks inside of operating network data links as an auxiliary clock source to satisfy local oscillator monitoring requirements. Modem network interfaces, typically serial network links, often contain embedded clocking information of very tight precision to recover data from the link. This embedded clocking data can be utilized by the receiving device to monitor the local oscillator for tolerance to required specifications, often important in high-integrity fault-tolerant applications. A device can utilize a received embedded clock to determine if the local or the remote device is out of tolerance by using a single link. The local device can determine if it is failing, assuming a single fault model, with two or more active links. Network fabric components, containing many operational links, can potentially determine faulty remote or local devices in the presence of multiple faults. Two methods of implementation are described. In one method, a recovered clock can be directly used to monitor the local clock as a direct replacement of an external local oscillator. This scheme is consistent with a general clock monitoring function whereby clock sources are clocking two counters and compared over a fixed interval of time. In another method, overflow/underflow conditions can be used to detect clock relationships for monitoring. These network interfaces often provide clock compensation circuitry to allow data to be transferred from the received (network) clock domain to the internal clock domain. This circuit could be modified to detect overflow/underflow conditions of the buffering required and report a fast or slow receive clock, respectively.
Senay, Gabriel; Velpuri, Naga Manohar; Bohms, Stefanie; Budde, Michael; Young, Claudia; Rowland, James; Verdin, James
2015-01-01
Drought monitoring is an essential component of drought risk management. It is usually carried out using drought indices/indicators that are continuous functions of rainfall and other hydrometeorological variables. This chapter presents a few examples of how remote sensing and hydrologic modeling techniques are being used to generate a suite of drought monitoring indicators at dekadal (10-day), monthly, seasonal, and annual time scales for several selected regions around the world. Satellite-based rainfall estimates are being used to produce drought indicators such as standardized precipitation index, dryness indicators, and start of season analysis. The Normalized Difference Vegetation Index is being used to monitor vegetation condition. Several satellite data products are combined using agrohydrologic models to produce multiple short- and long-term indicators of droughts. All the data sets are being produced and updated in near-real time to provide information about the onset, progression, extent, and intensity of drought conditions. The data and products produced are available for download from the Famine Early Warning Systems Network (FEWS NET) data portal at http://earlywarning.usgs.gov. The availability of timely information and products support the decision-making processes in drought-related hazard assessment, monitoring, and management with the FEWS NET. The drought-hazard monitoring approach perfected by the U.S. Geological Survey for FEWS NET through the integration of satellite data and hydrologic modeling can form the basis for similar decision support systems. Such systems can operationally produce reliable and useful regional information that is relevant for local, district-level decision making.
Ladapo, Joseph A; Turakhia, Mintu P; Ryan, Michael P; Mollenkopf, Sarah A; Reynolds, Matthew R
2016-05-01
Several randomized trials and decision analysis models have found that remote monitoring may reduce health care utilization and expenditures in patients with cardiac implantable electronic devices (CIEDs), compared with in-office monitoring. However, little is known about the generalizability of these findings to unselected populations in clinical practice. To compare health care utilization and expenditures associated with remote monitoring and in-office monitoring in patients with CIEDs, we used Truven Health MarketScan Commercial Claims and Medicare Supplemental Databases. We selected patients newly implanted with an implantable cardioverter defibrillators (ICD), cardiac resynchronization therapy defibrillator (CRT-D), or permanent pacemaker (PPM), in 2009, who had continuous health plan enrollment 2 years after implantation. Generalized linear models and propensity score matching were used to adjust for confounders and estimate differences in health care utilization and expenditures in patients with remote or in-office monitoring. We identified 1,127; 427; and 1,295 pairs of patients with a similar propensity for receiving an ICD, CRT-D, or PPM, respectively. Remotely monitored patients with ICDs experienced fewer emergency department visits resulting in discharge (p = 0.050). Remote monitoring was associated with lower health care expenditures in office visits among patients with PPMs (p = 0.025) and CRT-Ds (p = 0.006) and lower total inpatient and outpatient expenditures in patients with ICDs (p <0.0001). In conclusion, remote monitoring of patients with CIEDs may be associated with reductions in health care utilization and expenditures compared with exclusive in-office care. Copyright © 2016 Elsevier Inc. All rights reserved.
Gordon, Alan; Jaffe, Adi; McLellan, A Thomas; Richardson, Gary; Skipper, Gregory; Sucher, Michel; Tirado, Carlos F; Urschel, Harold C
Scientific evidence combined with new health insurance coverage now enable a chronic illness management approach to the treatment of alcohol use disorders (AUDs), including regular monitoring of blood alcohol content (BAC), as a useful indicator of disease control. Recent technical advances now permit many different types of remote, real-time monitoring of BAC. However, there is no body of research to empirically guide clinicians in how to maximize the clinical potential of remote BAC monitoring.As an initial step in guiding and supporting such research, the manufacturer of one remote BAC monitoring system sponsored a group of experienced clinicians and clinical researchers to discuss 8 issues that generally affect remote, clinical BAC monitoring of "adults in outpatient AUD treatment."The expert panel unanimously agreed that remote BAC monitoring for at least 12 months during and after the outpatient treatment of AUD was a clinically viable deterrent to relapse. There was also consensus that positive test results (ie, recent alcohol use) should lead to intensified care and monitoring. However, there was no agreement on specific types of clinical intensification after a positive test. The panel agreed that sharing positive and negative test results with members of the patient support group was helpful in reinforcing abstinence, yet they noted many practical issues regarding information sharing that remain concerning. Significant differences within the panel on several important clinical issues underline the need for more clinical and implementation research to produce empirically-supported guidelines for the use of remote BAC monitoring in AUD treatment.
Gordon, Alan; Jaffe, Adi; McLellan, A. Thomas; Richardson, Gary; Skipper, Gregory; Sucher, Michel; Tirado, Carlos F.; Urschel, Harold C.
2017-01-01
Scientific evidence combined with new health insurance coverage now enable a chronic illness management approach to the treatment of alcohol use disorders (AUDs), including regular monitoring of blood alcohol content (BAC), as a useful indicator of disease control. Recent technical advances now permit many different types of remote, real-time monitoring of BAC. However, there is no body of research to empirically guide clinicians in how to maximize the clinical potential of remote BAC monitoring. As an initial step in guiding and supporting such research, the manufacturer of one remote BAC monitoring system sponsored a group of experienced clinicians and clinical researchers to discuss 8 issues that generally affect remote, clinical BAC monitoring of “adults in outpatient AUD treatment.” The expert panel unanimously agreed that remote BAC monitoring for at least 12 months during and after the outpatient treatment of AUD was a clinically viable deterrent to relapse. There was also consensus that positive test results (ie, recent alcohol use) should lead to intensified care and monitoring. However, there was no agreement on specific types of clinical intensification after a positive test. The panel agreed that sharing positive and negative test results with members of the patient support group was helpful in reinforcing abstinence, yet they noted many practical issues regarding information sharing that remain concerning. Significant differences within the panel on several important clinical issues underline the need for more clinical and implementation research to produce empirically-supported guidelines for the use of remote BAC monitoring in AUD treatment. PMID:28157829
Cronin, Edmond M; Varma, Niraj
2012-07-01
Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.
A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network
Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng
2010-01-01
A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391
Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks
Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi
2015-01-01
Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications. PMID:26393596
Papavasileiou, Lida P; Forleo, Giovanni B; Panattoni, Germana; Schirripa, Valentina; Minni, Valentina; Magliano, Giulia; Bellos, Kyriakos; Santini, Luca; Romeo, Francesco
2013-02-01
The efficacy and accuracy, as well as patients' satisfaction, of device remote monitoring are well demonstrated. However, the workload of remote monitoring management has not been estimated and reimbursement schemes are currently unavailable in most European countries. This study evaluates the workload associated with remote monitoring systems. A total of 154 consecutive implantable cardioverter defibrillator patients (age 66±12 years; 86.5% men) with a remote monitoring system were enrolled. Data on the clinician's workload required for the management of the patients were analyzed. A total of 1744 transmissions were received during a mean follow-up of 15.3±12.4 months. Median number of transmissions per patient was 11.3. There were 993 event-free transmissions, whereas 638 transmissions regarded one or more events (113 missed transmissions, 141 atrial events, 132 ventricular episodes, 299 heart failure-related transmissions, 14 transmissions regarding lead malfunction and 164 transmissions related to other events). In 402 cases telephonic contact was necessary, whereas in 68 cases an in-clinic visit was necessary and in 23 of them an in-clinic visit was prompted by the manufacturer due to technical issues of the transmitter. During follow-up, 316 work hours were required to manage the enrolled patients. Each month, a total of 14.9 h were spent on the remote monitoring of 154 patients (9.7 h for 100 patients monthly) with approximately 1.1±0.15 h per year for each patient. The clinician's work burden is high in patients with remote monitoring. In order to expand remote monitoring in all patients, reimbursement policies should be considered.
Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.
Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W
2017-11-27
Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mapping and monitoring carbon stocks with satellite observations: a comparison of methods.
Goetz, Scott J; Baccini, Alessandro; Laporte, Nadine T; Johns, Tracy; Walker, Wayne; Kellndorfer, Josef; Houghton, Richard A; Sun, Mindy
2009-03-25
Mapping and monitoring carbon stocks in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions, and are now included in climate change negotiations. We review the potential for satellites to measure carbon stocks, specifically aboveground biomass (AGB), and provide an overview of a range of approaches that have been developed and used to map AGB across a diverse set of conditions and geographic areas. We provide a summary of types of remote sensing measurements relevant to mapping AGB, and assess the relative merits and limitations of each. We then provide an overview of traditional techniques of mapping AGB based on ascribing field measurements to vegetation or land cover type classes, and describe the merits and limitations of those relative to recent data mining algorithms used in the context of an approach based on direct utilization of remote sensing measurements, whether optical or lidar reflectance, or radar backscatter. We conclude that while satellite remote sensing has often been discounted as inadequate for the task, attempts to map AGB without satellite imagery are insufficient. Moreover, the direct remote sensing approach provided more coherent maps of AGB relative to traditional approaches. We demonstrate this with a case study focused on continental Africa and discuss the work in the context of reducing uncertainty for carbon monitoring and markets.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-02
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.
Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón
2014-01-01
This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461
NASA Astrophysics Data System (ADS)
Shofiyati, Rizatus; Takeuchi, Wataru; Sofan, Parwati; Darmawan, Soni; Awaluddin; Supriatna, Wahyu
2014-06-01
Long droughts experienced in Indonesia in the past are identified as one of the main factors in the failure of rice production. In this regard, special attention to monitor the condition is encouraged to reduce the damage. Currently, various satellite data and approaches can withdraw valuable information for monitoring and anticipating drought hazards. Two types of drought, Meteorology and Agriculture, have been assessed. During the last 10 years, daily and monthly rainfall data derived from TRMM and GSMaP. MTSAT and AMSR-E data have been analyzed to identify meteorological drought. Agricultural drought has been studied by observing the character of some indices (EVI, VCI, VHI, LST, and NDVI) of sixteen-day and monthly MODIS data at a period of 5 years (2009 - 2013). Network for data transfer has been built between LAPAN (data provider), ICALRD (implementer), IAARD Cloud Computing, and University of Tokyo (technical supporter). A Web-GIS based Drought Monitoring Information System has been developed to disseminate the information to end users. This paper describes the implementation of remote sensing drought monitoring model and development of Web-GIS and satellite based information system.
Chiaradia, Enrico Antonio; Facchi, Arianna; Masseroni, Daniele; Ferrari, Daniele; Bischetti, Gian Battista; Gharsallah, Olfa; Cesari de Maria, Sandra; Rienzner, Michele; Naldi, Ezio; Romani, Marco; Gandolfi, Claudio
2015-09-01
The cultivation of rice, one of the most important staple crops worldwide, has very high water requirements. A variety of irrigation practices are applied, whose pros and cons, both in terms of water productivity and of their effects on the environment, are not completely understood yet. The continuous monitoring of irrigation and rainfall inputs, as well as of soil water dynamics, is a very important factor in the analysis of these practices. At the same time, however, it represents a challenging and costly task because of the complexity of the processes involved, of the difference in nature and magnitude of the driving variables and of the high variety of field conditions. In this paper, we present the prototype of an integrated, multisensor system for the continuous monitoring of water dynamics in rice fields under different irrigation regimes. The system consists of the following: (1) flow measurement devices for the monitoring of irrigation supply and tailwater drainage; (2) piezometers for groundwater level monitoring; (3) level gauges for monitoring the flooding depth; (4) multilevel tensiometers and moisture sensor clusters to monitor soil water status; (5) eddy covariance station for the estimation of evapotranspiration fluxes and (6) wireless transmission devices and software interface for data transfer, storage and control from remote computer. The system is modular and it is replicable in different field conditions. It was successfully applied over a 2-year period in three experimental plots in Northern Italy, each one with a different water management strategy. In the paper, we present information concerning the different instruments selected, their interconnections and their integration in a common remote control scheme. We also provide considerations and figures on the material and labour costs of the installation and management of the system.
Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery
NASA Astrophysics Data System (ADS)
Fisher, G.
2012-12-01
Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.
NASA Astrophysics Data System (ADS)
Li, J.; Wen, G.; Li, D.
2018-04-01
Trough mastering background information of Yunnan province grassland resources utilization and ecological conditions to improves grassland elaborating management capacity, it carried out grassland resource investigation work by Yunnan province agriculture department in 2017. The traditional grassland resource investigation method is ground based investigation, which is time-consuming and inefficient, especially not suitable for large scale and hard-to-reach areas. While remote sensing is low cost, wide range and efficient, which can reflect grassland resources present situation objectively. It has become indispensable grassland monitoring technology and data sources and it has got more and more recognition and application in grassland resources monitoring research. This paper researches application of multi-source remote sensing image in Yunnan province grassland resources investigation. First of all, it extracts grassland resources thematic information and conducts field investigation through BJ-2 high space resolution image segmentation. Secondly, it classifies grassland types and evaluates grassland degradation degree through high resolution characteristics of Landsat 8 image. Thirdly, it obtained grass yield model and quality classification through high resolution and wide scanning width characteristics of MODIS images and sample investigate data. Finally, it performs grassland field qualitative analysis through UAV remote sensing image. According to project area implementation, it proves that multi-source remote sensing data can be applied to the grassland resources investigation in Yunnan province and it is indispensable method.
Remote coding scheme based on waveguide Bragg grating in PLC splitter chip for PON monitoring.
Zhang, Xuan; Lu, Fengjun; Chen, Si; Zhao, Xingqun; Zhu, Min; Sun, Xiaohan
2016-03-07
A distributing arranged waveguide Bragg gratings (WBGs) in PLC splitter chip based remote coding scheme is proposed and analyzed for passive optical network (PON) monitoring, by which the management system can identify each drop fiber link through the same reflector in the terminal of each optical network unit, even though there exist several equidistant users. The corresponding coding and capacity models are respectively established and investigated so that we can obtain a minimum number of the WBGs needed under the condition of the distributed structure. Signal-to-noise ratio (SNR) model related to the number of equidistant users is also developed to extend the analyses for the overall performance of the system. Simulation results show the proposed scheme is feasible and allow the monitoring of a 64 users PON with SNR range of 7.5~10.6dB. The scheme can solve some of difficulties of construction site at the lower user cost for PON system.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Design of cold chain logistics remote monitoring system based on ZigBee and GPS location
NASA Astrophysics Data System (ADS)
Zong, Xiaoping; Shao, Heling
2017-03-01
This paper designed a remote monitoring system based on Bee Zig wireless sensor network and GPS positioning, according to the characteristics of cold chain logistics. The system consisted of the ZigBee network, gateway and monitoring center. ZigBee network temperature acquisition modules and GPS positioning acquisition module were responsible for data collection, and then send the data to the host computer through the GPRS network and Internet to realize remote monitoring of vehicle with functions of login permissions, temperature display, latitude and longitude display, historical data, real-time alarm and so on. Experiments showed that the system is stable, reliable and effective to realize the real-time remote monitoring of the vehicle in the process of cold chain transport.
2002 Hyperspectral Analysis of Hazardous Waste Sites on the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladden, J.B.
2003-08-28
Hazardous waste site inspection is a labor intensive, time consuming job, performed primarily on the ground using visual inspection and instrumentation. It is an expensive process to continually monitor hazardous waste and/or landfill sites to determine if they are maintaining their integrity. In certain instances, it may be possible to monitor aspects of the hazardous waste sites and landfills remotely. The utilization of multispectral data was suggested for the mapping of clays and iron oxides associated with contaminated groundwater, vegetation stress, and methane gas emissions (which require longer wavelength detectors). The Savannah River Site (SRS) near Aiken, S.C. is amore » United States Department of Energy facility operated by the Westinghouse Savannah River Company. For decades the SRS was responsible for developing weapons grade plutonium and other materials for the nation's nuclear defense. Hazardous waste was generated during this process. Waste storage site inspection is a particularly important issue at the SRS because there are over 100 hazardous waste sites scattered throughout the 300 mile complex making it difficult to continually monitor all of the facilities. The goal is to use remote sensing technology to identify surface anomalies on the hazardous waste sites as early as possible so that remedial work can take place rapidly to maintain the integrity of the storage sites. The anomalous areas are then targeted for intensive in situ human examination and measurement. During the 1990s, many of the hazardous waste sites were capped with protective layers of polyethelene sheeting and soil, and planted with bahia grass and/or centipede grass. This research investigated hyperspectral remote sensing technology to determine if it can be used to measure accurately and monitor possible indicators of change on vegetated hazardous waste sites. Specifically, it evaluated the usefulness of hyperspectral remote sensing to assess the condition of vegetation on clay- caps on the Mixed Waste Management Facility (MWMF). This report first describes the principles of hyperspectral remote sensing. In situ measurement and hyperspectral remote sensing methods used to analyze hazardous waste sites on the Savannah River Site are then presented.« less
NASA Astrophysics Data System (ADS)
Zhu, Yunqiang; Zhu, Huazhong; Lu, Heli; Ni, Jianguang; Zhu, Shaoxia
2005-10-01
Remote sensing dynamic monitoring of land use can detect the change information of land use and update the current land use map, which is important for rational utilization and scientific management of land resources. This paper discusses the technological procedure of remote sensing dynamic monitoring of land use including the process of remote sensing images, the extraction of annual change information of land use, field survey, indoor post processing and accuracy assessment. Especially, we emphasize on comparative research on the choice of remote sensing rectifying models, image fusion algorithms and accuracy assessment methods. Taking Anning district in Lanzhou as an example, we extract the land use change information of the district during 2002-2003, access monitoring accuracy and analyze the reason of land use change.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
Application of step-frequency radars in medicine
NASA Astrophysics Data System (ADS)
Anishchenko, L.; Alekhin, M.; Tataraidze, A.; Ivashov, S.; Bugaev, Alexander S.; Soldovieri, F.
2014-05-01
The paper summarizes results of step-frequency radars application in medicine. Remote and non-contact control of physiological parameters with modern bioradars provides a wide range of possibilities for non-contact remote monitoring of a human psycho-emotional state and physiological condition. The paper provides information about technical characteristics of bioradars designed at Bauman Moscow State Technical University and experiments using them. Results of verification experiment showed that bioradars of BioRASCAN type may be used for simultaneous remote measurements of breathing and heart rate parameters. In addition, bioradar assisted experiments for detecting of different sleep disorders are described. Their results proved that method of bioradiolocation allows correct estimation of obstructive sleep apnea severity compared to the polysomnography method, which satisfies standard medical recommendations.
Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.
Neville, Richard F; Gupta, Samit K; Kuraguntla, David J
2017-06-01
Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Early warning and crop condition assessment research
NASA Technical Reports Server (NTRS)
Boatwright, G. O.; Whitehead, V. S.
1986-01-01
The Early Warning Crop Condition Assessment Project of AgRISTARS was a multiagency and multidisciplinary effort. Its mission and objectives were centered around development and testing of remote-sensing techniques that enhance operational methodologies for global crop-condition assessments. The project developed crop stress indicators models that provide data filter and alert capabilities for monitoring global agricultural conditions. The project developed a technique for using NOAA-n satellite advanced very-high-resolution radiometer (AVHRR) data for operational crop-condition assessments. This technology was transferred to the Foreign Agricultural Service of the USDA. The project developed a U.S. Great Plains data base that contains various meteorological parameters and vegetative index numbers (VIN) derived from AVHRR satellite data. It developed cloud screening techniques and scan angle correction models for AVHRR data. It also developed technology for using remotely acquired thermal data for crop water stress indicator modeling. The project provided basic technology including spectral characteristics of soils, water, stressed and nonstressed crop and range vegetation, solar zenith angle, and atmospheric and canopy structure effects.
Remote Monitoring of the Polarized Target's Control for E1039
NASA Astrophysics Data System (ADS)
Fox, David; SeaQuest Collaboration
2017-09-01
The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
An intelligent remote monitoring system for artificial heart.
Choi, Jaesoon; Park, Jun W; Chung, Jinhan; Min, Byoung G
2005-12-01
A web-based database system for intelligent remote monitoring of an artificial heart has been developed. It is important for patients with an artificial heart implant to be discharged from the hospital after an appropriate stabilization period for better recovery and quality of life. Reliable continuous remote monitoring systems for these patients with life support devices are gaining practical meaning. The authors have developed a remote monitoring system for this purpose that consists of a portable/desktop monitoring terminal, a database for continuous recording of patient and device status, a web-based data access system with which clinicians can access real-time patient and device status data and past history data, and an intelligent diagnosis algorithm module that noninvasively estimates blood pump output and makes automatic classification of the device status. The system has been tested with data generation emulators installed on remote sites for simulation study, and in two cases of animal experiments conducted at remote facilities. The system showed acceptable functionality and reliability. The intelligence algorithm also showed acceptable practicality in an application to animal experiment data.
The challenges of remote monitoring of wetlands
Gallant, Alisa L.
2015-01-01
Wetlands are highly productive and support a wide variety of ecosystem goods and services. Various forms of global change impose compelling needs for timely and reliable information on the status of wetlands worldwide, but several characteristics of wetlands make them challenging to monitor remotely: they lack a single, unifying land-cover feature; they tend to be highly dynamic and their energy signatures are constantly changing; and steep environmental gradients in and around wetlands produce narrow ecotones that often are below the resolving capacity of remote sensors. These challenges and needs set the context for a special issue focused on wetland remote sensing. Contributed papers responded to one of three overarching questions aimed at improving remote, large-area monitoring of wetlands: (1) What approaches and data products are being developed specifically to support regional to global long-term monitoring of wetland landscapes? (2) What are the promising new technologies and sensor/multisensor approaches for more accurate and consistent detection of wetlands? (3) Are there studies that demonstrate how remote long-term monitoring of wetland landscapes can reveal changes that correspond with changes in land cover and land use and/or changes in climate?
Comoretto, Rosanna Irene; Facchin, Domenico; Ghidina, Marco; Proclemer, Alessandro; Gregori, Dario
2017-08-01
Health-related quality of life (HRQoL) improves shortly after pacemaker (PM) implantation. No studies have investigated the HRQoL trend for elderly patients with a remote device monitoring follow-up system. Using EuroQol-5D Questionnaire and the PM-specific Assessment of Quality of Life and Related Events Questionnaire, HRQoL was measured at baseline and then repeatedly during the 6 months following PM implantation in a cohort of 42 consecutive patients. Twenty-five patients were followed-up with standard outpatient visits, while 17 used a remote monitoring system. Aquarel scores were significantly higher in patients with remote device monitoring system regarding chest discomfort and arrhythmia subscales the first month after PM implant and remained stable until 6 months. Remote monitoring affected the rate of HRQoL improvement in the first 3 months after pacemaker implantation more than ambulatory follow-up. Remote device monitoring has a significant impact on HRQoL in pacemaker patients, increasing its levels up to 6 months after implant. © 2017 John Wiley & Sons, Ltd.
Passive seismic monitoring of the Bering Glacier during its last surge event
NASA Astrophysics Data System (ADS)
Zhan, Z.
2017-12-01
The physical causes behind glacier surges are still unclear. Numerous evidences suggest that they probably involve changes in glacier basal conditions, such as switch of basal water system from concentrated large tunnels to a distributed "layer" as "connected cavities". However, most remote sensing approaches can not penetrate to the base to monitor such changes continuously. Here we apply seismic interferometry using ambient noise to monitor glacier seismic structures, especially to detect possible signatures of the hypothesized high-pressure water "layer". As an example, we derive an 11-year long history of seismic structure of the Bering Glacier, Alaska, covering its latest surge event. We observe substantial drops of Rayleigh and Love wavespeeds across the glacier during the surge event, potentially caused by changes in crevasse density, glacier thickness, and basal conditions.
ADVANCED REMOTE SENSING MONITORING OF MINE WASTE
The OEI-EAD and NERL-ESD have been cooperating on development of monitoring technologies and research to better use remote sensor-derived information and to ultimately disseminate that information to users. This work has focused on NASA'S airborne advanced remote sensor systems ...
Taiga forest stands and SAR: Monitoring for subarctic global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Way, J.; Kwok, R.; Viereck, L.
1992-03-01
In preparation for the first European Earth Remote Sensing (ERS-1) mission, a series of multitemporal, multifrequency, multipolarization aircraft synthetic aperture radar (SAR) data sets were acquired over the Bonanza Creek Experimental Forest near Fairbanks, Alaska in March 1988. Significant change in radar backscatter was observed over the two-week experimental period due to changing environmental conditions. These preliminary results are presented to illustrate the opportunity afforded by the ERS-1 SAR to monitor temporal change in forest ecosystems.
Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River Basin lowlands
NASA Astrophysics Data System (ADS)
Vargas, Leonardo; Hein, Lars; Remme, Roy P.
2017-04-01
Worldwide, ecosystem change compromises the supply of ecosystem services (ES). Better managing ecosystems requires detailed information on these changes and their implications for ES supply. Ecosystem accounting has been developed as an environmental-economic accounting system using concepts aligned with the System of National Accounts. Ecosystem accounting requires spatial information from a local to national scale. The objective of this paper is to explore how remote sensing can be used to analyze ecosystems using an accounting approach in the Orinoco River Basin. We assessed ecosystem assets in terms of extent, condition, and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber harvesting, oil palm fresh fruit bunches harvesting, and carbon sequestration. We link ES with six ecosystem assets: savannahs, woody grasslands, mixed agroecosystems, very dense forests, dense forest, and oil palm plantations. We used remote sensing vegetation and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems.
Suh, Myung-Kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2012-09-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %.
Dynamic Task Optimization in Remote Diabetes Monitoring Systems
Suh, Myung-kyung; Woodbridge, Jonathan; Moin, Tannaz; Lan, Mars; Alshurafa, Nabil; Samy, Lauren; Mortazavi, Bobak; Ghasemzadeh, Hassan; Bui, Alex; Ahmadi, Sheila; Sarrafzadeh, Majid
2016-01-01
Diabetes is the seventh leading cause of death in the United States, but careful symptom monitoring can prevent adverse events. A real-time patient monitoring and feedback system is one of the solutions to help patients with diabetes and their healthcare professionals monitor health-related measurements and provide dynamic feedback. However, data-driven methods to dynamically prioritize and generate tasks are not well investigated in the domain of remote health monitoring. This paper presents a wireless health project (WANDA) that leverages sensor technology and wireless communication to monitor the health status of patients with diabetes. The WANDA dynamic task management function applies data analytics in real-time to discretize continuous features, applying data clustering and association rule mining techniques to manage a sliding window size dynamically and to prioritize required user tasks. The developed algorithm minimizes the number of daily action items required by patients with diabetes using association rules that satisfy a minimum support, confidence and conditional probability thresholds. Each of these tasks maximizes information gain, thereby improving the overall level of patient adherence and satisfaction. Experimental results from applying EM-based clustering and Apriori algorithms show that the developed algorithm can predict further events with higher confidence levels and reduce the number of user tasks by up to 76.19 %. PMID:27617297
Marciniuk, Darcy
2016-01-01
The challenges of providing quality respiratory care to persons living in rural or remote communities can be daunting. These populations are often vulnerable in terms of both health status and access to care, highlighting the need for innovation in service delivery. The rapidly expanding options available using telehealthcare technologies have the capacity to allow patients in rural and remote communities to connect with providers at distant sites and to facilitate the provision of diagnostic, monitoring, and therapeutic services. Successful implementation of telehealthcare programs in rural and remote settings is, however, contingent upon accounting for key technical, organizational, social, and legal considerations at the individual, community, and system levels. This review article discusses five types of telehealthcare delivery that can facilitate respiratory care for residents of rural or remote communities: remote monitoring (including wearable and ambient systems; remote consultations (between providers and between patients and providers), remote pulmonary rehabilitation, telepharmacy, and remote sleep monitoring. Current and future challenges related to telehealthcare are discussed. PMID:26902542
Urban growth and agricultural production have caused an influx of nutrients into Lake Erie, leading to eutrophic zones. These conditions result in the formation of algal blooms, some of which are toxic due to the presence of Microcystis (a cyanobacteria), which produces the hepat...
An efficient estimator to monitor rapidly changing forest conditions
Raymond L. Czaplewski; Michael T. Thompson; Gretchen G. Moisen
2012-01-01
Extensive expanses of forest often change at a slow pace. In this common situation, FIA produces informative estimates of current status with the Moving Average (MA) method and post-stratification with a remotely sensed map of forest-nonforest cover. However, MA "smoothes out" estimates over time, which confounds analyses of temporal trends; and post-...
Remote Sensing Technologies Mitigate Drought
NASA Technical Reports Server (NTRS)
2015-01-01
Ames Research Center has partnered with the California Department of Water Resources to develop satellite-based technologies to mitigate drought conditions. One project aims to help water managers adjust their irrigation to match the biological needs of each crop, and another involves monitoring areas where land is fallow so emergency relief can more quickly aid affected communities.
NASA Technical Reports Server (NTRS)
Imhoff, M.; Vermillion, C.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.; Vermillion, C. H.
1986-01-01
The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.
NASA Technical Reports Server (NTRS)
Potter, Christopher
2018-01-01
This presentation is part of the Independent Science Board of the State of California Delta Stewardship Council brown bag seminar series on the "How the Delta is Monitored", followed with a panel discussion. Various remote sensing approaches for aquatic vegetation will be reviewed. Key research and application issues with remote sensing monitoring in the Delta will be addressed.
Global Scale Remote Sensing Monitoring of Endorheic Lake Systems
NASA Astrophysics Data System (ADS)
Scuderi, L. A.
2010-12-01
Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.
Applications of Remote Sensing to Alien Invasive Plant Studies
Huang, Cho-ying; Asner, Gregory P.
2009-01-01
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558
Zanaboni, Paolo; Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina
2013-05-30
Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Two hundred patients implanted with a wireless transmission-enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f).
Study on Remote Monitoring System of Crossing and Spanning Tangent Tower
NASA Astrophysics Data System (ADS)
Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan
2017-05-01
In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.
Tapia-Conyer, Roberto; Lyford, Shelley; Saucedo, Rodrigo; Casale, Michael; Gallardo, Hector; Becerra, Karen; Mack, Jonathan; Mujica, Ricardo; Estrada, Daniel; Sanchez, Antonio; Sabido, Ramon; Meier, Carlos; Smith, Joseph
2015-01-01
Background. Fetal and neonatal morbidity and mortality are significant problems in developing countries; remote maternal-fetal monitoring offers promise in addressing this challenge. The Gary and Mary West Health Institute and the Instituto Carlos Slim de la Salud conducted a demonstration project of wirelessly enabled antepartum maternal-fetal monitoring in the state of Yucatán, Mexico, to assess whether there were any fundamental barriers preventing deployment and use. Methods. Following informed consent, high-risk pregnant women at 27–29 weeks of gestation at the Chemax primary clinic participated in remote maternal-fetal monitoring. Study participants were randomized to receive either prototype wireless monitoring or standard-of-care. Feasibility was evaluated by assessing technical aspects of performance, adherence to monitoring appointments, and response to recommendations. Results. Data were collected from 153 high-risk pregnant indigenous Mayan women receiving either remote monitoring (n = 74) or usual standard-of-care (n = 79). Remote monitoring resulted in markedly increased adherence (94.3% versus 45.1%). Health outcomes were not statistically different in the two groups. Conclusions. Remote maternal-fetal monitoring is feasible in resource-constrained environments and can improve maternal compliance for monitoring sessions. Improvement in maternal-fetal health outcomes requires integration of such technology into sociocultural context and addressing logistical challenges of access to appropriate emergency services. PMID:25691900
Monitoring Global Food Security with New Remote Sensing Products and Tools
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.
2012-12-01
Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production and driving crop water balance models. We present a series of derived rainfall products and provide an update on efforts to improve satellite-based estimates. We also present advancements in monitoring tools, namely, the Early Warning eXplorer (EWX) and interactive rainfall and NDVI time series viewers. The EWX is a data analysis and visualization tool that allows users to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The interactive time series viewers allow users to analyze rainfall and NDVI time series over multiple spatial domains. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.
NASA Astrophysics Data System (ADS)
Yu, J.; Gan, Z.; Zhong, L.; Deng, L.
2018-04-01
The objective of this paper is to investigate the use of UAV remote sensing in the monitoring and management of construction projects in riparian areas through the case study of embankment construction projects' monitoring in the Three Gorges Reservoir area. A three-step approach is proposed to address the problem: data acquisition with UAV, data processing, and monitoring information extraction. The results of the case study demonstrate that UAV remote sensing is capable of providing fast and accurate measurements and calculations for the needs of monitoring of riparian constructions.
Prenatal Remote Monitoring of Women With Gestational Hypertensive Diseases: Cost Analysis
Vandenberk, Thijs; Smeets, Christophe JP; De Cannière, Hélène; Vonck, Sharona; Claessens, Jade; Heyrman, Yenthel; Vandijck, Dominique; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried
2018-01-01
Background Remote monitoring in obstetrics is relatively new; some studies have shown its effectiveness for both mother and child. However, few studies have evaluated the economic impact compared to conventional care, and no cost analysis of a remote monitoring prenatal follow-up program for women diagnosed with gestational hypertensive diseases (GHD) has been published. Objective The aim of this study was to assess the costs of remote monitoring versus conventional care relative to reported benefits. Methods Patient data from the Pregnancy Remote Monitoring (PREMOM) study were used. Health care costs were calculated from patient-specific hospital bills of Ziekenhuis Oost-Limburg (Genk, Belgium) in 2015. Cost comparison was made from three perspectives: the Belgian national health care system (HCS), the National Institution for Insurance of Disease and Disability (RIZIV), and costs for individual patients. The calculations were made for four major domains: prenatal follow-up, prenatal admission to the hospital, maternal and neonatal care at and after delivery, and total amount of costs. A simulation exercise was made in which it was calculated how much could be demanded of RIZIV for funding the remote monitoring service. Results A total of 140 pregnancies were included, of which 43 received remote monitoring (30.7%) and 97 received conventional care (69.2%). From the three perspectives, there were no differences in costs for prenatal follow-up. Compared to conventional care, remote monitoring patients had 34.51% less HCS and 41.72% less RIZIV costs for laboratory test results (HCS: mean €0.00 [SD €55.34] vs mean €38.28 [SD € 44.08], P<.001; RIZIV: mean €21.09 [SD €27.94] vs mean €36.19 [SD €41.36], P<.001) and a reduction of 47.16% in HCS and 48.19% in RIZIV costs for neonatal care (HCS: mean €989.66 [SD €3020.22] vs mean €1872.92 [SD €5058.31], P<.001; RIZIV: mean €872.97 [SD €2761.64] vs mean €1684.86 [SD €4702.20], P<.001). HCS costs for medication were 1.92% lower in remote monitoring than conventional care (mean €209.22 [SD €213.32] vs mean €231.32 [SD 67.09], P=.02), but were 0.69% higher for RIZIV (mean €122.60 [SD €92.02] vs mean €121.78 [SD €20.77], P<.001). Overall HCS costs for remote monitoring were mean €4233.31 (SD €3463.31) per person and mean €4973.69 (SD €5219.00) per person for conventional care (P=.82), a reduction of €740.38 (14.89%) per person, with savings mainly for RIZIV of €848.97 per person (23.18%; mean €2797.42 [SD €2905.18] vs mean €3646.39 [SD €4878.47], P=.19). When an additional fee of €525.07 per month per pregnant woman for funding remote monitoring costs is demanded, remote monitoring is acceptable in their costs for HCS, RIZIV, and individual patients. Conclusions In the current organization of Belgian health care, a remote monitoring prenatal follow-up of women with GHD is cost saving for the global health care system, mainly via savings for the insurance institution RIZIV. PMID:29581094
Prenatal Remote Monitoring of Women With Gestational Hypertensive Diseases: Cost Analysis.
Lanssens, Dorien; Vandenberk, Thijs; Smeets, Christophe Jp; De Cannière, Hélène; Vonck, Sharona; Claessens, Jade; Heyrman, Yenthel; Vandijck, Dominique; Storms, Valerie; Thijs, Inge M; Grieten, Lars; Gyselaers, Wilfried
2018-03-26
Remote monitoring in obstetrics is relatively new; some studies have shown its effectiveness for both mother and child. However, few studies have evaluated the economic impact compared to conventional care, and no cost analysis of a remote monitoring prenatal follow-up program for women diagnosed with gestational hypertensive diseases (GHD) has been published. The aim of this study was to assess the costs of remote monitoring versus conventional care relative to reported benefits. Patient data from the Pregnancy Remote Monitoring (PREMOM) study were used. Health care costs were calculated from patient-specific hospital bills of Ziekenhuis Oost-Limburg (Genk, Belgium) in 2015. Cost comparison was made from three perspectives: the Belgian national health care system (HCS), the National Institution for Insurance of Disease and Disability (RIZIV), and costs for individual patients. The calculations were made for four major domains: prenatal follow-up, prenatal admission to the hospital, maternal and neonatal care at and after delivery, and total amount of costs. A simulation exercise was made in which it was calculated how much could be demanded of RIZIV for funding the remote monitoring service. A total of 140 pregnancies were included, of which 43 received remote monitoring (30.7%) and 97 received conventional care (69.2%). From the three perspectives, there were no differences in costs for prenatal follow-up. Compared to conventional care, remote monitoring patients had 34.51% less HCS and 41.72% less RIZIV costs for laboratory test results (HCS: mean €0.00 [SD €55.34] vs mean €38.28 [SD € 44.08], P<.001; RIZIV: mean €21.09 [SD €27.94] vs mean €36.19 [SD €41.36], P<.001) and a reduction of 47.16% in HCS and 48.19% in RIZIV costs for neonatal care (HCS: mean €989.66 [SD €3020.22] vs mean €1872.92 [SD €5058.31], P<.001; RIZIV: mean €872.97 [SD €2761.64] vs mean €1684.86 [SD €4702.20], P<.001). HCS costs for medication were 1.92% lower in remote monitoring than conventional care (mean €209.22 [SD €213.32] vs mean €231.32 [SD 67.09], P=.02), but were 0.69% higher for RIZIV (mean €122.60 [SD €92.02] vs mean €121.78 [SD €20.77], P<.001). Overall HCS costs for remote monitoring were mean €4233.31 (SD €3463.31) per person and mean €4973.69 (SD €5219.00) per person for conventional care (P=.82), a reduction of €740.38 (14.89%) per person, with savings mainly for RIZIV of €848.97 per person (23.18%; mean €2797.42 [SD €2905.18] vs mean €3646.39 [SD €4878.47], P=.19). When an additional fee of €525.07 per month per pregnant woman for funding remote monitoring costs is demanded, remote monitoring is acceptable in their costs for HCS, RIZIV, and individual patients. In the current organization of Belgian health care, a remote monitoring prenatal follow-up of women with GHD is cost saving for the global health care system, mainly via savings for the insurance institution RIZIV. ©Dorien Lanssens, Thijs Vandenberk, Christophe JP Smeets, Hélène De Cannière, Sharona Vonck, Jade Claessens, Yenthel Heyrman, Dominique Vandijck, Valerie Storms, Inge M Thijs, Lars Grieten, Wilfried Gyselaers. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 26.03.2018.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linenberg, A.; Lander, N.J.
1994-12-31
The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data reviewmore » and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.« less
NASA Astrophysics Data System (ADS)
Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao
2015-11-01
For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.
NASA Astrophysics Data System (ADS)
Lee, Stephen
2017-05-01
Embedded combat medical personnel require accurate and timely biometric data to ensure appropriate life saving measures. Injured warfighter's operating in remote environments require both assessment and monitoring often while still engaged with enemy forces. Small wearable devices that can be placed on injured personnel capable of collecting essential biometric data, including the capacity to remotely deliver collected data in real-time, would allow additional medical monitoring and triage that will greatly help the medic in the battlefield. These new capabilities will provide a force multiplier through remote assessment, increased survivability, and in freeing engaged warfighter's from direct monitoring thus improving combat effectiveness and increasing situational awareness. Key questions around what information does the medic require and how effective it can be relayed to support personnel are at their early stages of development. A low power biometric wearable device capable of reliable electrocardiogram (EKG) rhythm, temperature, pulse, and other vital data collection which can provide real-time remote monitoring are in development for the Soldier.
Lew, Susie Q; Sikka, Neal; Thompson, Clinton; Cherian, Teena; Magnus, Manya
2017-01-01
We examined participant uptake and utilization of remote monitoring devices, and the relationship between remote biometric monitoring (RBM) of weight (Wt) and blood pressure (BP) with self-monitoring requirements. Participants on peritoneal dialysis (PD) ( n = 269) participated in a Telehealth pilot study of which 253 used remote monitoring of BP and 255 for Wt. Blood pressure and Wt readings were transmitted in real time to a Telehealth call center, which were then forwarded to the PD nurses for real-time review. Uptake of RBM was substantial, with 89.7% accepting RBM, generating 74,266 BP and 52,880 Wt measurements over the study period. We found no significant correlates of RBM uptake with regard to gender, marital, educational, socio-economic or employment status, or baseline experience with computers; frequency of use of BP RBM by Black participants was less than non-Black participants, as was Wt RBM, and participants over 55 years old were more likely to use the Wt RBM than their younger counterparts. Having any review of the breach by a nurse was associated with reduced odds of a subsequent BP breach after adjusting for sex, age, and race. Remote biometric monitoring was associated with adherence to self-monitoring BP and Wt requirements associated with PD. Remote biometric monitoring was feasible, allowing for increased communication between patient and PD clinical staff with real-time patient data for providers to act on to potentially improve adherence and outcomes. Copyright © 2017 International Society for Peritoneal Dialysis.
Characterization and analysis of pasture degradation in Rondonia using remote sensing
NASA Astrophysics Data System (ADS)
Numata, Izaya
2006-04-01
Although pasture degradation has been a regional concern in Amazonian ecosystems, our ability to characterize and monitor pasture degradation under different environmental and human-related conditions is still limited. This dissertation evaluated pasture degradation as it varied due to environmental and human factors across different scales by combining field measures, ancillary data, and remote sensing. To better understand the link between pasture nutrients and soil chemistry, samples were analyzed in the laboratory demonstrating that pasture soil fertility and grass nutrients varied significantly according to soil order. Pastures established on Alfisols, nutrient-rich soils, had higher levels of Phosphorus in soil and grass compared to pastures established on Oxisols and Ultisols. To evaluate remote sensing measures of pasture biophysical properties related to pasture degradation, remote sensing analysis focused on a variety of sensors that provide a range in spatial, spectral and temporal scales, including Landsat Thematic Mapper (TM), a field spectrometer, Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). Of the measures derived from Landsat, degraded pastures were best characterized by high non-photosynthetic vegetation (NPV) and low shade fractions, while pastures with high biomass were characterized by high green vegetation and low NPV fractions. Absorption features calculated from hyperspectral spectra collected in the field, including water and ligno-cellulose absorption depth and area, provided the best estimates of field grass measures. Temporal MODIS Normalized Difference Vegetation Index (NDVI) data were used to characterize changes in pasture quality across the region and through time. Degraded pastures were characterized by low temporal NDVI variation and occurred in dry or very wet climate conditions and on nutrient poor soils. Productive pastures were characterized by high temporal NDVI variation, were predominantly found more in the central part of the state, and were located in areas with milder climate conditions and relatively more fertile soils. As a general trend of regional pasture change in Rondonia, the proportions of productive pastures decreased and degraded pastures increased as pastures aged. The results obtained in this dissertation will contribute to understanding pasture sustainability needs for the future of Rondonia and provide the first step in monitoring pasture degradation in the Amazon using remote sensing.
Smart Vest: wearable multi-parameter remote physiological monitoring system.
Pandian, P S; Mohanavelu, K; Safeer, K P; Kotresh, T M; Shakunthala, D T; Gopal, Parvati; Padaki, V C
2008-05-01
The wearable physiological monitoring system is a washable shirt, which uses an array of sensors connected to a central processing unit with firmware for continuously monitoring physiological signals. The data collected can be correlated to produce an overall picture of the wearer's health. In this paper, we discuss the wearable physiological monitoring system called 'Smart Vest'. The Smart Vest consists of a comfortable to wear vest with sensors integrated for monitoring physiological parameters, wearable data acquisition and processing hardware and remote monitoring station. The wearable data acquisition system is designed using microcontroller and interfaced with wireless communication and global positioning system (GPS) modules. The physiological signals monitored are electrocardiogram (ECG), photoplethysmogram (PPG), body temperature, blood pressure, galvanic skin response (GSR) and heart rate. The acquired physiological signals are sampled at 250samples/s, digitized at 12-bit resolution and transmitted wireless to a remote physiological monitoring station along with the geo-location of the wearer. The paper describes a prototype Smart Vest system used for remote monitoring of physiological parameters and the clinical validation of the data are also presented.
Remote monitoring of patients with implanted devices: data exchange and integration.
Van der Velde, Enno T; Atsma, Douwe E; Foeken, Hylke; Witteman, Tom A; Hoekstra, Wybo H G J
2013-06-01
Remote follow-up of implanted implantable cardioverter defibrillators (ICDs) may offer a solution to the problem of overcrowded outpatient clinics, and may also be effective in detecting clinical events early. Data obtained from remote follow up systems, as developed by all major device companies, are stored in a central database system, operated and owned by the device company. A problem now arises that the patient's clinical information is partly stored in the local electronic health record (EHR) system in the hospital, and partly in the remote monitoring database, which may potentially result in patient safety issues. To address the requirement of integrating remote monitoring data in the local EHR, the Integrating the Healthcare Enterprise (IHE) Implantable Device Cardiac Observation (IDCO) profile has been developed. This IHE IDCO profile has been adapted by all major device companies. In our hospital, we have implemented the IHE IDCO profile to import data from the remote databases from two device vendors into the departmental Cardiology Information System (EPD-Vision). Data is exchanged via a HL7/XML communication protocol, as defined in the IHE IDCO profile. By implementing the IHE IDCO profile, we have been able to integrate the data from the remote monitoring databases in our local EHRs. It can be expected that remote monitoring systems will develop into dedicated monitoring and therapy platforms. Data retrieved from these systems should form an integral part of the electronic patient record as more and more out-patient clinic care will shift to personalized care provided at a distance, in other words at the patient's home.
Robert E. Kennedy; Philip A. Townsend; John E. Gross; Warren B. Cohen; Paul Bolstad; Wang Y. Q.; Phyllis Adams
2009-01-01
Remote sensing provides a broad view of landscapes and can be consistent through time, making it an important tool for monitoring and managing protected areas. An impediment to broader use of remote sensing science for monitoring has been the need for resource managers to understand the specialized capabilities of an ever-expanding array of image sources and analysis...
HTTP-based remote operational options for the Vacuum Tower Telescope, Tenerife
NASA Astrophysics Data System (ADS)
Staiger, J.
2012-09-01
We are currently developing network based tools for the Vacuum Tower Telescope (VTT), Tenerife which will allow to operate the telescope together with the newly developed 2D-spectrometer HELLRIDE under remote control conditions. The computational configuration can be viewed as a distributed system linking hardware components of various functionality from different locations. We have developed a communication protocol which is basically an extension of the HTTP standard. It will serve as a carrier for command- and data-transfers. The server-client software is based on Berkley-Unix sockets in a C++ programming environment. A customized CMS will allow to create browser accessible information on-the-fly. Java-based applet pages have been tested as optional user access GUI's. An access tool has been implemented to download near-realtime, web-based target information from NASA/SDO. Latency tests have been carried out at the VTT and the Swedish STT at La Palma for concept verification. Short response times indicate that under favorable network conditions remote interactive telescope handling may be possible. The scientific focus of possible future remote operations will be set on the helioseismology of the solar atmosphere, the monitoring of flares and the footpoint analysis of coronal loops and chromospheric events.
NASA Astrophysics Data System (ADS)
Fong, L. S.; Ambrose, R. F.
2017-12-01
Remote sensing is an excellent way to assess the changing condition of streams and wetlands. Several studies have measured large-scale changes in riparian condition indicators, but few have remotely applied multi-metric assessments on a finer scale to measure changes, such as those caused by restoration, in the condition of small riparian areas. We developed an aerial imagery assessment method (AIAM) that combines landscape, hydrology, and vegetation observations into one index describing overall ecological condition of non-confined streams. Verification of AIAM demonstrated that sites in good condition (as assessed on-site by the California Rapid Assessment Method) received high AIAM scores. (AIAM was not verified with poor condition sites.) Spearman rank correlation tests comparing AIAM and the field-based California Rapid Assessment Method (CRAM) results revealed that some components of the two methods were highly correlated. The application of AIAM is illustrated with time-series restoration trajectories of three southern California stream restoration projects aged 15 to 21 years. The trajectories indicate that the projects improved in condition in years following their restoration, with vegetation showing the most dynamic change over time. AIAM restoration trajectories also overlapped to different degrees with CRAM chronosequence restoration performance curves that demonstrate the hypothetical development of high-performing projects. AIAM has high potential as a remote ecological assessment method and effective tool to determine restoration trajectories. Ultimately, this tool could be used to further improve stream and wetland restoration management.
Development and implementation of a GEOGLAM Crop Monitor web interface
NASA Astrophysics Data System (ADS)
Oliva, P.; Sanchez, A.; Humber, M. L.; Becker-Reshef, I.; Justice, C. J.; McGaughey, K.; Barker, B.
2016-12-01
Beginning in September 2013, the GEOGLAM Crop Monitor activity has provided earth observation (EO) data to a network of partners and collected crop assessments on a subnational basis through a web interface known as the Crop Assessment Tool. Based on the collection of monthly crop assessments, a monthly crop condition bulletin is published in the Agricultural Market Information System (AMIS) Market Monitor report. This workflow has been successfully applied to food security applications through the Early Warning Crop Monitor activity. However, a lack of timely and accurate information on crop conditions and prospects at the national scale is a critical issue in the majority of southern and eastern African countries and some South American countries. Such information is necessary for informed and prompt decision making in the face of emergencies, food insecurity and planning requirements for agricultural markets. This project addresses these needs through the development of relevant, user-friendly remote sensing monitor systems, collaborative internet technology, and collaboration with national and regional agricultural monitoring networks. By building on current projects and relationships established through the various GEOGLAM Crop Monitor activities, this project aims to ultimately provide EO-informed crop condition maps and charts designed for economics and policy oriented audiences, thereby providing quick and easy to understand products on crop conditions as the season progresses. Integrating these data and assessments vertically throughout the system provides a basis for regional sharing and collaboration in food security applications.
Validation of adipose lipid content as a body condition index for polar bears
McKinney, Melissa A.; Atwood, Todd C.; Dietz, Rune; Sonne, Christian; Iverson, Sara J.; Peacock, Elizabeth
2014-01-01
Body condition is a key indicator of individual and population health. Yet, there is little consensus as to the most appropriate condition index (CI), and most of the currently used CIs have not been thoroughly validated and are logistically challenging. Adipose samples from large datasets of capture biopsied, remote biopsied, and harvested polar bears were used to validate adipose lipid content as a CI via tests of accuracy, precision, sensitivity, biopsy depth, and storage conditions and comparisons to established CIs, to measures of health and to demographic and ecological parameters. The lipid content analyses of even very small biopsy samples were highly accurate and precise, but results were influenced by tissue depth at which the sample was taken. Lipid content of capture biopsies and samples from harvested adult females was correlated with established CIs and/or conformed to expected biological variation and ecological changes. However, lipid content of remote biopsies was lower than capture biopsies and harvested samples, possibly due to lipid loss during dart retrieval. Lipid content CI is a biologically relevant, relatively inexpensive and rapidly assessed CI and can be determined routinely for individuals and populations in order to infer large-scale spatial and long-term temporal trends. As it is possible to collect samples during routine harvesting or remotely using biopsy darts, monitoring and assessment of body condition can be accomplished without capture and handling procedures or noninvasively, which are methods that are preferred by local communities. However, further work is needed to apply the method to remote biopsies.
Validation of adipose lipid content as a body condition index for polar bears
McKinney, Melissa A; Atwood, Todd; Dietz, Rune; Sonne, Christian; Iverson, Sara J; Peacock, Elizabeth
2014-01-01
Body condition is a key indicator of individual and population health. Yet, there is little consensus as to the most appropriate condition index (CI), and most of the currently used CIs have not been thoroughly validated and are logistically challenging. Adipose samples from large datasets of capture biopsied, remote biopsied, and harvested polar bears were used to validate adipose lipid content as a CI via tests of accuracy, precision, sensitivity, biopsy depth, and storage conditions and comparisons to established CIs, to measures of health and to demographic and ecological parameters. The lipid content analyses of even very small biopsy samples were highly accurate and precise, but results were influenced by tissue depth at which the sample was taken. Lipid content of capture biopsies and samples from harvested adult females was correlated with established CIs and/or conformed to expected biological variation and ecological changes. However, lipid content of remote biopsies was lower than capture biopsies and harvested samples, possibly due to lipid loss during dart retrieval. Lipid content CI is a biologically relevant, relatively inexpensive and rapidly assessed CI and can be determined routinely for individuals and populations in order to infer large-scale spatial and long-term temporal trends. As it is possible to collect samples during routine harvesting or remotely using biopsy darts, monitoring and assessment of body condition can be accomplished without capture and handling procedures or noninvasively, which are methods that are preferred by local communities. However, further work is needed to apply the method to remote biopsies. PMID:24634735
Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.
Van Wieringen, Matt; Eklund, J
2008-01-01
Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.
To the National Map and beyond
Kelmelis, J.
2003-01-01
Scientific understanding, technology, and social, economic, and environmental conditions have driven a rapidly changing demand for geographic information, both digital and analog. For more than a decade, the U.S. Geological Survey (USGS) has been developing innovative partnerships with other government agencies and private industry to produce and distribute geographic information efficiently; increase activities in remote sensing to ensure ongoing monitoring of the land surface; and develop new understanding of the causes and consequences of land surface change. These activities are now contributing to a more robust set of geographic information called The National Map (TNM). The National Map is designed to provide an up-to-date, seamless, horizontally and vertically integrated set of basic digital geographic data, a frequent monitoring of changes on the land surface, and an understanding of the condition of the Earth's surface and many of the processes that shape it. The USGS has reorganized its National Mapping Program into three programs to address the continuum of scientific activities-describing (mapping), monitoring, understanding, modeling, and predicting. The Cooperative Topographic Mapping Program focuses primarily on the mapping and revision aspects of TNM. The National Map also includes results from the Land Remote Sensing and Geographic Analysis and Monitoring Programs that provide continual updates, new insights, and analytical tools. The National Map is valuable as a framework for current research, management, and operational activities. It also provides a critical framework for the development of distributed, spatially enabled decision support systems.
NASA Astrophysics Data System (ADS)
Wibisana, H.; Zainab, S.; Dara K., A.
2018-01-01
Chlorophyll-a is one of the parameters used to detect the presence of fish populations, as well as one of the parameters to state the quality of a water. Research on chlorophyll concentrations has been extensively investigated as well as with chlorophyll-a mapping using remote sensing satellites. Mapping of chlorophyll concentration is used to obtain an optimal picture of the condition of waters that is often used as a fishing area by the fishermen. The role of remote sensing is a technological breakthrough in broadly monitoring the condition of waters. And in the process to get a complete picture of the aquatic conditions it would be used an algorithm that can provide an image of the concentration of chlorophyll at certain points scattered in the research area of capture fisheries. Remote sensing algorithms have been widely used by researchers to detect the presence of chlorophyll content, where the channels corresponding to the mapping of chlorophyll -concentrations from Landsat 8 images are canals 4, 3 and 2. With multiple channels from Landsat-8 satellite imagery used for chlorophyll detection, optimum algorithmic search can be formulated to obtain maximum results of chlorophyll-a concentration in the research area. From the calculation of remote sensing algorithm hence can be known the suitable algorithm for condition at coast of Pasuruan, where green channel give good enough correlation equal to R2 = 0,853 with algorithm for Chlorophyll-a (mg / m3) = 0,093 (R (-0) Red - 3,7049, from this result it can be concluded that there is a good correlation of the green channel that can illustrate the concentration of chlorophyll scattered along the coast of Pasuruan
Solar wind and magnetosphere interactions
NASA Technical Reports Server (NTRS)
Russell, C. T.; Allen, J. H.; Cauffman, D. P.; Feynman, J.; Greenstadt, E. W.; Holzer, R. E.; Kaye, S. M.; Slavin, J. A.; Manka, R. H.; Rostoker, G.
1979-01-01
The relationship between the magnetosphere and the solar wind is addressed. It is noted that this interface determines how much of the solar plasma and field energy is transferred to the Earth's environment, and that this coupling not only varies in time, responding to major solar disturbances, but also to small changes in solar wind conditions and interplanetary field directions. It is recommended that the conditions of the solar wind and interplanetary medium be continuously monitored, as well as the state of the magnetosphere. Other recommendations include further study of the geomagnetic tail, tests of Pc 3,4 magnetic pulsations as diagnostics of the solar wind, and tests of kilometric radiation as a remote monitor of the auroral electrojet.
Design of Remote Monitoring System of Irrigation based on GSM and ZigBee Technology
NASA Astrophysics Data System (ADS)
Xiao xi, Zheng; Fang, Zhao; Shuaifei, Shao
2018-03-01
To solve the problems of low level of irrigation and waste of water resources, a remote monitoring system for farmland irrigation based on GSM communication technology and ZigBee technology was designed. The system is composed of sensors, GSM communication module, ZigBee module, host computer, valve and so on. The system detects and closes the pump and the electromagnetic valve according to the need of the system, and transmits the monitoring information to the host computer or the user’s Mobile phone through the GSM communication network. Experiments show that the system has low power consumption, friendly man-machine interface, convenient and simple. It can monitor agricultural environment remotely and control related irrigation equipment at any time and place, and can better meet the needs of remote monitoring of farmland irrigation.
Integration of multispectral and SAR data for monitoring forest ecosystems recovery after fire
NASA Astrophysics Data System (ADS)
Stankova, Nataliya; Nedkov, Roumen; Ivanova, Iva; Avetisyan, Daniela
2017-09-01
The aim of this study is assessing the impacts and monitoring the condition and recovery processes of forest ecosystems after fire based on remote aerospace methods and data. To achieve this goal, satellite imagery in microwave and optical range of the spectrum were used. A hybrid model for assessing the instantaneous condition of forest ecosystems after fire that uses parallel data from optical and Synthetic Aperture Radar (SAR) was developed. Based on the three Tasseled Cap components (Brightness-BR, Greenness-GR and Wetness-W), a vector describing the current condition of the forest ecosystems was obtained and used as input data from the optical range. Results obtained by implementation of the proposed approach show that the integrated composite images of VIC and SAR represent the degree of recovery.
NASA Astrophysics Data System (ADS)
Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Pedreros, D.; Husak, G. J.; Bohms, S.
2011-12-01
The high global food prices in 2008 led to the acknowledgement that there is a need to monitor the inter-connectivity of global and regional markets and their potential impacts on food security in many more regions than previously considered. The crisis prompted an expansion of monitoring by the Famine Early Warning Systems Network (FEWS NET) to include additional countries, beyond those where food security has long been of concern. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of this increased mandate for remote monitoring. We present a new product for measuring actual evapotranspiration (ETa) based on the implementation of a surface energy balance model and site improvements of two standard FEWS NET monitoring products: normalized difference vegetation index (NDVI) and satellite-based rainfall estimates. USGS FEWS NET has implemented a simplified surface energy balance model to produce operational ETa anomalies for Africa. During the growing season, ETa anomalies express surplus or deficit crop water use which is directly related to crop condition and biomass. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with a much improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a vastly improved spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. FEWS NET uses satellite rainfall estimates as inputs for monitoring agricultural food production. By combining high resolution (0.05 deg) rainfall mean fields with Tropical Rainfall Measuring Mission rainfall estimates and infrared temperature data, we provide pentadal (5-day) rainfall fields suitable for crop monitoring and modeling. We also present two new monitoring tools, the Early Warning eXplorer (EWX) and the Decision Support Interface (DSI). The EWX is a data analysis tool which provides the ability to rapidly visualize multiple remote sensing datasets and compare standardized anomaly maps and time series. The DSI uses remote sensing data in an automated fashion to map areas of drought concern and ranks their severity at both crop zone and administrative levels. New and improved data products and more targeted analysis tools are a necessity as food security monitoring requirements expand and resources become limited.
The development of a tele-monitoring system for physiological parameters based on the B/S model.
Shuicai, Wu; Peijie, Jiang; Chunlan, Yang; Haomin, Li; Yanping, Bai
2010-01-01
The development of a new physiological multi-parameter remote monitoring system is based on the B/S model. The system consists of a server monitoring center, Internet network and PC-based multi-parameter monitors. Using the B/S model, the clients can browse web pages via the server monitoring center and download and install ActiveX controls. The physiological multi-parameters are collected, displayed and remotely transmitted. The experimental results show that the system is stable, reliable and operates in real time. The system is suitable for use in physiological multi-parameter remote monitoring for family and community healthcare. Copyright © 2010 Elsevier Ltd. All rights reserved.
Insect remote sensing using a polarization sensitive cw lidar system in chinese rice fields
NASA Astrophysics Data System (ADS)
Zhu, Shiming; Malmqvist, Elin; Li, Yiyun; Jansson, Samuel; Li, Wansha; Duan, Zheng; Fu, Wei; Svanberg, Katarina; Bood, Joakim; Feng, Hongqiang; Åkesson, Susanne; Song, Ziwei; Zhang, Baoxin; Zhao, Guangyu; Li, Dunsong; Brydegaard, Mikkel; Svanberg, Sune
2018-04-01
A joint Chinese-Swedish field campaign of Scheimpflug continuous-wave lidar monitoring of rice-field flying pest insects was pursued in very hot July weather conditions close to Guangzhou, China. The occurrence of insects, birds and bats with almost 200 hours of round-the-clock polarization-sensitive recordings was studied. Wing-beat frequency recordings and depolarization properties were used for target classification. Influence of weather conditions on the flying fauna was also investigated.
NASA Astrophysics Data System (ADS)
Diaz, J. A.; Pieri, D. C.; Bland, G.; Fladeland, M. M.
2013-12-01
The development of small unmanned aerial systems (sUAS) with a variety of sensor packages, enables in situ and proximal remote sensing measurements of volcanic plumes. Using Costa Rican volcanoes as a Natural Laboratory, the University of Costa Rica as host institution, in collaboration with four NASA centers, have started an initiative to develop low-cost, field-deployable airborne platforms to perform volcanic gas & ash plume research, and in-situ volcanic monitoring in general, in conjunction with orbital assets and state-of-the-art models of plume transport and composition. Several gas sensors have been deployed into the active plume of Turrialba Volcano including a miniature mass spectrometer, and an electrochemical SO2 sensor system with temperature, pressure, relative humidity, and GPS sensors. Several different airborne platforms such as manned research aircraft, unmanned aerial vehicles, tethered balloons, as well as man-portable in-situ ground truth systems are being used for this research. Remote sensing data is also collected from the ASTER and OMI spaceborne instruments and compared with in situ data. The CARTA-UAV 2013 Mission deployment and follow up measurements successfully demonstrated a path to study and visualize gaseous volcanic emissions using mass spectrometer and gas sensor based instrumentation in harsh environment conditions to correlate in situ ground/airborne data with remote sensing satellite data for calibration and validation purposes. The deployment of such technology improves on our current capabilities to detect, analyze, monitor, model, and predict hazards presented to aircraft by volcanogenic ash clouds from active and impending volcanic eruptions.
An automated digital imaging system for environmental monitoring applications
Bogle, Rian; Velasco, Miguel; Vogel, John
2013-01-01
Recent improvements in the affordability and availability of high-resolution digital cameras, data loggers, embedded computers, and radio/cellular modems have advanced the development of sophisticated automated systems for remote imaging. Researchers have successfully placed and operated automated digital cameras in remote locations and in extremes of temperature and humidity, ranging from the islands of the South Pacific to the Mojave Desert and the Grand Canyon. With the integration of environmental sensors, these automated systems are able to respond to local conditions and modify their imaging regimes as needed. In this report we describe in detail the design of one type of automated imaging system developed by our group. It is easily replicated, low-cost, highly robust, and is a stand-alone automated camera designed to be placed in remote locations, without wireless connectivity.
Monitoring rice (oryza sativa L.) growth using multifrequency microwave scatterometers
USDA-ARS?s Scientific Manuscript database
Microwave remote sensing can help monitor the land surface water cycle and crop growth. This type of remote sensing has great potential over conventional remote sensing using the visible and infrared regions due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-b...
Groundwater inventory and monitoring technical guide: Remote sensing of groundwater
USDA-ARS?s Scientific Manuscript database
The application of remotely sensed data in conjunction with in situ data greatly enhances the ability of the USDA Forest Service to meet the demands of field staff, customers, and others for groundwater information. Generally, the use of remotely sensed data to inventory and monitor groundwater reso...
NASA Astrophysics Data System (ADS)
Haiyang, Yu; Yanmei, Liu; Guijun, Yang; Xiaodong, Yang; Dong, Ren; Chenwei, Nie
2014-03-01
To achieve dynamic winter wheat quality monitoring and forecasting in larger scale regions, the objective of this study was to design and develop a winter wheat quality monitoring and forecasting system by using a remote sensing index and environmental factors. The winter wheat quality trend was forecasted before the harvest and quality was monitored after the harvest, respectively. The traditional quality-vegetation index from remote sensing monitoring and forecasting models were improved. Combining with latitude information, the vegetation index was used to estimate agronomy parameters which were related with winter wheat quality in the early stages for forecasting the quality trend. A combination of rainfall in May, temperature in May, illumination at later May, the soil available nitrogen content and other environmental factors established the quality monitoring model. Compared with a simple quality-vegetation index, the remote sensing monitoring and forecasting model used in this system get greatly improved accuracy. Winter wheat quality was monitored and forecasted based on the above models, and this system was completed based on WebGIS technology. Finally, in 2010 the operation process of winter wheat quality monitoring system was presented in Beijing, the monitoring and forecasting results was outputted as thematic maps.
Aerial sketchmapping for monitoring forest conditions in Southern Brazil
Y. M. Malheiros de Oliveira; M. A. Doetzer Rosot; N. B. da Luz; W. M. Ciesla; E.W. Johnson; R. Rhea; J.F. Jr. Penteado
2006-01-01
Aerial sketchmapping is a simple, low cost remote sensing method used for detection and mapping of forest damage caused by biotic agents (insects, pathogens and other pests) and abiotic agents (wind, fire, storms, hurricane, ice storms) in North America. This method was introduced to Brazil in 2001/2002 via a USDA Forest Service/EMBRAPA technical exchange program,...
Environmental Activities of the U.S. Coast Guard
2009-05-07
Antarctic , and provides supplies to remote stations. The USCG also participates in the International Ice Patrol, which monitors iceberg danger in...the northwest Atlantic, particularly in the area of the Grand Banks of Newfoundland. The iceberg season is usually from February to July, but the Ice...Patrol is logistically flexible and can commence operations when iceberg conditions dictate
Remote sensing entropy to assess the sustainability of rainfall in tropical catchment
NASA Astrophysics Data System (ADS)
Mahmud, M. R.; Reba, M. N. M.; Wei, J. S.; Razak, N. H. Abdul
2018-02-01
This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments. There were two major issues need to be anticipated in monitoring the tropical catchments; first is the frequent monitoring of the rainfall and second is the appropriate indicator that sensitive to rainfall pattern changes or disorder. For the first issue, the use of satellite remote sensing precipitation data is suggested. Meanwhile for the second issue, the utilization of entropy concept in interpreting the disorder of temporal rainfall can be used to assess the sustain ability had been successfully adopted in some studies. Therefore, we hypothesized that the use of satellite precipitation as main data to compute entropy can be a novel tool in anticipating the above-mentioned conflict earlier. The remote sensing entropy results and in-situ river level showed good agreement indicating its reliability. 72% of the catchment has moderate to good rainfall supply during normal or non-drought condition. However, our result showed that the catchments were highly sensitive to drought especially in the west coast and southern part of the Peninsular Malaysia. High resiliency was identified in the east coast. We summarized that the proposed entropy-quantity scheme was a useful tool for cost-effective, quick, and operational sustainability assessment This study demonstrated the utility of entropy computation using the satellite precipitation remote sensing data to assess the sustainability of rainfall in tropical catchments.
Yasunari, Teppei J; Kim, Kyu-Myong; da Silva, Arlindo M; Hayasaki, Masamitsu; Akiyama, Masayuki; Murao, Naoto
2018-04-25
To identify the unusual climate conditions and their connections to air pollutions in a remote area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA's MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol re-analysis data closely reproduced the PM 2.5 variations in Sapporo for the case of smoke arrival in July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, accompanied by warmer and drier surface conditions in the months leading to the fires, inducing long-lasting soil dryness and producing climate and environmental conditions conducive to active wildfires. Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, may be essential in more accurately predicting the effects of wildfires on air quality.
Using Internet of Things inspired wireless sensor networks to monitor cryospheric processes
NASA Astrophysics Data System (ADS)
Hart, J. K.; Martinez, K.
2017-12-01
In order to understand how modern climate change is effecting cryospheric environments we need to monitor these remote environments. There are few measurements of current day conditions because of the logistical difficulties. In particular, the whole year needs to be monitored, as well as accessing challenging environments (such as beneath the glacier). We demonstrate from Norway, Iceland and Scotland how embedded sensors along with geophysical (GPR)and surveying data (dGPS, TLS, UAV and time-lapse photography) can be used to investigate recent dramatic environmental changes associated with climate change. This includes: i) a comparison between stable and unstable glacier retreat (the subglacial hydrology, glacier motion, englacial structure and till behaviour of a rapid subaqueous glacier break-up compared with slower terrestrial retreat); and iii) an investigation of future ground stability and greenhouse gas release associated with periglacial conditions.
Relative radiometric calibration for multispectral remote sensing imagery
NASA Astrophysics Data System (ADS)
Ren, Hsuan
2006-10-01
Our environment has been changed continuously by nature causes or human activities. In order to identify what has been changed during certain time period, we need to spend enormous resources to collect all kinds of data and analyze them. With remote sensing images, change detection has become one efficient and inexpensive technique. It has wide applications including disaster management, agriculture analysis, environmental monitoring and military reconnaissance. To detect the changes between two remote sensing images collected at different time, radiometric calibration is one of the most important processes. Under the different weather and atmosphere conditions, even the same material might be resulting distinct radiance spectrum in two images. In this case, they will be misclassified as changes and false alarm rate will also increase. To achieve absolute calibration, i.e., to convert the radiance to reflectance spectrum, the information about the atmosphere condition or ground reference materials with known reflectance spectrum is needed but rarely available. In this paper, we present relative radiometric calibration methods which transform image pair into similar atmospheric effect instead of remove it in absolutely calibration, so that the information of atmosphere condition is not required. A SPOT image pair will be used for experiment to demonstrate the performance.
Architecture for Control of the K9 Rover
NASA Technical Reports Server (NTRS)
Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard
2006-01-01
Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.
Remote console for virtual telerehabilitation.
Lewis, Jeffrey A; Boian, Rares F; Burdea, Grigore; Deutsch, Judith E
2005-01-01
The Remote Console (ReCon) telerehabilitation system provides a platform for therapists to guide rehabilitation sessions from a remote location. The ReCon system integrates real-time graphics, audio/video communication, private therapist chat, post-test data graphs, extendable patient and exercise performance monitoring, exercise pre-configuration and modification under a single application. These tools give therapists the ability to conduct training, monitoring/assessment, and therapeutic intervention remotely and in real-time.
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
A remote data access architecture for home-monitoring health-care applications.
Lin, Chao-Hung; Young, Shuenn-Tsong; Kuo, Te-Son
2007-03-01
With the aging of the population and the increasing patient preference for receiving care in their own homes, remote home care is one of the fastest growing areas of health care in Taiwan and many other countries. Many remote home-monitoring applications have been developed and implemented to enable both formal and informal caregivers to have remote access to patient data so that they can respond instantly to any abnormalities of in-home patients. The aim of this technology is to give both patients and relatives better control of the health care, reduce the burden on informal caregivers and reduce visits to hospitals and thus result in a better quality of life for both the patient and his/her family. To facilitate their widespread adoption, remote home-monitoring systems take advantage of the low-cost features and popularity of the Internet and PCs, but are inherently exposed to several security risks, such as virus and denial-of-service (DoS) attacks. These security threats exist as long as the in-home PC is directly accessible by remote-monitoring users over the Internet. The purpose of the study reported in this paper was to improve the security of such systems, with the proposed architecture aimed at increasing the system availability and confidentiality of patient information. A broker server is introduced between the remote-monitoring devices and the in-home PCs. This topology removes direct access to the in-home PC, and a firewall can be configured to deny all inbound connections while the remote home-monitoring application is operating. This architecture helps to transfer the security risks from the in-home PC to the managed broker server, on which more advanced security measures can be implemented. The pros and cons of this novel architecture design are also discussed and summarized.
NASA Technical Reports Server (NTRS)
1973-01-01
The applications are reported of new remote sensing techniques for earth resources surveys and environmental monitoring. Applications discussed include: vegetation systems, environmental monitoring, and plant protection. Data processing systems are described.
Landolina, Maurizio; Marzegalli, Maurizio; Lunati, Maurizio; Perego, Giovanni B; Guenzati, Giuseppe; Curnis, Antonio; Valsecchi, Sergio; Borghetti, Francesca; Borghi, Gabriella; Masella, Cristina
2013-01-01
Background Heart failure patients with implantable defibrillators place a significant burden on health care systems. Remote monitoring allows assessment of device function and heart failure parameters, and may represent a safe, effective, and cost-saving method compared to conventional in-office follow-up. Objective We hypothesized that remote device monitoring represents a cost-effective approach. This paper summarizes the economic evaluation of the Evolution of Management Strategies of Heart Failure Patients With Implantable Defibrillators (EVOLVO) study, a multicenter clinical trial aimed at measuring the benefits of remote monitoring for heart failure patients with implantable defibrillators. Methods Two hundred patients implanted with a wireless transmission–enabled implantable defibrillator were randomized to receive either remote monitoring or the conventional method of in-person evaluations. Patients were followed for 16 months with a protocol of scheduled in-office and remote follow-ups. The economic evaluation of the intervention was conducted from the perspectives of the health care system and the patient. A cost-utility analysis was performed to measure whether the intervention was cost-effective in terms of cost per quality-adjusted life year (QALY) gained. Results Overall, remote monitoring did not show significant annual cost savings for the health care system (€1962.78 versus €2130.01; P=.80). There was a significant reduction of the annual cost for the patients in the remote arm in comparison to the standard arm (€291.36 versus €381.34; P=.01). Cost-utility analysis was performed for 180 patients for whom QALYs were available. The patients in the remote arm gained 0.065 QALYs more than those in the standard arm over 16 months, with a cost savings of €888.10 per patient. Results from the cost-utility analysis of the EVOLVO study show that remote monitoring is a cost-effective and dominant solution. Conclusions Remote management of heart failure patients with implantable defibrillators appears to be cost-effective compared to the conventional method of in-person evaluations. Trial Registration ClinicalTrials.gov NCT00873899; http://clinicaltrials.gov/show/NCT00873899 (Archived by WebCite at http://www.webcitation.org/6H0BOA29f). PMID:23722666
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation
NASA Astrophysics Data System (ADS)
Battista, L.
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
NASA Astrophysics Data System (ADS)
Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui
2017-01-01
Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.
A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.
Battista, L
2016-09-01
Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.
Effective technologies for noninvasive remote monitoring in heart failure.
Conway, Aaron; Inglis, Sally C; Clark, Robyn A
2014-06-01
Trials of new technologies to remotely monitor for signs and symptoms of worsening heart failure are continually emerging. The extent to which technological differences impact the effectiveness of noninvasive remote monitoring for heart failure management is unknown. This study examined the effect of specific technology used for noninvasive remote monitoring of people with heart failure on all-cause mortality and heart failure-related hospitalizations. A subanalysis of a large systematic review and meta-analysis was conducted. Studies were stratified according to the specific type of technology used, and separate meta-analyses were performed. Four different types of noninvasive remote monitoring technologies were identified, including structured telephone calls, videophone, interactive voice response devices, and telemonitoring. Only structured telephone calls and telemonitoring were effective in reducing the risk of all-cause mortality (relative risk [RR]=0.87; 95% confidence interval [CI], 0.75-1.01; p=0.06; and RR=0.62; 95% CI, 0.50-0.77; p<0.0001, respectively) and heart failure-related hospitalizations (RR=0.77; 95% CI, 0.68-0.87; p<0.001; and RR=0.75; 95% CI, 0.63-0.91; p=0.003, respectively). More research data are required for videophone and interactive voice response technologies. This subanalysis identified that only two of the four specific technologies used for noninvasive remote monitoring in heart failure improved outcomes. When results of studies that involved these disparate technologies were combined in previous meta-analyses, significant improvements in outcomes were identified. As such, this study has highlighted implications for future meta-analyses of randomized controlled trials focused on evaluating the effectiveness of remote monitoring in heart failure.
NASA Astrophysics Data System (ADS)
Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.
2014-12-01
Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.
Monitoring Mediterranean marine pollution using remote sensing and hydrodynamic modelling
NASA Astrophysics Data System (ADS)
La Loggia, Goffredo; Capodici, Fulvio; Ciraolo, Giuseppe; Drago, Aldo; Maltese, Antonino
2011-11-01
Human activities contaminate both coastal areas and open seas, even though impacts are different in terms of pollutants, ecosystems and recovery time. In particular, Mediterranean offshore pollution is mainly related to maritime transport of oil, accounting for 25% of the global maritime traffic and, during the last 25 years, for nearly 7% of the world oil accidents, thus causing serious biological impacts on both open sea and coastal zone habitats. This paper provides a general review of maritime pollution monitoring using integrated approaches of remote sensing and hydrodynamic modeling; focusing on the main results of the MAPRES (Marine pollution monitoring and detection by aerial surveillance and satellite images) research project on the synergistic use of remote sensing, forecasting, cleanup measures and environmental consequences. The paper also investigates techniques of oil spill detection using SAR images, presenting the first results of "Monitoring of marine pollution due to oil slick", a COSMO-SkyMed funded research project where X-band SAR constellation images provided by the Italian Space Agency are used. Finally, the prospect of using real time observations of marine surface conditions is presented through CALYPSO project (CALYPSO-HF Radar Monitoring System and Response against Marine Oil Spills in the Malta Channel), partly financed by the EU under the Operational Programme Italia-Malta 2007-2013. The project concerns the setting up of a permanent and fully operational HF radar observing system, capable of recording surface currents (in real-time with hourly updates) in the stretch of sea between Malta and Sicily. A combined use of collected data and numerical models, aims to optimize intervention and response in the case of marine oil spills.
NASA Astrophysics Data System (ADS)
Kayendeke, Ellen; French, Helen K.; Kansiime, Frank; Bamutaze, Yazidhi
2017-04-01
Papyrus wetlands predominant in southern, central and eastern Africa; are important in supporting community livelihoods since they provide land for agriculture, materials for building and craft making, as well as services of water purification and water storage. Papyrus wetlands are dominated by a sedge Cyperus papyrus, which is rooted at wetland edges but floats in open water with the help of a root mat composed of intermingled roots and rhizomes. The hypothesis is that the papyrus mat structure reduces flow velocity and increases storage volume during storm events, which not only helps to mitigate flood events but aids in storage of excess water that can be utilised during the dry seasons. However, due to sparse gauging there is inadequate meteorological and hydrological data for continuous monitoring of the hydrological functioning of papyrus systems. The objective of this study was to assess the potential of utilising freely available remote sensing data (MODIS, Landsat, and Sentinel-1) for cost effective monitoring of papyrus wetland systems, and their response to climatic stresses. This was done through segmentation of MODIS NDVI and Landsat derived NDWI datasets; as well as classification of Sentinel-1 images taken in wet and dry seasons of 2015 and 2016. The classified maps were used as proxies for changes in hydrological conditions with time. The preliminary results show that it is possible to monitor changes in biomass, wetland inundation extent, flooded areas, as well as changes in moisture content in surrounding agricultural areas in the different seasons. Therefore, we propose that remote sensing data, when complemented with available meteorological data, is a useful resource for monitoring changes in the papyrus wetland systems as a result of climatic and human induced stresses.
Thomas, David P; Fitz, Joseph W; Johnston, Vanessa; Townsend, Joanne; Kneebone, Warwick
2011-07-01
Effective monitoring of trends in tobacco use is an essential element of tobacco control policy. Monitoring tobacco consumption using tobacco wholesale data has advantages over other methods of surveillance. In the present work, a research project that monitored tobacco consumption in 25 remote Aboriginal communities and its translation to a policy to implement this monitoring routinely in the entire Northern Territory of Australia is described. Tobacco consumption and trends were estimated using wholesale (or occasionally sales) data from all retail outlets in 25 remote Aboriginal communities. Self-reported consumption was estimated from the National Aboriginal and Torres Strait Islander Social Survey in 2008. Local consumption results were fed back in posters to local organisations and health staff. Estimates of consumption from wholesale data and self-report were similar (6.8 and 6.7 cigarettes/day/person aged 15 and over). Consumption was higher in the tropical Top End than in arid Central Australia, and 24% of tobacco was consumed as loose tobacco. The overall trend in monthly consumption was not significantly different from 0. Local communities could be ranked by their local trends in monthly consumption. Monitoring tobacco consumption using wholesale tobacco data is a practical and unobtrusive surveillance method that is being introduced as a new condition of tobacco retail licenses in the Northern Territory of Australia. It overcomes some problems with consumption estimates from routine surveys, enables rapid feedback and use of results and is particularly well suited for hard-to-reach discrete populations, such as remote Aboriginal communities in Australia. It has already been used to evaluate the impact of local tobacco control activities.
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G. R.; Wang, H.
1975-01-01
The author has identified the following significant results. An integrated satellite-aircraft-drogue approach was developed which employs remotely tracked expendable drogues together with satellite and aircraft observations of oil slicks, waste plumes, and natural tracers, such as suspended sediment. Tests conducted on the Continental Shelf and in Delaware Bay indicate that the system provides a cost effective means of monitoring current circulation and verifying oil slick and ocean waste dispersion models even under severe environmental conditions.
Remote personal health monitoring with radio waves
NASA Astrophysics Data System (ADS)
Nguyen, Andrew
2008-03-01
We present several techniques utilizing radio-frequency identification (RFID) technology for personal health monitoring. One technique involves using RFID sensors external to the human body, while another technique uses both internal and external RFID sensors. Simultaneous monitoring of many patients in a hospital setting can also be done using networks of RFID sensors. All the monitoring are done wirelessly, either continuously or periodically in any interval, in which the sensors collect information on human parts such as the lungs or heart and transmit this information to a router, PC or PDA device connected to the internet, from which patient's condition can be diagnosed and viewed by authorized medical professionals in remote locations. Instantaneous information allows medical professionals to intervene properly and timely to prevent possible catastrophic effects to patients. The continuously monitored information provides medical professionals more complete and long-term studies of patients. All of these result in not only enhancement of the health treatment quality but also significant reduction of medical expenditure. These techniques demonstrate that health monitoring of patients can be done wirelessly at any time and any place without interfering with the patients' normal activities. Implementing the RFID technology would not only help reduce the enormous and significantly growing medical costs in the U.S.A., but also help improve the health treatment capability as well as enhance the understanding of long-term personal health and illness.
Monitoring land at regional and national scales and the role of remote sensing
NASA Astrophysics Data System (ADS)
Dymond, John R.; Bégue, Agnes; Loseen, Danny
There is a need world wide for monitoring land and its ecosystems to ensure their sustainable use. Despite the laudable intentions of Agenda 21 at the Rio Earth Summit, 1992, in which many countries agreed to monitor and report on the status of their land, systematic monitoring of land has yet to begin. The problem is truly difficult, as the earth's surface is vast and the funds available for monitoring are relatively small. This paper describes several methods for cost-effective monitoring of large land areas, including: strategic monitoring; statistical sampling; risk-based approaches; integration of land and water monitoring; and remote sensing. The role of remote sensing is given special attention, as it is the only method that can monitor land exhaustively and directly, at regional and national scales. It is concluded that strategic monitoring, whereby progress towards environmental goals is assessed, is a vital element in land monitoring as it provides a means for evaluating the utility of monitoring designs.
Dougherty, Donald M; Hill-Kapturczak, Nathalie; Liang, Yuanyuan; Karns, Tara E; Cates, Sharon E; Lake, Sarah L; Mullen, Jillian; Roache, John D
2014-09-01
Research on contingency management to treat excessive alcohol use is limited due to feasibility issues with monitoring adherence. This study examined the effectiveness of using transdermal alcohol monitoring as a continuous measure of alcohol use to implement financial contingencies to reduce heavy drinking. Twenty-six male and female drinkers (from 21 to 39 years old) were recruited from the community. Participants were randomly assigned to one of the two treatment sequences. Sequence 1 received 4 weeks of no financial contingency (i.e., $0) drinking followed by 4 weeks each of $25 and then $50 contingency management; Sequence 2 received 4 weeks of $25 contingency management followed by 4 weeks each of no contingency (i.e., $0) and then $50 contingency management. During the $25 and $50 contingency management conditions, participants were paid each week when the Secure Continuous Remote Alcohol Monitor (SCRAM-II™) identified no heavy drinking days. Participants in both contingency management conditions had fewer drinking episodes and reduced frequencies of heavy drinking compared to the $0 condition. Participants randomized to Sequence 2 (receiving $25 contingency before the $0 condition) exhibited less frequent drinking and less heavy drinking in the $0 condition compared to participants from Sequence 1. Transdermal alcohol monitoring can be used to implement contingency management programs to reduce excessive alcohol consumption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Dougherty, Donald M.; Hill-Kapturczak, Nathalie; Liang, Yuanyuan; Karns, Tara E.; Cates, Sharon E.; Lake, Sarah L.; Mullen, Jillian; Roache, John D.
2014-01-01
Background Research on contingency management to treat excessive alcohol use is limited due to feasibility issues with monitoring adherence. This study examined the effectiveness of using transdermal alcohol monitoring as a continuous measure of alcohol use to implement financial contingencies to reduce heavy drinking. Methods Twenty-six male and female drinkers (from 21–39 years old) were recruited from the community. Participants were randomly assigned to one of two treatment sequences. Sequence 1 received 4 weeks of no financial contingency (i.e., $0) drinking followed by 4 weeks each of $25 and then $50 contingency management; Sequence 2 received 4 weeks of $25 contingency management followed by 4 weeks each of no contingency (i.e., $0) and then $50 contingency management. During the $25 and $50 contingency management conditions, participants were paid each week when the Secure Continuous Remote Alcohol Monitor (SCRAM-II™) identified no heavy drinking days. Results Participants in both contingency management conditions had fewer drinking episodes and reduced frequencies of heavy drinking compared to the $0 condition. Participants randomized to Sequence 2 (receiving $25 contingency before the $0 condition) exhibited less frequent drinking and less heavy drinking in the $0 condition compared to participants from Sequence 1. Conclusions Transdermal alcohol monitoring can be used to implement contingency management programs to reduce excessive alcohol consumption. PMID:25064019
LACIE - A look to the future. [Large Area Crop Inventory Experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.; Hall, F. G.
1977-01-01
The Large Area Crop Inventory Experiment (LACIE) is a 'proof of concept' project designed to demonstrate the applicability of remote sensing technology to the global monitoring of wheat. This paper discusses the need for more timely and reliable monitoring of food and fiber supplies, reviews the monitoring systems currently utilized by the USDA and United Nations Food and Agriculture Organization in the United States and in foreign countries, and elucidates the fundamentals involved in assessing the impact of variable weather and economic conditions on wheat acreage, yield, and production. The experiment's approach to production monitoring is described briefly, and its status is reviewed as of the conclusion of 2 years of successful operation. Examples of acreage and yield monitoring in the Soviet Union are used to illustrate the experiment's approach.
Alcaraz-Segura, Domingo; Cabello, Javier; Paruelo, José M; Delibes, Miguel
2009-01-01
Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.
New Local, National and Regional Cereal Price Indices for Improved Identification of Food Insecurity
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Tondel, Fabien; Thorne, Jennifer A.; Essam, Timothy; Mann, Bristol F.; Stabler, Blake; Eilerts, Gary
2011-01-01
Large price increases over a short time period can be indicative of a deteriorating food security situation. Food price indices developed by the United Nations Food and Agriculture Organization (FAO) are used to monitor food price trends at a global level, but largely reflect supply and demand conditions in export markets. However, reporting by the United States Agency for International Development (USAID)'s Famine Early Warning Systems Network (FEWS NET) indicates that staple cereal prices in many markets of the developing world, especially in surplus-producing areas, often have a delayed and variable response to international export market price trends. Here we present new price indices compiled for improved food security monitoring and assessment, and specifically for monitoring conditions of food access across diverse food insecure regions. We found that cereal price indices constructed using market prices within a food insecure region showed significant differences from the international cereals price, and had a variable price dispersion across markets within each marketshed. Using satellite-derived remote sensing information that estimates local production and the FAO Cereals Index as predictors, we were able to forecast movements of the local or national price indices in the remote, arid and semi-arid countries of the 38 countries examined. This work supports the need for improved decision-making about targeted aid and humanitarian relief, by providing earlier early warning of food security crises.
DOT National Transportation Integrated Search
2005-11-01
In order to extend commercial vehicle enforcement coverage to routes that are not monitored by fixed weigh stations, Kentucky has developed and implemented a Remote Monitoring System (RMS) and a Virtual Weight Station (VWS). The RMS captures images o...
[Design and application of user managing system of cardiac remote monitoring network].
Chen, Shouqiang; Zhang, Jianmin; Yuan, Feng; Gao, Haiqing
2007-12-01
According to inpatient records, data managing demand of cardiac remote monitoring network and computer, this software was designed with relative database ACCESS. Its interface, operational button and menu were designed in VBA language assistantly. Its design included collective design, amity, practicability and compatibility. Its function consisted of registering, inquiring, statisticing and printing, et al. It could be used to manage users effectively and could be helpful to exerting important action of cardiac remote monitoring network in preventing cardiac-vascular emergency ulteriorly.
InfoSequia: the first operational remote sensing-based Drought Monitoring System of Spain
NASA Astrophysics Data System (ADS)
Contreras, Sergio; Hunink, Johannes E.
2016-04-01
We present a satellite-based Drought Monitoring System that provides weekly updates of maps and bulletins with vegetation drought indices over the Iberian Peninsula. The web portal InfoSequía (http://infosequia.es) aims to complement the current Spanish Drought Monitoring System which relies on a hydrological drought index computed at the basin level using data on river flows and water stored in reservoirs. Drought indices computed by InfoSequia are derived from satellite data provided by MODIS sensors (TERRA and AQUA satellites), and report the relative anomaly observed in the Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), and in an additive combination of both. Similar to the U.S. Drought Monitoring System by NOAA, the indices include the Vegetation Condition Index (VCI, relative NDVI anomaly), the Temperature Condition Index (TCI, relative LST anomaly) and the Vegetation Health Index (VHI, relative NDVI-LST anomaly). Relative anomalies are codified into four warning levels, and all of them are provided for short periods of time (8-day windows), or longer periods (e.g. 1 year) in order to capture the cumulative effects of droughts in the state variables. Additionally, InfoSequia quantifies the seasonal trajectories of the cumulative deviation of the observed NDVI in relation with the averaged seasonal trajectory observed over a reference period. Through the weekly bulletins, the Drought Monitoring System InfoSequia aims to provide practical information to stakeholders on the sensitivity and resilience of native ecosystems and rainfed agrosystems during drought periods. Also, the remote sensed indices can be used as drought impact indicator to evaluate the skill of seasonal agricultural drought forecasting systems. InfoSequia is partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Ian M. McCullough,; Loftin, Cynthia S.; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2= 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
Lakes without Landsat? An alternative approach to remote lake monitoring with MODIS 250 m imagery
Loftin, Cyndy; Ian M. McCullough,; Steven A. Sader,
2013-01-01
We evaluated use of MODIS 250 m imagery for remote lake monitoring in Maine. Despite limited spectral resolution (visible red and near infrared bands), the twice daily image capture has a potential advantage over conventionally used, often cloudy Landsat imagery (16 day interval) when short time windows are of interest. We analyzed 364 eligible (≥100 ha) Maine lakes during late summer (Aug–early Sep) 2000–2011. The red band was strongly correlated with natural log-transformed Secchi depth (SD), and the addition of ancillary lake and watershed variables explained some variability in ln(SD) (R2 = 0.68–0.85; 9 models). Weak spectral resolution and variable lake conditions limited accurate lake monitoring to relatively productive periods in late summer, as indicated by inconsistent, sometimes weak regressions during June and July when lakes were clearer and less stable (R2 = 0.19–0.74; 8 models). Additionally, SD estimates derived from 2 sets of concurrent MODIS and Landsat imagery generally did not agree unless Landsat imagery (30 m) was resampled to 250 m, likely owing to various factors related to scale. Average MODIS estimates exceeded those of Landsat by 0.35 and 0.49 m on the 2 dates. Overall, MODIS 250 m imagery are potentially useful for remote lake monitoring during productive periods when Landsat data are unavailable; however, analyses must occur when algal communities are stable and well-developed, are biased toward large lakes, may overestimate SD, and accuracy may be unreliable without non-spectral lake predictors.
Wei, Jiahong; Liu, Chong; Ren, Tongqun; Liu, Haixia; Zhou, Wenjing
2017-01-01
The rail fastening system is an important part of a high-speed railway track. It is always critical to the operational safety and comfort of railway vehicles. Therefore, the condition detection of the rail fastening system, looseness or absence, is an important task in railway maintenance. However, the vision-based method cannot identify the severity of rail fastener looseness. In this paper, the condition of rail fastening system is monitored based on an automatic and remote-sensing measurement system. Meanwhile, wavelet packet analysis is used to analyze the acceleration signals, based on which two damage indices are developed to locate the damage position and evaluate the severity of rail fasteners looseness, respectively. To verify the effectiveness of the proposed method, an experiment is performed on a high-speed railway experimental platform. The experimental results show that the proposed method is effective to assess the condition of the rail fastening system. The monitoring system significantly reduces the inspection time and increases the efficiency of maintenance management. PMID:28208732
Facchin, D; Baccillieri, M S; Gasparini, G; Zoppo, F; Allocca, G; Brieda, M; Verlato, R; Proclemer, A
2016-10-01
Device follow-up is mandatory in the care of patients with a pacemaker. However, in most cases, device checks appear to be mere technical, time-consuming procedures. The aim of this research is to evaluate whether remote follow-up can replace in-clinic device checks by assessing clinical outcomes for pacemaker patients followed only via remote follow-up. Consecutive pacemaker patients followed with remote monitoring were prospectively included by 6 Italian cardiology centers in an observational investigation. The workflow for remote monitoring included an initial assessment by nursing staff and, when necessary, by a responsible physician for medical decisions. No in-person visits were scheduled after the start of remote monitoring. One-thousand and two-hundred and fifty one patients (30% female, 75±11years old) were followed for a median observation period of 15months. Out of 4965 remote transmissions, 1882 (38%) had at least one clinically relevant event to be investigated further, but, only after 137 transmissions (2.8%), the patients were contacted for an in-clinic visit or hospitalization. Sixty-nine patients died and 124 were hospitalized for various reasons. Atrial fibrillation episodes were the most common clinical events discovered by remote transmissions, occurring in 1339 (26%) transmissions and 471 (38%) patients. Our experience shows that remote monitoring in a pacemaker population can safely replace in-clinic follow-up, avoiding unnecessary in-hospital device follow-up. Copyright © 2016. Published by Elsevier Ireland Ltd.
Evaluating ESA CCI soil moisture in East Africa.
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R; Wang, Shugong; Peters-Lidard, Christa D; Verdin, James P
2016-06-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASA's Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R>0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
Analysis of flood inundation in ungauged basins based on multi-source remote sensing data.
Gao, Wei; Shen, Qiu; Zhou, Yuehua; Li, Xin
2018-02-09
Floods are among the most expensive natural hazards experienced in many places of the world and can result in heavy losses of life and economic damages. The objective of this study is to analyze flood inundation in ungauged basins by performing near-real-time detection with flood extent and depth based on multi-source remote sensing data. Via spatial distribution analysis of flood extent and depth in a time series, the inundation condition and the characteristics of flood disaster can be reflected. The results show that the multi-source remote sensing data can make up the lack of hydrological data in ungauged basins, which is helpful to reconstruct hydrological sequence; the combination of MODIS (moderate-resolution imaging spectroradiometer) surface reflectance productions and the DFO (Dartmouth Flood Observatory) flood database can achieve the macro-dynamic monitoring of the flood inundation in ungauged basins, and then the differential technique of high-resolution optical and microwave images before and after floods can be used to calculate flood extent to reflect spatial changes of inundation; the monitoring algorithm for the flood depth combining RS and GIS is simple and easy and can quickly calculate the depth with a known flood extent that is obtained from remote sensing images in ungauged basins. Relevant results can provide effective help for the disaster relief work performed by government departments.
[Crop geometry identification based on inversion of semiempirical BRDF models].
Zhao, Chun-jiang; Huang, Wen-jiang; Mu, Xu-han; Wang, Jin-diz; Wang, Ji-hua
2009-09-01
With the rapid development of remote sensing technology, the application of remote sensing has extended from single view angle to multi-view angles. It was studied for the qualitative and quantitative effect of average leaf angle (ALA) on crop canopy reflected spectrum. Effect of ALA on canopy reflected spectrum can not be ignored with inversion of leaf area index (LAI) and monitoring of crop growth condition by remote sensing technology. Investigations of the effect of erective and horizontal varieties were conducted by bidirectional canopy reflected spectrum and semiempirical bidirectional reflectance distribution function (BRDF) models. The sensitive analysis was done based on the weight for the volumetric kernel (fvol), the weight for the geometric kernel (fgeo), and the weight for constant corresponding to isotropic reflectance (fiso) at red band (680 nm) and near infrared band (800 nm). By combining the weights of the red and near-infrared bands, the semiempirical models can obtain structural information by retrieving biophysical parameters from the physical BRDF model and a number of bidirectional observations. So, it will allow an on-site and non-sampling mode of crop ALA identification, which is useful for using remote sensing for crop growth monitoring and for improving the LAI inversion accuracy, and it will help the farmers in guiding the fertilizer and irrigation management in the farmland without a priori knowledge.
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Recommendation on Transition from Primary/Secondary Radar to Secondary- Only Radar Capability
1994-10-01
Radar Beacon Performance Monitor RCIU Remote Control Interface Unit RCL Remote Communications Link R E&D Research, Engineering and Development RML Radar...rate. 3.1.2.5 Maintenance The current LRRs have limited remote maintenance monitoring (RMM) capabilities via the Remote Control Interface Unit ( RCIU ...1, -2 and FPS-20 radars required an upgrade of some of the radar subsystems, namely the RCIU to respond as an RMS and the CD to interface with radar
Sensing underground coal gasification by ground penetrating radar
NASA Astrophysics Data System (ADS)
Kotyrba, Andrzej; Stańczyk, Krzysztof
2017-12-01
The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.
2014-08-01
The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.
Different techniques of multispectral data analysis for vegetation fraction retrieval
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi
2012-07-01
Vegetation monitoring is one of the most important applications of remote sensing technologies. In respect to farmlands, the assessment of crop condition constitutes the basis of growth, development, and yield processes monitoring. Plant condition is defined by a set of biometric variables, such as density, height, biomass amount, leaf area index, and etc. The canopy cover fraction is closely related to these variables, and is state-indicative of the growth process. At the same time it is a defining factor of the soil-vegetation system spectral signatures. That is why spectral mixtures decomposition is a primary objective in remotely sensed data processing and interpretation, specifically in agricultural applications. The actual usefulness of the applied methods depends on their prediction reliability. The goal of this paper is to present and compare different techniques for quantitative endmember extraction from soil-crop patterns reflectance. These techniques include: linear spectral unmixing, two-dimensional spectra analysis, spectral ratio analysis (vegetation indices), spectral derivative analysis (red edge position), colorimetric analysis (tristimulus values sum, chromaticity coordinates and dominant wavelength). The objective is to reveal their potential, accuracy and robustness for plant fraction estimation from multispectral data. Regression relationships have been established between crop canopy cover and various spectral estimators.
The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration
NASA Astrophysics Data System (ADS)
Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.
2018-04-01
Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer; Clifton, Andrew; Bonin, Timothy
As wind turbine sizes increase and wind energy expands to more complex and remote sites, remote-sensing devices such as lidars are expected to play a key role in wind resource assessment and power performance testing. The switch to remote-sensing devices represents a paradigm shift in the way the wind industry typically obtains and interprets measurement data for wind energy. For example, the measurement techniques and sources of uncertainty for a remote-sensing device are vastly different from those associated with a cup anemometer on a meteorological tower. Current IEC standards for quantifying remote sensing device uncertainty for power performance testing considermore » uncertainty due to mounting, calibration, and classification of the remote sensing device, among other parameters. Values of the uncertainty are typically given as a function of the mean wind speed measured by a reference device and are generally fixed, leading to climatic uncertainty values that apply to the entire measurement campaign. However, real-world experience and a consideration of the fundamentals of the measurement process have shown that lidar performance is highly dependent on atmospheric conditions, such as wind shear, turbulence, and aerosol content. At present, these conditions are not directly incorporated into the estimated uncertainty of a lidar device. In this presentation, we describe the development of a new dynamic lidar uncertainty framework that adapts to current flow conditions and more accurately represents the actual uncertainty inherent in lidar measurements under different conditions. In this new framework, sources of uncertainty are identified for estimation of the line-of-sight wind speed and reconstruction of the three-dimensional wind field. These sources are then related to physical processes caused by the atmosphere and lidar operating conditions. The framework is applied to lidar data from a field measurement site to assess the ability of the framework to predict errors in lidar-measured wind speed. The results show how uncertainty varies over time and can be used to help select data with different levels of uncertainty for different applications, for example, low uncertainty data for power performance testing versus all data for plant performance monitoring.« less
Rawstorn, Jonathan C; Gant, Nicholas; Warren, Ian; Doughty, Robert Neil; Lever, Nigel; Poppe, Katrina K; Maddison, Ralph
2015-03-20
Remote telemonitoring holds great potential to augment management of patients with coronary heart disease (CHD) and atrial fibrillation (AF) by enabling regular physiological monitoring during physical activity. Remote physiological monitoring may improve home and community exercise-based cardiac rehabilitation (exCR) programs and could improve assessment of the impact and management of pharmacological interventions for heart rate control in individuals with AF. Our aim was to evaluate the measurement validity and data transmission reliability of a remote telemonitoring system comprising a wireless multi-parameter physiological sensor, custom mobile app, and middleware platform, among individuals in sinus rhythm and AF. Participants in sinus rhythm and with AF undertook simulated daily activities, low, moderate, and/or high intensity exercise. Remote monitoring system heart rate and respiratory rate were compared to reference measures (12-lead ECG and indirect calorimeter). Wireless data transmission loss was calculated between the sensor, mobile app, and remote Internet server. Median heart rate (-0.30 to 1.10 b∙min -1 ) and respiratory rate (-1.25 to 0.39 br∙min -1 ) measurement biases were small, yet statistically significant (all P≤.003) due to the large number of observations. Measurement reliability was generally excellent (rho=.87-.97, all P<.001; intraclass correlation coefficient [ICC]=.94-.98, all P<.001; coefficient of variation [CV]=2.24-7.94%), although respiratory rate measurement reliability was poor among AF participants (rho=.43, P<.001; ICC=.55, P<.001; CV=16.61%). Data loss was minimal (<5%) when all system components were active; however, instability of the network hosting the remote data capture server resulted in data loss at the remote Internet server during some trials. System validity was sufficient for remote monitoring of heart and respiratory rates across a range of exercise intensities. Remote exercise monitoring has potential to augment current exCR and heart rate control management approaches by enabling the provision of individually tailored care to individuals outside traditional clinical environments. ©Jonathan C Rawstorn, Nicholas Gant, Ian Warren, Robert Neil Doughty, Nigel Lever, Katrina K Poppe, Ralph Maddison. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 20.03.2015.
NASA Astrophysics Data System (ADS)
Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny
2013-04-01
Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia trees in hyper arid zones. This study includes further work on the development of ground based remote sensing as a new tool to monitor stress indicators as part of long term ecological research. Since acacia trees are long lived, we were able to identify individual trees in satellite images from 1968 (corona) and expand our monitoring "into the past". Remote sensing expands the spatial and temporal database and is thus a powerful tool for long term monitoring in arid zones, where access is limited and long-term ground data are rare.
Development of a Remote-Sensing Based Framework for Mapping Drought over North America
NASA Astrophysics Data System (ADS)
Hain, C.; Anderson, M. C.; Zhan, X.; Gao, F.; Svoboda, M.; Wardlow, B.; Mladenova, I. E.
2012-12-01
This presentation will address the development of a multi-scale drought monitoring tool for North America based on remotely sensed estimates of evapotranspiration. The North American continent represents a broad range in vegetation and climate conditions, from the boreal forests in Canada to the arid deserts in Mexico. This domain also encompasses a range in constraints limiting vegetation growth, with a gradient from radiation/energy limitation in the north to moisture limits in the south. This feasibility study over NA will provide a valuable test bed for future implementation world-wide in support of proposed global drought monitoring and early warning efforts. The Evaporative Stress Index (ESI) represents anomalies in the ratio of actual-to-potential ET (fPET), generated with the thermal remote sensing based Atmosphere-Land Exchange Inverse (ALEXI) surface energy balance model and associated disaggregation algorithm, DisALEXI demonstrated that ESI maps over the continental US (CONUS) show good correspondence with standard drought metrics and with patterns of antecedent precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall, for example in areas where drought impacts are being mitigated by intense irrigation or shallow water tables. As such, the ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, this index provides an independent assessment of drought conditions and will have particular utility for real-time monitoring in regions with sparse rainfall data or significant delays in meteorological reporting. The North American ESI product will be quantitatively compared with spatiotemporal patterns in the NADM, and with standard meteorological, remote sensing and modeled drought indices that are routinely produced over NA. Importantly, the robustness of these various indicators will be assessed in their ability to anticipate and correctly diagnose known drought events (as recorded in the NADM archive).
Design and implementation of a 3-lead ECG wireless remote monitoring system
NASA Astrophysics Data System (ADS)
Zhang, Shi; Jia, Xiaonan; Shang, Shuai
2006-11-01
Cardiovascular disease is one of the main diseases that menaces human health. It is necessary to monitor the patient's real-time electrocardiograph (ECG) for a long time to realize diagnosis and salvage. Remote ECG monitoring system is the solution. This paper introduces the design and implement of a 3-lead ECG wireless remote monitoring system. It collects, stores and transmits user's ECG which can be received by hospital and diagnosed by doctors. The development of the whole system contains three parts, the hardware and embedded software implementation of MONITOR, software of the MONITORING CENTER, and the routing software of NETWORK CENTER. According to the clinic experimentation, this system has high reliability and utility. There will be great social and economic benefit if this system is put into use.
Lee, Seung-Jae; Serre, Marc L; van Donkelaar, Aaron; Martin, Randall V; Burnett, Richard T; Jerrett, Michael
2012-12-01
A better understanding of the adverse health effects of chronic exposure to fine particulate matter (PM2.5) requires accurate estimates of PM2.5 variation at fine spatial scales. Remote sensing has emerged as an important means of estimating PM2.5 exposures, but relatively few studies have compared remote-sensing estimates to those derived from monitor-based data. We evaluated and compared the predictive capabilities of remote sensing and geostatistical interpolation. We developed a space-time geostatistical kriging model to predict PM2.5 over the continental United States and compared resulting predictions to estimates derived from satellite retrievals. The kriging estimate was more accurate for locations that were about 100 km from a monitoring station, whereas the remote sensing estimate was more accurate for locations that were > 100 km from a monitoring station. Based on this finding, we developed a hybrid map that combines the kriging and satellite-based PM2.5 estimates. We found that for most of the populated areas of the continental United States, geostatistical interpolation produced more accurate estimates than remote sensing. The differences between the estimates resulting from the two methods, however, were relatively small. In areas with extensive monitoring networks, the interpolation may provide more accurate estimates, but in the many areas of the world without such monitoring, remote sensing can provide useful exposure estimates that perform nearly as well.
De Simone, Antonio; Leoni, Loira; Luzi, Mario; Amellone, Claudia; Stabile, Giuseppe; La Rocca, Vincenzo; Capucci, Alessandro; D'onofrio, Antonio; Ammendola, Ernesto; Accardi, Francesco; Valsecchi, Sergio; Buja, Gianfranco
2015-08-01
Internet-based remote interrogation systems have been shown to reduce emergency department and in-office visits in patients with implantable cardioverter defibrillators (ICDs), resulting in increased efficiency for healthcare providers. Nonetheless, studies sized to demonstrate the impact of remote monitoring on patients' outcome have been lacking. The EFFECT study was a multicentre clinical trial aimed at measuring and comparing the outcome of ICD patients conventionally followed-up by means of in-clinic visits (Standard arm) or by remote monitoring (Remote arm) in the clinical practice of 25 Italian centres. From 2011 to 2013, 987 consecutive patients were enrolled and followed up for at least 12 months. The primary endpoint was the rate of death and cardiovascular hospitalizations. Remote monitoring was adopted by 499 patients. Patients in the Standard and Remote arms did not differ significantly in terms of baseline clinical characteristics, except for a more frequent use of ICD with cardiac resynchronization therapy (CRT-D) in the Remote arm (48 vs. 36%, P < 0.001). One-year rates of the primary combined endpoint were 0.27 events/year for patients in the Standard arm and were 0.15 events/year for those in the Remote arm (incident rate ratio, 0.55; 95% CI, 0.41-0.73; P < 0.001). The endpoint rates in the Standard and Remote arms were 0.27 and 0.08 events/year, respectively, among CRT-D recipients (P < 0.001), and 0.28 vs. 0.21 among ICD patients (P = 0.094). The rates of in-office visits were 1.9 per year in the Standard arm and 1.7 per year in the Remote arm. Compared with the standard follow-up through in-office visits, remote monitoring is associated with reduced death and cardiovascular hospitalizations in patients with ICD in clinical practice. URL: http://clinicaltrials.gov/ Identifier: NCT01723865. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Wind turbine remote control using Android devices
NASA Astrophysics Data System (ADS)
Rat, C. L.; Panoiu, M.
2018-01-01
This paper describes the remote control of a wind turbine system over the internet using an Android device, namely a tablet or a smartphone. The wind turbine workstation contains a LabVIEW program which monitors the entire wind turbine energy conversion system (WECS). The Android device connects to the LabVIEW application, working as a remote interface to the wind turbine. The communication between the devices needs to be secured because it takes place over the internet. Hence, the data are encrypted before being sent through the network. The scope was the design of remote control software capable of visualizing real-time wind turbine data through a secure connection. Since the WECS is fully automated and no full-time human operator exists, unattended access to the turbine workstation is needed. Therefore the device must not require any confirmation or permission from the computer operator in order to control it. Another condition is that Android application does not have any root requirements.
Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool
NASA Technical Reports Server (NTRS)
McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall
2008-01-01
The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify a variety of plant phenomena and improve monitoring capabilities.
Remote physiological monitoring in an austere environment: a future for battlefield care provision?
Smyth, Matthew J; Round, J A; Mellor, A J
2018-05-14
Wearable technologies are making considerable advances into the mainstream as they become smaller and more user friendly. The global market for such devices is forecasted to be worth over US$5 billion in 2018, with one in six people owning a device. Many professional sporting teams use self-monitoring to assess physiological parameters and work rate on the pitch, highlighting the potential utility for military command chains. As size of device reduces and sensitivity improves, coupled with remote connectivity technology, integration into the military environment could be relatively seamless. Remote monitoring of personnel on the ground, giving live updates on their physiological status, would allow commanders or medical officers the ability to manage their soldiers appropriately and improve combat effectiveness. This paper explores a proof of concept for the use of a self-monitoring system in the austere high altitude environment of the Nepalese Himalayas, akin to those experienced by modern militaries fighting in remote locations. It also reviews, in part, the historical development of remote monitoring technologies. The system allowed for physiological recordings, plotted against GPS position, to be remotely monitored in Italy. Examples of the data recorded are given and the performance of the system is discussed, including limitations, potential areas of development and how systems like this one could be integrated into the military environment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Cowan, J; Michel, C; Manhiça, I; Mutaquiha, C; Monivo, C; Saize, D; Beste, J; Creswell, J; Codlin, A J; Gloyd, S
2016-03-01
Electronic diagnostic tests, such as the Xpert® MTB/RIF assay, are being implemented in low- and middle-income countries (LMICs). However, timely information from these tests available via remote monitoring is underutilized. The failure to transmit real-time, actionable data to key individuals such as clinicians, patients, and national monitoring and evaluation teams may negatively impact patient care. To describe recently developed applications that allow for real-time, remote monitoring of Xpert results, and initial implementation of one of these products in central Mozambique. In partnership with the Mozambican National Tuberculosis Program, we compared three different remote monitoring tools for Xpert and selected one, GxAlert, to pilot and evaluate at five public health centers in Mozambique. GxAlert software was successfully installed on all five Xpert computers, and test results are now uploaded daily via a USB internet modem to a secure online database. A password-protected web-based interface allows real-time analysis of test results, and 1200 positive tests for tuberculosis generated 8000 SMS result notifications to key individuals. Remote monitoring of diagnostic platforms is feasible in LMICs. While promising, this effort needs to address issues around patient data ownership, confidentiality, interoperability, unique patient identifiers, and data security.
McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.
NASA Astrophysics Data System (ADS)
Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu
To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.
2006-01-01
Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.
A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements
NASA Astrophysics Data System (ADS)
Barakat, E.; Sinno, N.; Keyrouz, C.
This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
PIERSON, R.M.
1999-10-27
This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.
Investigation of the application of remote sensing technology to environmental monitoring
NASA Technical Reports Server (NTRS)
Rader, M. L. (Principal Investigator)
1980-01-01
Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.
A remote drip infusion monitoring system employing Bluetooth.
Amano, Hikaru; Ogawa, Hidekuni; Maki, Hiromichi; Tsukamoto, Sosuke; Yonezawa, Yoshiharu; Caldwell, W Morton
2012-01-01
We have developed a remote drip infusion monitoring system for use in hospitals. The system consists of several infusion monitoring devices and a central monitor. The infusion monitoring device employing a Bluetooth module can detect the drip infusion rate and an empty infusion solution bag, and then these data are sent to the central monitor placed at the nurses' station via the Bluetooth. The central monitor receives the data from several infusion monitoring devices and then displays graphically them. Therefore, the developed system can monitor intensively the drip infusion situation of the several patients at the nurses' station.
The Effect of Remote Sensor Spatial Resolution in Monitoring U.S. Army Training Maneuver Sites
1990-12-01
THE EFFECT OF REMOTE SENSOR SPATIAL RESOLUTION IN MONITORING U.S. ARMY...Multispectral Scanner with 6.5 meter spatial resolution provided the most effective digital data set for enhancing tank trails. However, this Airborne Scanner...primary objective of this research was to determine the capabilities and limitations of remote sensor systems having different spatial resolutions to
Remote monitoring of videourodynamics using smart phone and free instant messaging software.
Hsieh, Po-Fan; Chang, Chao-Hsiang; Lien, Chi-Shun; Wu, Hsi-Chin; Hsiao, Po-Jen; Chou, Eric Chieh-Lung
2013-11-01
To evaluate the feasibility of using smart phones plus free instant messaging software for remote monitoring of videourodynamics. From November 2011 to October 2012, 85 females with voiding disorders were enrolled for videourodynamic tests. The patients were assigned to videourodynamics remotely monitored by the attending physician by using iPhone/iPad and Skype (group 1) and videourodynamics with the attending physician present (group 2). The procedural time and videourodynamic qualities, assessed by the frequency of adherence to the modified Sullivan criteria, in each group were recorded and compared. There were 44 and 41 patients in group 1 and group 2, respectively. The mean procedural time was comparable between group 1 and group 2 (56.3 vs. 54.4 min, P = 0.25). The frequencies of adherence to the modified Sullivan criteria were similar in each group. The qualities of videourodynamics under the attending physician's remote or direct monitoring were both appropriate. Based on the convenience of Internet, the popularity of smart phones and the intention to make the urologists use their time more efficiently, our study provides remote monitoring as an alternative way for performing videourodynamics. © 2013 Wiley Periodicals, Inc.
Growth and reflectance characteristics of winter wheat canopies
NASA Technical Reports Server (NTRS)
Hinzman, L. D.; Bauer, M. E.; Daughtry, C. S. T.
1984-01-01
A valuable input to crop growth and yield models would be estimates of current crop condition. If multispectral reflectance indicates crop condition, then remote sensing may provide an additional tool for crop assessment. The effects of nitrogen fertilization on the spectral reflectance and agronomic characteristics of winter wheat (Triticum aestivum L.) were determined through field experiments. Spectral reflectance was measured during the 1979 and 1980 growing seasons with a spectroradiometer. Agronomic data included total leaf N concentration, leaf chlorophyll concentration, stage of development, leaf area index (LAI), plant moisture, and fresh and dry phytomass. Nitrogen deficiency caused increased visible, reduced near infrared, and increased middle infrared reflectance. These changes were related to lower levels of chlorophyll and reduced leaf area in the N-deficient plots. Green LAI, an important descriptor of wheat canopies, could be reliably estimated with multispectral data. The potential of remote sensing in distinguishing stressed from healthy crops is demonstrated. Evidence suggests multispectral imagery may be useful for monitoring crop condition.
10 CFR 35.647 - Additional technical requirements for mobile remote afterloader units.
Code of Federal Regulations, 2010 CFR
2010-01-01
... on the remote afterloader unit, on the control console, and in the facility; (3) Viewing and intercom... monitors used to indicate room exposures; (6) Source positioning (accuracy); and (7) Radiation monitors...
NASA Astrophysics Data System (ADS)
Beguería, S.
2017-12-01
While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources such as remote sensing or weather data, in the context of hierarchical regression models.
Monitoring of environmental conditions in the Alaskan forests using ERS-1 SAR data
NASA Technical Reports Server (NTRS)
Rignot, Eric; Way, Jobea; Mcdonald, Kyle; Viereck, Leslie; Adams, Phyllis
1992-01-01
Preliminary results from an analysis of the multitemporal radar backscatter signatures of tree species acquired by European Remote Sensing Satellite (ERS-1) synthetic aperture radar (SAR) data are presented. Significant changes in radar backscatter are detected. Correlation of these differences with ground truth observations indicate that these are due to changes in soil and liquid water content as a result of freeze/thaw events. C-band observations acquired by the NASA/Jet Propulsion Laboratory Airborne SAR (JPL AIRSAR) instrument demonstrate the potential of a C-band radar instrument to monitor drought/flood events. The potential of ERS-1 for monitoring phenologic changes in the forest and for classifying tree species is less promising.
NASA Astrophysics Data System (ADS)
Pan, Yifan; Zhang, Xianfeng; Tian, Jie; Jin, Xu; Luo, Lun; Yang, Ke
2017-01-01
Asphalt road reflectance spectra change as pavement ages. This provides the possibility for remote sensing to be used to monitor a change in asphalt pavement conditions. However, the relatively narrow geometry of roads and the relatively coarse spatial resolution of remotely sensed imagery result in mixtures between pavement and adjacent landcovers (e.g., vegetation, buildings, and soil), increasing uncertainties in spectral analysis. To overcome this problem, multiple endmember spectral mixture analysis (MESMA) was used to map the asphalt pavement condition using Worldview-2 satellite imagery in this study. Based on extensive field investigation and in situ measurements, aged asphalt pavements were categorized into four stages-preliminarily aged, moderately aged, heavily aged, and distressed. The spectral characteristics in the first three stages were further analyzed, and a MESMA unmixing analysis was conducted to map these three kinds of pavement conditions from the Worldview-2 image. The results showed that the road pavement conditions could be detected well and mapped with an overall accuracy of 81.71% and Kappa coefficient of 0.77. Finally, a quantitative assessment of the pavement conditions for each road segment in this study area was conducted to inform road maintenance management.
Saito, Kaoru; Nakamura, Kazuhiko; Ueta, Mutsuyuki; Kurosawa, Reiko; Fujiwara, Akio; Kobayashi, Hill Hiroki; Nakayama, Masaya; Toko, Ayako; Nagahama, Kazuyo
2015-11-01
We have developed a system that streams and archives live sound from remote areas across Japan via an unmanned automatic camera. The system was used to carry out pilot bird censuses in woodland; this allowed us to examine the use of live sound transmission and the role of social media as a mediator in remote scientific monitoring. The system has been streaming sounds 8 h per day for more than five years. We demonstrated that: (1) the transmission of live sound from a remote woodland could be used effectively to monitor birds in a remote location; (2) the simultaneous involvement of several participants via Internet Relay Chat to listen to live sound transmissions could enhance the accuracy of census data collection; and (3) interactions through Twitter allowed members of the public to engage or help with the remote monitoring of birds and experience inaccessible nature through the use of novel technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Rollins, Katherine E.
2016-11-01
Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000more » survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.« less
Remote Sensing of Forest Cover in Boreal Zones of the Earth
NASA Astrophysics Data System (ADS)
Sedykh, V. N.
2011-12-01
Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of historically formed ecological properties of the forest. Constantly updated information will permit the regulation of human pressure on forests to ensure that there is no reduction in their role in the biosphere processes of carbon accumulation and release. Satellite monitoring within identified landscape requires initial quantitative information about forest, about other biotic components of landscapes, and about their abiotic environment determined through both ground-based measurements and remote sensing. Thus, a kind of passport should be kept for each landscape as a starting point for subsequent updating of remote sensing monitoring of forests and their habitats and the assessment of their changes. Implementation of such monitoring across the entire boreal zone of the Earth is possible on the basis of geographical and genetic typology of forest and phyto-geomorphological method of aerospace image interpretation. Both approaches are based on the use of relationships between topography and vegetation, and were successfully applied by the author to aerospace monitoring of the forest cover of West Siberian Plain.
Staged Inference using Conditional Deep Learning for energy efficient real-time smart diagnosis.
Parsa, Maryam; Panda, Priyadarshini; Sen, Shreyas; Roy, Kaushik
2017-07-01
Recent progress in biosensor technology and wearable devices has created a formidable opportunity for remote healthcare monitoring systems as well as real-time diagnosis and disease prevention. The use of data mining techniques is indispensable for analysis of the large pool of data generated by the wearable devices. Deep learning is among the promising methods for analyzing such data for healthcare applications and disease diagnosis. However, the conventional deep neural networks are computationally intensive and it is impractical to use them in real-time diagnosis with low-powered on-body devices. We propose Staged Inference using Conditional Deep Learning (SICDL), as an energy efficient approach for creating healthcare monitoring systems. For smart diagnostics, we observe that all diagnoses are not equally challenging. The proposed approach thus decomposes the diagnoses into preliminary analysis (such as healthy vs unhealthy) and detailed analysis (such as identifying the specific type of cardio disease). The preliminary diagnosis is conducted real-time with a low complexity neural network realized on the resource-constrained on-body device. The detailed diagnosis requires a larger network that is implemented remotely in cloud and is conditionally activated only for detailed diagnosis (unhealthy individuals). We evaluated the proposed approach using available physiological sensor data from Physionet databases, and achieved 38% energy reduction in comparison to the conventional deep learning approach.
Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.
1996-01-01
In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less
Rawstorn, Jonathan C; Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-06-24
Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients' exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial.
Online Bridge Crack Monitoring with Smart Film
Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2013-01-01
Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496
A review on remote monitoring technology applied to implantable electronic cardiovascular devices.
Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro
2010-12-01
Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider the selection of patients, the type of disease, and centers' availability to receive, interpret and respond to device alerts. Before remote IECD monitoring can be routinely used, technical, procedure, and ethical/legal issues should be addressed.
Remote Sensing and Capacity Building to Improve Food Security
NASA Astrophysics Data System (ADS)
Husak, G. J.; Funk, C. C.; Verdin, J. P.; Rowland, J.; Budde, M. E.
2012-12-01
The Famine Early Warning Systems Network (FEWS NET) is a U.S. Agency for International Development (USAID) supported project designed to monitor and anticipate food insecurity in the developing world, primarily Africa, Central America, the Caribbean and Central Asia. This is done through a network of partners involving U.S. government agencies, universities, country representatives, and partner institutions. This presentation will focus on the remotely sensed data used in FEWS NET activities and capacity building efforts designed to expand and enhance the use of FEWS NET tools and techniques. Remotely sensed data are of particular value in the developing world, where ground data networks and data reporting are limited. FEWS NET uses satellite based rainfall and vegetation greenness measures to monitor and assess food production conditions. Satellite rainfall estimates also drive crop models which are used in determining yield potential. Recent FEWS NET products also include estimates of actual evapotranspiration. Efforts are currently underway to assimilate these products into a single tool which would indicate areas experiencing abnormal conditions with implications for food production. FEWS NET is also involved in a number of capacity building activities. Two primary examples are the development of software and training of institutional partners in basic GIS and remote sensing. Software designed to incorporate rainfall station data with existing satellite-derived rainfall estimates gives users the ability to enhance satellite rainfall estimates or long-term means, resulting in gridded fields of rainfall that better reflect ground conditions. Further, this software includes a crop water balance model driven by the improved rainfall estimates. Finally, crop parameters, such as the planting date or length of growing period, can be adjusted by users to tailor the crop model to actual conditions. Training workshops in the use of this software, as well as basic GIS and remote sensing tools, are routinely conducted by FEWS NET representatives at host country meteorological and agricultural services. These institutions are then able to produce information that can more accurately inform food security decision making. Informed decision making reduces the risk associated with a given hazard. In the case of FEWS NET, this involves identification of shocks to food availability, allowing for the pre-positioning of aid to be available when a hazard strikes. Developing tools to incorporate better information in food production estimates and working closely with local staff trained in state-of-the-practice techniques results in a more informed decision making process, reducing the impacts of food security hazards.
Arduino Based Infant Monitoring System
NASA Astrophysics Data System (ADS)
Farhanah Mohamad Ishak, Daing Noor; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi
2017-08-01
This paper proposes a system for monitoring infant in an incubator and records the relevant data into a computer. The data recorded by the system can be further referred by the neonatal intensive care unit (NICU) personnel for diagnostic or research purposes. The study focuses on designing the monitoring system that consists of an incubator equipped with humidity sensor to measure the humidity level, and a pulse sensor that can be attached on an infant placed inside the incubator to monitor infant’s heart pulse. The measurement results which are the pulse rate and humidity level are sent to the PC via Arduino microcontroller. The advantage of this system will be that in the future, it may also enable doctors to closely monitor the infant condition through local area network and internet. This work is aimed as an example of an application that contributes towards remote tele-health monitoring system.
NASA Astrophysics Data System (ADS)
Poley, Jack; Dines, Michael
2011-04-01
Wind turbines are frequently located in remote, hard-to-reach locations, making it difficult to apply traditional oil analysis sampling of the machine's critical gearset at timely intervals. Metal detection sensors are excellent candidates for sensors designed to monitor machine condition in vivo. Remotely sited components, such as wind turbines, therefore, can be comfortably monitored from a distance. Online sensor technology has come of age with products now capable of identifying onset of wear in time to avoid or mitigate failure. Online oil analysis is now viable, and can be integrated with onsite testing to vet sensor alarms, as well as traditional oil analysis, as furnished by offsite laboratories. Controlled laboratory research data were gathered from tests conducted on a typical wind turbine gearbox, wherein total ferrous particle measurement and metallic particle counting were employed and monitored. The results were then compared with a physical inspection for wear experienced by the gearset. The efficacy of results discussed herein strongly suggests the viability of metallic wear debris sensors in today's wind turbine gearsets, as correlation between sensor data and machine trauma were very good. By extension, similar components and settings would also seem amenable to wear particle sensor monitoring. To our knowledge no experiments such as described herein, have previously been conducted and published.
De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David
2012-01-01
In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; Xu, Fuxiang; Song, Debin; Zheng, Xiangyu; Chen, Maosi
2017-09-01
This paper conducted dynamic monitoring over the green tide (large green alga—Ulva prolifera) occurred in the Yellow Sea in 2014 to 2016 by the use of multi-source remote sensing data, including GF-1 WFV, HJ-1A/1B CCD, CBERS-04 WFI, Landsat-7 ETM+ and Landsta-8 OLI, and by the combination of VB-FAH (index of Virtual-Baseline Floating macroAlgae Height) with manual assisted interpretation based on remote sensing and geographic information system technologies. The result shows that unmanned aerial vehicle (UAV) and shipborne platform could accurately monitor the distribution of Ulva prolifera in small spaces, and therefore provide validation data for the result of remote sensing monitoring over Ulva prolifera. The result of this research can provide effective information support for the prevention and control of Ulva prolifera.
NASA Astrophysics Data System (ADS)
You, Y.; Wang, S.; Yang, Q.; Shen, M.; Chen, G.
2017-12-01
Alpine river water environment on the Plateau (such as Tibetan Plateau, China) is a key indicator for water security and environmental security in China. Due to the complex terrain and various surface eco-environment, it is a very difficult to monitor the water environment over the complex land surface of the plateau. The increasing availability of remote sensing techniques with appropriate spatiotemporal resolutions, broad coverage and low costs allows for effective monitoring river water environment on the Plateau, particularly in remote and inaccessible areas where are lack of in situ observations. In this study, we propose a remote sense-based monitoring model by using multi-platform remote sensing data for monitoring alpine river environment. In this study some parameterization methodologies based on satellite remote sensing data and field observations have been proposed for monitoring the water environmental parameters (including chlorophyll-a concentration (Chl-a), water turbidity (WT) or water clarity (SD), total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC)) over the china's southwest highland rivers, such as the Brahmaputra. First, because most sensors do not collect multiple observations of a target in a single pass, data from multiple orbits or acquisition times may be used, and varying atmospheric and irradiance effects must be reconciled. So based on various types of satellite data, at first we developed the techniques of multi-sensor data correction, atmospheric correction. Second, we also built the inversion spectral database derived from long-term remote sensing data and field sampling data. Then we have studied and developed a high-precision inversion model over the southwest highland river backed by inversion spectral database through using the techniques of multi-sensor remote sensing information optimization and collaboration. Third, take the middle reaches of the Brahmaputra river as the study area, we validated the key water environmental parameters and further improved the inversion model. The results indicate that our proposed water environment inversion model can be a good inversion for alpine water environmental parameters, and can improve the monitoring and warning ability for the alpine river water environment in the future.
NASA Astrophysics Data System (ADS)
Rijal, Santosh
Various military training activities are conducted in more than 11.3 million hectares of land (> 5,500 training sites) in the United States (U.S.). These training activities directly and indirectly degrade the land. Land degradation can impede continuous military training. In order to sustain long term training missions and Army combat readiness, the environmental conditions of the military installations need to be carefully monitored and assessed. Furthermore, the National Environmental Policy Act of 1969 (NEPA) and the U.S. Army Regulation 200-2 require the DoD to minimize the environmental impacts of training and document the environmental consequences of their actions. To achieve these objectives, the Department of Army initiated an Integrated Training Area Management (ITAM) program to manage training lands through assessing their environmental requirements and establishing policies and procedures to achieve optimum, sustainable use of training lands. One of the programs under ITAM, Range and Training Land Assessment (RTLA) was established to collect field-based data for monitoring installation's environmental condition. Due to high cost and inefficiencies involved in the collection of field data, the RTLA program was stopped in several military installations. Therefore, there has been a strong need to develop an efficient and low cost remote sensing based methodology for assessing and monitoring land conditions of military installations. It is also important to make a long-term assessment of installation land condition for understanding cumulative impacts of continuous military training activities. Additionally, it is unclear that compared to non-military land condition, to what extent military training activities have led to the degradation of land condition for military installations. The first paper of this dissertation developed a soil erosion relevant and image derived cover factor (ICF) based on linear spectral mixture (LSM) analysis to assess and monitor the land condition of military land and compare it with non-military land. The results from this study can provide FR land managers with the information of the spatial variation and temporal trend of land condition in FR. Fort Riley land managers can also use this method for monitoring their land condition at a very low cost. This method can thus be applied to other military installations as well as non-military lands. Furthermore, one of the most significant environmental problems in military installations of the U.S. is the formation of gullies due to the intensive use of military vehicle. However, to our knowledge, no remote sensing based method has been developed and used to assess the detection of gullies in military installations. In the second paper of this dissertation, light detection and ranging (LiDAR) derived digital elevation model (DEM) of 2010 and WorldView-2 images of 2010 were used to quantify the gullies in FR. This method can be easily applied to assess gullies in non-military installations. On the other hand, modeling the land condition of military installation is critical to understand the spatial and temporal pattern of military training induced disturbance and land recovery. In the third paper, it was assumed that the military training induced disturbance was spatially auto-correlated and thus four regression models including i) linear stepwise regression (LSR) ii) logistic regression (LR), iii) geographically weighted linear regression (GWR), and iv) geographically weighted logistic regression (GWLR) were developed and compared using remote sensing image derived spectral variables for years 1990, 1997, 1998, 1999, and 2001. It was found that the spatial distribution of the military training disturbance was well demonstrated by all the regression models with higher intensities of military training disturbance in the northwest and central west parts of the installation. Compared to other regression models, GWR accurately estimated the land condition of FR. This result provided the applicability of using local variability based regression model to accurately predict land condition. Different plant communities of military installations respond differently to military training induced disturbance. The information of the spatial distribution of plant species in military installations is important to gain insight of the resilient capacity of the land following disturbances. For the purpose, in the fourth paper, hyperspectral in-situ data were collected from FR and KPBS in the summer of 2015 using a hyperspectral instrument. Principal component analysis (PCA) and band relative importance (BRI) were used to identify relative importance of each of the spectral bands. The results from this study provided useful information about the optimal wavelengths that help distinguish different plant species of FR and can be easily used with high resolution hyperspectral images for mapping the spatial distribution of the plant species. This information will be helpful for the sustainable management of the tallgrass prairie ecosystem. (Abstract shortened by ProQuest.).
Environmental Activities of the U.S. Coast Guard
2007-01-16
icebreakers in the Arctic and Antarctic , and provides supplies to remote stations. These icebreakers typically carry about 40 scientists from universities as...the International Ice Patrol, which monitors iceberg danger in the northwest Atlantic, particularly in the area of the Grand Banks of Newfoundland...The iceberg season is usually from February to July, but the Ice Patrol is logistically flexible and can commence operations when iceberg conditions
Micromechanical transient sensor for measuring viscosity and density of a fluid
Thundat, Thomas G.; Oden, Patrick I.; Warmack, Robert J.; Finot, Eric Laurent
2001-01-01
A method and apparatus for measuring the viscosity and/or specific density of a fluid utilizes a microcantilever vibrated in the analyte fluid. The source of vibration is switched on and off and the transient behavior or decay in amplitude of the vibration is monitored. The method is particularly useful for the measurement of process conditions in remote locations in real time.
Ozone in remote areas of the Southern Rocky Mountains
Robert C. Musselman; John L. Korfmacher
2014-01-01
Ozone (O3) data are sparse for remote, non-urban mountain areas of the western U.S. Ozone was monitored 2007e2011 at high elevation sites in national forests in Colorado and northeastern Utah using a portable battery-powered O3 monitor. The data suggest that many of these remote locations already have O3 concentrations that would contribute to exceedance of the current...
Spectral variations of canopy reflectance in support of precision agriculture
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana; Georgiev, Georgi; Borisova, Denitsa; Nikolov, Hristo
2014-05-01
Agricultural monitoring is an important and continuously spreading activity in remote sensing and applied Earth observations. It supplies precise, reliable and valuable information on current crop condition and growth processes. In agriculture, the timing of seasonal cycles of crop activity is important for species classification and evaluation of crop development, growing conditions and potential yield. The correct interpretation of remotely sensed data, however, and the increasing demand for data reliability require ground-truth knowledge of the seasonal spectral behavior of different species and their relation to crop vigor. For this reason, we performed ground-based study of the seasonal response of winter wheat reflectance patterns to crop growth patterns. The goal was to quantify crop seasonality by establishing empirical relationships between plant biophysical and spectral properties in main ontogenetic periods. Phenology and agro-specific relationships allow assessing crop condition during different portions of the growth cycle and thus effectively tracking plant development, and finally make yield predictions. The applicability of a number of vegetation indices (VIs) for monitoring crop seasonal dynamics, its health condition, and yield potential was examined. Special emphasis we put on narrow-band indices as the availability of data from hyperspectral imagers is unavoidable future. The temporal behavior of vegetation indices revealed increased sensitivity to crop growth. The derived spectral-biophysical relationships allowed extraction of quantitative information about crop variables and yield at different stages of the phenological development. Relating plant spectral and biophysical variables in a phenology-based manner allows crop monitoring, that is crop diagnosis and predictions to be performed multiple times during plant ontogenesis. During active vegetative periods spectral data was highly indicative of plant growth trends and yield potential. The VIs values contributed to reliable yield prediction and showed very good correspondence with the estimates from biophysical models. For dates before full maturity most of the examined VIs proved to be meaningful statistical predictors of crop state-indicative biophysical variables. High correlations were obtained for canopy cover fraction, LAI, and biomass. Sensitivity to red, near-infrared and green reflectance showed both vigorous and stressed plants. As crops attained advanced growth stages, decreased sensitivity of VIs and weaker correlations with bioparameters were observed, yet still significant in a statistical sense. The results highlight the capability of the presented approach to track the dynamics of crop growth from multitemporal spectral data, and illustrate the prediction accuracy of the spectral models. The results are useful in assessing the efficiency of various spectral band ratios and other vegetation indices often used in remote sensing studies of natural and agricultural vegetation. They suggest that the used algorithm for data processing is particularly suitable for airborne cropland monitoring and could be expanded to sites at farm or municipality scale. The results reported are from pilot study carried out on a plot located in one of the established polygons for experimental crop monitoring. In the mentioned research GIS database is established for supporting the experiments and modelling process. Recommendations on good farming practices for medium sized farms for monitoring stress conditions such as drought and overfertilizing are developed.
Remote Diagnosis of the International Space Station Utilizing Telemetry Data
NASA Technical Reports Server (NTRS)
Deb, Somnath; Ghoshal, Sudipto; Malepati, Venkat; Domagala, Chuck; Patterson-Hine, Ann; Alena, Richard; Norvig, Peter (Technical Monitor)
2000-01-01
Modern systems such as fly-by-wire aircraft, nuclear power plants, manufacturing facilities, battlefields, etc., are all examples of highly connected network enabled systems. Many of these systems are also mission critical and need to be monitored round the clock. Such systems typically consist of embedded sensors in networked subsystems that can transmit data to central (or remote) monitoring stations. Moreover, many legacy are safety systems were originally not designed for real-time onboard diagnosis, but a critical and would benefit from such a solution. Embedding additional software or hardware in such systems is often considered too intrusive and introduces flight safety and validation concerns. Such systems can be equipped to transmit the sensor data to a remote-processing center for continuous health monitoring. At Qualtech Systems, we are developing a Remote Diagnosis Server (RDS) that can support multiple simultaneous diagnostic sessions from a variety of remote subsystems.
On multidisciplinary research on the application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
1972-01-01
This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.
Accounting for ecosystem assets using remote sensing in the Colombian Orinoco River basin lowlands
NASA Astrophysics Data System (ADS)
Vargas, Leonardo; Hein, Lars; Remme, Roy P.
2016-10-01
In many parts of the world, ecosystems change compromises the supply of ecosystem services (ES). Better ecosystem management requires detailed and structured information. Ecosystem accounting has been developed as an information system for ecosystems, using concepts and valuation approaches that are aligned with the System of National Accounts (SNA). The SNA is used to store and analyse economic data, and the alignment of ecosystem accounts with the SNA facilitates the integrated analysis of economic and ecological aspects of ecosystem use. Ecosystem accounting requires detailed spatial information at aggregated scales. The objective of this paper is to explore how remote sensing images can be used to analyse ecosystems using an accounting approach in the Orinoco river basin. We assessed ecosystem assets in terms of extent, condition and capacity to supply ES. We focus on four specific ES: grasslands grazed by cattle, timber and oil palm harvest, and carbon sequestration. We link ES with six ecosystem assets; savannahs, woody grasslands, mixed agro-ecosystems, very dense forests, dense forest and oil palm plantations. We used remote sensing vegetation, surface temperature and productivity indexes to measure ecosystem assets. We found that remote sensing is a powerful tool to estimate ecosystem extent. The enhanced vegetation index can be used to assess ecosystems condition, and net primary productivity can be used for the assessment of ecosystem assets capacity to supply ES. Integrating remote sensing and ecological information facilitates efficient monitoring of ecosystem assets, in particular in data poor contexts.
Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang
2018-01-01
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408
Liu, Yan; Wang, Hai; Zhao, Wei; Zhang, Min; Qin, Hongbo; Xie, Yongqiang
2018-02-22
Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed.
Artificial Intelligence in Autonomous Telescopes
NASA Astrophysics Data System (ADS)
Mahoney, William; Thanjavur, Karun
2011-03-01
Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.
Budde, Michael E.; Rowland, James; Funk, Christopher C.
2010-01-01
For one-sixth of the world’s population - roughly 1 billion children, women and men - growing, buying or receiving adequate, affordable food to eat is a daily uncertainty. The World Monetary Fund reports that food prices worldwide increased 43 percent in 2007-2008, and unpredictable growing conditions make subsistence farming, on which many depend, a risky business. Scientists with the U.S. Geological Survey (USGS) are part of a network of both private and government institutions that monitor food security in many of the poorest nations in the world.
Sun, Jiedi; Yu, Yang; Wen, Jiangtao
2017-01-01
Remote monitoring of bearing conditions, using wireless sensor network (WSN), is a developing trend in the industrial field. In complicated industrial environments, WSN face three main constraints: low energy, less memory, and low operational capability. Conventional data-compression methods, which concentrate on data compression only, cannot overcome these limitations. Aiming at these problems, this paper proposed a compressed data acquisition and reconstruction scheme based on Compressed Sensing (CS) which is a novel signal-processing technique and applied it for bearing conditions monitoring via WSN. The compressed data acquisition is realized by projection transformation and can greatly reduce the data volume, which needs the nodes to process and transmit. The reconstruction of original signals is achieved in the host computer by complicated algorithms. The bearing vibration signals not only exhibit the sparsity property, but also have specific structures. This paper introduced the block sparse Bayesian learning (BSBL) algorithm which works by utilizing the block property and inherent structures of signals to reconstruct CS sparsity coefficients of transform domains and further recover the original signals. By using the BSBL, CS reconstruction can be improved remarkably. Experiments and analyses showed that BSBL method has good performance and is suitable for practical bearing-condition monitoring. PMID:28635623
Bricher, Phillippa K.; Lucieer, Arko; Shaw, Justine; Terauds, Aleks; Bergstrom, Dana M.
2013-01-01
Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae) on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6–96.3%, κ = 0.849–0.924). Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments. PMID:23940805
Engaging Alaskan Students in Cryospheric Research
NASA Astrophysics Data System (ADS)
Yoshikawa, K.; Sparrow, E. B.; Kopplin, M.
2011-12-01
The Permafrost/Active Layer Monitoring Program is an ongoing project, which builds on work begun in 2005 to establish long-term permafrost and active layer monitoring sites adjacent to schools in Alaskan communities and in the circumpolar permafrost region. Currently, there are about 200 schools in Alaska involved in the project including also Denali National Park and Preserve. The project has both scientific and outreach components. The monitoring sites collect temperature data on permafrost, and the length and depth of the active layer (the layer above the permafrost that thaws during summer and freezes again during winter). To ensure scientific integrity, the scientist installed all of the monitoring instruments and selected the sites representative of the surrounding biome and thermal conditions. This is a unique collaboration opportunity in that 1) uses scientifically accurate instruments, 2) is scientist led and supervised including instrumentation set-up and data quality check, 3)has teacher/student organized observation network, 4) increased spatial scale of monitoring sites that covers all of the Alaskan communities. Most of the monitoring sites are located in remote communities, where the majority of residents depend on a subsistence lifestyle. Changes in climate, length of seasons, and permafrost conditions directly impact natural resources and subsistence activities. Changes in permafrost conditions also affect local ecosystems and hydrological regimes, and can influence the severity of natural disasters. In addition to extending our knowledge of the arctic environment, the program involves school-age students. Several students have been using the data for their projects and have been inspired to continue their studies. The data gathered from these stations are shared with other schools and made available to the public through our web site (http://www.uaf.edu/permafrost). Also communities have increasingly become interested in this project not only as an educational program, but also for its implications for disasters such as mud slides, loss of food storage in the ground capability, water pipes bursting from ground freezing at lower depths. Challenges in education outreach include the high cost (dollars and time) of reaching the remote study sites scattered all over the vast Alaskan landscape and how to increase understanding of the science concepts in the long-term study of permafrost and active layer, by students. In addition to the scientific measurement protocols and learning activities developed, videos of the adventures of a superhero Tunnel Man, were developed, produced and are made available on the project website as well as on YouTube. Through this project, students in remote Alaskan communities learn science in a way that is meaningful to their daily lives. In addition, they experience research participation within a larger scientific community, expanding their worldview.
Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors
Steenweg, Robin; Hebblewhite, Mark; Kays, Roland; Ahumada, Jorge A.; Fisher, Jason T.; Burton, Cole; Townsend, Susan E.; Carbone, Chris; Rowcliffe, J. Marcus; Whittington, Jesse; Brodie, Jedediah; Royle, Andy; Switalski, Adam; Clevenger, Anthony P.; Heim, Nicole; Rich, Lindsey N.
2017-01-01
Countries committed to implementing the Convention on Biological Diversity's 2011–2020 strategic plan need effective tools to monitor global trends in biodiversity. Remote cameras are a rapidly growing technology that has great potential to transform global monitoring for terrestrial biodiversity and can be an important contributor to the call for measuring Essential Biodiversity Variables. Recent advances in camera technology and methods enable researchers to estimate changes in abundance and distribution for entire communities of animals and to identify global drivers of biodiversity trends. We suggest that interconnected networks of remote cameras will soon monitor biodiversity at a global scale, help answer pressing ecological questions, and guide conservation policy. This global network will require greater collaboration among remote-camera studies and citizen scientists, including standardized metadata, shared protocols, and security measures to protect records about sensitive species. With modest investment in infrastructure, and continued innovation, synthesis, and collaboration, we envision a global network of remote cameras that not only provides real-time biodiversity data but also serves to connect people with nature.
Large-scale monitoring of air pollution in remote and ecologically important areas
Andrzej Bytnerowicz; Witold Fraczek
2013-01-01
New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...
NASA Astrophysics Data System (ADS)
Ye, Wei; Song, Wei
2018-02-01
In The Paper, the remote sensing monitoring of sea ice problem was turned into a classification problem in data mining. Based on the statistic of the related band data of HJ1B remote sensing images, the main bands of HJ1B images related with the reflectance of seawater and sea ice were found. On the basis, the decision tree rules for sea ice monitoring were constructed by the related bands found above, and then the rules were applied to Liaodong Bay area seriously covered by sea ice for sea ice monitoring. The result proved that the method is effective.
Padeken, D; Sotiriou, D; Boddy, K; Gerzer, R
1995-02-01
Migration from space medicine toward telemedicine services is described by potential application areas in highly populated and remote areas of Europe. Special emphasis is laid upon links between mobile patient monitoring and health care in remote areas. Pilot projects are described for home (mobile) monitoring of newborn infants endangered by sudden infant death (SID) and adults suffering from sleep apnoea. Health care in remote areas is described by the "TeleClinic-project" which will link national nodes for telemedicine services in several European states for the mobile European citizen. Another project describes the future potential of robotics for semiautonomous ultrasound diagnostics and for realtime interaction of remote experts with diagnostics and therapy.
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING
The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...
Satellite Remote Sensing for Monitoring and Assessment
Remote sensing technology has the potential to enhance the engagement of communities and managers in the implementation and performance of best management practices. This presentation will use examples from U.S. numeric criteria development and state water quality monitoring prog...
Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy
Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.
2011-01-01
Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight. PMID:21895335
Motor current signature analysis method for diagnosing motor operated devices
Haynes, Howard D.; Eissenberg, David M.
1990-01-01
A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.
Using Landsat digital data to detect moisture stress in corn-soybean growing regions
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Wehmanen, O. A.
1980-01-01
As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.
The review of dynamic monitoring technology for crop growth
NASA Astrophysics Data System (ADS)
Zhang, Hong-wei; Chen, Huai-liang; Zou, Chun-hui; Yu, Wei-dong
2010-10-01
In this paper, crop growth monitoring methods are described elaborately. The crop growth models, Netherlands-Wageningen model system, the United States-GOSSYM model and CERES models, Australia APSIM model and CCSODS model system in China, are introduced here more focus on the theories of mechanism, applications, etc. The methods and application of remote sensing monitoring methods, which based on leaf area index (LAI) and biomass were proposed by different scholars at home and abroad, are highly stressed in the paper. The monitoring methods of remote sensing coupling with crop growth models are talked out at large, including the method of "forced law" which using remote sensing retrieval state parameters as the crop growth model parameters input, and then to enhance the dynamic simulation accuracy of crop growth model and the method of "assimilation of Law" which by reducing the gap difference between the value of remote sensing retrieval and the simulated values of crop growth model and thus to estimate the initial value or parameter values to increasing the simulation accuracy. At last, the developing trend of monitoring methods are proposed based on the advantages and shortcomings in previous studies, it is assured that the combination of remote sensing with moderate resolution data of FY-3A, MODIS, etc., crop growth model, "3S" system and observation in situ are the main methods in refinement of dynamic monitoring and quantitative assessment techniques for crop growth in future.
NASA Astrophysics Data System (ADS)
Ma, Yi; Zhang, Jie; Zhang, Jingyu
2016-01-01
The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale hyperspectral images based on time sequence. The research results of this paper will help to break the traditional concept of remote sensing monitoring coastal wetlands by satellite and manned aerial vehicle, lead the trend of this monitoring technology, and put forward a new technical proposal for grasping the distribution of the coastal wetland and the changing trend and carrying out the protection and management of the coastal wetland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-10
The software was created in the process of developing a system known as the Smart Monitoring and Diagnostic System (SMDS) for packaged air conditioners and heat pumps used on commercial buildings (known as RTUs). The SMDS provides automated remote monitoring and detection of performance degradation and faults in these RTUs and could increase the awareness by building owners and maintenance providers of the condition of the equipment, the cost of operating it in degraded condition, and the quality of maintenance and repair service when it is performed. The SMDS provides these capabilities and would enable conditioned-based maintenance rather than themore » reactive and schedule-based preventive maintenance commonly used today, when maintenance of RTUs is done at all. Improved maintenance would help ensure persistent peak operating efficiencies, reducing energy consumption by an estimated 10% to 30%.« less
The Slow Control System of the Auger Fluorescence Detectors
NASA Astrophysics Data System (ADS)
Barenthien, N.; Bethge, C.; Daumiller, K.; Gemmeke, H.; Kampert, K.-H.; Wiebusch, C.
2003-07-01
The fluorescence detector (FD) of the Pierre Auger experiment [1] comprises 24 telescopes that will be situated in 4 remote buildings in the Pampa Amarilla. It is planned to run the fluorescence detectors in absence of operators on site. Therefore, the main task of the Slow Control System (SCS) is to ensure a secure remote operation of the FD system. The Slow Control System works autonomously and continuously monitors those parameters which may disturb a secure operation. Commands from the data-acquisition system or the remote operator are accepted only if they do not violate safety rules that depend on the actual experimental conditions (e.g. high-voltage, wind-sp eed, light, etc.). In case of malfunctions (power failure, communication breakdown, ...) the SCS performs an orderly shutdown and subsequent startup of the fluorescence detector system. The concept and the implementation of the Slow Control System are presented.
Remote detection of rotating machinery with a portable atomic magnetometer.
Marmugi, Luca; Gori, Lorenzo; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio
2017-01-20
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.
Review of oil spill remote sensing.
Fingas, Merv; Brown, Carl
2014-06-15
Remote-sensing for oil spills is reviewed. The use of visible techniques is ubiquitous, however it gives only the same results as visual monitoring. Oil has no particular spectral features that would allow for identification among the many possible background interferences. Cameras are only useful to provide documentation. In daytime oil absorbs light and remits this as thermal energy at temperatures 3-8K above ambient, this is detectable by infrared (IR) cameras. Laser fluorosensors are useful instruments because of their unique capability to identify oil on backgrounds that include water, soil, weeds, ice and snow. They are the only sensor that can positively discriminate oil on most backgrounds. Radar detects oil on water by the fact that oil will dampen water-surface capillary waves under low to moderate wave/wind conditions. Radar offers the only potential for large area searches, day/night and foul weather remote sensing. Copyright © 2014 Elsevier Ltd. All rights reserved.
A methodology for dam inventory and inspection with remotely sensed data
NASA Technical Reports Server (NTRS)
Berger, J. P.; Philipson, W. R.; Liang, T.
1979-01-01
A methodology is presented to increase the efficiency and accuracy of dam inspection by incorporating remote sensing techniques into field-based monitoring programs. The methodology focuses on New York State and places emphasis on readily available remotely sensed data aerial photographs and Landsat data. Aerial photographs are employed in establishing a state-wide data base, referenced on county highway and U.S. Geological Survey 1:24,000 scale, topographic maps. Data base updates are conducted by county or region, using aerial photographs or Landsat as a primary source of information. Field investigations are generally limited to high-hazard or special problem dams, or to dams which cannot be assessed adequately with aerial photographs. Although emphasis is placed on available data, parameters for acquiring new aircraft data for assessing dam condition are outlined. Large scale (1:10,000) vertical, stereoscopic, color-infrared photography, flown during the spring or fall, is recommended.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
[A snow depth inversion method for the HJ-1B satellite data].
Dong, Ting-Xu; Jiang, Hong-Bo; Chen, Chao; Qin, Qi-Ming
2011-10-01
The importance of the snow is self-evident, while the harms caused by the snow have also received more and more attention. At present, the retrieval of snow depth mainly focused on the use of microwave remote sensing data or a small amount of optical remote sensing data, such as the meteorological data or the MODIS data. The small satellites for environment and disaster monitoring of China are quite different form the meteorological data and MODIS data, both in the spectral resolution or spatial resolution. In this paper, aimed at the HJ-1B data, snow spectral of different underlying surfaces and depths were surveyed. The correlation between snow cover index and snow depth was also analyzed to establish the model for the snow depth retrieval using the HJ-1B data. The validation results showed that it can meet the requirements of real-time monitoring the snow depth on the condition of conventional snow depth.
Spectrometry of Pasture Condition and Biogeochemistry in the Central Amazon
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Townsend, Alan R.; Bustamante, Mercedes M. C.
1999-01-01
Regional analyses of Amazon cattle pasture biogeochemistry are difficult due to the complexity of human, edaphic, biotic and climatic factors and persistent cloud cover in satellite observations. We developed a method to estimate key biophysical properties of Amazon pastures using hyperspectral reflectance data and photon transport inverse modeling. Remote estimates of live and senescent biomass were strongly correlated with plant-available forms of soil phosphorus and calcium. These results provide a basis for monitoring pasture condition and biogeochemistry in the Amazon Basin using spaceborne hyperspectral sensors.
Ahmad, Zulfiqar; Ashraf, Arshad; Fryar, Alan; Akhter, Gulraiz
2011-02-01
The integration of the Geographic Information System (GIS) with groundwater modeling and satellite remote sensing capabilities has provided an efficient way of analyzing and monitoring groundwater behavior and its associated land conditions. A 3-dimensional finite element model (Feflow) has been used for regional groundwater flow modeling of Upper Chaj Doab in Indus Basin, Pakistan. The approach of using GIS techniques that partially fulfill the data requirements and define the parameters of existing hydrologic models was adopted. The numerical groundwater flow model is developed to configure the groundwater equipotential surface, hydraulic head gradient, and estimation of the groundwater budget of the aquifer. GIS is used for spatial database development, integration with a remote sensing, and numerical groundwater flow modeling capabilities. The thematic layers of soils, land use, hydrology, infrastructure, and climate were developed using GIS. The Arcview GIS software is used as additive tool to develop supportive data for numerical groundwater flow modeling and integration and presentation of image processing and modeling results. The groundwater flow model was calibrated to simulate future changes in piezometric heads from the period 2006 to 2020. Different scenarios were developed to study the impact of extreme climatic conditions (drought/flood) and variable groundwater abstraction on the regional groundwater system. The model results indicated a significant response in watertable due to external influential factors. The developed model provides an effective tool for evaluating better management options for monitoring future groundwater development in the study area.
NASA Technical Reports Server (NTRS)
Lam, N.; Qiu, H.-I.; Quattrochi, Dale A.; Zhao, Wei
1997-01-01
With the rapid increase in spatial data, especially in the NASA-EOS (Earth Observing System) era, it is necessary to develop efficient and innovative tools to handle and analyze these data so that environmental conditions can be assessed and monitored. A main difficulty facing geographers and environmental scientists in environmental assessment and measurement is that spatial analytical tools are not easily accessible. We have recently developed a remote sensing/GIS software module called Image Characterization and Modeling System (ICAMS) to provide specialized spatial analytical tools for the measurement and characterization of satellite and other forms of spatial data. ICAMS runs on both the Intergraph-MGE and Arc/info UNIX and Windows-NT platforms. The main techniques in ICAMS include fractal measurement methods, variogram analysis, spatial autocorrelation statistics, textural measures, aggregation techniques, normalized difference vegetation index (NDVI), and delineation of land/water and vegetated/non-vegetated boundaries. In this paper, we demonstrate the main applications of ICAMS on the Intergraph-MGE platform using Landsat Thematic Mapper images from the city of Lake Charles, Louisiana. While the utilities of ICAMS' spatial measurement methods (e.g., fractal indices) in assessing environmental conditions remain to be researched, making the software available to a wider scientific community can permit the techniques in ICAMS to be evaluated and used for a diversity of applications. The findings from these various studies should lead to improved algorithms and more reliable models for environmental assessment and monitoring.
New Directions in Land Remote Sensing Policy and International Cooperation
NASA Astrophysics Data System (ADS)
Stryker, Timothy
2010-12-01
Recent changes to land remote sensing satellite data policies in Brazil and the United States have led to the phenomenal growth in the delivery of land imagery to users worldwide. These new policies, which provide free and unrestricted access to land remote sensing data over a standard electronic interface, are expected to provide significant benefits to scientific and operational users, and open up new areas of Earth system science research and environmental monitoring. Freely-available data sets from the China-Brazil Earth Resources Satellites (CBERS), the U.S. Landsat satellites, and other satellite missions provide essential information for land surface monitoring, ecosystems management, disaster mitigation, and climate change research. These missions are making important contributions to the goals and objectives of regional and global terrestrial research and monitoring programs. These programs are in turn providing significant support to the goals and objectives of the United Nations Framework Convention on Climate Change (UN FCCC), the Global Earth Observation System of Systems (GEOSS), and the UN Reduction in Emissions from Deforestation and Degradation (REDD) program. These data policies are well-aligned with the "Data Democracy" initiative undertaken by the international Committee on Earth Observation Satellites (CEOS), through its current Chair, Brazil's National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais, or INPE), and its former chairs, South Africa's Council for Scientific and Industrial Research (CSIR) and Thailand's Geo Informatics and Space Technology Development Agency (GISTDA). Comparable policies for land imaging data are under consideration within Europe and Canada. Collectively, these initiatives have the potential to accelerate and improve international mission collaboration, and greatly enhance the access, use, and application of land surface imagery for environmental monitoring and societal adaption to changing climate conditions.
Utility of ERTS for monitoring the breeding habitat of migratory waterfowl
NASA Technical Reports Server (NTRS)
Work, E. A., Jr.; Gilmer, D. S.; Klett, A. T.
1974-01-01
Since 1968 the Bureau of Sport Fisheries and Wildlife (BSF&W) and the Environmental Research Institute of Michigan have cooperated on developing applications of remote sensing to the management of migratory waterfowl. Basically, this work has been concerned with (1) the assimilation of data on surface water conditions so that the data can be used as an index of annual waterfowl production, and (2) the collection of data on land use and wetland quality so that a measure of habitat carrying capacity is obtained. To date, efforts have been directed toward utilizing ERTS to monitor surface water conditions. An example of a model used for predicting the annual production of mallards (Anas platyrhynchos) is presented. The data inputs to this model and the potential for acquiring these data using ERTS are described.
Empowered citizen 'health hackers' who are not waiting.
Omer, Timothy
2016-08-17
Due to the easier access to information, the availability of low cost technologies and the involvement of well educated, passionate patients, a group of citizen 'Health Hackers', who are building their own medical systems to help them overcome the unmet needs of their conditions, is emerging. This has recently been the case in the type 1 diabetes community, under the movement #WeAreNotWaiting, with innovative use of current medical devices hacked to access data and Open-Source code producing solutions ranging from remote monitoring of diabetic children to producing an Artificial Pancreas System to automate the management and monitoring of a patient's condition. Timothy Omer is working with the community to utilise the technology already in his pocket to build a mobile- and smartwatch-based Artificial Pancreas System.
A Wireless Monitoring Sub-nA Resolution Test Platform for Nanostructure Sensors
Jang, Chi Woong; Byun, Young Tae; Lee, Taikjin; Woo, Deok Ha; Lee, Seok; Jhon, Young Min
2013-01-01
We have constructed a wireless monitoring test platform with a sub-nA resolution signal amplification/processing circuit (SAPC) and a wireless communication network to test the real-time remote monitoring of the signals from carbon nanotube (CNT) sensors. The operation characteristics of the CNT sensors can also be measured by the ISD-VSD curve with the SAPC. The SAPC signals are transmitted to a personal computer by Bluetooth communication and the signals from the computer are transmitted to smart phones by Wi-Fi communication, in such a way that the signals from the sensors can be remotely monitored through a web browser. Successful remote monitoring of signals from a CNT sensor was achieved with the wireless monitoring test platform for detection of 0.15% methanol vapor with 0.5 nA resolution and 7 Hz sampling rate. PMID:23783735
Real time sound analysis for medical remote monitoring.
Istrate, Dan; Binet, Morgan; Cheng, Sreng
2008-01-01
The increase of aging population in Europe involves more people living alone at home with an increased risk of home accidents or falls. In order to prevent or detect a distress situation in the case of an elderly people living alone, a remote monitoring system based on the sound environment analysis can be used. We have already proposed a system which monitors the sound environment, identifies everyday life sounds and distress expressions in order to participate to an alarm decision. This first system uses a classical sound card on a PC or embedded PC allowing only one channel monitor. In this paper, we propose a new architecture of the remote monitoring system, which relies on a real time multichannel implementation based on an USB acquisition card. This structure allows monitoring eight channels in order to cover all the rooms of an apartment. More than that, the SNR estimation leads currently to the adaptation of the recognition models to environment.
Low-technology cooling box for storage of malaria RDTs and other medical supplies in remote areas.
Chanthap, Lon; Ariey, Frédéric; Socheat, Duong; Tsuyuoka, Reiko; Bell, David
2010-01-23
With the increase in use of point-of-care diagnostic tests for malaria and other diseases comes the necessity of storing the diagnostic kits and the drugs required for subsequent management, in remote areas, where temperatures are high and electricity supply is unreliable or unavailable. To address the lack of temperature-controlled storage during the introduction of community-based malaria management in Cambodia, the Cambodian National Centre for Parasitology, Entomology and Malaria Control (CNM) developed prototype evaporative cooling boxes (Cambodian Cooler Boxes - CCBs) for storage of perishable medical commodities in remote clinics. The performance of these CCBs for maintaining suitable storage temperatures was evaluated over two phases in 2005 and 2006-7, comparing conditions in CCBs using water as designed, CCBs with no water for evaporation, and ambient storage room temperatures. Temperature and humidity was monitored, together with the capacity of the RDTs recommended for storage between 2 to 30 degree Celsius to detect low-density malaria parasite samples after storage under these conditions. Significant differences were recorded between the proportion of temperatures within the recommended RDT storage conditions in the CCBs with water and the temperatures in the storage room (p < 0.001) and maximum temperatures were lower. RDTs stored at ambient temperatures were negative when tested with parasitized blood (2,000 parasites per micro litre) at 210 days, while the field RDTs kept in CCBs with water gave positive results until 360 days. The CCB was an effective tool for storage of RDTs at optimal conditions, and extended the effective life-span of the tests. The concept of evaporative cooling has potential to greatly enhance access to perishable diagnostics and medicines in remote communities, as it allows prolonged storage at low cost using locally-available materials, in the absence of electricity.
Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.
2014-12-01
The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are associated to derive food production estimates. Based on trends analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. CropWatch bulletin can be downloaded from the CropWatch website at http://www.cropwatch.com.cn.
NASA Technical Reports Server (NTRS)
1975-01-01
The application of remote sensing techniques to land management, urban planning, agriculture, oceanography, and environmental monitoring is discussed. The results of various projects are presented along with cost effective considerations.
Levee Health Monitoring With Radar Remote Sensing
NASA Astrophysics Data System (ADS)
Jones, C. E.; Bawden, G. W.; Deverel, S. J.; Dudas, J.; Hensley, S.; Yun, S.
2012-12-01
Remote sensing offers the potential to augment current levee monitoring programs by providing rapid and consistent data collection over large areas irrespective of the ground accessibility of the sites of interest, at repeat intervals that are difficult or costly to maintain with ground-based surveys, and in rapid response to emergency situations. While synthetic aperture radar (SAR) has long been used for subsidence measurements over large areas, applying this technique directly to regional levee monitoring is a new endeavor, mainly because it requires both a wide imaging swath and fine spatial resolution to resolve individual levees within the scene, a combination that has not historically been available. Application of SAR remote sensing directly to levee monitoring has only been attempted in a few pilot studies. Here we describe how SAR remote sensing can be used to assess levee conditions, such as seepage, drawing from the results of two levee studies: one of the Sacramento-San Joaquin Delta levees in California that has been ongoing since July 2009 and a second that covered the levees near Vicksburg, Mississippi, during the spring 2011 floods. These studies have both used data acquired with NASA's UAVSAR L-band synthetic aperture radar, which has the spatial resolution needed for this application (1.7 m single-look), sufficiently wide imaging swath (22 km), and the longer wavelength (L-band, 0.238 m) required to maintain phase coherence between repeat collections over levees, an essential requirement for applying differential interferometry (DInSAR) to a time series of repeated collections for levee deformation measurement. We report the development and demonstration of new techniques that employ SAR polarimetry and differential interferometry to successfully assess levee health through the quantitative measurement of deformation on and near levees and through detection of areas experiencing seepage. The Sacramento-San Joaquin Delta levee study, which covers the entire network of more than 1100 miles of levees in the area, has used several sets of in situ data to validate the results. This type of levee health status information acquired with radar remote sensing could provide a cost-effective method to significantly improve the spatial and temporal coverage of levee systems and identify areas of concern for targeted levee maintenance, repair, and emergency response in the future. Our results show, for example, that during an emergency, when time is of the essence, SAR remote sensing offers the potential of rapidly providing levee status information that is effectively impossible to obtain over large areas using conventional monitoring, e.g., through high precision measurements of subcentimeter-scale levee movement prior to failure. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Hanavan, Ryan P; Pontius, Jennifer; Hallett, Richard
2015-02-01
The hemlock woolly adelgid is a serious pest of Eastern and Carolina hemlock in the eastern United States. Successfully managing the hemlock resource in the region depends on careful monitoring of the spread of this invasive pest and the targeted application of management options such as biological control, chemical, or silvicultural treatments. To inform these management activities and test the applicability of a landscape-scale remote sensing effort to monitor hemlock condition, hyperspectral collections, and concurrent ground-truthing in 2001 and 2012 of hemlock condition were compared with field metrics spanning a 10-yr survey in the Catskills region of New York. Fine twig dieback significantly increased from 9 to 15% and live crown ratio significantly decreased from 67 to 56% in 2001 and 2012, respectively. We found a significant shift from 59% "healthy" hemlock in 2001 to only 16% in 2012. However, this shift from healthy to declining classifications was mostly a shift to decline class 2 "early decline". These results indicate that while there has been significant increase in decline symptoms as measured in both field and remote sensing assessments, a majority of the declining areas identified in the resulting spatial coverages remain in the "early decline" category and widespread mortality has not yet occurred. While this slow decline across the region stands in contrast to many reports of mortality within 10 yr, the results from this work are in line with other long-term monitoring studies and indicate that armed with the spatial information provided here, continued management strategies can be focused on particular areas to help control the further decline of hemlock in the region. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.
Bridging the Self-care Deficit Gap: Remote Patient Monitoring and the Hospital-at-Home
NASA Astrophysics Data System (ADS)
Cafazzo, Joseph A.; Leonard, Kevin; Easty, Anthony C.; Rossos, Peter G.; Chan, Christopher T.
This study examines the use of a remote patient monitoring intervention to address the challenge of patient self-care in complex hospital-at-home therapies. It was shown that in a home hemodialysis patient group, remote patient monitoring facilitated self-care and was supported by patients and, in particular, family caregivers. This does not come without cost to the patient however, who now has greater personal responsibility and accountability for their health management. Promising results from this study indicate that most patients are willing to assume this cost in exchange for the possibility of improved health outcomes.
Runyon, Larry [Richland, WA; Gunter, Wayne M [Richland, WA; Gilbert, Ronald W [Gilroy, CA
2006-07-25
A system for remotely monitoring the status of one or more fire extinguishers includes means for sensing at least one parameter of each of the fire extinguishers; means for selectively transmitting the sensed parameters along with information identifying the fire extinguishers from which the parameters were sensed; and means for receiving the sensed parameters and identifying information for the fire extinguisher or extinguishers at a common location. Other systems and methods for remotely monitoring the status of multiple fire extinguishers are also provided.
Natural Resource Monitoring of Rheum tanguticum by Multilevel Remote Sensing
Xie, Caixiang; Song, Jingyuan; Suo, Fengmei; Li, Xiwen; Li, Ying; Yu, Hua; Xu, Xiaolan; Luo, Kun; Li, Qiushi; Xin, Tianyi; Guan, Meng; Xu, Xiuhai; Miki, Eiji; Takeda, Osami; Chen, Shilin
2014-01-01
Remote sensing has been extensively applied in agriculture for its objectiveness and promptness. However, few applications are available for monitoring natural medicinal plants. In the paper, a multilevel monitoring system, which includes satellite and aerial remote sensing, as well as ground investigation, was initially proposed to monitor natural Rheum tanguticum resource in Baihe Pasture, Zoige County, Sichuan Province. The amount of R. tanguticum from images is M = S*ρ and S is vegetation coverage obtained by satellite imaging, whereas ρ is R. tanguticum density obtained by low-altitude imaging. Only the R. tanguticum which coverages exceeded 1 m2 could be recognized from the remote sensing image because of the 0.1 m resolution of the remote sensing image (called effective resource at that moment), and the results of ground investigation represented the amounts of R. tanguticum resource in all sizes (called the future resource). The data in paper showed that the present available amount of R. tanguticum accounted for 4% to 5% of the total quantity. The quantity information and the population structure of R. tanguticum in the Baihe Pasture were initially confirmed by this system. It is feasible to monitor the quantitative distribution for natural medicinal plants with scattered distribution. PMID:25101134
Stratospheric measurement requirements and satellite-borne remote sensing capabilities
NASA Technical Reports Server (NTRS)
Carmichael, J. J.; Eldridge, R. G.; Frey, E. J.; Friedman, E. J.; Ghovanlou, A. H.
1976-01-01
The capabilities of specific NASA remote sensing systems to provide appropriate measurements of stratospheric parameters for potential user needs were assessed. This was used to evaluate the capabilities of the remote sensing systems to perform global monitoring of the stratosphere. The following conclusions were reached: (1) The performance of current remote stratospheric sensors, in some cases, compares quite well with identified measurement requirements. Their ability to measure other species has not been demonstrated. (2) None of the current, in-situ methods have the capability to satisfy the requirements for global monitoring and the temporal constraints derived from the users needs portion of the study. (3) Existing, non-remote techniques will continue to play an important role in stratospheric investigations for both corroboration of remotely collected data and in the evolutionary development of future remote sensors.
NASA Astrophysics Data System (ADS)
Cao, Xiaoming; Feng, Yiming; Wang, Juanle
2017-06-01
This paper has developed a general Ts-NDVI triangle space with vegetation index time-series data from AVHRR and MODIS to monitor soil moisture in the Mongolian Plateau during 1981-2012, and studied the spatio-temporal variations of drought based on the temperature vegetation dryness index (TVDI). The results indicated that (1) the developed general Ts-NDVI space extracted from the AVHRR and MODIS remote sensing data would be an effective method to monitor regional drought, moreover, it would be more meaningful if the single time Ts-NDVI space showed an unstable condition; (2) the inverted TVDI was expected to reflect the water deficit in the study area. It was found to be in close negative agreement with precipitation and 10 cm soil moisture; (3) in the Mongolian Plateau, TVDI presented a zonal distribution with changes in land use/land cover types, vegetation cover and latitude. The soil moisture is low in bare land, construction land and grassland. During 1981-2012, drought was widely spread throughout the plateau, and aridification was obvious in the study period. Vegetation degradation, overgrazing, and climate warming could be considered as the main reasons.
Evaluating ESA CCI Soil Moisture in East Africa
NASA Technical Reports Server (NTRS)
McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.
2016-01-01
To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.
NASA Astrophysics Data System (ADS)
Zilberman, Arkadi; Ben Asher, Jiftah; Kopeika, Norman S.
2016-10-01
The advancements in remote sensing in combination with sensor technology (both passive and active) enable growers to analyze an entire crop field as well as its local features. In particular, changes of actual evapo-transpiration (ET) as a function of water availability can be measured remotely with infrared radiometers. Detection of crop water stress and ET and combining it with the soil water flow model enable rational irrigation timing and application amounts. Nutrient deficiency, and in particular nitrogen deficiency, causes substantial crop losses. This deficiency needs to be identified immediately. A faster the detection and correction, a lesser the damage to the crop yield. In the present work, to retrieve ET a novel deterministic approach was used which is based on the remote sensing data. The algorithm can automatically provide timely valuable information on plant and soil water status, which can improve the management of irrigated crops. The solution is capable of bridging between Penman-Monteith ET model and Richards soil water flow model. This bridging can serve as a preliminary tool for expert irrigation system. To support decisions regarding fertilizers the greenness of plant canopies is assessed and quantified by using the spectral reflectance sensors and digital color imaging. Fertilization management can be provided on the basis of sampling and monitoring of crop nitrogen conditions using RS technique and translating measured N concentration in crop to kg/ha N application in the field.
Monitoring and telemedicine support in remote environments and in human space flight.
Cermack, M
2006-07-01
The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.
NASA Astrophysics Data System (ADS)
McDonald, K. C.
2017-12-01
Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.
Gant, Nicholas; Meads, Andrew; Warren, Ian; Maddison, Ralph
2016-01-01
Background Participation in traditional center-based cardiac rehabilitation exercise programs (exCR) is limited by accessibility barriers. Mobile health (mHealth) technologies can overcome these barriers while preserving critical attributes of center-based exCR monitoring and coaching, but these opportunities have not yet been capitalized on. Objective We aimed to design and develop an evidence- and theory-based mHealth platform for remote delivery of exCR to any geographical location. Methods An iterative process was used to design and develop an evidence- and theory-based mHealth platform (REMOTE-CR) that provides real-time remote exercise monitoring and coaching, behavior change education, and social support. Results The REMOTE-CR platform comprises a commercially available smartphone and wearable sensor, custom smartphone and Web-based applications (apps), and a custom middleware. The platform allows exCR specialists to monitor patients’ exercise and provide individualized coaching in real-time, from almost any location, and provide behavior change education and social support. Intervention content incorporates Social Cognitive Theory, Self-determination Theory, and a taxonomy of behavior change techniques. Exercise components are based on guidelines for clinical exercise prescription. Conclusions The REMOTE-CR platform extends the capabilities of previous telehealth exCR platforms and narrows the gap between existing center- and home-based exCR services. REMOTE-CR can complement center-based exCR by providing an alternative option for patients whose needs are not being met. Remotely monitored exCR may be more cost-effective than establishing additional center-based programs. The effectiveness and acceptability of REMOTE-CR are now being evaluated in a noninferiority randomized controlled trial. PMID:27342791
Mukherjee, Ramtanu; Ghosh, Sanchita; Gupta, Bharat; Chakravarty, Tapas
2018-01-22
The effectiveness of any remote healthcare monitoring system depends on how much accurate, patient-friendly, versatile, and cost-effective measurement it is delivering. There has always been a huge demand for such a long-term noninvasive remote blood pressure (BP) measurement system, which could be used worldwide in the remote healthcare industry. Thus, noninvasive continuous BP measurement and remote monitoring have become an emerging area in the remote healthcare industry. Photoplethysmography-based (PPG) BP measurement is a continuous, unobtrusive, patient-friendly, and cost-effective solution. However, BP measurements through PPG sensors are not much reliable and accurate due to some major limitations like pressure disturbance, motion artifacts, and variations in human skin tone. A novel reflective PPG sensor has been developed to eliminate the abovementioned pressure disturbance and motion artifacts during the BP measurement. Considering the variations of the human skin tone across demography, a novel algorithm has been developed to make the BP measurement accurate and reliable. The training dataset captured 186 subjects' data and the trial dataset captured another new 102 subjects' data. The overall accuracy achieved by using the proposed method is nearly 98%. Thus, demonstrating the efficacy of the proposed method. The developed BP monitoring system is quite accurate, reliable, cost-effective, handy, and user friendly. It is also expected that this system would be quite useful to monitor the BP of infants, elderly people, patients having wounds, burn injury, or in the intensive care unit environment.
Chen, Shou-Qiang; Xing, Shan-Shan; Gao, Hai-Qing
2014-01-01
Objective: In addition to ambulatory Holter electrocardiographic recording and transtelephonic electrocardiographic monitoring (TTM), a cardiac remote monitoring system can provide an automatic warning function through the general packet radio service (GPRS) network, enabling earlier diagnosis, treatment and improved outcome of cardiac diseases. The purpose of this study was to estimate its clinical significance in preventing acute cardiac episodes. Methods: Using 2 leads (V1 and V5 leads) and the automatic warning mode, 7160 patients were tested with a cardiac remote monitoring system from October 2004 to September 2007. If malignant arrhythmias or obvious ST-T changes appeared in the electrocardiogram records was automatically transferred to the monitoring center, the patient and his family members were informed, and the corresponding precautionary or therapeutic measures were implemented immediately. Results: In our study, 274 cases of malignant arrhythmia, including sinus standstill and ventricular tachycardia, and 43 cases of obvious ST-segment elevation were detected and treated. Because of early detection, there was no death or deformity. Conclusions: A cardiac remote monitoring system providing an automatic warning function can play an important role in preventing acute cardiac episodes. PMID:25674124
Advanced and applied remote sensing of environmental conditions
Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
"Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.
NASA Astrophysics Data System (ADS)
Montalto, F. A.; Yu, Z.; Soldner, K.; Israel, A.; Fritch, M.; Kim, Y.; White, S.
2017-12-01
Urban stormwater utilities are increasingly using decentralized "green" infrastructure (GI) systems to capture stormwater and achieve compliance with regulations. Because environmental conditions, and design varies by GSI facility, monitoring of GSI systems under a range of conditions is essential. Conventional monitoring efforts can be costly because in-field data logging requires intense data transmission rates. The Internet of Things (IoT) can be used to more cost-effectively collect, store, and publish GSI monitoring data. Using 3G mobile networks, a cloud-based database was built on an Amazon Web Services (AWS) EC2 virtual machine to store and publish data collected with environmental sensors deployed in the field. This database can store multi-dimensional time series data, as well as photos and other observations logged by citizen scientists through a public engagement mobile app through a new Application Programming Interface (API). Also on the AWS EC2 virtual machine, a real-time QAQC flagging algorithm was developed to validate the sensor data streams.
An embedded wireless system for remote monitoring of bridges
NASA Astrophysics Data System (ADS)
Harms, T.; Bastianini, F.; Sedigh Sarvestani, S.
2008-03-01
This paper describes an autonomous embedded system for remote monitoring of bridges. Salient features of the system include ultra-low power consumption, wireless communication of data and alerts, and incorporation of embedded sensors that monitor various indicators of the structural health of a bridge, while capturing the state of its surrounding environment. Examples include water level, temperature, vibration, and acoustic emissions. Ease of installation, physical robustness, remote maintenance and calibration, and autonomous data communication make the device a self-contained solution for remote monitoring of structural health. The system addresses shortcomings present in centralized structural health monitoring systems, particularly their reliance on a laptop or handheld computer. The system has been field-tested to verify the accuracy of the collected data and dependability of communication. The sheer volume of data collected, and the regularity of its collection can enable accurate and precise assessment of the health of a bridge, guiding maintenance efforts and providing early warning of potentially dangerous events. In this paper, we present a detailed breakdown of the system's power requirements and the results of the initial field test.
High-quality remote interactive imaging in the operating theatre
NASA Astrophysics Data System (ADS)
Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan
2009-02-01
We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.
Design and development of an IoT-based web application for an intelligent remote SCADA system
NASA Astrophysics Data System (ADS)
Kao, Kuang-Chi; Chieng, Wei-Hua; Jeng, Shyr-Long
2018-03-01
This paper presents a design of an intelligent remote electrical power supervisory control and data acquisition (SCADA) system based on the Internet of Things (IoT), with Internet Information Services (IIS) for setting up web servers, an ASP.NET model-view- controller (MVC) for establishing a remote electrical power monitoring and control system by using responsive web design (RWD), and a Microsoft SQL Server as the database. With the web browser connected to the Internet, the sensing data is sent to the client by using the TCP/IP protocol, which supports mobile devices with different screen sizes. The users can provide instructions immediately without being present to check the conditions, which considerably reduces labor and time costs. The developed system incorporates a remote measuring function by using a wireless sensor network and utilizes a visual interface to make the human-machine interface (HMI) more instinctive. Moreover, it contains an analog input/output and a basic digital input/output that can be applied to a motor driver and an inverter for integration with a remote SCADA system based on IoT, and thus achieve efficient power management.
DOT National Transportation Integrated Search
2015-03-01
This report presents a research examining the feasibility of creating an integrated structural health : monitoring and impact/collision detection system for bridges in remote cold regions, where in-person : inspection becomes formidable. The research...
REMOTE BIOSENSOR FOR IN SITU MONITORING OF ORGANOPHOSPHATE NERVE AGENTS. (R823663)
A remote electrochemical biosensor for field monitoring of organophosphate nerve agents is described. The new sensor relies on the coupling of the effective biocatalytic action of organophosphorus hydrolase (OPH) with a submersible amperometric probe design. This combination resu...
Monitoring Rangeland Health by Remote Sensing
USDA-ARS?s Scientific Manuscript database
Based on a land-cover classification from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS), rangelands cover 48% of the Earth’s land surface, not including Antarctica. Nearly all analyses imply the most economical means of monitoring large areas of rangelands worldwide is with remote s...
Security warning system monitors up to fifteen remote areas simultaneously
NASA Technical Reports Server (NTRS)
Fusco, R. C.
1966-01-01
Security warning system consisting of 15 television cameras is capable of monitoring several remote or unoccupied areas simultaneously. The system uses a commutator and decommutator, allowing time-multiplexed video transmission. This security system could be used in industrial and retail establishments.
Operationally Monitoring Sea Ice at the Canadian Ice Service
NASA Astrophysics Data System (ADS)
de Abreu, R.; Flett, D.; Carrieres, T.; Falkingham, J.
2004-05-01
The Canadian Ice Service (CIS) of the Meteorological Service of Canada promotes safe and efficient maritime operations and protects Canada's environment by providing reliable and timely information about ice and iceberg conditions in Canadian waters. Daily and seasonal charts describing the extent, type and concentration of sea ice and icebergs are provided to support navigation and other activities (e.g. oil and gas) in coastal waters. The CIS relies on a suite of spaceborne visible, infrared and microwave sensors to operationally monitor ice conditions in Canadian coastal and inland waterways. These efforts are complemented by operational sea ice models that are customized and run at the CIS. The archive of these data represent a 35 year archive of ice conditions and have proven to be a valuable dataset for historical sea ice analysis. This presentation will describe the daily integration of remote sensing observations and modelled ice conditions used to produce ice and iceberg products. A review of the decadal evolution of this process will be presented, as well as a glimpse into the future of ice and iceberg monitoring. Examples of the utility of the CIS digital sea ice archive for climate studies will also be presented.
NASA Astrophysics Data System (ADS)
Nagel, David J.
2000-11-01
The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.
Using the SPEI to Estimate Food Production in East Africa
NASA Astrophysics Data System (ADS)
Husak, G. J.; Hobbins, M.; Verdin, J. P.; Peterson, P.; Funk, C. C.
2015-12-01
The Famine Early Warning Systems Network (FEWS NET) monitors critical environmental variables that impact food production in developing countries. Due to a sparse network of observations in the developing world, many of these variables are estimated using remotely sensed data. As scientists develop new techniques to leverage available observations and remotely sensed information there are opportunities to create products that identify the environmental conditions that stress agriculture and reduce food production. FEWS NET pioneered the development of the Climate Hazards Group InfraRed Precipitation with stations (CHIRPS) dataset, to estimate precipitation and monitor growing conditions throughout the world. These data are used to drive land surface models, hydrologic models and basic crop models among others. A new dataset estimating the reference evapotranspiration (ET0) has been developed using inputs from the ERA-Interim GCM. This ET0 dataset stretches back to 1981, allowing for a long-term record, stretching many seasons and drought events. Combining the CHIRPS data to estimate water availability and the ET0 data to estimate evaporative demand, one can estimate the approximate water gap (surplus or deficit) over a specific time period. Normalizing this difference creates the Standardized Precipitation Evapotranspiration Index (SPEI), which presents these gaps in comparison to the historical record for a specific location and accumulation period. In this study we evaluate the SPEI as a tool to estimate crop yields for different regions of Kenya. Identifying the critical time of analysis for the SPEI is the first step in building a relationship between the water gap and food production. Once this critical period is identified, we look at the predictability of food production using the SPEI, and assess the utility of it for monitoring food security, with the goal of incorporating the SPEI in the standard monitoring suite of FEWS NET tools.
Handcock, Rebecca N.; Swain, Dave L.; Bishop-Hurley, Greg J.; Patison, Kym P.; Wark, Tim; Valencia, Philip; Corke, Peter; O'Neill, Christopher J.
2009-01-01
Remote monitoring of animal behaviour in the environment can assist in managing both the animal and its environmental impact. GPS collars which record animal locations with high temporal frequency allow researchers to monitor both animal behaviour and interactions with the environment. These ground-based sensors can be combined with remotely-sensed satellite images to understand animal-landscape interactions. The key to combining these technologies is communication methods such as wireless sensor networks (WSNs). We explore this concept using a case-study from an extensive cattle enterprise in northern Australia and demonstrate the potential for combining GPS collars and satellite images in a WSN to monitor behavioural preferences and social behaviour of cattle. PMID:22412327
Image acquisition system for traffic monitoring applications
NASA Astrophysics Data System (ADS)
Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben
1995-03-01
An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic classification of vehicle class and recording of vehicle numberplates with a success rate around 90 percent in a period of 24 hours.
Environmental monitoring and research at the John F. Kennedy Space Center
NASA Technical Reports Server (NTRS)
Hall, C. R.; Hinkle, C. R.; Knott, W. M.; Summerfield, B. R.
1992-01-01
The Biomedical Operations and Research Office at the NASA John F. Kennedy Space Center has been supporting environmental monitoring and research since the mid-1970s. Program elements include monitoring of baseline conditions to document natural variability in the ecosystem, assessments of operations and construction of new facilities, and ecological research focusing on wildlife habitat associations. Information management is centered around development of a computerized geographic information system that incorporates remote sensing and digital image processing technologies along with traditional relational data base management capabilities. The proactive program is one in which the initiative is to anticipate potential environmental concerns before they occur and, by utilizing in-house expertise, develop impact minimization or mitigation strategies to reduce environmental risk.
NASA Technical Reports Server (NTRS)
Wolf, J. A.
1978-01-01
The Highly maneuverable aircraft technology (HIMAT) remotely piloted research vehicle (RPRV) uses cross-ship comparison monitoring of the actuator RAM positions to detect a failure in the aileron, canard, and elevator control surface servosystems. Some possible sources of nuisance trips for this failure detection technique are analyzed. A FORTRAN model of the simplex servosystems and the failure detection technique were utilized to provide a convenient means of changing parameters and introducing system noise. The sensitivity of the technique to differences between servosystems and operating conditions was determined. The cross-ship comparison monitoring method presently appears to be marginal in its capability to detect an actual failure and to withstand nuisance trips.
NASA Technical Reports Server (NTRS)
Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)
1978-01-01
The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.
Zhang, Yuanzhi; Chen, Zhengyi; Zhu, Boqin; Luo, Xiuyue; Guan, Yanning; Guo, Shan; Nie, Yueping
2008-12-01
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.
Marmet Locks and Dam, Kanawha River, West Virginia
2015-07-01
emptying system has a through-the-sill intake, an in-chamber longitudinal culvert system, and Stoney gate valves. The lock was monitored using time... culvert system experienced peak average velocities of 18 feet per second, although no adverse pressures were found. A remotely operated vehicle...inspection indicated the walls of the culverts were in good condition. The Stoney gate valves are performing well and not showing any signs of unusual
Monitoring of Arctic Conditions from a Virtual Constellation of Synthetic Aperture Radar Satellites
2014-09-30
Constellation of Synthetic Aperture Radar Satellites RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...fax: (305) 421-4696 email: pminnett@rsmas.miami.edu Award Number: N00014-12-1-0448 LONG-TERM GOALS Utilize a constellation of satellite...OBJECTIVES a) Provide daily Arctic situational awareness from the CSTARS SAR satellite constellation . b) Develop a Neural Network algorithm for ice-type
Monitoring Maritime Conditions with Unmanned Systems During Trident Warrior 2013
2014-01-01
Host- ing Autonomous Remote Craft or SHARC model ) that emit sounds and listen for reflected changes in response to ocean currents. Experiments tested...San Diego Scripps Institution of Oceanography were also deployed; these provided Acoustic Doppler Current Profiler (ADCP) 3D measurements of the...ocean currents as well as measurements of the surface meteorology . Figure 5(b) shows a schematic representa- tion of one wave glider and two ocean
Effectiveness and safety of remote monitoring of patients with an implantable loop recorder.
Drak-Hernández, Yasmín; Toquero-Ramos, Jorge; Fernández, José M; Pérez-Pereira, Elena; Castro-Urda, Víctor; Fernández-Lozano, Ignacio
2013-12-01
Implantable loop recorders have proven efficacy in the study of patients with syncope and palpitations. Remote monitoring of patients with pacemakers and implantable cardioverter-defibrillators has been shown to be safe and effective. The purpose of this study was to analyze the safety and effectiveness of remote monitoring in patients with an implantable loop recorder. Retrospective observational study in which 109 patients with an implantable loop recorder were analyzed and 2 population groups were compared: 1 receiving conventional follow-up consisting of 3-monthly office visits (41 patients) and 1 with remote monitoring via monthly telephone transmissions and yearly visits (68 patients). The mean follow-up was 64 weeks (range, 0.57-164.57 weeks). The study analyzed diagnosis of a significant event, defined as any event that led to a therapeutic approach and explained the symptoms leading to the implant, as well as the mean time from implant to diagnosis and the specific treatment. A significant event was diagnosed in 82.6% of patients; of these, 54.4% had a normal electrocardiogram; 26.7%, asystole; 15.6%, tachycardia, and 3.3%, bradycardia. The mean time from implant to diagnosis was 260 days (range, 5-947 days) in conventional follow-up, compared with 56 days (range, 0-650 days) in patients with remote monitoring (P<.01), which led to targeted treatment in this group 187 days earlier, on average, with no secondary complications. Remote monitoring of patients with an implantable loop recorder can significantly shorten the time to diagnosis and targeted treatment, without adversely affecting patient safety. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Park, Joon Bum; Choi, Hyuk Joong; Lee, Jeong Hun; Kang, Bo Seung
2013-08-01
We examined the potential of the iPad 2 as a teleradiologic tool for evaluating brain computed tomography (CT) with subtle hemorrhage in the conventional lighting conditions which are common situations in the remote CT reading. The comparison of the clinician's performance was undertaken through detecting hemorrhage by the iPad 2 and the clinical liquid crystal display (LCD) monitor. We selected 100 brain CT exams performed for head trauma or headache. Fifty had subtle radiological signs of intracranial hemorrhage (ICH), while the other 50 showed no significant abnormality. Five emergency medicine physicians reviewed these brain CT scans using the iPad 2 and the LCD monitor, scoring the probability of ICH on each exam on a five-point scale. Result showed high sensitivities and specificities in both devices. We generated receiver operating characteristic curves and calculated the average area under the curve of the iPad 2 and the LCD (0.935 and 0.900). Using the iPad 2 and reliable internet connectivity, clinicians can provide remote evaluation of brain CT with subtle hemorrhage under suboptimal viewing condition. Considering the distinct advantages of the iPad 2, the popular out-of-hospital use of mobile CT teleradiology would be anticipated soon.
NASA Astrophysics Data System (ADS)
Muggleton, J. M.; Rustighi, E.; Gao, Y.
2016-09-01
Waves that propagate at low frequencies in buried pipes are of considerable interest in a variety of practical scenarios, for example leak detection, remote pipe detection, and pipeline condition assessment and monitoring. Particularly useful are the n = 0, or axisymmetric, modes in which there is no displacement (or pressure) variation over the pipe cross section. Previous work has focused on two of the three axisymmetric wavetypes that can propagate: the s = 1, fluid- dominated wave; and the s = 2, shell-dominated wave. In this paper, the third axisymmetric wavetype, the s = 0 torsional wave, is studied. Whilst there is a large body of research devoted to the study of torsional waves and their use for defect detection in pipes at ultrasonic frequencies, little is known about their behaviour and possible exploitation at lower frequencies. Here, a low- frequency analytical dispersion relationship is derived for the torsional wavenumber for a buried pipe from which both the wavespeed and wave attenuation can be obtained. How the torsional waves subsequently radiate to the ground surface is then investigated, with analytical expressions being presented for the ground surface displacement above the pipe resulting from torsional wave motion within the pipe wall. Example results are presented and, finally, how such waves might be exploited in practice is discussed.
NASA Technical Reports Server (NTRS)
McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.
2004-01-01
Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.
NASA Technical Reports Server (NTRS)
McDonald, Kyle C.; Kimball, John S.; Zhao, Maosheng; Njoku, Eni; Zimmermann, Reiner; Running, Steven W.
2004-01-01
Landscape transitions between seasonally frozen and thawed conditions occur each year over roughly 50 million square kilometers of Earth's Northern Hemisphere. These relatively abrupt transitions represent the closest analog to a biospheric and hydrologic on/off switch existing in nature, affecting surface meteorological conditions, ecological trace gas dynamics, energy exchange and hydrologic activity profoundly. We utilize time series satellite-borne microwave remote sensing measurements from the Special Sensor Microwave Imager (SSM/I) to examine spatial and temporal variability in seasonal freeze/thaw cycles for the pan-Arctic basin and Alaska. Regional measurements of spring thaw timing are derived using daily brightness temperature measurements from the 19 GHz, horizontally polarized channel, separately for overpasses with 6 AM and 6 PM equatorial crossing times. Spatial and temporal patterns in regional freeze/thaw dynamics show distinct differences between North America and Eurasia, and boreal forest and Arctic tundra biomes. Annual anomalies in the timing of thawing in spring also correspond closely to seasonal atmospheric CO2 concentration anomalies derived from NOAA CMDL arctic and subarctic monitoring stations. Classification differences between AM and PM overpass data average approximately 5 days for the region, though both appear to be effective surrogates for monitoring annual growing seasons at high latitudes.
Distributed observing facility for remote access to multiple telescopes
NASA Astrophysics Data System (ADS)
Callegari, Massimo; Panciatici, Antonio; Pasian, Fabio; Pucillo, Mauro; Santin, Paolo; Aro, Simo; Linde, Peter; Duran, Maria A.; Rodriguez, Jose A.; Genova, Francoise; Ochsenbein, Francois; Ponz, J. D.; Talavera, Antonio
2000-06-01
The REMOT (Remote Experiment Monitoring and conTrol) project was financed by 1996 by the European Community in order to investigate the possibility of generalizing the remote access to scientific instruments. After the feasibility of this idea was demonstrated, the DYNACORE (DYNAmically, COnfigurable Remote Experiment monitoring and control) project was initiated as a REMOT follow-up. Its purpose is to develop software technology to support scientists in two different domains, astronomy and plasma physics. The resulting system allows (1) simultaneous multiple user access to different experimental facilities, (2) dynamic adaptability to different kinds of real instruments, (3) exploitation of the communication infrastructures features, (4) ease of use through intuitive graphical interfaces, and (5) additional inter-user communication using off-the-shelf projects such as video-conference tools, chat programs and shared blackboards.
Costa, Paulo Dias; Reis, A Hipólito; Rodrigues, Pedro P
2013-02-01
Traditional follow-up of patients with cardiovascular devices is still an activity that, in addition to serving an increasing population, requires a considerable amount of time and specialized human and technical resources. Our aim was to evaluate the applicability of the CareLink(®) (Medtronic, Minneapolis, MN) remote monitoring system as a complementary option to the follow-up of patients with implanted devices, between in-office visits. Evaluated outcomes included both clinical (event detection and time to diagnosis) and nonclinical (patient's satisfaction and economic costs) aspects. An observational, longitudinal, prospective study was conducted with patients from a Portuguese central hospital sampled by convenience during 1 week (43 patients). Data were collected in four moments: two in-office visits and two remote evaluations, reproducing 1 year of clinical follow-up. Data sources included health records, implant reports, initial demographic data collection, follow-up printouts, and a questionnaire. After selection criteria were verified, 15 patients (11 men [73%]) were included, 63.4±10.8 years old, representing 14.0±6.3 implant months. Clinically, 15 events were detected (9 by remote monitoring and 6 by patient-initiated activation), of which only 9 were symptomatic. We verified that remote monitoring could detect both symptomatic and asymptomatic events, whereas patient-initiated activation only detected symptomatic ones (p=0.028). Moreover, the mean diagnosis anticipation in patients with events was approximately 58 days (p<0.001). In nonclinical terms, we observed high or very high satisfaction (67% and 33%, respectively) with using remote monitoring technology, but still 8 patients (53%) stated they preferred in-office visits. Finally, the introduction of remote monitoring technology has the ability to reduce total follow-up costs for patients by 25%. We conclude that the use of this system constitutes a viable complementary option to the follow-up of patients with implantable devices, between in-office visits.
Quo vadis, remote sensing. [use of satellite data for resource management
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1977-01-01
The use of satellite remote sensing data for resource management is discussed. The evaluation of the need for management data is reviewed, and some legislative programs which require the monitoring of environmental resources are summarized. Several characteristics of data used in the monitoring of dynamic processes are analyzed, and the implications of routine processing of extensive remote sensing data for the development of a new world view are considered.
NASA Astrophysics Data System (ADS)
Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.
2014-12-01
Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
NASA Astrophysics Data System (ADS)
Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew
2013-04-01
Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of Vegetation Index. A temporal smoothing procedure based on Savitzky-Golay polynomial filter function was applied to the original 8-day composite VI data (EVI and NDVI) in order to eliminate spurious data which affect the time series and to produce an interpolated VI temporal profile. Finally within the area previously identify as rice by SAR analysis phenological estimation have been conducted. Crop growth minima and maxima, respectively indicator of rice transplanting and heading, have been identify from the derivative analysis time series. This procedure was tested in Bangladesh for the year 2011. Results showed that the combined use of both data typology represents the more suitable multisource framework to provide reliable information on rice crop growth. Preliminary maps analysis reveals how SAR rice detection was in agreement with local information and phenology extracted by MODIS data provided spatially distributed data comparable with local knowledge of crop calendar.
A low-cost wireless system for autonomous generation of road safety alerts
NASA Astrophysics Data System (ADS)
Banks, B.; Harms, T.; Sedigh Sarvestani, S.; Bastianini, F.
2009-03-01
This paper describes an autonomous wireless system that generates road safety alerts, in the form of SMS and email messages, and sends them to motorists subscribed to the service. Drivers who regularly traverse a particular route are the main beneficiaries of the proposed system, which is intended for sparsely populated rural areas, where information available to drivers about road safety, especially bridge conditions, is very limited. At the heart of this system is the SmartBrick, a wireless system for remote structural health monitoring that has been presented in our previous work. Sensors on the SmartBrick network regularly collect data on water level, temperature, strain, and other parameters important to safety of a bridge. This information is stored on the device, and reported to a remote server over the GSM cellular infrastructure. The system generates alerts indicating hazardous road conditions when the data exceeds thresholds that can be remotely changed. The remote server and any number of designated authorities can be notified by email, FTP, and SMS. Drivers can view road conditions and subscribe to SMS and/or email alerts through a web page. The subscription-only form of alert generation has been deliberately selected to mitigate privacy concerns. The proposed system can significantly increase the safety of travel through rural areas. Real-time availability of information to transportation authorities and law enforcement officials facilitates early or proactive reaction to road hazards. Direct notification of drivers further increases the utility of the system in increasing the safety of the traveling public.
Spectral Imaging from Uavs Under Varying Illumination Conditions
NASA Astrophysics Data System (ADS)
Hakala, T.; Honkavaara, E.; Saari, H.; Mäkynen, J.; Kaivosoja, J.; Pesonen, L.; Pölönen, I.
2013-08-01
Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes with stereoscopic overlaps. On field the weather conditions vary and the UAV operator often has to decide between flight in sub optimal conditions and no flight. Our objective was to investigate methods for quantitative radiometric processing of images taken under varying illumination conditions, thus expanding the range of weather conditions during which successful imaging flights can be made. A new method that is based on insitu measurement of irradiance either in UAV platform or in ground was developed. We tested the methods in a precision agriculture application using realistic data collected in difficult illumination conditions. Internal homogeneity of the original image data (average coefficient of variation in overlapping images) was 0.14-0.18. In the corrected data, the homogeneity was 0.10-0.12 with a correction based on broadband irradiance measured in UAV, 0.07-0.09 with a correction based on spectral irradiance measurement on ground, and 0.05-0.08 with a radiometric block adjustment based on image data. Our results were very promising, indicating that quantitative UAV based remote sensing could be operational in diverse conditions, which is prerequisite for many environmental remote sensing applications.
2003-08-21
KENNEDY SPACE CENTER, FLA. - On a tour of the KSC Beach Corrosion Test Site, Testbed Manager Louis MacDowell (right) explains to Center Director Jim Kennedy about the test blocks being used to test a newly developed coating to protect steel inside concrete. Between MacDowell and Kennedy are Dr. Paul Hintze and Lead Scientist Dr. Luz Marina Calle. The KSC Beach Corrosion Test Site was established in the 1960s and has provided more than 30 years of historical information on the long-term performance of many materials in use at KSC and other locations around the world. Located 100 feet from the Atlantic Ocean approximately 1 mile south of the Space Shuttle launch sites, the test facility includes an atmospheric exposure site, a flowing seawater exposure site, and an on-site electrochemistry laboratory and monitoring station. The beach laboratory is used to conduct real-time corrosion experiments and provides for the remote monitoring of surrounding weather conditions. The newly added flowing seawater immersion facility provides for the immersion testing of materials and devices under controlled conditions.
Multiple Scale Remote Sensing for Monitoring Rangelands
USDA-ARS?s Scientific Manuscript database
Based on a land-cover classification from NASA’s MODerate resolution Imaging Spectroradiometer (MODIS), rangelands cover 48% of the Earth’s land surface, not including Antarctica. Nearly all analyses imply the most economical means of monitoring large areas of rangelands worldwide is with remote se...
PLANT INCORPORATED PROTECTANT CROP MONITORING USING REMOTE SENSING
The extent of past and anticipated plantings of transgenic corn in the United States requires a new approach to monitor this important crop for the development of pest resistance. Remote sensing by aerial and/or satellite images may provide a method of identifying transgenic pest...
Optical remote measurement of toxic gases
NASA Technical Reports Server (NTRS)
Grant, W. B.; Kagann, R. H.; McClenny, W. A.
1992-01-01
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.
Towards Remotely Sensed Composite Global Drought Risk Modelling
NASA Astrophysics Data System (ADS)
Dercas, Nicholas; Dalezios, Nicolas
2015-04-01
Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.
Unmanned aerial systems for forest reclamation monitoring: throwing balloons in the air
NASA Astrophysics Data System (ADS)
Andrade, Rita; Vaz, Eric; Panagopoulos, Thomas; Guerrero, Carlos
2014-05-01
Wildfires are a recurrent phenomenon in Mediterranean landscapes, deteriorating environment and ecosystems, calling out for adequate land management. Monitoring burned areas enhances our abilities to reclaim them. Remote sensing has become an increasingly important tool for environmental assessment and land management. It is fast, non-intrusive, and provides continuous spatial coverage. This paper reviews remote sensing methods, based on space-borne, airborne or ground-based multispectral imagery, for monitoring the biophysical properties of forest areas for site specific management. The usage of satellite imagery for land use management has been frequent in the last decades, it is of great use to determine plants health and crop conditions, allowing a synergy between the complexity of environment, anthropogenic landscapes and multi-temporal understanding of spatial dynamics. Aerial photography increments on spatial resolution, nevertheless it is heavily dependent on airborne availability as well as cost. Both these methods are required for wide areas management and policy planning. Comprising an active and high resolution imagery source, that can be brought at a specific instance, reducing cost while maintaining locational flexibility is of utmost importance for local management. In this sense, unmanned aerial vehicles provide maximum flexibility with image collection, they can incorporate thermal and multispectral sensors, however payload and engine operation time limit flight time. Balloon remote sensing is becoming increasingly sought after for site specific management, catering rapid digital analysis, permitting greater control of the spatial resolution as well as of datasets collection in a given time. Different wavelength sensors may be used to map spectral variations in plant growth, monitor water and nutrient stress, assess yield and plant vitality during different stages of development. Proximity could be an asset when monitoring forest plants vitality. Early predictions of re-vegetation success facilitate precise and timely diagnosis of stress, thus remedial actions can be taken at localized detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuracko, K. L.; Parang, M.; Landguth, D. C.
2004-09-13
TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less
NASA Astrophysics Data System (ADS)
Datta, Jinia; Chowdhuri, Sumana; Bera, Jitendranath
2016-12-01
This paper presents a novel scheme of remote condition monitoring of multi machine system where a secured and coded data of induction machine with different parameters is communicated between a state-of-the-art dedicated hardware Units (DHU) installed at the machine terminal and a centralized PC based machine data management (MDM) software. The DHUs are built for acquisition of different parameters from the respective machines, and hence are placed at their nearby panels in order to acquire different parameters cost effectively during their running condition. The MDM software collects these data through a communication channel where all the DHUs are networked using RS485 protocol. Before transmitting, the parameter's related data is modified with the adoption of differential pulse coded modulation (DPCM) and Huffman coding technique. It is further encrypted with a private key where different keys are used for different DHUs. In this way a data security scheme is adopted during its passage through the communication channel in order to avoid any third party attack into the channel. The hybrid mode of DPCM and Huffman coding is chosen to reduce the data packet length. A MATLAB based simulation and its practical implementation using DHUs at three machine terminals (one healthy three phase, one healthy single phase and one faulty three phase machine) proves its efficacy and usefulness for condition based maintenance of multi machine system. The data at the central control room are decrypted and decoded using MDM software. In this work it is observed that Chanel efficiency with respect to different parameter measurements has been increased very much.
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach
Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-01
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B/K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance (CR=6 and PRD=1.88) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring. PMID:29337892
Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.
Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab
2018-01-16
Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.
Bakó, Gábor; Tolnai, Márton; Takács, Ádám
2014-01-01
Remote sensing is a method that collects data of the Earth's surface without causing disturbances. Thus, it is worthwhile to use remote sensing methods to survey endangered ecosystems, as the studied species will behave naturally while undisturbed. The latest passive optical remote sensing solutions permit surveys from long distances. State-of-the-art highly sensitive sensor systems allow high spatial resolution image acquisition at high altitudes and at high flying speeds, even in low-visibility conditions. As the aerial imagery captured by an airplane covers the entire study area, all the animals present in that area can be recorded. A population assessment is conducted by visual interpretations of an ortho image map. The basic objective of this study is to determine whether small- and medium-sized bird species are recognizable in the ortho images by using high spatial resolution aerial cameras. The spatial resolution needed for identifying the bird species in the ortho image map was studied. The survey was adjusted to determine the number of birds in a colony at a given time. PMID:25046012
Hale, Timothy M; Jethwani, Kamal; Kandola, Manjinder Singh; Saldana, Fidencio; Kvedar, Joseph C
2016-04-17
Heart failure (HF) is a chronic condition affecting nearly 5.7 million Americans and is a leading cause of morbidity and mortality. With an aging population, the cost associated with managing HF is expected to more than double from US $31 billion in 2012 to US $70 billion by 2030. Readmission rates for HF patients are high-25% are readmitted at 30 days and nearly 50% at 6 months. Low medication adherence contributes to poor HF management and higher readmission rates. Remote telehealth monitoring programs aimed at improved medication management and adherence may improve HF management and reduce readmissions. The primary goal of this randomized controlled pilot study is to compare the MedSentry remote medication monitoring system versus usual care in older HF adult patients who recently completed a HF telemonitoring program. We hypothesized that remote medication monitoring would be associated with fewer unplanned hospitalizations and emergency department (ED) visits, increased medication adherence, and improved health-related quality of life (HRQoL) compared to usual care. Participants were randomized to usual care or use of the remote medication monitoring system for 90 days. Twenty-nine participants were enrolled and the final analytic sample consisted of 25 participants. Participants completed questionnaires at enrollment and closeout to gather data on medication adherence, health status, and HRQoL. Electronic medical records were reviewed for data on baseline classification of heart function and the number of unplanned hospitalizations and ED visits during the study period. Use of the medication monitoring system was associated with an 80% reduction in the risk of all-cause hospitalization and a significant decrease in the number of all-cause hospitalization length of stay in the intervention arm compared to usual care. Objective device data indicated high adherence rates (95%-99%) among intervention group participants despite finding no significant difference in self-reported adherence between study arms. The intervention group had poorer heart function and HRQoL at baseline, and HRQoL declined significantly in the intervention group compared to controls. The MedSentry medication monitoring system is a promising technology that merits continued development and evaluation. The MedSentry medication monitoring system may be useful both as a standalone system for patients with complex medication regimens or used to complement existing HF telemonitoring interventions. We found significant reductions in risk of all-cause hospitalization and the number of all-cause length of stay in the intervention group compared to controls. Although HRQoL deteriorated significantly in the intervention group, this may have been due to the poorer HF-functioning at baseline in the intervention group compared to controls. Telehealth medication adherence technologies, such as the MedSentry medication monitoring system, are a promising method to improve patient self-management,the quality of patient care, and reduce health care utilization and expenditure for patients with HF and other chronic diseases that require complex medication regimens. ClinicalTrials.gov NCT01814696; https://clinicaltrials.gov/ct2/show/study/NCT01814696 (Archived by WebCite® at http://www.webcitation.org/6giqAVhno).
NASA Astrophysics Data System (ADS)
Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.
2003-12-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to agriculture-related products from other data producers. The AIS? system approach will provide a generic mechanism for easily incorporating new products and making them accessible to users.
Optically powered remote gas monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubaniewicz, T.H. Jr.; Chilton, J.E.
1995-12-31
Many mines rely on toxic gas sensors to help maintain a safe and healthy work environment. This report describes a prototype monitoring system developed by the US Bureau of Mines (USBM) that uses light to power and communicate with several remote toxic gas sensors. The design is based on state-of-art optical-to-electrical power converters, solid-state diode lasers, and fiber optics. This design overcomes several problems associated with conventional wire-based systems by providing complete electrical isolation between the remote sensors and the central monitor. The prototype performed well during a 2-week field trial in the USBM Pittsburgh Research Center Safety Research Coalmore » Mine.« less
NASA Astrophysics Data System (ADS)
AghaKouchak, A.; Huning, L. S.; Love, C. A.; Farahmand, A.
2017-12-01
This presentation surveys current and emerging drought monitoring approaches using satellite remote sensing observations from climatological and ecosystem perspectives. Satellite observations that are not currently used for operational drought monitoring, such as near-surface air relative humidity and water vapor, provide opportunities to improve early drought warning. Current and future satellite missions offer opportunities to develop composite and multi-indicator drought models. This presentation describes how different satellite observations can be combined for overall drought development and impact assessment. Finally, we provide an overview of the research gaps and challenges that are facing us ahead in the remote sensing of drought.